1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that ARM uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #include "ARMISelLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMCallingConv.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMPerfectShuffle.h"
21 #include "ARMRegisterInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "ARMSubtarget.h"
24 #include "MCTargetDesc/ARMAddressingModes.h"
25 #include "MCTargetDesc/ARMBaseInfo.h"
26 #include "Utils/ARMBaseInfo.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/BitVector.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ADT/StringSwitch.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/CodeGen/CallingConvLower.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/IntrinsicLowering.h"
45 #include "llvm/CodeGen/MachineBasicBlock.h"
46 #include "llvm/CodeGen/MachineConstantPool.h"
47 #include "llvm/CodeGen/MachineFrameInfo.h"
48 #include "llvm/CodeGen/MachineFunction.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineInstrBuilder.h"
51 #include "llvm/CodeGen/MachineJumpTableInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #include "llvm/CodeGen/RuntimeLibcalls.h"
56 #include "llvm/CodeGen/SelectionDAG.h"
57 #include "llvm/CodeGen/SelectionDAGNodes.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InlineAsm.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/MC/MCInstrDesc.h"
87 #include "llvm/MC/MCInstrItineraries.h"
88 #include "llvm/MC/MCRegisterInfo.h"
89 #include "llvm/MC/MCSchedule.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/BranchProbability.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CodeGen.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/KnownBits.h"
99 #include "llvm/Support/MachineValueType.h"
100 #include "llvm/Support/MathExtras.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
115 using namespace llvm
;
116 using namespace llvm::PatternMatch
;
118 #define DEBUG_TYPE "arm-isel"
120 STATISTIC(NumTailCalls
, "Number of tail calls");
121 STATISTIC(NumMovwMovt
, "Number of GAs materialized with movw + movt");
122 STATISTIC(NumLoopByVals
, "Number of loops generated for byval arguments");
123 STATISTIC(NumConstpoolPromoted
,
124 "Number of constants with their storage promoted into constant pools");
127 ARMInterworking("arm-interworking", cl::Hidden
,
128 cl::desc("Enable / disable ARM interworking (for debugging only)"),
131 static cl::opt
<bool> EnableConstpoolPromotion(
132 "arm-promote-constant", cl::Hidden
,
133 cl::desc("Enable / disable promotion of unnamed_addr constants into "
135 cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
136 static cl::opt
<unsigned> ConstpoolPromotionMaxSize(
137 "arm-promote-constant-max-size", cl::Hidden
,
138 cl::desc("Maximum size of constant to promote into a constant pool"),
140 static cl::opt
<unsigned> ConstpoolPromotionMaxTotal(
141 "arm-promote-constant-max-total", cl::Hidden
,
142 cl::desc("Maximum size of ALL constants to promote into a constant pool"),
145 // The APCS parameter registers.
146 static const MCPhysReg GPRArgRegs
[] = {
147 ARM::R0
, ARM::R1
, ARM::R2
, ARM::R3
150 void ARMTargetLowering::addTypeForNEON(MVT VT
, MVT PromotedLdStVT
,
151 MVT PromotedBitwiseVT
) {
152 if (VT
!= PromotedLdStVT
) {
153 setOperationAction(ISD::LOAD
, VT
, Promote
);
154 AddPromotedToType (ISD::LOAD
, VT
, PromotedLdStVT
);
156 setOperationAction(ISD::STORE
, VT
, Promote
);
157 AddPromotedToType (ISD::STORE
, VT
, PromotedLdStVT
);
160 MVT ElemTy
= VT
.getVectorElementType();
161 if (ElemTy
!= MVT::f64
)
162 setOperationAction(ISD::SETCC
, VT
, Custom
);
163 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
164 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
165 if (ElemTy
== MVT::i32
) {
166 setOperationAction(ISD::SINT_TO_FP
, VT
, Custom
);
167 setOperationAction(ISD::UINT_TO_FP
, VT
, Custom
);
168 setOperationAction(ISD::FP_TO_SINT
, VT
, Custom
);
169 setOperationAction(ISD::FP_TO_UINT
, VT
, Custom
);
171 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
172 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
173 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
174 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
176 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
177 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
178 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Legal
);
179 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Legal
);
180 setOperationAction(ISD::SELECT
, VT
, Expand
);
181 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
182 setOperationAction(ISD::VSELECT
, VT
, Expand
);
183 setOperationAction(ISD::SIGN_EXTEND_INREG
, VT
, Expand
);
184 if (VT
.isInteger()) {
185 setOperationAction(ISD::SHL
, VT
, Custom
);
186 setOperationAction(ISD::SRA
, VT
, Custom
);
187 setOperationAction(ISD::SRL
, VT
, Custom
);
190 // Promote all bit-wise operations.
191 if (VT
.isInteger() && VT
!= PromotedBitwiseVT
) {
192 setOperationAction(ISD::AND
, VT
, Promote
);
193 AddPromotedToType (ISD::AND
, VT
, PromotedBitwiseVT
);
194 setOperationAction(ISD::OR
, VT
, Promote
);
195 AddPromotedToType (ISD::OR
, VT
, PromotedBitwiseVT
);
196 setOperationAction(ISD::XOR
, VT
, Promote
);
197 AddPromotedToType (ISD::XOR
, VT
, PromotedBitwiseVT
);
200 // Neon does not support vector divide/remainder operations.
201 setOperationAction(ISD::SDIV
, VT
, Expand
);
202 setOperationAction(ISD::UDIV
, VT
, Expand
);
203 setOperationAction(ISD::FDIV
, VT
, Expand
);
204 setOperationAction(ISD::SREM
, VT
, Expand
);
205 setOperationAction(ISD::UREM
, VT
, Expand
);
206 setOperationAction(ISD::FREM
, VT
, Expand
);
208 if (!VT
.isFloatingPoint() &&
209 VT
!= MVT::v2i64
&& VT
!= MVT::v1i64
)
210 for (auto Opcode
: {ISD::ABS
, ISD::SMIN
, ISD::SMAX
, ISD::UMIN
, ISD::UMAX
})
211 setOperationAction(Opcode
, VT
, Legal
);
214 void ARMTargetLowering::addDRTypeForNEON(MVT VT
) {
215 addRegisterClass(VT
, &ARM::DPRRegClass
);
216 addTypeForNEON(VT
, MVT::f64
, MVT::v2i32
);
219 void ARMTargetLowering::addQRTypeForNEON(MVT VT
) {
220 addRegisterClass(VT
, &ARM::DPairRegClass
);
221 addTypeForNEON(VT
, MVT::v2f64
, MVT::v4i32
);
224 void ARMTargetLowering::setAllExpand(MVT VT
) {
225 for (unsigned Opc
= 0; Opc
< ISD::BUILTIN_OP_END
; ++Opc
)
226 setOperationAction(Opc
, VT
, Expand
);
228 // We support these really simple operations even on types where all
229 // the actual arithmetic has to be broken down into simpler
230 // operations or turned into library calls.
231 setOperationAction(ISD::BITCAST
, VT
, Legal
);
232 setOperationAction(ISD::LOAD
, VT
, Legal
);
233 setOperationAction(ISD::STORE
, VT
, Legal
);
234 setOperationAction(ISD::UNDEF
, VT
, Legal
);
237 void ARMTargetLowering::addAllExtLoads(const MVT From
, const MVT To
,
238 LegalizeAction Action
) {
239 setLoadExtAction(ISD::EXTLOAD
, From
, To
, Action
);
240 setLoadExtAction(ISD::ZEXTLOAD
, From
, To
, Action
);
241 setLoadExtAction(ISD::SEXTLOAD
, From
, To
, Action
);
244 void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP
) {
245 const MVT IntTypes
[] = { MVT::v16i8
, MVT::v8i16
, MVT::v4i32
};
247 for (auto VT
: IntTypes
) {
248 addRegisterClass(VT
, &ARM::MQPRRegClass
);
249 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
250 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
251 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
252 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
253 setOperationAction(ISD::SHL
, VT
, Custom
);
254 setOperationAction(ISD::SRA
, VT
, Custom
);
255 setOperationAction(ISD::SRL
, VT
, Custom
);
256 setOperationAction(ISD::SMIN
, VT
, Legal
);
257 setOperationAction(ISD::SMAX
, VT
, Legal
);
258 setOperationAction(ISD::UMIN
, VT
, Legal
);
259 setOperationAction(ISD::UMAX
, VT
, Legal
);
260 setOperationAction(ISD::ABS
, VT
, Legal
);
261 setOperationAction(ISD::SETCC
, VT
, Custom
);
262 setOperationAction(ISD::MLOAD
, VT
, Custom
);
263 setOperationAction(ISD::MSTORE
, VT
, Legal
);
264 setOperationAction(ISD::CTLZ
, VT
, Legal
);
265 setOperationAction(ISD::CTTZ
, VT
, Custom
);
266 setOperationAction(ISD::BITREVERSE
, VT
, Legal
);
267 setOperationAction(ISD::BSWAP
, VT
, Legal
);
268 setOperationAction(ISD::SADDSAT
, VT
, Legal
);
269 setOperationAction(ISD::UADDSAT
, VT
, Legal
);
270 setOperationAction(ISD::SSUBSAT
, VT
, Legal
);
271 setOperationAction(ISD::USUBSAT
, VT
, Legal
);
273 // No native support for these.
274 setOperationAction(ISD::UDIV
, VT
, Expand
);
275 setOperationAction(ISD::SDIV
, VT
, Expand
);
276 setOperationAction(ISD::UREM
, VT
, Expand
);
277 setOperationAction(ISD::SREM
, VT
, Expand
);
278 setOperationAction(ISD::CTPOP
, VT
, Expand
);
281 setOperationAction(ISD::VECREDUCE_ADD
, VT
, Legal
);
282 setOperationAction(ISD::VECREDUCE_SMAX
, VT
, Legal
);
283 setOperationAction(ISD::VECREDUCE_UMAX
, VT
, Legal
);
284 setOperationAction(ISD::VECREDUCE_SMIN
, VT
, Legal
);
285 setOperationAction(ISD::VECREDUCE_UMIN
, VT
, Legal
);
288 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
289 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
290 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
291 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
294 // Pre and Post inc are supported on loads and stores
295 for (unsigned im
= (unsigned)ISD::PRE_INC
;
296 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
297 setIndexedLoadAction(im
, VT
, Legal
);
298 setIndexedStoreAction(im
, VT
, Legal
);
302 const MVT FloatTypes
[] = { MVT::v8f16
, MVT::v4f32
};
303 for (auto VT
: FloatTypes
) {
304 addRegisterClass(VT
, &ARM::MQPRRegClass
);
308 // These are legal or custom whether we have MVE.fp or not
309 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
310 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
311 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
.getVectorElementType(), Custom
);
312 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
313 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
314 setOperationAction(ISD::BUILD_VECTOR
, VT
.getVectorElementType(), Custom
);
315 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Legal
);
316 setOperationAction(ISD::SETCC
, VT
, Custom
);
317 setOperationAction(ISD::MLOAD
, VT
, Custom
);
318 setOperationAction(ISD::MSTORE
, VT
, Legal
);
320 // Pre and Post inc are supported on loads and stores
321 for (unsigned im
= (unsigned)ISD::PRE_INC
;
322 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
323 setIndexedLoadAction(im
, VT
, Legal
);
324 setIndexedStoreAction(im
, VT
, Legal
);
328 setOperationAction(ISD::FMINNUM
, VT
, Legal
);
329 setOperationAction(ISD::FMAXNUM
, VT
, Legal
);
330 setOperationAction(ISD::FROUND
, VT
, Legal
);
332 // No native support for these.
333 setOperationAction(ISD::FDIV
, VT
, Expand
);
334 setOperationAction(ISD::FREM
, VT
, Expand
);
335 setOperationAction(ISD::FSQRT
, VT
, Expand
);
336 setOperationAction(ISD::FSIN
, VT
, Expand
);
337 setOperationAction(ISD::FCOS
, VT
, Expand
);
338 setOperationAction(ISD::FPOW
, VT
, Expand
);
339 setOperationAction(ISD::FLOG
, VT
, Expand
);
340 setOperationAction(ISD::FLOG2
, VT
, Expand
);
341 setOperationAction(ISD::FLOG10
, VT
, Expand
);
342 setOperationAction(ISD::FEXP
, VT
, Expand
);
343 setOperationAction(ISD::FEXP2
, VT
, Expand
);
344 setOperationAction(ISD::FNEARBYINT
, VT
, Expand
);
348 // We 'support' these types up to bitcast/load/store level, regardless of
349 // MVE integer-only / float support. Only doing FP data processing on the FP
350 // vector types is inhibited at integer-only level.
351 const MVT LongTypes
[] = { MVT::v2i64
, MVT::v2f64
};
352 for (auto VT
: LongTypes
) {
353 addRegisterClass(VT
, &ARM::MQPRRegClass
);
355 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
356 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
357 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
359 // We can do bitwise operations on v2i64 vectors
360 setOperationAction(ISD::AND
, MVT::v2i64
, Legal
);
361 setOperationAction(ISD::OR
, MVT::v2i64
, Legal
);
362 setOperationAction(ISD::XOR
, MVT::v2i64
, Legal
);
364 // It is legal to extload from v4i8 to v4i16 or v4i32.
365 addAllExtLoads(MVT::v8i16
, MVT::v8i8
, Legal
);
366 addAllExtLoads(MVT::v4i32
, MVT::v4i16
, Legal
);
367 addAllExtLoads(MVT::v4i32
, MVT::v4i8
, Legal
);
369 // Some truncating stores are legal too.
370 setTruncStoreAction(MVT::v4i32
, MVT::v4i16
, Legal
);
371 setTruncStoreAction(MVT::v4i32
, MVT::v4i8
, Legal
);
372 setTruncStoreAction(MVT::v8i16
, MVT::v8i8
, Legal
);
374 // Pre and Post inc on these are legal, given the correct extends
375 for (unsigned im
= (unsigned)ISD::PRE_INC
;
376 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
377 setIndexedLoadAction(im
, MVT::v8i8
, Legal
);
378 setIndexedStoreAction(im
, MVT::v8i8
, Legal
);
379 setIndexedLoadAction(im
, MVT::v4i8
, Legal
);
380 setIndexedStoreAction(im
, MVT::v4i8
, Legal
);
381 setIndexedLoadAction(im
, MVT::v4i16
, Legal
);
382 setIndexedStoreAction(im
, MVT::v4i16
, Legal
);
386 const MVT pTypes
[] = {MVT::v16i1
, MVT::v8i1
, MVT::v4i1
};
387 for (auto VT
: pTypes
) {
388 addRegisterClass(VT
, &ARM::VCCRRegClass
);
389 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
390 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
391 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Custom
);
392 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Custom
);
393 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
394 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
395 setOperationAction(ISD::SETCC
, VT
, Custom
);
396 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Expand
);
397 setOperationAction(ISD::LOAD
, VT
, Custom
);
398 setOperationAction(ISD::STORE
, VT
, Custom
);
402 ARMTargetLowering::ARMTargetLowering(const TargetMachine
&TM
,
403 const ARMSubtarget
&STI
)
404 : TargetLowering(TM
), Subtarget(&STI
) {
405 RegInfo
= Subtarget
->getRegisterInfo();
406 Itins
= Subtarget
->getInstrItineraryData();
408 setBooleanContents(ZeroOrOneBooleanContent
);
409 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
411 if (!Subtarget
->isTargetDarwin() && !Subtarget
->isTargetIOS() &&
412 !Subtarget
->isTargetWatchOS()) {
413 bool IsHFTarget
= TM
.Options
.FloatABIType
== FloatABI::Hard
;
414 for (int LCID
= 0; LCID
< RTLIB::UNKNOWN_LIBCALL
; ++LCID
)
415 setLibcallCallingConv(static_cast<RTLIB::Libcall
>(LCID
),
416 IsHFTarget
? CallingConv::ARM_AAPCS_VFP
417 : CallingConv::ARM_AAPCS
);
420 if (Subtarget
->isTargetMachO()) {
421 // Uses VFP for Thumb libfuncs if available.
422 if (Subtarget
->isThumb() && Subtarget
->hasVFP2Base() &&
423 Subtarget
->hasARMOps() && !Subtarget
->useSoftFloat()) {
424 static const struct {
425 const RTLIB::Libcall Op
;
426 const char * const Name
;
427 const ISD::CondCode Cond
;
429 // Single-precision floating-point arithmetic.
430 { RTLIB::ADD_F32
, "__addsf3vfp", ISD::SETCC_INVALID
},
431 { RTLIB::SUB_F32
, "__subsf3vfp", ISD::SETCC_INVALID
},
432 { RTLIB::MUL_F32
, "__mulsf3vfp", ISD::SETCC_INVALID
},
433 { RTLIB::DIV_F32
, "__divsf3vfp", ISD::SETCC_INVALID
},
435 // Double-precision floating-point arithmetic.
436 { RTLIB::ADD_F64
, "__adddf3vfp", ISD::SETCC_INVALID
},
437 { RTLIB::SUB_F64
, "__subdf3vfp", ISD::SETCC_INVALID
},
438 { RTLIB::MUL_F64
, "__muldf3vfp", ISD::SETCC_INVALID
},
439 { RTLIB::DIV_F64
, "__divdf3vfp", ISD::SETCC_INVALID
},
441 // Single-precision comparisons.
442 { RTLIB::OEQ_F32
, "__eqsf2vfp", ISD::SETNE
},
443 { RTLIB::UNE_F32
, "__nesf2vfp", ISD::SETNE
},
444 { RTLIB::OLT_F32
, "__ltsf2vfp", ISD::SETNE
},
445 { RTLIB::OLE_F32
, "__lesf2vfp", ISD::SETNE
},
446 { RTLIB::OGE_F32
, "__gesf2vfp", ISD::SETNE
},
447 { RTLIB::OGT_F32
, "__gtsf2vfp", ISD::SETNE
},
448 { RTLIB::UO_F32
, "__unordsf2vfp", ISD::SETNE
},
449 { RTLIB::O_F32
, "__unordsf2vfp", ISD::SETEQ
},
451 // Double-precision comparisons.
452 { RTLIB::OEQ_F64
, "__eqdf2vfp", ISD::SETNE
},
453 { RTLIB::UNE_F64
, "__nedf2vfp", ISD::SETNE
},
454 { RTLIB::OLT_F64
, "__ltdf2vfp", ISD::SETNE
},
455 { RTLIB::OLE_F64
, "__ledf2vfp", ISD::SETNE
},
456 { RTLIB::OGE_F64
, "__gedf2vfp", ISD::SETNE
},
457 { RTLIB::OGT_F64
, "__gtdf2vfp", ISD::SETNE
},
458 { RTLIB::UO_F64
, "__unorddf2vfp", ISD::SETNE
},
459 { RTLIB::O_F64
, "__unorddf2vfp", ISD::SETEQ
},
461 // Floating-point to integer conversions.
462 // i64 conversions are done via library routines even when generating VFP
463 // instructions, so use the same ones.
464 { RTLIB::FPTOSINT_F64_I32
, "__fixdfsivfp", ISD::SETCC_INVALID
},
465 { RTLIB::FPTOUINT_F64_I32
, "__fixunsdfsivfp", ISD::SETCC_INVALID
},
466 { RTLIB::FPTOSINT_F32_I32
, "__fixsfsivfp", ISD::SETCC_INVALID
},
467 { RTLIB::FPTOUINT_F32_I32
, "__fixunssfsivfp", ISD::SETCC_INVALID
},
469 // Conversions between floating types.
470 { RTLIB::FPROUND_F64_F32
, "__truncdfsf2vfp", ISD::SETCC_INVALID
},
471 { RTLIB::FPEXT_F32_F64
, "__extendsfdf2vfp", ISD::SETCC_INVALID
},
473 // Integer to floating-point conversions.
474 // i64 conversions are done via library routines even when generating VFP
475 // instructions, so use the same ones.
476 // FIXME: There appears to be some naming inconsistency in ARM libgcc:
477 // e.g., __floatunsidf vs. __floatunssidfvfp.
478 { RTLIB::SINTTOFP_I32_F64
, "__floatsidfvfp", ISD::SETCC_INVALID
},
479 { RTLIB::UINTTOFP_I32_F64
, "__floatunssidfvfp", ISD::SETCC_INVALID
},
480 { RTLIB::SINTTOFP_I32_F32
, "__floatsisfvfp", ISD::SETCC_INVALID
},
481 { RTLIB::UINTTOFP_I32_F32
, "__floatunssisfvfp", ISD::SETCC_INVALID
},
484 for (const auto &LC
: LibraryCalls
) {
485 setLibcallName(LC
.Op
, LC
.Name
);
486 if (LC
.Cond
!= ISD::SETCC_INVALID
)
487 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
492 // These libcalls are not available in 32-bit.
493 setLibcallName(RTLIB::SHL_I128
, nullptr);
494 setLibcallName(RTLIB::SRL_I128
, nullptr);
495 setLibcallName(RTLIB::SRA_I128
, nullptr);
498 if (Subtarget
->isAAPCS_ABI() &&
499 (Subtarget
->isTargetAEABI() || Subtarget
->isTargetGNUAEABI() ||
500 Subtarget
->isTargetMuslAEABI() || Subtarget
->isTargetAndroid())) {
501 static const struct {
502 const RTLIB::Libcall Op
;
503 const char * const Name
;
504 const CallingConv::ID CC
;
505 const ISD::CondCode Cond
;
507 // Double-precision floating-point arithmetic helper functions
508 // RTABI chapter 4.1.2, Table 2
509 { RTLIB::ADD_F64
, "__aeabi_dadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
510 { RTLIB::DIV_F64
, "__aeabi_ddiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
511 { RTLIB::MUL_F64
, "__aeabi_dmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
512 { RTLIB::SUB_F64
, "__aeabi_dsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
514 // Double-precision floating-point comparison helper functions
515 // RTABI chapter 4.1.2, Table 3
516 { RTLIB::OEQ_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
517 { RTLIB::UNE_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
518 { RTLIB::OLT_F64
, "__aeabi_dcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
519 { RTLIB::OLE_F64
, "__aeabi_dcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
520 { RTLIB::OGE_F64
, "__aeabi_dcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
521 { RTLIB::OGT_F64
, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
522 { RTLIB::UO_F64
, "__aeabi_dcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
523 { RTLIB::O_F64
, "__aeabi_dcmpun", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
525 // Single-precision floating-point arithmetic helper functions
526 // RTABI chapter 4.1.2, Table 4
527 { RTLIB::ADD_F32
, "__aeabi_fadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
528 { RTLIB::DIV_F32
, "__aeabi_fdiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
529 { RTLIB::MUL_F32
, "__aeabi_fmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
530 { RTLIB::SUB_F32
, "__aeabi_fsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
532 // Single-precision floating-point comparison helper functions
533 // RTABI chapter 4.1.2, Table 5
534 { RTLIB::OEQ_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
535 { RTLIB::UNE_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
536 { RTLIB::OLT_F32
, "__aeabi_fcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
537 { RTLIB::OLE_F32
, "__aeabi_fcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
538 { RTLIB::OGE_F32
, "__aeabi_fcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
539 { RTLIB::OGT_F32
, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
540 { RTLIB::UO_F32
, "__aeabi_fcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
541 { RTLIB::O_F32
, "__aeabi_fcmpun", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
543 // Floating-point to integer conversions.
544 // RTABI chapter 4.1.2, Table 6
545 { RTLIB::FPTOSINT_F64_I32
, "__aeabi_d2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
546 { RTLIB::FPTOUINT_F64_I32
, "__aeabi_d2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
547 { RTLIB::FPTOSINT_F64_I64
, "__aeabi_d2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
548 { RTLIB::FPTOUINT_F64_I64
, "__aeabi_d2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
549 { RTLIB::FPTOSINT_F32_I32
, "__aeabi_f2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
550 { RTLIB::FPTOUINT_F32_I32
, "__aeabi_f2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
551 { RTLIB::FPTOSINT_F32_I64
, "__aeabi_f2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
552 { RTLIB::FPTOUINT_F32_I64
, "__aeabi_f2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
554 // Conversions between floating types.
555 // RTABI chapter 4.1.2, Table 7
556 { RTLIB::FPROUND_F64_F32
, "__aeabi_d2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
557 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
558 { RTLIB::FPEXT_F32_F64
, "__aeabi_f2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
560 // Integer to floating-point conversions.
561 // RTABI chapter 4.1.2, Table 8
562 { RTLIB::SINTTOFP_I32_F64
, "__aeabi_i2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
563 { RTLIB::UINTTOFP_I32_F64
, "__aeabi_ui2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
564 { RTLIB::SINTTOFP_I64_F64
, "__aeabi_l2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
565 { RTLIB::UINTTOFP_I64_F64
, "__aeabi_ul2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
566 { RTLIB::SINTTOFP_I32_F32
, "__aeabi_i2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
567 { RTLIB::UINTTOFP_I32_F32
, "__aeabi_ui2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
568 { RTLIB::SINTTOFP_I64_F32
, "__aeabi_l2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
569 { RTLIB::UINTTOFP_I64_F32
, "__aeabi_ul2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
571 // Long long helper functions
572 // RTABI chapter 4.2, Table 9
573 { RTLIB::MUL_I64
, "__aeabi_lmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
574 { RTLIB::SHL_I64
, "__aeabi_llsl", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
575 { RTLIB::SRL_I64
, "__aeabi_llsr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
576 { RTLIB::SRA_I64
, "__aeabi_lasr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
578 // Integer division functions
579 // RTABI chapter 4.3.1
580 { RTLIB::SDIV_I8
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
581 { RTLIB::SDIV_I16
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
582 { RTLIB::SDIV_I32
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
583 { RTLIB::SDIV_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
584 { RTLIB::UDIV_I8
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
585 { RTLIB::UDIV_I16
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
586 { RTLIB::UDIV_I32
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
587 { RTLIB::UDIV_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
590 for (const auto &LC
: LibraryCalls
) {
591 setLibcallName(LC
.Op
, LC
.Name
);
592 setLibcallCallingConv(LC
.Op
, LC
.CC
);
593 if (LC
.Cond
!= ISD::SETCC_INVALID
)
594 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
597 // EABI dependent RTLIB
598 if (TM
.Options
.EABIVersion
== EABI::EABI4
||
599 TM
.Options
.EABIVersion
== EABI::EABI5
) {
600 static const struct {
601 const RTLIB::Libcall Op
;
602 const char *const Name
;
603 const CallingConv::ID CC
;
604 const ISD::CondCode Cond
;
605 } MemOpsLibraryCalls
[] = {
607 // RTABI chapter 4.3.4
608 { RTLIB::MEMCPY
, "__aeabi_memcpy", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
609 { RTLIB::MEMMOVE
, "__aeabi_memmove", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
610 { RTLIB::MEMSET
, "__aeabi_memset", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
613 for (const auto &LC
: MemOpsLibraryCalls
) {
614 setLibcallName(LC
.Op
, LC
.Name
);
615 setLibcallCallingConv(LC
.Op
, LC
.CC
);
616 if (LC
.Cond
!= ISD::SETCC_INVALID
)
617 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
622 if (Subtarget
->isTargetWindows()) {
623 static const struct {
624 const RTLIB::Libcall Op
;
625 const char * const Name
;
626 const CallingConv::ID CC
;
628 { RTLIB::FPTOSINT_F32_I64
, "__stoi64", CallingConv::ARM_AAPCS_VFP
},
629 { RTLIB::FPTOSINT_F64_I64
, "__dtoi64", CallingConv::ARM_AAPCS_VFP
},
630 { RTLIB::FPTOUINT_F32_I64
, "__stou64", CallingConv::ARM_AAPCS_VFP
},
631 { RTLIB::FPTOUINT_F64_I64
, "__dtou64", CallingConv::ARM_AAPCS_VFP
},
632 { RTLIB::SINTTOFP_I64_F32
, "__i64tos", CallingConv::ARM_AAPCS_VFP
},
633 { RTLIB::SINTTOFP_I64_F64
, "__i64tod", CallingConv::ARM_AAPCS_VFP
},
634 { RTLIB::UINTTOFP_I64_F32
, "__u64tos", CallingConv::ARM_AAPCS_VFP
},
635 { RTLIB::UINTTOFP_I64_F64
, "__u64tod", CallingConv::ARM_AAPCS_VFP
},
638 for (const auto &LC
: LibraryCalls
) {
639 setLibcallName(LC
.Op
, LC
.Name
);
640 setLibcallCallingConv(LC
.Op
, LC
.CC
);
644 // Use divmod compiler-rt calls for iOS 5.0 and later.
645 if (Subtarget
->isTargetMachO() &&
646 !(Subtarget
->isTargetIOS() &&
647 Subtarget
->getTargetTriple().isOSVersionLT(5, 0))) {
648 setLibcallName(RTLIB::SDIVREM_I32
, "__divmodsi4");
649 setLibcallName(RTLIB::UDIVREM_I32
, "__udivmodsi4");
652 // The half <-> float conversion functions are always soft-float on
653 // non-watchos platforms, but are needed for some targets which use a
654 // hard-float calling convention by default.
655 if (!Subtarget
->isTargetWatchABI()) {
656 if (Subtarget
->isAAPCS_ABI()) {
657 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_AAPCS
);
658 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_AAPCS
);
659 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_AAPCS
);
661 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_APCS
);
662 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_APCS
);
663 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_APCS
);
667 // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
668 // a __gnu_ prefix (which is the default).
669 if (Subtarget
->isTargetAEABI()) {
670 static const struct {
671 const RTLIB::Libcall Op
;
672 const char * const Name
;
673 const CallingConv::ID CC
;
675 { RTLIB::FPROUND_F32_F16
, "__aeabi_f2h", CallingConv::ARM_AAPCS
},
676 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
},
677 { RTLIB::FPEXT_F16_F32
, "__aeabi_h2f", CallingConv::ARM_AAPCS
},
680 for (const auto &LC
: LibraryCalls
) {
681 setLibcallName(LC
.Op
, LC
.Name
);
682 setLibcallCallingConv(LC
.Op
, LC
.CC
);
686 if (Subtarget
->isThumb1Only())
687 addRegisterClass(MVT::i32
, &ARM::tGPRRegClass
);
689 addRegisterClass(MVT::i32
, &ARM::GPRRegClass
);
691 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only() &&
692 Subtarget
->hasFPRegs()) {
693 addRegisterClass(MVT::f32
, &ARM::SPRRegClass
);
694 addRegisterClass(MVT::f64
, &ARM::DPRRegClass
);
695 if (!Subtarget
->hasVFP2Base())
696 setAllExpand(MVT::f32
);
697 if (!Subtarget
->hasFP64())
698 setAllExpand(MVT::f64
);
701 if (Subtarget
->hasFullFP16()) {
702 addRegisterClass(MVT::f16
, &ARM::HPRRegClass
);
703 setOperationAction(ISD::BITCAST
, MVT::i16
, Custom
);
704 setOperationAction(ISD::BITCAST
, MVT::i32
, Custom
);
705 setOperationAction(ISD::BITCAST
, MVT::f16
, Custom
);
707 setOperationAction(ISD::FMINNUM
, MVT::f16
, Legal
);
708 setOperationAction(ISD::FMAXNUM
, MVT::f16
, Legal
);
711 for (MVT VT
: MVT::fixedlen_vector_valuetypes()) {
712 for (MVT InnerVT
: MVT::fixedlen_vector_valuetypes()) {
713 setTruncStoreAction(VT
, InnerVT
, Expand
);
714 addAllExtLoads(VT
, InnerVT
, Expand
);
717 setOperationAction(ISD::MULHS
, VT
, Expand
);
718 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
719 setOperationAction(ISD::MULHU
, VT
, Expand
);
720 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
722 setOperationAction(ISD::BSWAP
, VT
, Expand
);
725 setOperationAction(ISD::ConstantFP
, MVT::f32
, Custom
);
726 setOperationAction(ISD::ConstantFP
, MVT::f64
, Custom
);
728 setOperationAction(ISD::READ_REGISTER
, MVT::i64
, Custom
);
729 setOperationAction(ISD::WRITE_REGISTER
, MVT::i64
, Custom
);
731 if (Subtarget
->hasMVEIntegerOps())
732 addMVEVectorTypes(Subtarget
->hasMVEFloatOps());
734 // Combine low-overhead loop intrinsics so that we can lower i1 types.
735 if (Subtarget
->hasLOB()) {
736 setTargetDAGCombine(ISD::BRCOND
);
737 setTargetDAGCombine(ISD::BR_CC
);
740 if (Subtarget
->hasNEON()) {
741 addDRTypeForNEON(MVT::v2f32
);
742 addDRTypeForNEON(MVT::v8i8
);
743 addDRTypeForNEON(MVT::v4i16
);
744 addDRTypeForNEON(MVT::v2i32
);
745 addDRTypeForNEON(MVT::v1i64
);
747 addQRTypeForNEON(MVT::v4f32
);
748 addQRTypeForNEON(MVT::v2f64
);
749 addQRTypeForNEON(MVT::v16i8
);
750 addQRTypeForNEON(MVT::v8i16
);
751 addQRTypeForNEON(MVT::v4i32
);
752 addQRTypeForNEON(MVT::v2i64
);
754 if (Subtarget
->hasFullFP16()) {
755 addQRTypeForNEON(MVT::v8f16
);
756 addDRTypeForNEON(MVT::v4f16
);
760 if (Subtarget
->hasMVEIntegerOps() || Subtarget
->hasNEON()) {
761 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
762 // none of Neon, MVE or VFP supports any arithmetic operations on it.
763 setOperationAction(ISD::FADD
, MVT::v2f64
, Expand
);
764 setOperationAction(ISD::FSUB
, MVT::v2f64
, Expand
);
765 setOperationAction(ISD::FMUL
, MVT::v2f64
, Expand
);
766 // FIXME: Code duplication: FDIV and FREM are expanded always, see
767 // ARMTargetLowering::addTypeForNEON method for details.
768 setOperationAction(ISD::FDIV
, MVT::v2f64
, Expand
);
769 setOperationAction(ISD::FREM
, MVT::v2f64
, Expand
);
770 // FIXME: Create unittest.
771 // In another words, find a way when "copysign" appears in DAG with vector
773 setOperationAction(ISD::FCOPYSIGN
, MVT::v2f64
, Expand
);
774 // FIXME: Code duplication: SETCC has custom operation action, see
775 // ARMTargetLowering::addTypeForNEON method for details.
776 setOperationAction(ISD::SETCC
, MVT::v2f64
, Expand
);
777 // FIXME: Create unittest for FNEG and for FABS.
778 setOperationAction(ISD::FNEG
, MVT::v2f64
, Expand
);
779 setOperationAction(ISD::FABS
, MVT::v2f64
, Expand
);
780 setOperationAction(ISD::FSQRT
, MVT::v2f64
, Expand
);
781 setOperationAction(ISD::FSIN
, MVT::v2f64
, Expand
);
782 setOperationAction(ISD::FCOS
, MVT::v2f64
, Expand
);
783 setOperationAction(ISD::FPOW
, MVT::v2f64
, Expand
);
784 setOperationAction(ISD::FLOG
, MVT::v2f64
, Expand
);
785 setOperationAction(ISD::FLOG2
, MVT::v2f64
, Expand
);
786 setOperationAction(ISD::FLOG10
, MVT::v2f64
, Expand
);
787 setOperationAction(ISD::FEXP
, MVT::v2f64
, Expand
);
788 setOperationAction(ISD::FEXP2
, MVT::v2f64
, Expand
);
789 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
790 setOperationAction(ISD::FCEIL
, MVT::v2f64
, Expand
);
791 setOperationAction(ISD::FTRUNC
, MVT::v2f64
, Expand
);
792 setOperationAction(ISD::FRINT
, MVT::v2f64
, Expand
);
793 setOperationAction(ISD::FNEARBYINT
, MVT::v2f64
, Expand
);
794 setOperationAction(ISD::FFLOOR
, MVT::v2f64
, Expand
);
795 setOperationAction(ISD::FMA
, MVT::v2f64
, Expand
);
798 if (Subtarget
->hasNEON()) {
799 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
800 // supported for v4f32.
801 setOperationAction(ISD::FSQRT
, MVT::v4f32
, Expand
);
802 setOperationAction(ISD::FSIN
, MVT::v4f32
, Expand
);
803 setOperationAction(ISD::FCOS
, MVT::v4f32
, Expand
);
804 setOperationAction(ISD::FPOW
, MVT::v4f32
, Expand
);
805 setOperationAction(ISD::FLOG
, MVT::v4f32
, Expand
);
806 setOperationAction(ISD::FLOG2
, MVT::v4f32
, Expand
);
807 setOperationAction(ISD::FLOG10
, MVT::v4f32
, Expand
);
808 setOperationAction(ISD::FEXP
, MVT::v4f32
, Expand
);
809 setOperationAction(ISD::FEXP2
, MVT::v4f32
, Expand
);
810 setOperationAction(ISD::FCEIL
, MVT::v4f32
, Expand
);
811 setOperationAction(ISD::FTRUNC
, MVT::v4f32
, Expand
);
812 setOperationAction(ISD::FRINT
, MVT::v4f32
, Expand
);
813 setOperationAction(ISD::FNEARBYINT
, MVT::v4f32
, Expand
);
814 setOperationAction(ISD::FFLOOR
, MVT::v4f32
, Expand
);
816 // Mark v2f32 intrinsics.
817 setOperationAction(ISD::FSQRT
, MVT::v2f32
, Expand
);
818 setOperationAction(ISD::FSIN
, MVT::v2f32
, Expand
);
819 setOperationAction(ISD::FCOS
, MVT::v2f32
, Expand
);
820 setOperationAction(ISD::FPOW
, MVT::v2f32
, Expand
);
821 setOperationAction(ISD::FLOG
, MVT::v2f32
, Expand
);
822 setOperationAction(ISD::FLOG2
, MVT::v2f32
, Expand
);
823 setOperationAction(ISD::FLOG10
, MVT::v2f32
, Expand
);
824 setOperationAction(ISD::FEXP
, MVT::v2f32
, Expand
);
825 setOperationAction(ISD::FEXP2
, MVT::v2f32
, Expand
);
826 setOperationAction(ISD::FCEIL
, MVT::v2f32
, Expand
);
827 setOperationAction(ISD::FTRUNC
, MVT::v2f32
, Expand
);
828 setOperationAction(ISD::FRINT
, MVT::v2f32
, Expand
);
829 setOperationAction(ISD::FNEARBYINT
, MVT::v2f32
, Expand
);
830 setOperationAction(ISD::FFLOOR
, MVT::v2f32
, Expand
);
832 // Neon does not support some operations on v1i64 and v2i64 types.
833 setOperationAction(ISD::MUL
, MVT::v1i64
, Expand
);
834 // Custom handling for some quad-vector types to detect VMULL.
835 setOperationAction(ISD::MUL
, MVT::v8i16
, Custom
);
836 setOperationAction(ISD::MUL
, MVT::v4i32
, Custom
);
837 setOperationAction(ISD::MUL
, MVT::v2i64
, Custom
);
838 // Custom handling for some vector types to avoid expensive expansions
839 setOperationAction(ISD::SDIV
, MVT::v4i16
, Custom
);
840 setOperationAction(ISD::SDIV
, MVT::v8i8
, Custom
);
841 setOperationAction(ISD::UDIV
, MVT::v4i16
, Custom
);
842 setOperationAction(ISD::UDIV
, MVT::v8i8
, Custom
);
843 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
844 // a destination type that is wider than the source, and nor does
845 // it have a FP_TO_[SU]INT instruction with a narrower destination than
847 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i16
, Custom
);
848 setOperationAction(ISD::SINT_TO_FP
, MVT::v8i16
, Custom
);
849 setOperationAction(ISD::UINT_TO_FP
, MVT::v4i16
, Custom
);
850 setOperationAction(ISD::UINT_TO_FP
, MVT::v8i16
, Custom
);
851 setOperationAction(ISD::FP_TO_UINT
, MVT::v4i16
, Custom
);
852 setOperationAction(ISD::FP_TO_UINT
, MVT::v8i16
, Custom
);
853 setOperationAction(ISD::FP_TO_SINT
, MVT::v4i16
, Custom
);
854 setOperationAction(ISD::FP_TO_SINT
, MVT::v8i16
, Custom
);
856 setOperationAction(ISD::FP_ROUND
, MVT::v2f32
, Expand
);
857 setOperationAction(ISD::FP_EXTEND
, MVT::v2f64
, Expand
);
859 // NEON does not have single instruction CTPOP for vectors with element
860 // types wider than 8-bits. However, custom lowering can leverage the
861 // v8i8/v16i8 vcnt instruction.
862 setOperationAction(ISD::CTPOP
, MVT::v2i32
, Custom
);
863 setOperationAction(ISD::CTPOP
, MVT::v4i32
, Custom
);
864 setOperationAction(ISD::CTPOP
, MVT::v4i16
, Custom
);
865 setOperationAction(ISD::CTPOP
, MVT::v8i16
, Custom
);
866 setOperationAction(ISD::CTPOP
, MVT::v1i64
, Custom
);
867 setOperationAction(ISD::CTPOP
, MVT::v2i64
, Custom
);
869 setOperationAction(ISD::CTLZ
, MVT::v1i64
, Expand
);
870 setOperationAction(ISD::CTLZ
, MVT::v2i64
, Expand
);
872 // NEON does not have single instruction CTTZ for vectors.
873 setOperationAction(ISD::CTTZ
, MVT::v8i8
, Custom
);
874 setOperationAction(ISD::CTTZ
, MVT::v4i16
, Custom
);
875 setOperationAction(ISD::CTTZ
, MVT::v2i32
, Custom
);
876 setOperationAction(ISD::CTTZ
, MVT::v1i64
, Custom
);
878 setOperationAction(ISD::CTTZ
, MVT::v16i8
, Custom
);
879 setOperationAction(ISD::CTTZ
, MVT::v8i16
, Custom
);
880 setOperationAction(ISD::CTTZ
, MVT::v4i32
, Custom
);
881 setOperationAction(ISD::CTTZ
, MVT::v2i64
, Custom
);
883 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i8
, Custom
);
884 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i16
, Custom
);
885 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i32
, Custom
);
886 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v1i64
, Custom
);
888 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v16i8
, Custom
);
889 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i16
, Custom
);
890 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i32
, Custom
);
891 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i64
, Custom
);
893 // NEON only has FMA instructions as of VFP4.
894 if (!Subtarget
->hasVFP4Base()) {
895 setOperationAction(ISD::FMA
, MVT::v2f32
, Expand
);
896 setOperationAction(ISD::FMA
, MVT::v4f32
, Expand
);
899 setTargetDAGCombine(ISD::INTRINSIC_VOID
);
900 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN
);
901 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN
);
902 setTargetDAGCombine(ISD::SHL
);
903 setTargetDAGCombine(ISD::SRL
);
904 setTargetDAGCombine(ISD::SRA
);
905 setTargetDAGCombine(ISD::FP_TO_SINT
);
906 setTargetDAGCombine(ISD::FP_TO_UINT
);
907 setTargetDAGCombine(ISD::FDIV
);
908 setTargetDAGCombine(ISD::LOAD
);
910 // It is legal to extload from v4i8 to v4i16 or v4i32.
911 for (MVT Ty
: {MVT::v8i8
, MVT::v4i8
, MVT::v2i8
, MVT::v4i16
, MVT::v2i16
,
913 for (MVT VT
: MVT::integer_fixedlen_vector_valuetypes()) {
914 setLoadExtAction(ISD::EXTLOAD
, VT
, Ty
, Legal
);
915 setLoadExtAction(ISD::ZEXTLOAD
, VT
, Ty
, Legal
);
916 setLoadExtAction(ISD::SEXTLOAD
, VT
, Ty
, Legal
);
921 if (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) {
922 setTargetDAGCombine(ISD::BUILD_VECTOR
);
923 setTargetDAGCombine(ISD::VECTOR_SHUFFLE
);
924 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT
);
925 setTargetDAGCombine(ISD::STORE
);
926 setTargetDAGCombine(ISD::SIGN_EXTEND
);
927 setTargetDAGCombine(ISD::ZERO_EXTEND
);
928 setTargetDAGCombine(ISD::ANY_EXTEND
);
931 if (!Subtarget
->hasFP64()) {
932 // When targeting a floating-point unit with only single-precision
933 // operations, f64 is legal for the few double-precision instructions which
934 // are present However, no double-precision operations other than moves,
935 // loads and stores are provided by the hardware.
936 setOperationAction(ISD::FADD
, MVT::f64
, Expand
);
937 setOperationAction(ISD::FSUB
, MVT::f64
, Expand
);
938 setOperationAction(ISD::FMUL
, MVT::f64
, Expand
);
939 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
940 setOperationAction(ISD::FDIV
, MVT::f64
, Expand
);
941 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
942 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
943 setOperationAction(ISD::FGETSIGN
, MVT::f64
, Expand
);
944 setOperationAction(ISD::FNEG
, MVT::f64
, Expand
);
945 setOperationAction(ISD::FABS
, MVT::f64
, Expand
);
946 setOperationAction(ISD::FSQRT
, MVT::f64
, Expand
);
947 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
948 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
949 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
950 setOperationAction(ISD::FLOG
, MVT::f64
, Expand
);
951 setOperationAction(ISD::FLOG2
, MVT::f64
, Expand
);
952 setOperationAction(ISD::FLOG10
, MVT::f64
, Expand
);
953 setOperationAction(ISD::FEXP
, MVT::f64
, Expand
);
954 setOperationAction(ISD::FEXP2
, MVT::f64
, Expand
);
955 setOperationAction(ISD::FCEIL
, MVT::f64
, Expand
);
956 setOperationAction(ISD::FTRUNC
, MVT::f64
, Expand
);
957 setOperationAction(ISD::FRINT
, MVT::f64
, Expand
);
958 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Expand
);
959 setOperationAction(ISD::FFLOOR
, MVT::f64
, Expand
);
960 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
961 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Custom
);
962 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
963 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
964 setOperationAction(ISD::FP_TO_SINT
, MVT::f64
, Custom
);
965 setOperationAction(ISD::FP_TO_UINT
, MVT::f64
, Custom
);
966 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
969 if (!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) {
970 setOperationAction(ISD::FP_EXTEND
, MVT::f64
, Custom
);
971 if (Subtarget
->hasFullFP16())
972 setOperationAction(ISD::FP_ROUND
, MVT::f16
, Custom
);
975 if (!Subtarget
->hasFP16())
976 setOperationAction(ISD::FP_EXTEND
, MVT::f32
, Custom
);
978 if (!Subtarget
->hasFP64())
979 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
981 computeRegisterProperties(Subtarget
->getRegisterInfo());
983 // ARM does not have floating-point extending loads.
984 for (MVT VT
: MVT::fp_valuetypes()) {
985 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f32
, Expand
);
986 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f16
, Expand
);
989 // ... or truncating stores
990 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
991 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
992 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
994 // ARM does not have i1 sign extending load.
995 for (MVT VT
: MVT::integer_valuetypes())
996 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
998 // ARM supports all 4 flavors of integer indexed load / store.
999 if (!Subtarget
->isThumb1Only()) {
1000 for (unsigned im
= (unsigned)ISD::PRE_INC
;
1001 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
1002 setIndexedLoadAction(im
, MVT::i1
, Legal
);
1003 setIndexedLoadAction(im
, MVT::i8
, Legal
);
1004 setIndexedLoadAction(im
, MVT::i16
, Legal
);
1005 setIndexedLoadAction(im
, MVT::i32
, Legal
);
1006 setIndexedStoreAction(im
, MVT::i1
, Legal
);
1007 setIndexedStoreAction(im
, MVT::i8
, Legal
);
1008 setIndexedStoreAction(im
, MVT::i16
, Legal
);
1009 setIndexedStoreAction(im
, MVT::i32
, Legal
);
1012 // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
1013 setIndexedLoadAction(ISD::POST_INC
, MVT::i32
, Legal
);
1014 setIndexedStoreAction(ISD::POST_INC
, MVT::i32
, Legal
);
1017 setOperationAction(ISD::SADDO
, MVT::i32
, Custom
);
1018 setOperationAction(ISD::UADDO
, MVT::i32
, Custom
);
1019 setOperationAction(ISD::SSUBO
, MVT::i32
, Custom
);
1020 setOperationAction(ISD::USUBO
, MVT::i32
, Custom
);
1022 setOperationAction(ISD::ADDCARRY
, MVT::i32
, Custom
);
1023 setOperationAction(ISD::SUBCARRY
, MVT::i32
, Custom
);
1024 if (Subtarget
->hasDSP()) {
1025 setOperationAction(ISD::SADDSAT
, MVT::i8
, Custom
);
1026 setOperationAction(ISD::SSUBSAT
, MVT::i8
, Custom
);
1027 setOperationAction(ISD::SADDSAT
, MVT::i16
, Custom
);
1028 setOperationAction(ISD::SSUBSAT
, MVT::i16
, Custom
);
1031 // i64 operation support.
1032 setOperationAction(ISD::MUL
, MVT::i64
, Expand
);
1033 setOperationAction(ISD::MULHU
, MVT::i32
, Expand
);
1034 if (Subtarget
->isThumb1Only()) {
1035 setOperationAction(ISD::UMUL_LOHI
, MVT::i32
, Expand
);
1036 setOperationAction(ISD::SMUL_LOHI
, MVT::i32
, Expand
);
1038 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6Ops()
1039 || (Subtarget
->isThumb2() && !Subtarget
->hasDSP()))
1040 setOperationAction(ISD::MULHS
, MVT::i32
, Expand
);
1042 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
1043 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
1044 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
1045 setOperationAction(ISD::SRL
, MVT::i64
, Custom
);
1046 setOperationAction(ISD::SRA
, MVT::i64
, Custom
);
1047 setOperationAction(ISD::INTRINSIC_VOID
, MVT::Other
, Custom
);
1048 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::i64
, Custom
);
1050 // MVE lowers 64 bit shifts to lsll and lsrl
1051 // assuming that ISD::SRL and SRA of i64 are already marked custom
1052 if (Subtarget
->hasMVEIntegerOps())
1053 setOperationAction(ISD::SHL
, MVT::i64
, Custom
);
1055 // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
1056 if (Subtarget
->isThumb1Only()) {
1057 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Expand
);
1058 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Expand
);
1059 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Expand
);
1062 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops())
1063 setOperationAction(ISD::BITREVERSE
, MVT::i32
, Legal
);
1065 // ARM does not have ROTL.
1066 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
1067 for (MVT VT
: MVT::fixedlen_vector_valuetypes()) {
1068 setOperationAction(ISD::ROTL
, VT
, Expand
);
1069 setOperationAction(ISD::ROTR
, VT
, Expand
);
1071 setOperationAction(ISD::CTTZ
, MVT::i32
, Custom
);
1072 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
1073 if (!Subtarget
->hasV5TOps() || Subtarget
->isThumb1Only()) {
1074 setOperationAction(ISD::CTLZ
, MVT::i32
, Expand
);
1075 setOperationAction(ISD::CTLZ_ZERO_UNDEF
, MVT::i32
, LibCall
);
1078 // @llvm.readcyclecounter requires the Performance Monitors extension.
1079 // Default to the 0 expansion on unsupported platforms.
1080 // FIXME: Technically there are older ARM CPUs that have
1081 // implementation-specific ways of obtaining this information.
1082 if (Subtarget
->hasPerfMon())
1083 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
, Custom
);
1085 // Only ARMv6 has BSWAP.
1086 if (!Subtarget
->hasV6Ops())
1087 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
1089 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
1090 : Subtarget
->hasDivideInARMMode();
1092 // These are expanded into libcalls if the cpu doesn't have HW divider.
1093 setOperationAction(ISD::SDIV
, MVT::i32
, LibCall
);
1094 setOperationAction(ISD::UDIV
, MVT::i32
, LibCall
);
1097 if (Subtarget
->isTargetWindows() && !Subtarget
->hasDivideInThumbMode()) {
1098 setOperationAction(ISD::SDIV
, MVT::i32
, Custom
);
1099 setOperationAction(ISD::UDIV
, MVT::i32
, Custom
);
1101 setOperationAction(ISD::SDIV
, MVT::i64
, Custom
);
1102 setOperationAction(ISD::UDIV
, MVT::i64
, Custom
);
1105 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
1106 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
1108 // Register based DivRem for AEABI (RTABI 4.2)
1109 if (Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
1110 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
1111 Subtarget
->isTargetWindows()) {
1112 setOperationAction(ISD::SREM
, MVT::i64
, Custom
);
1113 setOperationAction(ISD::UREM
, MVT::i64
, Custom
);
1114 HasStandaloneRem
= false;
1116 if (Subtarget
->isTargetWindows()) {
1118 const RTLIB::Libcall Op
;
1119 const char * const Name
;
1120 const CallingConv::ID CC
;
1121 } LibraryCalls
[] = {
1122 { RTLIB::SDIVREM_I8
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1123 { RTLIB::SDIVREM_I16
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1124 { RTLIB::SDIVREM_I32
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1125 { RTLIB::SDIVREM_I64
, "__rt_sdiv64", CallingConv::ARM_AAPCS
},
1127 { RTLIB::UDIVREM_I8
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1128 { RTLIB::UDIVREM_I16
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1129 { RTLIB::UDIVREM_I32
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1130 { RTLIB::UDIVREM_I64
, "__rt_udiv64", CallingConv::ARM_AAPCS
},
1133 for (const auto &LC
: LibraryCalls
) {
1134 setLibcallName(LC
.Op
, LC
.Name
);
1135 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1139 const RTLIB::Libcall Op
;
1140 const char * const Name
;
1141 const CallingConv::ID CC
;
1142 } LibraryCalls
[] = {
1143 { RTLIB::SDIVREM_I8
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1144 { RTLIB::SDIVREM_I16
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1145 { RTLIB::SDIVREM_I32
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1146 { RTLIB::SDIVREM_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
},
1148 { RTLIB::UDIVREM_I8
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1149 { RTLIB::UDIVREM_I16
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1150 { RTLIB::UDIVREM_I32
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1151 { RTLIB::UDIVREM_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
},
1154 for (const auto &LC
: LibraryCalls
) {
1155 setLibcallName(LC
.Op
, LC
.Name
);
1156 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1160 setOperationAction(ISD::SDIVREM
, MVT::i32
, Custom
);
1161 setOperationAction(ISD::UDIVREM
, MVT::i32
, Custom
);
1162 setOperationAction(ISD::SDIVREM
, MVT::i64
, Custom
);
1163 setOperationAction(ISD::UDIVREM
, MVT::i64
, Custom
);
1165 setOperationAction(ISD::SDIVREM
, MVT::i32
, Expand
);
1166 setOperationAction(ISD::UDIVREM
, MVT::i32
, Expand
);
1169 if (Subtarget
->isTargetWindows() && Subtarget
->getTargetTriple().isOSMSVCRT())
1170 for (auto &VT
: {MVT::f32
, MVT::f64
})
1171 setOperationAction(ISD::FPOWI
, VT
, Custom
);
1173 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
1174 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
1175 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
1176 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
1178 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
1179 setOperationAction(ISD::DEBUGTRAP
, MVT::Other
, Legal
);
1181 // Use the default implementation.
1182 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
1183 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
1184 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
1185 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
1186 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
1187 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
1189 if (Subtarget
->isTargetWindows())
1190 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
1192 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
1194 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1195 // the default expansion.
1196 InsertFencesForAtomic
= false;
1197 if (Subtarget
->hasAnyDataBarrier() &&
1198 (!Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps())) {
1199 // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1200 // to ldrex/strex loops already.
1201 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
, Custom
);
1202 if (!Subtarget
->isThumb() || !Subtarget
->isMClass())
1203 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i64
, Custom
);
1205 // On v8, we have particularly efficient implementations of atomic fences
1206 // if they can be combined with nearby atomic loads and stores.
1207 if (!Subtarget
->hasAcquireRelease() ||
1208 getTargetMachine().getOptLevel() == 0) {
1209 // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1210 InsertFencesForAtomic
= true;
1213 // If there's anything we can use as a barrier, go through custom lowering
1214 // for ATOMIC_FENCE.
1215 // If target has DMB in thumb, Fences can be inserted.
1216 if (Subtarget
->hasDataBarrier())
1217 InsertFencesForAtomic
= true;
1219 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
,
1220 Subtarget
->hasAnyDataBarrier() ? Custom
: Expand
);
1222 // Set them all for expansion, which will force libcalls.
1223 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i32
, Expand
);
1224 setOperationAction(ISD::ATOMIC_SWAP
, MVT::i32
, Expand
);
1225 setOperationAction(ISD::ATOMIC_LOAD_ADD
, MVT::i32
, Expand
);
1226 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i32
, Expand
);
1227 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i32
, Expand
);
1228 setOperationAction(ISD::ATOMIC_LOAD_OR
, MVT::i32
, Expand
);
1229 setOperationAction(ISD::ATOMIC_LOAD_XOR
, MVT::i32
, Expand
);
1230 setOperationAction(ISD::ATOMIC_LOAD_NAND
, MVT::i32
, Expand
);
1231 setOperationAction(ISD::ATOMIC_LOAD_MIN
, MVT::i32
, Expand
);
1232 setOperationAction(ISD::ATOMIC_LOAD_MAX
, MVT::i32
, Expand
);
1233 setOperationAction(ISD::ATOMIC_LOAD_UMIN
, MVT::i32
, Expand
);
1234 setOperationAction(ISD::ATOMIC_LOAD_UMAX
, MVT::i32
, Expand
);
1235 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1236 // Unordered/Monotonic case.
1237 if (!InsertFencesForAtomic
) {
1238 setOperationAction(ISD::ATOMIC_LOAD
, MVT::i32
, Custom
);
1239 setOperationAction(ISD::ATOMIC_STORE
, MVT::i32
, Custom
);
1243 setOperationAction(ISD::PREFETCH
, MVT::Other
, Custom
);
1245 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1246 if (!Subtarget
->hasV6Ops()) {
1247 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Expand
);
1248 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Expand
);
1250 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
1252 if (!Subtarget
->useSoftFloat() && Subtarget
->hasFPRegs() &&
1253 !Subtarget
->isThumb1Only()) {
1254 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1255 // iff target supports vfp2.
1256 setOperationAction(ISD::BITCAST
, MVT::i64
, Custom
);
1257 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
1260 // We want to custom lower some of our intrinsics.
1261 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
1262 setOperationAction(ISD::EH_SJLJ_SETJMP
, MVT::i32
, Custom
);
1263 setOperationAction(ISD::EH_SJLJ_LONGJMP
, MVT::Other
, Custom
);
1264 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH
, MVT::Other
, Custom
);
1265 if (Subtarget
->useSjLjEH())
1266 setLibcallName(RTLIB::UNWIND_RESUME
, "_Unwind_SjLj_Resume");
1268 setOperationAction(ISD::SETCC
, MVT::i32
, Expand
);
1269 setOperationAction(ISD::SETCC
, MVT::f32
, Expand
);
1270 setOperationAction(ISD::SETCC
, MVT::f64
, Expand
);
1271 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
1272 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
1273 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
1274 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Custom
);
1275 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Custom
);
1276 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Custom
);
1277 if (Subtarget
->hasFullFP16()) {
1278 setOperationAction(ISD::SETCC
, MVT::f16
, Expand
);
1279 setOperationAction(ISD::SELECT
, MVT::f16
, Custom
);
1280 setOperationAction(ISD::SELECT_CC
, MVT::f16
, Custom
);
1283 setOperationAction(ISD::SETCCCARRY
, MVT::i32
, Custom
);
1285 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
1286 setOperationAction(ISD::BR_CC
, MVT::i32
, Custom
);
1287 if (Subtarget
->hasFullFP16())
1288 setOperationAction(ISD::BR_CC
, MVT::f16
, Custom
);
1289 setOperationAction(ISD::BR_CC
, MVT::f32
, Custom
);
1290 setOperationAction(ISD::BR_CC
, MVT::f64
, Custom
);
1291 setOperationAction(ISD::BR_JT
, MVT::Other
, Custom
);
1293 // We don't support sin/cos/fmod/copysign/pow
1294 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
1295 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
1296 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
1297 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
1298 setOperationAction(ISD::FSINCOS
, MVT::f64
, Expand
);
1299 setOperationAction(ISD::FSINCOS
, MVT::f32
, Expand
);
1300 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
1301 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
1302 if (!Subtarget
->useSoftFloat() && Subtarget
->hasVFP2Base() &&
1303 !Subtarget
->isThumb1Only()) {
1304 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
1305 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
1307 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
1308 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
1310 if (!Subtarget
->hasVFP4Base()) {
1311 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
1312 setOperationAction(ISD::FMA
, MVT::f32
, Expand
);
1315 // Various VFP goodness
1316 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only()) {
1317 // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1318 if (!Subtarget
->hasFPARMv8Base() || !Subtarget
->hasFP64()) {
1319 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
1320 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Expand
);
1323 // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1324 if (!Subtarget
->hasFP16()) {
1325 setOperationAction(ISD::FP16_TO_FP
, MVT::f32
, Expand
);
1326 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Expand
);
1330 // Use __sincos_stret if available.
1331 if (getLibcallName(RTLIB::SINCOS_STRET_F32
) != nullptr &&
1332 getLibcallName(RTLIB::SINCOS_STRET_F64
) != nullptr) {
1333 setOperationAction(ISD::FSINCOS
, MVT::f64
, Custom
);
1334 setOperationAction(ISD::FSINCOS
, MVT::f32
, Custom
);
1337 // FP-ARMv8 implements a lot of rounding-like FP operations.
1338 if (Subtarget
->hasFPARMv8Base()) {
1339 setOperationAction(ISD::FFLOOR
, MVT::f32
, Legal
);
1340 setOperationAction(ISD::FCEIL
, MVT::f32
, Legal
);
1341 setOperationAction(ISD::FROUND
, MVT::f32
, Legal
);
1342 setOperationAction(ISD::FTRUNC
, MVT::f32
, Legal
);
1343 setOperationAction(ISD::FNEARBYINT
, MVT::f32
, Legal
);
1344 setOperationAction(ISD::FRINT
, MVT::f32
, Legal
);
1345 setOperationAction(ISD::FMINNUM
, MVT::f32
, Legal
);
1346 setOperationAction(ISD::FMAXNUM
, MVT::f32
, Legal
);
1347 if (Subtarget
->hasNEON()) {
1348 setOperationAction(ISD::FMINNUM
, MVT::v2f32
, Legal
);
1349 setOperationAction(ISD::FMAXNUM
, MVT::v2f32
, Legal
);
1350 setOperationAction(ISD::FMINNUM
, MVT::v4f32
, Legal
);
1351 setOperationAction(ISD::FMAXNUM
, MVT::v4f32
, Legal
);
1354 if (Subtarget
->hasFP64()) {
1355 setOperationAction(ISD::FFLOOR
, MVT::f64
, Legal
);
1356 setOperationAction(ISD::FCEIL
, MVT::f64
, Legal
);
1357 setOperationAction(ISD::FROUND
, MVT::f64
, Legal
);
1358 setOperationAction(ISD::FTRUNC
, MVT::f64
, Legal
);
1359 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Legal
);
1360 setOperationAction(ISD::FRINT
, MVT::f64
, Legal
);
1361 setOperationAction(ISD::FMINNUM
, MVT::f64
, Legal
);
1362 setOperationAction(ISD::FMAXNUM
, MVT::f64
, Legal
);
1366 // FP16 often need to be promoted to call lib functions
1367 if (Subtarget
->hasFullFP16()) {
1368 setOperationAction(ISD::FREM
, MVT::f16
, Promote
);
1369 setOperationAction(ISD::FCOPYSIGN
, MVT::f16
, Expand
);
1370 setOperationAction(ISD::FSIN
, MVT::f16
, Promote
);
1371 setOperationAction(ISD::FCOS
, MVT::f16
, Promote
);
1372 setOperationAction(ISD::FSINCOS
, MVT::f16
, Promote
);
1373 setOperationAction(ISD::FPOWI
, MVT::f16
, Promote
);
1374 setOperationAction(ISD::FPOW
, MVT::f16
, Promote
);
1375 setOperationAction(ISD::FEXP
, MVT::f16
, Promote
);
1376 setOperationAction(ISD::FEXP2
, MVT::f16
, Promote
);
1377 setOperationAction(ISD::FLOG
, MVT::f16
, Promote
);
1378 setOperationAction(ISD::FLOG10
, MVT::f16
, Promote
);
1379 setOperationAction(ISD::FLOG2
, MVT::f16
, Promote
);
1381 setOperationAction(ISD::FROUND
, MVT::f16
, Legal
);
1384 if (Subtarget
->hasNEON()) {
1385 // vmin and vmax aren't available in a scalar form, so we use
1386 // a NEON instruction with an undef lane instead.
1387 setOperationAction(ISD::FMINIMUM
, MVT::f16
, Legal
);
1388 setOperationAction(ISD::FMAXIMUM
, MVT::f16
, Legal
);
1389 setOperationAction(ISD::FMINIMUM
, MVT::f32
, Legal
);
1390 setOperationAction(ISD::FMAXIMUM
, MVT::f32
, Legal
);
1391 setOperationAction(ISD::FMINIMUM
, MVT::v2f32
, Legal
);
1392 setOperationAction(ISD::FMAXIMUM
, MVT::v2f32
, Legal
);
1393 setOperationAction(ISD::FMINIMUM
, MVT::v4f32
, Legal
);
1394 setOperationAction(ISD::FMAXIMUM
, MVT::v4f32
, Legal
);
1396 if (Subtarget
->hasFullFP16()) {
1397 setOperationAction(ISD::FMINNUM
, MVT::v4f16
, Legal
);
1398 setOperationAction(ISD::FMAXNUM
, MVT::v4f16
, Legal
);
1399 setOperationAction(ISD::FMINNUM
, MVT::v8f16
, Legal
);
1400 setOperationAction(ISD::FMAXNUM
, MVT::v8f16
, Legal
);
1402 setOperationAction(ISD::FMINIMUM
, MVT::v4f16
, Legal
);
1403 setOperationAction(ISD::FMAXIMUM
, MVT::v4f16
, Legal
);
1404 setOperationAction(ISD::FMINIMUM
, MVT::v8f16
, Legal
);
1405 setOperationAction(ISD::FMAXIMUM
, MVT::v8f16
, Legal
);
1409 // We have target-specific dag combine patterns for the following nodes:
1410 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
1411 setTargetDAGCombine(ISD::ADD
);
1412 setTargetDAGCombine(ISD::SUB
);
1413 setTargetDAGCombine(ISD::MUL
);
1414 setTargetDAGCombine(ISD::AND
);
1415 setTargetDAGCombine(ISD::OR
);
1416 setTargetDAGCombine(ISD::XOR
);
1418 if (Subtarget
->hasV6Ops())
1419 setTargetDAGCombine(ISD::SRL
);
1420 if (Subtarget
->isThumb1Only())
1421 setTargetDAGCombine(ISD::SHL
);
1423 setStackPointerRegisterToSaveRestore(ARM::SP
);
1425 if (Subtarget
->useSoftFloat() || Subtarget
->isThumb1Only() ||
1426 !Subtarget
->hasVFP2Base() || Subtarget
->hasMinSize())
1427 setSchedulingPreference(Sched::RegPressure
);
1429 setSchedulingPreference(Sched::Hybrid
);
1431 //// temporary - rewrite interface to use type
1432 MaxStoresPerMemset
= 8;
1433 MaxStoresPerMemsetOptSize
= 4;
1434 MaxStoresPerMemcpy
= 4; // For @llvm.memcpy -> sequence of stores
1435 MaxStoresPerMemcpyOptSize
= 2;
1436 MaxStoresPerMemmove
= 4; // For @llvm.memmove -> sequence of stores
1437 MaxStoresPerMemmoveOptSize
= 2;
1439 // On ARM arguments smaller than 4 bytes are extended, so all arguments
1440 // are at least 4 bytes aligned.
1441 setMinStackArgumentAlignment(Align(4));
1443 // Prefer likely predicted branches to selects on out-of-order cores.
1444 PredictableSelectIsExpensive
= Subtarget
->getSchedModel().isOutOfOrder();
1446 setPrefLoopAlignment(Align(1ULL << Subtarget
->getPrefLoopLogAlignment()));
1448 setMinFunctionAlignment(Subtarget
->isThumb() ? Align(2) : Align(4));
1450 if (Subtarget
->isThumb() || Subtarget
->isThumb2())
1451 setTargetDAGCombine(ISD::ABS
);
1454 bool ARMTargetLowering::useSoftFloat() const {
1455 return Subtarget
->useSoftFloat();
1458 // FIXME: It might make sense to define the representative register class as the
1459 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1460 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1461 // SPR's representative would be DPR_VFP2. This should work well if register
1462 // pressure tracking were modified such that a register use would increment the
1463 // pressure of the register class's representative and all of it's super
1464 // classes' representatives transitively. We have not implemented this because
1465 // of the difficulty prior to coalescing of modeling operand register classes
1466 // due to the common occurrence of cross class copies and subregister insertions
1468 std::pair
<const TargetRegisterClass
*, uint8_t>
1469 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo
*TRI
,
1471 const TargetRegisterClass
*RRC
= nullptr;
1473 switch (VT
.SimpleTy
) {
1475 return TargetLowering::findRepresentativeClass(TRI
, VT
);
1476 // Use DPR as representative register class for all floating point
1477 // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1478 // the cost is 1 for both f32 and f64.
1479 case MVT::f32
: case MVT::f64
: case MVT::v8i8
: case MVT::v4i16
:
1480 case MVT::v2i32
: case MVT::v1i64
: case MVT::v2f32
:
1481 RRC
= &ARM::DPRRegClass
;
1482 // When NEON is used for SP, only half of the register file is available
1483 // because operations that define both SP and DP results will be constrained
1484 // to the VFP2 class (D0-D15). We currently model this constraint prior to
1485 // coalescing by double-counting the SP regs. See the FIXME above.
1486 if (Subtarget
->useNEONForSinglePrecisionFP())
1489 case MVT::v16i8
: case MVT::v8i16
: case MVT::v4i32
: case MVT::v2i64
:
1490 case MVT::v4f32
: case MVT::v2f64
:
1491 RRC
= &ARM::DPRRegClass
;
1495 RRC
= &ARM::DPRRegClass
;
1499 RRC
= &ARM::DPRRegClass
;
1503 return std::make_pair(RRC
, Cost
);
1506 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode
) const {
1507 switch ((ARMISD::NodeType
)Opcode
) {
1508 case ARMISD::FIRST_NUMBER
: break;
1509 case ARMISD::Wrapper
: return "ARMISD::Wrapper";
1510 case ARMISD::WrapperPIC
: return "ARMISD::WrapperPIC";
1511 case ARMISD::WrapperJT
: return "ARMISD::WrapperJT";
1512 case ARMISD::COPY_STRUCT_BYVAL
: return "ARMISD::COPY_STRUCT_BYVAL";
1513 case ARMISD::CALL
: return "ARMISD::CALL";
1514 case ARMISD::CALL_PRED
: return "ARMISD::CALL_PRED";
1515 case ARMISD::CALL_NOLINK
: return "ARMISD::CALL_NOLINK";
1516 case ARMISD::BRCOND
: return "ARMISD::BRCOND";
1517 case ARMISD::BR_JT
: return "ARMISD::BR_JT";
1518 case ARMISD::BR2_JT
: return "ARMISD::BR2_JT";
1519 case ARMISD::RET_FLAG
: return "ARMISD::RET_FLAG";
1520 case ARMISD::INTRET_FLAG
: return "ARMISD::INTRET_FLAG";
1521 case ARMISD::PIC_ADD
: return "ARMISD::PIC_ADD";
1522 case ARMISD::CMP
: return "ARMISD::CMP";
1523 case ARMISD::CMN
: return "ARMISD::CMN";
1524 case ARMISD::CMPZ
: return "ARMISD::CMPZ";
1525 case ARMISD::CMPFP
: return "ARMISD::CMPFP";
1526 case ARMISD::CMPFPw0
: return "ARMISD::CMPFPw0";
1527 case ARMISD::BCC_i64
: return "ARMISD::BCC_i64";
1528 case ARMISD::FMSTAT
: return "ARMISD::FMSTAT";
1530 case ARMISD::CMOV
: return "ARMISD::CMOV";
1531 case ARMISD::SUBS
: return "ARMISD::SUBS";
1533 case ARMISD::SSAT
: return "ARMISD::SSAT";
1534 case ARMISD::USAT
: return "ARMISD::USAT";
1536 case ARMISD::ASRL
: return "ARMISD::ASRL";
1537 case ARMISD::LSRL
: return "ARMISD::LSRL";
1538 case ARMISD::LSLL
: return "ARMISD::LSLL";
1540 case ARMISD::SRL_FLAG
: return "ARMISD::SRL_FLAG";
1541 case ARMISD::SRA_FLAG
: return "ARMISD::SRA_FLAG";
1542 case ARMISD::RRX
: return "ARMISD::RRX";
1544 case ARMISD::ADDC
: return "ARMISD::ADDC";
1545 case ARMISD::ADDE
: return "ARMISD::ADDE";
1546 case ARMISD::SUBC
: return "ARMISD::SUBC";
1547 case ARMISD::SUBE
: return "ARMISD::SUBE";
1548 case ARMISD::LSLS
: return "ARMISD::LSLS";
1550 case ARMISD::VMOVRRD
: return "ARMISD::VMOVRRD";
1551 case ARMISD::VMOVDRR
: return "ARMISD::VMOVDRR";
1552 case ARMISD::VMOVhr
: return "ARMISD::VMOVhr";
1553 case ARMISD::VMOVrh
: return "ARMISD::VMOVrh";
1554 case ARMISD::VMOVSR
: return "ARMISD::VMOVSR";
1556 case ARMISD::EH_SJLJ_SETJMP
: return "ARMISD::EH_SJLJ_SETJMP";
1557 case ARMISD::EH_SJLJ_LONGJMP
: return "ARMISD::EH_SJLJ_LONGJMP";
1558 case ARMISD::EH_SJLJ_SETUP_DISPATCH
: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1560 case ARMISD::TC_RETURN
: return "ARMISD::TC_RETURN";
1562 case ARMISD::THREAD_POINTER
:return "ARMISD::THREAD_POINTER";
1564 case ARMISD::DYN_ALLOC
: return "ARMISD::DYN_ALLOC";
1566 case ARMISD::MEMBARRIER_MCR
: return "ARMISD::MEMBARRIER_MCR";
1568 case ARMISD::PRELOAD
: return "ARMISD::PRELOAD";
1570 case ARMISD::WIN__CHKSTK
: return "ARMISD::WIN__CHKSTK";
1571 case ARMISD::WIN__DBZCHK
: return "ARMISD::WIN__DBZCHK";
1573 case ARMISD::PREDICATE_CAST
: return "ARMISD::PREDICATE_CAST";
1574 case ARMISD::VCMP
: return "ARMISD::VCMP";
1575 case ARMISD::VCMPZ
: return "ARMISD::VCMPZ";
1576 case ARMISD::VTST
: return "ARMISD::VTST";
1578 case ARMISD::VSHLs
: return "ARMISD::VSHLs";
1579 case ARMISD::VSHLu
: return "ARMISD::VSHLu";
1580 case ARMISD::VSHLIMM
: return "ARMISD::VSHLIMM";
1581 case ARMISD::VSHRsIMM
: return "ARMISD::VSHRsIMM";
1582 case ARMISD::VSHRuIMM
: return "ARMISD::VSHRuIMM";
1583 case ARMISD::VRSHRsIMM
: return "ARMISD::VRSHRsIMM";
1584 case ARMISD::VRSHRuIMM
: return "ARMISD::VRSHRuIMM";
1585 case ARMISD::VRSHRNIMM
: return "ARMISD::VRSHRNIMM";
1586 case ARMISD::VQSHLsIMM
: return "ARMISD::VQSHLsIMM";
1587 case ARMISD::VQSHLuIMM
: return "ARMISD::VQSHLuIMM";
1588 case ARMISD::VQSHLsuIMM
: return "ARMISD::VQSHLsuIMM";
1589 case ARMISD::VQSHRNsIMM
: return "ARMISD::VQSHRNsIMM";
1590 case ARMISD::VQSHRNuIMM
: return "ARMISD::VQSHRNuIMM";
1591 case ARMISD::VQSHRNsuIMM
: return "ARMISD::VQSHRNsuIMM";
1592 case ARMISD::VQRSHRNsIMM
: return "ARMISD::VQRSHRNsIMM";
1593 case ARMISD::VQRSHRNuIMM
: return "ARMISD::VQRSHRNuIMM";
1594 case ARMISD::VQRSHRNsuIMM
: return "ARMISD::VQRSHRNsuIMM";
1595 case ARMISD::VSLIIMM
: return "ARMISD::VSLIIMM";
1596 case ARMISD::VSRIIMM
: return "ARMISD::VSRIIMM";
1597 case ARMISD::VGETLANEu
: return "ARMISD::VGETLANEu";
1598 case ARMISD::VGETLANEs
: return "ARMISD::VGETLANEs";
1599 case ARMISD::VMOVIMM
: return "ARMISD::VMOVIMM";
1600 case ARMISD::VMVNIMM
: return "ARMISD::VMVNIMM";
1601 case ARMISD::VMOVFPIMM
: return "ARMISD::VMOVFPIMM";
1602 case ARMISD::VDUP
: return "ARMISD::VDUP";
1603 case ARMISD::VDUPLANE
: return "ARMISD::VDUPLANE";
1604 case ARMISD::VEXT
: return "ARMISD::VEXT";
1605 case ARMISD::VREV64
: return "ARMISD::VREV64";
1606 case ARMISD::VREV32
: return "ARMISD::VREV32";
1607 case ARMISD::VREV16
: return "ARMISD::VREV16";
1608 case ARMISD::VZIP
: return "ARMISD::VZIP";
1609 case ARMISD::VUZP
: return "ARMISD::VUZP";
1610 case ARMISD::VTRN
: return "ARMISD::VTRN";
1611 case ARMISD::VTBL1
: return "ARMISD::VTBL1";
1612 case ARMISD::VTBL2
: return "ARMISD::VTBL2";
1613 case ARMISD::VMOVN
: return "ARMISD::VMOVN";
1614 case ARMISD::VMULLs
: return "ARMISD::VMULLs";
1615 case ARMISD::VMULLu
: return "ARMISD::VMULLu";
1616 case ARMISD::UMAAL
: return "ARMISD::UMAAL";
1617 case ARMISD::UMLAL
: return "ARMISD::UMLAL";
1618 case ARMISD::SMLAL
: return "ARMISD::SMLAL";
1619 case ARMISD::SMLALBB
: return "ARMISD::SMLALBB";
1620 case ARMISD::SMLALBT
: return "ARMISD::SMLALBT";
1621 case ARMISD::SMLALTB
: return "ARMISD::SMLALTB";
1622 case ARMISD::SMLALTT
: return "ARMISD::SMLALTT";
1623 case ARMISD::SMULWB
: return "ARMISD::SMULWB";
1624 case ARMISD::SMULWT
: return "ARMISD::SMULWT";
1625 case ARMISD::SMLALD
: return "ARMISD::SMLALD";
1626 case ARMISD::SMLALDX
: return "ARMISD::SMLALDX";
1627 case ARMISD::SMLSLD
: return "ARMISD::SMLSLD";
1628 case ARMISD::SMLSLDX
: return "ARMISD::SMLSLDX";
1629 case ARMISD::SMMLAR
: return "ARMISD::SMMLAR";
1630 case ARMISD::SMMLSR
: return "ARMISD::SMMLSR";
1631 case ARMISD::QADD16b
: return "ARMISD::QADD16b";
1632 case ARMISD::QSUB16b
: return "ARMISD::QSUB16b";
1633 case ARMISD::QADD8b
: return "ARMISD::QADD8b";
1634 case ARMISD::QSUB8b
: return "ARMISD::QSUB8b";
1635 case ARMISD::BUILD_VECTOR
: return "ARMISD::BUILD_VECTOR";
1636 case ARMISD::BFI
: return "ARMISD::BFI";
1637 case ARMISD::VORRIMM
: return "ARMISD::VORRIMM";
1638 case ARMISD::VBICIMM
: return "ARMISD::VBICIMM";
1639 case ARMISD::VBSL
: return "ARMISD::VBSL";
1640 case ARMISD::MEMCPY
: return "ARMISD::MEMCPY";
1641 case ARMISD::VLD1DUP
: return "ARMISD::VLD1DUP";
1642 case ARMISD::VLD2DUP
: return "ARMISD::VLD2DUP";
1643 case ARMISD::VLD3DUP
: return "ARMISD::VLD3DUP";
1644 case ARMISD::VLD4DUP
: return "ARMISD::VLD4DUP";
1645 case ARMISD::VLD1_UPD
: return "ARMISD::VLD1_UPD";
1646 case ARMISD::VLD2_UPD
: return "ARMISD::VLD2_UPD";
1647 case ARMISD::VLD3_UPD
: return "ARMISD::VLD3_UPD";
1648 case ARMISD::VLD4_UPD
: return "ARMISD::VLD4_UPD";
1649 case ARMISD::VLD2LN_UPD
: return "ARMISD::VLD2LN_UPD";
1650 case ARMISD::VLD3LN_UPD
: return "ARMISD::VLD3LN_UPD";
1651 case ARMISD::VLD4LN_UPD
: return "ARMISD::VLD4LN_UPD";
1652 case ARMISD::VLD1DUP_UPD
: return "ARMISD::VLD1DUP_UPD";
1653 case ARMISD::VLD2DUP_UPD
: return "ARMISD::VLD2DUP_UPD";
1654 case ARMISD::VLD3DUP_UPD
: return "ARMISD::VLD3DUP_UPD";
1655 case ARMISD::VLD4DUP_UPD
: return "ARMISD::VLD4DUP_UPD";
1656 case ARMISD::VST1_UPD
: return "ARMISD::VST1_UPD";
1657 case ARMISD::VST2_UPD
: return "ARMISD::VST2_UPD";
1658 case ARMISD::VST3_UPD
: return "ARMISD::VST3_UPD";
1659 case ARMISD::VST4_UPD
: return "ARMISD::VST4_UPD";
1660 case ARMISD::VST2LN_UPD
: return "ARMISD::VST2LN_UPD";
1661 case ARMISD::VST3LN_UPD
: return "ARMISD::VST3LN_UPD";
1662 case ARMISD::VST4LN_UPD
: return "ARMISD::VST4LN_UPD";
1663 case ARMISD::WLS
: return "ARMISD::WLS";
1664 case ARMISD::LE
: return "ARMISD::LE";
1665 case ARMISD::LOOP_DEC
: return "ARMISD::LOOP_DEC";
1666 case ARMISD::CSINV
: return "ARMISD::CSINV";
1667 case ARMISD::CSNEG
: return "ARMISD::CSNEG";
1668 case ARMISD::CSINC
: return "ARMISD::CSINC";
1673 EVT
ARMTargetLowering::getSetCCResultType(const DataLayout
&DL
, LLVMContext
&,
1676 return getPointerTy(DL
);
1678 // MVE has a predicate register.
1679 if (Subtarget
->hasMVEIntegerOps() &&
1680 (VT
== MVT::v4i32
|| VT
== MVT::v8i16
|| VT
== MVT::v16i8
))
1681 return MVT::getVectorVT(MVT::i1
, VT
.getVectorElementCount());
1682 return VT
.changeVectorElementTypeToInteger();
1685 /// getRegClassFor - Return the register class that should be used for the
1686 /// specified value type.
1687 const TargetRegisterClass
*
1688 ARMTargetLowering::getRegClassFor(MVT VT
, bool isDivergent
) const {
1690 // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1691 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1692 // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1694 if (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) {
1695 if (VT
== MVT::v4i64
)
1696 return &ARM::QQPRRegClass
;
1697 if (VT
== MVT::v8i64
)
1698 return &ARM::QQQQPRRegClass
;
1700 return TargetLowering::getRegClassFor(VT
);
1703 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1704 // source/dest is aligned and the copy size is large enough. We therefore want
1705 // to align such objects passed to memory intrinsics.
1706 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst
*CI
, unsigned &MinSize
,
1707 unsigned &PrefAlign
) const {
1708 if (!isa
<MemIntrinsic
>(CI
))
1711 // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1712 // cycle faster than 4-byte aligned LDM.
1713 PrefAlign
= (Subtarget
->hasV6Ops() && !Subtarget
->isMClass() ? 8 : 4);
1717 // Create a fast isel object.
1719 ARMTargetLowering::createFastISel(FunctionLoweringInfo
&funcInfo
,
1720 const TargetLibraryInfo
*libInfo
) const {
1721 return ARM::createFastISel(funcInfo
, libInfo
);
1724 Sched::Preference
ARMTargetLowering::getSchedulingPreference(SDNode
*N
) const {
1725 unsigned NumVals
= N
->getNumValues();
1727 return Sched::RegPressure
;
1729 for (unsigned i
= 0; i
!= NumVals
; ++i
) {
1730 EVT VT
= N
->getValueType(i
);
1731 if (VT
== MVT::Glue
|| VT
== MVT::Other
)
1733 if (VT
.isFloatingPoint() || VT
.isVector())
1737 if (!N
->isMachineOpcode())
1738 return Sched::RegPressure
;
1740 // Load are scheduled for latency even if there instruction itinerary
1741 // is not available.
1742 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
1743 const MCInstrDesc
&MCID
= TII
->get(N
->getMachineOpcode());
1745 if (MCID
.getNumDefs() == 0)
1746 return Sched::RegPressure
;
1747 if (!Itins
->isEmpty() &&
1748 Itins
->getOperandCycle(MCID
.getSchedClass(), 0) > 2)
1751 return Sched::RegPressure
;
1754 //===----------------------------------------------------------------------===//
1756 //===----------------------------------------------------------------------===//
1758 static bool isSRL16(const SDValue
&Op
) {
1759 if (Op
.getOpcode() != ISD::SRL
)
1761 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1762 return Const
->getZExtValue() == 16;
1766 static bool isSRA16(const SDValue
&Op
) {
1767 if (Op
.getOpcode() != ISD::SRA
)
1769 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1770 return Const
->getZExtValue() == 16;
1774 static bool isSHL16(const SDValue
&Op
) {
1775 if (Op
.getOpcode() != ISD::SHL
)
1777 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1778 return Const
->getZExtValue() == 16;
1782 // Check for a signed 16-bit value. We special case SRA because it makes it
1783 // more simple when also looking for SRAs that aren't sign extending a
1784 // smaller value. Without the check, we'd need to take extra care with
1785 // checking order for some operations.
1786 static bool isS16(const SDValue
&Op
, SelectionDAG
&DAG
) {
1788 return isSHL16(Op
.getOperand(0));
1789 return DAG
.ComputeNumSignBits(Op
) == 17;
1792 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1793 static ARMCC::CondCodes
IntCCToARMCC(ISD::CondCode CC
) {
1795 default: llvm_unreachable("Unknown condition code!");
1796 case ISD::SETNE
: return ARMCC::NE
;
1797 case ISD::SETEQ
: return ARMCC::EQ
;
1798 case ISD::SETGT
: return ARMCC::GT
;
1799 case ISD::SETGE
: return ARMCC::GE
;
1800 case ISD::SETLT
: return ARMCC::LT
;
1801 case ISD::SETLE
: return ARMCC::LE
;
1802 case ISD::SETUGT
: return ARMCC::HI
;
1803 case ISD::SETUGE
: return ARMCC::HS
;
1804 case ISD::SETULT
: return ARMCC::LO
;
1805 case ISD::SETULE
: return ARMCC::LS
;
1809 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1810 static void FPCCToARMCC(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
1811 ARMCC::CondCodes
&CondCode2
) {
1812 CondCode2
= ARMCC::AL
;
1814 default: llvm_unreachable("Unknown FP condition!");
1816 case ISD::SETOEQ
: CondCode
= ARMCC::EQ
; break;
1818 case ISD::SETOGT
: CondCode
= ARMCC::GT
; break;
1820 case ISD::SETOGE
: CondCode
= ARMCC::GE
; break;
1821 case ISD::SETOLT
: CondCode
= ARMCC::MI
; break;
1822 case ISD::SETOLE
: CondCode
= ARMCC::LS
; break;
1823 case ISD::SETONE
: CondCode
= ARMCC::MI
; CondCode2
= ARMCC::GT
; break;
1824 case ISD::SETO
: CondCode
= ARMCC::VC
; break;
1825 case ISD::SETUO
: CondCode
= ARMCC::VS
; break;
1826 case ISD::SETUEQ
: CondCode
= ARMCC::EQ
; CondCode2
= ARMCC::VS
; break;
1827 case ISD::SETUGT
: CondCode
= ARMCC::HI
; break;
1828 case ISD::SETUGE
: CondCode
= ARMCC::PL
; break;
1830 case ISD::SETULT
: CondCode
= ARMCC::LT
; break;
1832 case ISD::SETULE
: CondCode
= ARMCC::LE
; break;
1834 case ISD::SETUNE
: CondCode
= ARMCC::NE
; break;
1838 //===----------------------------------------------------------------------===//
1839 // Calling Convention Implementation
1840 //===----------------------------------------------------------------------===//
1842 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1843 /// account presence of floating point hardware and calling convention
1844 /// limitations, such as support for variadic functions.
1846 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC
,
1847 bool isVarArg
) const {
1850 report_fatal_error("Unsupported calling convention");
1851 case CallingConv::ARM_AAPCS
:
1852 case CallingConv::ARM_APCS
:
1853 case CallingConv::GHC
:
1855 case CallingConv::PreserveMost
:
1856 return CallingConv::PreserveMost
;
1857 case CallingConv::ARM_AAPCS_VFP
:
1858 case CallingConv::Swift
:
1859 return isVarArg
? CallingConv::ARM_AAPCS
: CallingConv::ARM_AAPCS_VFP
;
1860 case CallingConv::C
:
1861 if (!Subtarget
->isAAPCS_ABI())
1862 return CallingConv::ARM_APCS
;
1863 else if (Subtarget
->hasVFP2Base() && !Subtarget
->isThumb1Only() &&
1864 getTargetMachine().Options
.FloatABIType
== FloatABI::Hard
&&
1866 return CallingConv::ARM_AAPCS_VFP
;
1868 return CallingConv::ARM_AAPCS
;
1869 case CallingConv::Fast
:
1870 case CallingConv::CXX_FAST_TLS
:
1871 if (!Subtarget
->isAAPCS_ABI()) {
1872 if (Subtarget
->hasVFP2Base() && !Subtarget
->isThumb1Only() && !isVarArg
)
1873 return CallingConv::Fast
;
1874 return CallingConv::ARM_APCS
;
1875 } else if (Subtarget
->hasVFP2Base() &&
1876 !Subtarget
->isThumb1Only() && !isVarArg
)
1877 return CallingConv::ARM_AAPCS_VFP
;
1879 return CallingConv::ARM_AAPCS
;
1883 CCAssignFn
*ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC
,
1884 bool isVarArg
) const {
1885 return CCAssignFnForNode(CC
, false, isVarArg
);
1888 CCAssignFn
*ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC
,
1889 bool isVarArg
) const {
1890 return CCAssignFnForNode(CC
, true, isVarArg
);
1893 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1894 /// CallingConvention.
1895 CCAssignFn
*ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC
,
1897 bool isVarArg
) const {
1898 switch (getEffectiveCallingConv(CC
, isVarArg
)) {
1900 report_fatal_error("Unsupported calling convention");
1901 case CallingConv::ARM_APCS
:
1902 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS
);
1903 case CallingConv::ARM_AAPCS
:
1904 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1905 case CallingConv::ARM_AAPCS_VFP
:
1906 return (Return
? RetCC_ARM_AAPCS_VFP
: CC_ARM_AAPCS_VFP
);
1907 case CallingConv::Fast
:
1908 return (Return
? RetFastCC_ARM_APCS
: FastCC_ARM_APCS
);
1909 case CallingConv::GHC
:
1910 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS_GHC
);
1911 case CallingConv::PreserveMost
:
1912 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1916 /// LowerCallResult - Lower the result values of a call into the
1917 /// appropriate copies out of appropriate physical registers.
1918 SDValue
ARMTargetLowering::LowerCallResult(
1919 SDValue Chain
, SDValue InFlag
, CallingConv::ID CallConv
, bool isVarArg
,
1920 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1921 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
, bool isThisReturn
,
1922 SDValue ThisVal
) const {
1923 // Assign locations to each value returned by this call.
1924 SmallVector
<CCValAssign
, 16> RVLocs
;
1925 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
1927 CCInfo
.AnalyzeCallResult(Ins
, CCAssignFnForReturn(CallConv
, isVarArg
));
1929 // Copy all of the result registers out of their specified physreg.
1930 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1931 CCValAssign VA
= RVLocs
[i
];
1933 // Pass 'this' value directly from the argument to return value, to avoid
1934 // reg unit interference
1935 if (i
== 0 && isThisReturn
) {
1936 assert(!VA
.needsCustom() && VA
.getLocVT() == MVT::i32
&&
1937 "unexpected return calling convention register assignment");
1938 InVals
.push_back(ThisVal
);
1943 if (VA
.needsCustom()) {
1944 // Handle f64 or half of a v2f64.
1945 SDValue Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
1947 Chain
= Lo
.getValue(1);
1948 InFlag
= Lo
.getValue(2);
1949 VA
= RVLocs
[++i
]; // skip ahead to next loc
1950 SDValue Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
1952 Chain
= Hi
.getValue(1);
1953 InFlag
= Hi
.getValue(2);
1954 if (!Subtarget
->isLittle())
1956 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
1958 if (VA
.getLocVT() == MVT::v2f64
) {
1959 SDValue Vec
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
1960 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
1961 DAG
.getConstant(0, dl
, MVT::i32
));
1963 VA
= RVLocs
[++i
]; // skip ahead to next loc
1964 Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InFlag
);
1965 Chain
= Lo
.getValue(1);
1966 InFlag
= Lo
.getValue(2);
1967 VA
= RVLocs
[++i
]; // skip ahead to next loc
1968 Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InFlag
);
1969 Chain
= Hi
.getValue(1);
1970 InFlag
= Hi
.getValue(2);
1971 if (!Subtarget
->isLittle())
1973 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
1974 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
1975 DAG
.getConstant(1, dl
, MVT::i32
));
1978 Val
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), VA
.getLocVT(),
1980 Chain
= Val
.getValue(1);
1981 InFlag
= Val
.getValue(2);
1984 switch (VA
.getLocInfo()) {
1985 default: llvm_unreachable("Unknown loc info!");
1986 case CCValAssign::Full
: break;
1987 case CCValAssign::BCvt
:
1988 Val
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), Val
);
1992 InVals
.push_back(Val
);
1998 /// LowerMemOpCallTo - Store the argument to the stack.
1999 SDValue
ARMTargetLowering::LowerMemOpCallTo(SDValue Chain
, SDValue StackPtr
,
2000 SDValue Arg
, const SDLoc
&dl
,
2002 const CCValAssign
&VA
,
2003 ISD::ArgFlagsTy Flags
) const {
2004 unsigned LocMemOffset
= VA
.getLocMemOffset();
2005 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
2006 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(DAG
.getDataLayout()),
2008 return DAG
.getStore(
2009 Chain
, dl
, Arg
, PtrOff
,
2010 MachinePointerInfo::getStack(DAG
.getMachineFunction(), LocMemOffset
));
2013 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc
&dl
, SelectionDAG
&DAG
,
2014 SDValue Chain
, SDValue
&Arg
,
2015 RegsToPassVector
&RegsToPass
,
2016 CCValAssign
&VA
, CCValAssign
&NextVA
,
2018 SmallVectorImpl
<SDValue
> &MemOpChains
,
2019 ISD::ArgFlagsTy Flags
) const {
2020 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2021 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
2022 unsigned id
= Subtarget
->isLittle() ? 0 : 1;
2023 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), fmrrd
.getValue(id
)));
2025 if (NextVA
.isRegLoc())
2026 RegsToPass
.push_back(std::make_pair(NextVA
.getLocReg(), fmrrd
.getValue(1-id
)));
2028 assert(NextVA
.isMemLoc());
2029 if (!StackPtr
.getNode())
2030 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
,
2031 getPointerTy(DAG
.getDataLayout()));
2033 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, fmrrd
.getValue(1-id
),
2039 /// LowerCall - Lowering a call into a callseq_start <-
2040 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
2043 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
2044 SmallVectorImpl
<SDValue
> &InVals
) const {
2045 SelectionDAG
&DAG
= CLI
.DAG
;
2047 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
2048 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
2049 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
2050 SDValue Chain
= CLI
.Chain
;
2051 SDValue Callee
= CLI
.Callee
;
2052 bool &isTailCall
= CLI
.IsTailCall
;
2053 CallingConv::ID CallConv
= CLI
.CallConv
;
2054 bool doesNotRet
= CLI
.DoesNotReturn
;
2055 bool isVarArg
= CLI
.IsVarArg
;
2057 MachineFunction
&MF
= DAG
.getMachineFunction();
2058 MachineFunction::CallSiteInfo CSInfo
;
2059 bool isStructRet
= (Outs
.empty()) ? false : Outs
[0].Flags
.isSRet();
2060 bool isThisReturn
= false;
2061 auto Attr
= MF
.getFunction().getFnAttribute("disable-tail-calls");
2062 bool PreferIndirect
= false;
2064 // Disable tail calls if they're not supported.
2065 if (!Subtarget
->supportsTailCall() || Attr
.getValueAsString() == "true")
2068 if (isa
<GlobalAddressSDNode
>(Callee
)) {
2069 // If we're optimizing for minimum size and the function is called three or
2070 // more times in this block, we can improve codesize by calling indirectly
2071 // as BLXr has a 16-bit encoding.
2072 auto *GV
= cast
<GlobalAddressSDNode
>(Callee
)->getGlobal();
2074 auto *BB
= CLI
.CS
.getParent();
2075 PreferIndirect
= Subtarget
->isThumb() && Subtarget
->hasMinSize() &&
2076 count_if(GV
->users(), [&BB
](const User
*U
) {
2077 return isa
<Instruction
>(U
) &&
2078 cast
<Instruction
>(U
)->getParent() == BB
;
2083 // Check if it's really possible to do a tail call.
2084 isTailCall
= IsEligibleForTailCallOptimization(
2085 Callee
, CallConv
, isVarArg
, isStructRet
,
2086 MF
.getFunction().hasStructRetAttr(), Outs
, OutVals
, Ins
, DAG
,
2088 if (!isTailCall
&& CLI
.CS
&& CLI
.CS
.isMustTailCall())
2089 report_fatal_error("failed to perform tail call elimination on a call "
2090 "site marked musttail");
2091 // We don't support GuaranteedTailCallOpt for ARM, only automatically
2092 // detected sibcalls.
2097 // Analyze operands of the call, assigning locations to each operand.
2098 SmallVector
<CCValAssign
, 16> ArgLocs
;
2099 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
2101 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CallConv
, isVarArg
));
2103 // Get a count of how many bytes are to be pushed on the stack.
2104 unsigned NumBytes
= CCInfo
.getNextStackOffset();
2107 // For tail calls, memory operands are available in our caller's stack.
2110 // Adjust the stack pointer for the new arguments...
2111 // These operations are automatically eliminated by the prolog/epilog pass
2112 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytes
, 0, dl
);
2116 DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
, getPointerTy(DAG
.getDataLayout()));
2118 RegsToPassVector RegsToPass
;
2119 SmallVector
<SDValue
, 8> MemOpChains
;
2121 // Walk the register/memloc assignments, inserting copies/loads. In the case
2122 // of tail call optimization, arguments are handled later.
2123 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size();
2125 ++i
, ++realArgIdx
) {
2126 CCValAssign
&VA
= ArgLocs
[i
];
2127 SDValue Arg
= OutVals
[realArgIdx
];
2128 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
2129 bool isByVal
= Flags
.isByVal();
2131 // Promote the value if needed.
2132 switch (VA
.getLocInfo()) {
2133 default: llvm_unreachable("Unknown loc info!");
2134 case CCValAssign::Full
: break;
2135 case CCValAssign::SExt
:
2136 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2138 case CCValAssign::ZExt
:
2139 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2141 case CCValAssign::AExt
:
2142 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2144 case CCValAssign::BCvt
:
2145 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2149 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2150 if (VA
.needsCustom()) {
2151 if (VA
.getLocVT() == MVT::v2f64
) {
2152 SDValue Op0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2153 DAG
.getConstant(0, dl
, MVT::i32
));
2154 SDValue Op1
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2155 DAG
.getConstant(1, dl
, MVT::i32
));
2157 PassF64ArgInRegs(dl
, DAG
, Chain
, Op0
, RegsToPass
,
2158 VA
, ArgLocs
[++i
], StackPtr
, MemOpChains
, Flags
);
2160 VA
= ArgLocs
[++i
]; // skip ahead to next loc
2161 if (VA
.isRegLoc()) {
2162 PassF64ArgInRegs(dl
, DAG
, Chain
, Op1
, RegsToPass
,
2163 VA
, ArgLocs
[++i
], StackPtr
, MemOpChains
, Flags
);
2165 assert(VA
.isMemLoc());
2167 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Op1
,
2168 dl
, DAG
, VA
, Flags
));
2171 PassF64ArgInRegs(dl
, DAG
, Chain
, Arg
, RegsToPass
, VA
, ArgLocs
[++i
],
2172 StackPtr
, MemOpChains
, Flags
);
2174 } else if (VA
.isRegLoc()) {
2175 if (realArgIdx
== 0 && Flags
.isReturned() && !Flags
.isSwiftSelf() &&
2176 Outs
[0].VT
== MVT::i32
) {
2177 assert(VA
.getLocVT() == MVT::i32
&&
2178 "unexpected calling convention register assignment");
2179 assert(!Ins
.empty() && Ins
[0].VT
== MVT::i32
&&
2180 "unexpected use of 'returned'");
2181 isThisReturn
= true;
2183 const TargetOptions
&Options
= DAG
.getTarget().Options
;
2184 if (Options
.EnableDebugEntryValues
)
2185 CSInfo
.emplace_back(VA
.getLocReg(), i
);
2186 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
2187 } else if (isByVal
) {
2188 assert(VA
.isMemLoc());
2189 unsigned offset
= 0;
2191 // True if this byval aggregate will be split between registers
2193 unsigned ByValArgsCount
= CCInfo
.getInRegsParamsCount();
2194 unsigned CurByValIdx
= CCInfo
.getInRegsParamsProcessed();
2196 if (CurByValIdx
< ByValArgsCount
) {
2198 unsigned RegBegin
, RegEnd
;
2199 CCInfo
.getInRegsParamInfo(CurByValIdx
, RegBegin
, RegEnd
);
2202 DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
2204 for (i
= 0, j
= RegBegin
; j
< RegEnd
; i
++, j
++) {
2205 SDValue Const
= DAG
.getConstant(4*i
, dl
, MVT::i32
);
2206 SDValue AddArg
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, Const
);
2207 SDValue Load
= DAG
.getLoad(PtrVT
, dl
, Chain
, AddArg
,
2208 MachinePointerInfo(),
2209 DAG
.InferPtrAlignment(AddArg
));
2210 MemOpChains
.push_back(Load
.getValue(1));
2211 RegsToPass
.push_back(std::make_pair(j
, Load
));
2214 // If parameter size outsides register area, "offset" value
2215 // helps us to calculate stack slot for remained part properly.
2216 offset
= RegEnd
- RegBegin
;
2218 CCInfo
.nextInRegsParam();
2221 if (Flags
.getByValSize() > 4*offset
) {
2222 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
2223 unsigned LocMemOffset
= VA
.getLocMemOffset();
2224 SDValue StkPtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
2225 SDValue Dst
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
, StkPtrOff
);
2226 SDValue SrcOffset
= DAG
.getIntPtrConstant(4*offset
, dl
);
2227 SDValue Src
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, SrcOffset
);
2228 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize() - 4*offset
, dl
,
2230 SDValue AlignNode
= DAG
.getConstant(Flags
.getByValAlign(), dl
,
2233 SDVTList VTs
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2234 SDValue Ops
[] = { Chain
, Dst
, Src
, SizeNode
, AlignNode
};
2235 MemOpChains
.push_back(DAG
.getNode(ARMISD::COPY_STRUCT_BYVAL
, dl
, VTs
,
2238 } else if (!isTailCall
) {
2239 assert(VA
.isMemLoc());
2241 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Arg
,
2242 dl
, DAG
, VA
, Flags
));
2246 if (!MemOpChains
.empty())
2247 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains
);
2249 // Build a sequence of copy-to-reg nodes chained together with token chain
2250 // and flag operands which copy the outgoing args into the appropriate regs.
2252 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
2253 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
2254 RegsToPass
[i
].second
, InFlag
);
2255 InFlag
= Chain
.getValue(1);
2258 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2259 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2260 // node so that legalize doesn't hack it.
2261 bool isDirect
= false;
2263 const TargetMachine
&TM
= getTargetMachine();
2264 const Module
*Mod
= MF
.getFunction().getParent();
2265 const GlobalValue
*GV
= nullptr;
2266 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
2267 GV
= G
->getGlobal();
2269 !TM
.shouldAssumeDSOLocal(*Mod
, GV
) && Subtarget
->isTargetMachO();
2271 bool isARMFunc
= !Subtarget
->isThumb() || (isStub
&& !Subtarget
->isMClass());
2272 bool isLocalARMFunc
= false;
2273 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2274 auto PtrVt
= getPointerTy(DAG
.getDataLayout());
2276 if (Subtarget
->genLongCalls()) {
2277 assert((!isPositionIndependent() || Subtarget
->isTargetWindows()) &&
2278 "long-calls codegen is not position independent!");
2279 // Handle a global address or an external symbol. If it's not one of
2280 // those, the target's already in a register, so we don't need to do
2282 if (isa
<GlobalAddressSDNode
>(Callee
)) {
2283 // Create a constant pool entry for the callee address
2284 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2285 ARMConstantPoolValue
*CPV
=
2286 ARMConstantPoolConstant::Create(GV
, ARMPCLabelIndex
, ARMCP::CPValue
, 0);
2288 // Get the address of the callee into a register
2289 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2290 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2291 Callee
= DAG
.getLoad(
2292 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2293 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2294 } else if (ExternalSymbolSDNode
*S
=dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2295 const char *Sym
= S
->getSymbol();
2297 // Create a constant pool entry for the callee address
2298 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2299 ARMConstantPoolValue
*CPV
=
2300 ARMConstantPoolSymbol::Create(*DAG
.getContext(), Sym
,
2301 ARMPCLabelIndex
, 0);
2302 // Get the address of the callee into a register
2303 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2304 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2305 Callee
= DAG
.getLoad(
2306 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2307 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2309 } else if (isa
<GlobalAddressSDNode
>(Callee
)) {
2310 if (!PreferIndirect
) {
2312 bool isDef
= GV
->isStrongDefinitionForLinker();
2314 // ARM call to a local ARM function is predicable.
2315 isLocalARMFunc
= !Subtarget
->isThumb() && (isDef
|| !ARMInterworking
);
2316 // tBX takes a register source operand.
2317 if (isStub
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2318 assert(Subtarget
->isTargetMachO() && "WrapperPIC use on non-MachO?");
2319 Callee
= DAG
.getNode(
2320 ARMISD::WrapperPIC
, dl
, PtrVt
,
2321 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, 0, ARMII::MO_NONLAZY
));
2322 Callee
= DAG
.getLoad(
2323 PtrVt
, dl
, DAG
.getEntryNode(), Callee
,
2324 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
2325 /* Alignment = */ 0, MachineMemOperand::MODereferenceable
|
2326 MachineMemOperand::MOInvariant
);
2327 } else if (Subtarget
->isTargetCOFF()) {
2328 assert(Subtarget
->isTargetWindows() &&
2329 "Windows is the only supported COFF target");
2330 unsigned TargetFlags
= GV
->hasDLLImportStorageClass()
2331 ? ARMII::MO_DLLIMPORT
2332 : ARMII::MO_NO_FLAG
;
2333 Callee
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, /*offset=*/0,
2335 if (GV
->hasDLLImportStorageClass())
2337 DAG
.getLoad(PtrVt
, dl
, DAG
.getEntryNode(),
2338 DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVt
, Callee
),
2339 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
2341 Callee
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, 0, 0);
2344 } else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2346 // tBX takes a register source operand.
2347 const char *Sym
= S
->getSymbol();
2348 if (isARMFunc
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2349 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2350 ARMConstantPoolValue
*CPV
=
2351 ARMConstantPoolSymbol::Create(*DAG
.getContext(), Sym
,
2352 ARMPCLabelIndex
, 4);
2353 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2354 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2355 Callee
= DAG
.getLoad(
2356 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2357 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2358 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
2359 Callee
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVt
, Callee
, PICLabel
);
2361 Callee
= DAG
.getTargetExternalSymbol(Sym
, PtrVt
, 0);
2365 // FIXME: handle tail calls differently.
2367 if (Subtarget
->isThumb()) {
2368 if ((!isDirect
|| isARMFunc
) && !Subtarget
->hasV5TOps())
2369 CallOpc
= ARMISD::CALL_NOLINK
;
2371 CallOpc
= ARMISD::CALL
;
2373 if (!isDirect
&& !Subtarget
->hasV5TOps())
2374 CallOpc
= ARMISD::CALL_NOLINK
;
2375 else if (doesNotRet
&& isDirect
&& Subtarget
->hasRetAddrStack() &&
2376 // Emit regular call when code size is the priority
2377 !Subtarget
->hasMinSize())
2378 // "mov lr, pc; b _foo" to avoid confusing the RSP
2379 CallOpc
= ARMISD::CALL_NOLINK
;
2381 CallOpc
= isLocalARMFunc
? ARMISD::CALL_PRED
: ARMISD::CALL
;
2384 std::vector
<SDValue
> Ops
;
2385 Ops
.push_back(Chain
);
2386 Ops
.push_back(Callee
);
2388 // Add argument registers to the end of the list so that they are known live
2390 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
2391 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
2392 RegsToPass
[i
].second
.getValueType()));
2394 // Add a register mask operand representing the call-preserved registers.
2396 const uint32_t *Mask
;
2397 const ARMBaseRegisterInfo
*ARI
= Subtarget
->getRegisterInfo();
2399 // For 'this' returns, use the R0-preserving mask if applicable
2400 Mask
= ARI
->getThisReturnPreservedMask(MF
, CallConv
);
2402 // Set isThisReturn to false if the calling convention is not one that
2403 // allows 'returned' to be modeled in this way, so LowerCallResult does
2404 // not try to pass 'this' straight through
2405 isThisReturn
= false;
2406 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
2409 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
2411 assert(Mask
&& "Missing call preserved mask for calling convention");
2412 Ops
.push_back(DAG
.getRegisterMask(Mask
));
2415 if (InFlag
.getNode())
2416 Ops
.push_back(InFlag
);
2418 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2420 MF
.getFrameInfo().setHasTailCall();
2421 SDValue Ret
= DAG
.getNode(ARMISD::TC_RETURN
, dl
, NodeTys
, Ops
);
2422 DAG
.addCallSiteInfo(Ret
.getNode(), std::move(CSInfo
));
2426 // Returns a chain and a flag for retval copy to use.
2427 Chain
= DAG
.getNode(CallOpc
, dl
, NodeTys
, Ops
);
2428 InFlag
= Chain
.getValue(1);
2429 DAG
.addCallSiteInfo(Chain
.getNode(), std::move(CSInfo
));
2431 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, dl
, true),
2432 DAG
.getIntPtrConstant(0, dl
, true), InFlag
, dl
);
2434 InFlag
= Chain
.getValue(1);
2436 // Handle result values, copying them out of physregs into vregs that we
2438 return LowerCallResult(Chain
, InFlag
, CallConv
, isVarArg
, Ins
, dl
, DAG
,
2439 InVals
, isThisReturn
,
2440 isThisReturn
? OutVals
[0] : SDValue());
2443 /// HandleByVal - Every parameter *after* a byval parameter is passed
2444 /// on the stack. Remember the next parameter register to allocate,
2445 /// and then confiscate the rest of the parameter registers to insure
2447 void ARMTargetLowering::HandleByVal(CCState
*State
, unsigned &Size
,
2448 unsigned Align
) const {
2449 // Byval (as with any stack) slots are always at least 4 byte aligned.
2450 Align
= std::max(Align
, 4U);
2452 unsigned Reg
= State
->AllocateReg(GPRArgRegs
);
2456 unsigned AlignInRegs
= Align
/ 4;
2457 unsigned Waste
= (ARM::R4
- Reg
) % AlignInRegs
;
2458 for (unsigned i
= 0; i
< Waste
; ++i
)
2459 Reg
= State
->AllocateReg(GPRArgRegs
);
2464 unsigned Excess
= 4 * (ARM::R4
- Reg
);
2466 // Special case when NSAA != SP and parameter size greater than size of
2467 // all remained GPR regs. In that case we can't split parameter, we must
2468 // send it to stack. We also must set NCRN to R4, so waste all
2469 // remained registers.
2470 const unsigned NSAAOffset
= State
->getNextStackOffset();
2471 if (NSAAOffset
!= 0 && Size
> Excess
) {
2472 while (State
->AllocateReg(GPRArgRegs
))
2477 // First register for byval parameter is the first register that wasn't
2478 // allocated before this method call, so it would be "reg".
2479 // If parameter is small enough to be saved in range [reg, r4), then
2480 // the end (first after last) register would be reg + param-size-in-regs,
2481 // else parameter would be splitted between registers and stack,
2482 // end register would be r4 in this case.
2483 unsigned ByValRegBegin
= Reg
;
2484 unsigned ByValRegEnd
= std::min
<unsigned>(Reg
+ Size
/ 4, ARM::R4
);
2485 State
->addInRegsParamInfo(ByValRegBegin
, ByValRegEnd
);
2486 // Note, first register is allocated in the beginning of function already,
2487 // allocate remained amount of registers we need.
2488 for (unsigned i
= Reg
+ 1; i
!= ByValRegEnd
; ++i
)
2489 State
->AllocateReg(GPRArgRegs
);
2490 // A byval parameter that is split between registers and memory needs its
2491 // size truncated here.
2492 // In the case where the entire structure fits in registers, we set the
2493 // size in memory to zero.
2494 Size
= std::max
<int>(Size
- Excess
, 0);
2497 /// MatchingStackOffset - Return true if the given stack call argument is
2498 /// already available in the same position (relatively) of the caller's
2499 /// incoming argument stack.
2501 bool MatchingStackOffset(SDValue Arg
, unsigned Offset
, ISD::ArgFlagsTy Flags
,
2502 MachineFrameInfo
&MFI
, const MachineRegisterInfo
*MRI
,
2503 const TargetInstrInfo
*TII
) {
2504 unsigned Bytes
= Arg
.getValueSizeInBits() / 8;
2505 int FI
= std::numeric_limits
<int>::max();
2506 if (Arg
.getOpcode() == ISD::CopyFromReg
) {
2507 unsigned VR
= cast
<RegisterSDNode
>(Arg
.getOperand(1))->getReg();
2508 if (!Register::isVirtualRegister(VR
))
2510 MachineInstr
*Def
= MRI
->getVRegDef(VR
);
2513 if (!Flags
.isByVal()) {
2514 if (!TII
->isLoadFromStackSlot(*Def
, FI
))
2519 } else if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Arg
)) {
2520 if (Flags
.isByVal())
2521 // ByVal argument is passed in as a pointer but it's now being
2522 // dereferenced. e.g.
2523 // define @foo(%struct.X* %A) {
2524 // tail call @bar(%struct.X* byval %A)
2527 SDValue Ptr
= Ld
->getBasePtr();
2528 FrameIndexSDNode
*FINode
= dyn_cast
<FrameIndexSDNode
>(Ptr
);
2531 FI
= FINode
->getIndex();
2535 assert(FI
!= std::numeric_limits
<int>::max());
2536 if (!MFI
.isFixedObjectIndex(FI
))
2538 return Offset
== MFI
.getObjectOffset(FI
) && Bytes
== MFI
.getObjectSize(FI
);
2541 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2542 /// for tail call optimization. Targets which want to do tail call
2543 /// optimization should implement this function.
2544 bool ARMTargetLowering::IsEligibleForTailCallOptimization(
2545 SDValue Callee
, CallingConv::ID CalleeCC
, bool isVarArg
,
2546 bool isCalleeStructRet
, bool isCallerStructRet
,
2547 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2548 const SmallVectorImpl
<SDValue
> &OutVals
,
2549 const SmallVectorImpl
<ISD::InputArg
> &Ins
, SelectionDAG
&DAG
,
2550 const bool isIndirect
) const {
2551 MachineFunction
&MF
= DAG
.getMachineFunction();
2552 const Function
&CallerF
= MF
.getFunction();
2553 CallingConv::ID CallerCC
= CallerF
.getCallingConv();
2555 assert(Subtarget
->supportsTailCall());
2557 // Indirect tail calls cannot be optimized for Thumb1 if the args
2558 // to the call take up r0-r3. The reason is that there are no legal registers
2559 // left to hold the pointer to the function to be called.
2560 if (Subtarget
->isThumb1Only() && Outs
.size() >= 4 &&
2561 (!isa
<GlobalAddressSDNode
>(Callee
.getNode()) || isIndirect
))
2564 // Look for obvious safe cases to perform tail call optimization that do not
2565 // require ABI changes. This is what gcc calls sibcall.
2567 // Exception-handling functions need a special set of instructions to indicate
2568 // a return to the hardware. Tail-calling another function would probably
2570 if (CallerF
.hasFnAttribute("interrupt"))
2573 // Also avoid sibcall optimization if either caller or callee uses struct
2574 // return semantics.
2575 if (isCalleeStructRet
|| isCallerStructRet
)
2578 // Externally-defined functions with weak linkage should not be
2579 // tail-called on ARM when the OS does not support dynamic
2580 // pre-emption of symbols, as the AAELF spec requires normal calls
2581 // to undefined weak functions to be replaced with a NOP or jump to the
2582 // next instruction. The behaviour of branch instructions in this
2583 // situation (as used for tail calls) is implementation-defined, so we
2584 // cannot rely on the linker replacing the tail call with a return.
2585 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
2586 const GlobalValue
*GV
= G
->getGlobal();
2587 const Triple
&TT
= getTargetMachine().getTargetTriple();
2588 if (GV
->hasExternalWeakLinkage() &&
2589 (!TT
.isOSWindows() || TT
.isOSBinFormatELF() || TT
.isOSBinFormatMachO()))
2593 // Check that the call results are passed in the same way.
2594 LLVMContext
&C
= *DAG
.getContext();
2595 if (!CCState::resultsCompatible(CalleeCC
, CallerCC
, MF
, C
, Ins
,
2596 CCAssignFnForReturn(CalleeCC
, isVarArg
),
2597 CCAssignFnForReturn(CallerCC
, isVarArg
)))
2599 // The callee has to preserve all registers the caller needs to preserve.
2600 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
2601 const uint32_t *CallerPreserved
= TRI
->getCallPreservedMask(MF
, CallerCC
);
2602 if (CalleeCC
!= CallerCC
) {
2603 const uint32_t *CalleePreserved
= TRI
->getCallPreservedMask(MF
, CalleeCC
);
2604 if (!TRI
->regmaskSubsetEqual(CallerPreserved
, CalleePreserved
))
2608 // If Caller's vararg or byval argument has been split between registers and
2609 // stack, do not perform tail call, since part of the argument is in caller's
2611 const ARMFunctionInfo
*AFI_Caller
= MF
.getInfo
<ARMFunctionInfo
>();
2612 if (AFI_Caller
->getArgRegsSaveSize())
2615 // If the callee takes no arguments then go on to check the results of the
2617 if (!Outs
.empty()) {
2618 // Check if stack adjustment is needed. For now, do not do this if any
2619 // argument is passed on the stack.
2620 SmallVector
<CCValAssign
, 16> ArgLocs
;
2621 CCState
CCInfo(CalleeCC
, isVarArg
, MF
, ArgLocs
, C
);
2622 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CalleeCC
, isVarArg
));
2623 if (CCInfo
.getNextStackOffset()) {
2624 // Check if the arguments are already laid out in the right way as
2625 // the caller's fixed stack objects.
2626 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2627 const MachineRegisterInfo
*MRI
= &MF
.getRegInfo();
2628 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
2629 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size();
2631 ++i
, ++realArgIdx
) {
2632 CCValAssign
&VA
= ArgLocs
[i
];
2633 EVT RegVT
= VA
.getLocVT();
2634 SDValue Arg
= OutVals
[realArgIdx
];
2635 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
2636 if (VA
.getLocInfo() == CCValAssign::Indirect
)
2638 if (VA
.needsCustom()) {
2639 // f64 and vector types are split into multiple registers or
2640 // register/stack-slot combinations. The types will not match
2641 // the registers; give up on memory f64 refs until we figure
2642 // out what to do about this.
2645 if (!ArgLocs
[++i
].isRegLoc())
2647 if (RegVT
== MVT::v2f64
) {
2648 if (!ArgLocs
[++i
].isRegLoc())
2650 if (!ArgLocs
[++i
].isRegLoc())
2653 } else if (!VA
.isRegLoc()) {
2654 if (!MatchingStackOffset(Arg
, VA
.getLocMemOffset(), Flags
,
2661 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
2662 if (!parametersInCSRMatch(MRI
, CallerPreserved
, ArgLocs
, OutVals
))
2670 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv
,
2671 MachineFunction
&MF
, bool isVarArg
,
2672 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2673 LLVMContext
&Context
) const {
2674 SmallVector
<CCValAssign
, 16> RVLocs
;
2675 CCState
CCInfo(CallConv
, isVarArg
, MF
, RVLocs
, Context
);
2676 return CCInfo
.CheckReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
2679 static SDValue
LowerInterruptReturn(SmallVectorImpl
<SDValue
> &RetOps
,
2680 const SDLoc
&DL
, SelectionDAG
&DAG
) {
2681 const MachineFunction
&MF
= DAG
.getMachineFunction();
2682 const Function
&F
= MF
.getFunction();
2684 StringRef IntKind
= F
.getFnAttribute("interrupt").getValueAsString();
2686 // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2687 // version of the "preferred return address". These offsets affect the return
2688 // instruction if this is a return from PL1 without hypervisor extensions.
2689 // IRQ/FIQ: +4 "subs pc, lr, #4"
2690 // SWI: 0 "subs pc, lr, #0"
2691 // ABORT: +4 "subs pc, lr, #4"
2692 // UNDEF: +4/+2 "subs pc, lr, #0"
2693 // UNDEF varies depending on where the exception came from ARM or Thumb
2694 // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2697 if (IntKind
== "" || IntKind
== "IRQ" || IntKind
== "FIQ" ||
2700 else if (IntKind
== "SWI" || IntKind
== "UNDEF")
2703 report_fatal_error("Unsupported interrupt attribute. If present, value "
2704 "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2706 RetOps
.insert(RetOps
.begin() + 1,
2707 DAG
.getConstant(LROffset
, DL
, MVT::i32
, false));
2709 return DAG
.getNode(ARMISD::INTRET_FLAG
, DL
, MVT::Other
, RetOps
);
2713 ARMTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
2715 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2716 const SmallVectorImpl
<SDValue
> &OutVals
,
2717 const SDLoc
&dl
, SelectionDAG
&DAG
) const {
2718 // CCValAssign - represent the assignment of the return value to a location.
2719 SmallVector
<CCValAssign
, 16> RVLocs
;
2721 // CCState - Info about the registers and stack slots.
2722 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
2725 // Analyze outgoing return values.
2726 CCInfo
.AnalyzeReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
2729 SmallVector
<SDValue
, 4> RetOps
;
2730 RetOps
.push_back(Chain
); // Operand #0 = Chain (updated below)
2731 bool isLittleEndian
= Subtarget
->isLittle();
2733 MachineFunction
&MF
= DAG
.getMachineFunction();
2734 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2735 AFI
->setReturnRegsCount(RVLocs
.size());
2737 // Copy the result values into the output registers.
2738 for (unsigned i
= 0, realRVLocIdx
= 0;
2740 ++i
, ++realRVLocIdx
) {
2741 CCValAssign
&VA
= RVLocs
[i
];
2742 assert(VA
.isRegLoc() && "Can only return in registers!");
2744 SDValue Arg
= OutVals
[realRVLocIdx
];
2745 bool ReturnF16
= false;
2747 if (Subtarget
->hasFullFP16() && Subtarget
->isTargetHardFloat()) {
2748 // Half-precision return values can be returned like this:
2750 // t11 f16 = fadd ...
2751 // t12: i16 = bitcast t11
2752 // t13: i32 = zero_extend t12
2753 // t14: f32 = bitcast t13 <~~~~~~~ Arg
2755 // to avoid code generation for bitcasts, we simply set Arg to the node
2756 // that produces the f16 value, t11 in this case.
2758 if (Arg
.getValueType() == MVT::f32
&& Arg
.getOpcode() == ISD::BITCAST
) {
2759 SDValue ZE
= Arg
.getOperand(0);
2760 if (ZE
.getOpcode() == ISD::ZERO_EXTEND
&& ZE
.getValueType() == MVT::i32
) {
2761 SDValue BC
= ZE
.getOperand(0);
2762 if (BC
.getOpcode() == ISD::BITCAST
&& BC
.getValueType() == MVT::i16
) {
2763 Arg
= BC
.getOperand(0);
2770 switch (VA
.getLocInfo()) {
2771 default: llvm_unreachable("Unknown loc info!");
2772 case CCValAssign::Full
: break;
2773 case CCValAssign::BCvt
:
2775 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2779 if (VA
.needsCustom()) {
2780 if (VA
.getLocVT() == MVT::v2f64
) {
2781 // Extract the first half and return it in two registers.
2782 SDValue Half
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2783 DAG
.getConstant(0, dl
, MVT::i32
));
2784 SDValue HalfGPRs
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2785 DAG
.getVTList(MVT::i32
, MVT::i32
), Half
);
2787 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2788 HalfGPRs
.getValue(isLittleEndian
? 0 : 1),
2790 Flag
= Chain
.getValue(1);
2791 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2792 VA
= RVLocs
[++i
]; // skip ahead to next loc
2793 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2794 HalfGPRs
.getValue(isLittleEndian
? 1 : 0),
2796 Flag
= Chain
.getValue(1);
2797 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2798 VA
= RVLocs
[++i
]; // skip ahead to next loc
2800 // Extract the 2nd half and fall through to handle it as an f64 value.
2801 Arg
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2802 DAG
.getConstant(1, dl
, MVT::i32
));
2804 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
2806 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2807 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
2808 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2809 fmrrd
.getValue(isLittleEndian
? 0 : 1),
2811 Flag
= Chain
.getValue(1);
2812 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2813 VA
= RVLocs
[++i
]; // skip ahead to next loc
2814 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2815 fmrrd
.getValue(isLittleEndian
? 1 : 0),
2818 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), Arg
, Flag
);
2820 // Guarantee that all emitted copies are
2821 // stuck together, avoiding something bad.
2822 Flag
= Chain
.getValue(1);
2823 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(),
2824 ReturnF16
? MVT::f16
: VA
.getLocVT()));
2826 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
2827 const MCPhysReg
*I
=
2828 TRI
->getCalleeSavedRegsViaCopy(&DAG
.getMachineFunction());
2831 if (ARM::GPRRegClass
.contains(*I
))
2832 RetOps
.push_back(DAG
.getRegister(*I
, MVT::i32
));
2833 else if (ARM::DPRRegClass
.contains(*I
))
2834 RetOps
.push_back(DAG
.getRegister(*I
, MVT::getFloatingPointVT(64)));
2836 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2840 // Update chain and glue.
2843 RetOps
.push_back(Flag
);
2845 // CPUs which aren't M-class use a special sequence to return from
2846 // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2847 // though we use "subs pc, lr, #N").
2849 // M-class CPUs actually use a normal return sequence with a special
2850 // (hardware-provided) value in LR, so the normal code path works.
2851 if (DAG
.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
2852 !Subtarget
->isMClass()) {
2853 if (Subtarget
->isThumb1Only())
2854 report_fatal_error("interrupt attribute is not supported in Thumb1");
2855 return LowerInterruptReturn(RetOps
, dl
, DAG
);
2858 return DAG
.getNode(ARMISD::RET_FLAG
, dl
, MVT::Other
, RetOps
);
2861 bool ARMTargetLowering::isUsedByReturnOnly(SDNode
*N
, SDValue
&Chain
) const {
2862 if (N
->getNumValues() != 1)
2864 if (!N
->hasNUsesOfValue(1, 0))
2867 SDValue TCChain
= Chain
;
2868 SDNode
*Copy
= *N
->use_begin();
2869 if (Copy
->getOpcode() == ISD::CopyToReg
) {
2870 // If the copy has a glue operand, we conservatively assume it isn't safe to
2871 // perform a tail call.
2872 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
2874 TCChain
= Copy
->getOperand(0);
2875 } else if (Copy
->getOpcode() == ARMISD::VMOVRRD
) {
2876 SDNode
*VMov
= Copy
;
2877 // f64 returned in a pair of GPRs.
2878 SmallPtrSet
<SDNode
*, 2> Copies
;
2879 for (SDNode::use_iterator UI
= VMov
->use_begin(), UE
= VMov
->use_end();
2881 if (UI
->getOpcode() != ISD::CopyToReg
)
2885 if (Copies
.size() > 2)
2888 for (SDNode::use_iterator UI
= VMov
->use_begin(), UE
= VMov
->use_end();
2890 SDValue UseChain
= UI
->getOperand(0);
2891 if (Copies
.count(UseChain
.getNode()))
2895 // We are at the top of this chain.
2896 // If the copy has a glue operand, we conservatively assume it
2897 // isn't safe to perform a tail call.
2898 if (UI
->getOperand(UI
->getNumOperands()-1).getValueType() == MVT::Glue
)
2904 } else if (Copy
->getOpcode() == ISD::BITCAST
) {
2905 // f32 returned in a single GPR.
2906 if (!Copy
->hasOneUse())
2908 Copy
= *Copy
->use_begin();
2909 if (Copy
->getOpcode() != ISD::CopyToReg
|| !Copy
->hasNUsesOfValue(1, 0))
2911 // If the copy has a glue operand, we conservatively assume it isn't safe to
2912 // perform a tail call.
2913 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
2915 TCChain
= Copy
->getOperand(0);
2920 bool HasRet
= false;
2921 for (SDNode::use_iterator UI
= Copy
->use_begin(), UE
= Copy
->use_end();
2923 if (UI
->getOpcode() != ARMISD::RET_FLAG
&&
2924 UI
->getOpcode() != ARMISD::INTRET_FLAG
)
2936 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst
*CI
) const {
2937 if (!Subtarget
->supportsTailCall())
2941 CI
->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2942 if (!CI
->isTailCall() || Attr
.getValueAsString() == "true")
2948 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2949 // and pass the lower and high parts through.
2950 static SDValue
LowerWRITE_REGISTER(SDValue Op
, SelectionDAG
&DAG
) {
2952 SDValue WriteValue
= Op
->getOperand(2);
2954 // This function is only supposed to be called for i64 type argument.
2955 assert(WriteValue
.getValueType() == MVT::i64
2956 && "LowerWRITE_REGISTER called for non-i64 type argument.");
2958 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, WriteValue
,
2959 DAG
.getConstant(0, DL
, MVT::i32
));
2960 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, WriteValue
,
2961 DAG
.getConstant(1, DL
, MVT::i32
));
2962 SDValue Ops
[] = { Op
->getOperand(0), Op
->getOperand(1), Lo
, Hi
};
2963 return DAG
.getNode(ISD::WRITE_REGISTER
, DL
, MVT::Other
, Ops
);
2966 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2967 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2968 // one of the above mentioned nodes. It has to be wrapped because otherwise
2969 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2970 // be used to form addressing mode. These wrapped nodes will be selected
2972 SDValue
ARMTargetLowering::LowerConstantPool(SDValue Op
,
2973 SelectionDAG
&DAG
) const {
2974 EVT PtrVT
= Op
.getValueType();
2975 // FIXME there is no actual debug info here
2977 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
2980 // When generating execute-only code Constant Pools must be promoted to the
2981 // global data section. It's a bit ugly that we can't share them across basic
2982 // blocks, but this way we guarantee that execute-only behaves correct with
2983 // position-independent addressing modes.
2984 if (Subtarget
->genExecuteOnly()) {
2985 auto AFI
= DAG
.getMachineFunction().getInfo
<ARMFunctionInfo
>();
2986 auto T
= const_cast<Type
*>(CP
->getType());
2987 auto C
= const_cast<Constant
*>(CP
->getConstVal());
2988 auto M
= const_cast<Module
*>(DAG
.getMachineFunction().
2989 getFunction().getParent());
2990 auto GV
= new GlobalVariable(
2991 *M
, T
, /*isConstant=*/true, GlobalVariable::InternalLinkage
, C
,
2992 Twine(DAG
.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
2993 Twine(DAG
.getMachineFunction().getFunctionNumber()) + "_" +
2994 Twine(AFI
->createPICLabelUId())
2996 SDValue GA
= DAG
.getTargetGlobalAddress(dyn_cast
<GlobalValue
>(GV
),
2998 return LowerGlobalAddress(GA
, DAG
);
3001 if (CP
->isMachineConstantPoolEntry())
3002 Res
= DAG
.getTargetConstantPool(CP
->getMachineCPVal(), PtrVT
,
3003 CP
->getAlignment());
3005 Res
= DAG
.getTargetConstantPool(CP
->getConstVal(), PtrVT
,
3006 CP
->getAlignment());
3007 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Res
);
3010 unsigned ARMTargetLowering::getJumpTableEncoding() const {
3011 return MachineJumpTableInfo::EK_Inline
;
3014 SDValue
ARMTargetLowering::LowerBlockAddress(SDValue Op
,
3015 SelectionDAG
&DAG
) const {
3016 MachineFunction
&MF
= DAG
.getMachineFunction();
3017 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3018 unsigned ARMPCLabelIndex
= 0;
3020 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3021 const BlockAddress
*BA
= cast
<BlockAddressSDNode
>(Op
)->getBlockAddress();
3023 bool IsPositionIndependent
= isPositionIndependent() || Subtarget
->isROPI();
3024 if (!IsPositionIndependent
) {
3025 CPAddr
= DAG
.getTargetConstantPool(BA
, PtrVT
, 4);
3027 unsigned PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3028 ARMPCLabelIndex
= AFI
->createPICLabelUId();
3029 ARMConstantPoolValue
*CPV
=
3030 ARMConstantPoolConstant::Create(BA
, ARMPCLabelIndex
,
3031 ARMCP::CPBlockAddress
, PCAdj
);
3032 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3034 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, CPAddr
);
3035 SDValue Result
= DAG
.getLoad(
3036 PtrVT
, DL
, DAG
.getEntryNode(), CPAddr
,
3037 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3038 if (!IsPositionIndependent
)
3040 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, DL
, MVT::i32
);
3041 return DAG
.getNode(ARMISD::PIC_ADD
, DL
, PtrVT
, Result
, PICLabel
);
3044 /// Convert a TLS address reference into the correct sequence of loads
3045 /// and calls to compute the variable's address for Darwin, and return an
3046 /// SDValue containing the final node.
3048 /// Darwin only has one TLS scheme which must be capable of dealing with the
3049 /// fully general situation, in the worst case. This means:
3050 /// + "extern __thread" declaration.
3051 /// + Defined in a possibly unknown dynamic library.
3053 /// The general system is that each __thread variable has a [3 x i32] descriptor
3054 /// which contains information used by the runtime to calculate the address. The
3055 /// only part of this the compiler needs to know about is the first word, which
3056 /// contains a function pointer that must be called with the address of the
3057 /// entire descriptor in "r0".
3059 /// Since this descriptor may be in a different unit, in general access must
3060 /// proceed along the usual ARM rules. A common sequence to produce is:
3062 /// movw rT1, :lower16:_var$non_lazy_ptr
3063 /// movt rT1, :upper16:_var$non_lazy_ptr
3067 /// [...address now in r0...]
3069 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op
,
3070 SelectionDAG
&DAG
) const {
3071 assert(Subtarget
->isTargetDarwin() &&
3072 "This function expects a Darwin target");
3075 // First step is to get the address of the actua global symbol. This is where
3076 // the TLS descriptor lives.
3077 SDValue DescAddr
= LowerGlobalAddressDarwin(Op
, DAG
);
3079 // The first entry in the descriptor is a function pointer that we must call
3080 // to obtain the address of the variable.
3081 SDValue Chain
= DAG
.getEntryNode();
3082 SDValue FuncTLVGet
= DAG
.getLoad(
3083 MVT::i32
, DL
, Chain
, DescAddr
,
3084 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
3085 /* Alignment = */ 4,
3086 MachineMemOperand::MONonTemporal
| MachineMemOperand::MODereferenceable
|
3087 MachineMemOperand::MOInvariant
);
3088 Chain
= FuncTLVGet
.getValue(1);
3090 MachineFunction
&F
= DAG
.getMachineFunction();
3091 MachineFrameInfo
&MFI
= F
.getFrameInfo();
3092 MFI
.setAdjustsStack(true);
3094 // TLS calls preserve all registers except those that absolutely must be
3095 // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
3098 getTargetMachine().getSubtargetImpl(F
.getFunction())->getRegisterInfo();
3099 auto ARI
= static_cast<const ARMRegisterInfo
*>(TRI
);
3100 const uint32_t *Mask
= ARI
->getTLSCallPreservedMask(DAG
.getMachineFunction());
3102 // Finally, we can make the call. This is just a degenerate version of a
3103 // normal AArch64 call node: r0 takes the address of the descriptor, and
3104 // returns the address of the variable in this thread.
3105 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R0
, DescAddr
, SDValue());
3107 DAG
.getNode(ARMISD::CALL
, DL
, DAG
.getVTList(MVT::Other
, MVT::Glue
),
3108 Chain
, FuncTLVGet
, DAG
.getRegister(ARM::R0
, MVT::i32
),
3109 DAG
.getRegisterMask(Mask
), Chain
.getValue(1));
3110 return DAG
.getCopyFromReg(Chain
, DL
, ARM::R0
, MVT::i32
, Chain
.getValue(1));
3114 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op
,
3115 SelectionDAG
&DAG
) const {
3116 assert(Subtarget
->isTargetWindows() && "Windows specific TLS lowering");
3118 SDValue Chain
= DAG
.getEntryNode();
3119 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3122 // Load the current TEB (thread environment block)
3123 SDValue Ops
[] = {Chain
,
3124 DAG
.getTargetConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
3125 DAG
.getTargetConstant(15, DL
, MVT::i32
),
3126 DAG
.getTargetConstant(0, DL
, MVT::i32
),
3127 DAG
.getTargetConstant(13, DL
, MVT::i32
),
3128 DAG
.getTargetConstant(0, DL
, MVT::i32
),
3129 DAG
.getTargetConstant(2, DL
, MVT::i32
)};
3130 SDValue CurrentTEB
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
3131 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
3133 SDValue TEB
= CurrentTEB
.getValue(0);
3134 Chain
= CurrentTEB
.getValue(1);
3136 // Load the ThreadLocalStoragePointer from the TEB
3137 // A pointer to the TLS array is located at offset 0x2c from the TEB.
3139 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TEB
, DAG
.getIntPtrConstant(0x2c, DL
));
3140 TLSArray
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSArray
, MachinePointerInfo());
3142 // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3143 // offset into the TLSArray.
3145 // Load the TLS index from the C runtime
3147 DAG
.getTargetExternalSymbol("_tls_index", PtrVT
, ARMII::MO_NO_FLAG
);
3148 TLSIndex
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, TLSIndex
);
3149 TLSIndex
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSIndex
, MachinePointerInfo());
3151 SDValue Slot
= DAG
.getNode(ISD::SHL
, DL
, PtrVT
, TLSIndex
,
3152 DAG
.getConstant(2, DL
, MVT::i32
));
3153 SDValue TLS
= DAG
.getLoad(PtrVT
, DL
, Chain
,
3154 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLSArray
, Slot
),
3155 MachinePointerInfo());
3157 // Get the offset of the start of the .tls section (section base)
3158 const auto *GA
= cast
<GlobalAddressSDNode
>(Op
);
3159 auto *CPV
= ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMCP::SECREL
);
3160 SDValue Offset
= DAG
.getLoad(
3161 PtrVT
, DL
, Chain
, DAG
.getNode(ARMISD::Wrapper
, DL
, MVT::i32
,
3162 DAG
.getTargetConstantPool(CPV
, PtrVT
, 4)),
3163 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3165 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLS
, Offset
);
3168 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
3170 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode
*GA
,
3171 SelectionDAG
&DAG
) const {
3173 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3174 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3175 MachineFunction
&MF
= DAG
.getMachineFunction();
3176 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3177 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3178 ARMConstantPoolValue
*CPV
=
3179 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3180 ARMCP::CPValue
, PCAdj
, ARMCP::TLSGD
, true);
3181 SDValue Argument
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3182 Argument
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Argument
);
3183 Argument
= DAG
.getLoad(
3184 PtrVT
, dl
, DAG
.getEntryNode(), Argument
,
3185 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3186 SDValue Chain
= Argument
.getValue(1);
3188 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3189 Argument
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Argument
, PICLabel
);
3191 // call __tls_get_addr.
3194 Entry
.Node
= Argument
;
3195 Entry
.Ty
= (Type
*) Type::getInt32Ty(*DAG
.getContext());
3196 Args
.push_back(Entry
);
3198 // FIXME: is there useful debug info available here?
3199 TargetLowering::CallLoweringInfo
CLI(DAG
);
3200 CLI
.setDebugLoc(dl
).setChain(Chain
).setLibCallee(
3201 CallingConv::C
, Type::getInt32Ty(*DAG
.getContext()),
3202 DAG
.getExternalSymbol("__tls_get_addr", PtrVT
), std::move(Args
));
3204 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
3205 return CallResult
.first
;
3208 // Lower ISD::GlobalTLSAddress using the "initial exec" or
3209 // "local exec" model.
3211 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode
*GA
,
3213 TLSModel::Model model
) const {
3214 const GlobalValue
*GV
= GA
->getGlobal();
3217 SDValue Chain
= DAG
.getEntryNode();
3218 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3219 // Get the Thread Pointer
3220 SDValue ThreadPointer
= DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
3222 if (model
== TLSModel::InitialExec
) {
3223 MachineFunction
&MF
= DAG
.getMachineFunction();
3224 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3225 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3226 // Initial exec model.
3227 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3228 ARMConstantPoolValue
*CPV
=
3229 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3230 ARMCP::CPValue
, PCAdj
, ARMCP::GOTTPOFF
,
3232 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3233 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3234 Offset
= DAG
.getLoad(
3235 PtrVT
, dl
, Chain
, Offset
,
3236 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3237 Chain
= Offset
.getValue(1);
3239 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3240 Offset
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Offset
, PICLabel
);
3242 Offset
= DAG
.getLoad(
3243 PtrVT
, dl
, Chain
, Offset
,
3244 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3247 assert(model
== TLSModel::LocalExec
);
3248 ARMConstantPoolValue
*CPV
=
3249 ARMConstantPoolConstant::Create(GV
, ARMCP::TPOFF
);
3250 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3251 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3252 Offset
= DAG
.getLoad(
3253 PtrVT
, dl
, Chain
, Offset
,
3254 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3257 // The address of the thread local variable is the add of the thread
3258 // pointer with the offset of the variable.
3259 return DAG
.getNode(ISD::ADD
, dl
, PtrVT
, ThreadPointer
, Offset
);
3263 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const {
3264 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
3265 if (DAG
.getTarget().useEmulatedTLS())
3266 return LowerToTLSEmulatedModel(GA
, DAG
);
3268 if (Subtarget
->isTargetDarwin())
3269 return LowerGlobalTLSAddressDarwin(Op
, DAG
);
3271 if (Subtarget
->isTargetWindows())
3272 return LowerGlobalTLSAddressWindows(Op
, DAG
);
3274 // TODO: implement the "local dynamic" model
3275 assert(Subtarget
->isTargetELF() && "Only ELF implemented here");
3276 TLSModel::Model model
= getTargetMachine().getTLSModel(GA
->getGlobal());
3279 case TLSModel::GeneralDynamic
:
3280 case TLSModel::LocalDynamic
:
3281 return LowerToTLSGeneralDynamicModel(GA
, DAG
);
3282 case TLSModel::InitialExec
:
3283 case TLSModel::LocalExec
:
3284 return LowerToTLSExecModels(GA
, DAG
, model
);
3286 llvm_unreachable("bogus TLS model");
3289 /// Return true if all users of V are within function F, looking through
3291 static bool allUsersAreInFunction(const Value
*V
, const Function
*F
) {
3292 SmallVector
<const User
*,4> Worklist
;
3293 for (auto *U
: V
->users())
3294 Worklist
.push_back(U
);
3295 while (!Worklist
.empty()) {
3296 auto *U
= Worklist
.pop_back_val();
3297 if (isa
<ConstantExpr
>(U
)) {
3298 for (auto *UU
: U
->users())
3299 Worklist
.push_back(UU
);
3303 auto *I
= dyn_cast
<Instruction
>(U
);
3304 if (!I
|| I
->getParent()->getParent() != F
)
3310 static SDValue
promoteToConstantPool(const ARMTargetLowering
*TLI
,
3311 const GlobalValue
*GV
, SelectionDAG
&DAG
,
3312 EVT PtrVT
, const SDLoc
&dl
) {
3313 // If we're creating a pool entry for a constant global with unnamed address,
3314 // and the global is small enough, we can emit it inline into the constant pool
3315 // to save ourselves an indirection.
3317 // This is a win if the constant is only used in one function (so it doesn't
3318 // need to be duplicated) or duplicating the constant wouldn't increase code
3319 // size (implying the constant is no larger than 4 bytes).
3320 const Function
&F
= DAG
.getMachineFunction().getFunction();
3322 // We rely on this decision to inline being idemopotent and unrelated to the
3323 // use-site. We know that if we inline a variable at one use site, we'll
3324 // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3325 // doesn't know about this optimization, so bail out if it's enabled else
3326 // we could decide to inline here (and thus never emit the GV) but require
3327 // the GV from fast-isel generated code.
3328 if (!EnableConstpoolPromotion
||
3329 DAG
.getMachineFunction().getTarget().Options
.EnableFastISel
)
3332 auto *GVar
= dyn_cast
<GlobalVariable
>(GV
);
3333 if (!GVar
|| !GVar
->hasInitializer() ||
3334 !GVar
->isConstant() || !GVar
->hasGlobalUnnamedAddr() ||
3335 !GVar
->hasLocalLinkage())
3338 // If we inline a value that contains relocations, we move the relocations
3339 // from .data to .text. This is not allowed in position-independent code.
3340 auto *Init
= GVar
->getInitializer();
3341 if ((TLI
->isPositionIndependent() || TLI
->getSubtarget()->isROPI()) &&
3342 Init
->needsRelocation())
3345 // The constant islands pass can only really deal with alignment requests
3346 // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3347 // any type wanting greater alignment requirements than 4 bytes. We also
3348 // can only promote constants that are multiples of 4 bytes in size or
3349 // are paddable to a multiple of 4. Currently we only try and pad constants
3350 // that are strings for simplicity.
3351 auto *CDAInit
= dyn_cast
<ConstantDataArray
>(Init
);
3352 unsigned Size
= DAG
.getDataLayout().getTypeAllocSize(Init
->getType());
3353 unsigned Align
= DAG
.getDataLayout().getPreferredAlignment(GVar
);
3354 unsigned RequiredPadding
= 4 - (Size
% 4);
3355 bool PaddingPossible
=
3356 RequiredPadding
== 4 || (CDAInit
&& CDAInit
->isString());
3357 if (!PaddingPossible
|| Align
> 4 || Size
> ConstpoolPromotionMaxSize
||
3361 unsigned PaddedSize
= Size
+ ((RequiredPadding
== 4) ? 0 : RequiredPadding
);
3362 MachineFunction
&MF
= DAG
.getMachineFunction();
3363 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3365 // We can't bloat the constant pool too much, else the ConstantIslands pass
3366 // may fail to converge. If we haven't promoted this global yet (it may have
3367 // multiple uses), and promoting it would increase the constant pool size (Sz
3368 // > 4), ensure we have space to do so up to MaxTotal.
3369 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
) && Size
> 4)
3370 if (AFI
->getPromotedConstpoolIncrease() + PaddedSize
- 4 >=
3371 ConstpoolPromotionMaxTotal
)
3374 // This is only valid if all users are in a single function; we can't clone
3375 // the constant in general. The LLVM IR unnamed_addr allows merging
3376 // constants, but not cloning them.
3378 // We could potentially allow cloning if we could prove all uses of the
3379 // constant in the current function don't care about the address, like
3380 // printf format strings. But that isn't implemented for now.
3381 if (!allUsersAreInFunction(GVar
, &F
))
3384 // We're going to inline this global. Pad it out if needed.
3385 if (RequiredPadding
!= 4) {
3386 StringRef S
= CDAInit
->getAsString();
3388 SmallVector
<uint8_t,16> V(S
.size());
3389 std::copy(S
.bytes_begin(), S
.bytes_end(), V
.begin());
3390 while (RequiredPadding
--)
3392 Init
= ConstantDataArray::get(*DAG
.getContext(), V
);
3395 auto CPVal
= ARMConstantPoolConstant::Create(GVar
, Init
);
3397 DAG
.getTargetConstantPool(CPVal
, PtrVT
, /*Align=*/4);
3398 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
)) {
3399 AFI
->markGlobalAsPromotedToConstantPool(GVar
);
3400 AFI
->setPromotedConstpoolIncrease(AFI
->getPromotedConstpoolIncrease() +
3403 ++NumConstpoolPromoted
;
3404 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3407 bool ARMTargetLowering::isReadOnly(const GlobalValue
*GV
) const {
3408 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(GV
))
3409 if (!(GV
= GA
->getBaseObject()))
3411 if (const auto *V
= dyn_cast
<GlobalVariable
>(GV
))
3412 return V
->isConstant();
3413 return isa
<Function
>(GV
);
3416 SDValue
ARMTargetLowering::LowerGlobalAddress(SDValue Op
,
3417 SelectionDAG
&DAG
) const {
3418 switch (Subtarget
->getTargetTriple().getObjectFormat()) {
3419 default: llvm_unreachable("unknown object format");
3421 return LowerGlobalAddressWindows(Op
, DAG
);
3423 return LowerGlobalAddressELF(Op
, DAG
);
3425 return LowerGlobalAddressDarwin(Op
, DAG
);
3429 SDValue
ARMTargetLowering::LowerGlobalAddressELF(SDValue Op
,
3430 SelectionDAG
&DAG
) const {
3431 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3433 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3434 const TargetMachine
&TM
= getTargetMachine();
3435 bool IsRO
= isReadOnly(GV
);
3437 // promoteToConstantPool only if not generating XO text section
3438 if (TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
) && !Subtarget
->genExecuteOnly())
3439 if (SDValue V
= promoteToConstantPool(this, GV
, DAG
, PtrVT
, dl
))
3442 if (isPositionIndependent()) {
3443 bool UseGOT_PREL
= !TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
);
3444 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0,
3445 UseGOT_PREL
? ARMII::MO_GOT
: 0);
3446 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
3449 DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
3450 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3452 } else if (Subtarget
->isROPI() && IsRO
) {
3454 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
);
3455 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
3457 } else if (Subtarget
->isRWPI() && !IsRO
) {
3460 if (Subtarget
->useMovt()) {
3462 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_SBREL
);
3463 RelAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
, G
);
3464 } else { // use literal pool for address constant
3465 ARMConstantPoolValue
*CPV
=
3466 ARMConstantPoolConstant::Create(GV
, ARMCP::SBREL
);
3467 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3468 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3469 RelAddr
= DAG
.getLoad(
3470 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3471 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3473 SDValue SB
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, ARM::R9
, PtrVT
);
3474 SDValue Result
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SB
, RelAddr
);
3478 // If we have T2 ops, we can materialize the address directly via movt/movw
3479 // pair. This is always cheaper.
3480 if (Subtarget
->useMovt()) {
3482 // FIXME: Once remat is capable of dealing with instructions with register
3483 // operands, expand this into two nodes.
3484 return DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
,
3485 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
));
3487 SDValue CPAddr
= DAG
.getTargetConstantPool(GV
, PtrVT
, 4);
3488 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3490 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3491 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3495 SDValue
ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op
,
3496 SelectionDAG
&DAG
) const {
3497 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
3498 "ROPI/RWPI not currently supported for Darwin");
3499 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3501 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3503 if (Subtarget
->useMovt())
3506 // FIXME: Once remat is capable of dealing with instructions with register
3507 // operands, expand this into multiple nodes
3509 isPositionIndependent() ? ARMISD::WrapperPIC
: ARMISD::Wrapper
;
3511 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_NONLAZY
);
3512 SDValue Result
= DAG
.getNode(Wrapper
, dl
, PtrVT
, G
);
3514 if (Subtarget
->isGVIndirectSymbol(GV
))
3515 Result
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
3516 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3520 SDValue
ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op
,
3521 SelectionDAG
&DAG
) const {
3522 assert(Subtarget
->isTargetWindows() && "non-Windows COFF is not supported");
3523 assert(Subtarget
->useMovt() &&
3524 "Windows on ARM expects to use movw/movt");
3525 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
3526 "ROPI/RWPI not currently supported for Windows");
3528 const TargetMachine
&TM
= getTargetMachine();
3529 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3530 ARMII::TOF TargetFlags
= ARMII::MO_NO_FLAG
;
3531 if (GV
->hasDLLImportStorageClass())
3532 TargetFlags
= ARMII::MO_DLLIMPORT
;
3533 else if (!TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
))
3534 TargetFlags
= ARMII::MO_COFFSTUB
;
3535 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3541 // FIXME: Once remat is capable of dealing with instructions with register
3542 // operands, expand this into two nodes.
3543 Result
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
,
3544 DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, /*offset=*/0,
3546 if (TargetFlags
& (ARMII::MO_DLLIMPORT
| ARMII::MO_COFFSTUB
))
3547 Result
= DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), Result
,
3548 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3553 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op
, SelectionDAG
&DAG
) const {
3555 SDValue Val
= DAG
.getConstant(0, dl
, MVT::i32
);
3556 return DAG
.getNode(ARMISD::EH_SJLJ_SETJMP
, dl
,
3557 DAG
.getVTList(MVT::i32
, MVT::Other
), Op
.getOperand(0),
3558 Op
.getOperand(1), Val
);
3562 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op
, SelectionDAG
&DAG
) const {
3564 return DAG
.getNode(ARMISD::EH_SJLJ_LONGJMP
, dl
, MVT::Other
, Op
.getOperand(0),
3565 Op
.getOperand(1), DAG
.getConstant(0, dl
, MVT::i32
));
3568 SDValue
ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op
,
3569 SelectionDAG
&DAG
) const {
3571 return DAG
.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH
, dl
, MVT::Other
,
3575 SDValue
ARMTargetLowering::LowerINTRINSIC_VOID(
3576 SDValue Op
, SelectionDAG
&DAG
, const ARMSubtarget
*Subtarget
) const {
3578 cast
<ConstantSDNode
>(
3579 Op
.getOperand(Op
.getOperand(0).getValueType() == MVT::Other
))
3583 return SDValue(); // Don't custom lower most intrinsics.
3584 case Intrinsic::arm_gnu_eabi_mcount
: {
3585 MachineFunction
&MF
= DAG
.getMachineFunction();
3586 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3588 SDValue Chain
= Op
.getOperand(0);
3589 // call "\01__gnu_mcount_nc"
3590 const ARMBaseRegisterInfo
*ARI
= Subtarget
->getRegisterInfo();
3591 const uint32_t *Mask
=
3592 ARI
->getCallPreservedMask(DAG
.getMachineFunction(), CallingConv::C
);
3593 assert(Mask
&& "Missing call preserved mask for calling convention");
3594 // Mark LR an implicit live-in.
3595 unsigned Reg
= MF
.addLiveIn(ARM::LR
, getRegClassFor(MVT::i32
));
3596 SDValue ReturnAddress
=
3597 DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, Reg
, PtrVT
);
3598 std::vector
<EVT
> ResultTys
= {MVT::Other
, MVT::Glue
};
3600 DAG
.getTargetExternalSymbol("\01__gnu_mcount_nc", PtrVT
, 0);
3601 SDValue RegisterMask
= DAG
.getRegisterMask(Mask
);
3602 if (Subtarget
->isThumb())
3605 ARM::tBL_PUSHLR
, dl
, ResultTys
,
3606 {ReturnAddress
, DAG
.getTargetConstant(ARMCC::AL
, dl
, PtrVT
),
3607 DAG
.getRegister(0, PtrVT
), Callee
, RegisterMask
, Chain
}),
3610 DAG
.getMachineNode(ARM::BL_PUSHLR
, dl
, ResultTys
,
3611 {ReturnAddress
, Callee
, RegisterMask
, Chain
}),
3618 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
,
3619 const ARMSubtarget
*Subtarget
) const {
3620 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
3623 default: return SDValue(); // Don't custom lower most intrinsics.
3624 case Intrinsic::thread_pointer
: {
3625 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3626 return DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
3628 case Intrinsic::eh_sjlj_lsda
: {
3629 MachineFunction
&MF
= DAG
.getMachineFunction();
3630 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3631 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3632 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3634 bool IsPositionIndependent
= isPositionIndependent();
3635 unsigned PCAdj
= IsPositionIndependent
? (Subtarget
->isThumb() ? 4 : 8) : 0;
3636 ARMConstantPoolValue
*CPV
=
3637 ARMConstantPoolConstant::Create(&MF
.getFunction(), ARMPCLabelIndex
,
3638 ARMCP::CPLSDA
, PCAdj
);
3639 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3640 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3641 SDValue Result
= DAG
.getLoad(
3642 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3643 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3645 if (IsPositionIndependent
) {
3646 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3647 Result
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Result
, PICLabel
);
3651 case Intrinsic::arm_neon_vabs
:
3652 return DAG
.getNode(ISD::ABS
, SDLoc(Op
), Op
.getValueType(),
3654 case Intrinsic::arm_neon_vmulls
:
3655 case Intrinsic::arm_neon_vmullu
: {
3656 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmulls
)
3657 ? ARMISD::VMULLs
: ARMISD::VMULLu
;
3658 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3659 Op
.getOperand(1), Op
.getOperand(2));
3661 case Intrinsic::arm_neon_vminnm
:
3662 case Intrinsic::arm_neon_vmaxnm
: {
3663 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminnm
)
3664 ? ISD::FMINNUM
: ISD::FMAXNUM
;
3665 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3666 Op
.getOperand(1), Op
.getOperand(2));
3668 case Intrinsic::arm_neon_vminu
:
3669 case Intrinsic::arm_neon_vmaxu
: {
3670 if (Op
.getValueType().isFloatingPoint())
3672 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminu
)
3673 ? ISD::UMIN
: ISD::UMAX
;
3674 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3675 Op
.getOperand(1), Op
.getOperand(2));
3677 case Intrinsic::arm_neon_vmins
:
3678 case Intrinsic::arm_neon_vmaxs
: {
3679 // v{min,max}s is overloaded between signed integers and floats.
3680 if (!Op
.getValueType().isFloatingPoint()) {
3681 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
3682 ? ISD::SMIN
: ISD::SMAX
;
3683 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3684 Op
.getOperand(1), Op
.getOperand(2));
3686 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
3687 ? ISD::FMINIMUM
: ISD::FMAXIMUM
;
3688 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3689 Op
.getOperand(1), Op
.getOperand(2));
3691 case Intrinsic::arm_neon_vtbl1
:
3692 return DAG
.getNode(ARMISD::VTBL1
, SDLoc(Op
), Op
.getValueType(),
3693 Op
.getOperand(1), Op
.getOperand(2));
3694 case Intrinsic::arm_neon_vtbl2
:
3695 return DAG
.getNode(ARMISD::VTBL2
, SDLoc(Op
), Op
.getValueType(),
3696 Op
.getOperand(1), Op
.getOperand(2), Op
.getOperand(3));
3700 static SDValue
LowerATOMIC_FENCE(SDValue Op
, SelectionDAG
&DAG
,
3701 const ARMSubtarget
*Subtarget
) {
3703 ConstantSDNode
*SSIDNode
= cast
<ConstantSDNode
>(Op
.getOperand(2));
3704 auto SSID
= static_cast<SyncScope::ID
>(SSIDNode
->getZExtValue());
3705 if (SSID
== SyncScope::SingleThread
)
3708 if (!Subtarget
->hasDataBarrier()) {
3709 // Some ARMv6 cpus can support data barriers with an mcr instruction.
3710 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3712 assert(Subtarget
->hasV6Ops() && !Subtarget
->isThumb() &&
3713 "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3714 return DAG
.getNode(ARMISD::MEMBARRIER_MCR
, dl
, MVT::Other
, Op
.getOperand(0),
3715 DAG
.getConstant(0, dl
, MVT::i32
));
3718 ConstantSDNode
*OrdN
= cast
<ConstantSDNode
>(Op
.getOperand(1));
3719 AtomicOrdering Ord
= static_cast<AtomicOrdering
>(OrdN
->getZExtValue());
3720 ARM_MB::MemBOpt Domain
= ARM_MB::ISH
;
3721 if (Subtarget
->isMClass()) {
3722 // Only a full system barrier exists in the M-class architectures.
3723 Domain
= ARM_MB::SY
;
3724 } else if (Subtarget
->preferISHSTBarriers() &&
3725 Ord
== AtomicOrdering::Release
) {
3726 // Swift happens to implement ISHST barriers in a way that's compatible with
3727 // Release semantics but weaker than ISH so we'd be fools not to use
3728 // it. Beware: other processors probably don't!
3729 Domain
= ARM_MB::ISHST
;
3732 return DAG
.getNode(ISD::INTRINSIC_VOID
, dl
, MVT::Other
, Op
.getOperand(0),
3733 DAG
.getConstant(Intrinsic::arm_dmb
, dl
, MVT::i32
),
3734 DAG
.getConstant(Domain
, dl
, MVT::i32
));
3737 static SDValue
LowerPREFETCH(SDValue Op
, SelectionDAG
&DAG
,
3738 const ARMSubtarget
*Subtarget
) {
3739 // ARM pre v5TE and Thumb1 does not have preload instructions.
3740 if (!(Subtarget
->isThumb2() ||
3741 (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TEOps())))
3742 // Just preserve the chain.
3743 return Op
.getOperand(0);
3746 unsigned isRead
= ~cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue() & 1;
3748 (!Subtarget
->hasV7Ops() || !Subtarget
->hasMPExtension()))
3749 // ARMv7 with MP extension has PLDW.
3750 return Op
.getOperand(0);
3752 unsigned isData
= cast
<ConstantSDNode
>(Op
.getOperand(4))->getZExtValue();
3753 if (Subtarget
->isThumb()) {
3755 isRead
= ~isRead
& 1;
3756 isData
= ~isData
& 1;
3759 return DAG
.getNode(ARMISD::PRELOAD
, dl
, MVT::Other
, Op
.getOperand(0),
3760 Op
.getOperand(1), DAG
.getConstant(isRead
, dl
, MVT::i32
),
3761 DAG
.getConstant(isData
, dl
, MVT::i32
));
3764 static SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) {
3765 MachineFunction
&MF
= DAG
.getMachineFunction();
3766 ARMFunctionInfo
*FuncInfo
= MF
.getInfo
<ARMFunctionInfo
>();
3768 // vastart just stores the address of the VarArgsFrameIndex slot into the
3769 // memory location argument.
3771 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
3772 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
3773 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
3774 return DAG
.getStore(Op
.getOperand(0), dl
, FR
, Op
.getOperand(1),
3775 MachinePointerInfo(SV
));
3778 SDValue
ARMTargetLowering::GetF64FormalArgument(CCValAssign
&VA
,
3779 CCValAssign
&NextVA
,
3782 const SDLoc
&dl
) const {
3783 MachineFunction
&MF
= DAG
.getMachineFunction();
3784 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3786 const TargetRegisterClass
*RC
;
3787 if (AFI
->isThumb1OnlyFunction())
3788 RC
= &ARM::tGPRRegClass
;
3790 RC
= &ARM::GPRRegClass
;
3792 // Transform the arguments stored in physical registers into virtual ones.
3793 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
3794 SDValue ArgValue
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
3797 if (NextVA
.isMemLoc()) {
3798 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3799 int FI
= MFI
.CreateFixedObject(4, NextVA
.getLocMemOffset(), true);
3801 // Create load node to retrieve arguments from the stack.
3802 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
3803 ArgValue2
= DAG
.getLoad(
3804 MVT::i32
, dl
, Root
, FIN
,
3805 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
));
3807 Reg
= MF
.addLiveIn(NextVA
.getLocReg(), RC
);
3808 ArgValue2
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
3810 if (!Subtarget
->isLittle())
3811 std::swap (ArgValue
, ArgValue2
);
3812 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, ArgValue
, ArgValue2
);
3815 // The remaining GPRs hold either the beginning of variable-argument
3816 // data, or the beginning of an aggregate passed by value (usually
3817 // byval). Either way, we allocate stack slots adjacent to the data
3818 // provided by our caller, and store the unallocated registers there.
3819 // If this is a variadic function, the va_list pointer will begin with
3820 // these values; otherwise, this reassembles a (byval) structure that
3821 // was split between registers and memory.
3822 // Return: The frame index registers were stored into.
3823 int ARMTargetLowering::StoreByValRegs(CCState
&CCInfo
, SelectionDAG
&DAG
,
3824 const SDLoc
&dl
, SDValue
&Chain
,
3825 const Value
*OrigArg
,
3826 unsigned InRegsParamRecordIdx
,
3827 int ArgOffset
, unsigned ArgSize
) const {
3828 // Currently, two use-cases possible:
3829 // Case #1. Non-var-args function, and we meet first byval parameter.
3830 // Setup first unallocated register as first byval register;
3831 // eat all remained registers
3832 // (these two actions are performed by HandleByVal method).
3833 // Then, here, we initialize stack frame with
3834 // "store-reg" instructions.
3835 // Case #2. Var-args function, that doesn't contain byval parameters.
3836 // The same: eat all remained unallocated registers,
3837 // initialize stack frame.
3839 MachineFunction
&MF
= DAG
.getMachineFunction();
3840 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3841 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3842 unsigned RBegin
, REnd
;
3843 if (InRegsParamRecordIdx
< CCInfo
.getInRegsParamsCount()) {
3844 CCInfo
.getInRegsParamInfo(InRegsParamRecordIdx
, RBegin
, REnd
);
3846 unsigned RBeginIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3847 RBegin
= RBeginIdx
== 4 ? (unsigned)ARM::R4
: GPRArgRegs
[RBeginIdx
];
3852 ArgOffset
= -4 * (ARM::R4
- RBegin
);
3854 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3855 int FrameIndex
= MFI
.CreateFixedObject(ArgSize
, ArgOffset
, false);
3856 SDValue FIN
= DAG
.getFrameIndex(FrameIndex
, PtrVT
);
3858 SmallVector
<SDValue
, 4> MemOps
;
3859 const TargetRegisterClass
*RC
=
3860 AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
3862 for (unsigned Reg
= RBegin
, i
= 0; Reg
< REnd
; ++Reg
, ++i
) {
3863 unsigned VReg
= MF
.addLiveIn(Reg
, RC
);
3864 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i32
);
3865 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
3866 MachinePointerInfo(OrigArg
, 4 * i
));
3867 MemOps
.push_back(Store
);
3868 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, FIN
, DAG
.getConstant(4, dl
, PtrVT
));
3871 if (!MemOps
.empty())
3872 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOps
);
3876 // Setup stack frame, the va_list pointer will start from.
3877 void ARMTargetLowering::VarArgStyleRegisters(CCState
&CCInfo
, SelectionDAG
&DAG
,
3878 const SDLoc
&dl
, SDValue
&Chain
,
3880 unsigned TotalArgRegsSaveSize
,
3881 bool ForceMutable
) const {
3882 MachineFunction
&MF
= DAG
.getMachineFunction();
3883 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3885 // Try to store any remaining integer argument regs
3886 // to their spots on the stack so that they may be loaded by dereferencing
3887 // the result of va_next.
3888 // If there is no regs to be stored, just point address after last
3889 // argument passed via stack.
3890 int FrameIndex
= StoreByValRegs(CCInfo
, DAG
, dl
, Chain
, nullptr,
3891 CCInfo
.getInRegsParamsCount(),
3892 CCInfo
.getNextStackOffset(),
3893 std::max(4U, TotalArgRegsSaveSize
));
3894 AFI
->setVarArgsFrameIndex(FrameIndex
);
3897 SDValue
ARMTargetLowering::LowerFormalArguments(
3898 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
3899 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
3900 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3901 MachineFunction
&MF
= DAG
.getMachineFunction();
3902 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3904 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3906 // Assign locations to all of the incoming arguments.
3907 SmallVector
<CCValAssign
, 16> ArgLocs
;
3908 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3910 CCInfo
.AnalyzeFormalArguments(Ins
, CCAssignFnForCall(CallConv
, isVarArg
));
3912 SmallVector
<SDValue
, 16> ArgValues
;
3914 Function::const_arg_iterator CurOrigArg
= MF
.getFunction().arg_begin();
3915 unsigned CurArgIdx
= 0;
3917 // Initially ArgRegsSaveSize is zero.
3918 // Then we increase this value each time we meet byval parameter.
3919 // We also increase this value in case of varargs function.
3920 AFI
->setArgRegsSaveSize(0);
3922 // Calculate the amount of stack space that we need to allocate to store
3923 // byval and variadic arguments that are passed in registers.
3924 // We need to know this before we allocate the first byval or variadic
3925 // argument, as they will be allocated a stack slot below the CFA (Canonical
3926 // Frame Address, the stack pointer at entry to the function).
3927 unsigned ArgRegBegin
= ARM::R4
;
3928 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3929 if (CCInfo
.getInRegsParamsProcessed() >= CCInfo
.getInRegsParamsCount())
3932 CCValAssign
&VA
= ArgLocs
[i
];
3933 unsigned Index
= VA
.getValNo();
3934 ISD::ArgFlagsTy Flags
= Ins
[Index
].Flags
;
3935 if (!Flags
.isByVal())
3938 assert(VA
.isMemLoc() && "unexpected byval pointer in reg");
3939 unsigned RBegin
, REnd
;
3940 CCInfo
.getInRegsParamInfo(CCInfo
.getInRegsParamsProcessed(), RBegin
, REnd
);
3941 ArgRegBegin
= std::min(ArgRegBegin
, RBegin
);
3943 CCInfo
.nextInRegsParam();
3945 CCInfo
.rewindByValRegsInfo();
3947 int lastInsIndex
= -1;
3948 if (isVarArg
&& MFI
.hasVAStart()) {
3949 unsigned RegIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3950 if (RegIdx
!= array_lengthof(GPRArgRegs
))
3951 ArgRegBegin
= std::min(ArgRegBegin
, (unsigned)GPRArgRegs
[RegIdx
]);
3954 unsigned TotalArgRegsSaveSize
= 4 * (ARM::R4
- ArgRegBegin
);
3955 AFI
->setArgRegsSaveSize(TotalArgRegsSaveSize
);
3956 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3958 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3959 CCValAssign
&VA
= ArgLocs
[i
];
3960 if (Ins
[VA
.getValNo()].isOrigArg()) {
3961 std::advance(CurOrigArg
,
3962 Ins
[VA
.getValNo()].getOrigArgIndex() - CurArgIdx
);
3963 CurArgIdx
= Ins
[VA
.getValNo()].getOrigArgIndex();
3965 // Arguments stored in registers.
3966 if (VA
.isRegLoc()) {
3967 EVT RegVT
= VA
.getLocVT();
3969 if (VA
.needsCustom()) {
3970 // f64 and vector types are split up into multiple registers or
3971 // combinations of registers and stack slots.
3972 if (VA
.getLocVT() == MVT::v2f64
) {
3973 SDValue ArgValue1
= GetF64FormalArgument(VA
, ArgLocs
[++i
],
3975 VA
= ArgLocs
[++i
]; // skip ahead to next loc
3977 if (VA
.isMemLoc()) {
3978 int FI
= MFI
.CreateFixedObject(8, VA
.getLocMemOffset(), true);
3979 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
3980 ArgValue2
= DAG
.getLoad(MVT::f64
, dl
, Chain
, FIN
,
3981 MachinePointerInfo::getFixedStack(
3982 DAG
.getMachineFunction(), FI
));
3984 ArgValue2
= GetF64FormalArgument(VA
, ArgLocs
[++i
],
3987 ArgValue
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
3988 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
,
3989 ArgValue
, ArgValue1
,
3990 DAG
.getIntPtrConstant(0, dl
));
3991 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
,
3992 ArgValue
, ArgValue2
,
3993 DAG
.getIntPtrConstant(1, dl
));
3995 ArgValue
= GetF64FormalArgument(VA
, ArgLocs
[++i
], Chain
, DAG
, dl
);
3997 const TargetRegisterClass
*RC
;
4000 if (RegVT
== MVT::f16
)
4001 RC
= &ARM::HPRRegClass
;
4002 else if (RegVT
== MVT::f32
)
4003 RC
= &ARM::SPRRegClass
;
4004 else if (RegVT
== MVT::f64
|| RegVT
== MVT::v4f16
)
4005 RC
= &ARM::DPRRegClass
;
4006 else if (RegVT
== MVT::v2f64
|| RegVT
== MVT::v8f16
)
4007 RC
= &ARM::QPRRegClass
;
4008 else if (RegVT
== MVT::i32
)
4009 RC
= AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
4010 : &ARM::GPRRegClass
;
4012 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
4014 // Transform the arguments in physical registers into virtual ones.
4015 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
4016 ArgValue
= DAG
.getCopyFromReg(Chain
, dl
, Reg
, RegVT
);
4018 // If this value is passed in r0 and has the returned attribute (e.g.
4019 // C++ 'structors), record this fact for later use.
4020 if (VA
.getLocReg() == ARM::R0
&& Ins
[VA
.getValNo()].Flags
.isReturned()) {
4021 AFI
->setPreservesR0();
4025 // If this is an 8 or 16-bit value, it is really passed promoted
4026 // to 32 bits. Insert an assert[sz]ext to capture this, then
4027 // truncate to the right size.
4028 switch (VA
.getLocInfo()) {
4029 default: llvm_unreachable("Unknown loc info!");
4030 case CCValAssign::Full
: break;
4031 case CCValAssign::BCvt
:
4032 ArgValue
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), ArgValue
);
4034 case CCValAssign::SExt
:
4035 ArgValue
= DAG
.getNode(ISD::AssertSext
, dl
, RegVT
, ArgValue
,
4036 DAG
.getValueType(VA
.getValVT()));
4037 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
4039 case CCValAssign::ZExt
:
4040 ArgValue
= DAG
.getNode(ISD::AssertZext
, dl
, RegVT
, ArgValue
,
4041 DAG
.getValueType(VA
.getValVT()));
4042 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
4046 InVals
.push_back(ArgValue
);
4047 } else { // VA.isRegLoc()
4049 assert(VA
.isMemLoc());
4050 assert(VA
.getValVT() != MVT::i64
&& "i64 should already be lowered");
4052 int index
= VA
.getValNo();
4054 // Some Ins[] entries become multiple ArgLoc[] entries.
4055 // Process them only once.
4056 if (index
!= lastInsIndex
)
4058 ISD::ArgFlagsTy Flags
= Ins
[index
].Flags
;
4059 // FIXME: For now, all byval parameter objects are marked mutable.
4060 // This can be changed with more analysis.
4061 // In case of tail call optimization mark all arguments mutable.
4062 // Since they could be overwritten by lowering of arguments in case of
4064 if (Flags
.isByVal()) {
4065 assert(Ins
[index
].isOrigArg() &&
4066 "Byval arguments cannot be implicit");
4067 unsigned CurByValIndex
= CCInfo
.getInRegsParamsProcessed();
4069 int FrameIndex
= StoreByValRegs(
4070 CCInfo
, DAG
, dl
, Chain
, &*CurOrigArg
, CurByValIndex
,
4071 VA
.getLocMemOffset(), Flags
.getByValSize());
4072 InVals
.push_back(DAG
.getFrameIndex(FrameIndex
, PtrVT
));
4073 CCInfo
.nextInRegsParam();
4075 unsigned FIOffset
= VA
.getLocMemOffset();
4076 int FI
= MFI
.CreateFixedObject(VA
.getLocVT().getSizeInBits()/8,
4079 // Create load nodes to retrieve arguments from the stack.
4080 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
4081 InVals
.push_back(DAG
.getLoad(VA
.getValVT(), dl
, Chain
, FIN
,
4082 MachinePointerInfo::getFixedStack(
4083 DAG
.getMachineFunction(), FI
)));
4085 lastInsIndex
= index
;
4091 if (isVarArg
&& MFI
.hasVAStart())
4092 VarArgStyleRegisters(CCInfo
, DAG
, dl
, Chain
,
4093 CCInfo
.getNextStackOffset(),
4094 TotalArgRegsSaveSize
);
4096 AFI
->setArgumentStackSize(CCInfo
.getNextStackOffset());
4101 /// isFloatingPointZero - Return true if this is +0.0.
4102 static bool isFloatingPointZero(SDValue Op
) {
4103 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Op
))
4104 return CFP
->getValueAPF().isPosZero();
4105 else if (ISD::isEXTLoad(Op
.getNode()) || ISD::isNON_EXTLoad(Op
.getNode())) {
4106 // Maybe this has already been legalized into the constant pool?
4107 if (Op
.getOperand(1).getOpcode() == ARMISD::Wrapper
) {
4108 SDValue WrapperOp
= Op
.getOperand(1).getOperand(0);
4109 if (ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(WrapperOp
))
4110 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CP
->getConstVal()))
4111 return CFP
->getValueAPF().isPosZero();
4113 } else if (Op
->getOpcode() == ISD::BITCAST
&&
4114 Op
->getValueType(0) == MVT::f64
) {
4115 // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
4116 // created by LowerConstantFP().
4117 SDValue BitcastOp
= Op
->getOperand(0);
4118 if (BitcastOp
->getOpcode() == ARMISD::VMOVIMM
&&
4119 isNullConstant(BitcastOp
->getOperand(0)))
4125 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
4126 /// the given operands.
4127 SDValue
ARMTargetLowering::getARMCmp(SDValue LHS
, SDValue RHS
, ISD::CondCode CC
,
4128 SDValue
&ARMcc
, SelectionDAG
&DAG
,
4129 const SDLoc
&dl
) const {
4130 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
.getNode())) {
4131 unsigned C
= RHSC
->getZExtValue();
4132 if (!isLegalICmpImmediate((int32_t)C
)) {
4133 // Constant does not fit, try adjusting it by one.
4138 if (C
!= 0x80000000 && isLegalICmpImmediate(C
-1)) {
4139 CC
= (CC
== ISD::SETLT
) ? ISD::SETLE
: ISD::SETGT
;
4140 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4145 if (C
!= 0 && isLegalICmpImmediate(C
-1)) {
4146 CC
= (CC
== ISD::SETULT
) ? ISD::SETULE
: ISD::SETUGT
;
4147 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4152 if (C
!= 0x7fffffff && isLegalICmpImmediate(C
+1)) {
4153 CC
= (CC
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETGE
;
4154 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4159 if (C
!= 0xffffffff && isLegalICmpImmediate(C
+1)) {
4160 CC
= (CC
== ISD::SETULE
) ? ISD::SETULT
: ISD::SETUGE
;
4161 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4166 } else if ((ARM_AM::getShiftOpcForNode(LHS
.getOpcode()) != ARM_AM::no_shift
) &&
4167 (ARM_AM::getShiftOpcForNode(RHS
.getOpcode()) == ARM_AM::no_shift
)) {
4168 // In ARM and Thumb-2, the compare instructions can shift their second
4170 CC
= ISD::getSetCCSwappedOperands(CC
);
4171 std::swap(LHS
, RHS
);
4174 // Thumb1 has very limited immediate modes, so turning an "and" into a
4175 // shift can save multiple instructions.
4177 // If we have (x & C1), and C1 is an appropriate mask, we can transform it
4178 // into "((x << n) >> n)". But that isn't necessarily profitable on its
4179 // own. If it's the operand to an unsigned comparison with an immediate,
4180 // we can eliminate one of the shifts: we transform
4181 // "((x << n) >> n) == C2" to "(x << n) == (C2 << n)".
4183 // We avoid transforming cases which aren't profitable due to encoding
4186 // 1. C2 fits into the immediate field of a cmp, and the transformed version
4187 // would not; in that case, we're essentially trading one immediate load for
4189 // 2. C1 is 255 or 65535, so we can use uxtb or uxth.
4190 // 3. C2 is zero; we have other code for this special case.
4192 // FIXME: Figure out profitability for Thumb2; we usually can't save an
4193 // instruction, since the AND is always one instruction anyway, but we could
4194 // use narrow instructions in some cases.
4195 if (Subtarget
->isThumb1Only() && LHS
->getOpcode() == ISD::AND
&&
4196 LHS
->hasOneUse() && isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
4197 LHS
.getValueType() == MVT::i32
&& isa
<ConstantSDNode
>(RHS
) &&
4198 !isSignedIntSetCC(CC
)) {
4199 unsigned Mask
= cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue();
4200 auto *RHSC
= cast
<ConstantSDNode
>(RHS
.getNode());
4201 uint64_t RHSV
= RHSC
->getZExtValue();
4202 if (isMask_32(Mask
) && (RHSV
& ~Mask
) == 0 && Mask
!= 255 && Mask
!= 65535) {
4203 unsigned ShiftBits
= countLeadingZeros(Mask
);
4204 if (RHSV
&& (RHSV
> 255 || (RHSV
<< ShiftBits
) <= 255)) {
4205 SDValue ShiftAmt
= DAG
.getConstant(ShiftBits
, dl
, MVT::i32
);
4206 LHS
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, LHS
.getOperand(0), ShiftAmt
);
4207 RHS
= DAG
.getConstant(RHSV
<< ShiftBits
, dl
, MVT::i32
);
4212 // The specific comparison "(x<<c) > 0x80000000U" can be optimized to a
4213 // single "lsls x, c+1". The shift sets the "C" and "Z" flags the same
4215 // FIXME: Add support for ARM/Thumb2; this would need isel patterns, and
4216 // some tweaks to the heuristics for the previous and->shift transform.
4217 // FIXME: Optimize cases where the LHS isn't a shift.
4218 if (Subtarget
->isThumb1Only() && LHS
->getOpcode() == ISD::SHL
&&
4219 isa
<ConstantSDNode
>(RHS
) &&
4220 cast
<ConstantSDNode
>(RHS
)->getZExtValue() == 0x80000000U
&&
4221 CC
== ISD::SETUGT
&& isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
4222 cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue() < 31) {
4224 cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue() + 1;
4225 SDValue Shift
= DAG
.getNode(ARMISD::LSLS
, dl
,
4226 DAG
.getVTList(MVT::i32
, MVT::i32
),
4228 DAG
.getConstant(ShiftAmt
, dl
, MVT::i32
));
4229 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
4230 Shift
.getValue(1), SDValue());
4231 ARMcc
= DAG
.getConstant(ARMCC::HI
, dl
, MVT::i32
);
4232 return Chain
.getValue(1);
4235 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4237 // If the RHS is a constant zero then the V (overflow) flag will never be
4238 // set. This can allow us to simplify GE to PL or LT to MI, which can be
4239 // simpler for other passes (like the peephole optimiser) to deal with.
4240 if (isNullConstant(RHS
)) {
4244 CondCode
= ARMCC::PL
;
4247 CondCode
= ARMCC::MI
;
4252 ARMISD::NodeType CompareType
;
4255 CompareType
= ARMISD::CMP
;
4260 CompareType
= ARMISD::CMPZ
;
4263 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4264 return DAG
.getNode(CompareType
, dl
, MVT::Glue
, LHS
, RHS
);
4267 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
4268 SDValue
ARMTargetLowering::getVFPCmp(SDValue LHS
, SDValue RHS
,
4269 SelectionDAG
&DAG
, const SDLoc
&dl
) const {
4270 assert(Subtarget
->hasFP64() || RHS
.getValueType() != MVT::f64
);
4272 if (!isFloatingPointZero(RHS
))
4273 Cmp
= DAG
.getNode(ARMISD::CMPFP
, dl
, MVT::Glue
, LHS
, RHS
);
4275 Cmp
= DAG
.getNode(ARMISD::CMPFPw0
, dl
, MVT::Glue
, LHS
);
4276 return DAG
.getNode(ARMISD::FMSTAT
, dl
, MVT::Glue
, Cmp
);
4279 /// duplicateCmp - Glue values can have only one use, so this function
4280 /// duplicates a comparison node.
4282 ARMTargetLowering::duplicateCmp(SDValue Cmp
, SelectionDAG
&DAG
) const {
4283 unsigned Opc
= Cmp
.getOpcode();
4285 if (Opc
== ARMISD::CMP
|| Opc
== ARMISD::CMPZ
)
4286 return DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),Cmp
.getOperand(1));
4288 assert(Opc
== ARMISD::FMSTAT
&& "unexpected comparison operation");
4289 Cmp
= Cmp
.getOperand(0);
4290 Opc
= Cmp
.getOpcode();
4291 if (Opc
== ARMISD::CMPFP
)
4292 Cmp
= DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),Cmp
.getOperand(1));
4294 assert(Opc
== ARMISD::CMPFPw0
&& "unexpected operand of FMSTAT");
4295 Cmp
= DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0));
4297 return DAG
.getNode(ARMISD::FMSTAT
, DL
, MVT::Glue
, Cmp
);
4300 // This function returns three things: the arithmetic computation itself
4301 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The
4302 // comparison and the condition code define the case in which the arithmetic
4303 // computation *does not* overflow.
4304 std::pair
<SDValue
, SDValue
>
4305 ARMTargetLowering::getARMXALUOOp(SDValue Op
, SelectionDAG
&DAG
,
4306 SDValue
&ARMcc
) const {
4307 assert(Op
.getValueType() == MVT::i32
&& "Unsupported value type");
4309 SDValue Value
, OverflowCmp
;
4310 SDValue LHS
= Op
.getOperand(0);
4311 SDValue RHS
= Op
.getOperand(1);
4314 // FIXME: We are currently always generating CMPs because we don't support
4315 // generating CMN through the backend. This is not as good as the natural
4316 // CMP case because it causes a register dependency and cannot be folded
4319 switch (Op
.getOpcode()) {
4321 llvm_unreachable("Unknown overflow instruction!");
4323 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
4324 Value
= DAG
.getNode(ISD::ADD
, dl
, Op
.getValueType(), LHS
, RHS
);
4325 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
, LHS
);
4328 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
4329 // We use ADDC here to correspond to its use in LowerUnsignedALUO.
4330 // We do not use it in the USUBO case as Value may not be used.
4331 Value
= DAG
.getNode(ARMISD::ADDC
, dl
,
4332 DAG
.getVTList(Op
.getValueType(), MVT::i32
), LHS
, RHS
)
4334 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
, LHS
);
4337 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
4338 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
4339 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, LHS
, RHS
);
4342 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
4343 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
4344 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, LHS
, RHS
);
4347 // We generate a UMUL_LOHI and then check if the high word is 0.
4348 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
4349 Value
= DAG
.getNode(ISD::UMUL_LOHI
, dl
,
4350 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
4352 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
.getValue(1),
4353 DAG
.getConstant(0, dl
, MVT::i32
));
4354 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
4357 // We generate a SMUL_LOHI and then check if all the bits of the high word
4358 // are the same as the sign bit of the low word.
4359 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
4360 Value
= DAG
.getNode(ISD::SMUL_LOHI
, dl
,
4361 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
4363 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
.getValue(1),
4364 DAG
.getNode(ISD::SRA
, dl
, Op
.getValueType(),
4366 DAG
.getConstant(31, dl
, MVT::i32
)));
4367 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
4371 return std::make_pair(Value
, OverflowCmp
);
4375 ARMTargetLowering::LowerSignedALUO(SDValue Op
, SelectionDAG
&DAG
) const {
4376 // Let legalize expand this if it isn't a legal type yet.
4377 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
4380 SDValue Value
, OverflowCmp
;
4382 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Op
, DAG
, ARMcc
);
4383 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4385 // We use 0 and 1 as false and true values.
4386 SDValue TVal
= DAG
.getConstant(1, dl
, MVT::i32
);
4387 SDValue FVal
= DAG
.getConstant(0, dl
, MVT::i32
);
4388 EVT VT
= Op
.getValueType();
4390 SDValue Overflow
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, TVal
, FVal
,
4391 ARMcc
, CCR
, OverflowCmp
);
4393 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::i32
);
4394 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
4397 static SDValue
ConvertBooleanCarryToCarryFlag(SDValue BoolCarry
,
4398 SelectionDAG
&DAG
) {
4399 SDLoc
DL(BoolCarry
);
4400 EVT CarryVT
= BoolCarry
.getValueType();
4402 // This converts the boolean value carry into the carry flag by doing
4403 // ARMISD::SUBC Carry, 1
4404 SDValue Carry
= DAG
.getNode(ARMISD::SUBC
, DL
,
4405 DAG
.getVTList(CarryVT
, MVT::i32
),
4406 BoolCarry
, DAG
.getConstant(1, DL
, CarryVT
));
4407 return Carry
.getValue(1);
4410 static SDValue
ConvertCarryFlagToBooleanCarry(SDValue Flags
, EVT VT
,
4411 SelectionDAG
&DAG
) {
4414 // Now convert the carry flag into a boolean carry. We do this
4415 // using ARMISD:ADDE 0, 0, Carry
4416 return DAG
.getNode(ARMISD::ADDE
, DL
, DAG
.getVTList(VT
, MVT::i32
),
4417 DAG
.getConstant(0, DL
, MVT::i32
),
4418 DAG
.getConstant(0, DL
, MVT::i32
), Flags
);
4421 SDValue
ARMTargetLowering::LowerUnsignedALUO(SDValue Op
,
4422 SelectionDAG
&DAG
) const {
4423 // Let legalize expand this if it isn't a legal type yet.
4424 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
4427 SDValue LHS
= Op
.getOperand(0);
4428 SDValue RHS
= Op
.getOperand(1);
4431 EVT VT
= Op
.getValueType();
4432 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
4435 switch (Op
.getOpcode()) {
4437 llvm_unreachable("Unknown overflow instruction!");
4439 Value
= DAG
.getNode(ARMISD::ADDC
, dl
, VTs
, LHS
, RHS
);
4440 // Convert the carry flag into a boolean value.
4441 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
4444 Value
= DAG
.getNode(ARMISD::SUBC
, dl
, VTs
, LHS
, RHS
);
4445 // Convert the carry flag into a boolean value.
4446 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
4447 // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4448 // value. So compute 1 - C.
4449 Overflow
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
4450 DAG
.getConstant(1, dl
, MVT::i32
), Overflow
);
4455 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
4458 static SDValue
LowerSADDSUBSAT(SDValue Op
, SelectionDAG
&DAG
,
4459 const ARMSubtarget
*Subtarget
) {
4460 EVT VT
= Op
.getValueType();
4461 if (!Subtarget
->hasDSP())
4467 bool IsAdd
= Op
->getOpcode() == ISD::SADDSAT
;
4468 switch (VT
.getSimpleVT().SimpleTy
) {
4472 NewOpcode
= IsAdd
? ARMISD::QADD8b
: ARMISD::QSUB8b
;
4475 NewOpcode
= IsAdd
? ARMISD::QADD16b
: ARMISD::QSUB16b
;
4481 DAG
.getNode(NewOpcode
, dl
, MVT::i32
,
4482 DAG
.getSExtOrTrunc(Op
->getOperand(0), dl
, MVT::i32
),
4483 DAG
.getSExtOrTrunc(Op
->getOperand(1), dl
, MVT::i32
));
4484 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Add
);
4487 SDValue
ARMTargetLowering::LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const {
4488 SDValue Cond
= Op
.getOperand(0);
4489 SDValue SelectTrue
= Op
.getOperand(1);
4490 SDValue SelectFalse
= Op
.getOperand(2);
4492 unsigned Opc
= Cond
.getOpcode();
4494 if (Cond
.getResNo() == 1 &&
4495 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
4496 Opc
== ISD::USUBO
)) {
4497 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
4500 SDValue Value
, OverflowCmp
;
4502 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
4503 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4504 EVT VT
= Op
.getValueType();
4506 return getCMOV(dl
, VT
, SelectTrue
, SelectFalse
, ARMcc
, CCR
,
4512 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
4513 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
4515 if (Cond
.getOpcode() == ARMISD::CMOV
&& Cond
.hasOneUse()) {
4516 const ConstantSDNode
*CMOVTrue
=
4517 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(0));
4518 const ConstantSDNode
*CMOVFalse
=
4519 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(1));
4521 if (CMOVTrue
&& CMOVFalse
) {
4522 unsigned CMOVTrueVal
= CMOVTrue
->getZExtValue();
4523 unsigned CMOVFalseVal
= CMOVFalse
->getZExtValue();
4527 if (CMOVTrueVal
== 1 && CMOVFalseVal
== 0) {
4529 False
= SelectFalse
;
4530 } else if (CMOVTrueVal
== 0 && CMOVFalseVal
== 1) {
4535 if (True
.getNode() && False
.getNode()) {
4536 EVT VT
= Op
.getValueType();
4537 SDValue ARMcc
= Cond
.getOperand(2);
4538 SDValue CCR
= Cond
.getOperand(3);
4539 SDValue Cmp
= duplicateCmp(Cond
.getOperand(4), DAG
);
4540 assert(True
.getValueType() == VT
);
4541 return getCMOV(dl
, VT
, True
, False
, ARMcc
, CCR
, Cmp
, DAG
);
4546 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
4547 // undefined bits before doing a full-word comparison with zero.
4548 Cond
= DAG
.getNode(ISD::AND
, dl
, Cond
.getValueType(), Cond
,
4549 DAG
.getConstant(1, dl
, Cond
.getValueType()));
4551 return DAG
.getSelectCC(dl
, Cond
,
4552 DAG
.getConstant(0, dl
, Cond
.getValueType()),
4553 SelectTrue
, SelectFalse
, ISD::SETNE
);
4556 static void checkVSELConstraints(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
4557 bool &swpCmpOps
, bool &swpVselOps
) {
4558 // Start by selecting the GE condition code for opcodes that return true for
4560 if (CC
== ISD::SETUGE
|| CC
== ISD::SETOGE
|| CC
== ISD::SETOLE
||
4561 CC
== ISD::SETULE
|| CC
== ISD::SETGE
|| CC
== ISD::SETLE
)
4562 CondCode
= ARMCC::GE
;
4564 // and GT for opcodes that return false for 'equality'.
4565 else if (CC
== ISD::SETUGT
|| CC
== ISD::SETOGT
|| CC
== ISD::SETOLT
||
4566 CC
== ISD::SETULT
|| CC
== ISD::SETGT
|| CC
== ISD::SETLT
)
4567 CondCode
= ARMCC::GT
;
4569 // Since we are constrained to GE/GT, if the opcode contains 'less', we need
4570 // to swap the compare operands.
4571 if (CC
== ISD::SETOLE
|| CC
== ISD::SETULE
|| CC
== ISD::SETOLT
||
4572 CC
== ISD::SETULT
|| CC
== ISD::SETLE
|| CC
== ISD::SETLT
)
4575 // Both GT and GE are ordered comparisons, and return false for 'unordered'.
4576 // If we have an unordered opcode, we need to swap the operands to the VSEL
4577 // instruction (effectively negating the condition).
4579 // This also has the effect of swapping which one of 'less' or 'greater'
4580 // returns true, so we also swap the compare operands. It also switches
4581 // whether we return true for 'equality', so we compensate by picking the
4582 // opposite condition code to our original choice.
4583 if (CC
== ISD::SETULE
|| CC
== ISD::SETULT
|| CC
== ISD::SETUGE
||
4584 CC
== ISD::SETUGT
) {
4585 swpCmpOps
= !swpCmpOps
;
4586 swpVselOps
= !swpVselOps
;
4587 CondCode
= CondCode
== ARMCC::GT
? ARMCC::GE
: ARMCC::GT
;
4590 // 'ordered' is 'anything but unordered', so use the VS condition code and
4591 // swap the VSEL operands.
4592 if (CC
== ISD::SETO
) {
4593 CondCode
= ARMCC::VS
;
4597 // 'unordered or not equal' is 'anything but equal', so use the EQ condition
4598 // code and swap the VSEL operands. Also do this if we don't care about the
4600 if (CC
== ISD::SETUNE
|| CC
== ISD::SETNE
) {
4601 CondCode
= ARMCC::EQ
;
4606 SDValue
ARMTargetLowering::getCMOV(const SDLoc
&dl
, EVT VT
, SDValue FalseVal
,
4607 SDValue TrueVal
, SDValue ARMcc
, SDValue CCR
,
4608 SDValue Cmp
, SelectionDAG
&DAG
) const {
4609 if (!Subtarget
->hasFP64() && VT
== MVT::f64
) {
4610 FalseVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
4611 DAG
.getVTList(MVT::i32
, MVT::i32
), FalseVal
);
4612 TrueVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
4613 DAG
.getVTList(MVT::i32
, MVT::i32
), TrueVal
);
4615 SDValue TrueLow
= TrueVal
.getValue(0);
4616 SDValue TrueHigh
= TrueVal
.getValue(1);
4617 SDValue FalseLow
= FalseVal
.getValue(0);
4618 SDValue FalseHigh
= FalseVal
.getValue(1);
4620 SDValue Low
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseLow
, TrueLow
,
4622 SDValue High
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseHigh
, TrueHigh
,
4623 ARMcc
, CCR
, duplicateCmp(Cmp
, DAG
));
4625 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Low
, High
);
4627 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
,
4632 static bool isGTorGE(ISD::CondCode CC
) {
4633 return CC
== ISD::SETGT
|| CC
== ISD::SETGE
;
4636 static bool isLTorLE(ISD::CondCode CC
) {
4637 return CC
== ISD::SETLT
|| CC
== ISD::SETLE
;
4640 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
4641 // All of these conditions (and their <= and >= counterparts) will do:
4646 static bool isLowerSaturate(const SDValue LHS
, const SDValue RHS
,
4647 const SDValue TrueVal
, const SDValue FalseVal
,
4648 const ISD::CondCode CC
, const SDValue K
) {
4649 return (isGTorGE(CC
) &&
4650 ((K
== LHS
&& K
== TrueVal
) || (K
== RHS
&& K
== FalseVal
))) ||
4652 ((K
== RHS
&& K
== TrueVal
) || (K
== LHS
&& K
== FalseVal
)));
4655 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
4656 static bool isUpperSaturate(const SDValue LHS
, const SDValue RHS
,
4657 const SDValue TrueVal
, const SDValue FalseVal
,
4658 const ISD::CondCode CC
, const SDValue K
) {
4659 return (isGTorGE(CC
) &&
4660 ((K
== RHS
&& K
== TrueVal
) || (K
== LHS
&& K
== FalseVal
))) ||
4662 ((K
== LHS
&& K
== TrueVal
) || (K
== RHS
&& K
== FalseVal
)));
4665 // Check if two chained conditionals could be converted into SSAT or USAT.
4667 // SSAT can replace a set of two conditional selectors that bound a number to an
4668 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
4670 // x < -k ? -k : (x > k ? k : x)
4671 // x < -k ? -k : (x < k ? x : k)
4672 // x > -k ? (x > k ? k : x) : -k
4673 // x < k ? (x < -k ? -k : x) : k
4676 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
4679 // It returns true if the conversion can be done, false otherwise.
4680 // Additionally, the variable is returned in parameter V, the constant in K and
4681 // usat is set to true if the conditional represents an unsigned saturation
4682 static bool isSaturatingConditional(const SDValue
&Op
, SDValue
&V
,
4683 uint64_t &K
, bool &usat
) {
4684 SDValue LHS1
= Op
.getOperand(0);
4685 SDValue RHS1
= Op
.getOperand(1);
4686 SDValue TrueVal1
= Op
.getOperand(2);
4687 SDValue FalseVal1
= Op
.getOperand(3);
4688 ISD::CondCode CC1
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4690 const SDValue Op2
= isa
<ConstantSDNode
>(TrueVal1
) ? FalseVal1
: TrueVal1
;
4691 if (Op2
.getOpcode() != ISD::SELECT_CC
)
4694 SDValue LHS2
= Op2
.getOperand(0);
4695 SDValue RHS2
= Op2
.getOperand(1);
4696 SDValue TrueVal2
= Op2
.getOperand(2);
4697 SDValue FalseVal2
= Op2
.getOperand(3);
4698 ISD::CondCode CC2
= cast
<CondCodeSDNode
>(Op2
.getOperand(4))->get();
4700 // Find out which are the constants and which are the variables
4701 // in each conditional
4702 SDValue
*K1
= isa
<ConstantSDNode
>(LHS1
) ? &LHS1
: isa
<ConstantSDNode
>(RHS1
)
4705 SDValue
*K2
= isa
<ConstantSDNode
>(LHS2
) ? &LHS2
: isa
<ConstantSDNode
>(RHS2
)
4708 SDValue K2Tmp
= isa
<ConstantSDNode
>(TrueVal2
) ? TrueVal2
: FalseVal2
;
4709 SDValue V1Tmp
= (K1
&& *K1
== LHS1
) ? RHS1
: LHS1
;
4710 SDValue V2Tmp
= (K2
&& *K2
== LHS2
) ? RHS2
: LHS2
;
4711 SDValue V2
= (K2Tmp
== TrueVal2
) ? FalseVal2
: TrueVal2
;
4713 // We must detect cases where the original operations worked with 16- or
4714 // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
4715 // must work with sign-extended values but the select operations return
4716 // the original non-extended value.
4717 SDValue V2TmpReg
= V2Tmp
;
4718 if (V2Tmp
->getOpcode() == ISD::SIGN_EXTEND_INREG
)
4719 V2TmpReg
= V2Tmp
->getOperand(0);
4721 // Check that the registers and the constants have the correct values
4722 // in both conditionals
4723 if (!K1
|| !K2
|| *K1
== Op2
|| *K2
!= K2Tmp
|| V1Tmp
!= V2Tmp
||
4727 // Figure out which conditional is saturating the lower/upper bound.
4728 const SDValue
*LowerCheckOp
=
4729 isLowerSaturate(LHS1
, RHS1
, TrueVal1
, FalseVal1
, CC1
, *K1
)
4731 : isLowerSaturate(LHS2
, RHS2
, TrueVal2
, FalseVal2
, CC2
, *K2
)
4734 const SDValue
*UpperCheckOp
=
4735 isUpperSaturate(LHS1
, RHS1
, TrueVal1
, FalseVal1
, CC1
, *K1
)
4737 : isUpperSaturate(LHS2
, RHS2
, TrueVal2
, FalseVal2
, CC2
, *K2
)
4741 if (!UpperCheckOp
|| !LowerCheckOp
|| LowerCheckOp
== UpperCheckOp
)
4744 // Check that the constant in the lower-bound check is
4745 // the opposite of the constant in the upper-bound check
4746 // in 1's complement.
4747 int64_t Val1
= cast
<ConstantSDNode
>(*K1
)->getSExtValue();
4748 int64_t Val2
= cast
<ConstantSDNode
>(*K2
)->getSExtValue();
4749 int64_t PosVal
= std::max(Val1
, Val2
);
4750 int64_t NegVal
= std::min(Val1
, Val2
);
4752 if (((Val1
> Val2
&& UpperCheckOp
== &Op
) ||
4753 (Val1
< Val2
&& UpperCheckOp
== &Op2
)) &&
4754 isPowerOf2_64(PosVal
+ 1)) {
4756 // Handle the difference between USAT (unsigned) and SSAT (signed) saturation
4759 else if (NegVal
== 0)
4765 K
= (uint64_t)PosVal
; // At this point, PosVal is guaranteed to be positive
4773 // Check if a condition of the type x < k ? k : x can be converted into a
4774 // bit operation instead of conditional moves.
4775 // Currently this is allowed given:
4776 // - The conditions and values match up
4777 // - k is 0 or -1 (all ones)
4778 // This function will not check the last condition, thats up to the caller
4779 // It returns true if the transformation can be made, and in such case
4780 // returns x in V, and k in SatK.
4781 static bool isLowerSaturatingConditional(const SDValue
&Op
, SDValue
&V
,
4784 SDValue LHS
= Op
.getOperand(0);
4785 SDValue RHS
= Op
.getOperand(1);
4786 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4787 SDValue TrueVal
= Op
.getOperand(2);
4788 SDValue FalseVal
= Op
.getOperand(3);
4790 SDValue
*K
= isa
<ConstantSDNode
>(LHS
) ? &LHS
: isa
<ConstantSDNode
>(RHS
)
4794 // No constant operation in comparison, early out
4798 SDValue KTmp
= isa
<ConstantSDNode
>(TrueVal
) ? TrueVal
: FalseVal
;
4799 V
= (KTmp
== TrueVal
) ? FalseVal
: TrueVal
;
4800 SDValue VTmp
= (K
&& *K
== LHS
) ? RHS
: LHS
;
4802 // If the constant on left and right side, or variable on left and right,
4803 // does not match, early out
4804 if (*K
!= KTmp
|| V
!= VTmp
)
4807 if (isLowerSaturate(LHS
, RHS
, TrueVal
, FalseVal
, CC
, *K
)) {
4815 bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT
) const {
4817 return !Subtarget
->hasVFP2Base();
4819 return !Subtarget
->hasFP64();
4821 return !Subtarget
->hasFullFP16();
4825 SDValue
ARMTargetLowering::LowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const {
4826 EVT VT
= Op
.getValueType();
4829 // Try to convert two saturating conditional selects into a single SSAT
4831 uint64_t SatConstant
;
4833 if (((!Subtarget
->isThumb() && Subtarget
->hasV6Ops()) || Subtarget
->isThumb2()) &&
4834 isSaturatingConditional(Op
, SatValue
, SatConstant
, SatUSat
)) {
4836 return DAG
.getNode(ARMISD::USAT
, dl
, VT
, SatValue
,
4837 DAG
.getConstant(countTrailingOnes(SatConstant
), dl
, VT
));
4839 return DAG
.getNode(ARMISD::SSAT
, dl
, VT
, SatValue
,
4840 DAG
.getConstant(countTrailingOnes(SatConstant
), dl
, VT
));
4843 // Try to convert expressions of the form x < k ? k : x (and similar forms)
4844 // into more efficient bit operations, which is possible when k is 0 or -1
4845 // On ARM and Thumb-2 which have flexible operand 2 this will result in
4846 // single instructions. On Thumb the shift and the bit operation will be two
4848 // Only allow this transformation on full-width (32-bit) operations
4849 SDValue LowerSatConstant
;
4850 if (VT
== MVT::i32
&&
4851 isLowerSaturatingConditional(Op
, SatValue
, LowerSatConstant
)) {
4852 SDValue ShiftV
= DAG
.getNode(ISD::SRA
, dl
, VT
, SatValue
,
4853 DAG
.getConstant(31, dl
, VT
));
4854 if (isNullConstant(LowerSatConstant
)) {
4855 SDValue NotShiftV
= DAG
.getNode(ISD::XOR
, dl
, VT
, ShiftV
,
4856 DAG
.getAllOnesConstant(dl
, VT
));
4857 return DAG
.getNode(ISD::AND
, dl
, VT
, SatValue
, NotShiftV
);
4858 } else if (isAllOnesConstant(LowerSatConstant
))
4859 return DAG
.getNode(ISD::OR
, dl
, VT
, SatValue
, ShiftV
);
4862 SDValue LHS
= Op
.getOperand(0);
4863 SDValue RHS
= Op
.getOperand(1);
4864 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4865 SDValue TrueVal
= Op
.getOperand(2);
4866 SDValue FalseVal
= Op
.getOperand(3);
4867 ConstantSDNode
*CFVal
= dyn_cast
<ConstantSDNode
>(FalseVal
);
4868 ConstantSDNode
*CTVal
= dyn_cast
<ConstantSDNode
>(TrueVal
);
4870 if (Subtarget
->hasV8_1MMainlineOps() && CFVal
&& CTVal
&&
4871 LHS
.getValueType() == MVT::i32
&& RHS
.getValueType() == MVT::i32
) {
4872 unsigned TVal
= CTVal
->getZExtValue();
4873 unsigned FVal
= CFVal
->getZExtValue();
4874 unsigned Opcode
= 0;
4876 if (TVal
== ~FVal
) {
4877 Opcode
= ARMISD::CSINV
;
4878 } else if (TVal
== ~FVal
+ 1) {
4879 Opcode
= ARMISD::CSNEG
;
4880 } else if (TVal
+ 1 == FVal
) {
4881 Opcode
= ARMISD::CSINC
;
4882 } else if (TVal
== FVal
+ 1) {
4883 Opcode
= ARMISD::CSINC
;
4884 std::swap(TrueVal
, FalseVal
);
4885 std::swap(TVal
, FVal
);
4886 CC
= ISD::getSetCCInverse(CC
, true);
4890 // If one of the constants is cheaper than another, materialise the
4891 // cheaper one and let the csel generate the other.
4892 if (Opcode
!= ARMISD::CSINC
&&
4893 HasLowerConstantMaterializationCost(FVal
, TVal
, Subtarget
)) {
4894 std::swap(TrueVal
, FalseVal
);
4895 std::swap(TVal
, FVal
);
4896 CC
= ISD::getSetCCInverse(CC
, true);
4899 // Attempt to use ZR checking TVal is 0, possibly inverting the condition
4900 // to get there. CSINC not is invertable like the other two (~(~a) == a,
4901 // -(-a) == a, but (a+1)+1 != a).
4902 if (FVal
== 0 && Opcode
!= ARMISD::CSINC
) {
4903 std::swap(TrueVal
, FalseVal
);
4904 std::swap(TVal
, FVal
);
4905 CC
= ISD::getSetCCInverse(CC
, true);
4908 TrueVal
= DAG
.getRegister(ARM::ZR
, MVT::i32
);
4910 // Drops F's value because we can get it by inverting/negating TVal.
4914 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4915 EVT VT
= TrueVal
.getValueType();
4916 return DAG
.getNode(Opcode
, dl
, VT
, TrueVal
, FalseVal
, ARMcc
, Cmp
);
4920 if (isUnsupportedFloatingType(LHS
.getValueType())) {
4921 DAG
.getTargetLoweringInfo().softenSetCCOperands(
4922 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
, LHS
, RHS
);
4924 // If softenSetCCOperands only returned one value, we should compare it to
4926 if (!RHS
.getNode()) {
4927 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
4932 if (LHS
.getValueType() == MVT::i32
) {
4933 // Try to generate VSEL on ARMv8.
4934 // The VSEL instruction can't use all the usual ARM condition
4935 // codes: it only has two bits to select the condition code, so it's
4936 // constrained to use only GE, GT, VS and EQ.
4938 // To implement all the various ISD::SETXXX opcodes, we sometimes need to
4939 // swap the operands of the previous compare instruction (effectively
4940 // inverting the compare condition, swapping 'less' and 'greater') and
4941 // sometimes need to swap the operands to the VSEL (which inverts the
4942 // condition in the sense of firing whenever the previous condition didn't)
4943 if (Subtarget
->hasFPARMv8Base() && (TrueVal
.getValueType() == MVT::f16
||
4944 TrueVal
.getValueType() == MVT::f32
||
4945 TrueVal
.getValueType() == MVT::f64
)) {
4946 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4947 if (CondCode
== ARMCC::LT
|| CondCode
== ARMCC::LE
||
4948 CondCode
== ARMCC::VC
|| CondCode
== ARMCC::NE
) {
4949 CC
= ISD::getSetCCInverse(CC
, true);
4950 std::swap(TrueVal
, FalseVal
);
4955 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4956 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4957 // Choose GE over PL, which vsel does now support
4958 if (cast
<ConstantSDNode
>(ARMcc
)->getZExtValue() == ARMCC::PL
)
4959 ARMcc
= DAG
.getConstant(ARMCC::GE
, dl
, MVT::i32
);
4960 return getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
, Cmp
, DAG
);
4963 ARMCC::CondCodes CondCode
, CondCode2
;
4964 FPCCToARMCC(CC
, CondCode
, CondCode2
);
4966 // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
4967 // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
4968 // must use VSEL (limited condition codes), due to not having conditional f16
4970 if (Subtarget
->hasFPARMv8Base() &&
4971 !(isFloatingPointZero(RHS
) && TrueVal
.getValueType() != MVT::f16
) &&
4972 (TrueVal
.getValueType() == MVT::f16
||
4973 TrueVal
.getValueType() == MVT::f32
||
4974 TrueVal
.getValueType() == MVT::f64
)) {
4975 bool swpCmpOps
= false;
4976 bool swpVselOps
= false;
4977 checkVSELConstraints(CC
, CondCode
, swpCmpOps
, swpVselOps
);
4979 if (CondCode
== ARMCC::GT
|| CondCode
== ARMCC::GE
||
4980 CondCode
== ARMCC::VS
|| CondCode
== ARMCC::EQ
) {
4982 std::swap(LHS
, RHS
);
4984 std::swap(TrueVal
, FalseVal
);
4988 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4989 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
);
4990 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4991 SDValue Result
= getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
, Cmp
, DAG
);
4992 if (CondCode2
!= ARMCC::AL
) {
4993 SDValue ARMcc2
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
4994 // FIXME: Needs another CMP because flag can have but one use.
4995 SDValue Cmp2
= getVFPCmp(LHS
, RHS
, DAG
, dl
);
4996 Result
= getCMOV(dl
, VT
, Result
, TrueVal
, ARMcc2
, CCR
, Cmp2
, DAG
);
5001 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
5002 /// to morph to an integer compare sequence.
5003 static bool canChangeToInt(SDValue Op
, bool &SeenZero
,
5004 const ARMSubtarget
*Subtarget
) {
5005 SDNode
*N
= Op
.getNode();
5006 if (!N
->hasOneUse())
5007 // Otherwise it requires moving the value from fp to integer registers.
5009 if (!N
->getNumValues())
5011 EVT VT
= Op
.getValueType();
5012 if (VT
!= MVT::f32
&& !Subtarget
->isFPBrccSlow())
5013 // f32 case is generally profitable. f64 case only makes sense when vcmpe +
5014 // vmrs are very slow, e.g. cortex-a8.
5017 if (isFloatingPointZero(Op
)) {
5021 return ISD::isNormalLoad(N
);
5024 static SDValue
bitcastf32Toi32(SDValue Op
, SelectionDAG
&DAG
) {
5025 if (isFloatingPointZero(Op
))
5026 return DAG
.getConstant(0, SDLoc(Op
), MVT::i32
);
5028 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
))
5029 return DAG
.getLoad(MVT::i32
, SDLoc(Op
), Ld
->getChain(), Ld
->getBasePtr(),
5030 Ld
->getPointerInfo(), Ld
->getAlignment(),
5031 Ld
->getMemOperand()->getFlags());
5033 llvm_unreachable("Unknown VFP cmp argument!");
5036 static void expandf64Toi32(SDValue Op
, SelectionDAG
&DAG
,
5037 SDValue
&RetVal1
, SDValue
&RetVal2
) {
5040 if (isFloatingPointZero(Op
)) {
5041 RetVal1
= DAG
.getConstant(0, dl
, MVT::i32
);
5042 RetVal2
= DAG
.getConstant(0, dl
, MVT::i32
);
5046 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
)) {
5047 SDValue Ptr
= Ld
->getBasePtr();
5049 DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), Ptr
, Ld
->getPointerInfo(),
5050 Ld
->getAlignment(), Ld
->getMemOperand()->getFlags());
5052 EVT PtrType
= Ptr
.getValueType();
5053 unsigned NewAlign
= MinAlign(Ld
->getAlignment(), 4);
5054 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, dl
,
5055 PtrType
, Ptr
, DAG
.getConstant(4, dl
, PtrType
));
5056 RetVal2
= DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), NewPtr
,
5057 Ld
->getPointerInfo().getWithOffset(4), NewAlign
,
5058 Ld
->getMemOperand()->getFlags());
5062 llvm_unreachable("Unknown VFP cmp argument!");
5065 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
5066 /// f32 and even f64 comparisons to integer ones.
5068 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op
, SelectionDAG
&DAG
) const {
5069 SDValue Chain
= Op
.getOperand(0);
5070 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
5071 SDValue LHS
= Op
.getOperand(2);
5072 SDValue RHS
= Op
.getOperand(3);
5073 SDValue Dest
= Op
.getOperand(4);
5076 bool LHSSeenZero
= false;
5077 bool LHSOk
= canChangeToInt(LHS
, LHSSeenZero
, Subtarget
);
5078 bool RHSSeenZero
= false;
5079 bool RHSOk
= canChangeToInt(RHS
, RHSSeenZero
, Subtarget
);
5080 if (LHSOk
&& RHSOk
&& (LHSSeenZero
|| RHSSeenZero
)) {
5081 // If unsafe fp math optimization is enabled and there are no other uses of
5082 // the CMP operands, and the condition code is EQ or NE, we can optimize it
5083 // to an integer comparison.
5084 if (CC
== ISD::SETOEQ
)
5086 else if (CC
== ISD::SETUNE
)
5089 SDValue Mask
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
5091 if (LHS
.getValueType() == MVT::f32
) {
5092 LHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5093 bitcastf32Toi32(LHS
, DAG
), Mask
);
5094 RHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5095 bitcastf32Toi32(RHS
, DAG
), Mask
);
5096 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
5097 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5098 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
,
5099 Chain
, Dest
, ARMcc
, CCR
, Cmp
);
5104 expandf64Toi32(LHS
, DAG
, LHS1
, LHS2
);
5105 expandf64Toi32(RHS
, DAG
, RHS1
, RHS2
);
5106 LHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, LHS2
, Mask
);
5107 RHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RHS2
, Mask
);
5108 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
5109 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
5110 SDVTList VTList
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
5111 SDValue Ops
[] = { Chain
, ARMcc
, LHS1
, LHS2
, RHS1
, RHS2
, Dest
};
5112 return DAG
.getNode(ARMISD::BCC_i64
, dl
, VTList
, Ops
);
5118 SDValue
ARMTargetLowering::LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const {
5119 SDValue Chain
= Op
.getOperand(0);
5120 SDValue Cond
= Op
.getOperand(1);
5121 SDValue Dest
= Op
.getOperand(2);
5124 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5126 unsigned Opc
= Cond
.getOpcode();
5127 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
5128 !Subtarget
->isThumb1Only();
5129 if (Cond
.getResNo() == 1 &&
5130 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
5131 Opc
== ISD::USUBO
|| OptimizeMul
)) {
5132 // Only lower legal XALUO ops.
5133 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
5136 // The actual operation with overflow check.
5137 SDValue Value
, OverflowCmp
;
5139 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
5141 // Reverse the condition code.
5142 ARMCC::CondCodes CondCode
=
5143 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
5144 CondCode
= ARMCC::getOppositeCondition(CondCode
);
5145 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
5146 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5148 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
, CCR
,
5155 SDValue
ARMTargetLowering::LowerBR_CC(SDValue Op
, SelectionDAG
&DAG
) const {
5156 SDValue Chain
= Op
.getOperand(0);
5157 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
5158 SDValue LHS
= Op
.getOperand(2);
5159 SDValue RHS
= Op
.getOperand(3);
5160 SDValue Dest
= Op
.getOperand(4);
5163 if (isUnsupportedFloatingType(LHS
.getValueType())) {
5164 DAG
.getTargetLoweringInfo().softenSetCCOperands(
5165 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
, LHS
, RHS
);
5167 // If softenSetCCOperands only returned one value, we should compare it to
5169 if (!RHS
.getNode()) {
5170 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
5175 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5177 unsigned Opc
= LHS
.getOpcode();
5178 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
5179 !Subtarget
->isThumb1Only();
5180 if (LHS
.getResNo() == 1 && (isOneConstant(RHS
) || isNullConstant(RHS
)) &&
5181 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
5182 Opc
== ISD::USUBO
|| OptimizeMul
) &&
5183 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
5184 // Only lower legal XALUO ops.
5185 if (!DAG
.getTargetLoweringInfo().isTypeLegal(LHS
->getValueType(0)))
5188 // The actual operation with overflow check.
5189 SDValue Value
, OverflowCmp
;
5191 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(LHS
.getValue(0), DAG
, ARMcc
);
5193 if ((CC
== ISD::SETNE
) != isOneConstant(RHS
)) {
5194 // Reverse the condition code.
5195 ARMCC::CondCodes CondCode
=
5196 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
5197 CondCode
= ARMCC::getOppositeCondition(CondCode
);
5198 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
5200 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5202 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
, CCR
,
5206 if (LHS
.getValueType() == MVT::i32
) {
5208 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
5209 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5210 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
,
5211 Chain
, Dest
, ARMcc
, CCR
, Cmp
);
5214 if (getTargetMachine().Options
.UnsafeFPMath
&&
5215 (CC
== ISD::SETEQ
|| CC
== ISD::SETOEQ
||
5216 CC
== ISD::SETNE
|| CC
== ISD::SETUNE
)) {
5217 if (SDValue Result
= OptimizeVFPBrcond(Op
, DAG
))
5221 ARMCC::CondCodes CondCode
, CondCode2
;
5222 FPCCToARMCC(CC
, CondCode
, CondCode2
);
5224 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
5225 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
);
5226 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5227 SDVTList VTList
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
5228 SDValue Ops
[] = { Chain
, Dest
, ARMcc
, CCR
, Cmp
};
5229 SDValue Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, VTList
, Ops
);
5230 if (CondCode2
!= ARMCC::AL
) {
5231 ARMcc
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
5232 SDValue Ops
[] = { Res
, Dest
, ARMcc
, CCR
, Res
.getValue(1) };
5233 Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, VTList
, Ops
);
5238 SDValue
ARMTargetLowering::LowerBR_JT(SDValue Op
, SelectionDAG
&DAG
) const {
5239 SDValue Chain
= Op
.getOperand(0);
5240 SDValue Table
= Op
.getOperand(1);
5241 SDValue Index
= Op
.getOperand(2);
5244 EVT PTy
= getPointerTy(DAG
.getDataLayout());
5245 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Table
);
5246 SDValue JTI
= DAG
.getTargetJumpTable(JT
->getIndex(), PTy
);
5247 Table
= DAG
.getNode(ARMISD::WrapperJT
, dl
, MVT::i32
, JTI
);
5248 Index
= DAG
.getNode(ISD::MUL
, dl
, PTy
, Index
, DAG
.getConstant(4, dl
, PTy
));
5249 SDValue Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Index
);
5250 if (Subtarget
->isThumb2() || (Subtarget
->hasV8MBaselineOps() && Subtarget
->isThumb())) {
5251 // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
5252 // which does another jump to the destination. This also makes it easier
5253 // to translate it to TBB / TBH later (Thumb2 only).
5254 // FIXME: This might not work if the function is extremely large.
5255 return DAG
.getNode(ARMISD::BR2_JT
, dl
, MVT::Other
, Chain
,
5256 Addr
, Op
.getOperand(2), JTI
);
5258 if (isPositionIndependent() || Subtarget
->isROPI()) {
5260 DAG
.getLoad((EVT
)MVT::i32
, dl
, Chain
, Addr
,
5261 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
5262 Chain
= Addr
.getValue(1);
5263 Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Addr
);
5264 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
5267 DAG
.getLoad(PTy
, dl
, Chain
, Addr
,
5268 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
5269 Chain
= Addr
.getValue(1);
5270 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
5274 static SDValue
LowerVectorFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) {
5275 EVT VT
= Op
.getValueType();
5278 if (Op
.getValueType().getVectorElementType() == MVT::i32
) {
5279 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::f32
)
5281 return DAG
.UnrollVectorOp(Op
.getNode());
5284 const bool HasFullFP16
=
5285 static_cast<const ARMSubtarget
&>(DAG
.getSubtarget()).hasFullFP16();
5288 const EVT OpTy
= Op
.getOperand(0).getValueType();
5289 if (OpTy
== MVT::v4f32
)
5291 else if (OpTy
== MVT::v4f16
&& HasFullFP16
)
5293 else if (OpTy
== MVT::v8f16
&& HasFullFP16
)
5296 llvm_unreachable("Invalid type for custom lowering!");
5298 if (VT
!= MVT::v4i16
&& VT
!= MVT::v8i16
)
5299 return DAG
.UnrollVectorOp(Op
.getNode());
5301 Op
= DAG
.getNode(Op
.getOpcode(), dl
, NewTy
, Op
.getOperand(0));
5302 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Op
);
5305 SDValue
ARMTargetLowering::LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) const {
5306 EVT VT
= Op
.getValueType();
5308 return LowerVectorFP_TO_INT(Op
, DAG
);
5309 if (isUnsupportedFloatingType(Op
.getOperand(0).getValueType())) {
5311 if (Op
.getOpcode() == ISD::FP_TO_SINT
)
5312 LC
= RTLIB::getFPTOSINT(Op
.getOperand(0).getValueType(),
5315 LC
= RTLIB::getFPTOUINT(Op
.getOperand(0).getValueType(),
5317 MakeLibCallOptions CallOptions
;
5318 return makeLibCall(DAG
, LC
, Op
.getValueType(), Op
.getOperand(0),
5319 CallOptions
, SDLoc(Op
)).first
;
5325 static SDValue
LowerVectorINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
5326 EVT VT
= Op
.getValueType();
5329 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::i32
) {
5330 if (VT
.getVectorElementType() == MVT::f32
)
5332 return DAG
.UnrollVectorOp(Op
.getNode());
5335 assert((Op
.getOperand(0).getValueType() == MVT::v4i16
||
5336 Op
.getOperand(0).getValueType() == MVT::v8i16
) &&
5337 "Invalid type for custom lowering!");
5339 const bool HasFullFP16
=
5340 static_cast<const ARMSubtarget
&>(DAG
.getSubtarget()).hasFullFP16();
5343 if (VT
== MVT::v4f32
)
5344 DestVecType
= MVT::v4i32
;
5345 else if (VT
== MVT::v4f16
&& HasFullFP16
)
5346 DestVecType
= MVT::v4i16
;
5347 else if (VT
== MVT::v8f16
&& HasFullFP16
)
5348 DestVecType
= MVT::v8i16
;
5350 return DAG
.UnrollVectorOp(Op
.getNode());
5354 switch (Op
.getOpcode()) {
5355 default: llvm_unreachable("Invalid opcode!");
5356 case ISD::SINT_TO_FP
:
5357 CastOpc
= ISD::SIGN_EXTEND
;
5358 Opc
= ISD::SINT_TO_FP
;
5360 case ISD::UINT_TO_FP
:
5361 CastOpc
= ISD::ZERO_EXTEND
;
5362 Opc
= ISD::UINT_TO_FP
;
5366 Op
= DAG
.getNode(CastOpc
, dl
, DestVecType
, Op
.getOperand(0));
5367 return DAG
.getNode(Opc
, dl
, VT
, Op
);
5370 SDValue
ARMTargetLowering::LowerINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const {
5371 EVT VT
= Op
.getValueType();
5373 return LowerVectorINT_TO_FP(Op
, DAG
);
5374 if (isUnsupportedFloatingType(VT
)) {
5376 if (Op
.getOpcode() == ISD::SINT_TO_FP
)
5377 LC
= RTLIB::getSINTTOFP(Op
.getOperand(0).getValueType(),
5380 LC
= RTLIB::getUINTTOFP(Op
.getOperand(0).getValueType(),
5382 MakeLibCallOptions CallOptions
;
5383 return makeLibCall(DAG
, LC
, Op
.getValueType(), Op
.getOperand(0),
5384 CallOptions
, SDLoc(Op
)).first
;
5390 SDValue
ARMTargetLowering::LowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) const {
5391 // Implement fcopysign with a fabs and a conditional fneg.
5392 SDValue Tmp0
= Op
.getOperand(0);
5393 SDValue Tmp1
= Op
.getOperand(1);
5395 EVT VT
= Op
.getValueType();
5396 EVT SrcVT
= Tmp1
.getValueType();
5397 bool InGPR
= Tmp0
.getOpcode() == ISD::BITCAST
||
5398 Tmp0
.getOpcode() == ARMISD::VMOVDRR
;
5399 bool UseNEON
= !InGPR
&& Subtarget
->hasNEON();
5402 // Use VBSL to copy the sign bit.
5403 unsigned EncodedVal
= ARM_AM::createVMOVModImm(0x6, 0x80);
5404 SDValue Mask
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v2i32
,
5405 DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
));
5406 EVT OpVT
= (VT
== MVT::f32
) ? MVT::v2i32
: MVT::v1i64
;
5408 Mask
= DAG
.getNode(ARMISD::VSHLIMM
, dl
, OpVT
,
5409 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Mask
),
5410 DAG
.getConstant(32, dl
, MVT::i32
));
5411 else /*if (VT == MVT::f32)*/
5412 Tmp0
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp0
);
5413 if (SrcVT
== MVT::f32
) {
5414 Tmp1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp1
);
5416 Tmp1
= DAG
.getNode(ARMISD::VSHLIMM
, dl
, OpVT
,
5417 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
),
5418 DAG
.getConstant(32, dl
, MVT::i32
));
5419 } else if (VT
== MVT::f32
)
5420 Tmp1
= DAG
.getNode(ARMISD::VSHRuIMM
, dl
, MVT::v1i64
,
5421 DAG
.getNode(ISD::BITCAST
, dl
, MVT::v1i64
, Tmp1
),
5422 DAG
.getConstant(32, dl
, MVT::i32
));
5423 Tmp0
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp0
);
5424 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
);
5426 SDValue AllOnes
= DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
5428 AllOnes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v8i8
, AllOnes
);
5429 SDValue MaskNot
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, Mask
,
5430 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, AllOnes
));
5432 SDValue Res
= DAG
.getNode(ISD::OR
, dl
, OpVT
,
5433 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp1
, Mask
),
5434 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp0
, MaskNot
));
5435 if (VT
== MVT::f32
) {
5436 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v2f32
, Res
);
5437 Res
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f32
, Res
,
5438 DAG
.getConstant(0, dl
, MVT::i32
));
5440 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Res
);
5446 // Bitcast operand 1 to i32.
5447 if (SrcVT
== MVT::f64
)
5448 Tmp1
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
5450 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp1
);
5452 // Or in the signbit with integer operations.
5453 SDValue Mask1
= DAG
.getConstant(0x80000000, dl
, MVT::i32
);
5454 SDValue Mask2
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
5455 Tmp1
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp1
, Mask1
);
5456 if (VT
== MVT::f32
) {
5457 Tmp0
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5458 DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp0
), Mask2
);
5459 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
,
5460 DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Tmp0
, Tmp1
));
5463 // f64: Or the high part with signbit and then combine two parts.
5464 Tmp0
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
5466 SDValue Lo
= Tmp0
.getValue(0);
5467 SDValue Hi
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp0
.getValue(1), Mask2
);
5468 Hi
= DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Hi
, Tmp1
);
5469 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
5472 SDValue
ARMTargetLowering::LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const{
5473 MachineFunction
&MF
= DAG
.getMachineFunction();
5474 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5475 MFI
.setReturnAddressIsTaken(true);
5477 if (verifyReturnAddressArgumentIsConstant(Op
, DAG
))
5480 EVT VT
= Op
.getValueType();
5482 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5484 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
5485 SDValue Offset
= DAG
.getConstant(4, dl
, MVT::i32
);
5486 return DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(),
5487 DAG
.getNode(ISD::ADD
, dl
, VT
, FrameAddr
, Offset
),
5488 MachinePointerInfo());
5491 // Return LR, which contains the return address. Mark it an implicit live-in.
5492 unsigned Reg
= MF
.addLiveIn(ARM::LR
, getRegClassFor(MVT::i32
));
5493 return DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, Reg
, VT
);
5496 SDValue
ARMTargetLowering::LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const {
5497 const ARMBaseRegisterInfo
&ARI
=
5498 *static_cast<const ARMBaseRegisterInfo
*>(RegInfo
);
5499 MachineFunction
&MF
= DAG
.getMachineFunction();
5500 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5501 MFI
.setFrameAddressIsTaken(true);
5503 EVT VT
= Op
.getValueType();
5504 SDLoc
dl(Op
); // FIXME probably not meaningful
5505 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5506 Register FrameReg
= ARI
.getFrameRegister(MF
);
5507 SDValue FrameAddr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, FrameReg
, VT
);
5509 FrameAddr
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), FrameAddr
,
5510 MachinePointerInfo());
5514 // FIXME? Maybe this could be a TableGen attribute on some registers and
5515 // this table could be generated automatically from RegInfo.
5516 Register
ARMTargetLowering::getRegisterByName(const char* RegName
, EVT VT
,
5517 const MachineFunction
&MF
) const {
5518 Register Reg
= StringSwitch
<unsigned>(RegName
)
5519 .Case("sp", ARM::SP
)
5523 report_fatal_error(Twine("Invalid register name \""
5524 + StringRef(RegName
) + "\"."));
5527 // Result is 64 bit value so split into two 32 bit values and return as a
5529 static void ExpandREAD_REGISTER(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
5530 SelectionDAG
&DAG
) {
5533 // This function is only supposed to be called for i64 type destination.
5534 assert(N
->getValueType(0) == MVT::i64
5535 && "ExpandREAD_REGISTER called for non-i64 type result.");
5537 SDValue Read
= DAG
.getNode(ISD::READ_REGISTER
, DL
,
5538 DAG
.getVTList(MVT::i32
, MVT::i32
, MVT::Other
),
5542 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Read
.getValue(0),
5544 Results
.push_back(Read
.getOperand(0));
5547 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
5548 /// When \p DstVT, the destination type of \p BC, is on the vector
5549 /// register bank and the source of bitcast, \p Op, operates on the same bank,
5550 /// it might be possible to combine them, such that everything stays on the
5551 /// vector register bank.
5552 /// \p return The node that would replace \p BT, if the combine
5554 static SDValue
CombineVMOVDRRCandidateWithVecOp(const SDNode
*BC
,
5555 SelectionDAG
&DAG
) {
5556 SDValue Op
= BC
->getOperand(0);
5557 EVT DstVT
= BC
->getValueType(0);
5559 // The only vector instruction that can produce a scalar (remember,
5560 // since the bitcast was about to be turned into VMOVDRR, the source
5561 // type is i64) from a vector is EXTRACT_VECTOR_ELT.
5562 // Moreover, we can do this combine only if there is one use.
5563 // Finally, if the destination type is not a vector, there is not
5564 // much point on forcing everything on the vector bank.
5565 if (!DstVT
.isVector() || Op
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
5569 // If the index is not constant, we will introduce an additional
5570 // multiply that will stick.
5571 // Give up in that case.
5572 ConstantSDNode
*Index
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
5575 unsigned DstNumElt
= DstVT
.getVectorNumElements();
5577 // Compute the new index.
5578 const APInt
&APIntIndex
= Index
->getAPIntValue();
5579 APInt
NewIndex(APIntIndex
.getBitWidth(), DstNumElt
);
5580 NewIndex
*= APIntIndex
;
5581 // Check if the new constant index fits into i32.
5582 if (NewIndex
.getBitWidth() > 32)
5585 // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
5586 // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
5588 SDValue ExtractSrc
= Op
.getOperand(0);
5589 EVT VecVT
= EVT::getVectorVT(
5590 *DAG
.getContext(), DstVT
.getScalarType(),
5591 ExtractSrc
.getValueType().getVectorNumElements() * DstNumElt
);
5592 SDValue BitCast
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, ExtractSrc
);
5593 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DstVT
, BitCast
,
5594 DAG
.getConstant(NewIndex
.getZExtValue(), dl
, MVT::i32
));
5597 /// ExpandBITCAST - If the target supports VFP, this function is called to
5598 /// expand a bit convert where either the source or destination type is i64 to
5599 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
5600 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
5601 /// vectors), since the legalizer won't know what to do with that.
5602 static SDValue
ExpandBITCAST(SDNode
*N
, SelectionDAG
&DAG
,
5603 const ARMSubtarget
*Subtarget
) {
5604 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5606 SDValue Op
= N
->getOperand(0);
5608 // This function is only supposed to be called for i64 types, either as the
5609 // source or destination of the bit convert.
5610 EVT SrcVT
= Op
.getValueType();
5611 EVT DstVT
= N
->getValueType(0);
5612 const bool HasFullFP16
= Subtarget
->hasFullFP16();
5614 if (SrcVT
== MVT::f32
&& DstVT
== MVT::i32
) {
5615 // FullFP16: half values are passed in S-registers, and we don't
5616 // need any of the bitcast and moves:
5618 // t2: f32,ch = CopyFromReg t0, Register:f32 %0
5619 // t5: i32 = bitcast t2
5620 // t18: f16 = ARMISD::VMOVhr t5
5621 if (Op
.getOpcode() != ISD::CopyFromReg
||
5622 Op
.getValueType() != MVT::f32
)
5625 auto Move
= N
->use_begin();
5626 if (Move
->getOpcode() != ARMISD::VMOVhr
)
5629 SDValue Ops
[] = { Op
.getOperand(0), Op
.getOperand(1) };
5630 SDValue Copy
= DAG
.getNode(ISD::CopyFromReg
, SDLoc(Op
), MVT::f16
, Ops
);
5631 DAG
.ReplaceAllUsesWith(*Move
, &Copy
);
5635 if (SrcVT
== MVT::i16
&& DstVT
== MVT::f16
) {
5638 // SoftFP: read half-precision arguments:
5641 // t7: i16 = truncate t2 <~~~~ Op
5642 // t8: f16 = bitcast t7 <~~~~ N
5644 if (Op
.getOperand(0).getValueType() == MVT::i32
)
5645 return DAG
.getNode(ARMISD::VMOVhr
, SDLoc(Op
),
5646 MVT::f16
, Op
.getOperand(0));
5651 // Half-precision return values
5652 if (SrcVT
== MVT::f16
&& DstVT
== MVT::i16
) {
5656 // t11: f16 = fadd t8, t10
5657 // t12: i16 = bitcast t11 <~~~ SDNode N
5658 // t13: i32 = zero_extend t12
5659 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
5660 // t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
5662 // transform this into:
5664 // t20: i32 = ARMISD::VMOVrh t11
5665 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
5667 auto ZeroExtend
= N
->use_begin();
5668 if (N
->use_size() != 1 || ZeroExtend
->getOpcode() != ISD::ZERO_EXTEND
||
5669 ZeroExtend
->getValueType(0) != MVT::i32
)
5672 auto Copy
= ZeroExtend
->use_begin();
5673 if (Copy
->getOpcode() == ISD::CopyToReg
&&
5674 Copy
->use_begin()->getOpcode() == ARMISD::RET_FLAG
) {
5675 SDValue Cvt
= DAG
.getNode(ARMISD::VMOVrh
, SDLoc(Op
), MVT::i32
, Op
);
5676 DAG
.ReplaceAllUsesWith(*ZeroExtend
, &Cvt
);
5682 if (!(SrcVT
== MVT::i64
|| DstVT
== MVT::i64
))
5685 // Turn i64->f64 into VMOVDRR.
5686 if (SrcVT
== MVT::i64
&& TLI
.isTypeLegal(DstVT
)) {
5687 // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
5688 // if we can combine the bitcast with its source.
5689 if (SDValue Val
= CombineVMOVDRRCandidateWithVecOp(N
, DAG
))
5692 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Op
,
5693 DAG
.getConstant(0, dl
, MVT::i32
));
5694 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Op
,
5695 DAG
.getConstant(1, dl
, MVT::i32
));
5696 return DAG
.getNode(ISD::BITCAST
, dl
, DstVT
,
5697 DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
));
5700 // Turn f64->i64 into VMOVRRD.
5701 if (DstVT
== MVT::i64
&& TLI
.isTypeLegal(SrcVT
)) {
5703 if (DAG
.getDataLayout().isBigEndian() && SrcVT
.isVector() &&
5704 SrcVT
.getVectorNumElements() > 1)
5705 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5706 DAG
.getVTList(MVT::i32
, MVT::i32
),
5707 DAG
.getNode(ARMISD::VREV64
, dl
, SrcVT
, Op
));
5709 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5710 DAG
.getVTList(MVT::i32
, MVT::i32
), Op
);
5711 // Merge the pieces into a single i64 value.
5712 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Cvt
, Cvt
.getValue(1));
5718 /// getZeroVector - Returns a vector of specified type with all zero elements.
5719 /// Zero vectors are used to represent vector negation and in those cases
5720 /// will be implemented with the NEON VNEG instruction. However, VNEG does
5721 /// not support i64 elements, so sometimes the zero vectors will need to be
5722 /// explicitly constructed. Regardless, use a canonical VMOV to create the
5724 static SDValue
getZeroVector(EVT VT
, SelectionDAG
&DAG
, const SDLoc
&dl
) {
5725 assert(VT
.isVector() && "Expected a vector type");
5726 // The canonical modified immediate encoding of a zero vector is....0!
5727 SDValue EncodedVal
= DAG
.getTargetConstant(0, dl
, MVT::i32
);
5728 EVT VmovVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
5729 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, EncodedVal
);
5730 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
5733 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5734 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5735 SDValue
ARMTargetLowering::LowerShiftRightParts(SDValue Op
,
5736 SelectionDAG
&DAG
) const {
5737 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5738 EVT VT
= Op
.getValueType();
5739 unsigned VTBits
= VT
.getSizeInBits();
5741 SDValue ShOpLo
= Op
.getOperand(0);
5742 SDValue ShOpHi
= Op
.getOperand(1);
5743 SDValue ShAmt
= Op
.getOperand(2);
5745 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5746 unsigned Opc
= (Op
.getOpcode() == ISD::SRA_PARTS
) ? ISD::SRA
: ISD::SRL
;
5748 assert(Op
.getOpcode() == ISD::SRA_PARTS
|| Op
.getOpcode() == ISD::SRL_PARTS
);
5750 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5751 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
5752 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, ShAmt
);
5753 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
5754 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
5755 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, RevShAmt
);
5756 SDValue LoSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
5757 SDValue LoBigShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ExtraShAmt
);
5758 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5759 ISD::SETGE
, ARMcc
, DAG
, dl
);
5760 SDValue Lo
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
, LoBigShift
,
5763 SDValue HiSmallShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ShAmt
);
5764 SDValue HiBigShift
= Opc
== ISD::SRA
5765 ? DAG
.getNode(Opc
, dl
, VT
, ShOpHi
,
5766 DAG
.getConstant(VTBits
- 1, dl
, VT
))
5767 : DAG
.getConstant(0, dl
, VT
);
5768 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5769 ISD::SETGE
, ARMcc
, DAG
, dl
);
5770 SDValue Hi
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
,
5773 SDValue Ops
[2] = { Lo
, Hi
};
5774 return DAG
.getMergeValues(Ops
, dl
);
5777 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5778 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5779 SDValue
ARMTargetLowering::LowerShiftLeftParts(SDValue Op
,
5780 SelectionDAG
&DAG
) const {
5781 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5782 EVT VT
= Op
.getValueType();
5783 unsigned VTBits
= VT
.getSizeInBits();
5785 SDValue ShOpLo
= Op
.getOperand(0);
5786 SDValue ShOpHi
= Op
.getOperand(1);
5787 SDValue ShAmt
= Op
.getOperand(2);
5789 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5791 assert(Op
.getOpcode() == ISD::SHL_PARTS
);
5792 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5793 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
5794 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, RevShAmt
);
5795 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, ShAmt
);
5796 SDValue HiSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
5798 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
5799 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
5800 SDValue HiBigShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ExtraShAmt
);
5801 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5802 ISD::SETGE
, ARMcc
, DAG
, dl
);
5803 SDValue Hi
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
,
5806 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5807 ISD::SETGE
, ARMcc
, DAG
, dl
);
5808 SDValue LoSmallShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ShAmt
);
5809 SDValue Lo
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
,
5810 DAG
.getConstant(0, dl
, VT
), ARMcc
, CCR
, CmpLo
);
5812 SDValue Ops
[2] = { Lo
, Hi
};
5813 return DAG
.getMergeValues(Ops
, dl
);
5816 SDValue
ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op
,
5817 SelectionDAG
&DAG
) const {
5818 // The rounding mode is in bits 23:22 of the FPSCR.
5819 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
5820 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
5821 // so that the shift + and get folded into a bitfield extract.
5823 SDValue Ops
[] = { DAG
.getEntryNode(),
5824 DAG
.getConstant(Intrinsic::arm_get_fpscr
, dl
, MVT::i32
) };
5826 SDValue FPSCR
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, dl
, MVT::i32
, Ops
);
5827 SDValue FltRounds
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, FPSCR
,
5828 DAG
.getConstant(1U << 22, dl
, MVT::i32
));
5829 SDValue RMODE
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, FltRounds
,
5830 DAG
.getConstant(22, dl
, MVT::i32
));
5831 return DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RMODE
,
5832 DAG
.getConstant(3, dl
, MVT::i32
));
5835 static SDValue
LowerCTTZ(SDNode
*N
, SelectionDAG
&DAG
,
5836 const ARMSubtarget
*ST
) {
5838 EVT VT
= N
->getValueType(0);
5839 if (VT
.isVector() && ST
->hasNEON()) {
5841 // Compute the least significant set bit: LSB = X & -X
5842 SDValue X
= N
->getOperand(0);
5843 SDValue NX
= DAG
.getNode(ISD::SUB
, dl
, VT
, getZeroVector(VT
, DAG
, dl
), X
);
5844 SDValue LSB
= DAG
.getNode(ISD::AND
, dl
, VT
, X
, NX
);
5846 EVT ElemTy
= VT
.getVectorElementType();
5848 if (ElemTy
== MVT::i8
) {
5849 // Compute with: cttz(x) = ctpop(lsb - 1)
5850 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5851 DAG
.getTargetConstant(1, dl
, ElemTy
));
5852 SDValue Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
5853 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
5856 if ((ElemTy
== MVT::i16
|| ElemTy
== MVT::i32
) &&
5857 (N
->getOpcode() == ISD::CTTZ_ZERO_UNDEF
)) {
5858 // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
5859 unsigned NumBits
= ElemTy
.getSizeInBits();
5860 SDValue WidthMinus1
=
5861 DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5862 DAG
.getTargetConstant(NumBits
- 1, dl
, ElemTy
));
5863 SDValue CTLZ
= DAG
.getNode(ISD::CTLZ
, dl
, VT
, LSB
);
5864 return DAG
.getNode(ISD::SUB
, dl
, VT
, WidthMinus1
, CTLZ
);
5867 // Compute with: cttz(x) = ctpop(lsb - 1)
5871 if (ElemTy
== MVT::i64
) {
5872 // Load constant 0xffff'ffff'ffff'ffff to register.
5873 SDValue FF
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5874 DAG
.getTargetConstant(0x1eff, dl
, MVT::i32
));
5875 Bits
= DAG
.getNode(ISD::ADD
, dl
, VT
, LSB
, FF
);
5877 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5878 DAG
.getTargetConstant(1, dl
, ElemTy
));
5879 Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
5881 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
5884 if (!ST
->hasV6T2Ops())
5887 SDValue rbit
= DAG
.getNode(ISD::BITREVERSE
, dl
, VT
, N
->getOperand(0));
5888 return DAG
.getNode(ISD::CTLZ
, dl
, VT
, rbit
);
5891 static SDValue
LowerCTPOP(SDNode
*N
, SelectionDAG
&DAG
,
5892 const ARMSubtarget
*ST
) {
5893 EVT VT
= N
->getValueType(0);
5896 assert(ST
->hasNEON() && "Custom ctpop lowering requires NEON.");
5897 assert((VT
== MVT::v1i64
|| VT
== MVT::v2i64
|| VT
== MVT::v2i32
||
5898 VT
== MVT::v4i32
|| VT
== MVT::v4i16
|| VT
== MVT::v8i16
) &&
5899 "Unexpected type for custom ctpop lowering");
5901 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5902 EVT VT8Bit
= VT
.is64BitVector() ? MVT::v8i8
: MVT::v16i8
;
5903 SDValue Res
= DAG
.getBitcast(VT8Bit
, N
->getOperand(0));
5904 Res
= DAG
.getNode(ISD::CTPOP
, DL
, VT8Bit
, Res
);
5906 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
5907 unsigned EltSize
= 8;
5908 unsigned NumElts
= VT
.is64BitVector() ? 8 : 16;
5909 while (EltSize
!= VT
.getScalarSizeInBits()) {
5910 SmallVector
<SDValue
, 8> Ops
;
5911 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddlu
, DL
,
5912 TLI
.getPointerTy(DAG
.getDataLayout())));
5917 MVT WidenVT
= MVT::getVectorVT(MVT::getIntegerVT(EltSize
), NumElts
);
5918 Res
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, WidenVT
, Ops
);
5924 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
5925 /// operand of a vector shift operation, where all the elements of the
5926 /// build_vector must have the same constant integer value.
5927 static bool getVShiftImm(SDValue Op
, unsigned ElementBits
, int64_t &Cnt
) {
5928 // Ignore bit_converts.
5929 while (Op
.getOpcode() == ISD::BITCAST
)
5930 Op
= Op
.getOperand(0);
5931 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(Op
.getNode());
5932 APInt SplatBits
, SplatUndef
;
5933 unsigned SplatBitSize
;
5936 !BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
,
5938 SplatBitSize
> ElementBits
)
5940 Cnt
= SplatBits
.getSExtValue();
5944 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
5945 /// operand of a vector shift left operation. That value must be in the range:
5946 /// 0 <= Value < ElementBits for a left shift; or
5947 /// 0 <= Value <= ElementBits for a long left shift.
5948 static bool isVShiftLImm(SDValue Op
, EVT VT
, bool isLong
, int64_t &Cnt
) {
5949 assert(VT
.isVector() && "vector shift count is not a vector type");
5950 int64_t ElementBits
= VT
.getScalarSizeInBits();
5951 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
5953 return (Cnt
>= 0 && (isLong
? Cnt
- 1 : Cnt
) < ElementBits
);
5956 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
5957 /// operand of a vector shift right operation. For a shift opcode, the value
5958 /// is positive, but for an intrinsic the value count must be negative. The
5959 /// absolute value must be in the range:
5960 /// 1 <= |Value| <= ElementBits for a right shift; or
5961 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
5962 static bool isVShiftRImm(SDValue Op
, EVT VT
, bool isNarrow
, bool isIntrinsic
,
5964 assert(VT
.isVector() && "vector shift count is not a vector type");
5965 int64_t ElementBits
= VT
.getScalarSizeInBits();
5966 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
5969 return (Cnt
>= 1 && Cnt
<= (isNarrow
? ElementBits
/ 2 : ElementBits
));
5970 if (Cnt
>= -(isNarrow
? ElementBits
/ 2 : ElementBits
) && Cnt
<= -1) {
5977 static SDValue
LowerShift(SDNode
*N
, SelectionDAG
&DAG
,
5978 const ARMSubtarget
*ST
) {
5979 EVT VT
= N
->getValueType(0);
5986 // We essentially have two forms here. Shift by an immediate and shift by a
5987 // vector register (there are also shift by a gpr, but that is just handled
5988 // with a tablegen pattern). We cannot easily match shift by an immediate in
5989 // tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
5990 // For shifting by a vector, we don't have VSHR, only VSHL (which can be
5991 // signed or unsigned, and a negative shift indicates a shift right).
5992 if (N
->getOpcode() == ISD::SHL
) {
5993 if (isVShiftLImm(N
->getOperand(1), VT
, false, Cnt
))
5994 return DAG
.getNode(ARMISD::VSHLIMM
, dl
, VT
, N
->getOperand(0),
5995 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
5996 return DAG
.getNode(ARMISD::VSHLu
, dl
, VT
, N
->getOperand(0),
6000 assert((N
->getOpcode() == ISD::SRA
|| N
->getOpcode() == ISD::SRL
) &&
6001 "unexpected vector shift opcode");
6003 if (isVShiftRImm(N
->getOperand(1), VT
, false, false, Cnt
)) {
6004 unsigned VShiftOpc
=
6005 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHRsIMM
: ARMISD::VSHRuIMM
);
6006 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0),
6007 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
6010 // Other right shifts we don't have operations for (we use a shift left by a
6011 // negative number).
6012 EVT ShiftVT
= N
->getOperand(1).getValueType();
6013 SDValue NegatedCount
= DAG
.getNode(
6014 ISD::SUB
, dl
, ShiftVT
, getZeroVector(ShiftVT
, DAG
, dl
), N
->getOperand(1));
6015 unsigned VShiftOpc
=
6016 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHLs
: ARMISD::VSHLu
);
6017 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0), NegatedCount
);
6020 static SDValue
Expand64BitShift(SDNode
*N
, SelectionDAG
&DAG
,
6021 const ARMSubtarget
*ST
) {
6022 EVT VT
= N
->getValueType(0);
6025 // We can get here for a node like i32 = ISD::SHL i32, i64
6029 assert((N
->getOpcode() == ISD::SRL
|| N
->getOpcode() == ISD::SRA
||
6030 N
->getOpcode() == ISD::SHL
) &&
6031 "Unknown shift to lower!");
6033 unsigned ShOpc
= N
->getOpcode();
6034 if (ST
->hasMVEIntegerOps()) {
6035 SDValue ShAmt
= N
->getOperand(1);
6036 unsigned ShPartsOpc
= ARMISD::LSLL
;
6037 ConstantSDNode
*Con
= dyn_cast
<ConstantSDNode
>(ShAmt
);
6039 // If the shift amount is greater than 32 or has a greater bitwidth than 64
6040 // then do the default optimisation
6041 if (ShAmt
->getValueType(0).getSizeInBits() > 64 ||
6042 (Con
&& (Con
->getZExtValue() == 0 || Con
->getZExtValue() >= 32)))
6045 // Extract the lower 32 bits of the shift amount if it's not an i32
6046 if (ShAmt
->getValueType(0) != MVT::i32
)
6047 ShAmt
= DAG
.getZExtOrTrunc(ShAmt
, dl
, MVT::i32
);
6049 if (ShOpc
== ISD::SRL
) {
6051 // There is no t2LSRLr instruction so negate and perform an lsll if the
6052 // shift amount is in a register, emulating a right shift.
6053 ShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
6054 DAG
.getConstant(0, dl
, MVT::i32
), ShAmt
);
6056 // Else generate an lsrl on the immediate shift amount
6057 ShPartsOpc
= ARMISD::LSRL
;
6058 } else if (ShOpc
== ISD::SRA
)
6059 ShPartsOpc
= ARMISD::ASRL
;
6061 // Lower 32 bits of the destination/source
6062 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6063 DAG
.getConstant(0, dl
, MVT::i32
));
6064 // Upper 32 bits of the destination/source
6065 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6066 DAG
.getConstant(1, dl
, MVT::i32
));
6068 // Generate the shift operation as computed above
6069 Lo
= DAG
.getNode(ShPartsOpc
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
), Lo
, Hi
,
6071 // The upper 32 bits come from the second return value of lsll
6072 Hi
= SDValue(Lo
.getNode(), 1);
6073 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
6076 // We only lower SRA, SRL of 1 here, all others use generic lowering.
6077 if (!isOneConstant(N
->getOperand(1)) || N
->getOpcode() == ISD::SHL
)
6080 // If we are in thumb mode, we don't have RRX.
6081 if (ST
->isThumb1Only())
6084 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
6085 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6086 DAG
.getConstant(0, dl
, MVT::i32
));
6087 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6088 DAG
.getConstant(1, dl
, MVT::i32
));
6090 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
6091 // captures the result into a carry flag.
6092 unsigned Opc
= N
->getOpcode() == ISD::SRL
? ARMISD::SRL_FLAG
:ARMISD::SRA_FLAG
;
6093 Hi
= DAG
.getNode(Opc
, dl
, DAG
.getVTList(MVT::i32
, MVT::Glue
), Hi
);
6095 // The low part is an ARMISD::RRX operand, which shifts the carry in.
6096 Lo
= DAG
.getNode(ARMISD::RRX
, dl
, MVT::i32
, Lo
, Hi
.getValue(1));
6098 // Merge the pieces into a single i64 value.
6099 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
6102 static SDValue
LowerVSETCC(SDValue Op
, SelectionDAG
&DAG
,
6103 const ARMSubtarget
*ST
) {
6104 bool Invert
= false;
6106 unsigned Opc
= ARMCC::AL
;
6108 SDValue Op0
= Op
.getOperand(0);
6109 SDValue Op1
= Op
.getOperand(1);
6110 SDValue CC
= Op
.getOperand(2);
6111 EVT VT
= Op
.getValueType();
6112 ISD::CondCode SetCCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
6117 CmpVT
= Op0
.getValueType().changeVectorElementTypeToInteger();
6119 assert(ST
->hasMVEIntegerOps() &&
6120 "No hardware support for integer vector comparison!");
6122 if (Op
.getValueType().getVectorElementType() != MVT::i1
)
6125 // Make sure we expand floating point setcc to scalar if we do not have
6126 // mve.fp, so that we can handle them from there.
6127 if (Op0
.getValueType().isFloatingPoint() && !ST
->hasMVEFloatOps())
6133 if (Op0
.getValueType().getVectorElementType() == MVT::i64
&&
6134 (SetCCOpcode
== ISD::SETEQ
|| SetCCOpcode
== ISD::SETNE
)) {
6135 // Special-case integer 64-bit equality comparisons. They aren't legal,
6136 // but they can be lowered with a few vector instructions.
6137 unsigned CmpElements
= CmpVT
.getVectorNumElements() * 2;
6138 EVT SplitVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, CmpElements
);
6139 SDValue CastOp0
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op0
);
6140 SDValue CastOp1
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op1
);
6141 SDValue Cmp
= DAG
.getNode(ISD::SETCC
, dl
, SplitVT
, CastOp0
, CastOp1
,
6142 DAG
.getCondCode(ISD::SETEQ
));
6143 SDValue Reversed
= DAG
.getNode(ARMISD::VREV64
, dl
, SplitVT
, Cmp
);
6144 SDValue Merged
= DAG
.getNode(ISD::AND
, dl
, SplitVT
, Cmp
, Reversed
);
6145 Merged
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, Merged
);
6146 if (SetCCOpcode
== ISD::SETNE
)
6147 Merged
= DAG
.getNOT(dl
, Merged
, CmpVT
);
6148 Merged
= DAG
.getSExtOrTrunc(Merged
, dl
, VT
);
6152 if (CmpVT
.getVectorElementType() == MVT::i64
)
6153 // 64-bit comparisons are not legal in general.
6156 if (Op1
.getValueType().isFloatingPoint()) {
6157 switch (SetCCOpcode
) {
6158 default: llvm_unreachable("Illegal FP comparison");
6161 if (ST
->hasMVEFloatOps()) {
6162 Opc
= ARMCC::NE
; break;
6164 Invert
= true; LLVM_FALLTHROUGH
;
6167 case ISD::SETEQ
: Opc
= ARMCC::EQ
; break;
6169 case ISD::SETLT
: Swap
= true; LLVM_FALLTHROUGH
;
6171 case ISD::SETGT
: Opc
= ARMCC::GT
; break;
6173 case ISD::SETLE
: Swap
= true; LLVM_FALLTHROUGH
;
6175 case ISD::SETGE
: Opc
= ARMCC::GE
; break;
6176 case ISD::SETUGE
: Swap
= true; LLVM_FALLTHROUGH
;
6177 case ISD::SETULE
: Invert
= true; Opc
= ARMCC::GT
; break;
6178 case ISD::SETUGT
: Swap
= true; LLVM_FALLTHROUGH
;
6179 case ISD::SETULT
: Invert
= true; Opc
= ARMCC::GE
; break;
6180 case ISD::SETUEQ
: Invert
= true; LLVM_FALLTHROUGH
;
6182 // Expand this to (OLT | OGT).
6183 SDValue TmpOp0
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op1
, Op0
,
6184 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6185 SDValue TmpOp1
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6186 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6187 SDValue Result
= DAG
.getNode(ISD::OR
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
6189 Result
= DAG
.getNOT(dl
, Result
, VT
);
6192 case ISD::SETUO
: Invert
= true; LLVM_FALLTHROUGH
;
6194 // Expand this to (OLT | OGE).
6195 SDValue TmpOp0
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op1
, Op0
,
6196 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6197 SDValue TmpOp1
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6198 DAG
.getConstant(ARMCC::GE
, dl
, MVT::i32
));
6199 SDValue Result
= DAG
.getNode(ISD::OR
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
6201 Result
= DAG
.getNOT(dl
, Result
, VT
);
6206 // Integer comparisons.
6207 switch (SetCCOpcode
) {
6208 default: llvm_unreachable("Illegal integer comparison");
6210 if (ST
->hasMVEIntegerOps()) {
6211 Opc
= ARMCC::NE
; break;
6213 Invert
= true; LLVM_FALLTHROUGH
;
6215 case ISD::SETEQ
: Opc
= ARMCC::EQ
; break;
6216 case ISD::SETLT
: Swap
= true; LLVM_FALLTHROUGH
;
6217 case ISD::SETGT
: Opc
= ARMCC::GT
; break;
6218 case ISD::SETLE
: Swap
= true; LLVM_FALLTHROUGH
;
6219 case ISD::SETGE
: Opc
= ARMCC::GE
; break;
6220 case ISD::SETULT
: Swap
= true; LLVM_FALLTHROUGH
;
6221 case ISD::SETUGT
: Opc
= ARMCC::HI
; break;
6222 case ISD::SETULE
: Swap
= true; LLVM_FALLTHROUGH
;
6223 case ISD::SETUGE
: Opc
= ARMCC::HS
; break;
6226 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
6227 if (ST
->hasNEON() && Opc
== ARMCC::EQ
) {
6229 if (ISD::isBuildVectorAllZeros(Op1
.getNode()))
6231 else if (ISD::isBuildVectorAllZeros(Op0
.getNode()))
6234 // Ignore bitconvert.
6235 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::BITCAST
)
6236 AndOp
= AndOp
.getOperand(0);
6238 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::AND
) {
6239 Op0
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(0));
6240 Op1
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(1));
6241 SDValue Result
= DAG
.getNode(ARMISD::VTST
, dl
, CmpVT
, Op0
, Op1
);
6243 Result
= DAG
.getNOT(dl
, Result
, VT
);
6250 std::swap(Op0
, Op1
);
6252 // If one of the operands is a constant vector zero, attempt to fold the
6253 // comparison to a specialized compare-against-zero form.
6255 if (ISD::isBuildVectorAllZeros(Op1
.getNode()))
6257 else if (ISD::isBuildVectorAllZeros(Op0
.getNode())) {
6258 if (Opc
== ARMCC::GE
)
6260 else if (Opc
== ARMCC::GT
)
6266 if (SingleOp
.getNode()) {
6267 Result
= DAG
.getNode(ARMISD::VCMPZ
, dl
, CmpVT
, SingleOp
,
6268 DAG
.getConstant(Opc
, dl
, MVT::i32
));
6270 Result
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6271 DAG
.getConstant(Opc
, dl
, MVT::i32
));
6274 Result
= DAG
.getSExtOrTrunc(Result
, dl
, VT
);
6277 Result
= DAG
.getNOT(dl
, Result
, VT
);
6282 static SDValue
LowerSETCCCARRY(SDValue Op
, SelectionDAG
&DAG
) {
6283 SDValue LHS
= Op
.getOperand(0);
6284 SDValue RHS
= Op
.getOperand(1);
6285 SDValue Carry
= Op
.getOperand(2);
6286 SDValue Cond
= Op
.getOperand(3);
6289 assert(LHS
.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
6291 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
6292 // have to invert the carry first.
6293 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
6294 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
6295 // This converts the boolean value carry into the carry flag.
6296 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
6298 SDVTList VTs
= DAG
.getVTList(LHS
.getValueType(), MVT::i32
);
6299 SDValue Cmp
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, LHS
, RHS
, Carry
);
6301 SDValue FVal
= DAG
.getConstant(0, DL
, MVT::i32
);
6302 SDValue TVal
= DAG
.getConstant(1, DL
, MVT::i32
);
6303 SDValue ARMcc
= DAG
.getConstant(
6304 IntCCToARMCC(cast
<CondCodeSDNode
>(Cond
)->get()), DL
, MVT::i32
);
6305 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
6306 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), DL
, ARM::CPSR
,
6307 Cmp
.getValue(1), SDValue());
6308 return DAG
.getNode(ARMISD::CMOV
, DL
, Op
.getValueType(), FVal
, TVal
, ARMcc
,
6309 CCR
, Chain
.getValue(1));
6312 /// isVMOVModifiedImm - Check if the specified splat value corresponds to a
6313 /// valid vector constant for a NEON or MVE instruction with a "modified
6314 /// immediate" operand (e.g., VMOV). If so, return the encoded value.
6315 static SDValue
isVMOVModifiedImm(uint64_t SplatBits
, uint64_t SplatUndef
,
6316 unsigned SplatBitSize
, SelectionDAG
&DAG
,
6317 const SDLoc
&dl
, EVT
&VT
, bool is128Bits
,
6318 VMOVModImmType type
) {
6319 unsigned OpCmode
, Imm
;
6321 // SplatBitSize is set to the smallest size that splats the vector, so a
6322 // zero vector will always have SplatBitSize == 8. However, NEON modified
6323 // immediate instructions others than VMOV do not support the 8-bit encoding
6324 // of a zero vector, and the default encoding of zero is supposed to be the
6329 switch (SplatBitSize
) {
6331 if (type
!= VMOVModImm
)
6333 // Any 1-byte value is OK. Op=0, Cmode=1110.
6334 assert((SplatBits
& ~0xff) == 0 && "one byte splat value is too big");
6337 VT
= is128Bits
? MVT::v16i8
: MVT::v8i8
;
6341 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
6342 VT
= is128Bits
? MVT::v8i16
: MVT::v4i16
;
6343 if ((SplatBits
& ~0xff) == 0) {
6344 // Value = 0x00nn: Op=x, Cmode=100x.
6349 if ((SplatBits
& ~0xff00) == 0) {
6350 // Value = 0xnn00: Op=x, Cmode=101x.
6352 Imm
= SplatBits
>> 8;
6358 // NEON's 32-bit VMOV supports splat values where:
6359 // * only one byte is nonzero, or
6360 // * the least significant byte is 0xff and the second byte is nonzero, or
6361 // * the least significant 2 bytes are 0xff and the third is nonzero.
6362 VT
= is128Bits
? MVT::v4i32
: MVT::v2i32
;
6363 if ((SplatBits
& ~0xff) == 0) {
6364 // Value = 0x000000nn: Op=x, Cmode=000x.
6369 if ((SplatBits
& ~0xff00) == 0) {
6370 // Value = 0x0000nn00: Op=x, Cmode=001x.
6372 Imm
= SplatBits
>> 8;
6375 if ((SplatBits
& ~0xff0000) == 0) {
6376 // Value = 0x00nn0000: Op=x, Cmode=010x.
6378 Imm
= SplatBits
>> 16;
6381 if ((SplatBits
& ~0xff000000) == 0) {
6382 // Value = 0xnn000000: Op=x, Cmode=011x.
6384 Imm
= SplatBits
>> 24;
6388 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
6389 if (type
== OtherModImm
) return SDValue();
6391 if ((SplatBits
& ~0xffff) == 0 &&
6392 ((SplatBits
| SplatUndef
) & 0xff) == 0xff) {
6393 // Value = 0x0000nnff: Op=x, Cmode=1100.
6395 Imm
= SplatBits
>> 8;
6399 // cmode == 0b1101 is not supported for MVE VMVN
6400 if (type
== MVEVMVNModImm
)
6403 if ((SplatBits
& ~0xffffff) == 0 &&
6404 ((SplatBits
| SplatUndef
) & 0xffff) == 0xffff) {
6405 // Value = 0x00nnffff: Op=x, Cmode=1101.
6407 Imm
= SplatBits
>> 16;
6411 // Note: there are a few 32-bit splat values (specifically: 00ffff00,
6412 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
6413 // VMOV.I32. A (very) minor optimization would be to replicate the value
6414 // and fall through here to test for a valid 64-bit splat. But, then the
6415 // caller would also need to check and handle the change in size.
6419 if (type
!= VMOVModImm
)
6421 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
6422 uint64_t BitMask
= 0xff;
6424 unsigned ImmMask
= 1;
6426 for (int ByteNum
= 0; ByteNum
< 8; ++ByteNum
) {
6427 if (((SplatBits
| SplatUndef
) & BitMask
) == BitMask
) {
6430 } else if ((SplatBits
& BitMask
) != 0) {
6437 if (DAG
.getDataLayout().isBigEndian())
6438 // swap higher and lower 32 bit word
6439 Imm
= ((Imm
& 0xf) << 4) | ((Imm
& 0xf0) >> 4);
6441 // Op=1, Cmode=1110.
6443 VT
= is128Bits
? MVT::v2i64
: MVT::v1i64
;
6448 llvm_unreachable("unexpected size for isVMOVModifiedImm");
6451 unsigned EncodedVal
= ARM_AM::createVMOVModImm(OpCmode
, Imm
);
6452 return DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
);
6455 SDValue
ARMTargetLowering::LowerConstantFP(SDValue Op
, SelectionDAG
&DAG
,
6456 const ARMSubtarget
*ST
) const {
6457 EVT VT
= Op
.getValueType();
6458 bool IsDouble
= (VT
== MVT::f64
);
6459 ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Op
);
6460 const APFloat
&FPVal
= CFP
->getValueAPF();
6462 // Prevent floating-point constants from using literal loads
6463 // when execute-only is enabled.
6464 if (ST
->genExecuteOnly()) {
6465 // If we can represent the constant as an immediate, don't lower it
6466 if (isFPImmLegal(FPVal
, VT
))
6468 // Otherwise, construct as integer, and move to float register
6469 APInt INTVal
= FPVal
.bitcastToAPInt();
6471 switch (VT
.getSimpleVT().SimpleTy
) {
6473 llvm_unreachable("Unknown floating point type!");
6476 SDValue Lo
= DAG
.getConstant(INTVal
.trunc(32), DL
, MVT::i32
);
6477 SDValue Hi
= DAG
.getConstant(INTVal
.lshr(32).trunc(32), DL
, MVT::i32
);
6478 if (!ST
->isLittle())
6480 return DAG
.getNode(ARMISD::VMOVDRR
, DL
, MVT::f64
, Lo
, Hi
);
6483 return DAG
.getNode(ARMISD::VMOVSR
, DL
, VT
,
6484 DAG
.getConstant(INTVal
, DL
, MVT::i32
));
6488 if (!ST
->hasVFP3Base())
6491 // Use the default (constant pool) lowering for double constants when we have
6493 if (IsDouble
&& !Subtarget
->hasFP64())
6496 // Try splatting with a VMOV.f32...
6497 int ImmVal
= IsDouble
? ARM_AM::getFP64Imm(FPVal
) : ARM_AM::getFP32Imm(FPVal
);
6500 if (IsDouble
|| !ST
->useNEONForSinglePrecisionFP()) {
6501 // We have code in place to select a valid ConstantFP already, no need to
6506 // It's a float and we are trying to use NEON operations where
6507 // possible. Lower it to a splat followed by an extract.
6509 SDValue NewVal
= DAG
.getTargetConstant(ImmVal
, DL
, MVT::i32
);
6510 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVFPIMM
, DL
, MVT::v2f32
,
6512 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecConstant
,
6513 DAG
.getConstant(0, DL
, MVT::i32
));
6516 // The rest of our options are NEON only, make sure that's allowed before
6518 if (!ST
->hasNEON() || (!IsDouble
&& !ST
->useNEONForSinglePrecisionFP()))
6522 uint64_t iVal
= FPVal
.bitcastToAPInt().getZExtValue();
6524 // It wouldn't really be worth bothering for doubles except for one very
6525 // important value, which does happen to match: 0.0. So make sure we don't do
6527 if (IsDouble
&& (iVal
& 0xffffffff) != (iVal
>> 32))
6530 // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
6531 SDValue NewVal
= isVMOVModifiedImm(iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
),
6532 VMovVT
, false, VMOVModImm
);
6533 if (NewVal
!= SDValue()) {
6535 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVIMM
, DL
, VMovVT
,
6538 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
6540 // It's a float: cast and extract a vector element.
6541 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
6543 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
6544 DAG
.getConstant(0, DL
, MVT::i32
));
6547 // Finally, try a VMVN.i32
6548 NewVal
= isVMOVModifiedImm(~iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
), VMovVT
,
6550 if (NewVal
!= SDValue()) {
6552 SDValue VecConstant
= DAG
.getNode(ARMISD::VMVNIMM
, DL
, VMovVT
, NewVal
);
6555 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
6557 // It's a float: cast and extract a vector element.
6558 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
6560 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
6561 DAG
.getConstant(0, DL
, MVT::i32
));
6567 // check if an VEXT instruction can handle the shuffle mask when the
6568 // vector sources of the shuffle are the same.
6569 static bool isSingletonVEXTMask(ArrayRef
<int> M
, EVT VT
, unsigned &Imm
) {
6570 unsigned NumElts
= VT
.getVectorNumElements();
6572 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6578 // If this is a VEXT shuffle, the immediate value is the index of the first
6579 // element. The other shuffle indices must be the successive elements after
6581 unsigned ExpectedElt
= Imm
;
6582 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6583 // Increment the expected index. If it wraps around, just follow it
6584 // back to index zero and keep going.
6586 if (ExpectedElt
== NumElts
)
6589 if (M
[i
] < 0) continue; // ignore UNDEF indices
6590 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6597 static bool isVEXTMask(ArrayRef
<int> M
, EVT VT
,
6598 bool &ReverseVEXT
, unsigned &Imm
) {
6599 unsigned NumElts
= VT
.getVectorNumElements();
6600 ReverseVEXT
= false;
6602 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6608 // If this is a VEXT shuffle, the immediate value is the index of the first
6609 // element. The other shuffle indices must be the successive elements after
6611 unsigned ExpectedElt
= Imm
;
6612 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6613 // Increment the expected index. If it wraps around, it may still be
6614 // a VEXT but the source vectors must be swapped.
6616 if (ExpectedElt
== NumElts
* 2) {
6621 if (M
[i
] < 0) continue; // ignore UNDEF indices
6622 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6626 // Adjust the index value if the source operands will be swapped.
6633 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
6634 /// instruction with the specified blocksize. (The order of the elements
6635 /// within each block of the vector is reversed.)
6636 static bool isVREVMask(ArrayRef
<int> M
, EVT VT
, unsigned BlockSize
) {
6637 assert((BlockSize
==16 || BlockSize
==32 || BlockSize
==64) &&
6638 "Only possible block sizes for VREV are: 16, 32, 64");
6640 unsigned EltSz
= VT
.getScalarSizeInBits();
6644 unsigned NumElts
= VT
.getVectorNumElements();
6645 unsigned BlockElts
= M
[0] + 1;
6646 // If the first shuffle index is UNDEF, be optimistic.
6648 BlockElts
= BlockSize
/ EltSz
;
6650 if (BlockSize
<= EltSz
|| BlockSize
!= BlockElts
* EltSz
)
6653 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6654 if (M
[i
] < 0) continue; // ignore UNDEF indices
6655 if ((unsigned) M
[i
] != (i
- i
%BlockElts
) + (BlockElts
- 1 - i
%BlockElts
))
6662 static bool isVTBLMask(ArrayRef
<int> M
, EVT VT
) {
6663 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
6664 // range, then 0 is placed into the resulting vector. So pretty much any mask
6665 // of 8 elements can work here.
6666 return VT
== MVT::v8i8
&& M
.size() == 8;
6669 static unsigned SelectPairHalf(unsigned Elements
, ArrayRef
<int> Mask
,
6671 if (Mask
.size() == Elements
* 2)
6672 return Index
/ Elements
;
6673 return Mask
[Index
] == 0 ? 0 : 1;
6676 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
6677 // checking that pairs of elements in the shuffle mask represent the same index
6678 // in each vector, incrementing the expected index by 2 at each step.
6679 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
6680 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
6682 // WhichResult gives the offset for each element in the mask based on which
6683 // of the two results it belongs to.
6685 // The transpose can be represented either as:
6686 // result1 = shufflevector v1, v2, result1_shuffle_mask
6687 // result2 = shufflevector v1, v2, result2_shuffle_mask
6688 // where v1/v2 and the shuffle masks have the same number of elements
6689 // (here WhichResult (see below) indicates which result is being checked)
6692 // results = shufflevector v1, v2, shuffle_mask
6693 // where both results are returned in one vector and the shuffle mask has twice
6694 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
6695 // want to check the low half and high half of the shuffle mask as if it were
6697 static bool isVTRNMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6698 unsigned EltSz
= VT
.getScalarSizeInBits();
6702 unsigned NumElts
= VT
.getVectorNumElements();
6703 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6706 // If the mask is twice as long as the input vector then we need to check the
6707 // upper and lower parts of the mask with a matching value for WhichResult
6708 // FIXME: A mask with only even values will be rejected in case the first
6709 // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
6710 // M[0] is used to determine WhichResult
6711 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6712 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6713 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6714 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
6715 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ NumElts
+ WhichResult
))
6720 if (M
.size() == NumElts
*2)
6726 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
6727 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6728 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
6729 static bool isVTRN_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6730 unsigned EltSz
= VT
.getScalarSizeInBits();
6734 unsigned NumElts
= VT
.getVectorNumElements();
6735 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6738 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6739 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6740 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6741 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
6742 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ WhichResult
))
6747 if (M
.size() == NumElts
*2)
6753 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
6754 // that the mask elements are either all even and in steps of size 2 or all odd
6755 // and in steps of size 2.
6756 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
6757 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
6759 // Requires similar checks to that of isVTRNMask with
6760 // respect the how results are returned.
6761 static bool isVUZPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6762 unsigned EltSz
= VT
.getScalarSizeInBits();
6766 unsigned NumElts
= VT
.getVectorNumElements();
6767 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6770 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6771 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6772 for (unsigned j
= 0; j
< NumElts
; ++j
) {
6773 if (M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != 2 * j
+ WhichResult
)
6778 if (M
.size() == NumElts
*2)
6781 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6782 if (VT
.is64BitVector() && EltSz
== 32)
6788 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
6789 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6790 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
6791 static bool isVUZP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6792 unsigned EltSz
= VT
.getScalarSizeInBits();
6796 unsigned NumElts
= VT
.getVectorNumElements();
6797 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6800 unsigned Half
= NumElts
/ 2;
6801 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6802 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6803 for (unsigned j
= 0; j
< NumElts
; j
+= Half
) {
6804 unsigned Idx
= WhichResult
;
6805 for (unsigned k
= 0; k
< Half
; ++k
) {
6806 int MIdx
= M
[i
+ j
+ k
];
6807 if (MIdx
>= 0 && (unsigned) MIdx
!= Idx
)
6814 if (M
.size() == NumElts
*2)
6817 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6818 if (VT
.is64BitVector() && EltSz
== 32)
6824 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
6825 // that pairs of elements of the shufflemask represent the same index in each
6826 // vector incrementing sequentially through the vectors.
6827 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
6828 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
6830 // Requires similar checks to that of isVTRNMask with respect the how results
6832 static bool isVZIPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6833 unsigned EltSz
= VT
.getScalarSizeInBits();
6837 unsigned NumElts
= VT
.getVectorNumElements();
6838 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6841 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6842 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6843 unsigned Idx
= WhichResult
* NumElts
/ 2;
6844 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6845 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
6846 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
+ NumElts
))
6852 if (M
.size() == NumElts
*2)
6855 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6856 if (VT
.is64BitVector() && EltSz
== 32)
6862 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
6863 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6864 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
6865 static bool isVZIP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6866 unsigned EltSz
= VT
.getScalarSizeInBits();
6870 unsigned NumElts
= VT
.getVectorNumElements();
6871 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6874 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6875 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6876 unsigned Idx
= WhichResult
* NumElts
/ 2;
6877 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6878 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
6879 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
))
6885 if (M
.size() == NumElts
*2)
6888 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6889 if (VT
.is64BitVector() && EltSz
== 32)
6895 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
6896 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
6897 static unsigned isNEONTwoResultShuffleMask(ArrayRef
<int> ShuffleMask
, EVT VT
,
6898 unsigned &WhichResult
,
6901 if (isVTRNMask(ShuffleMask
, VT
, WhichResult
))
6902 return ARMISD::VTRN
;
6903 if (isVUZPMask(ShuffleMask
, VT
, WhichResult
))
6904 return ARMISD::VUZP
;
6905 if (isVZIPMask(ShuffleMask
, VT
, WhichResult
))
6906 return ARMISD::VZIP
;
6909 if (isVTRN_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6910 return ARMISD::VTRN
;
6911 if (isVUZP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6912 return ARMISD::VUZP
;
6913 if (isVZIP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6914 return ARMISD::VZIP
;
6919 /// \return true if this is a reverse operation on an vector.
6920 static bool isReverseMask(ArrayRef
<int> M
, EVT VT
) {
6921 unsigned NumElts
= VT
.getVectorNumElements();
6922 // Make sure the mask has the right size.
6923 if (NumElts
!= M
.size())
6926 // Look for <15, ..., 3, -1, 1, 0>.
6927 for (unsigned i
= 0; i
!= NumElts
; ++i
)
6928 if (M
[i
] >= 0 && M
[i
] != (int) (NumElts
- 1 - i
))
6934 static bool isVMOVNMask(ArrayRef
<int> M
, EVT VT
, bool Top
) {
6935 unsigned NumElts
= VT
.getVectorNumElements();
6936 // Make sure the mask has the right size.
6937 if (NumElts
!= M
.size() || (VT
!= MVT::v8i16
&& VT
!= MVT::v16i8
))
6941 // Look for <0, N, 2, N+2, 4, N+4, ..>.
6942 // This inserts Input2 into Input1
6944 // Look for <0, N+1, 2, N+3, 4, N+5, ..>
6945 // This inserts Input1 into Input2
6946 unsigned Offset
= Top
? 0 : 1;
6947 for (unsigned i
= 0; i
< NumElts
; i
+=2) {
6948 if (M
[i
] >= 0 && M
[i
] != (int)i
)
6950 if (M
[i
+1] >= 0 && M
[i
+1] != (int)(NumElts
+ i
+ Offset
))
6957 // If N is an integer constant that can be moved into a register in one
6958 // instruction, return an SDValue of such a constant (will become a MOV
6959 // instruction). Otherwise return null.
6960 static SDValue
IsSingleInstrConstant(SDValue N
, SelectionDAG
&DAG
,
6961 const ARMSubtarget
*ST
, const SDLoc
&dl
) {
6963 if (!isa
<ConstantSDNode
>(N
))
6965 Val
= cast
<ConstantSDNode
>(N
)->getZExtValue();
6967 if (ST
->isThumb1Only()) {
6968 if (Val
<= 255 || ~Val
<= 255)
6969 return DAG
.getConstant(Val
, dl
, MVT::i32
);
6971 if (ARM_AM::getSOImmVal(Val
) != -1 || ARM_AM::getSOImmVal(~Val
) != -1)
6972 return DAG
.getConstant(Val
, dl
, MVT::i32
);
6977 static SDValue
LowerBUILD_VECTOR_i1(SDValue Op
, SelectionDAG
&DAG
,
6978 const ARMSubtarget
*ST
) {
6980 EVT VT
= Op
.getValueType();
6982 assert(ST
->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");
6984 unsigned NumElts
= VT
.getVectorNumElements();
6986 unsigned BitsPerBool
;
6990 } else if (NumElts
== 8) {
6993 } else if (NumElts
== 16) {
6999 // If this is a single value copied into all lanes (a splat), we can just sign
7000 // extend that single value
7001 SDValue FirstOp
= Op
.getOperand(0);
7002 if (!isa
<ConstantSDNode
>(FirstOp
) &&
7003 std::all_of(std::next(Op
->op_begin()), Op
->op_end(),
7004 [&FirstOp
](SDUse
&U
) {
7005 return U
.get().isUndef() || U
.get() == FirstOp
;
7007 SDValue Ext
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, MVT::i32
, FirstOp
,
7008 DAG
.getValueType(MVT::i1
));
7009 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, Op
.getValueType(), Ext
);
7012 // First create base with bits set where known
7013 unsigned Bits32
= 0;
7014 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7015 SDValue V
= Op
.getOperand(i
);
7016 if (!isa
<ConstantSDNode
>(V
) && !V
.isUndef())
7018 bool BitSet
= V
.isUndef() ? false : cast
<ConstantSDNode
>(V
)->getZExtValue();
7020 Bits32
|= BoolMask
<< (i
* BitsPerBool
);
7023 // Add in unknown nodes
7024 SDValue Base
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
,
7025 DAG
.getConstant(Bits32
, dl
, MVT::i32
));
7026 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7027 SDValue V
= Op
.getOperand(i
);
7028 if (isa
<ConstantSDNode
>(V
) || V
.isUndef())
7030 Base
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Base
, V
,
7031 DAG
.getConstant(i
, dl
, MVT::i32
));
7037 // If this is a case we can't handle, return null and let the default
7038 // expansion code take care of it.
7039 SDValue
ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
,
7040 const ARMSubtarget
*ST
) const {
7041 BuildVectorSDNode
*BVN
= cast
<BuildVectorSDNode
>(Op
.getNode());
7043 EVT VT
= Op
.getValueType();
7045 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
7046 return LowerBUILD_VECTOR_i1(Op
, DAG
, ST
);
7048 APInt SplatBits
, SplatUndef
;
7049 unsigned SplatBitSize
;
7051 if (BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
7052 if (SplatUndef
.isAllOnesValue())
7053 return DAG
.getUNDEF(VT
);
7055 if ((ST
->hasNEON() && SplatBitSize
<= 64) ||
7056 (ST
->hasMVEIntegerOps() && SplatBitSize
<= 32)) {
7057 // Check if an immediate VMOV works.
7059 SDValue Val
= isVMOVModifiedImm(SplatBits
.getZExtValue(),
7060 SplatUndef
.getZExtValue(), SplatBitSize
,
7061 DAG
, dl
, VmovVT
, VT
.is128BitVector(),
7064 if (Val
.getNode()) {
7065 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, Val
);
7066 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
7069 // Try an immediate VMVN.
7070 uint64_t NegatedImm
= (~SplatBits
).getZExtValue();
7071 Val
= isVMOVModifiedImm(
7072 NegatedImm
, SplatUndef
.getZExtValue(), SplatBitSize
,
7073 DAG
, dl
, VmovVT
, VT
.is128BitVector(),
7074 ST
->hasMVEIntegerOps() ? MVEVMVNModImm
: VMVNModImm
);
7075 if (Val
.getNode()) {
7076 SDValue Vmov
= DAG
.getNode(ARMISD::VMVNIMM
, dl
, VmovVT
, Val
);
7077 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
7080 // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
7081 if ((VT
== MVT::v2f32
|| VT
== MVT::v4f32
) && SplatBitSize
== 32) {
7082 int ImmVal
= ARM_AM::getFP32Imm(SplatBits
);
7084 SDValue Val
= DAG
.getTargetConstant(ImmVal
, dl
, MVT::i32
);
7085 return DAG
.getNode(ARMISD::VMOVFPIMM
, dl
, VT
, Val
);
7091 // Scan through the operands to see if only one value is used.
7093 // As an optimisation, even if more than one value is used it may be more
7094 // profitable to splat with one value then change some lanes.
7096 // Heuristically we decide to do this if the vector has a "dominant" value,
7097 // defined as splatted to more than half of the lanes.
7098 unsigned NumElts
= VT
.getVectorNumElements();
7099 bool isOnlyLowElement
= true;
7100 bool usesOnlyOneValue
= true;
7101 bool hasDominantValue
= false;
7102 bool isConstant
= true;
7104 // Map of the number of times a particular SDValue appears in the
7106 DenseMap
<SDValue
, unsigned> ValueCounts
;
7108 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7109 SDValue V
= Op
.getOperand(i
);
7113 isOnlyLowElement
= false;
7114 if (!isa
<ConstantFPSDNode
>(V
) && !isa
<ConstantSDNode
>(V
))
7117 ValueCounts
.insert(std::make_pair(V
, 0));
7118 unsigned &Count
= ValueCounts
[V
];
7120 // Is this value dominant? (takes up more than half of the lanes)
7121 if (++Count
> (NumElts
/ 2)) {
7122 hasDominantValue
= true;
7126 if (ValueCounts
.size() != 1)
7127 usesOnlyOneValue
= false;
7128 if (!Value
.getNode() && !ValueCounts
.empty())
7129 Value
= ValueCounts
.begin()->first
;
7131 if (ValueCounts
.empty())
7132 return DAG
.getUNDEF(VT
);
7134 // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
7135 // Keep going if we are hitting this case.
7136 if (isOnlyLowElement
&& !ISD::isNormalLoad(Value
.getNode()))
7137 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Value
);
7139 unsigned EltSize
= VT
.getScalarSizeInBits();
7141 // Use VDUP for non-constant splats. For f32 constant splats, reduce to
7142 // i32 and try again.
7143 if (hasDominantValue
&& EltSize
<= 32) {
7147 // If we are VDUPing a value that comes directly from a vector, that will
7148 // cause an unnecessary move to and from a GPR, where instead we could
7149 // just use VDUPLANE. We can only do this if the lane being extracted
7150 // is at a constant index, as the VDUP from lane instructions only have
7151 // constant-index forms.
7152 ConstantSDNode
*constIndex
;
7153 if (Value
->getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
7154 (constIndex
= dyn_cast
<ConstantSDNode
>(Value
->getOperand(1)))) {
7155 // We need to create a new undef vector to use for the VDUPLANE if the
7156 // size of the vector from which we get the value is different than the
7157 // size of the vector that we need to create. We will insert the element
7158 // such that the register coalescer will remove unnecessary copies.
7159 if (VT
!= Value
->getOperand(0).getValueType()) {
7160 unsigned index
= constIndex
->getAPIntValue().getLimitedValue() %
7161 VT
.getVectorNumElements();
7162 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7163 DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, DAG
.getUNDEF(VT
),
7164 Value
, DAG
.getConstant(index
, dl
, MVT::i32
)),
7165 DAG
.getConstant(index
, dl
, MVT::i32
));
7167 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7168 Value
->getOperand(0), Value
->getOperand(1));
7170 N
= DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Value
);
7172 if (!usesOnlyOneValue
) {
7173 // The dominant value was splatted as 'N', but we now have to insert
7174 // all differing elements.
7175 for (unsigned I
= 0; I
< NumElts
; ++I
) {
7176 if (Op
.getOperand(I
) == Value
)
7178 SmallVector
<SDValue
, 3> Ops
;
7180 Ops
.push_back(Op
.getOperand(I
));
7181 Ops
.push_back(DAG
.getConstant(I
, dl
, MVT::i32
));
7182 N
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Ops
);
7187 if (VT
.getVectorElementType().isFloatingPoint()) {
7188 SmallVector
<SDValue
, 8> Ops
;
7189 MVT FVT
= VT
.getVectorElementType().getSimpleVT();
7190 assert(FVT
== MVT::f32
|| FVT
== MVT::f16
);
7191 MVT IVT
= (FVT
== MVT::f32
) ? MVT::i32
: MVT::i16
;
7192 for (unsigned i
= 0; i
< NumElts
; ++i
)
7193 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, IVT
,
7195 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), IVT
, NumElts
);
7196 SDValue Val
= DAG
.getBuildVector(VecVT
, dl
, Ops
);
7197 Val
= LowerBUILD_VECTOR(Val
, DAG
, ST
);
7199 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7201 if (usesOnlyOneValue
) {
7202 SDValue Val
= IsSingleInstrConstant(Value
, DAG
, ST
, dl
);
7203 if (isConstant
&& Val
.getNode())
7204 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Val
);
7208 // If all elements are constants and the case above didn't get hit, fall back
7209 // to the default expansion, which will generate a load from the constant
7214 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
7216 SDValue shuffle
= ReconstructShuffle(Op
, DAG
);
7217 if (shuffle
!= SDValue())
7221 if (ST
->hasNEON() && VT
.is128BitVector() && VT
!= MVT::v2f64
&& VT
!= MVT::v4f32
) {
7222 // If we haven't found an efficient lowering, try splitting a 128-bit vector
7223 // into two 64-bit vectors; we might discover a better way to lower it.
7224 SmallVector
<SDValue
, 64> Ops(Op
->op_begin(), Op
->op_begin() + NumElts
);
7225 EVT ExtVT
= VT
.getVectorElementType();
7226 EVT HVT
= EVT::getVectorVT(*DAG
.getContext(), ExtVT
, NumElts
/ 2);
7228 DAG
.getBuildVector(HVT
, dl
, makeArrayRef(&Ops
[0], NumElts
/ 2));
7229 if (Lower
.getOpcode() == ISD::BUILD_VECTOR
)
7230 Lower
= LowerBUILD_VECTOR(Lower
, DAG
, ST
);
7231 SDValue Upper
= DAG
.getBuildVector(
7232 HVT
, dl
, makeArrayRef(&Ops
[NumElts
/ 2], NumElts
/ 2));
7233 if (Upper
.getOpcode() == ISD::BUILD_VECTOR
)
7234 Upper
= LowerBUILD_VECTOR(Upper
, DAG
, ST
);
7236 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Lower
, Upper
);
7239 // Vectors with 32- or 64-bit elements can be built by directly assigning
7240 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
7241 // will be legalized.
7242 if (EltSize
>= 32) {
7243 // Do the expansion with floating-point types, since that is what the VFP
7244 // registers are defined to use, and since i64 is not legal.
7245 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
7246 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
7247 SmallVector
<SDValue
, 8> Ops
;
7248 for (unsigned i
= 0; i
< NumElts
; ++i
)
7249 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, EltVT
, Op
.getOperand(i
)));
7250 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
7251 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7254 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
7255 // know the default expansion would otherwise fall back on something even
7256 // worse. For a vector with one or two non-undef values, that's
7257 // scalar_to_vector for the elements followed by a shuffle (provided the
7258 // shuffle is valid for the target) and materialization element by element
7259 // on the stack followed by a load for everything else.
7260 if (!isConstant
&& !usesOnlyOneValue
) {
7261 SDValue Vec
= DAG
.getUNDEF(VT
);
7262 for (unsigned i
= 0 ; i
< NumElts
; ++i
) {
7263 SDValue V
= Op
.getOperand(i
);
7266 SDValue LaneIdx
= DAG
.getConstant(i
, dl
, MVT::i32
);
7267 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Vec
, V
, LaneIdx
);
7275 // Gather data to see if the operation can be modelled as a
7276 // shuffle in combination with VEXTs.
7277 SDValue
ARMTargetLowering::ReconstructShuffle(SDValue Op
,
7278 SelectionDAG
&DAG
) const {
7279 assert(Op
.getOpcode() == ISD::BUILD_VECTOR
&& "Unknown opcode!");
7281 EVT VT
= Op
.getValueType();
7282 unsigned NumElts
= VT
.getVectorNumElements();
7284 struct ShuffleSourceInfo
{
7286 unsigned MinElt
= std::numeric_limits
<unsigned>::max();
7287 unsigned MaxElt
= 0;
7289 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
7290 // be compatible with the shuffle we intend to construct. As a result
7291 // ShuffleVec will be some sliding window into the original Vec.
7294 // Code should guarantee that element i in Vec starts at element "WindowBase
7295 // + i * WindowScale in ShuffleVec".
7297 int WindowScale
= 1;
7299 ShuffleSourceInfo(SDValue Vec
) : Vec(Vec
), ShuffleVec(Vec
) {}
7301 bool operator ==(SDValue OtherVec
) { return Vec
== OtherVec
; }
7304 // First gather all vectors used as an immediate source for this BUILD_VECTOR
7306 SmallVector
<ShuffleSourceInfo
, 2> Sources
;
7307 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7308 SDValue V
= Op
.getOperand(i
);
7311 else if (V
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
) {
7312 // A shuffle can only come from building a vector from various
7313 // elements of other vectors.
7315 } else if (!isa
<ConstantSDNode
>(V
.getOperand(1))) {
7316 // Furthermore, shuffles require a constant mask, whereas extractelts
7317 // accept variable indices.
7321 // Add this element source to the list if it's not already there.
7322 SDValue SourceVec
= V
.getOperand(0);
7323 auto Source
= llvm::find(Sources
, SourceVec
);
7324 if (Source
== Sources
.end())
7325 Source
= Sources
.insert(Sources
.end(), ShuffleSourceInfo(SourceVec
));
7327 // Update the minimum and maximum lane number seen.
7328 unsigned EltNo
= cast
<ConstantSDNode
>(V
.getOperand(1))->getZExtValue();
7329 Source
->MinElt
= std::min(Source
->MinElt
, EltNo
);
7330 Source
->MaxElt
= std::max(Source
->MaxElt
, EltNo
);
7333 // Currently only do something sane when at most two source vectors
7335 if (Sources
.size() > 2)
7338 // Find out the smallest element size among result and two sources, and use
7339 // it as element size to build the shuffle_vector.
7340 EVT SmallestEltTy
= VT
.getVectorElementType();
7341 for (auto &Source
: Sources
) {
7342 EVT SrcEltTy
= Source
.Vec
.getValueType().getVectorElementType();
7343 if (SrcEltTy
.bitsLT(SmallestEltTy
))
7344 SmallestEltTy
= SrcEltTy
;
7346 unsigned ResMultiplier
=
7347 VT
.getScalarSizeInBits() / SmallestEltTy
.getSizeInBits();
7348 NumElts
= VT
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
7349 EVT ShuffleVT
= EVT::getVectorVT(*DAG
.getContext(), SmallestEltTy
, NumElts
);
7351 // If the source vector is too wide or too narrow, we may nevertheless be able
7352 // to construct a compatible shuffle either by concatenating it with UNDEF or
7353 // extracting a suitable range of elements.
7354 for (auto &Src
: Sources
) {
7355 EVT SrcVT
= Src
.ShuffleVec
.getValueType();
7357 if (SrcVT
.getSizeInBits() == VT
.getSizeInBits())
7360 // This stage of the search produces a source with the same element type as
7361 // the original, but with a total width matching the BUILD_VECTOR output.
7362 EVT EltVT
= SrcVT
.getVectorElementType();
7363 unsigned NumSrcElts
= VT
.getSizeInBits() / EltVT
.getSizeInBits();
7364 EVT DestVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumSrcElts
);
7366 if (SrcVT
.getSizeInBits() < VT
.getSizeInBits()) {
7367 if (2 * SrcVT
.getSizeInBits() != VT
.getSizeInBits())
7369 // We can pad out the smaller vector for free, so if it's part of a
7372 DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, DestVT
, Src
.ShuffleVec
,
7373 DAG
.getUNDEF(Src
.ShuffleVec
.getValueType()));
7377 if (SrcVT
.getSizeInBits() != 2 * VT
.getSizeInBits())
7380 if (Src
.MaxElt
- Src
.MinElt
>= NumSrcElts
) {
7381 // Span too large for a VEXT to cope
7385 if (Src
.MinElt
>= NumSrcElts
) {
7386 // The extraction can just take the second half
7388 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7389 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
7390 Src
.WindowBase
= -NumSrcElts
;
7391 } else if (Src
.MaxElt
< NumSrcElts
) {
7392 // The extraction can just take the first half
7394 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7395 DAG
.getConstant(0, dl
, MVT::i32
));
7397 // An actual VEXT is needed
7399 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7400 DAG
.getConstant(0, dl
, MVT::i32
));
7402 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7403 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
7405 Src
.ShuffleVec
= DAG
.getNode(ARMISD::VEXT
, dl
, DestVT
, VEXTSrc1
,
7407 DAG
.getConstant(Src
.MinElt
, dl
, MVT::i32
));
7408 Src
.WindowBase
= -Src
.MinElt
;
7412 // Another possible incompatibility occurs from the vector element types. We
7413 // can fix this by bitcasting the source vectors to the same type we intend
7415 for (auto &Src
: Sources
) {
7416 EVT SrcEltTy
= Src
.ShuffleVec
.getValueType().getVectorElementType();
7417 if (SrcEltTy
== SmallestEltTy
)
7419 assert(ShuffleVT
.getVectorElementType() == SmallestEltTy
);
7420 Src
.ShuffleVec
= DAG
.getNode(ISD::BITCAST
, dl
, ShuffleVT
, Src
.ShuffleVec
);
7421 Src
.WindowScale
= SrcEltTy
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
7422 Src
.WindowBase
*= Src
.WindowScale
;
7425 // Final sanity check before we try to actually produce a shuffle.
7426 LLVM_DEBUG(for (auto Src
7428 assert(Src
.ShuffleVec
.getValueType() == ShuffleVT
););
7430 // The stars all align, our next step is to produce the mask for the shuffle.
7431 SmallVector
<int, 8> Mask(ShuffleVT
.getVectorNumElements(), -1);
7432 int BitsPerShuffleLane
= ShuffleVT
.getScalarSizeInBits();
7433 for (unsigned i
= 0; i
< VT
.getVectorNumElements(); ++i
) {
7434 SDValue Entry
= Op
.getOperand(i
);
7435 if (Entry
.isUndef())
7438 auto Src
= llvm::find(Sources
, Entry
.getOperand(0));
7439 int EltNo
= cast
<ConstantSDNode
>(Entry
.getOperand(1))->getSExtValue();
7441 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
7442 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
7444 EVT OrigEltTy
= Entry
.getOperand(0).getValueType().getVectorElementType();
7445 int BitsDefined
= std::min(OrigEltTy
.getSizeInBits(),
7446 VT
.getScalarSizeInBits());
7447 int LanesDefined
= BitsDefined
/ BitsPerShuffleLane
;
7449 // This source is expected to fill ResMultiplier lanes of the final shuffle,
7450 // starting at the appropriate offset.
7451 int *LaneMask
= &Mask
[i
* ResMultiplier
];
7453 int ExtractBase
= EltNo
* Src
->WindowScale
+ Src
->WindowBase
;
7454 ExtractBase
+= NumElts
* (Src
- Sources
.begin());
7455 for (int j
= 0; j
< LanesDefined
; ++j
)
7456 LaneMask
[j
] = ExtractBase
+ j
;
7460 // We can't handle more than two sources. This should have already
7461 // been checked before this point.
7462 assert(Sources
.size() <= 2 && "Too many sources!");
7464 SDValue ShuffleOps
[] = { DAG
.getUNDEF(ShuffleVT
), DAG
.getUNDEF(ShuffleVT
) };
7465 for (unsigned i
= 0; i
< Sources
.size(); ++i
)
7466 ShuffleOps
[i
] = Sources
[i
].ShuffleVec
;
7468 SDValue Shuffle
= buildLegalVectorShuffle(ShuffleVT
, dl
, ShuffleOps
[0],
7469 ShuffleOps
[1], Mask
, DAG
);
7472 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Shuffle
);
7475 enum ShuffleOpCodes
{
7476 OP_COPY
= 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7485 OP_VUZPL
, // VUZP, left result
7486 OP_VUZPR
, // VUZP, right result
7487 OP_VZIPL
, // VZIP, left result
7488 OP_VZIPR
, // VZIP, right result
7489 OP_VTRNL
, // VTRN, left result
7490 OP_VTRNR
// VTRN, right result
7493 static bool isLegalMVEShuffleOp(unsigned PFEntry
) {
7494 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
7507 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7508 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7509 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7510 /// are assumed to be legal.
7511 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef
<int> M
, EVT VT
) const {
7512 if (VT
.getVectorNumElements() == 4 &&
7513 (VT
.is128BitVector() || VT
.is64BitVector())) {
7514 unsigned PFIndexes
[4];
7515 for (unsigned i
= 0; i
!= 4; ++i
) {
7519 PFIndexes
[i
] = M
[i
];
7522 // Compute the index in the perfect shuffle table.
7523 unsigned PFTableIndex
=
7524 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
7525 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7526 unsigned Cost
= (PFEntry
>> 30);
7528 if (Cost
<= 4 && (Subtarget
->hasNEON() || isLegalMVEShuffleOp(PFEntry
)))
7532 bool ReverseVEXT
, isV_UNDEF
;
7533 unsigned Imm
, WhichResult
;
7535 unsigned EltSize
= VT
.getScalarSizeInBits();
7536 if (EltSize
>= 32 ||
7537 ShuffleVectorSDNode::isSplatMask(&M
[0], VT
) ||
7538 ShuffleVectorInst::isIdentityMask(M
) ||
7539 isVREVMask(M
, VT
, 64) ||
7540 isVREVMask(M
, VT
, 32) ||
7541 isVREVMask(M
, VT
, 16))
7543 else if (Subtarget
->hasNEON() &&
7544 (isVEXTMask(M
, VT
, ReverseVEXT
, Imm
) ||
7545 isVTBLMask(M
, VT
) ||
7546 isNEONTwoResultShuffleMask(M
, VT
, WhichResult
, isV_UNDEF
)))
7548 else if (Subtarget
->hasNEON() && (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) &&
7549 isReverseMask(M
, VT
))
7551 else if (Subtarget
->hasMVEIntegerOps() &&
7552 (isVMOVNMask(M
, VT
, 0) || isVMOVNMask(M
, VT
, 1)))
7558 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7559 /// the specified operations to build the shuffle.
7560 static SDValue
GeneratePerfectShuffle(unsigned PFEntry
, SDValue LHS
,
7561 SDValue RHS
, SelectionDAG
&DAG
,
7563 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
7564 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
7565 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
7567 if (OpNum
== OP_COPY
) {
7568 if (LHSID
== (1*9+2)*9+3) return LHS
;
7569 assert(LHSID
== ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7573 SDValue OpLHS
, OpRHS
;
7574 OpLHS
= GeneratePerfectShuffle(PerfectShuffleTable
[LHSID
], LHS
, RHS
, DAG
, dl
);
7575 OpRHS
= GeneratePerfectShuffle(PerfectShuffleTable
[RHSID
], LHS
, RHS
, DAG
, dl
);
7576 EVT VT
= OpLHS
.getValueType();
7579 default: llvm_unreachable("Unknown shuffle opcode!");
7581 // VREV divides the vector in half and swaps within the half.
7582 if (VT
.getVectorElementType() == MVT::i32
||
7583 VT
.getVectorElementType() == MVT::f32
)
7584 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, OpLHS
);
7585 // vrev <4 x i16> -> VREV32
7586 if (VT
.getVectorElementType() == MVT::i16
)
7587 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, OpLHS
);
7588 // vrev <4 x i8> -> VREV16
7589 assert(VT
.getVectorElementType() == MVT::i8
);
7590 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, OpLHS
);
7595 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7596 OpLHS
, DAG
.getConstant(OpNum
-OP_VDUP0
, dl
, MVT::i32
));
7600 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
,
7602 DAG
.getConstant(OpNum
- OP_VEXT1
+ 1, dl
, MVT::i32
));
7605 return DAG
.getNode(ARMISD::VUZP
, dl
, DAG
.getVTList(VT
, VT
),
7606 OpLHS
, OpRHS
).getValue(OpNum
-OP_VUZPL
);
7609 return DAG
.getNode(ARMISD::VZIP
, dl
, DAG
.getVTList(VT
, VT
),
7610 OpLHS
, OpRHS
).getValue(OpNum
-OP_VZIPL
);
7613 return DAG
.getNode(ARMISD::VTRN
, dl
, DAG
.getVTList(VT
, VT
),
7614 OpLHS
, OpRHS
).getValue(OpNum
-OP_VTRNL
);
7618 static SDValue
LowerVECTOR_SHUFFLEv8i8(SDValue Op
,
7619 ArrayRef
<int> ShuffleMask
,
7620 SelectionDAG
&DAG
) {
7621 // Check to see if we can use the VTBL instruction.
7622 SDValue V1
= Op
.getOperand(0);
7623 SDValue V2
= Op
.getOperand(1);
7626 SmallVector
<SDValue
, 8> VTBLMask
;
7627 for (ArrayRef
<int>::iterator
7628 I
= ShuffleMask
.begin(), E
= ShuffleMask
.end(); I
!= E
; ++I
)
7629 VTBLMask
.push_back(DAG
.getConstant(*I
, DL
, MVT::i32
));
7631 if (V2
.getNode()->isUndef())
7632 return DAG
.getNode(ARMISD::VTBL1
, DL
, MVT::v8i8
, V1
,
7633 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
7635 return DAG
.getNode(ARMISD::VTBL2
, DL
, MVT::v8i8
, V1
, V2
,
7636 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
7639 static SDValue
LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op
,
7640 SelectionDAG
&DAG
) {
7642 SDValue OpLHS
= Op
.getOperand(0);
7643 EVT VT
= OpLHS
.getValueType();
7645 assert((VT
== MVT::v8i16
|| VT
== MVT::v16i8
) &&
7646 "Expect an v8i16/v16i8 type");
7647 OpLHS
= DAG
.getNode(ARMISD::VREV64
, DL
, VT
, OpLHS
);
7648 // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
7649 // extract the first 8 bytes into the top double word and the last 8 bytes
7650 // into the bottom double word. The v8i16 case is similar.
7651 unsigned ExtractNum
= (VT
== MVT::v16i8
) ? 8 : 4;
7652 return DAG
.getNode(ARMISD::VEXT
, DL
, VT
, OpLHS
, OpLHS
,
7653 DAG
.getConstant(ExtractNum
, DL
, MVT::i32
));
7656 static EVT
getVectorTyFromPredicateVector(EVT VT
) {
7657 switch (VT
.getSimpleVT().SimpleTy
) {
7665 llvm_unreachable("Unexpected vector predicate type");
7669 static SDValue
PromoteMVEPredVector(SDLoc dl
, SDValue Pred
, EVT VT
,
7670 SelectionDAG
&DAG
) {
7671 // Converting from boolean predicates to integers involves creating a vector
7672 // of all ones or all zeroes and selecting the lanes based upon the real
7675 DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl
, MVT::i32
);
7676 AllOnes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v16i8
, AllOnes
);
7679 DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl
, MVT::i32
);
7680 AllZeroes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v16i8
, AllZeroes
);
7682 // Get full vector type from predicate type
7683 EVT NewVT
= getVectorTyFromPredicateVector(VT
);
7686 // If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
7687 // this to a v16i1. This cannot be done with an ordinary bitcast because the
7688 // sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
7689 // since we know in hardware the sizes are really the same.
7690 if (VT
!= MVT::v16i1
)
7691 RecastV1
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::v16i1
, Pred
);
7695 // Select either all ones or zeroes depending upon the real predicate bits.
7696 SDValue PredAsVector
=
7697 DAG
.getNode(ISD::VSELECT
, dl
, MVT::v16i8
, RecastV1
, AllOnes
, AllZeroes
);
7699 // Recast our new predicate-as-integer v16i8 vector into something
7700 // appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
7701 return DAG
.getNode(ISD::BITCAST
, dl
, NewVT
, PredAsVector
);
7704 static SDValue
LowerVECTOR_SHUFFLE_i1(SDValue Op
, SelectionDAG
&DAG
,
7705 const ARMSubtarget
*ST
) {
7706 EVT VT
= Op
.getValueType();
7707 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
7708 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
7710 assert(ST
->hasMVEIntegerOps() &&
7711 "No support for vector shuffle of boolean predicates");
7713 SDValue V1
= Op
.getOperand(0);
7715 if (isReverseMask(ShuffleMask
, VT
)) {
7716 SDValue cast
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, V1
);
7717 SDValue rbit
= DAG
.getNode(ISD::BITREVERSE
, dl
, MVT::i32
, cast
);
7718 SDValue srl
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, rbit
,
7719 DAG
.getConstant(16, dl
, MVT::i32
));
7720 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
, srl
);
7723 // Until we can come up with optimised cases for every single vector
7724 // shuffle in existence we have chosen the least painful strategy. This is
7725 // to essentially promote the boolean predicate to a 8-bit integer, where
7726 // each predicate represents a byte. Then we fall back on a normal integer
7727 // vector shuffle and convert the result back into a predicate vector. In
7728 // many cases the generated code might be even better than scalar code
7729 // operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
7730 // fields in a register into 8 other arbitrary 2-bit fields!
7731 SDValue PredAsVector
= PromoteMVEPredVector(dl
, V1
, VT
, DAG
);
7732 EVT NewVT
= PredAsVector
.getValueType();
7735 SDValue Shuffled
= DAG
.getVectorShuffle(NewVT
, dl
, PredAsVector
,
7736 DAG
.getUNDEF(NewVT
), ShuffleMask
);
7738 // Now return the result of comparing the shuffled vector with zero,
7739 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7740 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, Shuffled
,
7741 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
7744 static SDValue
LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
,
7745 const ARMSubtarget
*ST
) {
7746 SDValue V1
= Op
.getOperand(0);
7747 SDValue V2
= Op
.getOperand(1);
7749 EVT VT
= Op
.getValueType();
7750 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
7751 unsigned EltSize
= VT
.getScalarSizeInBits();
7753 if (ST
->hasMVEIntegerOps() && EltSize
== 1)
7754 return LowerVECTOR_SHUFFLE_i1(Op
, DAG
, ST
);
7756 // Convert shuffles that are directly supported on NEON to target-specific
7757 // DAG nodes, instead of keeping them as shuffles and matching them again
7758 // during code selection. This is more efficient and avoids the possibility
7759 // of inconsistencies between legalization and selection.
7760 // FIXME: floating-point vectors should be canonicalized to integer vectors
7761 // of the same time so that they get CSEd properly.
7762 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
7764 if (EltSize
<= 32) {
7765 if (SVN
->isSplat()) {
7766 int Lane
= SVN
->getSplatIndex();
7767 // If this is undef splat, generate it via "just" vdup, if possible.
7768 if (Lane
== -1) Lane
= 0;
7770 // Test if V1 is a SCALAR_TO_VECTOR.
7771 if (Lane
== 0 && V1
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
7772 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
7774 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
7775 // (and probably will turn into a SCALAR_TO_VECTOR once legalization
7777 if (Lane
== 0 && V1
.getOpcode() == ISD::BUILD_VECTOR
&&
7778 !isa
<ConstantSDNode
>(V1
.getOperand(0))) {
7779 bool IsScalarToVector
= true;
7780 for (unsigned i
= 1, e
= V1
.getNumOperands(); i
!= e
; ++i
)
7781 if (!V1
.getOperand(i
).isUndef()) {
7782 IsScalarToVector
= false;
7785 if (IsScalarToVector
)
7786 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
7788 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
, V1
,
7789 DAG
.getConstant(Lane
, dl
, MVT::i32
));
7792 bool ReverseVEXT
= false;
7794 if (ST
->hasNEON() && isVEXTMask(ShuffleMask
, VT
, ReverseVEXT
, Imm
)) {
7797 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V2
,
7798 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7801 if (isVREVMask(ShuffleMask
, VT
, 64))
7802 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, V1
);
7803 if (isVREVMask(ShuffleMask
, VT
, 32))
7804 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, V1
);
7805 if (isVREVMask(ShuffleMask
, VT
, 16))
7806 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, V1
);
7808 if (ST
->hasNEON() && V2
->isUndef() && isSingletonVEXTMask(ShuffleMask
, VT
, Imm
)) {
7809 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V1
,
7810 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7813 // Check for Neon shuffles that modify both input vectors in place.
7814 // If both results are used, i.e., if there are two shuffles with the same
7815 // source operands and with masks corresponding to both results of one of
7816 // these operations, DAG memoization will ensure that a single node is
7817 // used for both shuffles.
7818 unsigned WhichResult
= 0;
7819 bool isV_UNDEF
= false;
7820 if (ST
->hasNEON()) {
7821 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
7822 ShuffleMask
, VT
, WhichResult
, isV_UNDEF
)) {
7825 return DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(VT
, VT
), V1
, V2
)
7826 .getValue(WhichResult
);
7829 if (ST
->hasMVEIntegerOps()) {
7830 if (isVMOVNMask(ShuffleMask
, VT
, 0))
7831 return DAG
.getNode(ARMISD::VMOVN
, dl
, VT
, V2
, V1
,
7832 DAG
.getConstant(0, dl
, MVT::i32
));
7833 if (isVMOVNMask(ShuffleMask
, VT
, 1))
7834 return DAG
.getNode(ARMISD::VMOVN
, dl
, VT
, V1
, V2
,
7835 DAG
.getConstant(1, dl
, MVT::i32
));
7838 // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
7839 // shuffles that produce a result larger than their operands with:
7840 // shuffle(concat(v1, undef), concat(v2, undef))
7842 // shuffle(concat(v1, v2), undef)
7843 // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
7845 // This is useful in the general case, but there are special cases where
7846 // native shuffles produce larger results: the two-result ops.
7848 // Look through the concat when lowering them:
7849 // shuffle(concat(v1, v2), undef)
7851 // concat(VZIP(v1, v2):0, :1)
7853 if (ST
->hasNEON() && V1
->getOpcode() == ISD::CONCAT_VECTORS
&& V2
->isUndef()) {
7854 SDValue SubV1
= V1
->getOperand(0);
7855 SDValue SubV2
= V1
->getOperand(1);
7856 EVT SubVT
= SubV1
.getValueType();
7858 // We expect these to have been canonicalized to -1.
7859 assert(llvm::all_of(ShuffleMask
, [&](int i
) {
7860 return i
< (int)VT
.getVectorNumElements();
7861 }) && "Unexpected shuffle index into UNDEF operand!");
7863 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
7864 ShuffleMask
, SubVT
, WhichResult
, isV_UNDEF
)) {
7867 assert((WhichResult
== 0) &&
7868 "In-place shuffle of concat can only have one result!");
7869 SDValue Res
= DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(SubVT
, SubVT
),
7871 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Res
.getValue(0),
7877 // If the shuffle is not directly supported and it has 4 elements, use
7878 // the PerfectShuffle-generated table to synthesize it from other shuffles.
7879 unsigned NumElts
= VT
.getVectorNumElements();
7881 unsigned PFIndexes
[4];
7882 for (unsigned i
= 0; i
!= 4; ++i
) {
7883 if (ShuffleMask
[i
] < 0)
7886 PFIndexes
[i
] = ShuffleMask
[i
];
7889 // Compute the index in the perfect shuffle table.
7890 unsigned PFTableIndex
=
7891 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
7892 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7893 unsigned Cost
= (PFEntry
>> 30);
7897 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7898 else if (isLegalMVEShuffleOp(PFEntry
)) {
7899 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
7900 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
7901 unsigned PFEntryLHS
= PerfectShuffleTable
[LHSID
];
7902 unsigned PFEntryRHS
= PerfectShuffleTable
[RHSID
];
7903 if (isLegalMVEShuffleOp(PFEntryLHS
) && isLegalMVEShuffleOp(PFEntryRHS
))
7904 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7909 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
7910 if (EltSize
>= 32) {
7911 // Do the expansion with floating-point types, since that is what the VFP
7912 // registers are defined to use, and since i64 is not legal.
7913 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
7914 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
7915 V1
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V1
);
7916 V2
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V2
);
7917 SmallVector
<SDValue
, 8> Ops
;
7918 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7919 if (ShuffleMask
[i
] < 0)
7920 Ops
.push_back(DAG
.getUNDEF(EltVT
));
7922 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
,
7923 ShuffleMask
[i
] < (int)NumElts
? V1
: V2
,
7924 DAG
.getConstant(ShuffleMask
[i
] & (NumElts
-1),
7927 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
7928 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7931 if (ST
->hasNEON() && (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) && isReverseMask(ShuffleMask
, VT
))
7932 return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op
, DAG
);
7934 if (ST
->hasNEON() && VT
== MVT::v8i8
)
7935 if (SDValue NewOp
= LowerVECTOR_SHUFFLEv8i8(Op
, ShuffleMask
, DAG
))
7941 static SDValue
LowerINSERT_VECTOR_ELT_i1(SDValue Op
, SelectionDAG
&DAG
,
7942 const ARMSubtarget
*ST
) {
7943 EVT VecVT
= Op
.getOperand(0).getValueType();
7946 assert(ST
->hasMVEIntegerOps() &&
7947 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
7950 DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Op
->getOperand(0));
7951 unsigned Lane
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
7952 unsigned LaneWidth
=
7953 getVectorTyFromPredicateVector(VecVT
).getScalarSizeInBits() / 8;
7954 unsigned Mask
= ((1 << LaneWidth
) - 1) << Lane
* LaneWidth
;
7955 SDValue Ext
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, MVT::i32
,
7956 Op
.getOperand(1), DAG
.getValueType(MVT::i1
));
7957 SDValue BFI
= DAG
.getNode(ARMISD::BFI
, dl
, MVT::i32
, Conv
, Ext
,
7958 DAG
.getConstant(~Mask
, dl
, MVT::i32
));
7959 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, Op
.getValueType(), BFI
);
7962 SDValue
ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op
,
7963 SelectionDAG
&DAG
) const {
7964 // INSERT_VECTOR_ELT is legal only for immediate indexes.
7965 SDValue Lane
= Op
.getOperand(2);
7966 if (!isa
<ConstantSDNode
>(Lane
))
7969 SDValue Elt
= Op
.getOperand(1);
7970 EVT EltVT
= Elt
.getValueType();
7972 if (Subtarget
->hasMVEIntegerOps() &&
7973 Op
.getValueType().getScalarSizeInBits() == 1)
7974 return LowerINSERT_VECTOR_ELT_i1(Op
, DAG
, Subtarget
);
7976 if (getTypeAction(*DAG
.getContext(), EltVT
) ==
7977 TargetLowering::TypePromoteFloat
) {
7978 // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
7979 // but the type system will try to do that if we don't intervene.
7980 // Reinterpret any such vector-element insertion as one with the
7981 // corresponding integer types.
7985 EVT IEltVT
= MVT::getIntegerVT(EltVT
.getScalarSizeInBits());
7986 assert(getTypeAction(*DAG
.getContext(), IEltVT
) !=
7987 TargetLowering::TypePromoteFloat
);
7989 SDValue VecIn
= Op
.getOperand(0);
7990 EVT VecVT
= VecIn
.getValueType();
7991 EVT IVecVT
= EVT::getVectorVT(*DAG
.getContext(), IEltVT
,
7992 VecVT
.getVectorNumElements());
7994 SDValue IElt
= DAG
.getNode(ISD::BITCAST
, dl
, IEltVT
, Elt
);
7995 SDValue IVecIn
= DAG
.getNode(ISD::BITCAST
, dl
, IVecVT
, VecIn
);
7996 SDValue IVecOut
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, IVecVT
,
7997 IVecIn
, IElt
, Lane
);
7998 return DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, IVecOut
);
8004 static SDValue
LowerEXTRACT_VECTOR_ELT_i1(SDValue Op
, SelectionDAG
&DAG
,
8005 const ARMSubtarget
*ST
) {
8006 EVT VecVT
= Op
.getOperand(0).getValueType();
8009 assert(ST
->hasMVEIntegerOps() &&
8010 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
8013 DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Op
->getOperand(0));
8014 unsigned Lane
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
8015 unsigned LaneWidth
=
8016 getVectorTyFromPredicateVector(VecVT
).getScalarSizeInBits() / 8;
8017 SDValue Shift
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, Conv
,
8018 DAG
.getConstant(Lane
* LaneWidth
, dl
, MVT::i32
));
8022 static SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
,
8023 const ARMSubtarget
*ST
) {
8024 // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
8025 SDValue Lane
= Op
.getOperand(1);
8026 if (!isa
<ConstantSDNode
>(Lane
))
8029 SDValue Vec
= Op
.getOperand(0);
8030 EVT VT
= Vec
.getValueType();
8032 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
8033 return LowerEXTRACT_VECTOR_ELT_i1(Op
, DAG
, ST
);
8035 if (Op
.getValueType() == MVT::i32
&& Vec
.getScalarValueSizeInBits() < 32) {
8037 return DAG
.getNode(ARMISD::VGETLANEu
, dl
, MVT::i32
, Vec
, Lane
);
8043 static SDValue
LowerCONCAT_VECTORS_i1(SDValue Op
, SelectionDAG
&DAG
,
8044 const ARMSubtarget
*ST
) {
8045 SDValue V1
= Op
.getOperand(0);
8046 SDValue V2
= Op
.getOperand(1);
8048 EVT VT
= Op
.getValueType();
8049 EVT Op1VT
= V1
.getValueType();
8050 EVT Op2VT
= V2
.getValueType();
8051 unsigned NumElts
= VT
.getVectorNumElements();
8053 assert(Op1VT
== Op2VT
&& "Operand types don't match!");
8054 assert(VT
.getScalarSizeInBits() == 1 &&
8055 "Unexpected custom CONCAT_VECTORS lowering");
8056 assert(ST
->hasMVEIntegerOps() &&
8057 "CONCAT_VECTORS lowering only supported for MVE");
8059 SDValue NewV1
= PromoteMVEPredVector(dl
, V1
, Op1VT
, DAG
);
8060 SDValue NewV2
= PromoteMVEPredVector(dl
, V2
, Op2VT
, DAG
);
8062 // We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
8063 // promoted to v8i16, etc.
8065 MVT ElType
= getVectorTyFromPredicateVector(VT
).getScalarType().getSimpleVT();
8067 // Extract the vector elements from Op1 and Op2 one by one and truncate them
8068 // to be the right size for the destination. For example, if Op1 is v4i1 then
8069 // the promoted vector is v4i32. The result of concatentation gives a v8i1,
8070 // which when promoted is v8i16. That means each i32 element from Op1 needs
8071 // truncating to i16 and inserting in the result.
8072 EVT ConcatVT
= MVT::getVectorVT(ElType
, NumElts
);
8073 SDValue ConVec
= DAG
.getNode(ISD::UNDEF
, dl
, ConcatVT
);
8074 auto ExractInto
= [&DAG
, &dl
](SDValue NewV
, SDValue ConVec
, unsigned &j
) {
8075 EVT NewVT
= NewV
.getValueType();
8076 EVT ConcatVT
= ConVec
.getValueType();
8077 for (unsigned i
= 0, e
= NewVT
.getVectorNumElements(); i
< e
; i
++, j
++) {
8078 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, NewV
,
8079 DAG
.getIntPtrConstant(i
, dl
));
8080 ConVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, ConcatVT
, ConVec
, Elt
,
8081 DAG
.getConstant(j
, dl
, MVT::i32
));
8086 ConVec
= ExractInto(NewV1
, ConVec
, j
);
8087 ConVec
= ExractInto(NewV2
, ConVec
, j
);
8089 // Now return the result of comparing the subvector with zero,
8090 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8091 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, ConVec
,
8092 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
8095 static SDValue
LowerCONCAT_VECTORS(SDValue Op
, SelectionDAG
&DAG
,
8096 const ARMSubtarget
*ST
) {
8097 EVT VT
= Op
->getValueType(0);
8098 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
8099 return LowerCONCAT_VECTORS_i1(Op
, DAG
, ST
);
8101 // The only time a CONCAT_VECTORS operation can have legal types is when
8102 // two 64-bit vectors are concatenated to a 128-bit vector.
8103 assert(Op
.getValueType().is128BitVector() && Op
.getNumOperands() == 2 &&
8104 "unexpected CONCAT_VECTORS");
8106 SDValue Val
= DAG
.getUNDEF(MVT::v2f64
);
8107 SDValue Op0
= Op
.getOperand(0);
8108 SDValue Op1
= Op
.getOperand(1);
8110 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
8111 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op0
),
8112 DAG
.getIntPtrConstant(0, dl
));
8114 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
8115 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op1
),
8116 DAG
.getIntPtrConstant(1, dl
));
8117 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Val
);
8120 static SDValue
LowerEXTRACT_SUBVECTOR(SDValue Op
, SelectionDAG
&DAG
,
8121 const ARMSubtarget
*ST
) {
8122 SDValue V1
= Op
.getOperand(0);
8123 SDValue V2
= Op
.getOperand(1);
8125 EVT VT
= Op
.getValueType();
8126 EVT Op1VT
= V1
.getValueType();
8127 unsigned NumElts
= VT
.getVectorNumElements();
8128 unsigned Index
= cast
<ConstantSDNode
>(V2
)->getZExtValue();
8130 assert(VT
.getScalarSizeInBits() == 1 &&
8131 "Unexpected custom EXTRACT_SUBVECTOR lowering");
8132 assert(ST
->hasMVEIntegerOps() &&
8133 "EXTRACT_SUBVECTOR lowering only supported for MVE");
8135 SDValue NewV1
= PromoteMVEPredVector(dl
, V1
, Op1VT
, DAG
);
8137 // We now have Op1 promoted to a vector of integers, where v8i1 gets
8138 // promoted to v8i16, etc.
8140 MVT ElType
= getVectorTyFromPredicateVector(VT
).getScalarType().getSimpleVT();
8142 EVT SubVT
= MVT::getVectorVT(ElType
, NumElts
);
8143 SDValue SubVec
= DAG
.getNode(ISD::UNDEF
, dl
, SubVT
);
8144 for (unsigned i
= Index
, j
= 0; i
< (Index
+ NumElts
); i
++, j
++) {
8145 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, NewV1
,
8146 DAG
.getIntPtrConstant(i
, dl
));
8147 SubVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, SubVT
, SubVec
, Elt
,
8148 DAG
.getConstant(j
, dl
, MVT::i32
));
8151 // Now return the result of comparing the subvector with zero,
8152 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8153 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, SubVec
,
8154 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
8157 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
8158 /// element has been zero/sign-extended, depending on the isSigned parameter,
8159 /// from an integer type half its size.
8160 static bool isExtendedBUILD_VECTOR(SDNode
*N
, SelectionDAG
&DAG
,
8162 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
8163 EVT VT
= N
->getValueType(0);
8164 if (VT
== MVT::v2i64
&& N
->getOpcode() == ISD::BITCAST
) {
8165 SDNode
*BVN
= N
->getOperand(0).getNode();
8166 if (BVN
->getValueType(0) != MVT::v4i32
||
8167 BVN
->getOpcode() != ISD::BUILD_VECTOR
)
8169 unsigned LoElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
8170 unsigned HiElt
= 1 - LoElt
;
8171 ConstantSDNode
*Lo0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
));
8172 ConstantSDNode
*Hi0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
));
8173 ConstantSDNode
*Lo1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
+2));
8174 ConstantSDNode
*Hi1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
+2));
8175 if (!Lo0
|| !Hi0
|| !Lo1
|| !Hi1
)
8178 if (Hi0
->getSExtValue() == Lo0
->getSExtValue() >> 32 &&
8179 Hi1
->getSExtValue() == Lo1
->getSExtValue() >> 32)
8182 if (Hi0
->isNullValue() && Hi1
->isNullValue())
8188 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
8191 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
8192 SDNode
*Elt
= N
->getOperand(i
).getNode();
8193 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Elt
)) {
8194 unsigned EltSize
= VT
.getScalarSizeInBits();
8195 unsigned HalfSize
= EltSize
/ 2;
8197 if (!isIntN(HalfSize
, C
->getSExtValue()))
8200 if (!isUIntN(HalfSize
, C
->getZExtValue()))
8211 /// isSignExtended - Check if a node is a vector value that is sign-extended
8212 /// or a constant BUILD_VECTOR with sign-extended elements.
8213 static bool isSignExtended(SDNode
*N
, SelectionDAG
&DAG
) {
8214 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| ISD::isSEXTLoad(N
))
8216 if (isExtendedBUILD_VECTOR(N
, DAG
, true))
8221 /// isZeroExtended - Check if a node is a vector value that is zero-extended
8222 /// or a constant BUILD_VECTOR with zero-extended elements.
8223 static bool isZeroExtended(SDNode
*N
, SelectionDAG
&DAG
) {
8224 if (N
->getOpcode() == ISD::ZERO_EXTEND
|| ISD::isZEXTLoad(N
))
8226 if (isExtendedBUILD_VECTOR(N
, DAG
, false))
8231 static EVT
getExtensionTo64Bits(const EVT
&OrigVT
) {
8232 if (OrigVT
.getSizeInBits() >= 64)
8235 assert(OrigVT
.isSimple() && "Expecting a simple value type");
8237 MVT::SimpleValueType OrigSimpleTy
= OrigVT
.getSimpleVT().SimpleTy
;
8238 switch (OrigSimpleTy
) {
8239 default: llvm_unreachable("Unexpected Vector Type");
8248 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
8249 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
8250 /// We insert the required extension here to get the vector to fill a D register.
8251 static SDValue
AddRequiredExtensionForVMULL(SDValue N
, SelectionDAG
&DAG
,
8254 unsigned ExtOpcode
) {
8255 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
8256 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
8257 // 64-bits we need to insert a new extension so that it will be 64-bits.
8258 assert(ExtTy
.is128BitVector() && "Unexpected extension size");
8259 if (OrigTy
.getSizeInBits() >= 64)
8262 // Must extend size to at least 64 bits to be used as an operand for VMULL.
8263 EVT NewVT
= getExtensionTo64Bits(OrigTy
);
8265 return DAG
.getNode(ExtOpcode
, SDLoc(N
), NewVT
, N
);
8268 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
8269 /// does not do any sign/zero extension. If the original vector is less
8270 /// than 64 bits, an appropriate extension will be added after the load to
8271 /// reach a total size of 64 bits. We have to add the extension separately
8272 /// because ARM does not have a sign/zero extending load for vectors.
8273 static SDValue
SkipLoadExtensionForVMULL(LoadSDNode
*LD
, SelectionDAG
& DAG
) {
8274 EVT ExtendedTy
= getExtensionTo64Bits(LD
->getMemoryVT());
8276 // The load already has the right type.
8277 if (ExtendedTy
== LD
->getMemoryVT())
8278 return DAG
.getLoad(LD
->getMemoryVT(), SDLoc(LD
), LD
->getChain(),
8279 LD
->getBasePtr(), LD
->getPointerInfo(),
8280 LD
->getAlignment(), LD
->getMemOperand()->getFlags());
8282 // We need to create a zextload/sextload. We cannot just create a load
8283 // followed by a zext/zext node because LowerMUL is also run during normal
8284 // operation legalization where we can't create illegal types.
8285 return DAG
.getExtLoad(LD
->getExtensionType(), SDLoc(LD
), ExtendedTy
,
8286 LD
->getChain(), LD
->getBasePtr(), LD
->getPointerInfo(),
8287 LD
->getMemoryVT(), LD
->getAlignment(),
8288 LD
->getMemOperand()->getFlags());
8291 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
8292 /// extending load, or BUILD_VECTOR with extended elements, return the
8293 /// unextended value. The unextended vector should be 64 bits so that it can
8294 /// be used as an operand to a VMULL instruction. If the original vector size
8295 /// before extension is less than 64 bits we add a an extension to resize
8296 /// the vector to 64 bits.
8297 static SDValue
SkipExtensionForVMULL(SDNode
*N
, SelectionDAG
&DAG
) {
8298 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| N
->getOpcode() == ISD::ZERO_EXTEND
)
8299 return AddRequiredExtensionForVMULL(N
->getOperand(0), DAG
,
8300 N
->getOperand(0)->getValueType(0),
8304 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
8305 assert((ISD::isSEXTLoad(LD
) || ISD::isZEXTLoad(LD
)) &&
8306 "Expected extending load");
8308 SDValue newLoad
= SkipLoadExtensionForVMULL(LD
, DAG
);
8309 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), newLoad
.getValue(1));
8310 unsigned Opcode
= ISD::isSEXTLoad(LD
) ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
8312 DAG
.getNode(Opcode
, SDLoc(newLoad
), LD
->getValueType(0), newLoad
);
8313 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 0), extLoad
);
8318 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
8319 // have been legalized as a BITCAST from v4i32.
8320 if (N
->getOpcode() == ISD::BITCAST
) {
8321 SDNode
*BVN
= N
->getOperand(0).getNode();
8322 assert(BVN
->getOpcode() == ISD::BUILD_VECTOR
&&
8323 BVN
->getValueType(0) == MVT::v4i32
&& "expected v4i32 BUILD_VECTOR");
8324 unsigned LowElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
8325 return DAG
.getBuildVector(
8326 MVT::v2i32
, SDLoc(N
),
8327 {BVN
->getOperand(LowElt
), BVN
->getOperand(LowElt
+ 2)});
8329 // Construct a new BUILD_VECTOR with elements truncated to half the size.
8330 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&& "expected BUILD_VECTOR");
8331 EVT VT
= N
->getValueType(0);
8332 unsigned EltSize
= VT
.getScalarSizeInBits() / 2;
8333 unsigned NumElts
= VT
.getVectorNumElements();
8334 MVT TruncVT
= MVT::getIntegerVT(EltSize
);
8335 SmallVector
<SDValue
, 8> Ops
;
8337 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
8338 ConstantSDNode
*C
= cast
<ConstantSDNode
>(N
->getOperand(i
));
8339 const APInt
&CInt
= C
->getAPIntValue();
8340 // Element types smaller than 32 bits are not legal, so use i32 elements.
8341 // The values are implicitly truncated so sext vs. zext doesn't matter.
8342 Ops
.push_back(DAG
.getConstant(CInt
.zextOrTrunc(32), dl
, MVT::i32
));
8344 return DAG
.getBuildVector(MVT::getVectorVT(TruncVT
, NumElts
), dl
, Ops
);
8347 static bool isAddSubSExt(SDNode
*N
, SelectionDAG
&DAG
) {
8348 unsigned Opcode
= N
->getOpcode();
8349 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
8350 SDNode
*N0
= N
->getOperand(0).getNode();
8351 SDNode
*N1
= N
->getOperand(1).getNode();
8352 return N0
->hasOneUse() && N1
->hasOneUse() &&
8353 isSignExtended(N0
, DAG
) && isSignExtended(N1
, DAG
);
8358 static bool isAddSubZExt(SDNode
*N
, SelectionDAG
&DAG
) {
8359 unsigned Opcode
= N
->getOpcode();
8360 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
8361 SDNode
*N0
= N
->getOperand(0).getNode();
8362 SDNode
*N1
= N
->getOperand(1).getNode();
8363 return N0
->hasOneUse() && N1
->hasOneUse() &&
8364 isZeroExtended(N0
, DAG
) && isZeroExtended(N1
, DAG
);
8369 static SDValue
LowerMUL(SDValue Op
, SelectionDAG
&DAG
) {
8370 // Multiplications are only custom-lowered for 128-bit vectors so that
8371 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
8372 EVT VT
= Op
.getValueType();
8373 assert(VT
.is128BitVector() && VT
.isInteger() &&
8374 "unexpected type for custom-lowering ISD::MUL");
8375 SDNode
*N0
= Op
.getOperand(0).getNode();
8376 SDNode
*N1
= Op
.getOperand(1).getNode();
8377 unsigned NewOpc
= 0;
8379 bool isN0SExt
= isSignExtended(N0
, DAG
);
8380 bool isN1SExt
= isSignExtended(N1
, DAG
);
8381 if (isN0SExt
&& isN1SExt
)
8382 NewOpc
= ARMISD::VMULLs
;
8384 bool isN0ZExt
= isZeroExtended(N0
, DAG
);
8385 bool isN1ZExt
= isZeroExtended(N1
, DAG
);
8386 if (isN0ZExt
&& isN1ZExt
)
8387 NewOpc
= ARMISD::VMULLu
;
8388 else if (isN1SExt
|| isN1ZExt
) {
8389 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
8390 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
8391 if (isN1SExt
&& isAddSubSExt(N0
, DAG
)) {
8392 NewOpc
= ARMISD::VMULLs
;
8394 } else if (isN1ZExt
&& isAddSubZExt(N0
, DAG
)) {
8395 NewOpc
= ARMISD::VMULLu
;
8397 } else if (isN0ZExt
&& isAddSubZExt(N1
, DAG
)) {
8399 NewOpc
= ARMISD::VMULLu
;
8405 if (VT
== MVT::v2i64
)
8406 // Fall through to expand this. It is not legal.
8409 // Other vector multiplications are legal.
8414 // Legalize to a VMULL instruction.
8417 SDValue Op1
= SkipExtensionForVMULL(N1
, DAG
);
8419 Op0
= SkipExtensionForVMULL(N0
, DAG
);
8420 assert(Op0
.getValueType().is64BitVector() &&
8421 Op1
.getValueType().is64BitVector() &&
8422 "unexpected types for extended operands to VMULL");
8423 return DAG
.getNode(NewOpc
, DL
, VT
, Op0
, Op1
);
8426 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
8427 // isel lowering to take advantage of no-stall back to back vmul + vmla.
8434 SDValue N00
= SkipExtensionForVMULL(N0
->getOperand(0).getNode(), DAG
);
8435 SDValue N01
= SkipExtensionForVMULL(N0
->getOperand(1).getNode(), DAG
);
8436 EVT Op1VT
= Op1
.getValueType();
8437 return DAG
.getNode(N0
->getOpcode(), DL
, VT
,
8438 DAG
.getNode(NewOpc
, DL
, VT
,
8439 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N00
), Op1
),
8440 DAG
.getNode(NewOpc
, DL
, VT
,
8441 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N01
), Op1
));
8444 static SDValue
LowerSDIV_v4i8(SDValue X
, SDValue Y
, const SDLoc
&dl
,
8445 SelectionDAG
&DAG
) {
8446 // TODO: Should this propagate fast-math-flags?
8449 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
8450 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
8451 X
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, X
);
8452 Y
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, Y
);
8453 X
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, X
);
8454 Y
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, Y
);
8455 // Get reciprocal estimate.
8456 // float4 recip = vrecpeq_f32(yf);
8457 Y
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8458 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8460 // Because char has a smaller range than uchar, we can actually get away
8461 // without any newton steps. This requires that we use a weird bias
8462 // of 0xb000, however (again, this has been exhaustively tested).
8463 // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
8464 X
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, X
, Y
);
8465 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, X
);
8466 Y
= DAG
.getConstant(0xb000, dl
, MVT::v4i32
);
8467 X
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, X
, Y
);
8468 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, X
);
8469 // Convert back to short.
8470 X
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, X
);
8471 X
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, X
);
8475 static SDValue
LowerSDIV_v4i16(SDValue N0
, SDValue N1
, const SDLoc
&dl
,
8476 SelectionDAG
&DAG
) {
8477 // TODO: Should this propagate fast-math-flags?
8480 // Convert to float.
8481 // float4 yf = vcvt_f32_s32(vmovl_s16(y));
8482 // float4 xf = vcvt_f32_s32(vmovl_s16(x));
8483 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N0
);
8484 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N1
);
8485 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
8486 N1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
8488 // Use reciprocal estimate and one refinement step.
8489 // float4 recip = vrecpeq_f32(yf);
8490 // recip *= vrecpsq_f32(yf, recip);
8491 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8492 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8494 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8495 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8497 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8498 // Because short has a smaller range than ushort, we can actually get away
8499 // with only a single newton step. This requires that we use a weird bias
8500 // of 89, however (again, this has been exhaustively tested).
8501 // float4 result = as_float4(as_int4(xf*recip) + 0x89);
8502 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
8503 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
8504 N1
= DAG
.getConstant(0x89, dl
, MVT::v4i32
);
8505 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
8506 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
8507 // Convert back to integer and return.
8508 // return vmovn_s32(vcvt_s32_f32(result));
8509 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
8510 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
8514 static SDValue
LowerSDIV(SDValue Op
, SelectionDAG
&DAG
,
8515 const ARMSubtarget
*ST
) {
8516 EVT VT
= Op
.getValueType();
8517 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
8518 "unexpected type for custom-lowering ISD::SDIV");
8521 SDValue N0
= Op
.getOperand(0);
8522 SDValue N1
= Op
.getOperand(1);
8525 if (VT
== MVT::v8i8
) {
8526 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N0
);
8527 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N1
);
8529 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8530 DAG
.getIntPtrConstant(4, dl
));
8531 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8532 DAG
.getIntPtrConstant(4, dl
));
8533 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8534 DAG
.getIntPtrConstant(0, dl
));
8535 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8536 DAG
.getIntPtrConstant(0, dl
));
8538 N0
= LowerSDIV_v4i8(N0
, N1
, dl
, DAG
); // v4i16
8539 N2
= LowerSDIV_v4i8(N2
, N3
, dl
, DAG
); // v4i16
8541 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
8542 N0
= LowerCONCAT_VECTORS(N0
, DAG
, ST
);
8544 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v8i8
, N0
);
8547 return LowerSDIV_v4i16(N0
, N1
, dl
, DAG
);
8550 static SDValue
LowerUDIV(SDValue Op
, SelectionDAG
&DAG
,
8551 const ARMSubtarget
*ST
) {
8552 // TODO: Should this propagate fast-math-flags?
8553 EVT VT
= Op
.getValueType();
8554 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
8555 "unexpected type for custom-lowering ISD::UDIV");
8558 SDValue N0
= Op
.getOperand(0);
8559 SDValue N1
= Op
.getOperand(1);
8562 if (VT
== MVT::v8i8
) {
8563 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N0
);
8564 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N1
);
8566 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8567 DAG
.getIntPtrConstant(4, dl
));
8568 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8569 DAG
.getIntPtrConstant(4, dl
));
8570 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8571 DAG
.getIntPtrConstant(0, dl
));
8572 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8573 DAG
.getIntPtrConstant(0, dl
));
8575 N0
= LowerSDIV_v4i16(N0
, N1
, dl
, DAG
); // v4i16
8576 N2
= LowerSDIV_v4i16(N2
, N3
, dl
, DAG
); // v4i16
8578 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
8579 N0
= LowerCONCAT_VECTORS(N0
, DAG
, ST
);
8581 N0
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v8i8
,
8582 DAG
.getConstant(Intrinsic::arm_neon_vqmovnsu
, dl
,
8588 // v4i16 sdiv ... Convert to float.
8589 // float4 yf = vcvt_f32_s32(vmovl_u16(y));
8590 // float4 xf = vcvt_f32_s32(vmovl_u16(x));
8591 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N0
);
8592 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N1
);
8593 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
8594 SDValue BN1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
8596 // Use reciprocal estimate and two refinement steps.
8597 // float4 recip = vrecpeq_f32(yf);
8598 // recip *= vrecpsq_f32(yf, recip);
8599 // recip *= vrecpsq_f32(yf, recip);
8600 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8601 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8603 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8604 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8606 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8607 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8608 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8610 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8611 // Simply multiplying by the reciprocal estimate can leave us a few ulps
8612 // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
8613 // and that it will never cause us to return an answer too large).
8614 // float4 result = as_float4(as_int4(xf*recip) + 2);
8615 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
8616 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
8617 N1
= DAG
.getConstant(2, dl
, MVT::v4i32
);
8618 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
8619 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
8620 // Convert back to integer and return.
8621 // return vmovn_u32(vcvt_s32_f32(result));
8622 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
8623 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
8627 static SDValue
LowerADDSUBCARRY(SDValue Op
, SelectionDAG
&DAG
) {
8628 SDNode
*N
= Op
.getNode();
8629 EVT VT
= N
->getValueType(0);
8630 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
8632 SDValue Carry
= Op
.getOperand(2);
8637 if (Op
.getOpcode() == ISD::ADDCARRY
) {
8638 // This converts the boolean value carry into the carry flag.
8639 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
8641 // Do the addition proper using the carry flag we wanted.
8642 Result
= DAG
.getNode(ARMISD::ADDE
, DL
, VTs
, Op
.getOperand(0),
8643 Op
.getOperand(1), Carry
);
8645 // Now convert the carry flag into a boolean value.
8646 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
8648 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
8649 // have to invert the carry first.
8650 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
8651 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
8652 // This converts the boolean value carry into the carry flag.
8653 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
8655 // Do the subtraction proper using the carry flag we wanted.
8656 Result
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, Op
.getOperand(0),
8657 Op
.getOperand(1), Carry
);
8659 // Now convert the carry flag into a boolean value.
8660 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
8661 // But the carry returned by ARMISD::SUBE is not a borrow as expected
8662 // by ISD::SUBCARRY, so compute 1 - C.
8663 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
8664 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
8667 // Return both values.
8668 return DAG
.getNode(ISD::MERGE_VALUES
, DL
, N
->getVTList(), Result
, Carry
);
8671 SDValue
ARMTargetLowering::LowerFSINCOS(SDValue Op
, SelectionDAG
&DAG
) const {
8672 assert(Subtarget
->isTargetDarwin());
8674 // For iOS, we want to call an alternative entry point: __sincos_stret,
8675 // return values are passed via sret.
8677 SDValue Arg
= Op
.getOperand(0);
8678 EVT ArgVT
= Arg
.getValueType();
8679 Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
8680 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
8682 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
8683 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8685 // Pair of floats / doubles used to pass the result.
8686 Type
*RetTy
= StructType::get(ArgTy
, ArgTy
);
8687 auto &DL
= DAG
.getDataLayout();
8690 bool ShouldUseSRet
= Subtarget
->isAPCS_ABI();
8692 if (ShouldUseSRet
) {
8693 // Create stack object for sret.
8694 const uint64_t ByteSize
= DL
.getTypeAllocSize(RetTy
);
8695 const unsigned StackAlign
= DL
.getPrefTypeAlignment(RetTy
);
8696 int FrameIdx
= MFI
.CreateStackObject(ByteSize
, StackAlign
, false);
8697 SRet
= DAG
.getFrameIndex(FrameIdx
, TLI
.getPointerTy(DL
));
8701 Entry
.Ty
= RetTy
->getPointerTo();
8702 Entry
.IsSExt
= false;
8703 Entry
.IsZExt
= false;
8704 Entry
.IsSRet
= true;
8705 Args
.push_back(Entry
);
8706 RetTy
= Type::getVoidTy(*DAG
.getContext());
8712 Entry
.IsSExt
= false;
8713 Entry
.IsZExt
= false;
8714 Args
.push_back(Entry
);
8717 (ArgVT
== MVT::f64
) ? RTLIB::SINCOS_STRET_F64
: RTLIB::SINCOS_STRET_F32
;
8718 const char *LibcallName
= getLibcallName(LC
);
8719 CallingConv::ID CC
= getLibcallCallingConv(LC
);
8720 SDValue Callee
= DAG
.getExternalSymbol(LibcallName
, getPointerTy(DL
));
8722 TargetLowering::CallLoweringInfo
CLI(DAG
);
8724 .setChain(DAG
.getEntryNode())
8725 .setCallee(CC
, RetTy
, Callee
, std::move(Args
))
8726 .setDiscardResult(ShouldUseSRet
);
8727 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
8730 return CallResult
.first
;
8733 DAG
.getLoad(ArgVT
, dl
, CallResult
.second
, SRet
, MachinePointerInfo());
8735 // Address of cos field.
8736 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SRet
,
8737 DAG
.getIntPtrConstant(ArgVT
.getStoreSize(), dl
));
8739 DAG
.getLoad(ArgVT
, dl
, LoadSin
.getValue(1), Add
, MachinePointerInfo());
8741 SDVTList Tys
= DAG
.getVTList(ArgVT
, ArgVT
);
8742 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, Tys
,
8743 LoadSin
.getValue(0), LoadCos
.getValue(0));
8746 SDValue
ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op
, SelectionDAG
&DAG
,
8748 SDValue
&Chain
) const {
8749 EVT VT
= Op
.getValueType();
8750 assert((VT
== MVT::i32
|| VT
== MVT::i64
) &&
8751 "unexpected type for custom lowering DIV");
8754 const auto &DL
= DAG
.getDataLayout();
8755 const auto &TLI
= DAG
.getTargetLoweringInfo();
8757 const char *Name
= nullptr;
8759 Name
= (VT
== MVT::i32
) ? "__rt_sdiv" : "__rt_sdiv64";
8761 Name
= (VT
== MVT::i32
) ? "__rt_udiv" : "__rt_udiv64";
8763 SDValue ES
= DAG
.getExternalSymbol(Name
, TLI
.getPointerTy(DL
));
8765 ARMTargetLowering::ArgListTy Args
;
8767 for (auto AI
: {1, 0}) {
8769 Arg
.Node
= Op
.getOperand(AI
);
8770 Arg
.Ty
= Arg
.Node
.getValueType().getTypeForEVT(*DAG
.getContext());
8771 Args
.push_back(Arg
);
8774 CallLoweringInfo
CLI(DAG
);
8777 .setCallee(CallingConv::ARM_AAPCS_VFP
, VT
.getTypeForEVT(*DAG
.getContext()),
8778 ES
, std::move(Args
));
8780 return LowerCallTo(CLI
).first
;
8783 // This is a code size optimisation: return the original SDIV node to
8784 // DAGCombiner when we don't want to expand SDIV into a sequence of
8785 // instructions, and an empty node otherwise which will cause the
8786 // SDIV to be expanded in DAGCombine.
8788 ARMTargetLowering::BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
,
8790 SmallVectorImpl
<SDNode
*> &Created
) const {
8791 // TODO: Support SREM
8792 if (N
->getOpcode() != ISD::SDIV
)
8795 const auto &ST
= static_cast<const ARMSubtarget
&>(DAG
.getSubtarget());
8796 const bool MinSize
= ST
.hasMinSize();
8797 const bool HasDivide
= ST
.isThumb() ? ST
.hasDivideInThumbMode()
8798 : ST
.hasDivideInARMMode();
8800 // Don't touch vector types; rewriting this may lead to scalarizing
8802 if (N
->getOperand(0).getValueType().isVector())
8805 // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
8806 // hwdiv support for this to be really profitable.
8807 if (!(MinSize
&& HasDivide
))
8810 // ARM mode is a bit simpler than Thumb: we can handle large power
8811 // of 2 immediates with 1 mov instruction; no further checks required,
8812 // just return the sdiv node.
8814 return SDValue(N
, 0);
8816 // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
8817 // and thus lose the code size benefits of a MOVS that requires only 2.
8818 // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
8819 // but as it's doing exactly this, it's not worth the trouble to get TTI.
8820 if (Divisor
.sgt(128))
8823 return SDValue(N
, 0);
8826 SDValue
ARMTargetLowering::LowerDIV_Windows(SDValue Op
, SelectionDAG
&DAG
,
8827 bool Signed
) const {
8828 assert(Op
.getValueType() == MVT::i32
&&
8829 "unexpected type for custom lowering DIV");
8832 SDValue DBZCHK
= DAG
.getNode(ARMISD::WIN__DBZCHK
, dl
, MVT::Other
,
8833 DAG
.getEntryNode(), Op
.getOperand(1));
8835 return LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
8838 static SDValue
WinDBZCheckDenominator(SelectionDAG
&DAG
, SDNode
*N
, SDValue InChain
) {
8840 SDValue Op
= N
->getOperand(1);
8841 if (N
->getValueType(0) == MVT::i32
)
8842 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
, Op
);
8843 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Op
,
8844 DAG
.getConstant(0, DL
, MVT::i32
));
8845 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Op
,
8846 DAG
.getConstant(1, DL
, MVT::i32
));
8847 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
,
8848 DAG
.getNode(ISD::OR
, DL
, MVT::i32
, Lo
, Hi
));
8851 void ARMTargetLowering::ExpandDIV_Windows(
8852 SDValue Op
, SelectionDAG
&DAG
, bool Signed
,
8853 SmallVectorImpl
<SDValue
> &Results
) const {
8854 const auto &DL
= DAG
.getDataLayout();
8855 const auto &TLI
= DAG
.getTargetLoweringInfo();
8857 assert(Op
.getValueType() == MVT::i64
&&
8858 "unexpected type for custom lowering DIV");
8861 SDValue DBZCHK
= WinDBZCheckDenominator(DAG
, Op
.getNode(), DAG
.getEntryNode());
8863 SDValue Result
= LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
8865 SDValue Lower
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Result
);
8866 SDValue Upper
= DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, Result
,
8867 DAG
.getConstant(32, dl
, TLI
.getPointerTy(DL
)));
8868 Upper
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Upper
);
8870 Results
.push_back(Lower
);
8871 Results
.push_back(Upper
);
8874 static SDValue
LowerPredicateLoad(SDValue Op
, SelectionDAG
&DAG
) {
8875 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
.getNode());
8876 EVT MemVT
= LD
->getMemoryVT();
8877 assert((MemVT
== MVT::v4i1
|| MemVT
== MVT::v8i1
|| MemVT
== MVT::v16i1
) &&
8878 "Expected a predicate type!");
8879 assert(MemVT
== Op
.getValueType());
8880 assert(LD
->getExtensionType() == ISD::NON_EXTLOAD
&&
8881 "Expected a non-extending load");
8882 assert(LD
->isUnindexed() && "Expected a unindexed load");
8884 // The basic MVE VLDR on a v4i1/v8i1 actually loads the entire 16bit
8885 // predicate, with the "v4i1" bits spread out over the 16 bits loaded. We
8886 // need to make sure that 8/4 bits are actually loaded into the correct
8887 // place, which means loading the value and then shuffling the values into
8888 // the bottom bits of the predicate.
8889 // Equally, VLDR for an v16i1 will actually load 32bits (so will be incorrect
8893 SDValue Load
= DAG
.getExtLoad(
8894 ISD::EXTLOAD
, dl
, MVT::i32
, LD
->getChain(), LD
->getBasePtr(),
8895 EVT::getIntegerVT(*DAG
.getContext(), MemVT
.getSizeInBits()),
8896 LD
->getMemOperand());
8897 SDValue Pred
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::v16i1
, Load
);
8898 if (MemVT
!= MVT::v16i1
)
8899 Pred
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MemVT
, Pred
,
8900 DAG
.getConstant(0, dl
, MVT::i32
));
8901 return DAG
.getMergeValues({Pred
, Load
.getValue(1)}, dl
);
8904 static SDValue
LowerPredicateStore(SDValue Op
, SelectionDAG
&DAG
) {
8905 StoreSDNode
*ST
= cast
<StoreSDNode
>(Op
.getNode());
8906 EVT MemVT
= ST
->getMemoryVT();
8907 assert((MemVT
== MVT::v4i1
|| MemVT
== MVT::v8i1
|| MemVT
== MVT::v16i1
) &&
8908 "Expected a predicate type!");
8909 assert(MemVT
== ST
->getValue().getValueType());
8910 assert(!ST
->isTruncatingStore() && "Expected a non-extending store");
8911 assert(ST
->isUnindexed() && "Expected a unindexed store");
8913 // Only store the v4i1 or v8i1 worth of bits, via a buildvector with top bits
8914 // unset and a scalar store.
8916 SDValue Build
= ST
->getValue();
8917 if (MemVT
!= MVT::v16i1
) {
8918 SmallVector
<SDValue
, 16> Ops
;
8919 for (unsigned I
= 0; I
< MemVT
.getVectorNumElements(); I
++)
8920 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, Build
,
8921 DAG
.getConstant(I
, dl
, MVT::i32
)));
8922 for (unsigned I
= MemVT
.getVectorNumElements(); I
< 16; I
++)
8923 Ops
.push_back(DAG
.getUNDEF(MVT::i32
));
8924 Build
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v16i1
, Ops
);
8926 SDValue GRP
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Build
);
8927 return DAG
.getTruncStore(
8928 ST
->getChain(), dl
, GRP
, ST
->getBasePtr(),
8929 EVT::getIntegerVT(*DAG
.getContext(), MemVT
.getSizeInBits()),
8930 ST
->getMemOperand());
8933 static SDValue
LowerMLOAD(SDValue Op
, SelectionDAG
&DAG
) {
8934 MaskedLoadSDNode
*N
= cast
<MaskedLoadSDNode
>(Op
.getNode());
8935 MVT VT
= Op
.getSimpleValueType();
8936 SDValue Mask
= N
->getMask();
8937 SDValue PassThru
= N
->getPassThru();
8940 auto IsZero
= [](SDValue PassThru
) {
8941 return (ISD::isBuildVectorAllZeros(PassThru
.getNode()) ||
8942 (PassThru
->getOpcode() == ARMISD::VMOVIMM
&&
8943 isNullConstant(PassThru
->getOperand(0))));
8946 if (IsZero(PassThru
))
8949 // MVE Masked loads use zero as the passthru value. Here we convert undef to
8950 // zero too, and other values are lowered to a select.
8951 SDValue ZeroVec
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
8952 DAG
.getTargetConstant(0, dl
, MVT::i32
));
8953 SDValue NewLoad
= DAG
.getMaskedLoad(
8954 VT
, dl
, N
->getChain(), N
->getBasePtr(), Mask
, ZeroVec
, N
->getMemoryVT(),
8955 N
->getMemOperand(), N
->getExtensionType(), N
->isExpandingLoad());
8956 SDValue Combo
= NewLoad
;
8957 if (!PassThru
.isUndef() &&
8958 (PassThru
.getOpcode() != ISD::BITCAST
||
8959 !IsZero(PassThru
->getOperand(0))))
8960 Combo
= DAG
.getNode(ISD::VSELECT
, dl
, VT
, Mask
, NewLoad
, PassThru
);
8961 return DAG
.getMergeValues({Combo
, NewLoad
.getValue(1)}, dl
);
8964 static SDValue
LowerAtomicLoadStore(SDValue Op
, SelectionDAG
&DAG
) {
8965 if (isStrongerThanMonotonic(cast
<AtomicSDNode
>(Op
)->getOrdering()))
8966 // Acquire/Release load/store is not legal for targets without a dmb or
8967 // equivalent available.
8970 // Monotonic load/store is legal for all targets.
8974 static void ReplaceREADCYCLECOUNTER(SDNode
*N
,
8975 SmallVectorImpl
<SDValue
> &Results
,
8977 const ARMSubtarget
*Subtarget
) {
8979 // Under Power Management extensions, the cycle-count is:
8980 // mrc p15, #0, <Rt>, c9, c13, #0
8981 SDValue Ops
[] = { N
->getOperand(0), // Chain
8982 DAG
.getTargetConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
8983 DAG
.getTargetConstant(15, DL
, MVT::i32
),
8984 DAG
.getTargetConstant(0, DL
, MVT::i32
),
8985 DAG
.getTargetConstant(9, DL
, MVT::i32
),
8986 DAG
.getTargetConstant(13, DL
, MVT::i32
),
8987 DAG
.getTargetConstant(0, DL
, MVT::i32
)
8990 SDValue Cycles32
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
8991 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
8992 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Cycles32
,
8993 DAG
.getConstant(0, DL
, MVT::i32
)));
8994 Results
.push_back(Cycles32
.getValue(1));
8997 static SDValue
createGPRPairNode(SelectionDAG
&DAG
, SDValue V
) {
8998 SDLoc
dl(V
.getNode());
8999 SDValue VLo
= DAG
.getAnyExtOrTrunc(V
, dl
, MVT::i32
);
9000 SDValue VHi
= DAG
.getAnyExtOrTrunc(
9001 DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, V
, DAG
.getConstant(32, dl
, MVT::i32
)),
9003 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
9005 std::swap (VLo
, VHi
);
9007 DAG
.getTargetConstant(ARM::GPRPairRegClassID
, dl
, MVT::i32
);
9008 SDValue SubReg0
= DAG
.getTargetConstant(ARM::gsub_0
, dl
, MVT::i32
);
9009 SDValue SubReg1
= DAG
.getTargetConstant(ARM::gsub_1
, dl
, MVT::i32
);
9010 const SDValue Ops
[] = { RegClass
, VLo
, SubReg0
, VHi
, SubReg1
};
9012 DAG
.getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, MVT::Untyped
, Ops
), 0);
9015 static void ReplaceCMP_SWAP_64Results(SDNode
*N
,
9016 SmallVectorImpl
<SDValue
> & Results
,
9017 SelectionDAG
&DAG
) {
9018 assert(N
->getValueType(0) == MVT::i64
&&
9019 "AtomicCmpSwap on types less than 64 should be legal");
9020 SDValue Ops
[] = {N
->getOperand(1),
9021 createGPRPairNode(DAG
, N
->getOperand(2)),
9022 createGPRPairNode(DAG
, N
->getOperand(3)),
9024 SDNode
*CmpSwap
= DAG
.getMachineNode(
9025 ARM::CMP_SWAP_64
, SDLoc(N
),
9026 DAG
.getVTList(MVT::Untyped
, MVT::i32
, MVT::Other
), Ops
);
9028 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
9029 DAG
.setNodeMemRefs(cast
<MachineSDNode
>(CmpSwap
), {MemOp
});
9031 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
9034 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_1
: ARM::gsub_0
,
9035 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0)));
9037 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_0
: ARM::gsub_1
,
9038 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0)));
9039 Results
.push_back(SDValue(CmpSwap
, 2));
9042 static SDValue
LowerFPOWI(SDValue Op
, const ARMSubtarget
&Subtarget
,
9043 SelectionDAG
&DAG
) {
9044 const auto &TLI
= DAG
.getTargetLoweringInfo();
9046 assert(Subtarget
.getTargetTriple().isOSMSVCRT() &&
9047 "Custom lowering is MSVCRT specific!");
9050 SDValue Val
= Op
.getOperand(0);
9051 MVT Ty
= Val
->getSimpleValueType(0);
9052 SDValue Exponent
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, Ty
, Op
.getOperand(1));
9053 SDValue Callee
= DAG
.getExternalSymbol(Ty
== MVT::f32
? "powf" : "pow",
9054 TLI
.getPointerTy(DAG
.getDataLayout()));
9056 TargetLowering::ArgListTy Args
;
9057 TargetLowering::ArgListEntry Entry
;
9060 Entry
.Ty
= Val
.getValueType().getTypeForEVT(*DAG
.getContext());
9061 Entry
.IsZExt
= true;
9062 Args
.push_back(Entry
);
9064 Entry
.Node
= Exponent
;
9065 Entry
.Ty
= Exponent
.getValueType().getTypeForEVT(*DAG
.getContext());
9066 Entry
.IsZExt
= true;
9067 Args
.push_back(Entry
);
9069 Type
*LCRTy
= Val
.getValueType().getTypeForEVT(*DAG
.getContext());
9071 // In the in-chain to the call is the entry node If we are emitting a
9072 // tailcall, the chain will be mutated if the node has a non-entry input
9074 SDValue InChain
= DAG
.getEntryNode();
9075 SDValue TCChain
= InChain
;
9077 const Function
&F
= DAG
.getMachineFunction().getFunction();
9078 bool IsTC
= TLI
.isInTailCallPosition(DAG
, Op
.getNode(), TCChain
) &&
9079 F
.getReturnType() == LCRTy
;
9083 TargetLowering::CallLoweringInfo
CLI(DAG
);
9086 .setCallee(CallingConv::ARM_AAPCS_VFP
, LCRTy
, Callee
, std::move(Args
))
9088 std::pair
<SDValue
, SDValue
> CI
= TLI
.LowerCallTo(CLI
);
9090 // Return the chain (the DAG root) if it is a tail call
9091 return !CI
.second
.getNode() ? DAG
.getRoot() : CI
.first
;
9094 SDValue
ARMTargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
9095 LLVM_DEBUG(dbgs() << "Lowering node: "; Op
.dump());
9096 switch (Op
.getOpcode()) {
9097 default: llvm_unreachable("Don't know how to custom lower this!");
9098 case ISD::WRITE_REGISTER
: return LowerWRITE_REGISTER(Op
, DAG
);
9099 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
9100 case ISD::BlockAddress
: return LowerBlockAddress(Op
, DAG
);
9101 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
9102 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
9103 case ISD::SELECT
: return LowerSELECT(Op
, DAG
);
9104 case ISD::SELECT_CC
: return LowerSELECT_CC(Op
, DAG
);
9105 case ISD::BRCOND
: return LowerBRCOND(Op
, DAG
);
9106 case ISD::BR_CC
: return LowerBR_CC(Op
, DAG
);
9107 case ISD::BR_JT
: return LowerBR_JT(Op
, DAG
);
9108 case ISD::VASTART
: return LowerVASTART(Op
, DAG
);
9109 case ISD::ATOMIC_FENCE
: return LowerATOMIC_FENCE(Op
, DAG
, Subtarget
);
9110 case ISD::PREFETCH
: return LowerPREFETCH(Op
, DAG
, Subtarget
);
9111 case ISD::SINT_TO_FP
:
9112 case ISD::UINT_TO_FP
: return LowerINT_TO_FP(Op
, DAG
);
9113 case ISD::FP_TO_SINT
:
9114 case ISD::FP_TO_UINT
: return LowerFP_TO_INT(Op
, DAG
);
9115 case ISD::FCOPYSIGN
: return LowerFCOPYSIGN(Op
, DAG
);
9116 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
9117 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
9118 case ISD::EH_SJLJ_SETJMP
: return LowerEH_SJLJ_SETJMP(Op
, DAG
);
9119 case ISD::EH_SJLJ_LONGJMP
: return LowerEH_SJLJ_LONGJMP(Op
, DAG
);
9120 case ISD::EH_SJLJ_SETUP_DISPATCH
: return LowerEH_SJLJ_SETUP_DISPATCH(Op
, DAG
);
9121 case ISD::INTRINSIC_VOID
: return LowerINTRINSIC_VOID(Op
, DAG
, Subtarget
);
9122 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
,
9124 case ISD::BITCAST
: return ExpandBITCAST(Op
.getNode(), DAG
, Subtarget
);
9127 case ISD::SRA
: return LowerShift(Op
.getNode(), DAG
, Subtarget
);
9128 case ISD::SREM
: return LowerREM(Op
.getNode(), DAG
);
9129 case ISD::UREM
: return LowerREM(Op
.getNode(), DAG
);
9130 case ISD::SHL_PARTS
: return LowerShiftLeftParts(Op
, DAG
);
9131 case ISD::SRL_PARTS
:
9132 case ISD::SRA_PARTS
: return LowerShiftRightParts(Op
, DAG
);
9134 case ISD::CTTZ_ZERO_UNDEF
: return LowerCTTZ(Op
.getNode(), DAG
, Subtarget
);
9135 case ISD::CTPOP
: return LowerCTPOP(Op
.getNode(), DAG
, Subtarget
);
9136 case ISD::SETCC
: return LowerVSETCC(Op
, DAG
, Subtarget
);
9137 case ISD::SETCCCARRY
: return LowerSETCCCARRY(Op
, DAG
);
9138 case ISD::ConstantFP
: return LowerConstantFP(Op
, DAG
, Subtarget
);
9139 case ISD::BUILD_VECTOR
: return LowerBUILD_VECTOR(Op
, DAG
, Subtarget
);
9140 case ISD::VECTOR_SHUFFLE
: return LowerVECTOR_SHUFFLE(Op
, DAG
, Subtarget
);
9141 case ISD::EXTRACT_SUBVECTOR
: return LowerEXTRACT_SUBVECTOR(Op
, DAG
, Subtarget
);
9142 case ISD::INSERT_VECTOR_ELT
: return LowerINSERT_VECTOR_ELT(Op
, DAG
);
9143 case ISD::EXTRACT_VECTOR_ELT
: return LowerEXTRACT_VECTOR_ELT(Op
, DAG
, Subtarget
);
9144 case ISD::CONCAT_VECTORS
: return LowerCONCAT_VECTORS(Op
, DAG
, Subtarget
);
9145 case ISD::FLT_ROUNDS_
: return LowerFLT_ROUNDS_(Op
, DAG
);
9146 case ISD::MUL
: return LowerMUL(Op
, DAG
);
9148 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
9149 return LowerDIV_Windows(Op
, DAG
, /* Signed */ true);
9150 return LowerSDIV(Op
, DAG
, Subtarget
);
9152 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
9153 return LowerDIV_Windows(Op
, DAG
, /* Signed */ false);
9154 return LowerUDIV(Op
, DAG
, Subtarget
);
9156 case ISD::SUBCARRY
: return LowerADDSUBCARRY(Op
, DAG
);
9159 return LowerSignedALUO(Op
, DAG
);
9162 return LowerUnsignedALUO(Op
, DAG
);
9165 return LowerSADDSUBSAT(Op
, DAG
, Subtarget
);
9167 return LowerPredicateLoad(Op
, DAG
);
9169 return LowerPredicateStore(Op
, DAG
);
9171 return LowerMLOAD(Op
, DAG
);
9172 case ISD::ATOMIC_LOAD
:
9173 case ISD::ATOMIC_STORE
: return LowerAtomicLoadStore(Op
, DAG
);
9174 case ISD::FSINCOS
: return LowerFSINCOS(Op
, DAG
);
9176 case ISD::UDIVREM
: return LowerDivRem(Op
, DAG
);
9177 case ISD::DYNAMIC_STACKALLOC
:
9178 if (Subtarget
->isTargetWindows())
9179 return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
9180 llvm_unreachable("Don't know how to custom lower this!");
9181 case ISD::FP_ROUND
: return LowerFP_ROUND(Op
, DAG
);
9182 case ISD::FP_EXTEND
: return LowerFP_EXTEND(Op
, DAG
);
9183 case ISD::FPOWI
: return LowerFPOWI(Op
, *Subtarget
, DAG
);
9184 case ARMISD::WIN__DBZCHK
: return SDValue();
9188 static void ReplaceLongIntrinsic(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
9189 SelectionDAG
&DAG
) {
9190 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
9192 if (IntNo
== Intrinsic::arm_smlald
)
9193 Opc
= ARMISD::SMLALD
;
9194 else if (IntNo
== Intrinsic::arm_smlaldx
)
9195 Opc
= ARMISD::SMLALDX
;
9196 else if (IntNo
== Intrinsic::arm_smlsld
)
9197 Opc
= ARMISD::SMLSLD
;
9198 else if (IntNo
== Intrinsic::arm_smlsldx
)
9199 Opc
= ARMISD::SMLSLDX
;
9204 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
9206 DAG
.getConstant(0, dl
, MVT::i32
));
9207 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
9209 DAG
.getConstant(1, dl
, MVT::i32
));
9211 SDValue LongMul
= DAG
.getNode(Opc
, dl
,
9212 DAG
.getVTList(MVT::i32
, MVT::i32
),
9213 N
->getOperand(1), N
->getOperand(2),
9215 Results
.push_back(LongMul
.getValue(0));
9216 Results
.push_back(LongMul
.getValue(1));
9219 /// ReplaceNodeResults - Replace the results of node with an illegal result
9220 /// type with new values built out of custom code.
9221 void ARMTargetLowering::ReplaceNodeResults(SDNode
*N
,
9222 SmallVectorImpl
<SDValue
> &Results
,
9223 SelectionDAG
&DAG
) const {
9225 switch (N
->getOpcode()) {
9227 llvm_unreachable("Don't know how to custom expand this!");
9228 case ISD::READ_REGISTER
:
9229 ExpandREAD_REGISTER(N
, Results
, DAG
);
9232 Res
= ExpandBITCAST(N
, DAG
, Subtarget
);
9237 Res
= Expand64BitShift(N
, DAG
, Subtarget
);
9241 Res
= LowerREM(N
, DAG
);
9245 Res
= LowerDivRem(SDValue(N
, 0), DAG
);
9246 assert(Res
.getNumOperands() == 2 && "DivRem needs two values");
9247 Results
.push_back(Res
.getValue(0));
9248 Results
.push_back(Res
.getValue(1));
9252 Res
= LowerSADDSUBSAT(SDValue(N
, 0), DAG
, Subtarget
);
9254 case ISD::READCYCLECOUNTER
:
9255 ReplaceREADCYCLECOUNTER(N
, Results
, DAG
, Subtarget
);
9259 assert(Subtarget
->isTargetWindows() && "can only expand DIV on Windows");
9260 return ExpandDIV_Windows(SDValue(N
, 0), DAG
, N
->getOpcode() == ISD::SDIV
,
9262 case ISD::ATOMIC_CMP_SWAP
:
9263 ReplaceCMP_SWAP_64Results(N
, Results
, DAG
);
9265 case ISD::INTRINSIC_WO_CHAIN
:
9266 return ReplaceLongIntrinsic(N
, Results
, DAG
);
9268 lowerABS(N
, Results
, DAG
);
9273 Results
.push_back(Res
);
9276 //===----------------------------------------------------------------------===//
9277 // ARM Scheduler Hooks
9278 //===----------------------------------------------------------------------===//
9280 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
9281 /// registers the function context.
9282 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr
&MI
,
9283 MachineBasicBlock
*MBB
,
9284 MachineBasicBlock
*DispatchBB
,
9286 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
9287 "ROPI/RWPI not currently supported with SjLj");
9288 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9289 DebugLoc dl
= MI
.getDebugLoc();
9290 MachineFunction
*MF
= MBB
->getParent();
9291 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
9292 MachineConstantPool
*MCP
= MF
->getConstantPool();
9293 ARMFunctionInfo
*AFI
= MF
->getInfo
<ARMFunctionInfo
>();
9294 const Function
&F
= MF
->getFunction();
9296 bool isThumb
= Subtarget
->isThumb();
9297 bool isThumb2
= Subtarget
->isThumb2();
9299 unsigned PCLabelId
= AFI
->createPICLabelUId();
9300 unsigned PCAdj
= (isThumb
|| isThumb2
) ? 4 : 8;
9301 ARMConstantPoolValue
*CPV
=
9302 ARMConstantPoolMBB::Create(F
.getContext(), DispatchBB
, PCLabelId
, PCAdj
);
9303 unsigned CPI
= MCP
->getConstantPoolIndex(CPV
, 4);
9305 const TargetRegisterClass
*TRC
= isThumb
? &ARM::tGPRRegClass
9306 : &ARM::GPRRegClass
;
9308 // Grab constant pool and fixed stack memory operands.
9309 MachineMemOperand
*CPMMO
=
9310 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
9311 MachineMemOperand::MOLoad
, 4, 4);
9313 MachineMemOperand
*FIMMOSt
=
9314 MF
->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF
, FI
),
9315 MachineMemOperand::MOStore
, 4, 4);
9317 // Load the address of the dispatch MBB into the jump buffer.
9319 // Incoming value: jbuf
9320 // ldr.n r5, LCPI1_1
9323 // str r5, [$jbuf, #+4] ; &jbuf[1]
9324 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9325 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2LDRpci
), NewVReg1
)
9326 .addConstantPoolIndex(CPI
)
9327 .addMemOperand(CPMMO
)
9328 .add(predOps(ARMCC::AL
));
9329 // Set the low bit because of thumb mode.
9330 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9331 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2ORRri
), NewVReg2
)
9332 .addReg(NewVReg1
, RegState::Kill
)
9334 .add(predOps(ARMCC::AL
))
9336 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9337 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg3
)
9338 .addReg(NewVReg2
, RegState::Kill
)
9340 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2STRi12
))
9341 .addReg(NewVReg3
, RegState::Kill
)
9343 .addImm(36) // &jbuf[1] :: pc
9344 .addMemOperand(FIMMOSt
)
9345 .add(predOps(ARMCC::AL
));
9346 } else if (isThumb
) {
9347 // Incoming value: jbuf
9348 // ldr.n r1, LCPI1_4
9352 // add r2, $jbuf, #+4 ; &jbuf[1]
9354 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9355 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tLDRpci
), NewVReg1
)
9356 .addConstantPoolIndex(CPI
)
9357 .addMemOperand(CPMMO
)
9358 .add(predOps(ARMCC::AL
));
9359 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9360 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg2
)
9361 .addReg(NewVReg1
, RegState::Kill
)
9363 // Set the low bit because of thumb mode.
9364 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9365 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tMOVi8
), NewVReg3
)
9366 .addReg(ARM::CPSR
, RegState::Define
)
9368 .add(predOps(ARMCC::AL
));
9369 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9370 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tORR
), NewVReg4
)
9371 .addReg(ARM::CPSR
, RegState::Define
)
9372 .addReg(NewVReg2
, RegState::Kill
)
9373 .addReg(NewVReg3
, RegState::Kill
)
9374 .add(predOps(ARMCC::AL
));
9375 Register NewVReg5
= MRI
->createVirtualRegister(TRC
);
9376 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tADDframe
), NewVReg5
)
9378 .addImm(36); // &jbuf[1] :: pc
9379 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tSTRi
))
9380 .addReg(NewVReg4
, RegState::Kill
)
9381 .addReg(NewVReg5
, RegState::Kill
)
9383 .addMemOperand(FIMMOSt
)
9384 .add(predOps(ARMCC::AL
));
9386 // Incoming value: jbuf
9389 // str r1, [$jbuf, #+4] ; &jbuf[1]
9390 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9391 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
9392 .addConstantPoolIndex(CPI
)
9394 .addMemOperand(CPMMO
)
9395 .add(predOps(ARMCC::AL
));
9396 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9397 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::PICADD
), NewVReg2
)
9398 .addReg(NewVReg1
, RegState::Kill
)
9400 .add(predOps(ARMCC::AL
));
9401 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::STRi12
))
9402 .addReg(NewVReg2
, RegState::Kill
)
9404 .addImm(36) // &jbuf[1] :: pc
9405 .addMemOperand(FIMMOSt
)
9406 .add(predOps(ARMCC::AL
));
9410 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr
&MI
,
9411 MachineBasicBlock
*MBB
) const {
9412 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9413 DebugLoc dl
= MI
.getDebugLoc();
9414 MachineFunction
*MF
= MBB
->getParent();
9415 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
9416 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
9417 int FI
= MFI
.getFunctionContextIndex();
9419 const TargetRegisterClass
*TRC
= Subtarget
->isThumb() ? &ARM::tGPRRegClass
9420 : &ARM::GPRnopcRegClass
;
9422 // Get a mapping of the call site numbers to all of the landing pads they're
9424 DenseMap
<unsigned, SmallVector
<MachineBasicBlock
*, 2>> CallSiteNumToLPad
;
9425 unsigned MaxCSNum
= 0;
9426 for (MachineFunction::iterator BB
= MF
->begin(), E
= MF
->end(); BB
!= E
;
9428 if (!BB
->isEHPad()) continue;
9430 // FIXME: We should assert that the EH_LABEL is the first MI in the landing
9432 for (MachineBasicBlock::iterator
9433 II
= BB
->begin(), IE
= BB
->end(); II
!= IE
; ++II
) {
9434 if (!II
->isEHLabel()) continue;
9436 MCSymbol
*Sym
= II
->getOperand(0).getMCSymbol();
9437 if (!MF
->hasCallSiteLandingPad(Sym
)) continue;
9439 SmallVectorImpl
<unsigned> &CallSiteIdxs
= MF
->getCallSiteLandingPad(Sym
);
9440 for (SmallVectorImpl
<unsigned>::iterator
9441 CSI
= CallSiteIdxs
.begin(), CSE
= CallSiteIdxs
.end();
9442 CSI
!= CSE
; ++CSI
) {
9443 CallSiteNumToLPad
[*CSI
].push_back(&*BB
);
9444 MaxCSNum
= std::max(MaxCSNum
, *CSI
);
9450 // Get an ordered list of the machine basic blocks for the jump table.
9451 std::vector
<MachineBasicBlock
*> LPadList
;
9452 SmallPtrSet
<MachineBasicBlock
*, 32> InvokeBBs
;
9453 LPadList
.reserve(CallSiteNumToLPad
.size());
9454 for (unsigned I
= 1; I
<= MaxCSNum
; ++I
) {
9455 SmallVectorImpl
<MachineBasicBlock
*> &MBBList
= CallSiteNumToLPad
[I
];
9456 for (SmallVectorImpl
<MachineBasicBlock
*>::iterator
9457 II
= MBBList
.begin(), IE
= MBBList
.end(); II
!= IE
; ++II
) {
9458 LPadList
.push_back(*II
);
9459 InvokeBBs
.insert((*II
)->pred_begin(), (*II
)->pred_end());
9463 assert(!LPadList
.empty() &&
9464 "No landing pad destinations for the dispatch jump table!");
9466 // Create the jump table and associated information.
9467 MachineJumpTableInfo
*JTI
=
9468 MF
->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline
);
9469 unsigned MJTI
= JTI
->createJumpTableIndex(LPadList
);
9471 // Create the MBBs for the dispatch code.
9473 // Shove the dispatch's address into the return slot in the function context.
9474 MachineBasicBlock
*DispatchBB
= MF
->CreateMachineBasicBlock();
9475 DispatchBB
->setIsEHPad();
9477 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
9478 unsigned trap_opcode
;
9479 if (Subtarget
->isThumb())
9480 trap_opcode
= ARM::tTRAP
;
9482 trap_opcode
= Subtarget
->useNaClTrap() ? ARM::TRAPNaCl
: ARM::TRAP
;
9484 BuildMI(TrapBB
, dl
, TII
->get(trap_opcode
));
9485 DispatchBB
->addSuccessor(TrapBB
);
9487 MachineBasicBlock
*DispContBB
= MF
->CreateMachineBasicBlock();
9488 DispatchBB
->addSuccessor(DispContBB
);
9491 MF
->insert(MF
->end(), DispatchBB
);
9492 MF
->insert(MF
->end(), DispContBB
);
9493 MF
->insert(MF
->end(), TrapBB
);
9495 // Insert code into the entry block that creates and registers the function
9497 SetupEntryBlockForSjLj(MI
, MBB
, DispatchBB
, FI
);
9499 MachineMemOperand
*FIMMOLd
= MF
->getMachineMemOperand(
9500 MachinePointerInfo::getFixedStack(*MF
, FI
),
9501 MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
, 4, 4);
9503 MachineInstrBuilder MIB
;
9504 MIB
= BuildMI(DispatchBB
, dl
, TII
->get(ARM::Int_eh_sjlj_dispatchsetup
));
9506 const ARMBaseInstrInfo
*AII
= static_cast<const ARMBaseInstrInfo
*>(TII
);
9507 const ARMBaseRegisterInfo
&RI
= AII
->getRegisterInfo();
9509 // Add a register mask with no preserved registers. This results in all
9510 // registers being marked as clobbered. This can't work if the dispatch block
9511 // is in a Thumb1 function and is linked with ARM code which uses the FP
9512 // registers, as there is no way to preserve the FP registers in Thumb1 mode.
9513 MIB
.addRegMask(RI
.getSjLjDispatchPreservedMask(*MF
));
9515 bool IsPositionIndependent
= isPositionIndependent();
9516 unsigned NumLPads
= LPadList
.size();
9517 if (Subtarget
->isThumb2()) {
9518 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9519 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2LDRi12
), NewVReg1
)
9522 .addMemOperand(FIMMOLd
)
9523 .add(predOps(ARMCC::AL
));
9525 if (NumLPads
< 256) {
9526 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPri
))
9528 .addImm(LPadList
.size())
9529 .add(predOps(ARMCC::AL
));
9531 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9532 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVi16
), VReg1
)
9533 .addImm(NumLPads
& 0xFFFF)
9534 .add(predOps(ARMCC::AL
));
9536 unsigned VReg2
= VReg1
;
9537 if ((NumLPads
& 0xFFFF0000) != 0) {
9538 VReg2
= MRI
->createVirtualRegister(TRC
);
9539 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVTi16
), VReg2
)
9541 .addImm(NumLPads
>> 16)
9542 .add(predOps(ARMCC::AL
));
9545 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPrr
))
9548 .add(predOps(ARMCC::AL
));
9551 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2Bcc
))
9556 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9557 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2LEApcrelJT
), NewVReg3
)
9558 .addJumpTableIndex(MJTI
)
9559 .add(predOps(ARMCC::AL
));
9561 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9562 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2ADDrs
), NewVReg4
)
9563 .addReg(NewVReg3
, RegState::Kill
)
9565 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
9566 .add(predOps(ARMCC::AL
))
9569 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2BR_JT
))
9570 .addReg(NewVReg4
, RegState::Kill
)
9572 .addJumpTableIndex(MJTI
);
9573 } else if (Subtarget
->isThumb()) {
9574 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9575 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRspi
), NewVReg1
)
9578 .addMemOperand(FIMMOLd
)
9579 .add(predOps(ARMCC::AL
));
9581 if (NumLPads
< 256) {
9582 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPi8
))
9585 .add(predOps(ARMCC::AL
));
9587 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9588 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9589 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
9591 // MachineConstantPool wants an explicit alignment.
9592 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9594 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9595 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9597 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9598 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRpci
))
9599 .addReg(VReg1
, RegState::Define
)
9600 .addConstantPoolIndex(Idx
)
9601 .add(predOps(ARMCC::AL
));
9602 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPr
))
9605 .add(predOps(ARMCC::AL
));
9608 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tBcc
))
9613 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9614 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLSLri
), NewVReg2
)
9615 .addReg(ARM::CPSR
, RegState::Define
)
9618 .add(predOps(ARMCC::AL
));
9620 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9621 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLEApcrelJT
), NewVReg3
)
9622 .addJumpTableIndex(MJTI
)
9623 .add(predOps(ARMCC::AL
));
9625 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9626 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg4
)
9627 .addReg(ARM::CPSR
, RegState::Define
)
9628 .addReg(NewVReg2
, RegState::Kill
)
9630 .add(predOps(ARMCC::AL
));
9632 MachineMemOperand
*JTMMOLd
= MF
->getMachineMemOperand(
9633 MachinePointerInfo::getJumpTable(*MF
), MachineMemOperand::MOLoad
, 4, 4);
9635 Register NewVReg5
= MRI
->createVirtualRegister(TRC
);
9636 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLDRi
), NewVReg5
)
9637 .addReg(NewVReg4
, RegState::Kill
)
9639 .addMemOperand(JTMMOLd
)
9640 .add(predOps(ARMCC::AL
));
9642 unsigned NewVReg6
= NewVReg5
;
9643 if (IsPositionIndependent
) {
9644 NewVReg6
= MRI
->createVirtualRegister(TRC
);
9645 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg6
)
9646 .addReg(ARM::CPSR
, RegState::Define
)
9647 .addReg(NewVReg5
, RegState::Kill
)
9649 .add(predOps(ARMCC::AL
));
9652 BuildMI(DispContBB
, dl
, TII
->get(ARM::tBR_JTr
))
9653 .addReg(NewVReg6
, RegState::Kill
)
9654 .addJumpTableIndex(MJTI
);
9656 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9657 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
9660 .addMemOperand(FIMMOLd
)
9661 .add(predOps(ARMCC::AL
));
9663 if (NumLPads
< 256) {
9664 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPri
))
9667 .add(predOps(ARMCC::AL
));
9668 } else if (Subtarget
->hasV6T2Ops() && isUInt
<16>(NumLPads
)) {
9669 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9670 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVi16
), VReg1
)
9671 .addImm(NumLPads
& 0xFFFF)
9672 .add(predOps(ARMCC::AL
));
9674 unsigned VReg2
= VReg1
;
9675 if ((NumLPads
& 0xFFFF0000) != 0) {
9676 VReg2
= MRI
->createVirtualRegister(TRC
);
9677 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVTi16
), VReg2
)
9679 .addImm(NumLPads
>> 16)
9680 .add(predOps(ARMCC::AL
));
9683 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
9686 .add(predOps(ARMCC::AL
));
9688 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9689 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9690 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
9692 // MachineConstantPool wants an explicit alignment.
9693 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9695 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9696 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9698 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9699 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRcp
))
9700 .addReg(VReg1
, RegState::Define
)
9701 .addConstantPoolIndex(Idx
)
9703 .add(predOps(ARMCC::AL
));
9704 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
9706 .addReg(VReg1
, RegState::Kill
)
9707 .add(predOps(ARMCC::AL
));
9710 BuildMI(DispatchBB
, dl
, TII
->get(ARM::Bcc
))
9715 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9716 BuildMI(DispContBB
, dl
, TII
->get(ARM::MOVsi
), NewVReg3
)
9718 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
9719 .add(predOps(ARMCC::AL
))
9721 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9722 BuildMI(DispContBB
, dl
, TII
->get(ARM::LEApcrelJT
), NewVReg4
)
9723 .addJumpTableIndex(MJTI
)
9724 .add(predOps(ARMCC::AL
));
9726 MachineMemOperand
*JTMMOLd
= MF
->getMachineMemOperand(
9727 MachinePointerInfo::getJumpTable(*MF
), MachineMemOperand::MOLoad
, 4, 4);
9728 Register NewVReg5
= MRI
->createVirtualRegister(TRC
);
9729 BuildMI(DispContBB
, dl
, TII
->get(ARM::LDRrs
), NewVReg5
)
9730 .addReg(NewVReg3
, RegState::Kill
)
9733 .addMemOperand(JTMMOLd
)
9734 .add(predOps(ARMCC::AL
));
9736 if (IsPositionIndependent
) {
9737 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTadd
))
9738 .addReg(NewVReg5
, RegState::Kill
)
9740 .addJumpTableIndex(MJTI
);
9742 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTr
))
9743 .addReg(NewVReg5
, RegState::Kill
)
9744 .addJumpTableIndex(MJTI
);
9748 // Add the jump table entries as successors to the MBB.
9749 SmallPtrSet
<MachineBasicBlock
*, 8> SeenMBBs
;
9750 for (std::vector
<MachineBasicBlock
*>::iterator
9751 I
= LPadList
.begin(), E
= LPadList
.end(); I
!= E
; ++I
) {
9752 MachineBasicBlock
*CurMBB
= *I
;
9753 if (SeenMBBs
.insert(CurMBB
).second
)
9754 DispContBB
->addSuccessor(CurMBB
);
9757 // N.B. the order the invoke BBs are processed in doesn't matter here.
9758 const MCPhysReg
*SavedRegs
= RI
.getCalleeSavedRegs(MF
);
9759 SmallVector
<MachineBasicBlock
*, 64> MBBLPads
;
9760 for (MachineBasicBlock
*BB
: InvokeBBs
) {
9762 // Remove the landing pad successor from the invoke block and replace it
9763 // with the new dispatch block.
9764 SmallVector
<MachineBasicBlock
*, 4> Successors(BB
->succ_begin(),
9766 while (!Successors
.empty()) {
9767 MachineBasicBlock
*SMBB
= Successors
.pop_back_val();
9768 if (SMBB
->isEHPad()) {
9769 BB
->removeSuccessor(SMBB
);
9770 MBBLPads
.push_back(SMBB
);
9774 BB
->addSuccessor(DispatchBB
, BranchProbability::getZero());
9775 BB
->normalizeSuccProbs();
9777 // Find the invoke call and mark all of the callee-saved registers as
9778 // 'implicit defined' so that they're spilled. This prevents code from
9779 // moving instructions to before the EH block, where they will never be
9781 for (MachineBasicBlock::reverse_iterator
9782 II
= BB
->rbegin(), IE
= BB
->rend(); II
!= IE
; ++II
) {
9783 if (!II
->isCall()) continue;
9785 DenseMap
<unsigned, bool> DefRegs
;
9786 for (MachineInstr::mop_iterator
9787 OI
= II
->operands_begin(), OE
= II
->operands_end();
9789 if (!OI
->isReg()) continue;
9790 DefRegs
[OI
->getReg()] = true;
9793 MachineInstrBuilder
MIB(*MF
, &*II
);
9795 for (unsigned i
= 0; SavedRegs
[i
] != 0; ++i
) {
9796 unsigned Reg
= SavedRegs
[i
];
9797 if (Subtarget
->isThumb2() &&
9798 !ARM::tGPRRegClass
.contains(Reg
) &&
9799 !ARM::hGPRRegClass
.contains(Reg
))
9801 if (Subtarget
->isThumb1Only() && !ARM::tGPRRegClass
.contains(Reg
))
9803 if (!Subtarget
->isThumb() && !ARM::GPRRegClass
.contains(Reg
))
9806 MIB
.addReg(Reg
, RegState::ImplicitDefine
| RegState::Dead
);
9813 // Mark all former landing pads as non-landing pads. The dispatch is the only
9815 for (SmallVectorImpl
<MachineBasicBlock
*>::iterator
9816 I
= MBBLPads
.begin(), E
= MBBLPads
.end(); I
!= E
; ++I
)
9817 (*I
)->setIsEHPad(false);
9819 // The instruction is gone now.
9820 MI
.eraseFromParent();
9824 MachineBasicBlock
*OtherSucc(MachineBasicBlock
*MBB
, MachineBasicBlock
*Succ
) {
9825 for (MachineBasicBlock::succ_iterator I
= MBB
->succ_begin(),
9826 E
= MBB
->succ_end(); I
!= E
; ++I
)
9829 llvm_unreachable("Expecting a BB with two successors!");
9832 /// Return the load opcode for a given load size. If load size >= 8,
9833 /// neon opcode will be returned.
9834 static unsigned getLdOpcode(unsigned LdSize
, bool IsThumb1
, bool IsThumb2
) {
9836 return LdSize
== 16 ? ARM::VLD1q32wb_fixed
9837 : LdSize
== 8 ? ARM::VLD1d32wb_fixed
: 0;
9839 return LdSize
== 4 ? ARM::tLDRi
9840 : LdSize
== 2 ? ARM::tLDRHi
9841 : LdSize
== 1 ? ARM::tLDRBi
: 0;
9843 return LdSize
== 4 ? ARM::t2LDR_POST
9844 : LdSize
== 2 ? ARM::t2LDRH_POST
9845 : LdSize
== 1 ? ARM::t2LDRB_POST
: 0;
9846 return LdSize
== 4 ? ARM::LDR_POST_IMM
9847 : LdSize
== 2 ? ARM::LDRH_POST
9848 : LdSize
== 1 ? ARM::LDRB_POST_IMM
: 0;
9851 /// Return the store opcode for a given store size. If store size >= 8,
9852 /// neon opcode will be returned.
9853 static unsigned getStOpcode(unsigned StSize
, bool IsThumb1
, bool IsThumb2
) {
9855 return StSize
== 16 ? ARM::VST1q32wb_fixed
9856 : StSize
== 8 ? ARM::VST1d32wb_fixed
: 0;
9858 return StSize
== 4 ? ARM::tSTRi
9859 : StSize
== 2 ? ARM::tSTRHi
9860 : StSize
== 1 ? ARM::tSTRBi
: 0;
9862 return StSize
== 4 ? ARM::t2STR_POST
9863 : StSize
== 2 ? ARM::t2STRH_POST
9864 : StSize
== 1 ? ARM::t2STRB_POST
: 0;
9865 return StSize
== 4 ? ARM::STR_POST_IMM
9866 : StSize
== 2 ? ARM::STRH_POST
9867 : StSize
== 1 ? ARM::STRB_POST_IMM
: 0;
9870 /// Emit a post-increment load operation with given size. The instructions
9871 /// will be added to BB at Pos.
9872 static void emitPostLd(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
9873 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
9874 unsigned LdSize
, unsigned Data
, unsigned AddrIn
,
9875 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
9876 unsigned LdOpc
= getLdOpcode(LdSize
, IsThumb1
, IsThumb2
);
9877 assert(LdOpc
!= 0 && "Should have a load opcode");
9879 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9880 .addReg(AddrOut
, RegState::Define
)
9883 .add(predOps(ARMCC::AL
));
9884 } else if (IsThumb1
) {
9885 // load + update AddrIn
9886 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9889 .add(predOps(ARMCC::AL
));
9890 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
9891 .add(t1CondCodeOp())
9894 .add(predOps(ARMCC::AL
));
9895 } else if (IsThumb2
) {
9896 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9897 .addReg(AddrOut
, RegState::Define
)
9900 .add(predOps(ARMCC::AL
));
9902 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9903 .addReg(AddrOut
, RegState::Define
)
9907 .add(predOps(ARMCC::AL
));
9911 /// Emit a post-increment store operation with given size. The instructions
9912 /// will be added to BB at Pos.
9913 static void emitPostSt(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
9914 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
9915 unsigned StSize
, unsigned Data
, unsigned AddrIn
,
9916 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
9917 unsigned StOpc
= getStOpcode(StSize
, IsThumb1
, IsThumb2
);
9918 assert(StOpc
!= 0 && "Should have a store opcode");
9920 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9924 .add(predOps(ARMCC::AL
));
9925 } else if (IsThumb1
) {
9926 // store + update AddrIn
9927 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
))
9931 .add(predOps(ARMCC::AL
));
9932 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
9933 .add(t1CondCodeOp())
9936 .add(predOps(ARMCC::AL
));
9937 } else if (IsThumb2
) {
9938 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9942 .add(predOps(ARMCC::AL
));
9944 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9949 .add(predOps(ARMCC::AL
));
9954 ARMTargetLowering::EmitStructByval(MachineInstr
&MI
,
9955 MachineBasicBlock
*BB
) const {
9956 // This pseudo instruction has 3 operands: dst, src, size
9957 // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
9958 // Otherwise, we will generate unrolled scalar copies.
9959 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9960 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
9961 MachineFunction::iterator It
= ++BB
->getIterator();
9963 Register dest
= MI
.getOperand(0).getReg();
9964 Register src
= MI
.getOperand(1).getReg();
9965 unsigned SizeVal
= MI
.getOperand(2).getImm();
9966 unsigned Align
= MI
.getOperand(3).getImm();
9967 DebugLoc dl
= MI
.getDebugLoc();
9969 MachineFunction
*MF
= BB
->getParent();
9970 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
9971 unsigned UnitSize
= 0;
9972 const TargetRegisterClass
*TRC
= nullptr;
9973 const TargetRegisterClass
*VecTRC
= nullptr;
9975 bool IsThumb1
= Subtarget
->isThumb1Only();
9976 bool IsThumb2
= Subtarget
->isThumb2();
9977 bool IsThumb
= Subtarget
->isThumb();
9981 } else if (Align
& 2) {
9984 // Check whether we can use NEON instructions.
9985 if (!MF
->getFunction().hasFnAttribute(Attribute::NoImplicitFloat
) &&
9986 Subtarget
->hasNEON()) {
9987 if ((Align
% 16 == 0) && SizeVal
>= 16)
9989 else if ((Align
% 8 == 0) && SizeVal
>= 8)
9992 // Can't use NEON instructions.
9997 // Select the correct opcode and register class for unit size load/store
9998 bool IsNeon
= UnitSize
>= 8;
9999 TRC
= IsThumb
? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
10001 VecTRC
= UnitSize
== 16 ? &ARM::DPairRegClass
10002 : UnitSize
== 8 ? &ARM::DPRRegClass
10005 unsigned BytesLeft
= SizeVal
% UnitSize
;
10006 unsigned LoopSize
= SizeVal
- BytesLeft
;
10008 if (SizeVal
<= Subtarget
->getMaxInlineSizeThreshold()) {
10009 // Use LDR and STR to copy.
10010 // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
10011 // [destOut] = STR_POST(scratch, destIn, UnitSize)
10012 unsigned srcIn
= src
;
10013 unsigned destIn
= dest
;
10014 for (unsigned i
= 0; i
< LoopSize
; i
+=UnitSize
) {
10015 Register srcOut
= MRI
.createVirtualRegister(TRC
);
10016 Register destOut
= MRI
.createVirtualRegister(TRC
);
10017 Register scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
10018 emitPostLd(BB
, MI
, TII
, dl
, UnitSize
, scratch
, srcIn
, srcOut
,
10019 IsThumb1
, IsThumb2
);
10020 emitPostSt(BB
, MI
, TII
, dl
, UnitSize
, scratch
, destIn
, destOut
,
10021 IsThumb1
, IsThumb2
);
10026 // Handle the leftover bytes with LDRB and STRB.
10027 // [scratch, srcOut] = LDRB_POST(srcIn, 1)
10028 // [destOut] = STRB_POST(scratch, destIn, 1)
10029 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
10030 Register srcOut
= MRI
.createVirtualRegister(TRC
);
10031 Register destOut
= MRI
.createVirtualRegister(TRC
);
10032 Register scratch
= MRI
.createVirtualRegister(TRC
);
10033 emitPostLd(BB
, MI
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
10034 IsThumb1
, IsThumb2
);
10035 emitPostSt(BB
, MI
, TII
, dl
, 1, scratch
, destIn
, destOut
,
10036 IsThumb1
, IsThumb2
);
10040 MI
.eraseFromParent(); // The instruction is gone now.
10044 // Expand the pseudo op to a loop.
10047 // movw varEnd, # --> with thumb2
10049 // ldrcp varEnd, idx --> without thumb2
10050 // fallthrough --> loopMBB
10052 // PHI varPhi, varEnd, varLoop
10053 // PHI srcPhi, src, srcLoop
10054 // PHI destPhi, dst, destLoop
10055 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
10056 // [destLoop] = STR_POST(scratch, destPhi, UnitSize)
10057 // subs varLoop, varPhi, #UnitSize
10059 // fallthrough --> exitMBB
10061 // epilogue to handle left-over bytes
10062 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
10063 // [destOut] = STRB_POST(scratch, destLoop, 1)
10064 MachineBasicBlock
*loopMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
10065 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
10066 MF
->insert(It
, loopMBB
);
10067 MF
->insert(It
, exitMBB
);
10069 // Transfer the remainder of BB and its successor edges to exitMBB.
10070 exitMBB
->splice(exitMBB
->begin(), BB
,
10071 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10072 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
10074 // Load an immediate to varEnd.
10075 Register varEnd
= MRI
.createVirtualRegister(TRC
);
10076 if (Subtarget
->useMovt()) {
10077 unsigned Vtmp
= varEnd
;
10078 if ((LoopSize
& 0xFFFF0000) != 0)
10079 Vtmp
= MRI
.createVirtualRegister(TRC
);
10080 BuildMI(BB
, dl
, TII
->get(IsThumb
? ARM::t2MOVi16
: ARM::MOVi16
), Vtmp
)
10081 .addImm(LoopSize
& 0xFFFF)
10082 .add(predOps(ARMCC::AL
));
10084 if ((LoopSize
& 0xFFFF0000) != 0)
10085 BuildMI(BB
, dl
, TII
->get(IsThumb
? ARM::t2MOVTi16
: ARM::MOVTi16
), varEnd
)
10087 .addImm(LoopSize
>> 16)
10088 .add(predOps(ARMCC::AL
));
10090 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
10091 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
10092 const Constant
*C
= ConstantInt::get(Int32Ty
, LoopSize
);
10094 // MachineConstantPool wants an explicit alignment.
10095 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
10097 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
10098 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
10099 MachineMemOperand
*CPMMO
=
10100 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
10101 MachineMemOperand::MOLoad
, 4, 4);
10104 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDRpci
))
10105 .addReg(varEnd
, RegState::Define
)
10106 .addConstantPoolIndex(Idx
)
10107 .add(predOps(ARMCC::AL
))
10108 .addMemOperand(CPMMO
);
10110 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::LDRcp
))
10111 .addReg(varEnd
, RegState::Define
)
10112 .addConstantPoolIndex(Idx
)
10114 .add(predOps(ARMCC::AL
))
10115 .addMemOperand(CPMMO
);
10117 BB
->addSuccessor(loopMBB
);
10119 // Generate the loop body:
10120 // varPhi = PHI(varLoop, varEnd)
10121 // srcPhi = PHI(srcLoop, src)
10122 // destPhi = PHI(destLoop, dst)
10123 MachineBasicBlock
*entryBB
= BB
;
10125 Register varLoop
= MRI
.createVirtualRegister(TRC
);
10126 Register varPhi
= MRI
.createVirtualRegister(TRC
);
10127 Register srcLoop
= MRI
.createVirtualRegister(TRC
);
10128 Register srcPhi
= MRI
.createVirtualRegister(TRC
);
10129 Register destLoop
= MRI
.createVirtualRegister(TRC
);
10130 Register destPhi
= MRI
.createVirtualRegister(TRC
);
10132 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), varPhi
)
10133 .addReg(varLoop
).addMBB(loopMBB
)
10134 .addReg(varEnd
).addMBB(entryBB
);
10135 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), srcPhi
)
10136 .addReg(srcLoop
).addMBB(loopMBB
)
10137 .addReg(src
).addMBB(entryBB
);
10138 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), destPhi
)
10139 .addReg(destLoop
).addMBB(loopMBB
)
10140 .addReg(dest
).addMBB(entryBB
);
10142 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
10143 // [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
10144 Register scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
10145 emitPostLd(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, srcPhi
, srcLoop
,
10146 IsThumb1
, IsThumb2
);
10147 emitPostSt(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, destPhi
, destLoop
,
10148 IsThumb1
, IsThumb2
);
10150 // Decrement loop variable by UnitSize.
10152 BuildMI(*BB
, BB
->end(), dl
, TII
->get(ARM::tSUBi8
), varLoop
)
10153 .add(t1CondCodeOp())
10156 .add(predOps(ARMCC::AL
));
10158 MachineInstrBuilder MIB
=
10159 BuildMI(*BB
, BB
->end(), dl
,
10160 TII
->get(IsThumb2
? ARM::t2SUBri
: ARM::SUBri
), varLoop
);
10163 .add(predOps(ARMCC::AL
))
10164 .add(condCodeOp());
10165 MIB
->getOperand(5).setReg(ARM::CPSR
);
10166 MIB
->getOperand(5).setIsDef(true);
10168 BuildMI(*BB
, BB
->end(), dl
,
10169 TII
->get(IsThumb1
? ARM::tBcc
: IsThumb2
? ARM::t2Bcc
: ARM::Bcc
))
10170 .addMBB(loopMBB
).addImm(ARMCC::NE
).addReg(ARM::CPSR
);
10172 // loopMBB can loop back to loopMBB or fall through to exitMBB.
10173 BB
->addSuccessor(loopMBB
);
10174 BB
->addSuccessor(exitMBB
);
10176 // Add epilogue to handle BytesLeft.
10178 auto StartOfExit
= exitMBB
->begin();
10180 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
10181 // [destOut] = STRB_POST(scratch, destLoop, 1)
10182 unsigned srcIn
= srcLoop
;
10183 unsigned destIn
= destLoop
;
10184 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
10185 Register srcOut
= MRI
.createVirtualRegister(TRC
);
10186 Register destOut
= MRI
.createVirtualRegister(TRC
);
10187 Register scratch
= MRI
.createVirtualRegister(TRC
);
10188 emitPostLd(BB
, StartOfExit
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
10189 IsThumb1
, IsThumb2
);
10190 emitPostSt(BB
, StartOfExit
, TII
, dl
, 1, scratch
, destIn
, destOut
,
10191 IsThumb1
, IsThumb2
);
10196 MI
.eraseFromParent(); // The instruction is gone now.
10200 MachineBasicBlock
*
10201 ARMTargetLowering::EmitLowered__chkstk(MachineInstr
&MI
,
10202 MachineBasicBlock
*MBB
) const {
10203 const TargetMachine
&TM
= getTargetMachine();
10204 const TargetInstrInfo
&TII
= *Subtarget
->getInstrInfo();
10205 DebugLoc DL
= MI
.getDebugLoc();
10207 assert(Subtarget
->isTargetWindows() &&
10208 "__chkstk is only supported on Windows");
10209 assert(Subtarget
->isThumb2() && "Windows on ARM requires Thumb-2 mode");
10211 // __chkstk takes the number of words to allocate on the stack in R4, and
10212 // returns the stack adjustment in number of bytes in R4. This will not
10213 // clober any other registers (other than the obvious lr).
10215 // Although, technically, IP should be considered a register which may be
10216 // clobbered, the call itself will not touch it. Windows on ARM is a pure
10217 // thumb-2 environment, so there is no interworking required. As a result, we
10218 // do not expect a veneer to be emitted by the linker, clobbering IP.
10220 // Each module receives its own copy of __chkstk, so no import thunk is
10221 // required, again, ensuring that IP is not clobbered.
10223 // Finally, although some linkers may theoretically provide a trampoline for
10224 // out of range calls (which is quite common due to a 32M range limitation of
10225 // branches for Thumb), we can generate the long-call version via
10226 // -mcmodel=large, alleviating the need for the trampoline which may clobber
10229 switch (TM
.getCodeModel()) {
10230 case CodeModel::Tiny
:
10231 llvm_unreachable("Tiny code model not available on ARM.");
10232 case CodeModel::Small
:
10233 case CodeModel::Medium
:
10234 case CodeModel::Kernel
:
10235 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::tBL
))
10236 .add(predOps(ARMCC::AL
))
10237 .addExternalSymbol("__chkstk")
10238 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
10239 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
10241 RegState::Implicit
| RegState::Define
| RegState::Dead
)
10243 RegState::Implicit
| RegState::Define
| RegState::Dead
);
10245 case CodeModel::Large
: {
10246 MachineRegisterInfo
&MRI
= MBB
->getParent()->getRegInfo();
10247 Register Reg
= MRI
.createVirtualRegister(&ARM::rGPRRegClass
);
10249 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2MOVi32imm
), Reg
)
10250 .addExternalSymbol("__chkstk");
10251 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::tBLXr
))
10252 .add(predOps(ARMCC::AL
))
10253 .addReg(Reg
, RegState::Kill
)
10254 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
10255 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
10257 RegState::Implicit
| RegState::Define
| RegState::Dead
)
10259 RegState::Implicit
| RegState::Define
| RegState::Dead
);
10264 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2SUBrr
), ARM::SP
)
10265 .addReg(ARM::SP
, RegState::Kill
)
10266 .addReg(ARM::R4
, RegState::Kill
)
10267 .setMIFlags(MachineInstr::FrameSetup
)
10268 .add(predOps(ARMCC::AL
))
10269 .add(condCodeOp());
10271 MI
.eraseFromParent();
10275 MachineBasicBlock
*
10276 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr
&MI
,
10277 MachineBasicBlock
*MBB
) const {
10278 DebugLoc DL
= MI
.getDebugLoc();
10279 MachineFunction
*MF
= MBB
->getParent();
10280 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
10282 MachineBasicBlock
*ContBB
= MF
->CreateMachineBasicBlock();
10283 MF
->insert(++MBB
->getIterator(), ContBB
);
10284 ContBB
->splice(ContBB
->begin(), MBB
,
10285 std::next(MachineBasicBlock::iterator(MI
)), MBB
->end());
10286 ContBB
->transferSuccessorsAndUpdatePHIs(MBB
);
10287 MBB
->addSuccessor(ContBB
);
10289 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
10290 BuildMI(TrapBB
, DL
, TII
->get(ARM::t__brkdiv0
));
10291 MF
->push_back(TrapBB
);
10292 MBB
->addSuccessor(TrapBB
);
10294 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::tCMPi8
))
10295 .addReg(MI
.getOperand(0).getReg())
10297 .add(predOps(ARMCC::AL
));
10298 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::t2Bcc
))
10301 .addReg(ARM::CPSR
);
10303 MI
.eraseFromParent();
10307 // The CPSR operand of SelectItr might be missing a kill marker
10308 // because there were multiple uses of CPSR, and ISel didn't know
10309 // which to mark. Figure out whether SelectItr should have had a
10310 // kill marker, and set it if it should. Returns the correct kill
10312 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr
,
10313 MachineBasicBlock
* BB
,
10314 const TargetRegisterInfo
* TRI
) {
10315 // Scan forward through BB for a use/def of CPSR.
10316 MachineBasicBlock::iterator
miI(std::next(SelectItr
));
10317 for (MachineBasicBlock::iterator miE
= BB
->end(); miI
!= miE
; ++miI
) {
10318 const MachineInstr
& mi
= *miI
;
10319 if (mi
.readsRegister(ARM::CPSR
))
10321 if (mi
.definesRegister(ARM::CPSR
))
10322 break; // Should have kill-flag - update below.
10325 // If we hit the end of the block, check whether CPSR is live into a
10327 if (miI
== BB
->end()) {
10328 for (MachineBasicBlock::succ_iterator sItr
= BB
->succ_begin(),
10329 sEnd
= BB
->succ_end();
10330 sItr
!= sEnd
; ++sItr
) {
10331 MachineBasicBlock
* succ
= *sItr
;
10332 if (succ
->isLiveIn(ARM::CPSR
))
10337 // We found a def, or hit the end of the basic block and CPSR wasn't live
10338 // out. SelectMI should have a kill flag on CPSR.
10339 SelectItr
->addRegisterKilled(ARM::CPSR
, TRI
);
10343 MachineBasicBlock
*
10344 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
10345 MachineBasicBlock
*BB
) const {
10346 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
10347 DebugLoc dl
= MI
.getDebugLoc();
10348 bool isThumb2
= Subtarget
->isThumb2();
10349 switch (MI
.getOpcode()) {
10352 llvm_unreachable("Unexpected instr type to insert");
10355 // Thumb1 post-indexed loads are really just single-register LDMs.
10356 case ARM::tLDR_postidx
: {
10357 MachineOperand
Def(MI
.getOperand(1));
10358 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDMIA_UPD
))
10360 .add(MI
.getOperand(2)) // Rn
10361 .add(MI
.getOperand(3)) // PredImm
10362 .add(MI
.getOperand(4)) // PredReg
10363 .add(MI
.getOperand(0)) // Rt
10365 MI
.eraseFromParent();
10369 // The Thumb2 pre-indexed stores have the same MI operands, they just
10370 // define them differently in the .td files from the isel patterns, so
10371 // they need pseudos.
10372 case ARM::t2STR_preidx
:
10373 MI
.setDesc(TII
->get(ARM::t2STR_PRE
));
10375 case ARM::t2STRB_preidx
:
10376 MI
.setDesc(TII
->get(ARM::t2STRB_PRE
));
10378 case ARM::t2STRH_preidx
:
10379 MI
.setDesc(TII
->get(ARM::t2STRH_PRE
));
10382 case ARM::STRi_preidx
:
10383 case ARM::STRBi_preidx
: {
10384 unsigned NewOpc
= MI
.getOpcode() == ARM::STRi_preidx
? ARM::STR_PRE_IMM
10385 : ARM::STRB_PRE_IMM
;
10386 // Decode the offset.
10387 unsigned Offset
= MI
.getOperand(4).getImm();
10388 bool isSub
= ARM_AM::getAM2Op(Offset
) == ARM_AM::sub
;
10389 Offset
= ARM_AM::getAM2Offset(Offset
);
10393 MachineMemOperand
*MMO
= *MI
.memoperands_begin();
10394 BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
))
10395 .add(MI
.getOperand(0)) // Rn_wb
10396 .add(MI
.getOperand(1)) // Rt
10397 .add(MI
.getOperand(2)) // Rn
10398 .addImm(Offset
) // offset (skip GPR==zero_reg)
10399 .add(MI
.getOperand(5)) // pred
10400 .add(MI
.getOperand(6))
10401 .addMemOperand(MMO
);
10402 MI
.eraseFromParent();
10405 case ARM::STRr_preidx
:
10406 case ARM::STRBr_preidx
:
10407 case ARM::STRH_preidx
: {
10409 switch (MI
.getOpcode()) {
10410 default: llvm_unreachable("unexpected opcode!");
10411 case ARM::STRr_preidx
: NewOpc
= ARM::STR_PRE_REG
; break;
10412 case ARM::STRBr_preidx
: NewOpc
= ARM::STRB_PRE_REG
; break;
10413 case ARM::STRH_preidx
: NewOpc
= ARM::STRH_PRE
; break;
10415 MachineInstrBuilder MIB
= BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
));
10416 for (unsigned i
= 0; i
< MI
.getNumOperands(); ++i
)
10417 MIB
.add(MI
.getOperand(i
));
10418 MI
.eraseFromParent();
10422 case ARM::tMOVCCr_pseudo
: {
10423 // To "insert" a SELECT_CC instruction, we actually have to insert the
10424 // diamond control-flow pattern. The incoming instruction knows the
10425 // destination vreg to set, the condition code register to branch on, the
10426 // true/false values to select between, and a branch opcode to use.
10427 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
10428 MachineFunction::iterator It
= ++BB
->getIterator();
10433 // cmpTY ccX, r1, r2
10435 // fallthrough --> copy0MBB
10436 MachineBasicBlock
*thisMBB
= BB
;
10437 MachineFunction
*F
= BB
->getParent();
10438 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10439 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10440 F
->insert(It
, copy0MBB
);
10441 F
->insert(It
, sinkMBB
);
10443 // Check whether CPSR is live past the tMOVCCr_pseudo.
10444 const TargetRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
10445 if (!MI
.killsRegister(ARM::CPSR
) &&
10446 !checkAndUpdateCPSRKill(MI
, thisMBB
, TRI
)) {
10447 copy0MBB
->addLiveIn(ARM::CPSR
);
10448 sinkMBB
->addLiveIn(ARM::CPSR
);
10451 // Transfer the remainder of BB and its successor edges to sinkMBB.
10452 sinkMBB
->splice(sinkMBB
->begin(), BB
,
10453 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10454 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
10456 BB
->addSuccessor(copy0MBB
);
10457 BB
->addSuccessor(sinkMBB
);
10459 BuildMI(BB
, dl
, TII
->get(ARM::tBcc
))
10461 .addImm(MI
.getOperand(3).getImm())
10462 .addReg(MI
.getOperand(4).getReg());
10465 // %FalseValue = ...
10466 // # fallthrough to sinkMBB
10469 // Update machine-CFG edges
10470 BB
->addSuccessor(sinkMBB
);
10473 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10476 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), MI
.getOperand(0).getReg())
10477 .addReg(MI
.getOperand(1).getReg())
10479 .addReg(MI
.getOperand(2).getReg())
10482 MI
.eraseFromParent(); // The pseudo instruction is gone now.
10487 case ARM::BCCZi64
: {
10488 // If there is an unconditional branch to the other successor, remove it.
10489 BB
->erase(std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10491 // Compare both parts that make up the double comparison separately for
10493 bool RHSisZero
= MI
.getOpcode() == ARM::BCCZi64
;
10495 Register LHS1
= MI
.getOperand(1).getReg();
10496 Register LHS2
= MI
.getOperand(2).getReg();
10498 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10501 .add(predOps(ARMCC::AL
));
10502 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10503 .addReg(LHS2
).addImm(0)
10504 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10506 Register RHS1
= MI
.getOperand(3).getReg();
10507 Register RHS2
= MI
.getOperand(4).getReg();
10508 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
10511 .add(predOps(ARMCC::AL
));
10512 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
10513 .addReg(LHS2
).addReg(RHS2
)
10514 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10517 MachineBasicBlock
*destMBB
= MI
.getOperand(RHSisZero
? 3 : 5).getMBB();
10518 MachineBasicBlock
*exitMBB
= OtherSucc(BB
, destMBB
);
10519 if (MI
.getOperand(0).getImm() == ARMCC::NE
)
10520 std::swap(destMBB
, exitMBB
);
10522 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
))
10523 .addMBB(destMBB
).addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10525 BuildMI(BB
, dl
, TII
->get(ARM::t2B
))
10527 .add(predOps(ARMCC::AL
));
10529 BuildMI(BB
, dl
, TII
->get(ARM::B
)) .addMBB(exitMBB
);
10531 MI
.eraseFromParent(); // The pseudo instruction is gone now.
10535 case ARM::Int_eh_sjlj_setjmp
:
10536 case ARM::Int_eh_sjlj_setjmp_nofp
:
10537 case ARM::tInt_eh_sjlj_setjmp
:
10538 case ARM::t2Int_eh_sjlj_setjmp
:
10539 case ARM::t2Int_eh_sjlj_setjmp_nofp
:
10542 case ARM::Int_eh_sjlj_setup_dispatch
:
10543 EmitSjLjDispatchBlock(MI
, BB
);
10548 // To insert an ABS instruction, we have to insert the
10549 // diamond control-flow pattern. The incoming instruction knows the
10550 // source vreg to test against 0, the destination vreg to set,
10551 // the condition code register to branch on, the
10552 // true/false values to select between, and a branch opcode to use.
10557 // BCC (branch to SinkBB if V0 >= 0)
10558 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
10559 // SinkBB: V1 = PHI(V2, V3)
10560 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
10561 MachineFunction::iterator BBI
= ++BB
->getIterator();
10562 MachineFunction
*Fn
= BB
->getParent();
10563 MachineBasicBlock
*RSBBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
10564 MachineBasicBlock
*SinkBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
10565 Fn
->insert(BBI
, RSBBB
);
10566 Fn
->insert(BBI
, SinkBB
);
10568 Register ABSSrcReg
= MI
.getOperand(1).getReg();
10569 Register ABSDstReg
= MI
.getOperand(0).getReg();
10570 bool ABSSrcKIll
= MI
.getOperand(1).isKill();
10571 bool isThumb2
= Subtarget
->isThumb2();
10572 MachineRegisterInfo
&MRI
= Fn
->getRegInfo();
10573 // In Thumb mode S must not be specified if source register is the SP or
10574 // PC and if destination register is the SP, so restrict register class
10575 Register NewRsbDstReg
= MRI
.createVirtualRegister(
10576 isThumb2
? &ARM::rGPRRegClass
: &ARM::GPRRegClass
);
10578 // Transfer the remainder of BB and its successor edges to sinkMBB.
10579 SinkBB
->splice(SinkBB
->begin(), BB
,
10580 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10581 SinkBB
->transferSuccessorsAndUpdatePHIs(BB
);
10583 BB
->addSuccessor(RSBBB
);
10584 BB
->addSuccessor(SinkBB
);
10586 // fall through to SinkMBB
10587 RSBBB
->addSuccessor(SinkBB
);
10589 // insert a cmp at the end of BB
10590 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10593 .add(predOps(ARMCC::AL
));
10595 // insert a bcc with opposite CC to ARMCC::MI at the end of BB
10597 TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
)).addMBB(SinkBB
)
10598 .addImm(ARMCC::getOppositeCondition(ARMCC::MI
)).addReg(ARM::CPSR
);
10600 // insert rsbri in RSBBB
10601 // Note: BCC and rsbri will be converted into predicated rsbmi
10602 // by if-conversion pass
10603 BuildMI(*RSBBB
, RSBBB
->begin(), dl
,
10604 TII
->get(isThumb2
? ARM::t2RSBri
: ARM::RSBri
), NewRsbDstReg
)
10605 .addReg(ABSSrcReg
, ABSSrcKIll
? RegState::Kill
: 0)
10607 .add(predOps(ARMCC::AL
))
10608 .add(condCodeOp());
10610 // insert PHI in SinkBB,
10611 // reuse ABSDstReg to not change uses of ABS instruction
10612 BuildMI(*SinkBB
, SinkBB
->begin(), dl
,
10613 TII
->get(ARM::PHI
), ABSDstReg
)
10614 .addReg(NewRsbDstReg
).addMBB(RSBBB
)
10615 .addReg(ABSSrcReg
).addMBB(BB
);
10617 // remove ABS instruction
10618 MI
.eraseFromParent();
10620 // return last added BB
10623 case ARM::COPY_STRUCT_BYVAL_I32
:
10625 return EmitStructByval(MI
, BB
);
10626 case ARM::WIN__CHKSTK
:
10627 return EmitLowered__chkstk(MI
, BB
);
10628 case ARM::WIN__DBZCHK
:
10629 return EmitLowered__dbzchk(MI
, BB
);
10633 /// Attaches vregs to MEMCPY that it will use as scratch registers
10634 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
10635 /// instead of as a custom inserter because we need the use list from the SDNode.
10636 static void attachMEMCPYScratchRegs(const ARMSubtarget
*Subtarget
,
10637 MachineInstr
&MI
, const SDNode
*Node
) {
10638 bool isThumb1
= Subtarget
->isThumb1Only();
10640 DebugLoc DL
= MI
.getDebugLoc();
10641 MachineFunction
*MF
= MI
.getParent()->getParent();
10642 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
10643 MachineInstrBuilder
MIB(*MF
, MI
);
10645 // If the new dst/src is unused mark it as dead.
10646 if (!Node
->hasAnyUseOfValue(0)) {
10647 MI
.getOperand(0).setIsDead(true);
10649 if (!Node
->hasAnyUseOfValue(1)) {
10650 MI
.getOperand(1).setIsDead(true);
10653 // The MEMCPY both defines and kills the scratch registers.
10654 for (unsigned I
= 0; I
!= MI
.getOperand(4).getImm(); ++I
) {
10655 Register TmpReg
= MRI
.createVirtualRegister(isThumb1
? &ARM::tGPRRegClass
10656 : &ARM::GPRRegClass
);
10657 MIB
.addReg(TmpReg
, RegState::Define
|RegState::Dead
);
10661 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr
&MI
,
10662 SDNode
*Node
) const {
10663 if (MI
.getOpcode() == ARM::MEMCPY
) {
10664 attachMEMCPYScratchRegs(Subtarget
, MI
, Node
);
10668 const MCInstrDesc
*MCID
= &MI
.getDesc();
10669 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
10670 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
10671 // operand is still set to noreg. If needed, set the optional operand's
10672 // register to CPSR, and remove the redundant implicit def.
10674 // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
10676 // Rename pseudo opcodes.
10677 unsigned NewOpc
= convertAddSubFlagsOpcode(MI
.getOpcode());
10680 const ARMBaseInstrInfo
*TII
= Subtarget
->getInstrInfo();
10681 MCID
= &TII
->get(NewOpc
);
10683 assert(MCID
->getNumOperands() ==
10684 MI
.getDesc().getNumOperands() + 5 - MI
.getDesc().getSize()
10685 && "converted opcode should be the same except for cc_out"
10686 " (and, on Thumb1, pred)");
10690 // Add the optional cc_out operand
10691 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
10693 // On Thumb1, move all input operands to the end, then add the predicate
10694 if (Subtarget
->isThumb1Only()) {
10695 for (unsigned c
= MCID
->getNumOperands() - 4; c
--;) {
10696 MI
.addOperand(MI
.getOperand(1));
10697 MI
.RemoveOperand(1);
10700 // Restore the ties
10701 for (unsigned i
= MI
.getNumOperands(); i
--;) {
10702 const MachineOperand
& op
= MI
.getOperand(i
);
10703 if (op
.isReg() && op
.isUse()) {
10704 int DefIdx
= MCID
->getOperandConstraint(i
, MCOI::TIED_TO
);
10706 MI
.tieOperands(DefIdx
, i
);
10710 MI
.addOperand(MachineOperand::CreateImm(ARMCC::AL
));
10711 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
10714 ccOutIdx
= MCID
->getNumOperands() - 1;
10716 ccOutIdx
= MCID
->getNumOperands() - 1;
10718 // Any ARM instruction that sets the 's' bit should specify an optional
10719 // "cc_out" operand in the last operand position.
10720 if (!MI
.hasOptionalDef() || !MCID
->OpInfo
[ccOutIdx
].isOptionalDef()) {
10721 assert(!NewOpc
&& "Optional cc_out operand required");
10724 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
10725 // since we already have an optional CPSR def.
10726 bool definesCPSR
= false;
10727 bool deadCPSR
= false;
10728 for (unsigned i
= MCID
->getNumOperands(), e
= MI
.getNumOperands(); i
!= e
;
10730 const MachineOperand
&MO
= MI
.getOperand(i
);
10731 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == ARM::CPSR
) {
10732 definesCPSR
= true;
10735 MI
.RemoveOperand(i
);
10739 if (!definesCPSR
) {
10740 assert(!NewOpc
&& "Optional cc_out operand required");
10743 assert(deadCPSR
== !Node
->hasAnyUseOfValue(1) && "inconsistent dead flag");
10745 assert(!MI
.getOperand(ccOutIdx
).getReg() &&
10746 "expect uninitialized optional cc_out operand");
10747 // Thumb1 instructions must have the S bit even if the CPSR is dead.
10748 if (!Subtarget
->isThumb1Only())
10752 // If this instruction was defined with an optional CPSR def and its dag node
10753 // had a live implicit CPSR def, then activate the optional CPSR def.
10754 MachineOperand
&MO
= MI
.getOperand(ccOutIdx
);
10755 MO
.setReg(ARM::CPSR
);
10759 //===----------------------------------------------------------------------===//
10760 // ARM Optimization Hooks
10761 //===----------------------------------------------------------------------===//
10763 // Helper function that checks if N is a null or all ones constant.
10764 static inline bool isZeroOrAllOnes(SDValue N
, bool AllOnes
) {
10765 return AllOnes
? isAllOnesConstant(N
) : isNullConstant(N
);
10768 // Return true if N is conditionally 0 or all ones.
10769 // Detects these expressions where cc is an i1 value:
10771 // (select cc 0, y) [AllOnes=0]
10772 // (select cc y, 0) [AllOnes=0]
10773 // (zext cc) [AllOnes=0]
10774 // (sext cc) [AllOnes=0/1]
10775 // (select cc -1, y) [AllOnes=1]
10776 // (select cc y, -1) [AllOnes=1]
10778 // Invert is set when N is the null/all ones constant when CC is false.
10779 // OtherOp is set to the alternative value of N.
10780 static bool isConditionalZeroOrAllOnes(SDNode
*N
, bool AllOnes
,
10781 SDValue
&CC
, bool &Invert
,
10783 SelectionDAG
&DAG
) {
10784 switch (N
->getOpcode()) {
10785 default: return false;
10786 case ISD::SELECT
: {
10787 CC
= N
->getOperand(0);
10788 SDValue N1
= N
->getOperand(1);
10789 SDValue N2
= N
->getOperand(2);
10790 if (isZeroOrAllOnes(N1
, AllOnes
)) {
10795 if (isZeroOrAllOnes(N2
, AllOnes
)) {
10802 case ISD::ZERO_EXTEND
:
10803 // (zext cc) can never be the all ones value.
10807 case ISD::SIGN_EXTEND
: {
10809 EVT VT
= N
->getValueType(0);
10810 CC
= N
->getOperand(0);
10811 if (CC
.getValueType() != MVT::i1
|| CC
.getOpcode() != ISD::SETCC
)
10815 // When looking for an AllOnes constant, N is an sext, and the 'other'
10817 OtherOp
= DAG
.getConstant(0, dl
, VT
);
10818 else if (N
->getOpcode() == ISD::ZERO_EXTEND
)
10819 // When looking for a 0 constant, N can be zext or sext.
10820 OtherOp
= DAG
.getConstant(1, dl
, VT
);
10822 OtherOp
= DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), dl
,
10829 // Combine a constant select operand into its use:
10831 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
10832 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
10833 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
10834 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
10835 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
10837 // The transform is rejected if the select doesn't have a constant operand that
10838 // is null, or all ones when AllOnes is set.
10840 // Also recognize sext/zext from i1:
10842 // (add (zext cc), x) -> (select cc (add x, 1), x)
10843 // (add (sext cc), x) -> (select cc (add x, -1), x)
10845 // These transformations eventually create predicated instructions.
10847 // @param N The node to transform.
10848 // @param Slct The N operand that is a select.
10849 // @param OtherOp The other N operand (x above).
10850 // @param DCI Context.
10851 // @param AllOnes Require the select constant to be all ones instead of null.
10852 // @returns The new node, or SDValue() on failure.
10854 SDValue
combineSelectAndUse(SDNode
*N
, SDValue Slct
, SDValue OtherOp
,
10855 TargetLowering::DAGCombinerInfo
&DCI
,
10856 bool AllOnes
= false) {
10857 SelectionDAG
&DAG
= DCI
.DAG
;
10858 EVT VT
= N
->getValueType(0);
10859 SDValue NonConstantVal
;
10861 bool SwapSelectOps
;
10862 if (!isConditionalZeroOrAllOnes(Slct
.getNode(), AllOnes
, CCOp
, SwapSelectOps
,
10863 NonConstantVal
, DAG
))
10866 // Slct is now know to be the desired identity constant when CC is true.
10867 SDValue TrueVal
= OtherOp
;
10868 SDValue FalseVal
= DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
,
10869 OtherOp
, NonConstantVal
);
10870 // Unless SwapSelectOps says CC should be false.
10872 std::swap(TrueVal
, FalseVal
);
10874 return DAG
.getNode(ISD::SELECT
, SDLoc(N
), VT
,
10875 CCOp
, TrueVal
, FalseVal
);
10878 // Attempt combineSelectAndUse on each operand of a commutative operator N.
10880 SDValue
combineSelectAndUseCommutative(SDNode
*N
, bool AllOnes
,
10881 TargetLowering::DAGCombinerInfo
&DCI
) {
10882 SDValue N0
= N
->getOperand(0);
10883 SDValue N1
= N
->getOperand(1);
10884 if (N0
.getNode()->hasOneUse())
10885 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
, AllOnes
))
10887 if (N1
.getNode()->hasOneUse())
10888 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
, AllOnes
))
10893 static bool IsVUZPShuffleNode(SDNode
*N
) {
10894 // VUZP shuffle node.
10895 if (N
->getOpcode() == ARMISD::VUZP
)
10898 // "VUZP" on i32 is an alias for VTRN.
10899 if (N
->getOpcode() == ARMISD::VTRN
&& N
->getValueType(0) == MVT::v2i32
)
10905 static SDValue
AddCombineToVPADD(SDNode
*N
, SDValue N0
, SDValue N1
,
10906 TargetLowering::DAGCombinerInfo
&DCI
,
10907 const ARMSubtarget
*Subtarget
) {
10908 // Look for ADD(VUZP.0, VUZP.1).
10909 if (!IsVUZPShuffleNode(N0
.getNode()) || N0
.getNode() != N1
.getNode() ||
10913 // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
10914 if (!N
->getValueType(0).is64BitVector())
10918 SelectionDAG
&DAG
= DCI
.DAG
;
10919 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10921 SDNode
*Unzip
= N0
.getNode();
10922 EVT VT
= N
->getValueType(0);
10924 SmallVector
<SDValue
, 8> Ops
;
10925 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpadd
, dl
,
10926 TLI
.getPointerTy(DAG
.getDataLayout())));
10927 Ops
.push_back(Unzip
->getOperand(0));
10928 Ops
.push_back(Unzip
->getOperand(1));
10930 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
10933 static SDValue
AddCombineVUZPToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
10934 TargetLowering::DAGCombinerInfo
&DCI
,
10935 const ARMSubtarget
*Subtarget
) {
10936 // Check for two extended operands.
10937 if (!(N0
.getOpcode() == ISD::SIGN_EXTEND
&&
10938 N1
.getOpcode() == ISD::SIGN_EXTEND
) &&
10939 !(N0
.getOpcode() == ISD::ZERO_EXTEND
&&
10940 N1
.getOpcode() == ISD::ZERO_EXTEND
))
10943 SDValue N00
= N0
.getOperand(0);
10944 SDValue N10
= N1
.getOperand(0);
10946 // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
10947 if (!IsVUZPShuffleNode(N00
.getNode()) || N00
.getNode() != N10
.getNode() ||
10951 // We only recognize Q register paddl here; this can't be reached until
10952 // after type legalization.
10953 if (!N00
.getValueType().is64BitVector() ||
10954 !N0
.getValueType().is128BitVector())
10957 // Generate vpaddl.
10958 SelectionDAG
&DAG
= DCI
.DAG
;
10959 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10961 EVT VT
= N
->getValueType(0);
10963 SmallVector
<SDValue
, 8> Ops
;
10964 // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
10966 if (N0
.getOpcode() == ISD::SIGN_EXTEND
)
10967 Opcode
= Intrinsic::arm_neon_vpaddls
;
10969 Opcode
= Intrinsic::arm_neon_vpaddlu
;
10970 Ops
.push_back(DAG
.getConstant(Opcode
, dl
,
10971 TLI
.getPointerTy(DAG
.getDataLayout())));
10972 EVT ElemTy
= N00
.getValueType().getVectorElementType();
10973 unsigned NumElts
= VT
.getVectorNumElements();
10974 EVT ConcatVT
= EVT::getVectorVT(*DAG
.getContext(), ElemTy
, NumElts
* 2);
10975 SDValue Concat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), ConcatVT
,
10976 N00
.getOperand(0), N00
.getOperand(1));
10977 Ops
.push_back(Concat
);
10979 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
10982 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
10983 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
10984 // much easier to match.
10986 AddCombineBUILD_VECTORToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
10987 TargetLowering::DAGCombinerInfo
&DCI
,
10988 const ARMSubtarget
*Subtarget
) {
10989 // Only perform optimization if after legalize, and if NEON is available. We
10990 // also expected both operands to be BUILD_VECTORs.
10991 if (DCI
.isBeforeLegalize() || !Subtarget
->hasNEON()
10992 || N0
.getOpcode() != ISD::BUILD_VECTOR
10993 || N1
.getOpcode() != ISD::BUILD_VECTOR
)
10996 // Check output type since VPADDL operand elements can only be 8, 16, or 32.
10997 EVT VT
= N
->getValueType(0);
10998 if (!VT
.isInteger() || VT
.getVectorElementType() == MVT::i64
)
11001 // Check that the vector operands are of the right form.
11002 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
11003 // operands, where N is the size of the formed vector.
11004 // Each EXTRACT_VECTOR should have the same input vector and odd or even
11005 // index such that we have a pair wise add pattern.
11007 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
11008 if (N0
->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT
)
11010 SDValue Vec
= N0
->getOperand(0)->getOperand(0);
11011 SDNode
*V
= Vec
.getNode();
11012 unsigned nextIndex
= 0;
11014 // For each operands to the ADD which are BUILD_VECTORs,
11015 // check to see if each of their operands are an EXTRACT_VECTOR with
11016 // the same vector and appropriate index.
11017 for (unsigned i
= 0, e
= N0
->getNumOperands(); i
!= e
; ++i
) {
11018 if (N0
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
11019 && N1
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
11021 SDValue ExtVec0
= N0
->getOperand(i
);
11022 SDValue ExtVec1
= N1
->getOperand(i
);
11024 // First operand is the vector, verify its the same.
11025 if (V
!= ExtVec0
->getOperand(0).getNode() ||
11026 V
!= ExtVec1
->getOperand(0).getNode())
11029 // Second is the constant, verify its correct.
11030 ConstantSDNode
*C0
= dyn_cast
<ConstantSDNode
>(ExtVec0
->getOperand(1));
11031 ConstantSDNode
*C1
= dyn_cast
<ConstantSDNode
>(ExtVec1
->getOperand(1));
11033 // For the constant, we want to see all the even or all the odd.
11034 if (!C0
|| !C1
|| C0
->getZExtValue() != nextIndex
11035 || C1
->getZExtValue() != nextIndex
+1)
11038 // Increment index.
11044 // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
11045 // we're using the entire input vector, otherwise there's a size/legality
11046 // mismatch somewhere.
11047 if (nextIndex
!= Vec
.getValueType().getVectorNumElements() ||
11048 Vec
.getValueType().getVectorElementType() == VT
.getVectorElementType())
11051 // Create VPADDL node.
11052 SelectionDAG
&DAG
= DCI
.DAG
;
11053 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
11057 // Build operand list.
11058 SmallVector
<SDValue
, 8> Ops
;
11059 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddls
, dl
,
11060 TLI
.getPointerTy(DAG
.getDataLayout())));
11062 // Input is the vector.
11063 Ops
.push_back(Vec
);
11065 // Get widened type and narrowed type.
11067 unsigned numElem
= VT
.getVectorNumElements();
11069 EVT inputLaneType
= Vec
.getValueType().getVectorElementType();
11070 switch (inputLaneType
.getSimpleVT().SimpleTy
) {
11071 case MVT::i8
: widenType
= MVT::getVectorVT(MVT::i16
, numElem
); break;
11072 case MVT::i16
: widenType
= MVT::getVectorVT(MVT::i32
, numElem
); break;
11073 case MVT::i32
: widenType
= MVT::getVectorVT(MVT::i64
, numElem
); break;
11075 llvm_unreachable("Invalid vector element type for padd optimization.");
11078 SDValue tmp
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, widenType
, Ops
);
11079 unsigned ExtOp
= VT
.bitsGT(tmp
.getValueType()) ? ISD::ANY_EXTEND
: ISD::TRUNCATE
;
11080 return DAG
.getNode(ExtOp
, dl
, VT
, tmp
);
11083 static SDValue
findMUL_LOHI(SDValue V
) {
11084 if (V
->getOpcode() == ISD::UMUL_LOHI
||
11085 V
->getOpcode() == ISD::SMUL_LOHI
)
11090 static SDValue
AddCombineTo64BitSMLAL16(SDNode
*AddcNode
, SDNode
*AddeNode
,
11091 TargetLowering::DAGCombinerInfo
&DCI
,
11092 const ARMSubtarget
*Subtarget
) {
11093 if (Subtarget
->isThumb()) {
11094 if (!Subtarget
->hasDSP())
11096 } else if (!Subtarget
->hasV5TEOps())
11099 // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
11100 // accumulates the product into a 64-bit value. The 16-bit values will
11101 // be sign extended somehow or SRA'd into 32-bit values
11102 // (addc (adde (mul 16bit, 16bit), lo), hi)
11103 SDValue Mul
= AddcNode
->getOperand(0);
11104 SDValue Lo
= AddcNode
->getOperand(1);
11105 if (Mul
.getOpcode() != ISD::MUL
) {
11106 Lo
= AddcNode
->getOperand(0);
11107 Mul
= AddcNode
->getOperand(1);
11108 if (Mul
.getOpcode() != ISD::MUL
)
11112 SDValue SRA
= AddeNode
->getOperand(0);
11113 SDValue Hi
= AddeNode
->getOperand(1);
11114 if (SRA
.getOpcode() != ISD::SRA
) {
11115 SRA
= AddeNode
->getOperand(1);
11116 Hi
= AddeNode
->getOperand(0);
11117 if (SRA
.getOpcode() != ISD::SRA
)
11120 if (auto Const
= dyn_cast
<ConstantSDNode
>(SRA
.getOperand(1))) {
11121 if (Const
->getZExtValue() != 31)
11126 if (SRA
.getOperand(0) != Mul
)
11129 SelectionDAG
&DAG
= DCI
.DAG
;
11130 SDLoc
dl(AddcNode
);
11131 unsigned Opcode
= 0;
11135 if (isS16(Mul
.getOperand(0), DAG
) && isS16(Mul
.getOperand(1), DAG
)) {
11136 Opcode
= ARMISD::SMLALBB
;
11137 Op0
= Mul
.getOperand(0);
11138 Op1
= Mul
.getOperand(1);
11139 } else if (isS16(Mul
.getOperand(0), DAG
) && isSRA16(Mul
.getOperand(1))) {
11140 Opcode
= ARMISD::SMLALBT
;
11141 Op0
= Mul
.getOperand(0);
11142 Op1
= Mul
.getOperand(1).getOperand(0);
11143 } else if (isSRA16(Mul
.getOperand(0)) && isS16(Mul
.getOperand(1), DAG
)) {
11144 Opcode
= ARMISD::SMLALTB
;
11145 Op0
= Mul
.getOperand(0).getOperand(0);
11146 Op1
= Mul
.getOperand(1);
11147 } else if (isSRA16(Mul
.getOperand(0)) && isSRA16(Mul
.getOperand(1))) {
11148 Opcode
= ARMISD::SMLALTT
;
11149 Op0
= Mul
->getOperand(0).getOperand(0);
11150 Op1
= Mul
->getOperand(1).getOperand(0);
11156 SDValue SMLAL
= DAG
.getNode(Opcode
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
11158 // Replace the ADDs' nodes uses by the MLA node's values.
11159 SDValue
HiMLALResult(SMLAL
.getNode(), 1);
11160 SDValue
LoMLALResult(SMLAL
.getNode(), 0);
11162 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), LoMLALResult
);
11163 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), HiMLALResult
);
11165 // Return original node to notify the driver to stop replacing.
11166 SDValue
resNode(AddcNode
, 0);
11170 static SDValue
AddCombineTo64bitMLAL(SDNode
*AddeSubeNode
,
11171 TargetLowering::DAGCombinerInfo
&DCI
,
11172 const ARMSubtarget
*Subtarget
) {
11173 // Look for multiply add opportunities.
11174 // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
11175 // each add nodes consumes a value from ISD::UMUL_LOHI and there is
11176 // a glue link from the first add to the second add.
11177 // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
11178 // a S/UMLAL instruction.
11181 // V \ [no multiline comment]
11187 // In the special case where only the higher part of a signed result is used
11188 // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
11189 // a constant with the exact value of 0x80000000, we recognize we are dealing
11190 // with a "rounded multiply and add" (or subtract) and transform it into
11191 // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
11193 assert((AddeSubeNode
->getOpcode() == ARMISD::ADDE
||
11194 AddeSubeNode
->getOpcode() == ARMISD::SUBE
) &&
11195 "Expect an ADDE or SUBE");
11197 assert(AddeSubeNode
->getNumOperands() == 3 &&
11198 AddeSubeNode
->getOperand(2).getValueType() == MVT::i32
&&
11199 "ADDE node has the wrong inputs");
11201 // Check that we are chained to the right ADDC or SUBC node.
11202 SDNode
*AddcSubcNode
= AddeSubeNode
->getOperand(2).getNode();
11203 if ((AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
11204 AddcSubcNode
->getOpcode() != ARMISD::ADDC
) ||
11205 (AddeSubeNode
->getOpcode() == ARMISD::SUBE
&&
11206 AddcSubcNode
->getOpcode() != ARMISD::SUBC
))
11209 SDValue AddcSubcOp0
= AddcSubcNode
->getOperand(0);
11210 SDValue AddcSubcOp1
= AddcSubcNode
->getOperand(1);
11212 // Check if the two operands are from the same mul_lohi node.
11213 if (AddcSubcOp0
.getNode() == AddcSubcOp1
.getNode())
11216 assert(AddcSubcNode
->getNumValues() == 2 &&
11217 AddcSubcNode
->getValueType(0) == MVT::i32
&&
11218 "Expect ADDC with two result values. First: i32");
11220 // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
11221 // maybe a SMLAL which multiplies two 16-bit values.
11222 if (AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
11223 AddcSubcOp0
->getOpcode() != ISD::UMUL_LOHI
&&
11224 AddcSubcOp0
->getOpcode() != ISD::SMUL_LOHI
&&
11225 AddcSubcOp1
->getOpcode() != ISD::UMUL_LOHI
&&
11226 AddcSubcOp1
->getOpcode() != ISD::SMUL_LOHI
)
11227 return AddCombineTo64BitSMLAL16(AddcSubcNode
, AddeSubeNode
, DCI
, Subtarget
);
11229 // Check for the triangle shape.
11230 SDValue AddeSubeOp0
= AddeSubeNode
->getOperand(0);
11231 SDValue AddeSubeOp1
= AddeSubeNode
->getOperand(1);
11233 // Make sure that the ADDE/SUBE operands are not coming from the same node.
11234 if (AddeSubeOp0
.getNode() == AddeSubeOp1
.getNode())
11237 // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
11238 bool IsLeftOperandMUL
= false;
11239 SDValue MULOp
= findMUL_LOHI(AddeSubeOp0
);
11240 if (MULOp
== SDValue())
11241 MULOp
= findMUL_LOHI(AddeSubeOp1
);
11243 IsLeftOperandMUL
= true;
11244 if (MULOp
== SDValue())
11247 // Figure out the right opcode.
11248 unsigned Opc
= MULOp
->getOpcode();
11249 unsigned FinalOpc
= (Opc
== ISD::SMUL_LOHI
) ? ARMISD::SMLAL
: ARMISD::UMLAL
;
11251 // Figure out the high and low input values to the MLAL node.
11252 SDValue
*HiAddSub
= nullptr;
11253 SDValue
*LoMul
= nullptr;
11254 SDValue
*LowAddSub
= nullptr;
11256 // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
11257 if ((AddeSubeOp0
!= MULOp
.getValue(1)) && (AddeSubeOp1
!= MULOp
.getValue(1)))
11260 if (IsLeftOperandMUL
)
11261 HiAddSub
= &AddeSubeOp1
;
11263 HiAddSub
= &AddeSubeOp0
;
11265 // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
11266 // whose low result is fed to the ADDC/SUBC we are checking.
11268 if (AddcSubcOp0
== MULOp
.getValue(0)) {
11269 LoMul
= &AddcSubcOp0
;
11270 LowAddSub
= &AddcSubcOp1
;
11272 if (AddcSubcOp1
== MULOp
.getValue(0)) {
11273 LoMul
= &AddcSubcOp1
;
11274 LowAddSub
= &AddcSubcOp0
;
11280 // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
11281 // the replacement below will create a cycle.
11282 if (AddcSubcNode
== HiAddSub
->getNode() ||
11283 AddcSubcNode
->isPredecessorOf(HiAddSub
->getNode()))
11286 // Create the merged node.
11287 SelectionDAG
&DAG
= DCI
.DAG
;
11289 // Start building operand list.
11290 SmallVector
<SDValue
, 8> Ops
;
11291 Ops
.push_back(LoMul
->getOperand(0));
11292 Ops
.push_back(LoMul
->getOperand(1));
11294 // Check whether we can use SMMLAR, SMMLSR or SMMULR instead. For this to be
11295 // the case, we must be doing signed multiplication and only use the higher
11296 // part of the result of the MLAL, furthermore the LowAddSub must be a constant
11297 // addition or subtraction with the value of 0x800000.
11298 if (Subtarget
->hasV6Ops() && Subtarget
->hasDSP() && Subtarget
->useMulOps() &&
11299 FinalOpc
== ARMISD::SMLAL
&& !AddeSubeNode
->hasAnyUseOfValue(1) &&
11300 LowAddSub
->getNode()->getOpcode() == ISD::Constant
&&
11301 static_cast<ConstantSDNode
*>(LowAddSub
->getNode())->getZExtValue() ==
11303 Ops
.push_back(*HiAddSub
);
11304 if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
) {
11305 FinalOpc
= ARMISD::SMMLSR
;
11307 FinalOpc
= ARMISD::SMMLAR
;
11309 SDValue NewNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
), MVT::i32
, Ops
);
11310 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), NewNode
);
11312 return SDValue(AddeSubeNode
, 0);
11313 } else if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
)
11314 // SMMLS is generated during instruction selection and the rest of this
11315 // function can not handle the case where AddcSubcNode is a SUBC.
11318 // Finish building the operand list for {U/S}MLAL
11319 Ops
.push_back(*LowAddSub
);
11320 Ops
.push_back(*HiAddSub
);
11322 SDValue MLALNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
),
11323 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
11325 // Replace the ADDs' nodes uses by the MLA node's values.
11326 SDValue
HiMLALResult(MLALNode
.getNode(), 1);
11327 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), HiMLALResult
);
11329 SDValue
LoMLALResult(MLALNode
.getNode(), 0);
11330 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode
, 0), LoMLALResult
);
11332 // Return original node to notify the driver to stop replacing.
11333 return SDValue(AddeSubeNode
, 0);
11336 static SDValue
AddCombineTo64bitUMAAL(SDNode
*AddeNode
,
11337 TargetLowering::DAGCombinerInfo
&DCI
,
11338 const ARMSubtarget
*Subtarget
) {
11339 // UMAAL is similar to UMLAL except that it adds two unsigned values.
11340 // While trying to combine for the other MLAL nodes, first search for the
11341 // chance to use UMAAL. Check if Addc uses a node which has already
11342 // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
11343 // as the addend, and it's handled in PerformUMLALCombine.
11345 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
11346 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
11348 // Check that we have a glued ADDC node.
11349 SDNode
* AddcNode
= AddeNode
->getOperand(2).getNode();
11350 if (AddcNode
->getOpcode() != ARMISD::ADDC
)
11353 // Find the converted UMAAL or quit if it doesn't exist.
11354 SDNode
*UmlalNode
= nullptr;
11356 if (AddcNode
->getOperand(0).getOpcode() == ARMISD::UMLAL
) {
11357 UmlalNode
= AddcNode
->getOperand(0).getNode();
11358 AddHi
= AddcNode
->getOperand(1);
11359 } else if (AddcNode
->getOperand(1).getOpcode() == ARMISD::UMLAL
) {
11360 UmlalNode
= AddcNode
->getOperand(1).getNode();
11361 AddHi
= AddcNode
->getOperand(0);
11363 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
11366 // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
11367 // the ADDC as well as Zero.
11368 if (!isNullConstant(UmlalNode
->getOperand(3)))
11371 if ((isNullConstant(AddeNode
->getOperand(0)) &&
11372 AddeNode
->getOperand(1).getNode() == UmlalNode
) ||
11373 (AddeNode
->getOperand(0).getNode() == UmlalNode
&&
11374 isNullConstant(AddeNode
->getOperand(1)))) {
11375 SelectionDAG
&DAG
= DCI
.DAG
;
11376 SDValue Ops
[] = { UmlalNode
->getOperand(0), UmlalNode
->getOperand(1),
11377 UmlalNode
->getOperand(2), AddHi
};
11378 SDValue UMAAL
= DAG
.getNode(ARMISD::UMAAL
, SDLoc(AddcNode
),
11379 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
11381 // Replace the ADDs' nodes uses by the UMAAL node's values.
11382 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), SDValue(UMAAL
.getNode(), 1));
11383 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), SDValue(UMAAL
.getNode(), 0));
11385 // Return original node to notify the driver to stop replacing.
11386 return SDValue(AddeNode
, 0);
11391 static SDValue
PerformUMLALCombine(SDNode
*N
, SelectionDAG
&DAG
,
11392 const ARMSubtarget
*Subtarget
) {
11393 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
11396 // Check that we have a pair of ADDC and ADDE as operands.
11397 // Both addends of the ADDE must be zero.
11398 SDNode
* AddcNode
= N
->getOperand(2).getNode();
11399 SDNode
* AddeNode
= N
->getOperand(3).getNode();
11400 if ((AddcNode
->getOpcode() == ARMISD::ADDC
) &&
11401 (AddeNode
->getOpcode() == ARMISD::ADDE
) &&
11402 isNullConstant(AddeNode
->getOperand(0)) &&
11403 isNullConstant(AddeNode
->getOperand(1)) &&
11404 (AddeNode
->getOperand(2).getNode() == AddcNode
))
11405 return DAG
.getNode(ARMISD::UMAAL
, SDLoc(N
),
11406 DAG
.getVTList(MVT::i32
, MVT::i32
),
11407 {N
->getOperand(0), N
->getOperand(1),
11408 AddcNode
->getOperand(0), AddcNode
->getOperand(1)});
11413 static SDValue
PerformAddcSubcCombine(SDNode
*N
,
11414 TargetLowering::DAGCombinerInfo
&DCI
,
11415 const ARMSubtarget
*Subtarget
) {
11416 SelectionDAG
&DAG(DCI
.DAG
);
11418 if (N
->getOpcode() == ARMISD::SUBC
) {
11419 // (SUBC (ADDE 0, 0, C), 1) -> C
11420 SDValue LHS
= N
->getOperand(0);
11421 SDValue RHS
= N
->getOperand(1);
11422 if (LHS
->getOpcode() == ARMISD::ADDE
&&
11423 isNullConstant(LHS
->getOperand(0)) &&
11424 isNullConstant(LHS
->getOperand(1)) && isOneConstant(RHS
)) {
11425 return DCI
.CombineTo(N
, SDValue(N
, 0), LHS
->getOperand(2));
11429 if (Subtarget
->isThumb1Only()) {
11430 SDValue RHS
= N
->getOperand(1);
11431 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
11432 int32_t imm
= C
->getSExtValue();
11433 if (imm
< 0 && imm
> std::numeric_limits
<int>::min()) {
11435 RHS
= DAG
.getConstant(-imm
, DL
, MVT::i32
);
11436 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDC
) ? ARMISD::SUBC
11438 return DAG
.getNode(Opcode
, DL
, N
->getVTList(), N
->getOperand(0), RHS
);
11446 static SDValue
PerformAddeSubeCombine(SDNode
*N
,
11447 TargetLowering::DAGCombinerInfo
&DCI
,
11448 const ARMSubtarget
*Subtarget
) {
11449 if (Subtarget
->isThumb1Only()) {
11450 SelectionDAG
&DAG
= DCI
.DAG
;
11451 SDValue RHS
= N
->getOperand(1);
11452 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
11453 int64_t imm
= C
->getSExtValue();
11457 // The with-carry-in form matches bitwise not instead of the negation.
11458 // Effectively, the inverse interpretation of the carry flag already
11459 // accounts for part of the negation.
11460 RHS
= DAG
.getConstant(~imm
, DL
, MVT::i32
);
11462 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDE
) ? ARMISD::SUBE
11464 return DAG
.getNode(Opcode
, DL
, N
->getVTList(),
11465 N
->getOperand(0), RHS
, N
->getOperand(2));
11468 } else if (N
->getOperand(1)->getOpcode() == ISD::SMUL_LOHI
) {
11469 return AddCombineTo64bitMLAL(N
, DCI
, Subtarget
);
11474 static SDValue
PerformABSCombine(SDNode
*N
,
11475 TargetLowering::DAGCombinerInfo
&DCI
,
11476 const ARMSubtarget
*Subtarget
) {
11478 SelectionDAG
&DAG
= DCI
.DAG
;
11479 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
11481 if (TLI
.isOperationLegal(N
->getOpcode(), N
->getValueType(0)))
11484 if (!TLI
.expandABS(N
, res
, DAG
))
11490 /// PerformADDECombine - Target-specific dag combine transform from
11491 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
11492 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
11493 static SDValue
PerformADDECombine(SDNode
*N
,
11494 TargetLowering::DAGCombinerInfo
&DCI
,
11495 const ARMSubtarget
*Subtarget
) {
11496 // Only ARM and Thumb2 support UMLAL/SMLAL.
11497 if (Subtarget
->isThumb1Only())
11498 return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
11500 // Only perform the checks after legalize when the pattern is available.
11501 if (DCI
.isBeforeLegalize()) return SDValue();
11503 return AddCombineTo64bitUMAAL(N
, DCI
, Subtarget
);
11506 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
11507 /// operands N0 and N1. This is a helper for PerformADDCombine that is
11508 /// called with the default operands, and if that fails, with commuted
11510 static SDValue
PerformADDCombineWithOperands(SDNode
*N
, SDValue N0
, SDValue N1
,
11511 TargetLowering::DAGCombinerInfo
&DCI
,
11512 const ARMSubtarget
*Subtarget
){
11513 // Attempt to create vpadd for this add.
11514 if (SDValue Result
= AddCombineToVPADD(N
, N0
, N1
, DCI
, Subtarget
))
11517 // Attempt to create vpaddl for this add.
11518 if (SDValue Result
= AddCombineVUZPToVPADDL(N
, N0
, N1
, DCI
, Subtarget
))
11520 if (SDValue Result
= AddCombineBUILD_VECTORToVPADDL(N
, N0
, N1
, DCI
,
11524 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
11525 if (N0
.getNode()->hasOneUse())
11526 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
))
11532 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode
*N
,
11533 CombineLevel Level
) const {
11534 if (Level
== BeforeLegalizeTypes
)
11537 if (N
->getOpcode() != ISD::SHL
)
11540 if (Subtarget
->isThumb1Only()) {
11541 // Avoid making expensive immediates by commuting shifts. (This logic
11542 // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
11544 if (N
->getOpcode() != ISD::SHL
)
11546 SDValue N1
= N
->getOperand(0);
11547 if (N1
->getOpcode() != ISD::ADD
&& N1
->getOpcode() != ISD::AND
&&
11548 N1
->getOpcode() != ISD::OR
&& N1
->getOpcode() != ISD::XOR
)
11550 if (auto *Const
= dyn_cast
<ConstantSDNode
>(N1
->getOperand(1))) {
11551 if (Const
->getAPIntValue().ult(256))
11553 if (N1
->getOpcode() == ISD::ADD
&& Const
->getAPIntValue().slt(0) &&
11554 Const
->getAPIntValue().sgt(-256))
11560 // Turn off commute-with-shift transform after legalization, so it doesn't
11561 // conflict with PerformSHLSimplify. (We could try to detect when
11562 // PerformSHLSimplify would trigger more precisely, but it isn't
11563 // really necessary.)
11567 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
11568 const SDNode
*N
, CombineLevel Level
) const {
11569 if (!Subtarget
->isThumb1Only())
11572 if (Level
== BeforeLegalizeTypes
)
11578 bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT
) const {
11579 if (!Subtarget
->hasNEON()) {
11580 if (Subtarget
->isThumb1Only())
11581 return VT
.getScalarSizeInBits() <= 32;
11584 return VT
.isScalarInteger();
11587 static SDValue
PerformSHLSimplify(SDNode
*N
,
11588 TargetLowering::DAGCombinerInfo
&DCI
,
11589 const ARMSubtarget
*ST
) {
11590 // Allow the generic combiner to identify potential bswaps.
11591 if (DCI
.isBeforeLegalize())
11594 // DAG combiner will fold:
11595 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
11596 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
11597 // Other code patterns that can be also be modified have the following form:
11598 // b + ((a << 1) | 510)
11599 // b + ((a << 1) & 510)
11600 // b + ((a << 1) ^ 510)
11601 // b + ((a << 1) + 510)
11603 // Many instructions can perform the shift for free, but it requires both
11604 // the operands to be registers. If c1 << c2 is too large, a mov immediate
11605 // instruction will needed. So, unfold back to the original pattern if:
11606 // - if c1 and c2 are small enough that they don't require mov imms.
11607 // - the user(s) of the node can perform an shl
11609 // No shifted operands for 16-bit instructions.
11610 if (ST
->isThumb() && ST
->isThumb1Only())
11613 // Check that all the users could perform the shl themselves.
11614 for (auto U
: N
->uses()) {
11615 switch(U
->getOpcode()) {
11625 // Check that the user isn't already using a constant because there
11626 // aren't any instructions that support an immediate operand and a
11627 // shifted operand.
11628 if (isa
<ConstantSDNode
>(U
->getOperand(0)) ||
11629 isa
<ConstantSDNode
>(U
->getOperand(1)))
11632 // Check that it's not already using a shift.
11633 if (U
->getOperand(0).getOpcode() == ISD::SHL
||
11634 U
->getOperand(1).getOpcode() == ISD::SHL
)
11640 if (N
->getOpcode() != ISD::ADD
&& N
->getOpcode() != ISD::OR
&&
11641 N
->getOpcode() != ISD::XOR
&& N
->getOpcode() != ISD::AND
)
11644 if (N
->getOperand(0).getOpcode() != ISD::SHL
)
11647 SDValue SHL
= N
->getOperand(0);
11649 auto *C1ShlC2
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11650 auto *C2
= dyn_cast
<ConstantSDNode
>(SHL
.getOperand(1));
11651 if (!C1ShlC2
|| !C2
)
11654 APInt C2Int
= C2
->getAPIntValue();
11655 APInt C1Int
= C1ShlC2
->getAPIntValue();
11657 // Check that performing a lshr will not lose any information.
11658 APInt Mask
= APInt::getHighBitsSet(C2Int
.getBitWidth(),
11659 C2Int
.getBitWidth() - C2
->getZExtValue());
11660 if ((C1Int
& Mask
) != C1Int
)
11663 // Shift the first constant.
11664 C1Int
.lshrInPlace(C2Int
);
11666 // The immediates are encoded as an 8-bit value that can be rotated.
11667 auto LargeImm
= [](const APInt
&Imm
) {
11668 unsigned Zeros
= Imm
.countLeadingZeros() + Imm
.countTrailingZeros();
11669 return Imm
.getBitWidth() - Zeros
> 8;
11672 if (LargeImm(C1Int
) || LargeImm(C2Int
))
11675 SelectionDAG
&DAG
= DCI
.DAG
;
11677 SDValue X
= SHL
.getOperand(0);
11678 SDValue BinOp
= DAG
.getNode(N
->getOpcode(), dl
, MVT::i32
, X
,
11679 DAG
.getConstant(C1Int
, dl
, MVT::i32
));
11680 // Shift left to compensate for the lshr of C1Int.
11681 SDValue Res
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, BinOp
, SHL
.getOperand(1));
11683 LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL
.getOperand(0).dump();
11684 SHL
.dump(); N
->dump());
11685 LLVM_DEBUG(dbgs() << "Into:\n"; X
.dump(); BinOp
.dump(); Res
.dump());
11690 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
11692 static SDValue
PerformADDCombine(SDNode
*N
,
11693 TargetLowering::DAGCombinerInfo
&DCI
,
11694 const ARMSubtarget
*Subtarget
) {
11695 SDValue N0
= N
->getOperand(0);
11696 SDValue N1
= N
->getOperand(1);
11698 // Only works one way, because it needs an immediate operand.
11699 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11702 // First try with the default operand order.
11703 if (SDValue Result
= PerformADDCombineWithOperands(N
, N0
, N1
, DCI
, Subtarget
))
11706 // If that didn't work, try again with the operands commuted.
11707 return PerformADDCombineWithOperands(N
, N1
, N0
, DCI
, Subtarget
);
11710 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
11712 static SDValue
PerformSUBCombine(SDNode
*N
,
11713 TargetLowering::DAGCombinerInfo
&DCI
) {
11714 SDValue N0
= N
->getOperand(0);
11715 SDValue N1
= N
->getOperand(1);
11717 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
11718 if (N1
.getNode()->hasOneUse())
11719 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
))
11725 /// PerformVMULCombine
11726 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
11727 /// special multiplier accumulator forwarding.
11728 /// vmul d3, d0, d2
11729 /// vmla d3, d1, d2
11731 /// vadd d3, d0, d1
11732 /// vmul d3, d3, d2
11733 // However, for (A + B) * (A + B),
11740 static SDValue
PerformVMULCombine(SDNode
*N
,
11741 TargetLowering::DAGCombinerInfo
&DCI
,
11742 const ARMSubtarget
*Subtarget
) {
11743 if (!Subtarget
->hasVMLxForwarding())
11746 SelectionDAG
&DAG
= DCI
.DAG
;
11747 SDValue N0
= N
->getOperand(0);
11748 SDValue N1
= N
->getOperand(1);
11749 unsigned Opcode
= N0
.getOpcode();
11750 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
11751 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
) {
11752 Opcode
= N1
.getOpcode();
11753 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
11754 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
)
11762 EVT VT
= N
->getValueType(0);
11764 SDValue N00
= N0
->getOperand(0);
11765 SDValue N01
= N0
->getOperand(1);
11766 return DAG
.getNode(Opcode
, DL
, VT
,
11767 DAG
.getNode(ISD::MUL
, DL
, VT
, N00
, N1
),
11768 DAG
.getNode(ISD::MUL
, DL
, VT
, N01
, N1
));
11771 static SDValue
PerformMULCombine(SDNode
*N
,
11772 TargetLowering::DAGCombinerInfo
&DCI
,
11773 const ARMSubtarget
*Subtarget
) {
11774 SelectionDAG
&DAG
= DCI
.DAG
;
11776 if (Subtarget
->isThumb1Only())
11779 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
11782 EVT VT
= N
->getValueType(0);
11783 if (VT
.is64BitVector() || VT
.is128BitVector())
11784 return PerformVMULCombine(N
, DCI
, Subtarget
);
11785 if (VT
!= MVT::i32
)
11788 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11792 int64_t MulAmt
= C
->getSExtValue();
11793 unsigned ShiftAmt
= countTrailingZeros
<uint64_t>(MulAmt
);
11795 ShiftAmt
= ShiftAmt
& (32 - 1);
11796 SDValue V
= N
->getOperand(0);
11800 MulAmt
>>= ShiftAmt
;
11803 if (isPowerOf2_32(MulAmt
- 1)) {
11804 // (mul x, 2^N + 1) => (add (shl x, N), x)
11805 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
11807 DAG
.getNode(ISD::SHL
, DL
, VT
,
11809 DAG
.getConstant(Log2_32(MulAmt
- 1), DL
,
11811 } else if (isPowerOf2_32(MulAmt
+ 1)) {
11812 // (mul x, 2^N - 1) => (sub (shl x, N), x)
11813 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11814 DAG
.getNode(ISD::SHL
, DL
, VT
,
11816 DAG
.getConstant(Log2_32(MulAmt
+ 1), DL
,
11822 uint64_t MulAmtAbs
= -MulAmt
;
11823 if (isPowerOf2_32(MulAmtAbs
+ 1)) {
11824 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
11825 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11827 DAG
.getNode(ISD::SHL
, DL
, VT
,
11829 DAG
.getConstant(Log2_32(MulAmtAbs
+ 1), DL
,
11831 } else if (isPowerOf2_32(MulAmtAbs
- 1)) {
11832 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
11833 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
11835 DAG
.getNode(ISD::SHL
, DL
, VT
,
11837 DAG
.getConstant(Log2_32(MulAmtAbs
- 1), DL
,
11839 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11840 DAG
.getConstant(0, DL
, MVT::i32
), Res
);
11846 Res
= DAG
.getNode(ISD::SHL
, DL
, VT
,
11847 Res
, DAG
.getConstant(ShiftAmt
, DL
, MVT::i32
));
11849 // Do not add new nodes to DAG combiner worklist.
11850 DCI
.CombineTo(N
, Res
, false);
11854 static SDValue
CombineANDShift(SDNode
*N
,
11855 TargetLowering::DAGCombinerInfo
&DCI
,
11856 const ARMSubtarget
*Subtarget
) {
11857 // Allow DAGCombine to pattern-match before we touch the canonical form.
11858 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
11861 if (N
->getValueType(0) != MVT::i32
)
11864 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11868 uint32_t C1
= (uint32_t)N1C
->getZExtValue();
11869 // Don't transform uxtb/uxth.
11870 if (C1
== 255 || C1
== 65535)
11873 SDNode
*N0
= N
->getOperand(0).getNode();
11874 if (!N0
->hasOneUse())
11877 if (N0
->getOpcode() != ISD::SHL
&& N0
->getOpcode() != ISD::SRL
)
11880 bool LeftShift
= N0
->getOpcode() == ISD::SHL
;
11882 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
11886 uint32_t C2
= (uint32_t)N01C
->getZExtValue();
11887 if (!C2
|| C2
>= 32)
11890 // Clear irrelevant bits in the mask.
11896 SelectionDAG
&DAG
= DCI
.DAG
;
11899 // We have a pattern of the form "(and (shl x, c2) c1)" or
11900 // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
11901 // transform to a pair of shifts, to save materializing c1.
11903 // First pattern: right shift, then mask off leading bits.
11904 // FIXME: Use demanded bits?
11905 if (!LeftShift
&& isMask_32(C1
)) {
11906 uint32_t C3
= countLeadingZeros(C1
);
11908 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
11909 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
11910 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
11911 DAG
.getConstant(C3
, DL
, MVT::i32
));
11915 // First pattern, reversed: left shift, then mask off trailing bits.
11916 if (LeftShift
&& isMask_32(~C1
)) {
11917 uint32_t C3
= countTrailingZeros(C1
);
11919 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
11920 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
11921 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
11922 DAG
.getConstant(C3
, DL
, MVT::i32
));
11926 // Second pattern: left shift, then mask off leading bits.
11927 // FIXME: Use demanded bits?
11928 if (LeftShift
&& isShiftedMask_32(C1
)) {
11929 uint32_t Trailing
= countTrailingZeros(C1
);
11930 uint32_t C3
= countLeadingZeros(C1
);
11931 if (Trailing
== C2
&& C2
+ C3
< 32) {
11932 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
11933 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
11934 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
11935 DAG
.getConstant(C3
, DL
, MVT::i32
));
11939 // Second pattern, reversed: right shift, then mask off trailing bits.
11940 // FIXME: Handle other patterns of known/demanded bits.
11941 if (!LeftShift
&& isShiftedMask_32(C1
)) {
11942 uint32_t Leading
= countLeadingZeros(C1
);
11943 uint32_t C3
= countTrailingZeros(C1
);
11944 if (Leading
== C2
&& C2
+ C3
< 32) {
11945 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
11946 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
11947 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
11948 DAG
.getConstant(C3
, DL
, MVT::i32
));
11952 // FIXME: Transform "(and (shl x, c2) c1)" ->
11953 // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
11958 static SDValue
PerformANDCombine(SDNode
*N
,
11959 TargetLowering::DAGCombinerInfo
&DCI
,
11960 const ARMSubtarget
*Subtarget
) {
11961 // Attempt to use immediate-form VBIC
11962 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
11964 EVT VT
= N
->getValueType(0);
11965 SelectionDAG
&DAG
= DCI
.DAG
;
11967 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
11970 APInt SplatBits
, SplatUndef
;
11971 unsigned SplatBitSize
;
11973 if (BVN
&& Subtarget
->hasNEON() &&
11974 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
11975 if (SplatBitSize
<= 64) {
11977 SDValue Val
= isVMOVModifiedImm((~SplatBits
).getZExtValue(),
11978 SplatUndef
.getZExtValue(), SplatBitSize
,
11979 DAG
, dl
, VbicVT
, VT
.is128BitVector(),
11981 if (Val
.getNode()) {
11983 DAG
.getNode(ISD::BITCAST
, dl
, VbicVT
, N
->getOperand(0));
11984 SDValue Vbic
= DAG
.getNode(ARMISD::VBICIMM
, dl
, VbicVT
, Input
, Val
);
11985 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vbic
);
11990 if (!Subtarget
->isThumb1Only()) {
11991 // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
11992 if (SDValue Result
= combineSelectAndUseCommutative(N
, true, DCI
))
11995 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11999 if (Subtarget
->isThumb1Only())
12000 if (SDValue Result
= CombineANDShift(N
, DCI
, Subtarget
))
12006 // Try combining OR nodes to SMULWB, SMULWT.
12007 static SDValue
PerformORCombineToSMULWBT(SDNode
*OR
,
12008 TargetLowering::DAGCombinerInfo
&DCI
,
12009 const ARMSubtarget
*Subtarget
) {
12010 if (!Subtarget
->hasV6Ops() ||
12011 (Subtarget
->isThumb() &&
12012 (!Subtarget
->hasThumb2() || !Subtarget
->hasDSP())))
12015 SDValue SRL
= OR
->getOperand(0);
12016 SDValue SHL
= OR
->getOperand(1);
12018 if (SRL
.getOpcode() != ISD::SRL
|| SHL
.getOpcode() != ISD::SHL
) {
12019 SRL
= OR
->getOperand(1);
12020 SHL
= OR
->getOperand(0);
12022 if (!isSRL16(SRL
) || !isSHL16(SHL
))
12025 // The first operands to the shifts need to be the two results from the
12026 // same smul_lohi node.
12027 if ((SRL
.getOperand(0).getNode() != SHL
.getOperand(0).getNode()) ||
12028 SRL
.getOperand(0).getOpcode() != ISD::SMUL_LOHI
)
12031 SDNode
*SMULLOHI
= SRL
.getOperand(0).getNode();
12032 if (SRL
.getOperand(0) != SDValue(SMULLOHI
, 0) ||
12033 SHL
.getOperand(0) != SDValue(SMULLOHI
, 1))
12037 // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
12038 // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
12039 // For SMUWB the 16-bit value will signed extended somehow.
12040 // For SMULWT only the SRA is required.
12041 // Check both sides of SMUL_LOHI
12042 SDValue OpS16
= SMULLOHI
->getOperand(0);
12043 SDValue OpS32
= SMULLOHI
->getOperand(1);
12045 SelectionDAG
&DAG
= DCI
.DAG
;
12046 if (!isS16(OpS16
, DAG
) && !isSRA16(OpS16
)) {
12048 OpS32
= SMULLOHI
->getOperand(0);
12052 unsigned Opcode
= 0;
12053 if (isS16(OpS16
, DAG
))
12054 Opcode
= ARMISD::SMULWB
;
12055 else if (isSRA16(OpS16
)) {
12056 Opcode
= ARMISD::SMULWT
;
12057 OpS16
= OpS16
->getOperand(0);
12062 SDValue Res
= DAG
.getNode(Opcode
, dl
, MVT::i32
, OpS32
, OpS16
);
12063 DAG
.ReplaceAllUsesOfValueWith(SDValue(OR
, 0), Res
);
12064 return SDValue(OR
, 0);
12067 static SDValue
PerformORCombineToBFI(SDNode
*N
,
12068 TargetLowering::DAGCombinerInfo
&DCI
,
12069 const ARMSubtarget
*Subtarget
) {
12070 // BFI is only available on V6T2+
12071 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6T2Ops())
12074 EVT VT
= N
->getValueType(0);
12075 SDValue N0
= N
->getOperand(0);
12076 SDValue N1
= N
->getOperand(1);
12077 SelectionDAG
&DAG
= DCI
.DAG
;
12079 // 1) or (and A, mask), val => ARMbfi A, val, mask
12080 // iff (val & mask) == val
12082 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
12083 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
12084 // && mask == ~mask2
12085 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
12086 // && ~mask == mask2
12087 // (i.e., copy a bitfield value into another bitfield of the same width)
12089 if (VT
!= MVT::i32
)
12092 SDValue N00
= N0
.getOperand(0);
12094 // The value and the mask need to be constants so we can verify this is
12095 // actually a bitfield set. If the mask is 0xffff, we can do better
12096 // via a movt instruction, so don't use BFI in that case.
12097 SDValue MaskOp
= N0
.getOperand(1);
12098 ConstantSDNode
*MaskC
= dyn_cast
<ConstantSDNode
>(MaskOp
);
12101 unsigned Mask
= MaskC
->getZExtValue();
12102 if (Mask
== 0xffff)
12105 // Case (1): or (and A, mask), val => ARMbfi A, val, mask
12106 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
12108 unsigned Val
= N1C
->getZExtValue();
12109 if ((Val
& ~Mask
) != Val
)
12112 if (ARM::isBitFieldInvertedMask(Mask
)) {
12113 Val
>>= countTrailingZeros(~Mask
);
12115 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
,
12116 DAG
.getConstant(Val
, DL
, MVT::i32
),
12117 DAG
.getConstant(Mask
, DL
, MVT::i32
));
12119 DCI
.CombineTo(N
, Res
, false);
12120 // Return value from the original node to inform the combiner than N is
12122 return SDValue(N
, 0);
12124 } else if (N1
.getOpcode() == ISD::AND
) {
12125 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
12126 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
12129 unsigned Mask2
= N11C
->getZExtValue();
12131 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
12133 if (ARM::isBitFieldInvertedMask(Mask
) &&
12134 (Mask
== ~Mask2
)) {
12135 // The pack halfword instruction works better for masks that fit it,
12136 // so use that when it's available.
12137 if (Subtarget
->hasDSP() &&
12138 (Mask
== 0xffff || Mask
== 0xffff0000))
12141 unsigned amt
= countTrailingZeros(Mask2
);
12142 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N1
.getOperand(0),
12143 DAG
.getConstant(amt
, DL
, MVT::i32
));
12144 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
, Res
,
12145 DAG
.getConstant(Mask
, DL
, MVT::i32
));
12146 DCI
.CombineTo(N
, Res
, false);
12147 // Return value from the original node to inform the combiner than N is
12149 return SDValue(N
, 0);
12150 } else if (ARM::isBitFieldInvertedMask(~Mask
) &&
12151 (~Mask
== Mask2
)) {
12152 // The pack halfword instruction works better for masks that fit it,
12153 // so use that when it's available.
12154 if (Subtarget
->hasDSP() &&
12155 (Mask2
== 0xffff || Mask2
== 0xffff0000))
12158 unsigned lsb
= countTrailingZeros(Mask
);
12159 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N00
,
12160 DAG
.getConstant(lsb
, DL
, MVT::i32
));
12161 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
.getOperand(0), Res
,
12162 DAG
.getConstant(Mask2
, DL
, MVT::i32
));
12163 DCI
.CombineTo(N
, Res
, false);
12164 // Return value from the original node to inform the combiner than N is
12166 return SDValue(N
, 0);
12170 if (DAG
.MaskedValueIsZero(N1
, MaskC
->getAPIntValue()) &&
12171 N00
.getOpcode() == ISD::SHL
&& isa
<ConstantSDNode
>(N00
.getOperand(1)) &&
12172 ARM::isBitFieldInvertedMask(~Mask
)) {
12173 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
12174 // where lsb(mask) == #shamt and masked bits of B are known zero.
12175 SDValue ShAmt
= N00
.getOperand(1);
12176 unsigned ShAmtC
= cast
<ConstantSDNode
>(ShAmt
)->getZExtValue();
12177 unsigned LSB
= countTrailingZeros(Mask
);
12181 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
, N00
.getOperand(0),
12182 DAG
.getConstant(~Mask
, DL
, MVT::i32
));
12184 DCI
.CombineTo(N
, Res
, false);
12185 // Return value from the original node to inform the combiner than N is
12187 return SDValue(N
, 0);
12193 static bool isValidMVECond(unsigned CC
, bool IsFloat
) {
12210 static SDValue
PerformORCombine_i1(SDNode
*N
,
12211 TargetLowering::DAGCombinerInfo
&DCI
,
12212 const ARMSubtarget
*Subtarget
) {
12213 // Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain
12214 // together with predicates
12215 EVT VT
= N
->getValueType(0);
12216 SDValue N0
= N
->getOperand(0);
12217 SDValue N1
= N
->getOperand(1);
12219 ARMCC::CondCodes CondCode0
= ARMCC::AL
;
12220 ARMCC::CondCodes CondCode1
= ARMCC::AL
;
12221 if (N0
->getOpcode() == ARMISD::VCMP
)
12222 CondCode0
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N0
->getOperand(2))
12224 else if (N0
->getOpcode() == ARMISD::VCMPZ
)
12225 CondCode0
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N0
->getOperand(1))
12227 if (N1
->getOpcode() == ARMISD::VCMP
)
12228 CondCode1
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N1
->getOperand(2))
12230 else if (N1
->getOpcode() == ARMISD::VCMPZ
)
12231 CondCode1
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N1
->getOperand(1))
12234 if (CondCode0
== ARMCC::AL
|| CondCode1
== ARMCC::AL
)
12237 unsigned Opposite0
= ARMCC::getOppositeCondition(CondCode0
);
12238 unsigned Opposite1
= ARMCC::getOppositeCondition(CondCode1
);
12240 if (!isValidMVECond(Opposite0
,
12241 N0
->getOperand(0)->getValueType(0).isFloatingPoint()) ||
12242 !isValidMVECond(Opposite1
,
12243 N1
->getOperand(0)->getValueType(0).isFloatingPoint()))
12246 SmallVector
<SDValue
, 4> Ops0
;
12247 Ops0
.push_back(N0
->getOperand(0));
12248 if (N0
->getOpcode() == ARMISD::VCMP
)
12249 Ops0
.push_back(N0
->getOperand(1));
12250 Ops0
.push_back(DCI
.DAG
.getConstant(Opposite0
, SDLoc(N0
), MVT::i32
));
12251 SmallVector
<SDValue
, 4> Ops1
;
12252 Ops1
.push_back(N1
->getOperand(0));
12253 if (N1
->getOpcode() == ARMISD::VCMP
)
12254 Ops1
.push_back(N1
->getOperand(1));
12255 Ops1
.push_back(DCI
.DAG
.getConstant(Opposite1
, SDLoc(N1
), MVT::i32
));
12257 SDValue NewN0
= DCI
.DAG
.getNode(N0
->getOpcode(), SDLoc(N0
), VT
, Ops0
);
12258 SDValue NewN1
= DCI
.DAG
.getNode(N1
->getOpcode(), SDLoc(N1
), VT
, Ops1
);
12259 SDValue And
= DCI
.DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, NewN0
, NewN1
);
12260 return DCI
.DAG
.getNode(ISD::XOR
, SDLoc(N
), VT
, And
,
12261 DCI
.DAG
.getAllOnesConstant(SDLoc(N
), VT
));
12264 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
12265 static SDValue
PerformORCombine(SDNode
*N
,
12266 TargetLowering::DAGCombinerInfo
&DCI
,
12267 const ARMSubtarget
*Subtarget
) {
12268 // Attempt to use immediate-form VORR
12269 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
12271 EVT VT
= N
->getValueType(0);
12272 SelectionDAG
&DAG
= DCI
.DAG
;
12274 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12277 APInt SplatBits
, SplatUndef
;
12278 unsigned SplatBitSize
;
12280 if (BVN
&& Subtarget
->hasNEON() &&
12281 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
12282 if (SplatBitSize
<= 64) {
12284 SDValue Val
= isVMOVModifiedImm(SplatBits
.getZExtValue(),
12285 SplatUndef
.getZExtValue(), SplatBitSize
,
12286 DAG
, dl
, VorrVT
, VT
.is128BitVector(),
12288 if (Val
.getNode()) {
12290 DAG
.getNode(ISD::BITCAST
, dl
, VorrVT
, N
->getOperand(0));
12291 SDValue Vorr
= DAG
.getNode(ARMISD::VORRIMM
, dl
, VorrVT
, Input
, Val
);
12292 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vorr
);
12297 if (!Subtarget
->isThumb1Only()) {
12298 // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
12299 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
12301 if (SDValue Result
= PerformORCombineToSMULWBT(N
, DCI
, Subtarget
))
12305 SDValue N0
= N
->getOperand(0);
12306 SDValue N1
= N
->getOperand(1);
12308 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
12309 if (Subtarget
->hasNEON() && N1
.getOpcode() == ISD::AND
&& VT
.isVector() &&
12310 DAG
.getTargetLoweringInfo().isTypeLegal(VT
)) {
12312 // The code below optimizes (or (and X, Y), Z).
12313 // The AND operand needs to have a single user to make these optimizations
12315 if (N0
.getOpcode() != ISD::AND
|| !N0
.hasOneUse())
12319 unsigned SplatBitSize
;
12322 APInt SplatBits0
, SplatBits1
;
12323 BuildVectorSDNode
*BVN0
= dyn_cast
<BuildVectorSDNode
>(N0
->getOperand(1));
12324 BuildVectorSDNode
*BVN1
= dyn_cast
<BuildVectorSDNode
>(N1
->getOperand(1));
12325 // Ensure that the second operand of both ands are constants
12326 if (BVN0
&& BVN0
->isConstantSplat(SplatBits0
, SplatUndef
, SplatBitSize
,
12327 HasAnyUndefs
) && !HasAnyUndefs
) {
12328 if (BVN1
&& BVN1
->isConstantSplat(SplatBits1
, SplatUndef
, SplatBitSize
,
12329 HasAnyUndefs
) && !HasAnyUndefs
) {
12330 // Ensure that the bit width of the constants are the same and that
12331 // the splat arguments are logical inverses as per the pattern we
12332 // are trying to simplify.
12333 if (SplatBits0
.getBitWidth() == SplatBits1
.getBitWidth() &&
12334 SplatBits0
== ~SplatBits1
) {
12335 // Canonicalize the vector type to make instruction selection
12337 EVT CanonicalVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
12338 SDValue Result
= DAG
.getNode(ARMISD::VBSL
, dl
, CanonicalVT
,
12341 N1
->getOperand(0));
12342 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Result
);
12348 if (Subtarget
->hasMVEIntegerOps() &&
12349 (VT
== MVT::v4i1
|| VT
== MVT::v8i1
|| VT
== MVT::v16i1
))
12350 return PerformORCombine_i1(N
, DCI
, Subtarget
);
12352 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
12354 if (N0
.getOpcode() == ISD::AND
&& N0
.hasOneUse()) {
12355 if (SDValue Res
= PerformORCombineToBFI(N
, DCI
, Subtarget
))
12359 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
12365 static SDValue
PerformXORCombine(SDNode
*N
,
12366 TargetLowering::DAGCombinerInfo
&DCI
,
12367 const ARMSubtarget
*Subtarget
) {
12368 EVT VT
= N
->getValueType(0);
12369 SelectionDAG
&DAG
= DCI
.DAG
;
12371 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12374 if (!Subtarget
->isThumb1Only()) {
12375 // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
12376 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
12379 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
12386 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
12387 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
12388 // their position in "to" (Rd).
12389 static SDValue
ParseBFI(SDNode
*N
, APInt
&ToMask
, APInt
&FromMask
) {
12390 assert(N
->getOpcode() == ARMISD::BFI
);
12392 SDValue From
= N
->getOperand(1);
12393 ToMask
= ~cast
<ConstantSDNode
>(N
->getOperand(2))->getAPIntValue();
12394 FromMask
= APInt::getLowBitsSet(ToMask
.getBitWidth(), ToMask
.countPopulation());
12396 // If the Base came from a SHR #C, we can deduce that it is really testing bit
12397 // #C in the base of the SHR.
12398 if (From
->getOpcode() == ISD::SRL
&&
12399 isa
<ConstantSDNode
>(From
->getOperand(1))) {
12400 APInt Shift
= cast
<ConstantSDNode
>(From
->getOperand(1))->getAPIntValue();
12401 assert(Shift
.getLimitedValue() < 32 && "Shift too large!");
12402 FromMask
<<= Shift
.getLimitedValue(31);
12403 From
= From
->getOperand(0);
12409 // If A and B contain one contiguous set of bits, does A | B == A . B?
12411 // Neither A nor B must be zero.
12412 static bool BitsProperlyConcatenate(const APInt
&A
, const APInt
&B
) {
12413 unsigned LastActiveBitInA
= A
.countTrailingZeros();
12414 unsigned FirstActiveBitInB
= B
.getBitWidth() - B
.countLeadingZeros() - 1;
12415 return LastActiveBitInA
- 1 == FirstActiveBitInB
;
12418 static SDValue
FindBFIToCombineWith(SDNode
*N
) {
12419 // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
12421 APInt ToMask
, FromMask
;
12422 SDValue From
= ParseBFI(N
, ToMask
, FromMask
);
12423 SDValue To
= N
->getOperand(0);
12425 // Now check for a compatible BFI to merge with. We can pass through BFIs that
12426 // aren't compatible, but not if they set the same bit in their destination as
12427 // we do (or that of any BFI we're going to combine with).
12429 APInt CombinedToMask
= ToMask
;
12430 while (V
.getOpcode() == ARMISD::BFI
) {
12431 APInt NewToMask
, NewFromMask
;
12432 SDValue NewFrom
= ParseBFI(V
.getNode(), NewToMask
, NewFromMask
);
12433 if (NewFrom
!= From
) {
12434 // This BFI has a different base. Keep going.
12435 CombinedToMask
|= NewToMask
;
12436 V
= V
.getOperand(0);
12440 // Do the written bits conflict with any we've seen so far?
12441 if ((NewToMask
& CombinedToMask
).getBoolValue())
12442 // Conflicting bits - bail out because going further is unsafe.
12445 // Are the new bits contiguous when combined with the old bits?
12446 if (BitsProperlyConcatenate(ToMask
, NewToMask
) &&
12447 BitsProperlyConcatenate(FromMask
, NewFromMask
))
12449 if (BitsProperlyConcatenate(NewToMask
, ToMask
) &&
12450 BitsProperlyConcatenate(NewFromMask
, FromMask
))
12453 // We've seen a write to some bits, so track it.
12454 CombinedToMask
|= NewToMask
;
12456 V
= V
.getOperand(0);
12462 static SDValue
PerformBFICombine(SDNode
*N
,
12463 TargetLowering::DAGCombinerInfo
&DCI
) {
12464 SDValue N1
= N
->getOperand(1);
12465 if (N1
.getOpcode() == ISD::AND
) {
12466 // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
12467 // the bits being cleared by the AND are not demanded by the BFI.
12468 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
12471 unsigned InvMask
= cast
<ConstantSDNode
>(N
->getOperand(2))->getZExtValue();
12472 unsigned LSB
= countTrailingZeros(~InvMask
);
12473 unsigned Width
= (32 - countLeadingZeros(~InvMask
)) - LSB
;
12475 static_cast<unsigned>(std::numeric_limits
<unsigned>::digits
) &&
12476 "undefined behavior");
12477 unsigned Mask
= (1u << Width
) - 1;
12478 unsigned Mask2
= N11C
->getZExtValue();
12479 if ((Mask
& (~Mask2
)) == 0)
12480 return DCI
.DAG
.getNode(ARMISD::BFI
, SDLoc(N
), N
->getValueType(0),
12481 N
->getOperand(0), N1
.getOperand(0),
12483 } else if (N
->getOperand(0).getOpcode() == ARMISD::BFI
) {
12484 // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
12485 // Keep track of any consecutive bits set that all come from the same base
12486 // value. We can combine these together into a single BFI.
12487 SDValue CombineBFI
= FindBFIToCombineWith(N
);
12488 if (CombineBFI
== SDValue())
12491 // We've found a BFI.
12492 APInt ToMask1
, FromMask1
;
12493 SDValue From1
= ParseBFI(N
, ToMask1
, FromMask1
);
12495 APInt ToMask2
, FromMask2
;
12496 SDValue From2
= ParseBFI(CombineBFI
.getNode(), ToMask2
, FromMask2
);
12497 assert(From1
== From2
);
12500 // First, unlink CombineBFI.
12501 DCI
.DAG
.ReplaceAllUsesWith(CombineBFI
, CombineBFI
.getOperand(0));
12502 // Then create a new BFI, combining the two together.
12503 APInt NewFromMask
= FromMask1
| FromMask2
;
12504 APInt NewToMask
= ToMask1
| ToMask2
;
12506 EVT VT
= N
->getValueType(0);
12509 if (NewFromMask
[0] == 0)
12510 From1
= DCI
.DAG
.getNode(
12511 ISD::SRL
, dl
, VT
, From1
,
12512 DCI
.DAG
.getConstant(NewFromMask
.countTrailingZeros(), dl
, VT
));
12513 return DCI
.DAG
.getNode(ARMISD::BFI
, dl
, VT
, N
->getOperand(0), From1
,
12514 DCI
.DAG
.getConstant(~NewToMask
, dl
, VT
));
12519 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
12520 /// ARMISD::VMOVRRD.
12521 static SDValue
PerformVMOVRRDCombine(SDNode
*N
,
12522 TargetLowering::DAGCombinerInfo
&DCI
,
12523 const ARMSubtarget
*Subtarget
) {
12524 // vmovrrd(vmovdrr x, y) -> x,y
12525 SDValue InDouble
= N
->getOperand(0);
12526 if (InDouble
.getOpcode() == ARMISD::VMOVDRR
&& Subtarget
->hasFP64())
12527 return DCI
.CombineTo(N
, InDouble
.getOperand(0), InDouble
.getOperand(1));
12529 // vmovrrd(load f64) -> (load i32), (load i32)
12530 SDNode
*InNode
= InDouble
.getNode();
12531 if (ISD::isNormalLoad(InNode
) && InNode
->hasOneUse() &&
12532 InNode
->getValueType(0) == MVT::f64
&&
12533 InNode
->getOperand(1).getOpcode() == ISD::FrameIndex
&&
12534 !cast
<LoadSDNode
>(InNode
)->isVolatile()) {
12535 // TODO: Should this be done for non-FrameIndex operands?
12536 LoadSDNode
*LD
= cast
<LoadSDNode
>(InNode
);
12538 SelectionDAG
&DAG
= DCI
.DAG
;
12540 SDValue BasePtr
= LD
->getBasePtr();
12542 DAG
.getLoad(MVT::i32
, DL
, LD
->getChain(), BasePtr
, LD
->getPointerInfo(),
12543 LD
->getAlignment(), LD
->getMemOperand()->getFlags());
12545 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
12546 DAG
.getConstant(4, DL
, MVT::i32
));
12548 SDValue NewLD2
= DAG
.getLoad(MVT::i32
, DL
, LD
->getChain(), OffsetPtr
,
12549 LD
->getPointerInfo().getWithOffset(4),
12550 std::min(4U, LD
->getAlignment()),
12551 LD
->getMemOperand()->getFlags());
12553 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), NewLD2
.getValue(1));
12554 if (DCI
.DAG
.getDataLayout().isBigEndian())
12555 std::swap (NewLD1
, NewLD2
);
12556 SDValue Result
= DCI
.CombineTo(N
, NewLD1
, NewLD2
);
12563 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
12564 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
12565 static SDValue
PerformVMOVDRRCombine(SDNode
*N
, SelectionDAG
&DAG
) {
12566 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
12567 SDValue Op0
= N
->getOperand(0);
12568 SDValue Op1
= N
->getOperand(1);
12569 if (Op0
.getOpcode() == ISD::BITCAST
)
12570 Op0
= Op0
.getOperand(0);
12571 if (Op1
.getOpcode() == ISD::BITCAST
)
12572 Op1
= Op1
.getOperand(0);
12573 if (Op0
.getOpcode() == ARMISD::VMOVRRD
&&
12574 Op0
.getNode() == Op1
.getNode() &&
12575 Op0
.getResNo() == 0 && Op1
.getResNo() == 1)
12576 return DAG
.getNode(ISD::BITCAST
, SDLoc(N
),
12577 N
->getValueType(0), Op0
.getOperand(0));
12581 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
12582 /// are normal, non-volatile loads. If so, it is profitable to bitcast an
12583 /// i64 vector to have f64 elements, since the value can then be loaded
12584 /// directly into a VFP register.
12585 static bool hasNormalLoadOperand(SDNode
*N
) {
12586 unsigned NumElts
= N
->getValueType(0).getVectorNumElements();
12587 for (unsigned i
= 0; i
< NumElts
; ++i
) {
12588 SDNode
*Elt
= N
->getOperand(i
).getNode();
12589 if (ISD::isNormalLoad(Elt
) && !cast
<LoadSDNode
>(Elt
)->isVolatile())
12595 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
12596 /// ISD::BUILD_VECTOR.
12597 static SDValue
PerformBUILD_VECTORCombine(SDNode
*N
,
12598 TargetLowering::DAGCombinerInfo
&DCI
,
12599 const ARMSubtarget
*Subtarget
) {
12600 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
12601 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
12602 // into a pair of GPRs, which is fine when the value is used as a scalar,
12603 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
12604 SelectionDAG
&DAG
= DCI
.DAG
;
12605 if (N
->getNumOperands() == 2)
12606 if (SDValue RV
= PerformVMOVDRRCombine(N
, DAG
))
12609 // Load i64 elements as f64 values so that type legalization does not split
12610 // them up into i32 values.
12611 EVT VT
= N
->getValueType(0);
12612 if (VT
.getVectorElementType() != MVT::i64
|| !hasNormalLoadOperand(N
))
12615 SmallVector
<SDValue
, 8> Ops
;
12616 unsigned NumElts
= VT
.getVectorNumElements();
12617 for (unsigned i
= 0; i
< NumElts
; ++i
) {
12618 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(i
));
12620 // Make the DAGCombiner fold the bitcast.
12621 DCI
.AddToWorklist(V
.getNode());
12623 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
, NumElts
);
12624 SDValue BV
= DAG
.getBuildVector(FloatVT
, dl
, Ops
);
12625 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, BV
);
12628 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
12630 PerformARMBUILD_VECTORCombine(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
12631 // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
12632 // At that time, we may have inserted bitcasts from integer to float.
12633 // If these bitcasts have survived DAGCombine, change the lowering of this
12634 // BUILD_VECTOR in something more vector friendly, i.e., that does not
12635 // force to use floating point types.
12637 // Make sure we can change the type of the vector.
12638 // This is possible iff:
12639 // 1. The vector is only used in a bitcast to a integer type. I.e.,
12640 // 1.1. Vector is used only once.
12641 // 1.2. Use is a bit convert to an integer type.
12642 // 2. The size of its operands are 32-bits (64-bits are not legal).
12643 EVT VT
= N
->getValueType(0);
12644 EVT EltVT
= VT
.getVectorElementType();
12646 // Check 1.1. and 2.
12647 if (EltVT
.getSizeInBits() != 32 || !N
->hasOneUse())
12650 // By construction, the input type must be float.
12651 assert(EltVT
== MVT::f32
&& "Unexpected type!");
12654 SDNode
*Use
= *N
->use_begin();
12655 if (Use
->getOpcode() != ISD::BITCAST
||
12656 Use
->getValueType(0).isFloatingPoint())
12659 // Check profitability.
12660 // Model is, if more than half of the relevant operands are bitcast from
12661 // i32, turn the build_vector into a sequence of insert_vector_elt.
12662 // Relevant operands are everything that is not statically
12663 // (i.e., at compile time) bitcasted.
12664 unsigned NumOfBitCastedElts
= 0;
12665 unsigned NumElts
= VT
.getVectorNumElements();
12666 unsigned NumOfRelevantElts
= NumElts
;
12667 for (unsigned Idx
= 0; Idx
< NumElts
; ++Idx
) {
12668 SDValue Elt
= N
->getOperand(Idx
);
12669 if (Elt
->getOpcode() == ISD::BITCAST
) {
12670 // Assume only bit cast to i32 will go away.
12671 if (Elt
->getOperand(0).getValueType() == MVT::i32
)
12672 ++NumOfBitCastedElts
;
12673 } else if (Elt
.isUndef() || isa
<ConstantSDNode
>(Elt
))
12674 // Constants are statically casted, thus do not count them as
12675 // relevant operands.
12676 --NumOfRelevantElts
;
12679 // Check if more than half of the elements require a non-free bitcast.
12680 if (NumOfBitCastedElts
<= NumOfRelevantElts
/ 2)
12683 SelectionDAG
&DAG
= DCI
.DAG
;
12684 // Create the new vector type.
12685 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, NumElts
);
12686 // Check if the type is legal.
12687 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12688 if (!TLI
.isTypeLegal(VecVT
))
12692 // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
12693 // => BITCAST INSERT_VECTOR_ELT
12694 // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
12695 // (BITCAST EN), N.
12696 SDValue Vec
= DAG
.getUNDEF(VecVT
);
12698 for (unsigned Idx
= 0 ; Idx
< NumElts
; ++Idx
) {
12699 SDValue V
= N
->getOperand(Idx
);
12702 if (V
.getOpcode() == ISD::BITCAST
&&
12703 V
->getOperand(0).getValueType() == MVT::i32
)
12704 // Fold obvious case.
12705 V
= V
.getOperand(0);
12707 V
= DAG
.getNode(ISD::BITCAST
, SDLoc(V
), MVT::i32
, V
);
12708 // Make the DAGCombiner fold the bitcasts.
12709 DCI
.AddToWorklist(V
.getNode());
12711 SDValue LaneIdx
= DAG
.getConstant(Idx
, dl
, MVT::i32
);
12712 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VecVT
, Vec
, V
, LaneIdx
);
12714 Vec
= DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vec
);
12715 // Make the DAGCombiner fold the bitcasts.
12716 DCI
.AddToWorklist(Vec
.getNode());
12721 PerformPREDICATE_CASTCombine(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
12722 EVT VT
= N
->getValueType(0);
12723 SDValue Op
= N
->getOperand(0);
12726 // PREDICATE_CAST(PREDICATE_CAST(x)) == PREDICATE_CAST(x)
12727 if (Op
->getOpcode() == ARMISD::PREDICATE_CAST
) {
12728 // If the valuetypes are the same, we can remove the cast entirely.
12729 if (Op
->getOperand(0).getValueType() == VT
)
12730 return Op
->getOperand(0);
12731 return DCI
.DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
,
12732 Op
->getOperand(0).getValueType(), Op
->getOperand(0));
12738 /// PerformInsertEltCombine - Target-specific dag combine xforms for
12739 /// ISD::INSERT_VECTOR_ELT.
12740 static SDValue
PerformInsertEltCombine(SDNode
*N
,
12741 TargetLowering::DAGCombinerInfo
&DCI
) {
12742 // Bitcast an i64 load inserted into a vector to f64.
12743 // Otherwise, the i64 value will be legalized to a pair of i32 values.
12744 EVT VT
= N
->getValueType(0);
12745 SDNode
*Elt
= N
->getOperand(1).getNode();
12746 if (VT
.getVectorElementType() != MVT::i64
||
12747 !ISD::isNormalLoad(Elt
) || cast
<LoadSDNode
>(Elt
)->isVolatile())
12750 SelectionDAG
&DAG
= DCI
.DAG
;
12752 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
12753 VT
.getVectorNumElements());
12754 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, N
->getOperand(0));
12755 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(1));
12756 // Make the DAGCombiner fold the bitcasts.
12757 DCI
.AddToWorklist(Vec
.getNode());
12758 DCI
.AddToWorklist(V
.getNode());
12759 SDValue InsElt
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, FloatVT
,
12760 Vec
, V
, N
->getOperand(2));
12761 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, InsElt
);
12764 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
12765 /// ISD::VECTOR_SHUFFLE.
12766 static SDValue
PerformVECTOR_SHUFFLECombine(SDNode
*N
, SelectionDAG
&DAG
) {
12767 // The LLVM shufflevector instruction does not require the shuffle mask
12768 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
12769 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
12770 // operands do not match the mask length, they are extended by concatenating
12771 // them with undef vectors. That is probably the right thing for other
12772 // targets, but for NEON it is better to concatenate two double-register
12773 // size vector operands into a single quad-register size vector. Do that
12774 // transformation here:
12775 // shuffle(concat(v1, undef), concat(v2, undef)) ->
12776 // shuffle(concat(v1, v2), undef)
12777 SDValue Op0
= N
->getOperand(0);
12778 SDValue Op1
= N
->getOperand(1);
12779 if (Op0
.getOpcode() != ISD::CONCAT_VECTORS
||
12780 Op1
.getOpcode() != ISD::CONCAT_VECTORS
||
12781 Op0
.getNumOperands() != 2 ||
12782 Op1
.getNumOperands() != 2)
12784 SDValue Concat0Op1
= Op0
.getOperand(1);
12785 SDValue Concat1Op1
= Op1
.getOperand(1);
12786 if (!Concat0Op1
.isUndef() || !Concat1Op1
.isUndef())
12788 // Skip the transformation if any of the types are illegal.
12789 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12790 EVT VT
= N
->getValueType(0);
12791 if (!TLI
.isTypeLegal(VT
) ||
12792 !TLI
.isTypeLegal(Concat0Op1
.getValueType()) ||
12793 !TLI
.isTypeLegal(Concat1Op1
.getValueType()))
12796 SDValue NewConcat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
,
12797 Op0
.getOperand(0), Op1
.getOperand(0));
12798 // Translate the shuffle mask.
12799 SmallVector
<int, 16> NewMask
;
12800 unsigned NumElts
= VT
.getVectorNumElements();
12801 unsigned HalfElts
= NumElts
/2;
12802 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
12803 for (unsigned n
= 0; n
< NumElts
; ++n
) {
12804 int MaskElt
= SVN
->getMaskElt(n
);
12806 if (MaskElt
< (int)HalfElts
)
12808 else if (MaskElt
>= (int)NumElts
&& MaskElt
< (int)(NumElts
+ HalfElts
))
12809 NewElt
= HalfElts
+ MaskElt
- NumElts
;
12810 NewMask
.push_back(NewElt
);
12812 return DAG
.getVectorShuffle(VT
, SDLoc(N
), NewConcat
,
12813 DAG
.getUNDEF(VT
), NewMask
);
12816 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
12817 /// NEON load/store intrinsics, and generic vector load/stores, to merge
12818 /// base address updates.
12819 /// For generic load/stores, the memory type is assumed to be a vector.
12820 /// The caller is assumed to have checked legality.
12821 static SDValue
CombineBaseUpdate(SDNode
*N
,
12822 TargetLowering::DAGCombinerInfo
&DCI
) {
12823 SelectionDAG
&DAG
= DCI
.DAG
;
12824 const bool isIntrinsic
= (N
->getOpcode() == ISD::INTRINSIC_VOID
||
12825 N
->getOpcode() == ISD::INTRINSIC_W_CHAIN
);
12826 const bool isStore
= N
->getOpcode() == ISD::STORE
;
12827 const unsigned AddrOpIdx
= ((isIntrinsic
|| isStore
) ? 2 : 1);
12828 SDValue Addr
= N
->getOperand(AddrOpIdx
);
12829 MemSDNode
*MemN
= cast
<MemSDNode
>(N
);
12832 // Search for a use of the address operand that is an increment.
12833 for (SDNode::use_iterator UI
= Addr
.getNode()->use_begin(),
12834 UE
= Addr
.getNode()->use_end(); UI
!= UE
; ++UI
) {
12835 SDNode
*User
= *UI
;
12836 if (User
->getOpcode() != ISD::ADD
||
12837 UI
.getUse().getResNo() != Addr
.getResNo())
12840 // Check that the add is independent of the load/store. Otherwise, folding
12841 // it would create a cycle. We can avoid searching through Addr as it's a
12842 // predecessor to both.
12843 SmallPtrSet
<const SDNode
*, 32> Visited
;
12844 SmallVector
<const SDNode
*, 16> Worklist
;
12845 Visited
.insert(Addr
.getNode());
12846 Worklist
.push_back(N
);
12847 Worklist
.push_back(User
);
12848 if (SDNode::hasPredecessorHelper(N
, Visited
, Worklist
) ||
12849 SDNode::hasPredecessorHelper(User
, Visited
, Worklist
))
12852 // Find the new opcode for the updating load/store.
12853 bool isLoadOp
= true;
12854 bool isLaneOp
= false;
12855 unsigned NewOpc
= 0;
12856 unsigned NumVecs
= 0;
12858 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue();
12860 default: llvm_unreachable("unexpected intrinsic for Neon base update");
12861 case Intrinsic::arm_neon_vld1
: NewOpc
= ARMISD::VLD1_UPD
;
12862 NumVecs
= 1; break;
12863 case Intrinsic::arm_neon_vld2
: NewOpc
= ARMISD::VLD2_UPD
;
12864 NumVecs
= 2; break;
12865 case Intrinsic::arm_neon_vld3
: NewOpc
= ARMISD::VLD3_UPD
;
12866 NumVecs
= 3; break;
12867 case Intrinsic::arm_neon_vld4
: NewOpc
= ARMISD::VLD4_UPD
;
12868 NumVecs
= 4; break;
12869 case Intrinsic::arm_neon_vld2dup
:
12870 case Intrinsic::arm_neon_vld3dup
:
12871 case Intrinsic::arm_neon_vld4dup
:
12872 // TODO: Support updating VLDxDUP nodes. For now, we just skip
12873 // combining base updates for such intrinsics.
12875 case Intrinsic::arm_neon_vld2lane
: NewOpc
= ARMISD::VLD2LN_UPD
;
12876 NumVecs
= 2; isLaneOp
= true; break;
12877 case Intrinsic::arm_neon_vld3lane
: NewOpc
= ARMISD::VLD3LN_UPD
;
12878 NumVecs
= 3; isLaneOp
= true; break;
12879 case Intrinsic::arm_neon_vld4lane
: NewOpc
= ARMISD::VLD4LN_UPD
;
12880 NumVecs
= 4; isLaneOp
= true; break;
12881 case Intrinsic::arm_neon_vst1
: NewOpc
= ARMISD::VST1_UPD
;
12882 NumVecs
= 1; isLoadOp
= false; break;
12883 case Intrinsic::arm_neon_vst2
: NewOpc
= ARMISD::VST2_UPD
;
12884 NumVecs
= 2; isLoadOp
= false; break;
12885 case Intrinsic::arm_neon_vst3
: NewOpc
= ARMISD::VST3_UPD
;
12886 NumVecs
= 3; isLoadOp
= false; break;
12887 case Intrinsic::arm_neon_vst4
: NewOpc
= ARMISD::VST4_UPD
;
12888 NumVecs
= 4; isLoadOp
= false; break;
12889 case Intrinsic::arm_neon_vst2lane
: NewOpc
= ARMISD::VST2LN_UPD
;
12890 NumVecs
= 2; isLoadOp
= false; isLaneOp
= true; break;
12891 case Intrinsic::arm_neon_vst3lane
: NewOpc
= ARMISD::VST3LN_UPD
;
12892 NumVecs
= 3; isLoadOp
= false; isLaneOp
= true; break;
12893 case Intrinsic::arm_neon_vst4lane
: NewOpc
= ARMISD::VST4LN_UPD
;
12894 NumVecs
= 4; isLoadOp
= false; isLaneOp
= true; break;
12898 switch (N
->getOpcode()) {
12899 default: llvm_unreachable("unexpected opcode for Neon base update");
12900 case ARMISD::VLD1DUP
: NewOpc
= ARMISD::VLD1DUP_UPD
; NumVecs
= 1; break;
12901 case ARMISD::VLD2DUP
: NewOpc
= ARMISD::VLD2DUP_UPD
; NumVecs
= 2; break;
12902 case ARMISD::VLD3DUP
: NewOpc
= ARMISD::VLD3DUP_UPD
; NumVecs
= 3; break;
12903 case ARMISD::VLD4DUP
: NewOpc
= ARMISD::VLD4DUP_UPD
; NumVecs
= 4; break;
12904 case ISD::LOAD
: NewOpc
= ARMISD::VLD1_UPD
;
12905 NumVecs
= 1; isLaneOp
= false; break;
12906 case ISD::STORE
: NewOpc
= ARMISD::VST1_UPD
;
12907 NumVecs
= 1; isLaneOp
= false; isLoadOp
= false; break;
12911 // Find the size of memory referenced by the load/store.
12914 VecTy
= N
->getValueType(0);
12915 } else if (isIntrinsic
) {
12916 VecTy
= N
->getOperand(AddrOpIdx
+1).getValueType();
12918 assert(isStore
&& "Node has to be a load, a store, or an intrinsic!");
12919 VecTy
= N
->getOperand(1).getValueType();
12922 unsigned NumBytes
= NumVecs
* VecTy
.getSizeInBits() / 8;
12924 NumBytes
/= VecTy
.getVectorNumElements();
12926 // If the increment is a constant, it must match the memory ref size.
12927 SDValue Inc
= User
->getOperand(User
->getOperand(0) == Addr
? 1 : 0);
12928 ConstantSDNode
*CInc
= dyn_cast
<ConstantSDNode
>(Inc
.getNode());
12929 if (NumBytes
>= 3 * 16 && (!CInc
|| CInc
->getZExtValue() != NumBytes
)) {
12930 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
12931 // separate instructions that make it harder to use a non-constant update.
12935 // OK, we found an ADD we can fold into the base update.
12936 // Now, create a _UPD node, taking care of not breaking alignment.
12938 EVT AlignedVecTy
= VecTy
;
12939 unsigned Alignment
= MemN
->getAlignment();
12941 // If this is a less-than-standard-aligned load/store, change the type to
12942 // match the standard alignment.
12943 // The alignment is overlooked when selecting _UPD variants; and it's
12944 // easier to introduce bitcasts here than fix that.
12945 // There are 3 ways to get to this base-update combine:
12946 // - intrinsics: they are assumed to be properly aligned (to the standard
12947 // alignment of the memory type), so we don't need to do anything.
12948 // - ARMISD::VLDx nodes: they are only generated from the aforementioned
12949 // intrinsics, so, likewise, there's nothing to do.
12950 // - generic load/store instructions: the alignment is specified as an
12951 // explicit operand, rather than implicitly as the standard alignment
12952 // of the memory type (like the intrisics). We need to change the
12953 // memory type to match the explicit alignment. That way, we don't
12954 // generate non-standard-aligned ARMISD::VLDx nodes.
12955 if (isa
<LSBaseSDNode
>(N
)) {
12956 if (Alignment
== 0)
12958 if (Alignment
< VecTy
.getScalarSizeInBits() / 8) {
12959 MVT EltTy
= MVT::getIntegerVT(Alignment
* 8);
12960 assert(NumVecs
== 1 && "Unexpected multi-element generic load/store.");
12961 assert(!isLaneOp
&& "Unexpected generic load/store lane.");
12962 unsigned NumElts
= NumBytes
/ (EltTy
.getSizeInBits() / 8);
12963 AlignedVecTy
= MVT::getVectorVT(EltTy
, NumElts
);
12965 // Don't set an explicit alignment on regular load/stores that we want
12966 // to transform to VLD/VST 1_UPD nodes.
12967 // This matches the behavior of regular load/stores, which only get an
12968 // explicit alignment if the MMO alignment is larger than the standard
12969 // alignment of the memory type.
12970 // Intrinsics, however, always get an explicit alignment, set to the
12971 // alignment of the MMO.
12975 // Create the new updating load/store node.
12976 // First, create an SDVTList for the new updating node's results.
12978 unsigned NumResultVecs
= (isLoadOp
? NumVecs
: 0);
12980 for (n
= 0; n
< NumResultVecs
; ++n
)
12981 Tys
[n
] = AlignedVecTy
;
12982 Tys
[n
++] = MVT::i32
;
12983 Tys
[n
] = MVT::Other
;
12984 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumResultVecs
+2));
12986 // Then, gather the new node's operands.
12987 SmallVector
<SDValue
, 8> Ops
;
12988 Ops
.push_back(N
->getOperand(0)); // incoming chain
12989 Ops
.push_back(N
->getOperand(AddrOpIdx
));
12990 Ops
.push_back(Inc
);
12992 if (StoreSDNode
*StN
= dyn_cast
<StoreSDNode
>(N
)) {
12993 // Try to match the intrinsic's signature
12994 Ops
.push_back(StN
->getValue());
12996 // Loads (and of course intrinsics) match the intrinsics' signature,
12997 // so just add all but the alignment operand.
12998 for (unsigned i
= AddrOpIdx
+ 1; i
< N
->getNumOperands() - 1; ++i
)
12999 Ops
.push_back(N
->getOperand(i
));
13002 // For all node types, the alignment operand is always the last one.
13003 Ops
.push_back(DAG
.getConstant(Alignment
, dl
, MVT::i32
));
13005 // If this is a non-standard-aligned STORE, the penultimate operand is the
13006 // stored value. Bitcast it to the aligned type.
13007 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::STORE
) {
13008 SDValue
&StVal
= Ops
[Ops
.size()-2];
13009 StVal
= DAG
.getNode(ISD::BITCAST
, dl
, AlignedVecTy
, StVal
);
13012 EVT LoadVT
= isLaneOp
? VecTy
.getVectorElementType() : AlignedVecTy
;
13013 SDValue UpdN
= DAG
.getMemIntrinsicNode(NewOpc
, dl
, SDTys
, Ops
, LoadVT
,
13014 MemN
->getMemOperand());
13016 // Update the uses.
13017 SmallVector
<SDValue
, 5> NewResults
;
13018 for (unsigned i
= 0; i
< NumResultVecs
; ++i
)
13019 NewResults
.push_back(SDValue(UpdN
.getNode(), i
));
13021 // If this is an non-standard-aligned LOAD, the first result is the loaded
13022 // value. Bitcast it to the expected result type.
13023 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::LOAD
) {
13024 SDValue
&LdVal
= NewResults
[0];
13025 LdVal
= DAG
.getNode(ISD::BITCAST
, dl
, VecTy
, LdVal
);
13028 NewResults
.push_back(SDValue(UpdN
.getNode(), NumResultVecs
+1)); // chain
13029 DCI
.CombineTo(N
, NewResults
);
13030 DCI
.CombineTo(User
, SDValue(UpdN
.getNode(), NumResultVecs
));
13037 static SDValue
PerformVLDCombine(SDNode
*N
,
13038 TargetLowering::DAGCombinerInfo
&DCI
) {
13039 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
13042 return CombineBaseUpdate(N
, DCI
);
13045 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
13046 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
13047 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
13049 static bool CombineVLDDUP(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
13050 SelectionDAG
&DAG
= DCI
.DAG
;
13051 EVT VT
= N
->getValueType(0);
13052 // vldN-dup instructions only support 64-bit vectors for N > 1.
13053 if (!VT
.is64BitVector())
13056 // Check if the VDUPLANE operand is a vldN-dup intrinsic.
13057 SDNode
*VLD
= N
->getOperand(0).getNode();
13058 if (VLD
->getOpcode() != ISD::INTRINSIC_W_CHAIN
)
13060 unsigned NumVecs
= 0;
13061 unsigned NewOpc
= 0;
13062 unsigned IntNo
= cast
<ConstantSDNode
>(VLD
->getOperand(1))->getZExtValue();
13063 if (IntNo
== Intrinsic::arm_neon_vld2lane
) {
13065 NewOpc
= ARMISD::VLD2DUP
;
13066 } else if (IntNo
== Intrinsic::arm_neon_vld3lane
) {
13068 NewOpc
= ARMISD::VLD3DUP
;
13069 } else if (IntNo
== Intrinsic::arm_neon_vld4lane
) {
13071 NewOpc
= ARMISD::VLD4DUP
;
13076 // First check that all the vldN-lane uses are VDUPLANEs and that the lane
13077 // numbers match the load.
13078 unsigned VLDLaneNo
=
13079 cast
<ConstantSDNode
>(VLD
->getOperand(NumVecs
+3))->getZExtValue();
13080 for (SDNode::use_iterator UI
= VLD
->use_begin(), UE
= VLD
->use_end();
13082 // Ignore uses of the chain result.
13083 if (UI
.getUse().getResNo() == NumVecs
)
13085 SDNode
*User
= *UI
;
13086 if (User
->getOpcode() != ARMISD::VDUPLANE
||
13087 VLDLaneNo
!= cast
<ConstantSDNode
>(User
->getOperand(1))->getZExtValue())
13091 // Create the vldN-dup node.
13094 for (n
= 0; n
< NumVecs
; ++n
)
13096 Tys
[n
] = MVT::Other
;
13097 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumVecs
+1));
13098 SDValue Ops
[] = { VLD
->getOperand(0), VLD
->getOperand(2) };
13099 MemIntrinsicSDNode
*VLDMemInt
= cast
<MemIntrinsicSDNode
>(VLD
);
13100 SDValue VLDDup
= DAG
.getMemIntrinsicNode(NewOpc
, SDLoc(VLD
), SDTys
,
13101 Ops
, VLDMemInt
->getMemoryVT(),
13102 VLDMemInt
->getMemOperand());
13104 // Update the uses.
13105 for (SDNode::use_iterator UI
= VLD
->use_begin(), UE
= VLD
->use_end();
13107 unsigned ResNo
= UI
.getUse().getResNo();
13108 // Ignore uses of the chain result.
13109 if (ResNo
== NumVecs
)
13111 SDNode
*User
= *UI
;
13112 DCI
.CombineTo(User
, SDValue(VLDDup
.getNode(), ResNo
));
13115 // Now the vldN-lane intrinsic is dead except for its chain result.
13116 // Update uses of the chain.
13117 std::vector
<SDValue
> VLDDupResults
;
13118 for (unsigned n
= 0; n
< NumVecs
; ++n
)
13119 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), n
));
13120 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), NumVecs
));
13121 DCI
.CombineTo(VLD
, VLDDupResults
);
13126 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
13127 /// ARMISD::VDUPLANE.
13128 static SDValue
PerformVDUPLANECombine(SDNode
*N
,
13129 TargetLowering::DAGCombinerInfo
&DCI
) {
13130 SDValue Op
= N
->getOperand(0);
13132 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
13133 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
13134 if (CombineVLDDUP(N
, DCI
))
13135 return SDValue(N
, 0);
13137 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
13138 // redundant. Ignore bit_converts for now; element sizes are checked below.
13139 while (Op
.getOpcode() == ISD::BITCAST
)
13140 Op
= Op
.getOperand(0);
13141 if (Op
.getOpcode() != ARMISD::VMOVIMM
&& Op
.getOpcode() != ARMISD::VMVNIMM
)
13144 // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
13145 unsigned EltSize
= Op
.getScalarValueSizeInBits();
13146 // The canonical VMOV for a zero vector uses a 32-bit element size.
13147 unsigned Imm
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
13149 if (ARM_AM::decodeVMOVModImm(Imm
, EltBits
) == 0)
13151 EVT VT
= N
->getValueType(0);
13152 if (EltSize
> VT
.getScalarSizeInBits())
13155 return DCI
.DAG
.getNode(ISD::BITCAST
, SDLoc(N
), VT
, Op
);
13158 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
13159 static SDValue
PerformVDUPCombine(SDNode
*N
,
13160 TargetLowering::DAGCombinerInfo
&DCI
,
13161 const ARMSubtarget
*Subtarget
) {
13162 SelectionDAG
&DAG
= DCI
.DAG
;
13163 SDValue Op
= N
->getOperand(0);
13165 if (!Subtarget
->hasNEON())
13168 // Match VDUP(LOAD) -> VLD1DUP.
13169 // We match this pattern here rather than waiting for isel because the
13170 // transform is only legal for unindexed loads.
13171 LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Op
.getNode());
13172 if (LD
&& Op
.hasOneUse() && LD
->isUnindexed() &&
13173 LD
->getMemoryVT() == N
->getValueType(0).getVectorElementType()) {
13174 SDValue Ops
[] = { LD
->getOperand(0), LD
->getOperand(1),
13175 DAG
.getConstant(LD
->getAlignment(), SDLoc(N
), MVT::i32
) };
13176 SDVTList SDTys
= DAG
.getVTList(N
->getValueType(0), MVT::Other
);
13177 SDValue VLDDup
= DAG
.getMemIntrinsicNode(ARMISD::VLD1DUP
, SDLoc(N
), SDTys
,
13178 Ops
, LD
->getMemoryVT(),
13179 LD
->getMemOperand());
13180 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), VLDDup
.getValue(1));
13187 static SDValue
PerformLOADCombine(SDNode
*N
,
13188 TargetLowering::DAGCombinerInfo
&DCI
) {
13189 EVT VT
= N
->getValueType(0);
13191 // If this is a legal vector load, try to combine it into a VLD1_UPD.
13192 if (ISD::isNormalLoad(N
) && VT
.isVector() &&
13193 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
13194 return CombineBaseUpdate(N
, DCI
);
13199 // Optimize trunc store (of multiple scalars) to shuffle and store. First,
13200 // pack all of the elements in one place. Next, store to memory in fewer
13202 static SDValue
PerformTruncatingStoreCombine(StoreSDNode
*St
,
13203 SelectionDAG
&DAG
) {
13204 SDValue StVal
= St
->getValue();
13205 EVT VT
= StVal
.getValueType();
13206 if (!St
->isTruncatingStore() || !VT
.isVector())
13208 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13209 EVT StVT
= St
->getMemoryVT();
13210 unsigned NumElems
= VT
.getVectorNumElements();
13211 assert(StVT
!= VT
&& "Cannot truncate to the same type");
13212 unsigned FromEltSz
= VT
.getScalarSizeInBits();
13213 unsigned ToEltSz
= StVT
.getScalarSizeInBits();
13215 // From, To sizes and ElemCount must be pow of two
13216 if (!isPowerOf2_32(NumElems
* FromEltSz
* ToEltSz
))
13219 // We are going to use the original vector elt for storing.
13220 // Accumulated smaller vector elements must be a multiple of the store size.
13221 if (0 != (NumElems
* FromEltSz
) % ToEltSz
)
13224 unsigned SizeRatio
= FromEltSz
/ ToEltSz
;
13225 assert(SizeRatio
* NumElems
* ToEltSz
== VT
.getSizeInBits());
13227 // Create a type on which we perform the shuffle.
13228 EVT WideVecVT
= EVT::getVectorVT(*DAG
.getContext(), StVT
.getScalarType(),
13229 NumElems
* SizeRatio
);
13230 assert(WideVecVT
.getSizeInBits() == VT
.getSizeInBits());
13233 SDValue WideVec
= DAG
.getNode(ISD::BITCAST
, DL
, WideVecVT
, StVal
);
13234 SmallVector
<int, 8> ShuffleVec(NumElems
* SizeRatio
, -1);
13235 for (unsigned i
= 0; i
< NumElems
; ++i
)
13236 ShuffleVec
[i
] = DAG
.getDataLayout().isBigEndian() ? (i
+ 1) * SizeRatio
- 1
13239 // Can't shuffle using an illegal type.
13240 if (!TLI
.isTypeLegal(WideVecVT
))
13243 SDValue Shuff
= DAG
.getVectorShuffle(
13244 WideVecVT
, DL
, WideVec
, DAG
.getUNDEF(WideVec
.getValueType()), ShuffleVec
);
13245 // At this point all of the data is stored at the bottom of the
13246 // register. We now need to save it to mem.
13248 // Find the largest store unit
13249 MVT StoreType
= MVT::i8
;
13250 for (MVT Tp
: MVT::integer_valuetypes()) {
13251 if (TLI
.isTypeLegal(Tp
) && Tp
.getSizeInBits() <= NumElems
* ToEltSz
)
13254 // Didn't find a legal store type.
13255 if (!TLI
.isTypeLegal(StoreType
))
13258 // Bitcast the original vector into a vector of store-size units
13260 EVT::getVectorVT(*DAG
.getContext(), StoreType
,
13261 VT
.getSizeInBits() / EVT(StoreType
).getSizeInBits());
13262 assert(StoreVecVT
.getSizeInBits() == VT
.getSizeInBits());
13263 SDValue ShuffWide
= DAG
.getNode(ISD::BITCAST
, DL
, StoreVecVT
, Shuff
);
13264 SmallVector
<SDValue
, 8> Chains
;
13265 SDValue Increment
= DAG
.getConstant(StoreType
.getSizeInBits() / 8, DL
,
13266 TLI
.getPointerTy(DAG
.getDataLayout()));
13267 SDValue BasePtr
= St
->getBasePtr();
13269 // Perform one or more big stores into memory.
13270 unsigned E
= (ToEltSz
* NumElems
) / StoreType
.getSizeInBits();
13271 for (unsigned I
= 0; I
< E
; I
++) {
13272 SDValue SubVec
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, StoreType
,
13273 ShuffWide
, DAG
.getIntPtrConstant(I
, DL
));
13275 DAG
.getStore(St
->getChain(), DL
, SubVec
, BasePtr
, St
->getPointerInfo(),
13276 St
->getAlignment(), St
->getMemOperand()->getFlags());
13278 DAG
.getNode(ISD::ADD
, DL
, BasePtr
.getValueType(), BasePtr
, Increment
);
13279 Chains
.push_back(Ch
);
13281 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Chains
);
13284 // Try taking a single vector store from an truncate (which would otherwise turn
13285 // into an expensive buildvector) and splitting it into a series of narrowing
13287 static SDValue
PerformSplittingToNarrowingStores(StoreSDNode
*St
,
13288 SelectionDAG
&DAG
) {
13289 if (!St
->isSimple() || St
->isTruncatingStore() || !St
->isUnindexed())
13291 SDValue Trunc
= St
->getValue();
13292 if (Trunc
->getOpcode() != ISD::TRUNCATE
)
13294 EVT FromVT
= Trunc
->getOperand(0).getValueType();
13295 EVT ToVT
= Trunc
.getValueType();
13296 if (!ToVT
.isVector())
13298 assert(FromVT
.getVectorNumElements() == ToVT
.getVectorNumElements());
13299 EVT ToEltVT
= ToVT
.getVectorElementType();
13300 EVT FromEltVT
= FromVT
.getVectorElementType();
13302 unsigned NumElements
= 0;
13303 if (FromEltVT
== MVT::i32
&& (ToEltVT
== MVT::i16
|| ToEltVT
== MVT::i8
))
13305 if (FromEltVT
== MVT::i16
&& ToEltVT
== MVT::i8
)
13307 if (NumElements
== 0 || FromVT
.getVectorNumElements() == NumElements
||
13308 FromVT
.getVectorNumElements() % NumElements
!= 0)
13312 // Details about the old store
13313 SDValue Ch
= St
->getChain();
13314 SDValue BasePtr
= St
->getBasePtr();
13315 unsigned Alignment
= St
->getOriginalAlignment();
13316 MachineMemOperand::Flags MMOFlags
= St
->getMemOperand()->getFlags();
13317 AAMDNodes AAInfo
= St
->getAAInfo();
13319 EVT NewFromVT
= EVT::getVectorVT(*DAG
.getContext(), FromEltVT
, NumElements
);
13320 EVT NewToVT
= EVT::getVectorVT(*DAG
.getContext(), ToEltVT
, NumElements
);
13322 SmallVector
<SDValue
, 4> Stores
;
13323 for (unsigned i
= 0; i
< FromVT
.getVectorNumElements() / NumElements
; i
++) {
13324 unsigned NewOffset
= i
* NumElements
* ToEltVT
.getSizeInBits() / 8;
13325 SDValue NewPtr
= DAG
.getObjectPtrOffset(DL
, BasePtr
, NewOffset
);
13328 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NewFromVT
, Trunc
.getOperand(0),
13329 DAG
.getConstant(i
* NumElements
, DL
, MVT::i32
));
13330 SDValue Store
= DAG
.getTruncStore(
13331 Ch
, DL
, Extract
, NewPtr
, St
->getPointerInfo().getWithOffset(NewOffset
),
13332 NewToVT
, Alignment
, MMOFlags
, AAInfo
);
13333 Stores
.push_back(Store
);
13335 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Stores
);
13338 /// PerformSTORECombine - Target-specific dag combine xforms for
13340 static SDValue
PerformSTORECombine(SDNode
*N
,
13341 TargetLowering::DAGCombinerInfo
&DCI
,
13342 const ARMSubtarget
*Subtarget
) {
13343 StoreSDNode
*St
= cast
<StoreSDNode
>(N
);
13344 if (St
->isVolatile())
13346 SDValue StVal
= St
->getValue();
13347 EVT VT
= StVal
.getValueType();
13349 if (Subtarget
->hasNEON())
13350 if (SDValue Store
= PerformTruncatingStoreCombine(St
, DCI
.DAG
))
13353 if (Subtarget
->hasMVEIntegerOps())
13354 if (SDValue NewToken
= PerformSplittingToNarrowingStores(St
, DCI
.DAG
))
13357 if (!ISD::isNormalStore(St
))
13360 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
13361 // ARM stores of arguments in the same cache line.
13362 if (StVal
.getNode()->getOpcode() == ARMISD::VMOVDRR
&&
13363 StVal
.getNode()->hasOneUse()) {
13364 SelectionDAG
&DAG
= DCI
.DAG
;
13365 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
13367 SDValue BasePtr
= St
->getBasePtr();
13368 SDValue NewST1
= DAG
.getStore(
13369 St
->getChain(), DL
, StVal
.getNode()->getOperand(isBigEndian
? 1 : 0),
13370 BasePtr
, St
->getPointerInfo(), St
->getAlignment(),
13371 St
->getMemOperand()->getFlags());
13373 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
13374 DAG
.getConstant(4, DL
, MVT::i32
));
13375 return DAG
.getStore(NewST1
.getValue(0), DL
,
13376 StVal
.getNode()->getOperand(isBigEndian
? 0 : 1),
13377 OffsetPtr
, St
->getPointerInfo(),
13378 std::min(4U, St
->getAlignment() / 2),
13379 St
->getMemOperand()->getFlags());
13382 if (StVal
.getValueType() == MVT::i64
&&
13383 StVal
.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
13385 // Bitcast an i64 store extracted from a vector to f64.
13386 // Otherwise, the i64 value will be legalized to a pair of i32 values.
13387 SelectionDAG
&DAG
= DCI
.DAG
;
13389 SDValue IntVec
= StVal
.getOperand(0);
13390 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
13391 IntVec
.getValueType().getVectorNumElements());
13392 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, IntVec
);
13393 SDValue ExtElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
13394 Vec
, StVal
.getOperand(1));
13396 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i64
, ExtElt
);
13397 // Make the DAGCombiner fold the bitcasts.
13398 DCI
.AddToWorklist(Vec
.getNode());
13399 DCI
.AddToWorklist(ExtElt
.getNode());
13400 DCI
.AddToWorklist(V
.getNode());
13401 return DAG
.getStore(St
->getChain(), dl
, V
, St
->getBasePtr(),
13402 St
->getPointerInfo(), St
->getAlignment(),
13403 St
->getMemOperand()->getFlags(), St
->getAAInfo());
13406 // If this is a legal vector store, try to combine it into a VST1_UPD.
13407 if (Subtarget
->hasNEON() && ISD::isNormalStore(N
) && VT
.isVector() &&
13408 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
13409 return CombineBaseUpdate(N
, DCI
);
13414 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
13415 /// can replace combinations of VMUL and VCVT (floating-point to integer)
13416 /// when the VMUL has a constant operand that is a power of 2.
13418 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13419 /// vmul.f32 d16, d17, d16
13420 /// vcvt.s32.f32 d16, d16
13422 /// vcvt.s32.f32 d16, d16, #3
13423 static SDValue
PerformVCVTCombine(SDNode
*N
, SelectionDAG
&DAG
,
13424 const ARMSubtarget
*Subtarget
) {
13425 if (!Subtarget
->hasNEON())
13428 SDValue Op
= N
->getOperand(0);
13429 if (!Op
.getValueType().isVector() || !Op
.getValueType().isSimple() ||
13430 Op
.getOpcode() != ISD::FMUL
)
13433 SDValue ConstVec
= Op
->getOperand(1);
13434 if (!isa
<BuildVectorSDNode
>(ConstVec
))
13437 MVT FloatTy
= Op
.getSimpleValueType().getVectorElementType();
13438 uint32_t FloatBits
= FloatTy
.getSizeInBits();
13439 MVT IntTy
= N
->getSimpleValueType(0).getVectorElementType();
13440 uint32_t IntBits
= IntTy
.getSizeInBits();
13441 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
13442 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
13443 // These instructions only exist converting from f32 to i32. We can handle
13444 // smaller integers by generating an extra truncate, but larger ones would
13445 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13446 // these intructions only support v2i32/v4i32 types.
13450 BitVector UndefElements
;
13451 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
13452 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, 33);
13453 if (C
== -1 || C
== 0 || C
> 32)
13457 bool isSigned
= N
->getOpcode() == ISD::FP_TO_SINT
;
13458 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfp2fxs
:
13459 Intrinsic::arm_neon_vcvtfp2fxu
;
13460 SDValue FixConv
= DAG
.getNode(
13461 ISD::INTRINSIC_WO_CHAIN
, dl
, NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
,
13462 DAG
.getConstant(IntrinsicOpcode
, dl
, MVT::i32
), Op
->getOperand(0),
13463 DAG
.getConstant(C
, dl
, MVT::i32
));
13465 if (IntBits
< FloatBits
)
13466 FixConv
= DAG
.getNode(ISD::TRUNCATE
, dl
, N
->getValueType(0), FixConv
);
13471 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
13472 /// can replace combinations of VCVT (integer to floating-point) and VDIV
13473 /// when the VDIV has a constant operand that is a power of 2.
13475 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13476 /// vcvt.f32.s32 d16, d16
13477 /// vdiv.f32 d16, d17, d16
13479 /// vcvt.f32.s32 d16, d16, #3
13480 static SDValue
PerformVDIVCombine(SDNode
*N
, SelectionDAG
&DAG
,
13481 const ARMSubtarget
*Subtarget
) {
13482 if (!Subtarget
->hasNEON())
13485 SDValue Op
= N
->getOperand(0);
13486 unsigned OpOpcode
= Op
.getNode()->getOpcode();
13487 if (!N
->getValueType(0).isVector() || !N
->getValueType(0).isSimple() ||
13488 (OpOpcode
!= ISD::SINT_TO_FP
&& OpOpcode
!= ISD::UINT_TO_FP
))
13491 SDValue ConstVec
= N
->getOperand(1);
13492 if (!isa
<BuildVectorSDNode
>(ConstVec
))
13495 MVT FloatTy
= N
->getSimpleValueType(0).getVectorElementType();
13496 uint32_t FloatBits
= FloatTy
.getSizeInBits();
13497 MVT IntTy
= Op
.getOperand(0).getSimpleValueType().getVectorElementType();
13498 uint32_t IntBits
= IntTy
.getSizeInBits();
13499 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
13500 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
13501 // These instructions only exist converting from i32 to f32. We can handle
13502 // smaller integers by generating an extra extend, but larger ones would
13503 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13504 // these intructions only support v2i32/v4i32 types.
13508 BitVector UndefElements
;
13509 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
13510 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, 33);
13511 if (C
== -1 || C
== 0 || C
> 32)
13515 bool isSigned
= OpOpcode
== ISD::SINT_TO_FP
;
13516 SDValue ConvInput
= Op
.getOperand(0);
13517 if (IntBits
< FloatBits
)
13518 ConvInput
= DAG
.getNode(isSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
,
13519 dl
, NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
,
13522 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfxs2fp
:
13523 Intrinsic::arm_neon_vcvtfxu2fp
;
13524 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
,
13526 DAG
.getConstant(IntrinsicOpcode
, dl
, MVT::i32
),
13527 ConvInput
, DAG
.getConstant(C
, dl
, MVT::i32
));
13530 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
13531 static SDValue
PerformIntrinsicCombine(SDNode
*N
, SelectionDAG
&DAG
) {
13532 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
13535 // Don't do anything for most intrinsics.
13538 // Vector shifts: check for immediate versions and lower them.
13539 // Note: This is done during DAG combining instead of DAG legalizing because
13540 // the build_vectors for 64-bit vector element shift counts are generally
13541 // not legal, and it is hard to see their values after they get legalized to
13542 // loads from a constant pool.
13543 case Intrinsic::arm_neon_vshifts
:
13544 case Intrinsic::arm_neon_vshiftu
:
13545 case Intrinsic::arm_neon_vrshifts
:
13546 case Intrinsic::arm_neon_vrshiftu
:
13547 case Intrinsic::arm_neon_vrshiftn
:
13548 case Intrinsic::arm_neon_vqshifts
:
13549 case Intrinsic::arm_neon_vqshiftu
:
13550 case Intrinsic::arm_neon_vqshiftsu
:
13551 case Intrinsic::arm_neon_vqshiftns
:
13552 case Intrinsic::arm_neon_vqshiftnu
:
13553 case Intrinsic::arm_neon_vqshiftnsu
:
13554 case Intrinsic::arm_neon_vqrshiftns
:
13555 case Intrinsic::arm_neon_vqrshiftnu
:
13556 case Intrinsic::arm_neon_vqrshiftnsu
: {
13557 EVT VT
= N
->getOperand(1).getValueType();
13559 unsigned VShiftOpc
= 0;
13562 case Intrinsic::arm_neon_vshifts
:
13563 case Intrinsic::arm_neon_vshiftu
:
13564 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
)) {
13565 VShiftOpc
= ARMISD::VSHLIMM
;
13568 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
)) {
13569 VShiftOpc
= (IntNo
== Intrinsic::arm_neon_vshifts
? ARMISD::VSHRsIMM
13570 : ARMISD::VSHRuIMM
);
13575 case Intrinsic::arm_neon_vrshifts
:
13576 case Intrinsic::arm_neon_vrshiftu
:
13577 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
))
13581 case Intrinsic::arm_neon_vqshifts
:
13582 case Intrinsic::arm_neon_vqshiftu
:
13583 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
13587 case Intrinsic::arm_neon_vqshiftsu
:
13588 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
13590 llvm_unreachable("invalid shift count for vqshlu intrinsic");
13592 case Intrinsic::arm_neon_vrshiftn
:
13593 case Intrinsic::arm_neon_vqshiftns
:
13594 case Intrinsic::arm_neon_vqshiftnu
:
13595 case Intrinsic::arm_neon_vqshiftnsu
:
13596 case Intrinsic::arm_neon_vqrshiftns
:
13597 case Intrinsic::arm_neon_vqrshiftnu
:
13598 case Intrinsic::arm_neon_vqrshiftnsu
:
13599 // Narrowing shifts require an immediate right shift.
13600 if (isVShiftRImm(N
->getOperand(2), VT
, true, true, Cnt
))
13602 llvm_unreachable("invalid shift count for narrowing vector shift "
13606 llvm_unreachable("unhandled vector shift");
13610 case Intrinsic::arm_neon_vshifts
:
13611 case Intrinsic::arm_neon_vshiftu
:
13612 // Opcode already set above.
13614 case Intrinsic::arm_neon_vrshifts
:
13615 VShiftOpc
= ARMISD::VRSHRsIMM
;
13617 case Intrinsic::arm_neon_vrshiftu
:
13618 VShiftOpc
= ARMISD::VRSHRuIMM
;
13620 case Intrinsic::arm_neon_vrshiftn
:
13621 VShiftOpc
= ARMISD::VRSHRNIMM
;
13623 case Intrinsic::arm_neon_vqshifts
:
13624 VShiftOpc
= ARMISD::VQSHLsIMM
;
13626 case Intrinsic::arm_neon_vqshiftu
:
13627 VShiftOpc
= ARMISD::VQSHLuIMM
;
13629 case Intrinsic::arm_neon_vqshiftsu
:
13630 VShiftOpc
= ARMISD::VQSHLsuIMM
;
13632 case Intrinsic::arm_neon_vqshiftns
:
13633 VShiftOpc
= ARMISD::VQSHRNsIMM
;
13635 case Intrinsic::arm_neon_vqshiftnu
:
13636 VShiftOpc
= ARMISD::VQSHRNuIMM
;
13638 case Intrinsic::arm_neon_vqshiftnsu
:
13639 VShiftOpc
= ARMISD::VQSHRNsuIMM
;
13641 case Intrinsic::arm_neon_vqrshiftns
:
13642 VShiftOpc
= ARMISD::VQRSHRNsIMM
;
13644 case Intrinsic::arm_neon_vqrshiftnu
:
13645 VShiftOpc
= ARMISD::VQRSHRNuIMM
;
13647 case Intrinsic::arm_neon_vqrshiftnsu
:
13648 VShiftOpc
= ARMISD::VQRSHRNsuIMM
;
13653 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
13654 N
->getOperand(1), DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13657 case Intrinsic::arm_neon_vshiftins
: {
13658 EVT VT
= N
->getOperand(1).getValueType();
13660 unsigned VShiftOpc
= 0;
13662 if (isVShiftLImm(N
->getOperand(3), VT
, false, Cnt
))
13663 VShiftOpc
= ARMISD::VSLIIMM
;
13664 else if (isVShiftRImm(N
->getOperand(3), VT
, false, true, Cnt
))
13665 VShiftOpc
= ARMISD::VSRIIMM
;
13667 llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
13671 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
13672 N
->getOperand(1), N
->getOperand(2),
13673 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13676 case Intrinsic::arm_neon_vqrshifts
:
13677 case Intrinsic::arm_neon_vqrshiftu
:
13678 // No immediate versions of these to check for.
13685 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
13686 /// lowers them. As with the vector shift intrinsics, this is done during DAG
13687 /// combining instead of DAG legalizing because the build_vectors for 64-bit
13688 /// vector element shift counts are generally not legal, and it is hard to see
13689 /// their values after they get legalized to loads from a constant pool.
13690 static SDValue
PerformShiftCombine(SDNode
*N
,
13691 TargetLowering::DAGCombinerInfo
&DCI
,
13692 const ARMSubtarget
*ST
) {
13693 SelectionDAG
&DAG
= DCI
.DAG
;
13694 EVT VT
= N
->getValueType(0);
13695 if (N
->getOpcode() == ISD::SRL
&& VT
== MVT::i32
&& ST
->hasV6Ops()) {
13696 // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
13697 // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
13698 SDValue N1
= N
->getOperand(1);
13699 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
13700 SDValue N0
= N
->getOperand(0);
13701 if (C
->getZExtValue() == 16 && N0
.getOpcode() == ISD::BSWAP
&&
13702 DAG
.MaskedValueIsZero(N0
.getOperand(0),
13703 APInt::getHighBitsSet(32, 16)))
13704 return DAG
.getNode(ISD::ROTR
, SDLoc(N
), VT
, N0
, N1
);
13708 if (ST
->isThumb1Only() && N
->getOpcode() == ISD::SHL
&& VT
== MVT::i32
&&
13709 N
->getOperand(0)->getOpcode() == ISD::AND
&&
13710 N
->getOperand(0)->hasOneUse()) {
13711 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
13713 // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
13714 // usually show up because instcombine prefers to canonicalize it to
13715 // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
13716 // out of GEP lowering in some cases.
13717 SDValue N0
= N
->getOperand(0);
13718 ConstantSDNode
*ShiftAmtNode
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
13721 uint32_t ShiftAmt
= static_cast<uint32_t>(ShiftAmtNode
->getZExtValue());
13722 ConstantSDNode
*AndMaskNode
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
13725 uint32_t AndMask
= static_cast<uint32_t>(AndMaskNode
->getZExtValue());
13726 // Don't transform uxtb/uxth.
13727 if (AndMask
== 255 || AndMask
== 65535)
13729 if (isMask_32(AndMask
)) {
13730 uint32_t MaskedBits
= countLeadingZeros(AndMask
);
13731 if (MaskedBits
> ShiftAmt
) {
13733 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
13734 DAG
.getConstant(MaskedBits
, DL
, MVT::i32
));
13735 return DAG
.getNode(
13736 ISD::SRL
, DL
, MVT::i32
, SHL
,
13737 DAG
.getConstant(MaskedBits
- ShiftAmt
, DL
, MVT::i32
));
13742 // Nothing to be done for scalar shifts.
13743 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13744 if (!VT
.isVector() || !TLI
.isTypeLegal(VT
))
13746 if (ST
->hasMVEIntegerOps() && VT
== MVT::v2i64
)
13751 switch (N
->getOpcode()) {
13752 default: llvm_unreachable("unexpected shift opcode");
13755 if (isVShiftLImm(N
->getOperand(1), VT
, false, Cnt
)) {
13757 return DAG
.getNode(ARMISD::VSHLIMM
, dl
, VT
, N
->getOperand(0),
13758 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13764 if (isVShiftRImm(N
->getOperand(1), VT
, false, false, Cnt
)) {
13765 unsigned VShiftOpc
=
13766 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHRsIMM
: ARMISD::VSHRuIMM
);
13768 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0),
13769 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13775 // Look for a sign/zero extend of a larger than legal load. This can be split
13776 // into two extending loads, which are simpler to deal with than an arbitrary
13778 static SDValue
PerformSplittingToWideningLoad(SDNode
*N
, SelectionDAG
&DAG
) {
13779 SDValue N0
= N
->getOperand(0);
13780 if (N0
.getOpcode() != ISD::LOAD
)
13782 LoadSDNode
*LD
= cast
<LoadSDNode
>(N0
.getNode());
13783 if (!LD
->isSimple() || !N0
.hasOneUse() || LD
->isIndexed() ||
13784 LD
->getExtensionType() != ISD::NON_EXTLOAD
)
13786 EVT FromVT
= LD
->getValueType(0);
13787 EVT ToVT
= N
->getValueType(0);
13788 if (!ToVT
.isVector())
13790 assert(FromVT
.getVectorNumElements() == ToVT
.getVectorNumElements());
13791 EVT ToEltVT
= ToVT
.getVectorElementType();
13792 EVT FromEltVT
= FromVT
.getVectorElementType();
13794 unsigned NumElements
= 0;
13795 if (ToEltVT
== MVT::i32
&& (FromEltVT
== MVT::i16
|| FromEltVT
== MVT::i8
))
13797 if (ToEltVT
== MVT::i16
&& FromEltVT
== MVT::i8
)
13799 if (NumElements
== 0 ||
13800 FromVT
.getVectorNumElements() == NumElements
||
13801 FromVT
.getVectorNumElements() % NumElements
!= 0 ||
13802 !isPowerOf2_32(NumElements
))
13806 // Details about the old load
13807 SDValue Ch
= LD
->getChain();
13808 SDValue BasePtr
= LD
->getBasePtr();
13809 unsigned Alignment
= LD
->getOriginalAlignment();
13810 MachineMemOperand::Flags MMOFlags
= LD
->getMemOperand()->getFlags();
13811 AAMDNodes AAInfo
= LD
->getAAInfo();
13813 ISD::LoadExtType NewExtType
=
13814 N
->getOpcode() == ISD::SIGN_EXTEND
? ISD::SEXTLOAD
: ISD::ZEXTLOAD
;
13815 SDValue Offset
= DAG
.getUNDEF(BasePtr
.getValueType());
13816 EVT NewFromVT
= FromVT
.getHalfNumVectorElementsVT(*DAG
.getContext());
13817 EVT NewToVT
= ToVT
.getHalfNumVectorElementsVT(*DAG
.getContext());
13818 unsigned NewOffset
= NewFromVT
.getSizeInBits() / 8;
13819 SDValue NewPtr
= DAG
.getObjectPtrOffset(DL
, BasePtr
, NewOffset
);
13821 // Split the load in half, each side of which is extended separately. This
13822 // is good enough, as legalisation will take it from there. They are either
13823 // already legal or they will be split further into something that is
13826 DAG
.getLoad(ISD::UNINDEXED
, NewExtType
, NewToVT
, DL
, Ch
, BasePtr
, Offset
,
13827 LD
->getPointerInfo(), NewFromVT
, Alignment
, MMOFlags
, AAInfo
);
13829 DAG
.getLoad(ISD::UNINDEXED
, NewExtType
, NewToVT
, DL
, Ch
, NewPtr
, Offset
,
13830 LD
->getPointerInfo().getWithOffset(NewOffset
), NewFromVT
,
13831 Alignment
, MMOFlags
, AAInfo
);
13833 SDValue NewChain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
,
13834 SDValue(NewLoad1
.getNode(), 1),
13835 SDValue(NewLoad2
.getNode(), 1));
13836 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), NewChain
);
13837 return DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, ToVT
, NewLoad1
, NewLoad2
);
13840 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
13841 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
13842 static SDValue
PerformExtendCombine(SDNode
*N
, SelectionDAG
&DAG
,
13843 const ARMSubtarget
*ST
) {
13844 SDValue N0
= N
->getOperand(0);
13846 // Check for sign- and zero-extensions of vector extract operations of 8-
13847 // and 16-bit vector elements. NEON supports these directly. They are
13848 // handled during DAG combining because type legalization will promote them
13849 // to 32-bit types and it is messy to recognize the operations after that.
13850 if (ST
->hasNEON() && N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
13851 SDValue Vec
= N0
.getOperand(0);
13852 SDValue Lane
= N0
.getOperand(1);
13853 EVT VT
= N
->getValueType(0);
13854 EVT EltVT
= N0
.getValueType();
13855 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13857 if (VT
== MVT::i32
&&
13858 (EltVT
== MVT::i8
|| EltVT
== MVT::i16
) &&
13859 TLI
.isTypeLegal(Vec
.getValueType()) &&
13860 isa
<ConstantSDNode
>(Lane
)) {
13863 switch (N
->getOpcode()) {
13864 default: llvm_unreachable("unexpected opcode");
13865 case ISD::SIGN_EXTEND
:
13866 Opc
= ARMISD::VGETLANEs
;
13868 case ISD::ZERO_EXTEND
:
13869 case ISD::ANY_EXTEND
:
13870 Opc
= ARMISD::VGETLANEu
;
13873 return DAG
.getNode(Opc
, SDLoc(N
), VT
, Vec
, Lane
);
13877 if (ST
->hasMVEIntegerOps())
13878 if (SDValue NewLoad
= PerformSplittingToWideningLoad(N
, DAG
))
13884 static const APInt
*isPowerOf2Constant(SDValue V
) {
13885 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(V
);
13888 const APInt
*CV
= &C
->getAPIntValue();
13889 return CV
->isPowerOf2() ? CV
: nullptr;
13892 SDValue
ARMTargetLowering::PerformCMOVToBFICombine(SDNode
*CMOV
, SelectionDAG
&DAG
) const {
13893 // If we have a CMOV, OR and AND combination such as:
13898 // * CN is a single bit;
13899 // * All bits covered by CM are known zero in y
13901 // Then we can convert this into a sequence of BFI instructions. This will
13902 // always be a win if CM is a single bit, will always be no worse than the
13903 // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
13904 // three bits (due to the extra IT instruction).
13906 SDValue Op0
= CMOV
->getOperand(0);
13907 SDValue Op1
= CMOV
->getOperand(1);
13908 auto CCNode
= cast
<ConstantSDNode
>(CMOV
->getOperand(2));
13909 auto CC
= CCNode
->getAPIntValue().getLimitedValue();
13910 SDValue CmpZ
= CMOV
->getOperand(4);
13912 // The compare must be against zero.
13913 if (!isNullConstant(CmpZ
->getOperand(1)))
13916 assert(CmpZ
->getOpcode() == ARMISD::CMPZ
);
13917 SDValue And
= CmpZ
->getOperand(0);
13918 if (And
->getOpcode() != ISD::AND
)
13920 const APInt
*AndC
= isPowerOf2Constant(And
->getOperand(1));
13923 SDValue X
= And
->getOperand(0);
13925 if (CC
== ARMCC::EQ
) {
13926 // We're performing an "equal to zero" compare. Swap the operands so we
13927 // canonicalize on a "not equal to zero" compare.
13928 std::swap(Op0
, Op1
);
13930 assert(CC
== ARMCC::NE
&& "How can a CMPZ node not be EQ or NE?");
13933 if (Op1
->getOpcode() != ISD::OR
)
13936 ConstantSDNode
*OrC
= dyn_cast
<ConstantSDNode
>(Op1
->getOperand(1));
13939 SDValue Y
= Op1
->getOperand(0);
13944 // Now, is it profitable to continue?
13945 APInt OrCI
= OrC
->getAPIntValue();
13946 unsigned Heuristic
= Subtarget
->isThumb() ? 3 : 2;
13947 if (OrCI
.countPopulation() > Heuristic
)
13950 // Lastly, can we determine that the bits defined by OrCI
13952 KnownBits Known
= DAG
.computeKnownBits(Y
);
13953 if ((OrCI
& Known
.Zero
) != OrCI
)
13956 // OK, we can do the combine.
13959 EVT VT
= X
.getValueType();
13960 unsigned BitInX
= AndC
->logBase2();
13963 // We must shift X first.
13964 X
= DAG
.getNode(ISD::SRL
, dl
, VT
, X
,
13965 DAG
.getConstant(BitInX
, dl
, VT
));
13968 for (unsigned BitInY
= 0, NumActiveBits
= OrCI
.getActiveBits();
13969 BitInY
< NumActiveBits
; ++BitInY
) {
13970 if (OrCI
[BitInY
] == 0)
13972 APInt
Mask(VT
.getSizeInBits(), 0);
13973 Mask
.setBit(BitInY
);
13974 V
= DAG
.getNode(ARMISD::BFI
, dl
, VT
, V
, X
,
13975 // Confusingly, the operand is an *inverted* mask.
13976 DAG
.getConstant(~Mask
, dl
, VT
));
13982 // Given N, the value controlling the conditional branch, search for the loop
13983 // intrinsic, returning it, along with how the value is used. We need to handle
13984 // patterns such as the following:
13985 // (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit)
13986 // (brcond (setcc (loop.decrement), 0, eq), exit)
13987 // (brcond (setcc (loop.decrement), 0, ne), header)
13988 static SDValue
SearchLoopIntrinsic(SDValue N
, ISD::CondCode
&CC
, int &Imm
,
13990 switch (N
->getOpcode()) {
13994 if (!isa
<ConstantSDNode
>(N
.getOperand(1)))
13996 if (!cast
<ConstantSDNode
>(N
.getOperand(1))->isOne())
13999 return SearchLoopIntrinsic(N
.getOperand(0), CC
, Imm
, Negate
);
14002 auto *Const
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
14005 if (Const
->isNullValue())
14007 else if (Const
->isOne())
14011 CC
= cast
<CondCodeSDNode
>(N
.getOperand(2))->get();
14012 return SearchLoopIntrinsic(N
->getOperand(0), CC
, Imm
, Negate
);
14014 case ISD::INTRINSIC_W_CHAIN
: {
14015 unsigned IntOp
= cast
<ConstantSDNode
>(N
.getOperand(1))->getZExtValue();
14016 if (IntOp
!= Intrinsic::test_set_loop_iterations
&&
14017 IntOp
!= Intrinsic::loop_decrement_reg
)
14025 static SDValue
PerformHWLoopCombine(SDNode
*N
,
14026 TargetLowering::DAGCombinerInfo
&DCI
,
14027 const ARMSubtarget
*ST
) {
14029 // The hwloop intrinsics that we're interested are used for control-flow,
14030 // either for entering or exiting the loop:
14031 // - test.set.loop.iterations will test whether its operand is zero. If it
14032 // is zero, the proceeding branch should not enter the loop.
14033 // - loop.decrement.reg also tests whether its operand is zero. If it is
14034 // zero, the proceeding branch should not branch back to the beginning of
14036 // So here, we need to check that how the brcond is using the result of each
14037 // of the intrinsics to ensure that we're branching to the right place at the
14043 bool Negate
= false;
14044 SDValue Chain
= N
->getOperand(0);
14047 if (N
->getOpcode() == ISD::BRCOND
) {
14049 Cond
= N
->getOperand(1);
14050 Dest
= N
->getOperand(2);
14052 assert(N
->getOpcode() == ISD::BR_CC
&& "Expected BRCOND or BR_CC!");
14053 CC
= cast
<CondCodeSDNode
>(N
->getOperand(1))->get();
14054 Cond
= N
->getOperand(2);
14055 Dest
= N
->getOperand(4);
14056 if (auto *Const
= dyn_cast
<ConstantSDNode
>(N
->getOperand(3))) {
14057 if (!Const
->isOne() && !Const
->isNullValue())
14059 Imm
= Const
->getZExtValue();
14064 SDValue Int
= SearchLoopIntrinsic(Cond
, CC
, Imm
, Negate
);
14069 CC
= ISD::getSetCCInverse(CC
, true);
14071 auto IsTrueIfZero
= [](ISD::CondCode CC
, int Imm
) {
14072 return (CC
== ISD::SETEQ
&& Imm
== 0) ||
14073 (CC
== ISD::SETNE
&& Imm
== 1) ||
14074 (CC
== ISD::SETLT
&& Imm
== 1) ||
14075 (CC
== ISD::SETULT
&& Imm
== 1);
14078 auto IsFalseIfZero
= [](ISD::CondCode CC
, int Imm
) {
14079 return (CC
== ISD::SETEQ
&& Imm
== 1) ||
14080 (CC
== ISD::SETNE
&& Imm
== 0) ||
14081 (CC
== ISD::SETGT
&& Imm
== 0) ||
14082 (CC
== ISD::SETUGT
&& Imm
== 0) ||
14083 (CC
== ISD::SETGE
&& Imm
== 1) ||
14084 (CC
== ISD::SETUGE
&& Imm
== 1);
14087 assert((IsTrueIfZero(CC
, Imm
) || IsFalseIfZero(CC
, Imm
)) &&
14088 "unsupported condition");
14091 SelectionDAG
&DAG
= DCI
.DAG
;
14092 SDValue Elements
= Int
.getOperand(2);
14093 unsigned IntOp
= cast
<ConstantSDNode
>(Int
->getOperand(1))->getZExtValue();
14094 assert((N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::BR
)
14095 && "expected single br user");
14096 SDNode
*Br
= *N
->use_begin();
14097 SDValue OtherTarget
= Br
->getOperand(1);
14099 // Update the unconditional branch to branch to the given Dest.
14100 auto UpdateUncondBr
= [](SDNode
*Br
, SDValue Dest
, SelectionDAG
&DAG
) {
14101 SDValue NewBrOps
[] = { Br
->getOperand(0), Dest
};
14102 SDValue NewBr
= DAG
.getNode(ISD::BR
, SDLoc(Br
), MVT::Other
, NewBrOps
);
14103 DAG
.ReplaceAllUsesOfValueWith(SDValue(Br
, 0), NewBr
);
14106 if (IntOp
== Intrinsic::test_set_loop_iterations
) {
14108 // We expect this 'instruction' to branch when the counter is zero.
14109 if (IsTrueIfZero(CC
, Imm
)) {
14110 SDValue Ops
[] = { Chain
, Elements
, Dest
};
14111 Res
= DAG
.getNode(ARMISD::WLS
, dl
, MVT::Other
, Ops
);
14113 // The logic is the reverse of what we need for WLS, so find the other
14114 // basic block target: the target of the proceeding br.
14115 UpdateUncondBr(Br
, Dest
, DAG
);
14117 SDValue Ops
[] = { Chain
, Elements
, OtherTarget
};
14118 Res
= DAG
.getNode(ARMISD::WLS
, dl
, MVT::Other
, Ops
);
14120 DAG
.ReplaceAllUsesOfValueWith(Int
.getValue(1), Int
.getOperand(0));
14123 SDValue Size
= DAG
.getTargetConstant(
14124 cast
<ConstantSDNode
>(Int
.getOperand(3))->getZExtValue(), dl
, MVT::i32
);
14125 SDValue Args
[] = { Int
.getOperand(0), Elements
, Size
, };
14126 SDValue LoopDec
= DAG
.getNode(ARMISD::LOOP_DEC
, dl
,
14127 DAG
.getVTList(MVT::i32
, MVT::Other
), Args
);
14128 DAG
.ReplaceAllUsesWith(Int
.getNode(), LoopDec
.getNode());
14130 // We expect this instruction to branch when the count is not zero.
14131 SDValue Target
= IsFalseIfZero(CC
, Imm
) ? Dest
: OtherTarget
;
14133 // Update the unconditional branch to target the loop preheader if we've
14134 // found the condition has been reversed.
14135 if (Target
== OtherTarget
)
14136 UpdateUncondBr(Br
, Dest
, DAG
);
14138 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
14139 SDValue(LoopDec
.getNode(), 1), Chain
);
14141 SDValue EndArgs
[] = { Chain
, SDValue(LoopDec
.getNode(), 0), Target
};
14142 return DAG
.getNode(ARMISD::LE
, dl
, MVT::Other
, EndArgs
);
14147 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
14149 ARMTargetLowering::PerformBRCONDCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
14150 SDValue Cmp
= N
->getOperand(4);
14151 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
14152 // Only looking at NE cases.
14155 EVT VT
= N
->getValueType(0);
14157 SDValue LHS
= Cmp
.getOperand(0);
14158 SDValue RHS
= Cmp
.getOperand(1);
14159 SDValue Chain
= N
->getOperand(0);
14160 SDValue BB
= N
->getOperand(1);
14161 SDValue ARMcc
= N
->getOperand(2);
14162 ARMCC::CondCodes CC
=
14163 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
14165 // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
14166 // -> (brcond Chain BB CC CPSR Cmp)
14167 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ISD::AND
&& LHS
->hasOneUse() &&
14168 LHS
->getOperand(0)->getOpcode() == ARMISD::CMOV
&&
14169 LHS
->getOperand(0)->hasOneUse()) {
14170 auto *LHS00C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0)->getOperand(0));
14171 auto *LHS01C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0)->getOperand(1));
14172 auto *LHS1C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
14173 auto *RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
14174 if ((LHS00C
&& LHS00C
->getZExtValue() == 0) &&
14175 (LHS01C
&& LHS01C
->getZExtValue() == 1) &&
14176 (LHS1C
&& LHS1C
->getZExtValue() == 1) &&
14177 (RHSC
&& RHSC
->getZExtValue() == 0)) {
14178 return DAG
.getNode(
14179 ARMISD::BRCOND
, dl
, VT
, Chain
, BB
, LHS
->getOperand(0)->getOperand(2),
14180 LHS
->getOperand(0)->getOperand(3), LHS
->getOperand(0)->getOperand(4));
14187 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
14189 ARMTargetLowering::PerformCMOVCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
14190 SDValue Cmp
= N
->getOperand(4);
14191 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
14192 // Only looking at EQ and NE cases.
14195 EVT VT
= N
->getValueType(0);
14197 SDValue LHS
= Cmp
.getOperand(0);
14198 SDValue RHS
= Cmp
.getOperand(1);
14199 SDValue FalseVal
= N
->getOperand(0);
14200 SDValue TrueVal
= N
->getOperand(1);
14201 SDValue ARMcc
= N
->getOperand(2);
14202 ARMCC::CondCodes CC
=
14203 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
14205 // BFI is only available on V6T2+.
14206 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops()) {
14207 SDValue R
= PerformCMOVToBFICombine(N
, DAG
);
14228 /// FIXME: Turn this into a target neutral optimization?
14230 if (CC
== ARMCC::NE
&& FalseVal
== RHS
&& FalseVal
!= LHS
) {
14231 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, TrueVal
, ARMcc
,
14232 N
->getOperand(3), Cmp
);
14233 } else if (CC
== ARMCC::EQ
&& TrueVal
== RHS
) {
14235 SDValue NewCmp
= getARMCmp(LHS
, RHS
, ISD::SETNE
, ARMcc
, DAG
, dl
);
14236 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, FalseVal
, ARMcc
,
14237 N
->getOperand(3), NewCmp
);
14240 // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
14241 // -> (cmov F T CC CPSR Cmp)
14242 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ARMISD::CMOV
&& LHS
->hasOneUse()) {
14243 auto *LHS0C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0));
14244 auto *LHS1C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
14245 auto *RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
14246 if ((LHS0C
&& LHS0C
->getZExtValue() == 0) &&
14247 (LHS1C
&& LHS1C
->getZExtValue() == 1) &&
14248 (RHSC
&& RHSC
->getZExtValue() == 0)) {
14249 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
,
14250 LHS
->getOperand(2), LHS
->getOperand(3),
14251 LHS
->getOperand(4));
14255 if (!VT
.isInteger())
14258 // Materialize a boolean comparison for integers so we can avoid branching.
14259 if (isNullConstant(FalseVal
)) {
14260 if (CC
== ARMCC::EQ
&& isOneConstant(TrueVal
)) {
14261 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TOps()) {
14262 // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
14263 // right 5 bits will make that 32 be 1, otherwise it will be 0.
14264 // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
14265 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
14266 Res
= DAG
.getNode(ISD::SRL
, dl
, VT
, DAG
.getNode(ISD::CTLZ
, dl
, VT
, Sub
),
14267 DAG
.getConstant(5, dl
, MVT::i32
));
14269 // CMOV 0, 1, ==, (CMPZ x, y) ->
14270 // (ADDCARRY (SUB x, y), t:0, t:1)
14271 // where t = (SUBCARRY 0, (SUB x, y), 0)
14273 // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
14274 // x != y. In other words, a carry C == 1 when x == y, C == 0
14276 // The final ADDCARRY computes
14277 // x - y + (0 - (x - y)) + C == C
14278 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
14279 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
14280 SDValue Neg
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, Sub
);
14281 // ISD::SUBCARRY returns a borrow but we want the carry here
14284 DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
14285 DAG
.getConstant(1, dl
, MVT::i32
), Neg
.getValue(1));
14286 Res
= DAG
.getNode(ISD::ADDCARRY
, dl
, VTs
, Sub
, Neg
, Carry
);
14288 } else if (CC
== ARMCC::NE
&& !isNullConstant(RHS
) &&
14289 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(TrueVal
))) {
14290 // This seems pointless but will allow us to combine it further below.
14291 // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
14293 DAG
.getNode(ARMISD::SUBS
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
14294 SDValue CPSRGlue
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
14295 Sub
.getValue(1), SDValue());
14296 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, TrueVal
, ARMcc
,
14297 N
->getOperand(3), CPSRGlue
.getValue(1));
14300 } else if (isNullConstant(TrueVal
)) {
14301 if (CC
== ARMCC::EQ
&& !isNullConstant(RHS
) &&
14302 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(FalseVal
))) {
14303 // This seems pointless but will allow us to combine it further below
14304 // Note that we change == for != as this is the dual for the case above.
14305 // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
14307 DAG
.getNode(ARMISD::SUBS
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
14308 SDValue CPSRGlue
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
14309 Sub
.getValue(1), SDValue());
14310 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, FalseVal
,
14311 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
),
14312 N
->getOperand(3), CPSRGlue
.getValue(1));
14317 // On Thumb1, the DAG above may be further combined if z is a power of 2
14319 // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
14320 // t1 = (USUBO (SUB x, y), 1)
14321 // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
14322 // Result = if K != 0 then (SHL t2:0, K) else t2:0
14324 // This also handles the special case of comparing against zero; it's
14325 // essentially, the same pattern, except there's no SUBS:
14326 // CMOV x, z, !=, (CMPZ x, 0) ->
14327 // t1 = (USUBO x, 1)
14328 // t2 = (SUBCARRY x, t1:0, t1:1)
14329 // Result = if K != 0 then (SHL t2:0, K) else t2:0
14330 const APInt
*TrueConst
;
14331 if (Subtarget
->isThumb1Only() && CC
== ARMCC::NE
&&
14332 ((FalseVal
.getOpcode() == ARMISD::SUBS
&&
14333 FalseVal
.getOperand(0) == LHS
&& FalseVal
.getOperand(1) == RHS
) ||
14334 (FalseVal
== LHS
&& isNullConstant(RHS
))) &&
14335 (TrueConst
= isPowerOf2Constant(TrueVal
))) {
14336 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
14337 unsigned ShiftAmount
= TrueConst
->logBase2();
14339 TrueVal
= DAG
.getConstant(1, dl
, VT
);
14340 SDValue Subc
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, TrueVal
);
14341 Res
= DAG
.getNode(ISD::SUBCARRY
, dl
, VTs
, FalseVal
, Subc
, Subc
.getValue(1));
14344 Res
= DAG
.getNode(ISD::SHL
, dl
, VT
, Res
,
14345 DAG
.getConstant(ShiftAmount
, dl
, MVT::i32
));
14348 if (Res
.getNode()) {
14349 KnownBits Known
= DAG
.computeKnownBits(SDValue(N
,0));
14350 // Capture demanded bits information that would be otherwise lost.
14351 if (Known
.Zero
== 0xfffffffe)
14352 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
14353 DAG
.getValueType(MVT::i1
));
14354 else if (Known
.Zero
== 0xffffff00)
14355 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
14356 DAG
.getValueType(MVT::i8
));
14357 else if (Known
.Zero
== 0xffff0000)
14358 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
14359 DAG
.getValueType(MVT::i16
));
14365 SDValue
ARMTargetLowering::PerformDAGCombine(SDNode
*N
,
14366 DAGCombinerInfo
&DCI
) const {
14367 switch (N
->getOpcode()) {
14369 case ISD::ABS
: return PerformABSCombine(N
, DCI
, Subtarget
);
14370 case ARMISD::ADDE
: return PerformADDECombine(N
, DCI
, Subtarget
);
14371 case ARMISD::UMLAL
: return PerformUMLALCombine(N
, DCI
.DAG
, Subtarget
);
14372 case ISD::ADD
: return PerformADDCombine(N
, DCI
, Subtarget
);
14373 case ISD::SUB
: return PerformSUBCombine(N
, DCI
);
14374 case ISD::MUL
: return PerformMULCombine(N
, DCI
, Subtarget
);
14375 case ISD::OR
: return PerformORCombine(N
, DCI
, Subtarget
);
14376 case ISD::XOR
: return PerformXORCombine(N
, DCI
, Subtarget
);
14377 case ISD::AND
: return PerformANDCombine(N
, DCI
, Subtarget
);
14379 case ISD::BR_CC
: return PerformHWLoopCombine(N
, DCI
, Subtarget
);
14381 case ARMISD::SUBC
: return PerformAddcSubcCombine(N
, DCI
, Subtarget
);
14382 case ARMISD::SUBE
: return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
14383 case ARMISD::BFI
: return PerformBFICombine(N
, DCI
);
14384 case ARMISD::VMOVRRD
: return PerformVMOVRRDCombine(N
, DCI
, Subtarget
);
14385 case ARMISD::VMOVDRR
: return PerformVMOVDRRCombine(N
, DCI
.DAG
);
14386 case ISD::STORE
: return PerformSTORECombine(N
, DCI
, Subtarget
);
14387 case ISD::BUILD_VECTOR
: return PerformBUILD_VECTORCombine(N
, DCI
, Subtarget
);
14388 case ISD::INSERT_VECTOR_ELT
: return PerformInsertEltCombine(N
, DCI
);
14389 case ISD::VECTOR_SHUFFLE
: return PerformVECTOR_SHUFFLECombine(N
, DCI
.DAG
);
14390 case ARMISD::VDUPLANE
: return PerformVDUPLANECombine(N
, DCI
);
14391 case ARMISD::VDUP
: return PerformVDUPCombine(N
, DCI
, Subtarget
);
14392 case ISD::FP_TO_SINT
:
14393 case ISD::FP_TO_UINT
:
14394 return PerformVCVTCombine(N
, DCI
.DAG
, Subtarget
);
14396 return PerformVDIVCombine(N
, DCI
.DAG
, Subtarget
);
14397 case ISD::INTRINSIC_WO_CHAIN
: return PerformIntrinsicCombine(N
, DCI
.DAG
);
14401 return PerformShiftCombine(N
, DCI
, Subtarget
);
14402 case ISD::SIGN_EXTEND
:
14403 case ISD::ZERO_EXTEND
:
14404 case ISD::ANY_EXTEND
: return PerformExtendCombine(N
, DCI
.DAG
, Subtarget
);
14405 case ARMISD::CMOV
: return PerformCMOVCombine(N
, DCI
.DAG
);
14406 case ARMISD::BRCOND
: return PerformBRCONDCombine(N
, DCI
.DAG
);
14407 case ISD::LOAD
: return PerformLOADCombine(N
, DCI
);
14408 case ARMISD::VLD1DUP
:
14409 case ARMISD::VLD2DUP
:
14410 case ARMISD::VLD3DUP
:
14411 case ARMISD::VLD4DUP
:
14412 return PerformVLDCombine(N
, DCI
);
14413 case ARMISD::BUILD_VECTOR
:
14414 return PerformARMBUILD_VECTORCombine(N
, DCI
);
14415 case ARMISD::PREDICATE_CAST
:
14416 return PerformPREDICATE_CASTCombine(N
, DCI
);
14417 case ARMISD::SMULWB
: {
14418 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14419 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
14420 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
14424 case ARMISD::SMULWT
: {
14425 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14426 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
14427 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
14431 case ARMISD::SMLALBB
:
14432 case ARMISD::QADD16b
:
14433 case ARMISD::QSUB16b
: {
14434 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14435 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
14436 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
14437 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
14441 case ARMISD::SMLALBT
: {
14442 unsigned LowWidth
= N
->getOperand(0).getValueType().getSizeInBits();
14443 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
14444 unsigned HighWidth
= N
->getOperand(1).getValueType().getSizeInBits();
14445 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
14446 if ((SimplifyDemandedBits(N
->getOperand(0), LowMask
, DCI
)) ||
14447 (SimplifyDemandedBits(N
->getOperand(1), HighMask
, DCI
)))
14451 case ARMISD::SMLALTB
: {
14452 unsigned HighWidth
= N
->getOperand(0).getValueType().getSizeInBits();
14453 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
14454 unsigned LowWidth
= N
->getOperand(1).getValueType().getSizeInBits();
14455 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
14456 if ((SimplifyDemandedBits(N
->getOperand(0), HighMask
, DCI
)) ||
14457 (SimplifyDemandedBits(N
->getOperand(1), LowMask
, DCI
)))
14461 case ARMISD::SMLALTT
: {
14462 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14463 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
14464 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
14465 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
14469 case ARMISD::QADD8b
:
14470 case ARMISD::QSUB8b
: {
14471 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14472 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 8);
14473 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
14474 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
14478 case ISD::INTRINSIC_VOID
:
14479 case ISD::INTRINSIC_W_CHAIN
:
14480 switch (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue()) {
14481 case Intrinsic::arm_neon_vld1
:
14482 case Intrinsic::arm_neon_vld1x2
:
14483 case Intrinsic::arm_neon_vld1x3
:
14484 case Intrinsic::arm_neon_vld1x4
:
14485 case Intrinsic::arm_neon_vld2
:
14486 case Intrinsic::arm_neon_vld3
:
14487 case Intrinsic::arm_neon_vld4
:
14488 case Intrinsic::arm_neon_vld2lane
:
14489 case Intrinsic::arm_neon_vld3lane
:
14490 case Intrinsic::arm_neon_vld4lane
:
14491 case Intrinsic::arm_neon_vld2dup
:
14492 case Intrinsic::arm_neon_vld3dup
:
14493 case Intrinsic::arm_neon_vld4dup
:
14494 case Intrinsic::arm_neon_vst1
:
14495 case Intrinsic::arm_neon_vst1x2
:
14496 case Intrinsic::arm_neon_vst1x3
:
14497 case Intrinsic::arm_neon_vst1x4
:
14498 case Intrinsic::arm_neon_vst2
:
14499 case Intrinsic::arm_neon_vst3
:
14500 case Intrinsic::arm_neon_vst4
:
14501 case Intrinsic::arm_neon_vst2lane
:
14502 case Intrinsic::arm_neon_vst3lane
:
14503 case Intrinsic::arm_neon_vst4lane
:
14504 return PerformVLDCombine(N
, DCI
);
14512 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc
,
14514 return (VT
== MVT::f32
) && (Opc
== ISD::LOAD
|| Opc
== ISD::STORE
);
14517 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT
, unsigned,
14518 unsigned Alignment
,
14519 MachineMemOperand::Flags
,
14520 bool *Fast
) const {
14521 // Depends what it gets converted into if the type is weird.
14522 if (!VT
.isSimple())
14525 // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
14526 bool AllowsUnaligned
= Subtarget
->allowsUnalignedMem();
14527 auto Ty
= VT
.getSimpleVT().SimpleTy
;
14529 if (Ty
== MVT::i8
|| Ty
== MVT::i16
|| Ty
== MVT::i32
) {
14530 // Unaligned access can use (for example) LRDB, LRDH, LDR
14531 if (AllowsUnaligned
) {
14533 *Fast
= Subtarget
->hasV7Ops();
14538 if (Ty
== MVT::f64
|| Ty
== MVT::v2f64
) {
14539 // For any little-endian targets with neon, we can support unaligned ld/st
14540 // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
14541 // A big-endian target may also explicitly support unaligned accesses
14542 if (Subtarget
->hasNEON() && (AllowsUnaligned
|| Subtarget
->isLittle())) {
14549 if (!Subtarget
->hasMVEIntegerOps())
14552 // These are for predicates
14553 if ((Ty
== MVT::v16i1
|| Ty
== MVT::v8i1
|| Ty
== MVT::v4i1
)) {
14559 // These are for truncated stores/narrowing loads. They are fine so long as
14560 // the alignment is at least the size of the item being loaded
14561 if ((Ty
== MVT::v4i8
|| Ty
== MVT::v8i8
|| Ty
== MVT::v4i16
) &&
14562 Alignment
>= VT
.getScalarSizeInBits() / 8) {
14568 // In little-endian MVE, the store instructions VSTRB.U8, VSTRH.U16 and
14569 // VSTRW.U32 all store the vector register in exactly the same format, and
14570 // differ only in the range of their immediate offset field and the required
14571 // alignment. So there is always a store that can be used, regardless of
14574 // For big endian, that is not the case. But can still emit a (VSTRB.U8;
14575 // VREV64.8) pair and get the same effect. This will likely be better than
14576 // aligning the vector through the stack.
14577 if (Ty
== MVT::v16i8
|| Ty
== MVT::v8i16
|| Ty
== MVT::v8f16
||
14578 Ty
== MVT::v4i32
|| Ty
== MVT::v4f32
|| Ty
== MVT::v2i64
||
14579 Ty
== MVT::v2f64
) {
14588 static bool memOpAlign(unsigned DstAlign
, unsigned SrcAlign
,
14589 unsigned AlignCheck
) {
14590 return ((SrcAlign
== 0 || SrcAlign
% AlignCheck
== 0) &&
14591 (DstAlign
== 0 || DstAlign
% AlignCheck
== 0));
14594 EVT
ARMTargetLowering::getOptimalMemOpType(
14595 uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
, bool IsMemset
,
14596 bool ZeroMemset
, bool MemcpyStrSrc
,
14597 const AttributeList
&FuncAttributes
) const {
14598 // See if we can use NEON instructions for this...
14599 if ((!IsMemset
|| ZeroMemset
) && Subtarget
->hasNEON() &&
14600 !FuncAttributes
.hasFnAttribute(Attribute::NoImplicitFloat
)) {
14603 (memOpAlign(SrcAlign
, DstAlign
, 16) ||
14604 (allowsMisalignedMemoryAccesses(MVT::v2f64
, 0, 1,
14605 MachineMemOperand::MONone
, &Fast
) &&
14608 } else if (Size
>= 8 &&
14609 (memOpAlign(SrcAlign
, DstAlign
, 8) ||
14610 (allowsMisalignedMemoryAccesses(
14611 MVT::f64
, 0, 1, MachineMemOperand::MONone
, &Fast
) &&
14617 // Let the target-independent logic figure it out.
14621 // 64-bit integers are split into their high and low parts and held in two
14622 // different registers, so the trunc is free since the low register can just
14624 bool ARMTargetLowering::isTruncateFree(Type
*SrcTy
, Type
*DstTy
) const {
14625 if (!SrcTy
->isIntegerTy() || !DstTy
->isIntegerTy())
14627 unsigned SrcBits
= SrcTy
->getPrimitiveSizeInBits();
14628 unsigned DestBits
= DstTy
->getPrimitiveSizeInBits();
14629 return (SrcBits
== 64 && DestBits
== 32);
14632 bool ARMTargetLowering::isTruncateFree(EVT SrcVT
, EVT DstVT
) const {
14633 if (SrcVT
.isVector() || DstVT
.isVector() || !SrcVT
.isInteger() ||
14634 !DstVT
.isInteger())
14636 unsigned SrcBits
= SrcVT
.getSizeInBits();
14637 unsigned DestBits
= DstVT
.getSizeInBits();
14638 return (SrcBits
== 64 && DestBits
== 32);
14641 bool ARMTargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
14642 if (Val
.getOpcode() != ISD::LOAD
)
14645 EVT VT1
= Val
.getValueType();
14646 if (!VT1
.isSimple() || !VT1
.isInteger() ||
14647 !VT2
.isSimple() || !VT2
.isInteger())
14650 switch (VT1
.getSimpleVT().SimpleTy
) {
14655 // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
14662 bool ARMTargetLowering::isFNegFree(EVT VT
) const {
14663 if (!VT
.isSimple())
14666 // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
14667 // negate values directly (fneg is free). So, we don't want to let the DAG
14668 // combiner rewrite fneg into xors and some other instructions. For f16 and
14669 // FullFP16 argument passing, some bitcast nodes may be introduced,
14670 // triggering this DAG combine rewrite, so we are avoiding that with this.
14671 switch (VT
.getSimpleVT().SimpleTy
) {
14674 return Subtarget
->hasFullFP16();
14680 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
14681 /// of the vector elements.
14682 static bool areExtractExts(Value
*Ext1
, Value
*Ext2
) {
14683 auto areExtDoubled
= [](Instruction
*Ext
) {
14684 return Ext
->getType()->getScalarSizeInBits() ==
14685 2 * Ext
->getOperand(0)->getType()->getScalarSizeInBits();
14688 if (!match(Ext1
, m_ZExtOrSExt(m_Value())) ||
14689 !match(Ext2
, m_ZExtOrSExt(m_Value())) ||
14690 !areExtDoubled(cast
<Instruction
>(Ext1
)) ||
14691 !areExtDoubled(cast
<Instruction
>(Ext2
)))
14697 /// Check if sinking \p I's operands to I's basic block is profitable, because
14698 /// the operands can be folded into a target instruction, e.g.
14699 /// sext/zext can be folded into vsubl.
14700 bool ARMTargetLowering::shouldSinkOperands(Instruction
*I
,
14701 SmallVectorImpl
<Use
*> &Ops
) const {
14702 if (!I
->getType()->isVectorTy())
14705 if (Subtarget
->hasNEON()) {
14706 switch (I
->getOpcode()) {
14707 case Instruction::Sub
:
14708 case Instruction::Add
: {
14709 if (!areExtractExts(I
->getOperand(0), I
->getOperand(1)))
14711 Ops
.push_back(&I
->getOperandUse(0));
14712 Ops
.push_back(&I
->getOperandUse(1));
14720 if (!Subtarget
->hasMVEIntegerOps())
14723 auto IsSinker
= [](Instruction
*I
, int Operand
) {
14724 switch (I
->getOpcode()) {
14725 case Instruction::Add
:
14726 case Instruction::Mul
:
14728 case Instruction::Sub
:
14729 return Operand
== 1;
14736 if (!isa
<ShuffleVectorInst
>(I
->getOperand(Op
)))
14738 if (!IsSinker(I
, Op
))
14740 if (!match(I
->getOperand(Op
),
14741 m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(), m_ZeroInt()),
14742 m_Undef(), m_Zero()))) {
14745 Instruction
*Shuffle
= cast
<Instruction
>(I
->getOperand(Op
));
14746 // All uses of the shuffle should be sunk to avoid duplicating it across gpr
14747 // and vector registers
14748 for (Use
&U
: Shuffle
->uses()) {
14749 Instruction
*Insn
= cast
<Instruction
>(U
.getUser());
14750 if (!IsSinker(Insn
, U
.getOperandNo()))
14753 Ops
.push_back(&Shuffle
->getOperandUse(0));
14754 Ops
.push_back(&I
->getOperandUse(Op
));
14758 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal
) const {
14759 EVT VT
= ExtVal
.getValueType();
14761 if (!isTypeLegal(VT
))
14764 if (auto *Ld
= dyn_cast
<MaskedLoadSDNode
>(ExtVal
.getOperand(0))) {
14765 if (Ld
->isExpandingLoad())
14769 // Don't create a loadext if we can fold the extension into a wide/long
14771 // If there's more than one user instruction, the loadext is desirable no
14772 // matter what. There can be two uses by the same instruction.
14773 if (ExtVal
->use_empty() ||
14774 !ExtVal
->use_begin()->isOnlyUserOf(ExtVal
.getNode()))
14777 SDNode
*U
= *ExtVal
->use_begin();
14778 if ((U
->getOpcode() == ISD::ADD
|| U
->getOpcode() == ISD::SUB
||
14779 U
->getOpcode() == ISD::SHL
|| U
->getOpcode() == ARMISD::VSHLIMM
))
14785 bool ARMTargetLowering::allowTruncateForTailCall(Type
*Ty1
, Type
*Ty2
) const {
14786 if (!Ty1
->isIntegerTy() || !Ty2
->isIntegerTy())
14789 if (!isTypeLegal(EVT::getEVT(Ty1
)))
14792 assert(Ty1
->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
14794 // Assuming the caller doesn't have a zeroext or signext return parameter,
14795 // truncation all the way down to i1 is valid.
14799 int ARMTargetLowering::getScalingFactorCost(const DataLayout
&DL
,
14800 const AddrMode
&AM
, Type
*Ty
,
14801 unsigned AS
) const {
14802 if (isLegalAddressingMode(DL
, AM
, Ty
, AS
)) {
14803 if (Subtarget
->hasFPAO())
14804 return AM
.Scale
< 0 ? 1 : 0; // positive offsets execute faster
14810 static bool isLegalT1AddressImmediate(int64_t V
, EVT VT
) {
14814 unsigned Scale
= 1;
14815 switch (VT
.getSimpleVT().SimpleTy
) {
14825 // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
14831 if ((V
& (Scale
- 1)) != 0)
14833 return isUInt
<5>(V
/ Scale
);
14836 static bool isLegalT2AddressImmediate(int64_t V
, EVT VT
,
14837 const ARMSubtarget
*Subtarget
) {
14838 if (!VT
.isInteger() && !VT
.isFloatingPoint())
14840 if (VT
.isVector() && Subtarget
->hasNEON())
14842 if (VT
.isVector() && VT
.isFloatingPoint() && Subtarget
->hasMVEIntegerOps() &&
14843 !Subtarget
->hasMVEFloatOps())
14846 bool IsNeg
= false;
14852 unsigned NumBytes
= std::max(VT
.getSizeInBits() / 8, 1U);
14854 // MVE: size * imm7
14855 if (VT
.isVector() && Subtarget
->hasMVEIntegerOps()) {
14856 switch (VT
.getSimpleVT().getVectorElementType().SimpleTy
) {
14859 return isShiftedUInt
<7,2>(V
);
14862 return isShiftedUInt
<7,1>(V
);
14864 return isUInt
<7>(V
);
14870 // half VLDR: 2 * imm8
14871 if (VT
.isFloatingPoint() && NumBytes
== 2 && Subtarget
->hasFPRegs16())
14872 return isShiftedUInt
<8, 1>(V
);
14873 // VLDR and LDRD: 4 * imm8
14874 if ((VT
.isFloatingPoint() && Subtarget
->hasVFP2Base()) || NumBytes
== 8)
14875 return isShiftedUInt
<8, 2>(V
);
14877 if (NumBytes
== 1 || NumBytes
== 2 || NumBytes
== 4) {
14878 // + imm12 or - imm8
14880 return isUInt
<8>(V
);
14881 return isUInt
<12>(V
);
14887 /// isLegalAddressImmediate - Return true if the integer value can be used
14888 /// as the offset of the target addressing mode for load / store of the
14890 static bool isLegalAddressImmediate(int64_t V
, EVT VT
,
14891 const ARMSubtarget
*Subtarget
) {
14895 if (!VT
.isSimple())
14898 if (Subtarget
->isThumb1Only())
14899 return isLegalT1AddressImmediate(V
, VT
);
14900 else if (Subtarget
->isThumb2())
14901 return isLegalT2AddressImmediate(V
, VT
, Subtarget
);
14906 switch (VT
.getSimpleVT().SimpleTy
) {
14907 default: return false;
14912 return isUInt
<12>(V
);
14915 return isUInt
<8>(V
);
14918 if (!Subtarget
->hasVFP2Base()) // FIXME: NEON?
14920 return isShiftedUInt
<8, 2>(V
);
14924 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode
&AM
,
14926 int Scale
= AM
.Scale
;
14930 switch (VT
.getSimpleVT().SimpleTy
) {
14931 default: return false;
14939 Scale
= Scale
& ~1;
14940 return Scale
== 2 || Scale
== 4 || Scale
== 8;
14942 // FIXME: What are we trying to model here? ldrd doesn't have an r + r
14943 // version in Thumb mode.
14947 // r * 2 (this can be lowered to r + r).
14948 if (!AM
.HasBaseReg
&& Scale
== 2)
14952 // Note, we allow "void" uses (basically, uses that aren't loads or
14953 // stores), because arm allows folding a scale into many arithmetic
14954 // operations. This should be made more precise and revisited later.
14956 // Allow r << imm, but the imm has to be a multiple of two.
14957 if (Scale
& 1) return false;
14958 return isPowerOf2_32(Scale
);
14962 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode
&AM
,
14964 const int Scale
= AM
.Scale
;
14966 // Negative scales are not supported in Thumb1.
14970 // Thumb1 addressing modes do not support register scaling excepting the
14971 // following cases:
14972 // 1. Scale == 1 means no scaling.
14973 // 2. Scale == 2 this can be lowered to r + r if there is no base register.
14974 return (Scale
== 1) || (!AM
.HasBaseReg
&& Scale
== 2);
14977 /// isLegalAddressingMode - Return true if the addressing mode represented
14978 /// by AM is legal for this target, for a load/store of the specified type.
14979 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
14980 const AddrMode
&AM
, Type
*Ty
,
14981 unsigned AS
, Instruction
*I
) const {
14982 EVT VT
= getValueType(DL
, Ty
, true);
14983 if (!isLegalAddressImmediate(AM
.BaseOffs
, VT
, Subtarget
))
14986 // Can never fold addr of global into load/store.
14990 switch (AM
.Scale
) {
14991 case 0: // no scale reg, must be "r+i" or "r", or "i".
14994 // ARM doesn't support any R+R*scale+imm addr modes.
14998 if (!VT
.isSimple())
15001 if (Subtarget
->isThumb1Only())
15002 return isLegalT1ScaledAddressingMode(AM
, VT
);
15004 if (Subtarget
->isThumb2())
15005 return isLegalT2ScaledAddressingMode(AM
, VT
);
15007 int Scale
= AM
.Scale
;
15008 switch (VT
.getSimpleVT().SimpleTy
) {
15009 default: return false;
15013 if (Scale
< 0) Scale
= -Scale
;
15017 return isPowerOf2_32(Scale
& ~1);
15021 if (Scale
== 1 || (AM
.HasBaseReg
&& Scale
== -1))
15023 // r * 2 (this can be lowered to r + r).
15024 if (!AM
.HasBaseReg
&& Scale
== 2)
15029 // Note, we allow "void" uses (basically, uses that aren't loads or
15030 // stores), because arm allows folding a scale into many arithmetic
15031 // operations. This should be made more precise and revisited later.
15033 // Allow r << imm, but the imm has to be a multiple of two.
15034 if (Scale
& 1) return false;
15035 return isPowerOf2_32(Scale
);
15041 /// isLegalICmpImmediate - Return true if the specified immediate is legal
15042 /// icmp immediate, that is the target has icmp instructions which can compare
15043 /// a register against the immediate without having to materialize the
15044 /// immediate into a register.
15045 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm
) const {
15046 // Thumb2 and ARM modes can use cmn for negative immediates.
15047 if (!Subtarget
->isThumb())
15048 return ARM_AM::getSOImmVal((uint32_t)Imm
) != -1 ||
15049 ARM_AM::getSOImmVal(-(uint32_t)Imm
) != -1;
15050 if (Subtarget
->isThumb2())
15051 return ARM_AM::getT2SOImmVal((uint32_t)Imm
) != -1 ||
15052 ARM_AM::getT2SOImmVal(-(uint32_t)Imm
) != -1;
15053 // Thumb1 doesn't have cmn, and only 8-bit immediates.
15054 return Imm
>= 0 && Imm
<= 255;
15057 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
15058 /// *or sub* immediate, that is the target has add or sub instructions which can
15059 /// add a register with the immediate without having to materialize the
15060 /// immediate into a register.
15061 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm
) const {
15062 // Same encoding for add/sub, just flip the sign.
15063 int64_t AbsImm
= std::abs(Imm
);
15064 if (!Subtarget
->isThumb())
15065 return ARM_AM::getSOImmVal(AbsImm
) != -1;
15066 if (Subtarget
->isThumb2())
15067 return ARM_AM::getT2SOImmVal(AbsImm
) != -1;
15068 // Thumb1 only has 8-bit unsigned immediate.
15069 return AbsImm
>= 0 && AbsImm
<= 255;
15072 static bool getARMIndexedAddressParts(SDNode
*Ptr
, EVT VT
,
15073 bool isSEXTLoad
, SDValue
&Base
,
15074 SDValue
&Offset
, bool &isInc
,
15075 SelectionDAG
&DAG
) {
15076 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
15079 if (VT
== MVT::i16
|| ((VT
== MVT::i8
|| VT
== MVT::i1
) && isSEXTLoad
)) {
15080 // AddressingMode 3
15081 Base
= Ptr
->getOperand(0);
15082 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
15083 int RHSC
= (int)RHS
->getZExtValue();
15084 if (RHSC
< 0 && RHSC
> -256) {
15085 assert(Ptr
->getOpcode() == ISD::ADD
);
15087 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
15091 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
15092 Offset
= Ptr
->getOperand(1);
15094 } else if (VT
== MVT::i32
|| VT
== MVT::i8
|| VT
== MVT::i1
) {
15095 // AddressingMode 2
15096 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
15097 int RHSC
= (int)RHS
->getZExtValue();
15098 if (RHSC
< 0 && RHSC
> -0x1000) {
15099 assert(Ptr
->getOpcode() == ISD::ADD
);
15101 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
15102 Base
= Ptr
->getOperand(0);
15107 if (Ptr
->getOpcode() == ISD::ADD
) {
15109 ARM_AM::ShiftOpc ShOpcVal
=
15110 ARM_AM::getShiftOpcForNode(Ptr
->getOperand(0).getOpcode());
15111 if (ShOpcVal
!= ARM_AM::no_shift
) {
15112 Base
= Ptr
->getOperand(1);
15113 Offset
= Ptr
->getOperand(0);
15115 Base
= Ptr
->getOperand(0);
15116 Offset
= Ptr
->getOperand(1);
15121 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
15122 Base
= Ptr
->getOperand(0);
15123 Offset
= Ptr
->getOperand(1);
15127 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
15131 static bool getT2IndexedAddressParts(SDNode
*Ptr
, EVT VT
,
15132 bool isSEXTLoad
, SDValue
&Base
,
15133 SDValue
&Offset
, bool &isInc
,
15134 SelectionDAG
&DAG
) {
15135 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
15138 Base
= Ptr
->getOperand(0);
15139 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
15140 int RHSC
= (int)RHS
->getZExtValue();
15141 if (RHSC
< 0 && RHSC
> -0x100) { // 8 bits.
15142 assert(Ptr
->getOpcode() == ISD::ADD
);
15144 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
15146 } else if (RHSC
> 0 && RHSC
< 0x100) { // 8 bit, no zero.
15147 isInc
= Ptr
->getOpcode() == ISD::ADD
;
15148 Offset
= DAG
.getConstant(RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
15156 static bool getMVEIndexedAddressParts(SDNode
*Ptr
, EVT VT
, unsigned Align
,
15157 bool isSEXTLoad
, bool isLE
, SDValue
&Base
,
15158 SDValue
&Offset
, bool &isInc
,
15159 SelectionDAG
&DAG
) {
15160 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
15162 if (!isa
<ConstantSDNode
>(Ptr
->getOperand(1)))
15165 ConstantSDNode
*RHS
= cast
<ConstantSDNode
>(Ptr
->getOperand(1));
15166 int RHSC
= (int)RHS
->getZExtValue();
15168 auto IsInRange
= [&](int RHSC
, int Limit
, int Scale
) {
15169 if (RHSC
< 0 && RHSC
> -Limit
* Scale
&& RHSC
% Scale
== 0) {
15170 assert(Ptr
->getOpcode() == ISD::ADD
);
15172 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
15174 } else if (RHSC
> 0 && RHSC
< Limit
* Scale
&& RHSC
% Scale
== 0) {
15175 isInc
= Ptr
->getOpcode() == ISD::ADD
;
15176 Offset
= DAG
.getConstant(RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
15182 // Try to find a matching instruction based on s/zext, Alignment, Offset and
15184 Base
= Ptr
->getOperand(0);
15185 if (VT
== MVT::v4i16
) {
15186 if (Align
>= 2 && IsInRange(RHSC
, 0x80, 2))
15188 } else if (VT
== MVT::v4i8
|| VT
== MVT::v8i8
) {
15189 if (IsInRange(RHSC
, 0x80, 1))
15191 } else if (Align
>= 4 && (isLE
|| VT
== MVT::v4i32
|| VT
== MVT::v4f32
) &&
15192 IsInRange(RHSC
, 0x80, 4))
15194 else if (Align
>= 2 && (isLE
|| VT
== MVT::v8i16
|| VT
== MVT::v8f16
) &&
15195 IsInRange(RHSC
, 0x80, 2))
15197 else if ((isLE
|| VT
== MVT::v16i8
) && IsInRange(RHSC
, 0x80, 1))
15202 /// getPreIndexedAddressParts - returns true by value, base pointer and
15203 /// offset pointer and addressing mode by reference if the node's address
15204 /// can be legally represented as pre-indexed load / store address.
15206 ARMTargetLowering::getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
15208 ISD::MemIndexedMode
&AM
,
15209 SelectionDAG
&DAG
) const {
15210 if (Subtarget
->isThumb1Only())
15216 bool isSEXTLoad
= false;
15217 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
15218 Ptr
= LD
->getBasePtr();
15219 VT
= LD
->getMemoryVT();
15220 Align
= LD
->getAlignment();
15221 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
15222 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
15223 Ptr
= ST
->getBasePtr();
15224 VT
= ST
->getMemoryVT();
15225 Align
= ST
->getAlignment();
15230 bool isLegal
= false;
15232 isLegal
= Subtarget
->hasMVEIntegerOps() &&
15233 getMVEIndexedAddressParts(Ptr
.getNode(), VT
, Align
, isSEXTLoad
,
15234 Subtarget
->isLittle(), Base
, Offset
,
15237 if (Subtarget
->isThumb2())
15238 isLegal
= getT2IndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
15239 Offset
, isInc
, DAG
);
15241 isLegal
= getARMIndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
15242 Offset
, isInc
, DAG
);
15247 AM
= isInc
? ISD::PRE_INC
: ISD::PRE_DEC
;
15251 /// getPostIndexedAddressParts - returns true by value, base pointer and
15252 /// offset pointer and addressing mode by reference if this node can be
15253 /// combined with a load / store to form a post-indexed load / store.
15254 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode
*N
, SDNode
*Op
,
15257 ISD::MemIndexedMode
&AM
,
15258 SelectionDAG
&DAG
) const {
15262 bool isSEXTLoad
= false, isNonExt
;
15263 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
15264 VT
= LD
->getMemoryVT();
15265 Ptr
= LD
->getBasePtr();
15266 Align
= LD
->getAlignment();
15267 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
15268 isNonExt
= LD
->getExtensionType() == ISD::NON_EXTLOAD
;
15269 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
15270 VT
= ST
->getMemoryVT();
15271 Ptr
= ST
->getBasePtr();
15272 Align
= ST
->getAlignment();
15273 isNonExt
= !ST
->isTruncatingStore();
15277 if (Subtarget
->isThumb1Only()) {
15278 // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
15279 // must be non-extending/truncating, i32, with an offset of 4.
15280 assert(Op
->getValueType(0) == MVT::i32
&& "Non-i32 post-inc op?!");
15281 if (Op
->getOpcode() != ISD::ADD
|| !isNonExt
)
15283 auto *RHS
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1));
15284 if (!RHS
|| RHS
->getZExtValue() != 4)
15287 Offset
= Op
->getOperand(1);
15288 Base
= Op
->getOperand(0);
15289 AM
= ISD::POST_INC
;
15294 bool isLegal
= false;
15296 isLegal
= Subtarget
->hasMVEIntegerOps() &&
15297 getMVEIndexedAddressParts(Op
, VT
, Align
, isSEXTLoad
,
15298 Subtarget
->isLittle(), Base
, Offset
,
15301 if (Subtarget
->isThumb2())
15302 isLegal
= getT2IndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
15305 isLegal
= getARMIndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
15312 // Swap base ptr and offset to catch more post-index load / store when
15313 // it's legal. In Thumb2 mode, offset must be an immediate.
15314 if (Ptr
== Offset
&& Op
->getOpcode() == ISD::ADD
&&
15315 !Subtarget
->isThumb2())
15316 std::swap(Base
, Offset
);
15318 // Post-indexed load / store update the base pointer.
15323 AM
= isInc
? ISD::POST_INC
: ISD::POST_DEC
;
15327 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op
,
15329 const APInt
&DemandedElts
,
15330 const SelectionDAG
&DAG
,
15331 unsigned Depth
) const {
15332 unsigned BitWidth
= Known
.getBitWidth();
15334 switch (Op
.getOpcode()) {
15340 // Special cases when we convert a carry to a boolean.
15341 if (Op
.getResNo() == 0) {
15342 SDValue LHS
= Op
.getOperand(0);
15343 SDValue RHS
= Op
.getOperand(1);
15344 // (ADDE 0, 0, C) will give us a single bit.
15345 if (Op
->getOpcode() == ARMISD::ADDE
&& isNullConstant(LHS
) &&
15346 isNullConstant(RHS
)) {
15347 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
15352 case ARMISD::CMOV
: {
15353 // Bits are known zero/one if known on the LHS and RHS.
15354 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+1);
15355 if (Known
.isUnknown())
15358 KnownBits KnownRHS
= DAG
.computeKnownBits(Op
.getOperand(1), Depth
+1);
15359 Known
.Zero
&= KnownRHS
.Zero
;
15360 Known
.One
&= KnownRHS
.One
;
15363 case ISD::INTRINSIC_W_CHAIN
: {
15364 ConstantSDNode
*CN
= cast
<ConstantSDNode
>(Op
->getOperand(1));
15365 Intrinsic::ID IntID
= static_cast<Intrinsic::ID
>(CN
->getZExtValue());
15368 case Intrinsic::arm_ldaex
:
15369 case Intrinsic::arm_ldrex
: {
15370 EVT VT
= cast
<MemIntrinsicSDNode
>(Op
)->getMemoryVT();
15371 unsigned MemBits
= VT
.getScalarSizeInBits();
15372 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- MemBits
);
15377 case ARMISD::BFI
: {
15378 // Conservatively, we can recurse down the first operand
15379 // and just mask out all affected bits.
15380 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
15382 // The operand to BFI is already a mask suitable for removing the bits it
15384 ConstantSDNode
*CI
= cast
<ConstantSDNode
>(Op
.getOperand(2));
15385 const APInt
&Mask
= CI
->getAPIntValue();
15386 Known
.Zero
&= Mask
;
15390 case ARMISD::VGETLANEs
:
15391 case ARMISD::VGETLANEu
: {
15392 const SDValue
&SrcSV
= Op
.getOperand(0);
15393 EVT VecVT
= SrcSV
.getValueType();
15394 assert(VecVT
.isVector() && "VGETLANE expected a vector type");
15395 const unsigned NumSrcElts
= VecVT
.getVectorNumElements();
15396 ConstantSDNode
*Pos
= cast
<ConstantSDNode
>(Op
.getOperand(1).getNode());
15397 assert(Pos
->getAPIntValue().ult(NumSrcElts
) &&
15398 "VGETLANE index out of bounds");
15399 unsigned Idx
= Pos
->getZExtValue();
15400 APInt DemandedElt
= APInt::getOneBitSet(NumSrcElts
, Idx
);
15401 Known
= DAG
.computeKnownBits(SrcSV
, DemandedElt
, Depth
+ 1);
15403 EVT VT
= Op
.getValueType();
15404 const unsigned DstSz
= VT
.getScalarSizeInBits();
15405 const unsigned SrcSz
= VecVT
.getVectorElementType().getSizeInBits();
15407 assert(SrcSz
== Known
.getBitWidth());
15408 assert(DstSz
> SrcSz
);
15409 if (Op
.getOpcode() == ARMISD::VGETLANEs
)
15410 Known
= Known
.sext(DstSz
);
15412 Known
= Known
.zext(DstSz
, true /* extended bits are known zero */);
15414 assert(DstSz
== Known
.getBitWidth());
15421 ARMTargetLowering::targetShrinkDemandedConstant(SDValue Op
,
15422 const APInt
&DemandedAPInt
,
15423 TargetLoweringOpt
&TLO
) const {
15424 // Delay optimization, so we don't have to deal with illegal types, or block
15429 // Only optimize AND for now.
15430 if (Op
.getOpcode() != ISD::AND
)
15433 EVT VT
= Op
.getValueType();
15439 assert(VT
== MVT::i32
&& "Unexpected integer type");
15441 // Make sure the RHS really is a constant.
15442 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
15446 unsigned Mask
= C
->getZExtValue();
15448 unsigned Demanded
= DemandedAPInt
.getZExtValue();
15449 unsigned ShrunkMask
= Mask
& Demanded
;
15450 unsigned ExpandedMask
= Mask
| ~Demanded
;
15452 // If the mask is all zeros, let the target-independent code replace the
15453 // result with zero.
15454 if (ShrunkMask
== 0)
15457 // If the mask is all ones, erase the AND. (Currently, the target-independent
15458 // code won't do this, so we have to do it explicitly to avoid an infinite
15459 // loop in obscure cases.)
15460 if (ExpandedMask
== ~0U)
15461 return TLO
.CombineTo(Op
, Op
.getOperand(0));
15463 auto IsLegalMask
= [ShrunkMask
, ExpandedMask
](unsigned Mask
) -> bool {
15464 return (ShrunkMask
& Mask
) == ShrunkMask
&& (~ExpandedMask
& Mask
) == 0;
15466 auto UseMask
= [Mask
, Op
, VT
, &TLO
](unsigned NewMask
) -> bool {
15467 if (NewMask
== Mask
)
15470 SDValue NewC
= TLO
.DAG
.getConstant(NewMask
, DL
, VT
);
15471 SDValue NewOp
= TLO
.DAG
.getNode(ISD::AND
, DL
, VT
, Op
.getOperand(0), NewC
);
15472 return TLO
.CombineTo(Op
, NewOp
);
15475 // Prefer uxtb mask.
15476 if (IsLegalMask(0xFF))
15477 return UseMask(0xFF);
15479 // Prefer uxth mask.
15480 if (IsLegalMask(0xFFFF))
15481 return UseMask(0xFFFF);
15483 // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
15484 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
15485 if (ShrunkMask
< 256)
15486 return UseMask(ShrunkMask
);
15488 // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
15489 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
15490 if ((int)ExpandedMask
<= -2 && (int)ExpandedMask
>= -256)
15491 return UseMask(ExpandedMask
);
15493 // Potential improvements:
15495 // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
15496 // We could try to prefer Thumb1 immediates which can be lowered to a
15497 // two-instruction sequence.
15498 // We could try to recognize more legal ARM/Thumb2 immediates here.
15504 //===----------------------------------------------------------------------===//
15505 // ARM Inline Assembly Support
15506 //===----------------------------------------------------------------------===//
15508 bool ARMTargetLowering::ExpandInlineAsm(CallInst
*CI
) const {
15509 // Looking for "rev" which is V6+.
15510 if (!Subtarget
->hasV6Ops())
15513 InlineAsm
*IA
= cast
<InlineAsm
>(CI
->getCalledValue());
15514 std::string AsmStr
= IA
->getAsmString();
15515 SmallVector
<StringRef
, 4> AsmPieces
;
15516 SplitString(AsmStr
, AsmPieces
, ";\n");
15518 switch (AsmPieces
.size()) {
15519 default: return false;
15521 AsmStr
= AsmPieces
[0];
15523 SplitString(AsmStr
, AsmPieces
, " \t,");
15526 if (AsmPieces
.size() == 3 &&
15527 AsmPieces
[0] == "rev" && AsmPieces
[1] == "$0" && AsmPieces
[2] == "$1" &&
15528 IA
->getConstraintString().compare(0, 4, "=l,l") == 0) {
15529 IntegerType
*Ty
= dyn_cast
<IntegerType
>(CI
->getType());
15530 if (Ty
&& Ty
->getBitWidth() == 32)
15531 return IntrinsicLowering::LowerToByteSwap(CI
);
15539 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT
) const {
15540 // At this point, we have to lower this constraint to something else, so we
15541 // lower it to an "r" or "w". However, by doing this we will force the result
15542 // to be in register, while the X constraint is much more permissive.
15544 // Although we are correct (we are free to emit anything, without
15545 // constraints), we might break use cases that would expect us to be more
15546 // efficient and emit something else.
15547 if (!Subtarget
->hasVFP2Base())
15549 if (ConstraintVT
.isFloatingPoint())
15551 if (ConstraintVT
.isVector() && Subtarget
->hasNEON() &&
15552 (ConstraintVT
.getSizeInBits() == 64 ||
15553 ConstraintVT
.getSizeInBits() == 128))
15559 /// getConstraintType - Given a constraint letter, return the type of
15560 /// constraint it is for this target.
15561 ARMTargetLowering::ConstraintType
15562 ARMTargetLowering::getConstraintType(StringRef Constraint
) const {
15563 unsigned S
= Constraint
.size();
15565 switch (Constraint
[0]) {
15567 case 'l': return C_RegisterClass
;
15568 case 'w': return C_RegisterClass
;
15569 case 'h': return C_RegisterClass
;
15570 case 'x': return C_RegisterClass
;
15571 case 't': return C_RegisterClass
;
15572 case 'j': return C_Immediate
; // Constant for movw.
15573 // An address with a single base register. Due to the way we
15574 // currently handle addresses it is the same as an 'r' memory constraint.
15575 case 'Q': return C_Memory
;
15577 } else if (S
== 2) {
15578 switch (Constraint
[0]) {
15580 case 'T': return C_RegisterClass
;
15581 // All 'U+' constraints are addresses.
15582 case 'U': return C_Memory
;
15585 return TargetLowering::getConstraintType(Constraint
);
15588 /// Examine constraint type and operand type and determine a weight value.
15589 /// This object must already have been set up with the operand type
15590 /// and the current alternative constraint selected.
15591 TargetLowering::ConstraintWeight
15592 ARMTargetLowering::getSingleConstraintMatchWeight(
15593 AsmOperandInfo
&info
, const char *constraint
) const {
15594 ConstraintWeight weight
= CW_Invalid
;
15595 Value
*CallOperandVal
= info
.CallOperandVal
;
15596 // If we don't have a value, we can't do a match,
15597 // but allow it at the lowest weight.
15598 if (!CallOperandVal
)
15600 Type
*type
= CallOperandVal
->getType();
15601 // Look at the constraint type.
15602 switch (*constraint
) {
15604 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
15607 if (type
->isIntegerTy()) {
15608 if (Subtarget
->isThumb())
15609 weight
= CW_SpecificReg
;
15611 weight
= CW_Register
;
15615 if (type
->isFloatingPointTy())
15616 weight
= CW_Register
;
15622 using RCPair
= std::pair
<unsigned, const TargetRegisterClass
*>;
15624 RCPair
ARMTargetLowering::getRegForInlineAsmConstraint(
15625 const TargetRegisterInfo
*TRI
, StringRef Constraint
, MVT VT
) const {
15626 switch (Constraint
.size()) {
15628 // GCC ARM Constraint Letters
15629 switch (Constraint
[0]) {
15630 case 'l': // Low regs or general regs.
15631 if (Subtarget
->isThumb())
15632 return RCPair(0U, &ARM::tGPRRegClass
);
15633 return RCPair(0U, &ARM::GPRRegClass
);
15634 case 'h': // High regs or no regs.
15635 if (Subtarget
->isThumb())
15636 return RCPair(0U, &ARM::hGPRRegClass
);
15639 if (Subtarget
->isThumb1Only())
15640 return RCPair(0U, &ARM::tGPRRegClass
);
15641 return RCPair(0U, &ARM::GPRRegClass
);
15643 if (VT
== MVT::Other
)
15645 if (VT
== MVT::f32
)
15646 return RCPair(0U, &ARM::SPRRegClass
);
15647 if (VT
.getSizeInBits() == 64)
15648 return RCPair(0U, &ARM::DPRRegClass
);
15649 if (VT
.getSizeInBits() == 128)
15650 return RCPair(0U, &ARM::QPRRegClass
);
15653 if (VT
== MVT::Other
)
15655 if (VT
== MVT::f32
)
15656 return RCPair(0U, &ARM::SPR_8RegClass
);
15657 if (VT
.getSizeInBits() == 64)
15658 return RCPair(0U, &ARM::DPR_8RegClass
);
15659 if (VT
.getSizeInBits() == 128)
15660 return RCPair(0U, &ARM::QPR_8RegClass
);
15663 if (VT
== MVT::Other
)
15665 if (VT
== MVT::f32
|| VT
== MVT::i32
)
15666 return RCPair(0U, &ARM::SPRRegClass
);
15667 if (VT
.getSizeInBits() == 64)
15668 return RCPair(0U, &ARM::DPR_VFP2RegClass
);
15669 if (VT
.getSizeInBits() == 128)
15670 return RCPair(0U, &ARM::QPR_VFP2RegClass
);
15676 if (Constraint
[0] == 'T') {
15677 switch (Constraint
[1]) {
15681 return RCPair(0U, &ARM::tGPREvenRegClass
);
15683 return RCPair(0U, &ARM::tGPROddRegClass
);
15692 if (StringRef("{cc}").equals_lower(Constraint
))
15693 return std::make_pair(unsigned(ARM::CPSR
), &ARM::CCRRegClass
);
15695 return TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
15698 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15699 /// vector. If it is invalid, don't add anything to Ops.
15700 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
15701 std::string
&Constraint
,
15702 std::vector
<SDValue
>&Ops
,
15703 SelectionDAG
&DAG
) const {
15706 // Currently only support length 1 constraints.
15707 if (Constraint
.length() != 1) return;
15709 char ConstraintLetter
= Constraint
[0];
15710 switch (ConstraintLetter
) {
15713 case 'I': case 'J': case 'K': case 'L':
15714 case 'M': case 'N': case 'O':
15715 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
15719 int64_t CVal64
= C
->getSExtValue();
15720 int CVal
= (int) CVal64
;
15721 // None of these constraints allow values larger than 32 bits. Check
15722 // that the value fits in an int.
15723 if (CVal
!= CVal64
)
15726 switch (ConstraintLetter
) {
15728 // Constant suitable for movw, must be between 0 and
15730 if (Subtarget
->hasV6T2Ops() || (Subtarget
->hasV8MBaselineOps()))
15731 if (CVal
>= 0 && CVal
<= 65535)
15735 if (Subtarget
->isThumb1Only()) {
15736 // This must be a constant between 0 and 255, for ADD
15738 if (CVal
>= 0 && CVal
<= 255)
15740 } else if (Subtarget
->isThumb2()) {
15741 // A constant that can be used as an immediate value in a
15742 // data-processing instruction.
15743 if (ARM_AM::getT2SOImmVal(CVal
) != -1)
15746 // A constant that can be used as an immediate value in a
15747 // data-processing instruction.
15748 if (ARM_AM::getSOImmVal(CVal
) != -1)
15754 if (Subtarget
->isThumb1Only()) {
15755 // This must be a constant between -255 and -1, for negated ADD
15756 // immediates. This can be used in GCC with an "n" modifier that
15757 // prints the negated value, for use with SUB instructions. It is
15758 // not useful otherwise but is implemented for compatibility.
15759 if (CVal
>= -255 && CVal
<= -1)
15762 // This must be a constant between -4095 and 4095. It is not clear
15763 // what this constraint is intended for. Implemented for
15764 // compatibility with GCC.
15765 if (CVal
>= -4095 && CVal
<= 4095)
15771 if (Subtarget
->isThumb1Only()) {
15772 // A 32-bit value where only one byte has a nonzero value. Exclude
15773 // zero to match GCC. This constraint is used by GCC internally for
15774 // constants that can be loaded with a move/shift combination.
15775 // It is not useful otherwise but is implemented for compatibility.
15776 if (CVal
!= 0 && ARM_AM::isThumbImmShiftedVal(CVal
))
15778 } else if (Subtarget
->isThumb2()) {
15779 // A constant whose bitwise inverse can be used as an immediate
15780 // value in a data-processing instruction. This can be used in GCC
15781 // with a "B" modifier that prints the inverted value, for use with
15782 // BIC and MVN instructions. It is not useful otherwise but is
15783 // implemented for compatibility.
15784 if (ARM_AM::getT2SOImmVal(~CVal
) != -1)
15787 // A constant whose bitwise inverse can be used as an immediate
15788 // value in a data-processing instruction. This can be used in GCC
15789 // with a "B" modifier that prints the inverted value, for use with
15790 // BIC and MVN instructions. It is not useful otherwise but is
15791 // implemented for compatibility.
15792 if (ARM_AM::getSOImmVal(~CVal
) != -1)
15798 if (Subtarget
->isThumb1Only()) {
15799 // This must be a constant between -7 and 7,
15800 // for 3-operand ADD/SUB immediate instructions.
15801 if (CVal
>= -7 && CVal
< 7)
15803 } else if (Subtarget
->isThumb2()) {
15804 // A constant whose negation can be used as an immediate value in a
15805 // data-processing instruction. This can be used in GCC with an "n"
15806 // modifier that prints the negated value, for use with SUB
15807 // instructions. It is not useful otherwise but is implemented for
15809 if (ARM_AM::getT2SOImmVal(-CVal
) != -1)
15812 // A constant whose negation can be used as an immediate value in a
15813 // data-processing instruction. This can be used in GCC with an "n"
15814 // modifier that prints the negated value, for use with SUB
15815 // instructions. It is not useful otherwise but is implemented for
15817 if (ARM_AM::getSOImmVal(-CVal
) != -1)
15823 if (Subtarget
->isThumb1Only()) {
15824 // This must be a multiple of 4 between 0 and 1020, for
15825 // ADD sp + immediate.
15826 if ((CVal
>= 0 && CVal
<= 1020) && ((CVal
& 3) == 0))
15829 // A power of two or a constant between 0 and 32. This is used in
15830 // GCC for the shift amount on shifted register operands, but it is
15831 // useful in general for any shift amounts.
15832 if ((CVal
>= 0 && CVal
<= 32) || ((CVal
& (CVal
- 1)) == 0))
15838 if (Subtarget
->isThumb1Only()) {
15839 // This must be a constant between 0 and 31, for shift amounts.
15840 if (CVal
>= 0 && CVal
<= 31)
15846 if (Subtarget
->isThumb1Only()) {
15847 // This must be a multiple of 4 between -508 and 508, for
15848 // ADD/SUB sp = sp + immediate.
15849 if ((CVal
>= -508 && CVal
<= 508) && ((CVal
& 3) == 0))
15854 Result
= DAG
.getTargetConstant(CVal
, SDLoc(Op
), Op
.getValueType());
15858 if (Result
.getNode()) {
15859 Ops
.push_back(Result
);
15862 return TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
15865 static RTLIB::Libcall
getDivRemLibcall(
15866 const SDNode
*N
, MVT::SimpleValueType SVT
) {
15867 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
15868 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
15869 "Unhandled Opcode in getDivRemLibcall");
15870 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
15871 N
->getOpcode() == ISD::SREM
;
15874 default: llvm_unreachable("Unexpected request for libcall!");
15875 case MVT::i8
: LC
= isSigned
? RTLIB::SDIVREM_I8
: RTLIB::UDIVREM_I8
; break;
15876 case MVT::i16
: LC
= isSigned
? RTLIB::SDIVREM_I16
: RTLIB::UDIVREM_I16
; break;
15877 case MVT::i32
: LC
= isSigned
? RTLIB::SDIVREM_I32
: RTLIB::UDIVREM_I32
; break;
15878 case MVT::i64
: LC
= isSigned
? RTLIB::SDIVREM_I64
: RTLIB::UDIVREM_I64
; break;
15883 static TargetLowering::ArgListTy
getDivRemArgList(
15884 const SDNode
*N
, LLVMContext
*Context
, const ARMSubtarget
*Subtarget
) {
15885 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
15886 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
15887 "Unhandled Opcode in getDivRemArgList");
15888 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
15889 N
->getOpcode() == ISD::SREM
;
15890 TargetLowering::ArgListTy Args
;
15891 TargetLowering::ArgListEntry Entry
;
15892 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
15893 EVT ArgVT
= N
->getOperand(i
).getValueType();
15894 Type
*ArgTy
= ArgVT
.getTypeForEVT(*Context
);
15895 Entry
.Node
= N
->getOperand(i
);
15897 Entry
.IsSExt
= isSigned
;
15898 Entry
.IsZExt
= !isSigned
;
15899 Args
.push_back(Entry
);
15901 if (Subtarget
->isTargetWindows() && Args
.size() >= 2)
15902 std::swap(Args
[0], Args
[1]);
15906 SDValue
ARMTargetLowering::LowerDivRem(SDValue Op
, SelectionDAG
&DAG
) const {
15907 assert((Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
15908 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
15909 Subtarget
->isTargetWindows()) &&
15910 "Register-based DivRem lowering only");
15911 unsigned Opcode
= Op
->getOpcode();
15912 assert((Opcode
== ISD::SDIVREM
|| Opcode
== ISD::UDIVREM
) &&
15913 "Invalid opcode for Div/Rem lowering");
15914 bool isSigned
= (Opcode
== ISD::SDIVREM
);
15915 EVT VT
= Op
->getValueType(0);
15916 Type
*Ty
= VT
.getTypeForEVT(*DAG
.getContext());
15919 // If the target has hardware divide, use divide + multiply + subtract:
15921 // rem = a - b * div
15922 // return {div, rem}
15923 // This should be lowered into UDIV/SDIV + MLS later on.
15924 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
15925 : Subtarget
->hasDivideInARMMode();
15926 if (hasDivide
&& Op
->getValueType(0).isSimple() &&
15927 Op
->getSimpleValueType(0) == MVT::i32
) {
15928 unsigned DivOpcode
= isSigned
? ISD::SDIV
: ISD::UDIV
;
15929 const SDValue Dividend
= Op
->getOperand(0);
15930 const SDValue Divisor
= Op
->getOperand(1);
15931 SDValue Div
= DAG
.getNode(DivOpcode
, dl
, VT
, Dividend
, Divisor
);
15932 SDValue Mul
= DAG
.getNode(ISD::MUL
, dl
, VT
, Div
, Divisor
);
15933 SDValue Rem
= DAG
.getNode(ISD::SUB
, dl
, VT
, Dividend
, Mul
);
15935 SDValue Values
[2] = {Div
, Rem
};
15936 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, DAG
.getVTList(VT
, VT
), Values
);
15939 RTLIB::Libcall LC
= getDivRemLibcall(Op
.getNode(),
15940 VT
.getSimpleVT().SimpleTy
);
15941 SDValue InChain
= DAG
.getEntryNode();
15943 TargetLowering::ArgListTy Args
= getDivRemArgList(Op
.getNode(),
15947 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
15948 getPointerTy(DAG
.getDataLayout()));
15950 Type
*RetTy
= StructType::get(Ty
, Ty
);
15952 if (Subtarget
->isTargetWindows())
15953 InChain
= WinDBZCheckDenominator(DAG
, Op
.getNode(), InChain
);
15955 TargetLowering::CallLoweringInfo
CLI(DAG
);
15956 CLI
.setDebugLoc(dl
).setChain(InChain
)
15957 .setCallee(getLibcallCallingConv(LC
), RetTy
, Callee
, std::move(Args
))
15958 .setInRegister().setSExtResult(isSigned
).setZExtResult(!isSigned
);
15960 std::pair
<SDValue
, SDValue
> CallInfo
= LowerCallTo(CLI
);
15961 return CallInfo
.first
;
15964 // Lowers REM using divmod helpers
15965 // see RTABI section 4.2/4.3
15966 SDValue
ARMTargetLowering::LowerREM(SDNode
*N
, SelectionDAG
&DAG
) const {
15967 // Build return types (div and rem)
15968 std::vector
<Type
*> RetTyParams
;
15969 Type
*RetTyElement
;
15971 switch (N
->getValueType(0).getSimpleVT().SimpleTy
) {
15972 default: llvm_unreachable("Unexpected request for libcall!");
15973 case MVT::i8
: RetTyElement
= Type::getInt8Ty(*DAG
.getContext()); break;
15974 case MVT::i16
: RetTyElement
= Type::getInt16Ty(*DAG
.getContext()); break;
15975 case MVT::i32
: RetTyElement
= Type::getInt32Ty(*DAG
.getContext()); break;
15976 case MVT::i64
: RetTyElement
= Type::getInt64Ty(*DAG
.getContext()); break;
15979 RetTyParams
.push_back(RetTyElement
);
15980 RetTyParams
.push_back(RetTyElement
);
15981 ArrayRef
<Type
*> ret
= ArrayRef
<Type
*>(RetTyParams
);
15982 Type
*RetTy
= StructType::get(*DAG
.getContext(), ret
);
15984 RTLIB::Libcall LC
= getDivRemLibcall(N
, N
->getValueType(0).getSimpleVT().
15986 SDValue InChain
= DAG
.getEntryNode();
15987 TargetLowering::ArgListTy Args
= getDivRemArgList(N
, DAG
.getContext(),
15989 bool isSigned
= N
->getOpcode() == ISD::SREM
;
15990 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
15991 getPointerTy(DAG
.getDataLayout()));
15993 if (Subtarget
->isTargetWindows())
15994 InChain
= WinDBZCheckDenominator(DAG
, N
, InChain
);
15997 CallLoweringInfo
CLI(DAG
);
15998 CLI
.setChain(InChain
)
15999 .setCallee(CallingConv::ARM_AAPCS
, RetTy
, Callee
, std::move(Args
))
16000 .setSExtResult(isSigned
).setZExtResult(!isSigned
).setDebugLoc(SDLoc(N
));
16001 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
16003 // Return second (rem) result operand (first contains div)
16004 SDNode
*ResNode
= CallResult
.first
.getNode();
16005 assert(ResNode
->getNumOperands() == 2 && "divmod should return two operands");
16006 return ResNode
->getOperand(1);
16010 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const {
16011 assert(Subtarget
->isTargetWindows() && "unsupported target platform");
16015 SDValue Chain
= Op
.getOperand(0);
16016 SDValue Size
= Op
.getOperand(1);
16018 if (DAG
.getMachineFunction().getFunction().hasFnAttribute(
16019 "no-stack-arg-probe")) {
16020 unsigned Align
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
16021 SDValue SP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
16022 Chain
= SP
.getValue(1);
16023 SP
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
, SP
, Size
);
16025 SP
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, SP
.getValue(0),
16026 DAG
.getConstant(-(uint64_t)Align
, DL
, MVT::i32
));
16027 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::SP
, SP
);
16028 SDValue Ops
[2] = { SP
, Chain
};
16029 return DAG
.getMergeValues(Ops
, DL
);
16032 SDValue Words
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Size
,
16033 DAG
.getConstant(2, DL
, MVT::i32
));
16036 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R4
, Words
, Flag
);
16037 Flag
= Chain
.getValue(1);
16039 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
16040 Chain
= DAG
.getNode(ARMISD::WIN__CHKSTK
, DL
, NodeTys
, Chain
, Flag
);
16042 SDValue NewSP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
16043 Chain
= NewSP
.getValue(1);
16045 SDValue Ops
[2] = { NewSP
, Chain
};
16046 return DAG
.getMergeValues(Ops
, DL
);
16049 SDValue
ARMTargetLowering::LowerFP_EXTEND(SDValue Op
, SelectionDAG
&DAG
) const {
16050 SDValue SrcVal
= Op
.getOperand(0);
16051 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
16052 const unsigned SrcSz
= SrcVal
.getValueType().getSizeInBits();
16053 assert(DstSz
> SrcSz
&& DstSz
<= 64 && SrcSz
>= 16 &&
16054 "Unexpected type for custom-lowering FP_EXTEND");
16056 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
16057 "With both FP DP and 16, any FP conversion is legal!");
16059 assert(!(DstSz
== 32 && Subtarget
->hasFP16()) &&
16060 "With FP16, 16 to 32 conversion is legal!");
16062 // Either we are converting from 16 -> 64, without FP16 and/or
16063 // FP.double-precision or without Armv8-fp. So we must do it in two
16065 // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
16066 // without FP16. So we must do a function call.
16069 MakeLibCallOptions CallOptions
;
16071 // Instruction from 16 -> 32
16072 if (Subtarget
->hasFP16())
16073 SrcVal
= DAG
.getNode(ISD::FP_EXTEND
, Loc
, MVT::f32
, SrcVal
);
16074 // Lib call from 16 -> 32
16076 LC
= RTLIB::getFPEXT(MVT::f16
, MVT::f32
);
16077 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
16078 "Unexpected type for custom-lowering FP_EXTEND");
16080 makeLibCall(DAG
, LC
, MVT::f32
, SrcVal
, CallOptions
, Loc
).first
;
16086 // For sure now SrcVal is 32 bits
16087 if (Subtarget
->hasFP64()) // Instruction from 32 -> 64
16088 return DAG
.getNode(ISD::FP_EXTEND
, Loc
, MVT::f64
, SrcVal
);
16090 LC
= RTLIB::getFPEXT(MVT::f32
, MVT::f64
);
16091 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
16092 "Unexpected type for custom-lowering FP_EXTEND");
16093 return makeLibCall(DAG
, LC
, MVT::f64
, SrcVal
, CallOptions
, Loc
).first
;
16096 SDValue
ARMTargetLowering::LowerFP_ROUND(SDValue Op
, SelectionDAG
&DAG
) const {
16097 SDValue SrcVal
= Op
.getOperand(0);
16098 EVT SrcVT
= SrcVal
.getValueType();
16099 EVT DstVT
= Op
.getValueType();
16100 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
16101 const unsigned SrcSz
= SrcVT
.getSizeInBits();
16103 assert(DstSz
< SrcSz
&& SrcSz
<= 64 && DstSz
>= 16 &&
16104 "Unexpected type for custom-lowering FP_ROUND");
16106 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
16107 "With both FP DP and 16, any FP conversion is legal!");
16111 // Instruction from 32 -> 16 if hasFP16 is valid
16112 if (SrcSz
== 32 && Subtarget
->hasFP16())
16115 // Lib call from 32 -> 16 / 64 -> [32, 16]
16116 RTLIB::Libcall LC
= RTLIB::getFPROUND(SrcVT
, DstVT
);
16117 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
16118 "Unexpected type for custom-lowering FP_ROUND");
16119 MakeLibCallOptions CallOptions
;
16120 return makeLibCall(DAG
, LC
, DstVT
, SrcVal
, CallOptions
, Loc
).first
;
16123 void ARMTargetLowering::lowerABS(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
16124 SelectionDAG
&DAG
) const {
16125 assert(N
->getValueType(0) == MVT::i64
&& "Unexpected type (!= i64) on ABS.");
16126 MVT HalfT
= MVT::i32
;
16128 SDValue Hi
, Lo
, Tmp
;
16130 if (!isOperationLegalOrCustom(ISD::ADDCARRY
, HalfT
) ||
16131 !isOperationLegalOrCustom(ISD::UADDO
, HalfT
))
16134 unsigned OpTypeBits
= HalfT
.getScalarSizeInBits();
16135 SDVTList VTList
= DAG
.getVTList(HalfT
, MVT::i1
);
16137 Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, HalfT
, N
->getOperand(0),
16138 DAG
.getConstant(0, dl
, HalfT
));
16139 Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, HalfT
, N
->getOperand(0),
16140 DAG
.getConstant(1, dl
, HalfT
));
16142 Tmp
= DAG
.getNode(ISD::SRA
, dl
, HalfT
, Hi
,
16143 DAG
.getConstant(OpTypeBits
- 1, dl
,
16144 getShiftAmountTy(HalfT
, DAG
.getDataLayout())));
16145 Lo
= DAG
.getNode(ISD::UADDO
, dl
, VTList
, Tmp
, Lo
);
16146 Hi
= DAG
.getNode(ISD::ADDCARRY
, dl
, VTList
, Tmp
, Hi
,
16147 SDValue(Lo
.getNode(), 1));
16148 Hi
= DAG
.getNode(ISD::XOR
, dl
, HalfT
, Tmp
, Hi
);
16149 Lo
= DAG
.getNode(ISD::XOR
, dl
, HalfT
, Tmp
, Lo
);
16151 Results
.push_back(Lo
);
16152 Results
.push_back(Hi
);
16156 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
16157 // The ARM target isn't yet aware of offsets.
16161 bool ARM::isBitFieldInvertedMask(unsigned v
) {
16162 if (v
== 0xffffffff)
16165 // there can be 1's on either or both "outsides", all the "inside"
16166 // bits must be 0's
16167 return isShiftedMask_32(~v
);
16170 /// isFPImmLegal - Returns true if the target can instruction select the
16171 /// specified FP immediate natively. If false, the legalizer will
16172 /// materialize the FP immediate as a load from a constant pool.
16173 bool ARMTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
16174 bool ForCodeSize
) const {
16175 if (!Subtarget
->hasVFP3Base())
16177 if (VT
== MVT::f16
&& Subtarget
->hasFullFP16())
16178 return ARM_AM::getFP16Imm(Imm
) != -1;
16179 if (VT
== MVT::f32
)
16180 return ARM_AM::getFP32Imm(Imm
) != -1;
16181 if (VT
== MVT::f64
&& Subtarget
->hasFP64())
16182 return ARM_AM::getFP64Imm(Imm
) != -1;
16186 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
16187 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
16188 /// specified in the intrinsic calls.
16189 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo
&Info
,
16191 MachineFunction
&MF
,
16192 unsigned Intrinsic
) const {
16193 switch (Intrinsic
) {
16194 case Intrinsic::arm_neon_vld1
:
16195 case Intrinsic::arm_neon_vld2
:
16196 case Intrinsic::arm_neon_vld3
:
16197 case Intrinsic::arm_neon_vld4
:
16198 case Intrinsic::arm_neon_vld2lane
:
16199 case Intrinsic::arm_neon_vld3lane
:
16200 case Intrinsic::arm_neon_vld4lane
:
16201 case Intrinsic::arm_neon_vld2dup
:
16202 case Intrinsic::arm_neon_vld3dup
:
16203 case Intrinsic::arm_neon_vld4dup
: {
16204 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16205 // Conservatively set memVT to the entire set of vectors loaded.
16206 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
16207 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
16208 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
16209 Info
.ptrVal
= I
.getArgOperand(0);
16211 Value
*AlignArg
= I
.getArgOperand(I
.getNumArgOperands() - 1);
16212 Info
.align
= MaybeAlign(cast
<ConstantInt
>(AlignArg
)->getZExtValue());
16213 // volatile loads with NEON intrinsics not supported
16214 Info
.flags
= MachineMemOperand::MOLoad
;
16217 case Intrinsic::arm_neon_vld1x2
:
16218 case Intrinsic::arm_neon_vld1x3
:
16219 case Intrinsic::arm_neon_vld1x4
: {
16220 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16221 // Conservatively set memVT to the entire set of vectors loaded.
16222 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
16223 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
16224 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
16225 Info
.ptrVal
= I
.getArgOperand(I
.getNumArgOperands() - 1);
16227 Info
.align
.reset();
16228 // volatile loads with NEON intrinsics not supported
16229 Info
.flags
= MachineMemOperand::MOLoad
;
16232 case Intrinsic::arm_neon_vst1
:
16233 case Intrinsic::arm_neon_vst2
:
16234 case Intrinsic::arm_neon_vst3
:
16235 case Intrinsic::arm_neon_vst4
:
16236 case Intrinsic::arm_neon_vst2lane
:
16237 case Intrinsic::arm_neon_vst3lane
:
16238 case Intrinsic::arm_neon_vst4lane
: {
16239 Info
.opc
= ISD::INTRINSIC_VOID
;
16240 // Conservatively set memVT to the entire set of vectors stored.
16241 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
16242 unsigned NumElts
= 0;
16243 for (unsigned ArgI
= 1, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
16244 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
16245 if (!ArgTy
->isVectorTy())
16247 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
16249 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
16250 Info
.ptrVal
= I
.getArgOperand(0);
16252 Value
*AlignArg
= I
.getArgOperand(I
.getNumArgOperands() - 1);
16253 Info
.align
= MaybeAlign(cast
<ConstantInt
>(AlignArg
)->getZExtValue());
16254 // volatile stores with NEON intrinsics not supported
16255 Info
.flags
= MachineMemOperand::MOStore
;
16258 case Intrinsic::arm_neon_vst1x2
:
16259 case Intrinsic::arm_neon_vst1x3
:
16260 case Intrinsic::arm_neon_vst1x4
: {
16261 Info
.opc
= ISD::INTRINSIC_VOID
;
16262 // Conservatively set memVT to the entire set of vectors stored.
16263 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
16264 unsigned NumElts
= 0;
16265 for (unsigned ArgI
= 1, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
16266 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
16267 if (!ArgTy
->isVectorTy())
16269 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
16271 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
16272 Info
.ptrVal
= I
.getArgOperand(0);
16274 Info
.align
.reset();
16275 // volatile stores with NEON intrinsics not supported
16276 Info
.flags
= MachineMemOperand::MOStore
;
16279 case Intrinsic::arm_ldaex
:
16280 case Intrinsic::arm_ldrex
: {
16281 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
16282 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(0)->getType());
16283 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16284 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
16285 Info
.ptrVal
= I
.getArgOperand(0);
16287 Info
.align
= MaybeAlign(DL
.getABITypeAlignment(PtrTy
->getElementType()));
16288 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
16291 case Intrinsic::arm_stlex
:
16292 case Intrinsic::arm_strex
: {
16293 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
16294 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(1)->getType());
16295 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16296 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
16297 Info
.ptrVal
= I
.getArgOperand(1);
16299 Info
.align
= MaybeAlign(DL
.getABITypeAlignment(PtrTy
->getElementType()));
16300 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
16303 case Intrinsic::arm_stlexd
:
16304 case Intrinsic::arm_strexd
:
16305 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16306 Info
.memVT
= MVT::i64
;
16307 Info
.ptrVal
= I
.getArgOperand(2);
16309 Info
.align
= Align(8);
16310 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
16313 case Intrinsic::arm_ldaexd
:
16314 case Intrinsic::arm_ldrexd
:
16315 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
16316 Info
.memVT
= MVT::i64
;
16317 Info
.ptrVal
= I
.getArgOperand(0);
16319 Info
.align
= Align(8);
16320 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
16330 /// Returns true if it is beneficial to convert a load of a constant
16331 /// to just the constant itself.
16332 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
16334 assert(Ty
->isIntegerTy());
16336 unsigned Bits
= Ty
->getPrimitiveSizeInBits();
16337 if (Bits
== 0 || Bits
> 32)
16342 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT
, EVT SrcVT
,
16343 unsigned Index
) const {
16344 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, ResVT
))
16347 return (Index
== 0 || Index
== ResVT
.getVectorNumElements());
16350 Instruction
* ARMTargetLowering::makeDMB(IRBuilder
<> &Builder
,
16351 ARM_MB::MemBOpt Domain
) const {
16352 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16354 // First, if the target has no DMB, see what fallback we can use.
16355 if (!Subtarget
->hasDataBarrier()) {
16356 // Some ARMv6 cpus can support data barriers with an mcr instruction.
16357 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
16359 if (Subtarget
->hasV6Ops() && !Subtarget
->isThumb()) {
16360 Function
*MCR
= Intrinsic::getDeclaration(M
, Intrinsic::arm_mcr
);
16361 Value
* args
[6] = {Builder
.getInt32(15), Builder
.getInt32(0),
16362 Builder
.getInt32(0), Builder
.getInt32(7),
16363 Builder
.getInt32(10), Builder
.getInt32(5)};
16364 return Builder
.CreateCall(MCR
, args
);
16366 // Instead of using barriers, atomic accesses on these subtargets use
16368 llvm_unreachable("makeDMB on a target so old that it has no barriers");
16371 Function
*DMB
= Intrinsic::getDeclaration(M
, Intrinsic::arm_dmb
);
16372 // Only a full system barrier exists in the M-class architectures.
16373 Domain
= Subtarget
->isMClass() ? ARM_MB::SY
: Domain
;
16374 Constant
*CDomain
= Builder
.getInt32(Domain
);
16375 return Builder
.CreateCall(DMB
, CDomain
);
16379 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
16380 Instruction
*ARMTargetLowering::emitLeadingFence(IRBuilder
<> &Builder
,
16382 AtomicOrdering Ord
) const {
16384 case AtomicOrdering::NotAtomic
:
16385 case AtomicOrdering::Unordered
:
16386 llvm_unreachable("Invalid fence: unordered/non-atomic");
16387 case AtomicOrdering::Monotonic
:
16388 case AtomicOrdering::Acquire
:
16389 return nullptr; // Nothing to do
16390 case AtomicOrdering::SequentiallyConsistent
:
16391 if (!Inst
->hasAtomicStore())
16392 return nullptr; // Nothing to do
16394 case AtomicOrdering::Release
:
16395 case AtomicOrdering::AcquireRelease
:
16396 if (Subtarget
->preferISHSTBarriers())
16397 return makeDMB(Builder
, ARM_MB::ISHST
);
16398 // FIXME: add a comment with a link to documentation justifying this.
16400 return makeDMB(Builder
, ARM_MB::ISH
);
16402 llvm_unreachable("Unknown fence ordering in emitLeadingFence");
16405 Instruction
*ARMTargetLowering::emitTrailingFence(IRBuilder
<> &Builder
,
16407 AtomicOrdering Ord
) const {
16409 case AtomicOrdering::NotAtomic
:
16410 case AtomicOrdering::Unordered
:
16411 llvm_unreachable("Invalid fence: unordered/not-atomic");
16412 case AtomicOrdering::Monotonic
:
16413 case AtomicOrdering::Release
:
16414 return nullptr; // Nothing to do
16415 case AtomicOrdering::Acquire
:
16416 case AtomicOrdering::AcquireRelease
:
16417 case AtomicOrdering::SequentiallyConsistent
:
16418 return makeDMB(Builder
, ARM_MB::ISH
);
16420 llvm_unreachable("Unknown fence ordering in emitTrailingFence");
16423 // Loads and stores less than 64-bits are already atomic; ones above that
16424 // are doomed anyway, so defer to the default libcall and blame the OS when
16425 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
16426 // anything for those.
16427 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst
*SI
) const {
16428 unsigned Size
= SI
->getValueOperand()->getType()->getPrimitiveSizeInBits();
16429 return (Size
== 64) && !Subtarget
->isMClass();
16432 // Loads and stores less than 64-bits are already atomic; ones above that
16433 // are doomed anyway, so defer to the default libcall and blame the OS when
16434 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
16435 // anything for those.
16436 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
16437 // guarantee, see DDI0406C ARM architecture reference manual,
16438 // sections A8.8.72-74 LDRD)
16439 TargetLowering::AtomicExpansionKind
16440 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst
*LI
) const {
16441 unsigned Size
= LI
->getType()->getPrimitiveSizeInBits();
16442 return ((Size
== 64) && !Subtarget
->isMClass()) ? AtomicExpansionKind::LLOnly
16443 : AtomicExpansionKind::None
;
16446 // For the real atomic operations, we have ldrex/strex up to 32 bits,
16447 // and up to 64 bits on the non-M profiles
16448 TargetLowering::AtomicExpansionKind
16449 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst
*AI
) const {
16450 if (AI
->isFloatingPointOperation())
16451 return AtomicExpansionKind::CmpXChg
;
16453 unsigned Size
= AI
->getType()->getPrimitiveSizeInBits();
16454 bool hasAtomicRMW
= !Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps();
16455 return (Size
<= (Subtarget
->isMClass() ? 32U : 64U) && hasAtomicRMW
)
16456 ? AtomicExpansionKind::LLSC
16457 : AtomicExpansionKind::None
;
16460 TargetLowering::AtomicExpansionKind
16461 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst
*AI
) const {
16462 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
16463 // implement cmpxchg without spilling. If the address being exchanged is also
16464 // on the stack and close enough to the spill slot, this can lead to a
16465 // situation where the monitor always gets cleared and the atomic operation
16466 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
16467 bool HasAtomicCmpXchg
=
16468 !Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps();
16469 if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg
)
16470 return AtomicExpansionKind::LLSC
;
16471 return AtomicExpansionKind::None
;
16474 bool ARMTargetLowering::shouldInsertFencesForAtomic(
16475 const Instruction
*I
) const {
16476 return InsertFencesForAtomic
;
16479 // This has so far only been implemented for MachO.
16480 bool ARMTargetLowering::useLoadStackGuardNode() const {
16481 return Subtarget
->isTargetMachO();
16484 void ARMTargetLowering::insertSSPDeclarations(Module
&M
) const {
16485 if (!Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
16486 return TargetLowering::insertSSPDeclarations(M
);
16488 // MSVC CRT has a global variable holding security cookie.
16489 M
.getOrInsertGlobal("__security_cookie",
16490 Type::getInt8PtrTy(M
.getContext()));
16492 // MSVC CRT has a function to validate security cookie.
16493 FunctionCallee SecurityCheckCookie
= M
.getOrInsertFunction(
16494 "__security_check_cookie", Type::getVoidTy(M
.getContext()),
16495 Type::getInt8PtrTy(M
.getContext()));
16496 if (Function
*F
= dyn_cast
<Function
>(SecurityCheckCookie
.getCallee()))
16497 F
->addAttribute(1, Attribute::AttrKind::InReg
);
16500 Value
*ARMTargetLowering::getSDagStackGuard(const Module
&M
) const {
16501 // MSVC CRT has a global variable holding security cookie.
16502 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
16503 return M
.getGlobalVariable("__security_cookie");
16504 return TargetLowering::getSDagStackGuard(M
);
16507 Function
*ARMTargetLowering::getSSPStackGuardCheck(const Module
&M
) const {
16508 // MSVC CRT has a function to validate security cookie.
16509 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
16510 return M
.getFunction("__security_check_cookie");
16511 return TargetLowering::getSSPStackGuardCheck(M
);
16514 bool ARMTargetLowering::canCombineStoreAndExtract(Type
*VectorTy
, Value
*Idx
,
16515 unsigned &Cost
) const {
16516 // If we do not have NEON, vector types are not natively supported.
16517 if (!Subtarget
->hasNEON())
16520 // Floating point values and vector values map to the same register file.
16521 // Therefore, although we could do a store extract of a vector type, this is
16522 // better to leave at float as we have more freedom in the addressing mode for
16524 if (VectorTy
->isFPOrFPVectorTy())
16527 // If the index is unknown at compile time, this is very expensive to lower
16528 // and it is not possible to combine the store with the extract.
16529 if (!isa
<ConstantInt
>(Idx
))
16532 assert(VectorTy
->isVectorTy() && "VectorTy is not a vector type");
16533 unsigned BitWidth
= cast
<VectorType
>(VectorTy
)->getBitWidth();
16534 // We can do a store + vector extract on any vector that fits perfectly in a D
16536 if (BitWidth
== 64 || BitWidth
== 128) {
16543 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
16544 return Subtarget
->hasV6T2Ops();
16547 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
16548 return Subtarget
->hasV6T2Ops();
16551 bool ARMTargetLowering::shouldExpandShift(SelectionDAG
&DAG
, SDNode
*N
) const {
16552 return !Subtarget
->hasMinSize();
16555 Value
*ARMTargetLowering::emitLoadLinked(IRBuilder
<> &Builder
, Value
*Addr
,
16556 AtomicOrdering Ord
) const {
16557 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16558 Type
*ValTy
= cast
<PointerType
>(Addr
->getType())->getElementType();
16559 bool IsAcquire
= isAcquireOrStronger(Ord
);
16561 // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
16562 // intrinsic must return {i32, i32} and we have to recombine them into a
16563 // single i64 here.
16564 if (ValTy
->getPrimitiveSizeInBits() == 64) {
16565 Intrinsic::ID Int
=
16566 IsAcquire
? Intrinsic::arm_ldaexd
: Intrinsic::arm_ldrexd
;
16567 Function
*Ldrex
= Intrinsic::getDeclaration(M
, Int
);
16569 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
16570 Value
*LoHi
= Builder
.CreateCall(Ldrex
, Addr
, "lohi");
16572 Value
*Lo
= Builder
.CreateExtractValue(LoHi
, 0, "lo");
16573 Value
*Hi
= Builder
.CreateExtractValue(LoHi
, 1, "hi");
16574 if (!Subtarget
->isLittle())
16575 std::swap (Lo
, Hi
);
16576 Lo
= Builder
.CreateZExt(Lo
, ValTy
, "lo64");
16577 Hi
= Builder
.CreateZExt(Hi
, ValTy
, "hi64");
16578 return Builder
.CreateOr(
16579 Lo
, Builder
.CreateShl(Hi
, ConstantInt::get(ValTy
, 32)), "val64");
16582 Type
*Tys
[] = { Addr
->getType() };
16583 Intrinsic::ID Int
= IsAcquire
? Intrinsic::arm_ldaex
: Intrinsic::arm_ldrex
;
16584 Function
*Ldrex
= Intrinsic::getDeclaration(M
, Int
, Tys
);
16586 return Builder
.CreateTruncOrBitCast(
16587 Builder
.CreateCall(Ldrex
, Addr
),
16588 cast
<PointerType
>(Addr
->getType())->getElementType());
16591 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
16592 IRBuilder
<> &Builder
) const {
16593 if (!Subtarget
->hasV7Ops())
16595 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16596 Builder
.CreateCall(Intrinsic::getDeclaration(M
, Intrinsic::arm_clrex
));
16599 Value
*ARMTargetLowering::emitStoreConditional(IRBuilder
<> &Builder
, Value
*Val
,
16601 AtomicOrdering Ord
) const {
16602 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16603 bool IsRelease
= isReleaseOrStronger(Ord
);
16605 // Since the intrinsics must have legal type, the i64 intrinsics take two
16606 // parameters: "i32, i32". We must marshal Val into the appropriate form
16607 // before the call.
16608 if (Val
->getType()->getPrimitiveSizeInBits() == 64) {
16609 Intrinsic::ID Int
=
16610 IsRelease
? Intrinsic::arm_stlexd
: Intrinsic::arm_strexd
;
16611 Function
*Strex
= Intrinsic::getDeclaration(M
, Int
);
16612 Type
*Int32Ty
= Type::getInt32Ty(M
->getContext());
16614 Value
*Lo
= Builder
.CreateTrunc(Val
, Int32Ty
, "lo");
16615 Value
*Hi
= Builder
.CreateTrunc(Builder
.CreateLShr(Val
, 32), Int32Ty
, "hi");
16616 if (!Subtarget
->isLittle())
16618 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
16619 return Builder
.CreateCall(Strex
, {Lo
, Hi
, Addr
});
16622 Intrinsic::ID Int
= IsRelease
? Intrinsic::arm_stlex
: Intrinsic::arm_strex
;
16623 Type
*Tys
[] = { Addr
->getType() };
16624 Function
*Strex
= Intrinsic::getDeclaration(M
, Int
, Tys
);
16626 return Builder
.CreateCall(
16627 Strex
, {Builder
.CreateZExtOrBitCast(
16628 Val
, Strex
->getFunctionType()->getParamType(0)),
16633 bool ARMTargetLowering::alignLoopsWithOptSize() const {
16634 return Subtarget
->isMClass();
16637 /// A helper function for determining the number of interleaved accesses we
16638 /// will generate when lowering accesses of the given type.
16640 ARMTargetLowering::getNumInterleavedAccesses(VectorType
*VecTy
,
16641 const DataLayout
&DL
) const {
16642 return (DL
.getTypeSizeInBits(VecTy
) + 127) / 128;
16645 bool ARMTargetLowering::isLegalInterleavedAccessType(
16646 VectorType
*VecTy
, const DataLayout
&DL
) const {
16648 unsigned VecSize
= DL
.getTypeSizeInBits(VecTy
);
16649 unsigned ElSize
= DL
.getTypeSizeInBits(VecTy
->getElementType());
16651 // Ensure the vector doesn't have f16 elements. Even though we could do an
16652 // i16 vldN, we can't hold the f16 vectors and will end up converting via
16654 if (VecTy
->getElementType()->isHalfTy())
16657 // Ensure the number of vector elements is greater than 1.
16658 if (VecTy
->getNumElements() < 2)
16661 // Ensure the element type is legal.
16662 if (ElSize
!= 8 && ElSize
!= 16 && ElSize
!= 32)
16665 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
16666 // 128 will be split into multiple interleaved accesses.
16667 return VecSize
== 64 || VecSize
% 128 == 0;
16670 unsigned ARMTargetLowering::getMaxSupportedInterleaveFactor() const {
16671 if (Subtarget
->hasNEON())
16673 return TargetLoweringBase::getMaxSupportedInterleaveFactor();
16676 /// Lower an interleaved load into a vldN intrinsic.
16678 /// E.g. Lower an interleaved load (Factor = 2):
16679 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
16680 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
16681 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
16684 /// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
16685 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
16686 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
16687 bool ARMTargetLowering::lowerInterleavedLoad(
16688 LoadInst
*LI
, ArrayRef
<ShuffleVectorInst
*> Shuffles
,
16689 ArrayRef
<unsigned> Indices
, unsigned Factor
) const {
16690 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
16691 "Invalid interleave factor");
16692 assert(!Shuffles
.empty() && "Empty shufflevector input");
16693 assert(Shuffles
.size() == Indices
.size() &&
16694 "Unmatched number of shufflevectors and indices");
16696 VectorType
*VecTy
= Shuffles
[0]->getType();
16697 Type
*EltTy
= VecTy
->getVectorElementType();
16699 const DataLayout
&DL
= LI
->getModule()->getDataLayout();
16701 // Skip if we do not have NEON and skip illegal vector types. We can
16702 // "legalize" wide vector types into multiple interleaved accesses as long as
16703 // the vector types are divisible by 128.
16704 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(VecTy
, DL
))
16707 unsigned NumLoads
= getNumInterleavedAccesses(VecTy
, DL
);
16709 // A pointer vector can not be the return type of the ldN intrinsics. Need to
16710 // load integer vectors first and then convert to pointer vectors.
16711 if (EltTy
->isPointerTy())
16713 VectorType::get(DL
.getIntPtrType(EltTy
), VecTy
->getVectorNumElements());
16715 IRBuilder
<> Builder(LI
);
16717 // The base address of the load.
16718 Value
*BaseAddr
= LI
->getPointerOperand();
16720 if (NumLoads
> 1) {
16721 // If we're going to generate more than one load, reset the sub-vector type
16722 // to something legal.
16723 VecTy
= VectorType::get(VecTy
->getVectorElementType(),
16724 VecTy
->getVectorNumElements() / NumLoads
);
16726 // We will compute the pointer operand of each load from the original base
16727 // address using GEPs. Cast the base address to a pointer to the scalar
16729 BaseAddr
= Builder
.CreateBitCast(
16730 BaseAddr
, VecTy
->getVectorElementType()->getPointerTo(
16731 LI
->getPointerAddressSpace()));
16734 assert(isTypeLegal(EVT::getEVT(VecTy
)) && "Illegal vldN vector type!");
16736 Type
*Int8Ptr
= Builder
.getInt8PtrTy(LI
->getPointerAddressSpace());
16737 Type
*Tys
[] = {VecTy
, Int8Ptr
};
16738 static const Intrinsic::ID LoadInts
[3] = {Intrinsic::arm_neon_vld2
,
16739 Intrinsic::arm_neon_vld3
,
16740 Intrinsic::arm_neon_vld4
};
16741 Function
*VldnFunc
=
16742 Intrinsic::getDeclaration(LI
->getModule(), LoadInts
[Factor
- 2], Tys
);
16744 // Holds sub-vectors extracted from the load intrinsic return values. The
16745 // sub-vectors are associated with the shufflevector instructions they will
16747 DenseMap
<ShuffleVectorInst
*, SmallVector
<Value
*, 4>> SubVecs
;
16749 for (unsigned LoadCount
= 0; LoadCount
< NumLoads
; ++LoadCount
) {
16750 // If we're generating more than one load, compute the base address of
16751 // subsequent loads as an offset from the previous.
16754 Builder
.CreateConstGEP1_32(VecTy
->getVectorElementType(), BaseAddr
,
16755 VecTy
->getVectorNumElements() * Factor
);
16757 SmallVector
<Value
*, 2> Ops
;
16758 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, Int8Ptr
));
16759 Ops
.push_back(Builder
.getInt32(LI
->getAlignment()));
16761 CallInst
*VldN
= Builder
.CreateCall(VldnFunc
, Ops
, "vldN");
16763 // Replace uses of each shufflevector with the corresponding vector loaded
16765 for (unsigned i
= 0; i
< Shuffles
.size(); i
++) {
16766 ShuffleVectorInst
*SV
= Shuffles
[i
];
16767 unsigned Index
= Indices
[i
];
16769 Value
*SubVec
= Builder
.CreateExtractValue(VldN
, Index
);
16771 // Convert the integer vector to pointer vector if the element is pointer.
16772 if (EltTy
->isPointerTy())
16773 SubVec
= Builder
.CreateIntToPtr(
16774 SubVec
, VectorType::get(SV
->getType()->getVectorElementType(),
16775 VecTy
->getVectorNumElements()));
16777 SubVecs
[SV
].push_back(SubVec
);
16781 // Replace uses of the shufflevector instructions with the sub-vectors
16782 // returned by the load intrinsic. If a shufflevector instruction is
16783 // associated with more than one sub-vector, those sub-vectors will be
16784 // concatenated into a single wide vector.
16785 for (ShuffleVectorInst
*SVI
: Shuffles
) {
16786 auto &SubVec
= SubVecs
[SVI
];
16788 SubVec
.size() > 1 ? concatenateVectors(Builder
, SubVec
) : SubVec
[0];
16789 SVI
->replaceAllUsesWith(WideVec
);
16795 /// Lower an interleaved store into a vstN intrinsic.
16797 /// E.g. Lower an interleaved store (Factor = 3):
16798 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
16799 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
16800 /// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
16803 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
16804 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
16805 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
16806 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16808 /// Note that the new shufflevectors will be removed and we'll only generate one
16809 /// vst3 instruction in CodeGen.
16811 /// Example for a more general valid mask (Factor 3). Lower:
16812 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
16813 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
16814 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
16817 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
16818 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
16819 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
16820 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16821 bool ARMTargetLowering::lowerInterleavedStore(StoreInst
*SI
,
16822 ShuffleVectorInst
*SVI
,
16823 unsigned Factor
) const {
16824 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
16825 "Invalid interleave factor");
16827 VectorType
*VecTy
= SVI
->getType();
16828 assert(VecTy
->getVectorNumElements() % Factor
== 0 &&
16829 "Invalid interleaved store");
16831 unsigned LaneLen
= VecTy
->getVectorNumElements() / Factor
;
16832 Type
*EltTy
= VecTy
->getVectorElementType();
16833 VectorType
*SubVecTy
= VectorType::get(EltTy
, LaneLen
);
16835 const DataLayout
&DL
= SI
->getModule()->getDataLayout();
16837 // Skip if we do not have NEON and skip illegal vector types. We can
16838 // "legalize" wide vector types into multiple interleaved accesses as long as
16839 // the vector types are divisible by 128.
16840 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(SubVecTy
, DL
))
16843 unsigned NumStores
= getNumInterleavedAccesses(SubVecTy
, DL
);
16845 Value
*Op0
= SVI
->getOperand(0);
16846 Value
*Op1
= SVI
->getOperand(1);
16847 IRBuilder
<> Builder(SI
);
16849 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
16850 // vectors to integer vectors.
16851 if (EltTy
->isPointerTy()) {
16852 Type
*IntTy
= DL
.getIntPtrType(EltTy
);
16854 // Convert to the corresponding integer vector.
16856 VectorType::get(IntTy
, Op0
->getType()->getVectorNumElements());
16857 Op0
= Builder
.CreatePtrToInt(Op0
, IntVecTy
);
16858 Op1
= Builder
.CreatePtrToInt(Op1
, IntVecTy
);
16860 SubVecTy
= VectorType::get(IntTy
, LaneLen
);
16863 // The base address of the store.
16864 Value
*BaseAddr
= SI
->getPointerOperand();
16866 if (NumStores
> 1) {
16867 // If we're going to generate more than one store, reset the lane length
16868 // and sub-vector type to something legal.
16869 LaneLen
/= NumStores
;
16870 SubVecTy
= VectorType::get(SubVecTy
->getVectorElementType(), LaneLen
);
16872 // We will compute the pointer operand of each store from the original base
16873 // address using GEPs. Cast the base address to a pointer to the scalar
16875 BaseAddr
= Builder
.CreateBitCast(
16876 BaseAddr
, SubVecTy
->getVectorElementType()->getPointerTo(
16877 SI
->getPointerAddressSpace()));
16880 assert(isTypeLegal(EVT::getEVT(SubVecTy
)) && "Illegal vstN vector type!");
16882 auto Mask
= SVI
->getShuffleMask();
16884 Type
*Int8Ptr
= Builder
.getInt8PtrTy(SI
->getPointerAddressSpace());
16885 Type
*Tys
[] = {Int8Ptr
, SubVecTy
};
16886 static const Intrinsic::ID StoreInts
[3] = {Intrinsic::arm_neon_vst2
,
16887 Intrinsic::arm_neon_vst3
,
16888 Intrinsic::arm_neon_vst4
};
16890 for (unsigned StoreCount
= 0; StoreCount
< NumStores
; ++StoreCount
) {
16891 // If we generating more than one store, we compute the base address of
16892 // subsequent stores as an offset from the previous.
16893 if (StoreCount
> 0)
16894 BaseAddr
= Builder
.CreateConstGEP1_32(SubVecTy
->getVectorElementType(),
16895 BaseAddr
, LaneLen
* Factor
);
16897 SmallVector
<Value
*, 6> Ops
;
16898 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, Int8Ptr
));
16900 Function
*VstNFunc
=
16901 Intrinsic::getDeclaration(SI
->getModule(), StoreInts
[Factor
- 2], Tys
);
16903 // Split the shufflevector operands into sub vectors for the new vstN call.
16904 for (unsigned i
= 0; i
< Factor
; i
++) {
16905 unsigned IdxI
= StoreCount
* LaneLen
* Factor
+ i
;
16906 if (Mask
[IdxI
] >= 0) {
16907 Ops
.push_back(Builder
.CreateShuffleVector(
16908 Op0
, Op1
, createSequentialMask(Builder
, Mask
[IdxI
], LaneLen
, 0)));
16910 unsigned StartMask
= 0;
16911 for (unsigned j
= 1; j
< LaneLen
; j
++) {
16912 unsigned IdxJ
= StoreCount
* LaneLen
* Factor
+ j
;
16913 if (Mask
[IdxJ
* Factor
+ IdxI
] >= 0) {
16914 StartMask
= Mask
[IdxJ
* Factor
+ IdxI
] - IdxJ
;
16918 // Note: If all elements in a chunk are undefs, StartMask=0!
16919 // Note: Filling undef gaps with random elements is ok, since
16920 // those elements were being written anyway (with undefs).
16921 // In the case of all undefs we're defaulting to using elems from 0
16922 // Note: StartMask cannot be negative, it's checked in
16923 // isReInterleaveMask
16924 Ops
.push_back(Builder
.CreateShuffleVector(
16925 Op0
, Op1
, createSequentialMask(Builder
, StartMask
, LaneLen
, 0)));
16929 Ops
.push_back(Builder
.getInt32(SI
->getAlignment()));
16930 Builder
.CreateCall(VstNFunc
, Ops
);
16943 static bool isHomogeneousAggregate(Type
*Ty
, HABaseType
&Base
,
16944 uint64_t &Members
) {
16945 if (auto *ST
= dyn_cast
<StructType
>(Ty
)) {
16946 for (unsigned i
= 0; i
< ST
->getNumElements(); ++i
) {
16947 uint64_t SubMembers
= 0;
16948 if (!isHomogeneousAggregate(ST
->getElementType(i
), Base
, SubMembers
))
16950 Members
+= SubMembers
;
16952 } else if (auto *AT
= dyn_cast
<ArrayType
>(Ty
)) {
16953 uint64_t SubMembers
= 0;
16954 if (!isHomogeneousAggregate(AT
->getElementType(), Base
, SubMembers
))
16956 Members
+= SubMembers
* AT
->getNumElements();
16957 } else if (Ty
->isFloatTy()) {
16958 if (Base
!= HA_UNKNOWN
&& Base
!= HA_FLOAT
)
16962 } else if (Ty
->isDoubleTy()) {
16963 if (Base
!= HA_UNKNOWN
&& Base
!= HA_DOUBLE
)
16967 } else if (auto *VT
= dyn_cast
<VectorType
>(Ty
)) {
16974 return VT
->getBitWidth() == 64;
16976 return VT
->getBitWidth() == 128;
16978 switch (VT
->getBitWidth()) {
16991 return (Members
> 0 && Members
<= 4);
16994 /// Return the correct alignment for the current calling convention.
16996 ARMTargetLowering::getABIAlignmentForCallingConv(Type
*ArgTy
,
16997 DataLayout DL
) const {
16998 if (!ArgTy
->isVectorTy())
16999 return DL
.getABITypeAlignment(ArgTy
);
17001 // Avoid over-aligning vector parameters. It would require realigning the
17002 // stack and waste space for no real benefit.
17003 return std::min(DL
.getABITypeAlignment(ArgTy
),
17004 (unsigned)DL
.getStackAlignment().value());
17007 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
17008 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
17009 /// passing according to AAPCS rules.
17010 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
17011 Type
*Ty
, CallingConv::ID CallConv
, bool isVarArg
) const {
17012 if (getEffectiveCallingConv(CallConv
, isVarArg
) !=
17013 CallingConv::ARM_AAPCS_VFP
)
17016 HABaseType Base
= HA_UNKNOWN
;
17017 uint64_t Members
= 0;
17018 bool IsHA
= isHomogeneousAggregate(Ty
, Base
, Members
);
17019 LLVM_DEBUG(dbgs() << "isHA: " << IsHA
<< " "; Ty
->dump());
17021 bool IsIntArray
= Ty
->isArrayTy() && Ty
->getArrayElementType()->isIntegerTy();
17022 return IsHA
|| IsIntArray
;
17025 unsigned ARMTargetLowering::getExceptionPointerRegister(
17026 const Constant
*PersonalityFn
) const {
17027 // Platforms which do not use SjLj EH may return values in these registers
17028 // via the personality function.
17029 return Subtarget
->useSjLjEH() ? ARM::NoRegister
: ARM::R0
;
17032 unsigned ARMTargetLowering::getExceptionSelectorRegister(
17033 const Constant
*PersonalityFn
) const {
17034 // Platforms which do not use SjLj EH may return values in these registers
17035 // via the personality function.
17036 return Subtarget
->useSjLjEH() ? ARM::NoRegister
: ARM::R1
;
17039 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock
*Entry
) const {
17040 // Update IsSplitCSR in ARMFunctionInfo.
17041 ARMFunctionInfo
*AFI
= Entry
->getParent()->getInfo
<ARMFunctionInfo
>();
17042 AFI
->setIsSplitCSR(true);
17045 void ARMTargetLowering::insertCopiesSplitCSR(
17046 MachineBasicBlock
*Entry
,
17047 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const {
17048 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
17049 const MCPhysReg
*IStart
= TRI
->getCalleeSavedRegsViaCopy(Entry
->getParent());
17053 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
17054 MachineRegisterInfo
*MRI
= &Entry
->getParent()->getRegInfo();
17055 MachineBasicBlock::iterator MBBI
= Entry
->begin();
17056 for (const MCPhysReg
*I
= IStart
; *I
; ++I
) {
17057 const TargetRegisterClass
*RC
= nullptr;
17058 if (ARM::GPRRegClass
.contains(*I
))
17059 RC
= &ARM::GPRRegClass
;
17060 else if (ARM::DPRRegClass
.contains(*I
))
17061 RC
= &ARM::DPRRegClass
;
17063 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
17065 Register NewVR
= MRI
->createVirtualRegister(RC
);
17066 // Create copy from CSR to a virtual register.
17067 // FIXME: this currently does not emit CFI pseudo-instructions, it works
17068 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
17069 // nounwind. If we want to generalize this later, we may need to emit
17070 // CFI pseudo-instructions.
17071 assert(Entry
->getParent()->getFunction().hasFnAttribute(
17072 Attribute::NoUnwind
) &&
17073 "Function should be nounwind in insertCopiesSplitCSR!");
17074 Entry
->addLiveIn(*I
);
17075 BuildMI(*Entry
, MBBI
, DebugLoc(), TII
->get(TargetOpcode::COPY
), NewVR
)
17078 // Insert the copy-back instructions right before the terminator.
17079 for (auto *Exit
: Exits
)
17080 BuildMI(*Exit
, Exit
->getFirstTerminator(), DebugLoc(),
17081 TII
->get(TargetOpcode::COPY
), *I
)
17086 void ARMTargetLowering::finalizeLowering(MachineFunction
&MF
) const {
17087 MF
.getFrameInfo().computeMaxCallFrameSize(MF
);
17088 TargetLoweringBase::finalizeLowering(MF
);