Do not promote null values because it may be unsafe to do so.
[llvm-complete.git] / lib / Transforms / Scalar / LICM.cpp
blobf112ba8262063aaa4135afd4faea8e90bc73baa8
1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs loop invariant code motion, attempting to remove as much
11 // code from the body of a loop as possible. It does this by either hoisting
12 // code into the preheader block, or by sinking code to the exit blocks if it is
13 // safe. This pass also promotes must-aliased memory locations in the loop to
14 // live in registers, thus hoisting and sinking "invariant" loads and stores.
16 // This pass uses alias analysis for two purposes:
18 // 1. Moving loop invariant loads and calls out of loops. If we can determine
19 // that a load or call inside of a loop never aliases anything stored to,
20 // we can hoist it or sink it like any other instruction.
21 // 2. Scalar Promotion of Memory - If there is a store instruction inside of
22 // the loop, we try to move the store to happen AFTER the loop instead of
23 // inside of the loop. This can only happen if a few conditions are true:
24 // A. The pointer stored through is loop invariant
25 // B. There are no stores or loads in the loop which _may_ alias the
26 // pointer. There are no calls in the loop which mod/ref the pointer.
27 // If these conditions are true, we can promote the loads and stores in the
28 // loop of the pointer to use a temporary alloca'd variable. We then use
29 // the mem2reg functionality to construct the appropriate SSA form for the
30 // variable.
32 //===----------------------------------------------------------------------===//
34 #define DEBUG_TYPE "licm"
35 #include "llvm/Transforms/Scalar.h"
36 #include "llvm/Constants.h"
37 #include "llvm/DerivedTypes.h"
38 #include "llvm/Instructions.h"
39 #include "llvm/Target/TargetData.h"
40 #include "llvm/Analysis/LoopInfo.h"
41 #include "llvm/Analysis/LoopPass.h"
42 #include "llvm/Analysis/AliasAnalysis.h"
43 #include "llvm/Analysis/AliasSetTracker.h"
44 #include "llvm/Analysis/Dominators.h"
45 #include "llvm/Analysis/ScalarEvolution.h"
46 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
47 #include "llvm/Support/CFG.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/ADT/Statistic.h"
52 #include <algorithm>
53 using namespace llvm;
55 STATISTIC(NumSunk , "Number of instructions sunk out of loop");
56 STATISTIC(NumHoisted , "Number of instructions hoisted out of loop");
57 STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
58 STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
59 STATISTIC(NumPromoted , "Number of memory locations promoted to registers");
61 namespace {
62 cl::opt<bool>
63 DisablePromotion("disable-licm-promotion", cl::Hidden,
64 cl::desc("Disable memory promotion in LICM pass"));
66 struct VISIBILITY_HIDDEN LICM : public LoopPass {
67 static char ID; // Pass identification, replacement for typeid
68 LICM() : LoopPass((intptr_t)&ID) {}
70 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
72 /// This transformation requires natural loop information & requires that
73 /// loop preheaders be inserted into the CFG...
74 ///
75 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
76 AU.setPreservesCFG();
77 AU.addRequiredID(LoopSimplifyID);
78 AU.addRequired<LoopInfo>();
79 AU.addRequired<DominatorTree>();
80 AU.addRequired<DominanceFrontier>(); // For scalar promotion (mem2reg)
81 AU.addRequired<AliasAnalysis>();
82 AU.addPreserved<ScalarEvolution>();
83 AU.addPreserved<DominanceFrontier>();
86 bool doFinalization() {
87 LoopToAliasMap.clear();
88 return false;
91 private:
92 // Various analyses that we use...
93 AliasAnalysis *AA; // Current AliasAnalysis information
94 LoopInfo *LI; // Current LoopInfo
95 DominatorTree *DT; // Dominator Tree for the current Loop...
96 DominanceFrontier *DF; // Current Dominance Frontier
98 // State that is updated as we process loops
99 bool Changed; // Set to true when we change anything.
100 BasicBlock *Preheader; // The preheader block of the current loop...
101 Loop *CurLoop; // The current loop we are working on...
102 AliasSetTracker *CurAST; // AliasSet information for the current loop...
103 std::map<Loop *, AliasSetTracker *> LoopToAliasMap;
105 /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
106 void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
108 /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
109 /// set.
110 void deleteAnalysisValue(Value *V, Loop *L);
112 /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
113 /// dominated by the specified block, and that are in the current loop) in
114 /// reverse depth first order w.r.t the DominatorTree. This allows us to
115 /// visit uses before definitions, allowing us to sink a loop body in one
116 /// pass without iteration.
118 void SinkRegion(DomTreeNode *N);
120 /// HoistRegion - Walk the specified region of the CFG (defined by all
121 /// blocks dominated by the specified block, and that are in the current
122 /// loop) in depth first order w.r.t the DominatorTree. This allows us to
123 /// visit definitions before uses, allowing us to hoist a loop body in one
124 /// pass without iteration.
126 void HoistRegion(DomTreeNode *N);
128 /// inSubLoop - Little predicate that returns true if the specified basic
129 /// block is in a subloop of the current one, not the current one itself.
131 bool inSubLoop(BasicBlock *BB) {
132 assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
133 for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
134 if ((*I)->contains(BB))
135 return true; // A subloop actually contains this block!
136 return false;
139 /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
140 /// specified exit block of the loop is dominated by the specified block
141 /// that is in the body of the loop. We use these constraints to
142 /// dramatically limit the amount of the dominator tree that needs to be
143 /// searched.
144 bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
145 BasicBlock *BlockInLoop) const {
146 // If the block in the loop is the loop header, it must be dominated!
147 BasicBlock *LoopHeader = CurLoop->getHeader();
148 if (BlockInLoop == LoopHeader)
149 return true;
151 DomTreeNode *BlockInLoopNode = DT->getNode(BlockInLoop);
152 DomTreeNode *IDom = DT->getNode(ExitBlock);
154 // Because the exit block is not in the loop, we know we have to get _at
155 // least_ its immediate dominator.
156 do {
157 // Get next Immediate Dominator.
158 IDom = IDom->getIDom();
160 // If we have got to the header of the loop, then the instructions block
161 // did not dominate the exit node, so we can't hoist it.
162 if (IDom->getBlock() == LoopHeader)
163 return false;
165 } while (IDom != BlockInLoopNode);
167 return true;
170 /// sink - When an instruction is found to only be used outside of the loop,
171 /// this function moves it to the exit blocks and patches up SSA form as
172 /// needed.
174 void sink(Instruction &I);
176 /// hoist - When an instruction is found to only use loop invariant operands
177 /// that is safe to hoist, this instruction is called to do the dirty work.
179 void hoist(Instruction &I);
181 /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
182 /// is not a trapping instruction or if it is a trapping instruction and is
183 /// guaranteed to execute.
185 bool isSafeToExecuteUnconditionally(Instruction &I);
187 /// pointerInvalidatedByLoop - Return true if the body of this loop may
188 /// store into the memory location pointed to by V.
190 bool pointerInvalidatedByLoop(Value *V, unsigned Size) {
191 // Check to see if any of the basic blocks in CurLoop invalidate *V.
192 return CurAST->getAliasSetForPointer(V, Size).isMod();
195 bool canSinkOrHoistInst(Instruction &I);
196 bool isLoopInvariantInst(Instruction &I);
197 bool isNotUsedInLoop(Instruction &I);
199 /// PromoteValuesInLoop - Look at the stores in the loop and promote as many
200 /// to scalars as we can.
202 void PromoteValuesInLoop();
204 /// FindPromotableValuesInLoop - Check the current loop for stores to
205 /// definite pointers, which are not loaded and stored through may aliases.
206 /// If these are found, create an alloca for the value, add it to the
207 /// PromotedValues list, and keep track of the mapping from value to
208 /// alloca...
210 void FindPromotableValuesInLoop(
211 std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
212 std::map<Value*, AllocaInst*> &Val2AlMap);
215 char LICM::ID = 0;
216 RegisterPass<LICM> X("licm", "Loop Invariant Code Motion");
219 LoopPass *llvm::createLICMPass() { return new LICM(); }
221 /// Hoist expressions out of the specified loop. Note, alias info for inner
222 /// loop is not preserved so it is not a good idea to run LICM multiple
223 /// times on one loop.
225 bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
226 Changed = false;
228 // Get our Loop and Alias Analysis information...
229 LI = &getAnalysis<LoopInfo>();
230 AA = &getAnalysis<AliasAnalysis>();
231 DF = &getAnalysis<DominanceFrontier>();
232 DT = &getAnalysis<DominatorTree>();
234 CurAST = new AliasSetTracker(*AA);
235 // Collect Alias info from subloops
236 for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
237 LoopItr != LoopItrE; ++LoopItr) {
238 Loop *InnerL = *LoopItr;
239 AliasSetTracker *InnerAST = LoopToAliasMap[InnerL];
240 assert (InnerAST && "Where is my AST?");
242 // What if InnerLoop was modified by other passes ?
243 CurAST->add(*InnerAST);
246 CurLoop = L;
248 // Get the preheader block to move instructions into...
249 Preheader = L->getLoopPreheader();
250 assert(Preheader&&"Preheader insertion pass guarantees we have a preheader!");
252 // Loop over the body of this loop, looking for calls, invokes, and stores.
253 // Because subloops have already been incorporated into AST, we skip blocks in
254 // subloops.
256 for (std::vector<BasicBlock*>::const_iterator I = L->getBlocks().begin(),
257 E = L->getBlocks().end(); I != E; ++I)
258 if (LI->getLoopFor(*I) == L) // Ignore blocks in subloops...
259 CurAST->add(**I); // Incorporate the specified basic block
261 // We want to visit all of the instructions in this loop... that are not parts
262 // of our subloops (they have already had their invariants hoisted out of
263 // their loop, into this loop, so there is no need to process the BODIES of
264 // the subloops).
266 // Traverse the body of the loop in depth first order on the dominator tree so
267 // that we are guaranteed to see definitions before we see uses. This allows
268 // us to sink instructions in one pass, without iteration. After sinking
269 // instructions, we perform another pass to hoist them out of the loop.
271 SinkRegion(DT->getNode(L->getHeader()));
272 HoistRegion(DT->getNode(L->getHeader()));
274 // Now that all loop invariants have been removed from the loop, promote any
275 // memory references to scalars that we can...
276 if (!DisablePromotion)
277 PromoteValuesInLoop();
279 // Clear out loops state information for the next iteration
280 CurLoop = 0;
281 Preheader = 0;
283 LoopToAliasMap[L] = CurAST;
284 return Changed;
287 /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
288 /// dominated by the specified block, and that are in the current loop) in
289 /// reverse depth first order w.r.t the DominatorTree. This allows us to visit
290 /// uses before definitions, allowing us to sink a loop body in one pass without
291 /// iteration.
293 void LICM::SinkRegion(DomTreeNode *N) {
294 assert(N != 0 && "Null dominator tree node?");
295 BasicBlock *BB = N->getBlock();
297 // If this subregion is not in the top level loop at all, exit.
298 if (!CurLoop->contains(BB)) return;
300 // We are processing blocks in reverse dfo, so process children first...
301 const std::vector<DomTreeNode*> &Children = N->getChildren();
302 for (unsigned i = 0, e = Children.size(); i != e; ++i)
303 SinkRegion(Children[i]);
305 // Only need to process the contents of this block if it is not part of a
306 // subloop (which would already have been processed).
307 if (inSubLoop(BB)) return;
309 for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
310 Instruction &I = *--II;
312 // Check to see if we can sink this instruction to the exit blocks
313 // of the loop. We can do this if the all users of the instruction are
314 // outside of the loop. In this case, it doesn't even matter if the
315 // operands of the instruction are loop invariant.
317 if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
318 ++II;
319 sink(I);
325 /// HoistRegion - Walk the specified region of the CFG (defined by all blocks
326 /// dominated by the specified block, and that are in the current loop) in depth
327 /// first order w.r.t the DominatorTree. This allows us to visit definitions
328 /// before uses, allowing us to hoist a loop body in one pass without iteration.
330 void LICM::HoistRegion(DomTreeNode *N) {
331 assert(N != 0 && "Null dominator tree node?");
332 BasicBlock *BB = N->getBlock();
334 // If this subregion is not in the top level loop at all, exit.
335 if (!CurLoop->contains(BB)) return;
337 // Only need to process the contents of this block if it is not part of a
338 // subloop (which would already have been processed).
339 if (!inSubLoop(BB))
340 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
341 Instruction &I = *II++;
343 // Try hoisting the instruction out to the preheader. We can only do this
344 // if all of the operands of the instruction are loop invariant and if it
345 // is safe to hoist the instruction.
347 if (isLoopInvariantInst(I) && canSinkOrHoistInst(I) &&
348 isSafeToExecuteUnconditionally(I))
349 hoist(I);
352 const std::vector<DomTreeNode*> &Children = N->getChildren();
353 for (unsigned i = 0, e = Children.size(); i != e; ++i)
354 HoistRegion(Children[i]);
357 /// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
358 /// instruction.
360 bool LICM::canSinkOrHoistInst(Instruction &I) {
361 // Loads have extra constraints we have to verify before we can hoist them.
362 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
363 if (LI->isVolatile())
364 return false; // Don't hoist volatile loads!
366 // Don't hoist loads which have may-aliased stores in loop.
367 unsigned Size = 0;
368 if (LI->getType()->isSized())
369 Size = AA->getTargetData().getTypeSize(LI->getType());
370 return !pointerInvalidatedByLoop(LI->getOperand(0), Size);
371 } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
372 // Handle obvious cases efficiently.
373 if (Function *Callee = CI->getCalledFunction()) {
374 AliasAnalysis::ModRefBehavior Behavior =AA->getModRefBehavior(Callee, CI);
375 if (Behavior == AliasAnalysis::DoesNotAccessMemory)
376 return true;
377 else if (Behavior == AliasAnalysis::OnlyReadsMemory) {
378 // If this call only reads from memory and there are no writes to memory
379 // in the loop, we can hoist or sink the call as appropriate.
380 bool FoundMod = false;
381 for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
382 I != E; ++I) {
383 AliasSet &AS = *I;
384 if (!AS.isForwardingAliasSet() && AS.isMod()) {
385 FoundMod = true;
386 break;
389 if (!FoundMod) return true;
393 // FIXME: This should use mod/ref information to see if we can hoist or sink
394 // the call.
396 return false;
399 // Otherwise these instructions are hoistable/sinkable
400 return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
401 isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
402 isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
403 isa<ShuffleVectorInst>(I);
406 /// isNotUsedInLoop - Return true if the only users of this instruction are
407 /// outside of the loop. If this is true, we can sink the instruction to the
408 /// exit blocks of the loop.
410 bool LICM::isNotUsedInLoop(Instruction &I) {
411 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
412 Instruction *User = cast<Instruction>(*UI);
413 if (PHINode *PN = dyn_cast<PHINode>(User)) {
414 // PHI node uses occur in predecessor blocks!
415 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
416 if (PN->getIncomingValue(i) == &I)
417 if (CurLoop->contains(PN->getIncomingBlock(i)))
418 return false;
419 } else if (CurLoop->contains(User->getParent())) {
420 return false;
423 return true;
427 /// isLoopInvariantInst - Return true if all operands of this instruction are
428 /// loop invariant. We also filter out non-hoistable instructions here just for
429 /// efficiency.
431 bool LICM::isLoopInvariantInst(Instruction &I) {
432 // The instruction is loop invariant if all of its operands are loop-invariant
433 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
434 if (!CurLoop->isLoopInvariant(I.getOperand(i)))
435 return false;
437 // If we got this far, the instruction is loop invariant!
438 return true;
441 /// sink - When an instruction is found to only be used outside of the loop,
442 /// this function moves it to the exit blocks and patches up SSA form as needed.
443 /// This method is guaranteed to remove the original instruction from its
444 /// position, and may either delete it or move it to outside of the loop.
446 void LICM::sink(Instruction &I) {
447 DOUT << "LICM sinking instruction: " << I;
449 SmallVector<BasicBlock*, 8> ExitBlocks;
450 CurLoop->getExitBlocks(ExitBlocks);
452 if (isa<LoadInst>(I)) ++NumMovedLoads;
453 else if (isa<CallInst>(I)) ++NumMovedCalls;
454 ++NumSunk;
455 Changed = true;
457 // The case where there is only a single exit node of this loop is common
458 // enough that we handle it as a special (more efficient) case. It is more
459 // efficient to handle because there are no PHI nodes that need to be placed.
460 if (ExitBlocks.size() == 1) {
461 if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
462 // Instruction is not used, just delete it.
463 CurAST->deleteValue(&I);
464 if (!I.use_empty()) // If I has users in unreachable blocks, eliminate.
465 I.replaceAllUsesWith(UndefValue::get(I.getType()));
466 I.eraseFromParent();
467 } else {
468 // Move the instruction to the start of the exit block, after any PHI
469 // nodes in it.
470 I.removeFromParent();
472 BasicBlock::iterator InsertPt = ExitBlocks[0]->begin();
473 while (isa<PHINode>(InsertPt)) ++InsertPt;
474 ExitBlocks[0]->getInstList().insert(InsertPt, &I);
476 } else if (ExitBlocks.size() == 0) {
477 // The instruction is actually dead if there ARE NO exit blocks.
478 CurAST->deleteValue(&I);
479 if (!I.use_empty()) // If I has users in unreachable blocks, eliminate.
480 I.replaceAllUsesWith(UndefValue::get(I.getType()));
481 I.eraseFromParent();
482 } else {
483 // Otherwise, if we have multiple exits, use the PromoteMem2Reg function to
484 // do all of the hard work of inserting PHI nodes as necessary. We convert
485 // the value into a stack object to get it to do this.
487 // Firstly, we create a stack object to hold the value...
488 AllocaInst *AI = 0;
490 if (I.getType() != Type::VoidTy) {
491 AI = new AllocaInst(I.getType(), 0, I.getName(),
492 I.getParent()->getParent()->getEntryBlock().begin());
493 CurAST->add(AI);
496 // Secondly, insert load instructions for each use of the instruction
497 // outside of the loop.
498 while (!I.use_empty()) {
499 Instruction *U = cast<Instruction>(I.use_back());
501 // If the user is a PHI Node, we actually have to insert load instructions
502 // in all predecessor blocks, not in the PHI block itself!
503 if (PHINode *UPN = dyn_cast<PHINode>(U)) {
504 // Only insert into each predecessor once, so that we don't have
505 // different incoming values from the same block!
506 std::map<BasicBlock*, Value*> InsertedBlocks;
507 for (unsigned i = 0, e = UPN->getNumIncomingValues(); i != e; ++i)
508 if (UPN->getIncomingValue(i) == &I) {
509 BasicBlock *Pred = UPN->getIncomingBlock(i);
510 Value *&PredVal = InsertedBlocks[Pred];
511 if (!PredVal) {
512 // Insert a new load instruction right before the terminator in
513 // the predecessor block.
514 PredVal = new LoadInst(AI, "", Pred->getTerminator());
515 CurAST->add(cast<LoadInst>(PredVal));
518 UPN->setIncomingValue(i, PredVal);
521 } else {
522 LoadInst *L = new LoadInst(AI, "", U);
523 U->replaceUsesOfWith(&I, L);
524 CurAST->add(L);
528 // Thirdly, insert a copy of the instruction in each exit block of the loop
529 // that is dominated by the instruction, storing the result into the memory
530 // location. Be careful not to insert the instruction into any particular
531 // basic block more than once.
532 std::set<BasicBlock*> InsertedBlocks;
533 BasicBlock *InstOrigBB = I.getParent();
535 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
536 BasicBlock *ExitBlock = ExitBlocks[i];
538 if (isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB)) {
539 // If we haven't already processed this exit block, do so now.
540 if (InsertedBlocks.insert(ExitBlock).second) {
541 // Insert the code after the last PHI node...
542 BasicBlock::iterator InsertPt = ExitBlock->begin();
543 while (isa<PHINode>(InsertPt)) ++InsertPt;
545 // If this is the first exit block processed, just move the original
546 // instruction, otherwise clone the original instruction and insert
547 // the copy.
548 Instruction *New;
549 if (InsertedBlocks.size() == 1) {
550 I.removeFromParent();
551 ExitBlock->getInstList().insert(InsertPt, &I);
552 New = &I;
553 } else {
554 New = I.clone();
555 CurAST->copyValue(&I, New);
556 if (!I.getName().empty())
557 New->setName(I.getName()+".le");
558 ExitBlock->getInstList().insert(InsertPt, New);
561 // Now that we have inserted the instruction, store it into the alloca
562 if (AI) new StoreInst(New, AI, InsertPt);
567 // If the instruction doesn't dominate any exit blocks, it must be dead.
568 if (InsertedBlocks.empty()) {
569 CurAST->deleteValue(&I);
570 I.eraseFromParent();
573 // Finally, promote the fine value to SSA form.
574 if (AI) {
575 std::vector<AllocaInst*> Allocas;
576 Allocas.push_back(AI);
577 PromoteMemToReg(Allocas, *DT, *DF, CurAST);
582 /// hoist - When an instruction is found to only use loop invariant operands
583 /// that is safe to hoist, this instruction is called to do the dirty work.
585 void LICM::hoist(Instruction &I) {
586 DOUT << "LICM hoisting to " << Preheader->getName() << ": " << I;
588 // Remove the instruction from its current basic block... but don't delete the
589 // instruction.
590 I.removeFromParent();
592 // Insert the new node in Preheader, before the terminator.
593 Preheader->getInstList().insert(Preheader->getTerminator(), &I);
595 if (isa<LoadInst>(I)) ++NumMovedLoads;
596 else if (isa<CallInst>(I)) ++NumMovedCalls;
597 ++NumHoisted;
598 Changed = true;
601 /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
602 /// not a trapping instruction or if it is a trapping instruction and is
603 /// guaranteed to execute.
605 bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
606 // If it is not a trapping instruction, it is always safe to hoist.
607 if (!Inst.isTrapping()) return true;
609 // Otherwise we have to check to make sure that the instruction dominates all
610 // of the exit blocks. If it doesn't, then there is a path out of the loop
611 // which does not execute this instruction, so we can't hoist it.
613 // If the instruction is in the header block for the loop (which is very
614 // common), it is always guaranteed to dominate the exit blocks. Since this
615 // is a common case, and can save some work, check it now.
616 if (Inst.getParent() == CurLoop->getHeader())
617 return true;
619 // It's always safe to load from a global or alloca.
620 if (isa<LoadInst>(Inst))
621 if (isa<AllocationInst>(Inst.getOperand(0)) ||
622 isa<GlobalVariable>(Inst.getOperand(0)))
623 return true;
625 // Get the exit blocks for the current loop.
626 SmallVector<BasicBlock*, 8> ExitBlocks;
627 CurLoop->getExitBlocks(ExitBlocks);
629 // For each exit block, get the DT node and walk up the DT until the
630 // instruction's basic block is found or we exit the loop.
631 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
632 if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
633 return false;
635 return true;
639 /// PromoteValuesInLoop - Try to promote memory values to scalars by sinking
640 /// stores out of the loop and moving loads to before the loop. We do this by
641 /// looping over the stores in the loop, looking for stores to Must pointers
642 /// which are loop invariant. We promote these memory locations to use allocas
643 /// instead. These allocas can easily be raised to register values by the
644 /// PromoteMem2Reg functionality.
646 void LICM::PromoteValuesInLoop() {
647 // PromotedValues - List of values that are promoted out of the loop. Each
648 // value has an alloca instruction for it, and a canonical version of the
649 // pointer.
650 std::vector<std::pair<AllocaInst*, Value*> > PromotedValues;
651 std::map<Value*, AllocaInst*> ValueToAllocaMap; // Map of ptr to alloca
653 FindPromotableValuesInLoop(PromotedValues, ValueToAllocaMap);
654 if (ValueToAllocaMap.empty()) return; // If there are values to promote.
656 Changed = true;
657 NumPromoted += PromotedValues.size();
659 std::vector<Value*> PointerValueNumbers;
661 // Emit a copy from the value into the alloca'd value in the loop preheader
662 TerminatorInst *LoopPredInst = Preheader->getTerminator();
663 for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
664 Value *Ptr = PromotedValues[i].second;
666 // If we are promoting a pointer value, update alias information for the
667 // inserted load.
668 Value *LoadValue = 0;
669 if (isa<PointerType>(cast<PointerType>(Ptr->getType())->getElementType())) {
670 // Locate a load or store through the pointer, and assign the same value
671 // to LI as we are loading or storing. Since we know that the value is
672 // stored in this loop, this will always succeed.
673 for (Value::use_iterator UI = Ptr->use_begin(), E = Ptr->use_end();
674 UI != E; ++UI)
675 if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
676 LoadValue = LI;
677 break;
678 } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
679 if (SI->getOperand(1) == Ptr) {
680 LoadValue = SI->getOperand(0);
681 break;
684 assert(LoadValue && "No store through the pointer found!");
685 PointerValueNumbers.push_back(LoadValue); // Remember this for later.
688 // Load from the memory we are promoting.
689 LoadInst *LI = new LoadInst(Ptr, Ptr->getName()+".promoted", LoopPredInst);
691 if (LoadValue) CurAST->copyValue(LoadValue, LI);
693 // Store into the temporary alloca.
694 new StoreInst(LI, PromotedValues[i].first, LoopPredInst);
697 // Scan the basic blocks in the loop, replacing uses of our pointers with
698 // uses of the allocas in question.
700 const std::vector<BasicBlock*> &LoopBBs = CurLoop->getBlocks();
701 for (std::vector<BasicBlock*>::const_iterator I = LoopBBs.begin(),
702 E = LoopBBs.end(); I != E; ++I) {
703 // Rewrite all loads and stores in the block of the pointer...
704 for (BasicBlock::iterator II = (*I)->begin(), E = (*I)->end();
705 II != E; ++II) {
706 if (LoadInst *L = dyn_cast<LoadInst>(II)) {
707 std::map<Value*, AllocaInst*>::iterator
708 I = ValueToAllocaMap.find(L->getOperand(0));
709 if (I != ValueToAllocaMap.end())
710 L->setOperand(0, I->second); // Rewrite load instruction...
711 } else if (StoreInst *S = dyn_cast<StoreInst>(II)) {
712 std::map<Value*, AllocaInst*>::iterator
713 I = ValueToAllocaMap.find(S->getOperand(1));
714 if (I != ValueToAllocaMap.end())
715 S->setOperand(1, I->second); // Rewrite store instruction...
720 // Now that the body of the loop uses the allocas instead of the original
721 // memory locations, insert code to copy the alloca value back into the
722 // original memory location on all exits from the loop. Note that we only
723 // want to insert one copy of the code in each exit block, though the loop may
724 // exit to the same block more than once.
726 std::set<BasicBlock*> ProcessedBlocks;
728 SmallVector<BasicBlock*, 8> ExitBlocks;
729 CurLoop->getExitBlocks(ExitBlocks);
730 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
731 if (ProcessedBlocks.insert(ExitBlocks[i]).second) {
732 // Copy all of the allocas into their memory locations.
733 BasicBlock::iterator BI = ExitBlocks[i]->begin();
734 while (isa<PHINode>(*BI))
735 ++BI; // Skip over all of the phi nodes in the block.
736 Instruction *InsertPos = BI;
737 unsigned PVN = 0;
738 for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
739 // Load from the alloca.
740 LoadInst *LI = new LoadInst(PromotedValues[i].first, "", InsertPos);
742 // If this is a pointer type, update alias info appropriately.
743 if (isa<PointerType>(LI->getType()))
744 CurAST->copyValue(PointerValueNumbers[PVN++], LI);
746 // Store into the memory we promoted.
747 new StoreInst(LI, PromotedValues[i].second, InsertPos);
751 // Now that we have done the deed, use the mem2reg functionality to promote
752 // all of the new allocas we just created into real SSA registers.
754 std::vector<AllocaInst*> PromotedAllocas;
755 PromotedAllocas.reserve(PromotedValues.size());
756 for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i)
757 PromotedAllocas.push_back(PromotedValues[i].first);
758 PromoteMemToReg(PromotedAllocas, *DT, *DF, CurAST);
761 /// FindPromotableValuesInLoop - Check the current loop for stores to definite
762 /// pointers, which are not loaded and stored through may aliases and are safe
763 /// for promotion. If these are found, create an alloca for the value, add it
764 /// to the PromotedValues list, and keep track of the mapping from value to
765 /// alloca.
766 void LICM::FindPromotableValuesInLoop(
767 std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
768 std::map<Value*, AllocaInst*> &ValueToAllocaMap) {
769 Instruction *FnStart = CurLoop->getHeader()->getParent()->begin()->begin();
771 SmallVector<Instruction *, 4> LoopExits;
772 SmallVector<BasicBlock *, 4> Blocks;
773 CurLoop->getExitingBlocks(Blocks);
774 for (SmallVector<BasicBlock *, 4>::iterator BI = Blocks.begin(),
775 BE = Blocks.end(); BI != BE; ++BI) {
776 BasicBlock *BB = *BI;
777 LoopExits.push_back(BB->getTerminator());
780 // Loop over all of the alias sets in the tracker object.
781 for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
782 I != E; ++I) {
783 AliasSet &AS = *I;
784 // We can promote this alias set if it has a store, if it is a "Must" alias
785 // set, if the pointer is loop invariant, and if we are not eliminating any
786 // volatile loads or stores.
787 if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias() &&
788 !AS.isVolatile() && CurLoop->isLoopInvariant(AS.begin()->first)) {
789 assert(AS.begin() != AS.end() &&
790 "Must alias set should have at least one pointer element in it!");
791 Value *V = AS.begin()->first;
793 // Check that all of the pointers in the alias set have the same type. We
794 // cannot (yet) promote a memory location that is loaded and stored in
795 // different sizes.
796 bool PointerOk = true;
797 for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
798 if (V->getType() != I->first->getType()) {
799 PointerOk = false;
800 break;
803 // Do not promote null values because it may be unsafe to do so.
804 if (isa<ConstantPointerNull>(V))
805 PointerOk = false;
807 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
808 // If GEP base is NULL then the calculated address used by Store or
809 // Load instruction is invalid. Do not promote this value because
810 // it may expose load and store instruction that are covered by
811 // condition which may not yet folded.
812 if (isa<ConstantPointerNull>(GEP->getOperand(0)))
813 PointerOk = false;
815 // If GEP is use is not dominating loop exit then promoting
816 // GEP may expose unsafe load and store instructions unconditinally.
817 if (PointerOk)
818 for(Value::use_iterator UI = V->use_begin(), UE = V->use_end();
819 UI != UE && PointerOk; ++UI) {
820 Instruction *Use = dyn_cast<Instruction>(*UI);
821 if (!Use)
822 continue;
823 for (SmallVector<Instruction *, 4>::iterator
824 ExitI = LoopExits.begin(), ExitE = LoopExits.end();
825 ExitI != ExitE; ++ExitI) {
826 Instruction *Ex = *ExitI;
827 if (!DT->dominates(Use, Ex)){
828 PointerOk = false;
829 break;
833 if (!PointerOk)
834 break;
838 if (PointerOk) {
839 const Type *Ty = cast<PointerType>(V->getType())->getElementType();
840 AllocaInst *AI = new AllocaInst(Ty, 0, V->getName()+".tmp", FnStart);
841 PromotedValues.push_back(std::make_pair(AI, V));
843 // Update the AST and alias analysis.
844 CurAST->copyValue(V, AI);
846 for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
847 ValueToAllocaMap.insert(std::make_pair(I->first, AI));
849 DOUT << "LICM: Promoting value: " << *V << "\n";
855 /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
856 void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
857 AliasSetTracker *AST = LoopToAliasMap[L];
858 if (!AST)
859 return;
861 AST->copyValue(From, To);
864 /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
865 /// set.
866 void LICM::deleteAnalysisValue(Value *V, Loop *L) {
867 AliasSetTracker *AST = LoopToAliasMap[L];
868 if (!AST)
869 return;
871 AST->deleteValue(V);