[InstCombine] Signed saturation patterns
[llvm-complete.git] / examples / Kaleidoscope / MCJIT / cached / toy-jit.cpp
blob3f3b133703b1934e3a54faf125047d84425800e8
1 #define MINIMAL_STDERR_OUTPUT
3 #include "llvm/Analysis/Passes.h"
4 #include "llvm/ExecutionEngine/ExecutionEngine.h"
5 #include "llvm/IR/DataLayout.h"
6 #include "llvm/IR/DerivedTypes.h"
7 #include "llvm/IR/IRBuilder.h"
8 #include "llvm/IR/LLVMContext.h"
9 #include "llvm/IR/LegacyPassManager.h"
10 #include "llvm/IR/Module.h"
11 #include "llvm/IR/Verifier.h"
12 #include "llvm/IRReader/IRReader.h"
13 #include "llvm/Support/CommandLine.h"
14 #include "llvm/Support/SourceMgr.h"
15 #include "llvm/Support/TargetSelect.h"
16 #include "llvm/Support/raw_ostream.h"
17 #include "llvm/Transforms/Scalar.h"
18 #include <cctype>
19 #include <cstdio>
20 #include <map>
21 #include <string>
22 #include <vector>
24 using namespace llvm;
26 //===----------------------------------------------------------------------===//
27 // Command-line options
28 //===----------------------------------------------------------------------===//
30 namespace {
31 cl::opt<std::string>
32 InputIR("input-IR",
33 cl::desc("Specify the name of an IR file to load for function definitions"),
34 cl::value_desc("input IR file name"));
35 } // namespace
37 //===----------------------------------------------------------------------===//
38 // Lexer
39 //===----------------------------------------------------------------------===//
41 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
42 // of these for known things.
43 enum Token {
44 tok_eof = -1,
46 // commands
47 tok_def = -2, tok_extern = -3,
49 // primary
50 tok_identifier = -4, tok_number = -5,
52 // control
53 tok_if = -6, tok_then = -7, tok_else = -8,
54 tok_for = -9, tok_in = -10,
56 // operators
57 tok_binary = -11, tok_unary = -12,
59 // var definition
60 tok_var = -13
63 static std::string IdentifierStr; // Filled in if tok_identifier
64 static double NumVal; // Filled in if tok_number
66 /// gettok - Return the next token from standard input.
67 static int gettok() {
68 static int LastChar = ' ';
70 // Skip any whitespace.
71 while (isspace(LastChar))
72 LastChar = getchar();
74 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
75 IdentifierStr = LastChar;
76 while (isalnum((LastChar = getchar())))
77 IdentifierStr += LastChar;
79 if (IdentifierStr == "def") return tok_def;
80 if (IdentifierStr == "extern") return tok_extern;
81 if (IdentifierStr == "if") return tok_if;
82 if (IdentifierStr == "then") return tok_then;
83 if (IdentifierStr == "else") return tok_else;
84 if (IdentifierStr == "for") return tok_for;
85 if (IdentifierStr == "in") return tok_in;
86 if (IdentifierStr == "binary") return tok_binary;
87 if (IdentifierStr == "unary") return tok_unary;
88 if (IdentifierStr == "var") return tok_var;
89 return tok_identifier;
92 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
93 std::string NumStr;
94 do {
95 NumStr += LastChar;
96 LastChar = getchar();
97 } while (isdigit(LastChar) || LastChar == '.');
99 NumVal = strtod(NumStr.c_str(), 0);
100 return tok_number;
103 if (LastChar == '#') {
104 // Comment until end of line.
105 do LastChar = getchar();
106 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
108 if (LastChar != EOF)
109 return gettok();
112 // Check for end of file. Don't eat the EOF.
113 if (LastChar == EOF)
114 return tok_eof;
116 // Otherwise, just return the character as its ascii value.
117 int ThisChar = LastChar;
118 LastChar = getchar();
119 return ThisChar;
122 //===----------------------------------------------------------------------===//
123 // Abstract Syntax Tree (aka Parse Tree)
124 //===----------------------------------------------------------------------===//
126 /// ExprAST - Base class for all expression nodes.
127 class ExprAST {
128 public:
129 virtual ~ExprAST() {}
130 virtual Value *Codegen() = 0;
133 /// NumberExprAST - Expression class for numeric literals like "1.0".
134 class NumberExprAST : public ExprAST {
135 double Val;
136 public:
137 NumberExprAST(double val) : Val(val) {}
138 virtual Value *Codegen();
141 /// VariableExprAST - Expression class for referencing a variable, like "a".
142 class VariableExprAST : public ExprAST {
143 std::string Name;
144 public:
145 VariableExprAST(const std::string &name) : Name(name) {}
146 const std::string &getName() const { return Name; }
147 virtual Value *Codegen();
150 /// UnaryExprAST - Expression class for a unary operator.
151 class UnaryExprAST : public ExprAST {
152 char Opcode;
153 ExprAST *Operand;
154 public:
155 UnaryExprAST(char opcode, ExprAST *operand)
156 : Opcode(opcode), Operand(operand) {}
157 virtual Value *Codegen();
160 /// BinaryExprAST - Expression class for a binary operator.
161 class BinaryExprAST : public ExprAST {
162 char Op;
163 ExprAST *LHS, *RHS;
164 public:
165 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
166 : Op(op), LHS(lhs), RHS(rhs) {}
167 virtual Value *Codegen();
170 /// CallExprAST - Expression class for function calls.
171 class CallExprAST : public ExprAST {
172 std::string Callee;
173 std::vector<ExprAST*> Args;
174 public:
175 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
176 : Callee(callee), Args(args) {}
177 virtual Value *Codegen();
180 /// IfExprAST - Expression class for if/then/else.
181 class IfExprAST : public ExprAST {
182 ExprAST *Cond, *Then, *Else;
183 public:
184 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
185 : Cond(cond), Then(then), Else(_else) {}
186 virtual Value *Codegen();
189 /// ForExprAST - Expression class for for/in.
190 class ForExprAST : public ExprAST {
191 std::string VarName;
192 ExprAST *Start, *End, *Step, *Body;
193 public:
194 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
195 ExprAST *step, ExprAST *body)
196 : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
197 virtual Value *Codegen();
200 /// VarExprAST - Expression class for var/in
201 class VarExprAST : public ExprAST {
202 std::vector<std::pair<std::string, ExprAST*> > VarNames;
203 ExprAST *Body;
204 public:
205 VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
206 ExprAST *body)
207 : VarNames(varnames), Body(body) {}
209 virtual Value *Codegen();
212 /// PrototypeAST - This class represents the "prototype" for a function,
213 /// which captures its argument names as well as if it is an operator.
214 class PrototypeAST {
215 std::string Name;
216 std::vector<std::string> Args;
217 bool isOperator;
218 unsigned Precedence; // Precedence if a binary op.
219 public:
220 PrototypeAST(const std::string &name, const std::vector<std::string> &args,
221 bool isoperator = false, unsigned prec = 0)
222 : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
224 bool isUnaryOp() const { return isOperator && Args.size() == 1; }
225 bool isBinaryOp() const { return isOperator && Args.size() == 2; }
227 char getOperatorName() const {
228 assert(isUnaryOp() || isBinaryOp());
229 return Name[Name.size()-1];
232 unsigned getBinaryPrecedence() const { return Precedence; }
234 Function *Codegen();
236 void CreateArgumentAllocas(Function *F);
239 /// FunctionAST - This class represents a function definition itself.
240 class FunctionAST {
241 PrototypeAST *Proto;
242 ExprAST *Body;
243 public:
244 FunctionAST(PrototypeAST *proto, ExprAST *body)
245 : Proto(proto), Body(body) {}
247 Function *Codegen();
250 //===----------------------------------------------------------------------===//
251 // Parser
252 //===----------------------------------------------------------------------===//
254 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
255 /// token the parser is looking at. getNextToken reads another token from the
256 /// lexer and updates CurTok with its results.
257 static int CurTok;
258 static int getNextToken() {
259 return CurTok = gettok();
262 /// BinopPrecedence - This holds the precedence for each binary operator that is
263 /// defined.
264 static std::map<char, int> BinopPrecedence;
266 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
267 static int GetTokPrecedence() {
268 if (!isascii(CurTok))
269 return -1;
271 // Make sure it's a declared binop.
272 int TokPrec = BinopPrecedence[CurTok];
273 if (TokPrec <= 0) return -1;
274 return TokPrec;
277 /// Error* - These are little helper functions for error handling.
278 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
279 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
280 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
282 static ExprAST *ParseExpression();
284 /// identifierexpr
285 /// ::= identifier
286 /// ::= identifier '(' expression* ')'
287 static ExprAST *ParseIdentifierExpr() {
288 std::string IdName = IdentifierStr;
290 getNextToken(); // eat identifier.
292 if (CurTok != '(') // Simple variable ref.
293 return new VariableExprAST(IdName);
295 // Call.
296 getNextToken(); // eat (
297 std::vector<ExprAST*> Args;
298 if (CurTok != ')') {
299 while (1) {
300 ExprAST *Arg = ParseExpression();
301 if (!Arg) return 0;
302 Args.push_back(Arg);
304 if (CurTok == ')') break;
306 if (CurTok != ',')
307 return Error("Expected ')' or ',' in argument list");
308 getNextToken();
312 // Eat the ')'.
313 getNextToken();
315 return new CallExprAST(IdName, Args);
318 /// numberexpr ::= number
319 static ExprAST *ParseNumberExpr() {
320 ExprAST *Result = new NumberExprAST(NumVal);
321 getNextToken(); // consume the number
322 return Result;
325 /// parenexpr ::= '(' expression ')'
326 static ExprAST *ParseParenExpr() {
327 getNextToken(); // eat (.
328 ExprAST *V = ParseExpression();
329 if (!V) return 0;
331 if (CurTok != ')')
332 return Error("expected ')'");
333 getNextToken(); // eat ).
334 return V;
337 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
338 static ExprAST *ParseIfExpr() {
339 getNextToken(); // eat the if.
341 // condition.
342 ExprAST *Cond = ParseExpression();
343 if (!Cond) return 0;
345 if (CurTok != tok_then)
346 return Error("expected then");
347 getNextToken(); // eat the then
349 ExprAST *Then = ParseExpression();
350 if (Then == 0) return 0;
352 if (CurTok != tok_else)
353 return Error("expected else");
355 getNextToken();
357 ExprAST *Else = ParseExpression();
358 if (!Else) return 0;
360 return new IfExprAST(Cond, Then, Else);
363 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
364 static ExprAST *ParseForExpr() {
365 getNextToken(); // eat the for.
367 if (CurTok != tok_identifier)
368 return Error("expected identifier after for");
370 std::string IdName = IdentifierStr;
371 getNextToken(); // eat identifier.
373 if (CurTok != '=')
374 return Error("expected '=' after for");
375 getNextToken(); // eat '='.
378 ExprAST *Start = ParseExpression();
379 if (Start == 0) return 0;
380 if (CurTok != ',')
381 return Error("expected ',' after for start value");
382 getNextToken();
384 ExprAST *End = ParseExpression();
385 if (End == 0) return 0;
387 // The step value is optional.
388 ExprAST *Step = 0;
389 if (CurTok == ',') {
390 getNextToken();
391 Step = ParseExpression();
392 if (Step == 0) return 0;
395 if (CurTok != tok_in)
396 return Error("expected 'in' after for");
397 getNextToken(); // eat 'in'.
399 ExprAST *Body = ParseExpression();
400 if (Body == 0) return 0;
402 return new ForExprAST(IdName, Start, End, Step, Body);
405 /// varexpr ::= 'var' identifier ('=' expression)?
406 // (',' identifier ('=' expression)?)* 'in' expression
407 static ExprAST *ParseVarExpr() {
408 getNextToken(); // eat the var.
410 std::vector<std::pair<std::string, ExprAST*> > VarNames;
412 // At least one variable name is required.
413 if (CurTok != tok_identifier)
414 return Error("expected identifier after var");
416 while (1) {
417 std::string Name = IdentifierStr;
418 getNextToken(); // eat identifier.
420 // Read the optional initializer.
421 ExprAST *Init = 0;
422 if (CurTok == '=') {
423 getNextToken(); // eat the '='.
425 Init = ParseExpression();
426 if (Init == 0) return 0;
429 VarNames.push_back(std::make_pair(Name, Init));
431 // End of var list, exit loop.
432 if (CurTok != ',') break;
433 getNextToken(); // eat the ','.
435 if (CurTok != tok_identifier)
436 return Error("expected identifier list after var");
439 // At this point, we have to have 'in'.
440 if (CurTok != tok_in)
441 return Error("expected 'in' keyword after 'var'");
442 getNextToken(); // eat 'in'.
444 ExprAST *Body = ParseExpression();
445 if (Body == 0) return 0;
447 return new VarExprAST(VarNames, Body);
450 /// primary
451 /// ::= identifierexpr
452 /// ::= numberexpr
453 /// ::= parenexpr
454 /// ::= ifexpr
455 /// ::= forexpr
456 /// ::= varexpr
457 static ExprAST *ParsePrimary() {
458 switch (CurTok) {
459 default: return Error("unknown token when expecting an expression");
460 case tok_identifier: return ParseIdentifierExpr();
461 case tok_number: return ParseNumberExpr();
462 case '(': return ParseParenExpr();
463 case tok_if: return ParseIfExpr();
464 case tok_for: return ParseForExpr();
465 case tok_var: return ParseVarExpr();
469 /// unary
470 /// ::= primary
471 /// ::= '!' unary
472 static ExprAST *ParseUnary() {
473 // If the current token is not an operator, it must be a primary expr.
474 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
475 return ParsePrimary();
477 // If this is a unary operator, read it.
478 int Opc = CurTok;
479 getNextToken();
480 if (ExprAST *Operand = ParseUnary())
481 return new UnaryExprAST(Opc, Operand);
482 return 0;
485 /// binoprhs
486 /// ::= ('+' unary)*
487 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
488 // If this is a binop, find its precedence.
489 while (1) {
490 int TokPrec = GetTokPrecedence();
492 // If this is a binop that binds at least as tightly as the current binop,
493 // consume it, otherwise we are done.
494 if (TokPrec < ExprPrec)
495 return LHS;
497 // Okay, we know this is a binop.
498 int BinOp = CurTok;
499 getNextToken(); // eat binop
501 // Parse the unary expression after the binary operator.
502 ExprAST *RHS = ParseUnary();
503 if (!RHS) return 0;
505 // If BinOp binds less tightly with RHS than the operator after RHS, let
506 // the pending operator take RHS as its LHS.
507 int NextPrec = GetTokPrecedence();
508 if (TokPrec < NextPrec) {
509 RHS = ParseBinOpRHS(TokPrec+1, RHS);
510 if (RHS == 0) return 0;
513 // Merge LHS/RHS.
514 LHS = new BinaryExprAST(BinOp, LHS, RHS);
518 /// expression
519 /// ::= unary binoprhs
521 static ExprAST *ParseExpression() {
522 ExprAST *LHS = ParseUnary();
523 if (!LHS) return 0;
525 return ParseBinOpRHS(0, LHS);
528 /// prototype
529 /// ::= id '(' id* ')'
530 /// ::= binary LETTER number? (id, id)
531 /// ::= unary LETTER (id)
532 static PrototypeAST *ParsePrototype() {
533 std::string FnName;
535 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
536 unsigned BinaryPrecedence = 30;
538 switch (CurTok) {
539 default:
540 return ErrorP("Expected function name in prototype");
541 case tok_identifier:
542 FnName = IdentifierStr;
543 Kind = 0;
544 getNextToken();
545 break;
546 case tok_unary:
547 getNextToken();
548 if (!isascii(CurTok))
549 return ErrorP("Expected unary operator");
550 FnName = "unary";
551 FnName += (char)CurTok;
552 Kind = 1;
553 getNextToken();
554 break;
555 case tok_binary:
556 getNextToken();
557 if (!isascii(CurTok))
558 return ErrorP("Expected binary operator");
559 FnName = "binary";
560 FnName += (char)CurTok;
561 Kind = 2;
562 getNextToken();
564 // Read the precedence if present.
565 if (CurTok == tok_number) {
566 if (NumVal < 1 || NumVal > 100)
567 return ErrorP("Invalid precedecnce: must be 1..100");
568 BinaryPrecedence = (unsigned)NumVal;
569 getNextToken();
571 break;
574 if (CurTok != '(')
575 return ErrorP("Expected '(' in prototype");
577 std::vector<std::string> ArgNames;
578 while (getNextToken() == tok_identifier)
579 ArgNames.push_back(IdentifierStr);
580 if (CurTok != ')')
581 return ErrorP("Expected ')' in prototype");
583 // success.
584 getNextToken(); // eat ')'.
586 // Verify right number of names for operator.
587 if (Kind && ArgNames.size() != Kind)
588 return ErrorP("Invalid number of operands for operator");
590 return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
593 /// definition ::= 'def' prototype expression
594 static FunctionAST *ParseDefinition() {
595 getNextToken(); // eat def.
596 PrototypeAST *Proto = ParsePrototype();
597 if (Proto == 0) return 0;
599 if (ExprAST *E = ParseExpression())
600 return new FunctionAST(Proto, E);
601 return 0;
604 /// toplevelexpr ::= expression
605 static FunctionAST *ParseTopLevelExpr() {
606 if (ExprAST *E = ParseExpression()) {
607 // Make an anonymous proto.
608 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
609 return new FunctionAST(Proto, E);
611 return 0;
614 /// external ::= 'extern' prototype
615 static PrototypeAST *ParseExtern() {
616 getNextToken(); // eat extern.
617 return ParsePrototype();
620 //===----------------------------------------------------------------------===//
621 // Code Generation
622 //===----------------------------------------------------------------------===//
624 static Module *TheModule;
625 static FunctionPassManager *TheFPM;
626 static LLVMContext TheContext;
627 static IRBuilder<> Builder(TheContext);
628 static std::map<std::string, AllocaInst*> NamedValues;
630 Value *ErrorV(const char *Str) { Error(Str); return 0; }
632 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
633 /// the function. This is used for mutable variables etc.
634 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
635 const std::string &VarName) {
636 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
637 TheFunction->getEntryBlock().begin());
638 return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), 0, VarName.c_str());
641 Value *NumberExprAST::Codegen() {
642 return ConstantFP::get(TheContext, APFloat(Val));
645 Value *VariableExprAST::Codegen() {
646 // Look this variable up in the function.
647 Value *V = NamedValues[Name];
648 if (V == 0) return ErrorV("Unknown variable name");
650 // Load the value.
651 return Builder.CreateLoad(V, Name.c_str());
654 Value *UnaryExprAST::Codegen() {
655 Value *OperandV = Operand->Codegen();
656 if (OperandV == 0) return 0;
657 #ifdef USE_MCJIT
658 Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode));
659 #else
660 Function *F = TheModule->getFunction(std::string("unary")+Opcode);
661 #endif
662 if (F == 0)
663 return ErrorV("Unknown unary operator");
665 return Builder.CreateCall(F, OperandV, "unop");
668 Value *BinaryExprAST::Codegen() {
669 // Special case '=' because we don't want to emit the LHS as an expression.
670 if (Op == '=') {
671 // Assignment requires the LHS to be an identifier.
672 // For now, I'm building without RTTI because LLVM builds that way by
673 // default and so we need to build that way to use the command line supprt.
674 // If you build LLVM with RTTI this can be changed back to a dynamic_cast.
675 VariableExprAST *LHSE = static_cast<VariableExprAST*>(LHS);
676 if (!LHSE)
677 return ErrorV("destination of '=' must be a variable");
678 // Codegen the RHS.
679 Value *Val = RHS->Codegen();
680 if (Val == 0) return 0;
682 // Look up the name.
683 Value *Variable = NamedValues[LHSE->getName()];
684 if (Variable == 0) return ErrorV("Unknown variable name");
686 Builder.CreateStore(Val, Variable);
687 return Val;
690 Value *L = LHS->Codegen();
691 Value *R = RHS->Codegen();
692 if (L == 0 || R == 0) return 0;
694 switch (Op) {
695 case '+': return Builder.CreateFAdd(L, R, "addtmp");
696 case '-': return Builder.CreateFSub(L, R, "subtmp");
697 case '*': return Builder.CreateFMul(L, R, "multmp");
698 case '/': return Builder.CreateFDiv(L, R, "divtmp");
699 case '<':
700 L = Builder.CreateFCmpULT(L, R, "cmptmp");
701 // Convert bool 0/1 to double 0.0 or 1.0
702 return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");
703 default: break;
706 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
707 // a call to it.
708 Function *F = TheModule->getFunction(std::string("binary")+Op);
709 assert(F && "binary operator not found!");
711 Value *Ops[] = { L, R };
712 return Builder.CreateCall(F, Ops, "binop");
715 Value *CallExprAST::Codegen() {
716 // Look up the name in the global module table.
717 Function *CalleeF = TheModule->getFunction(Callee);
718 if (CalleeF == 0) {
719 char error_str[64];
720 sprintf(error_str, "Unknown function referenced %s", Callee.c_str());
721 return ErrorV(error_str);
724 // If argument mismatch error.
725 if (CalleeF->arg_size() != Args.size())
726 return ErrorV("Incorrect # arguments passed");
728 std::vector<Value*> ArgsV;
729 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
730 ArgsV.push_back(Args[i]->Codegen());
731 if (ArgsV.back() == 0) return 0;
734 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
737 Value *IfExprAST::Codegen() {
738 Value *CondV = Cond->Codegen();
739 if (CondV == 0) return 0;
741 // Convert condition to a bool by comparing equal to 0.0.
742 CondV = Builder.CreateFCmpONE(
743 CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");
745 Function *TheFunction = Builder.GetInsertBlock()->getParent();
747 // Create blocks for the then and else cases. Insert the 'then' block at the
748 // end of the function.
749 BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
750 BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
751 BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");
753 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
755 // Emit then value.
756 Builder.SetInsertPoint(ThenBB);
758 Value *ThenV = Then->Codegen();
759 if (ThenV == 0) return 0;
761 Builder.CreateBr(MergeBB);
762 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
763 ThenBB = Builder.GetInsertBlock();
765 // Emit else block.
766 TheFunction->getBasicBlockList().push_back(ElseBB);
767 Builder.SetInsertPoint(ElseBB);
769 Value *ElseV = Else->Codegen();
770 if (ElseV == 0) return 0;
772 Builder.CreateBr(MergeBB);
773 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
774 ElseBB = Builder.GetInsertBlock();
776 // Emit merge block.
777 TheFunction->getBasicBlockList().push_back(MergeBB);
778 Builder.SetInsertPoint(MergeBB);
779 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");
781 PN->addIncoming(ThenV, ThenBB);
782 PN->addIncoming(ElseV, ElseBB);
783 return PN;
786 Value *ForExprAST::Codegen() {
787 // Output this as:
788 // var = alloca double
789 // ...
790 // start = startexpr
791 // store start -> var
792 // goto loop
793 // loop:
794 // ...
795 // bodyexpr
796 // ...
797 // loopend:
798 // step = stepexpr
799 // endcond = endexpr
801 // curvar = load var
802 // nextvar = curvar + step
803 // store nextvar -> var
804 // br endcond, loop, endloop
805 // outloop:
807 Function *TheFunction = Builder.GetInsertBlock()->getParent();
809 // Create an alloca for the variable in the entry block.
810 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
812 // Emit the start code first, without 'variable' in scope.
813 Value *StartVal = Start->Codegen();
814 if (StartVal == 0) return 0;
816 // Store the value into the alloca.
817 Builder.CreateStore(StartVal, Alloca);
819 // Make the new basic block for the loop header, inserting after current
820 // block.
821 BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);
823 // Insert an explicit fall through from the current block to the LoopBB.
824 Builder.CreateBr(LoopBB);
826 // Start insertion in LoopBB.
827 Builder.SetInsertPoint(LoopBB);
829 // Within the loop, the variable is defined equal to the PHI node. If it
830 // shadows an existing variable, we have to restore it, so save it now.
831 AllocaInst *OldVal = NamedValues[VarName];
832 NamedValues[VarName] = Alloca;
834 // Emit the body of the loop. This, like any other expr, can change the
835 // current BB. Note that we ignore the value computed by the body, but don't
836 // allow an error.
837 if (Body->Codegen() == 0)
838 return 0;
840 // Emit the step value.
841 Value *StepVal;
842 if (Step) {
843 StepVal = Step->Codegen();
844 if (StepVal == 0) return 0;
845 } else {
846 // If not specified, use 1.0.
847 StepVal = ConstantFP::get(TheContext, APFloat(1.0));
850 // Compute the end condition.
851 Value *EndCond = End->Codegen();
852 if (EndCond == 0) return EndCond;
854 // Reload, increment, and restore the alloca. This handles the case where
855 // the body of the loop mutates the variable.
856 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
857 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
858 Builder.CreateStore(NextVar, Alloca);
860 // Convert condition to a bool by comparing equal to 0.0.
861 EndCond = Builder.CreateFCmpONE(
862 EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");
864 // Create the "after loop" block and insert it.
865 BasicBlock *AfterBB =
866 BasicBlock::Create(TheContext, "afterloop", TheFunction);
868 // Insert the conditional branch into the end of LoopEndBB.
869 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
871 // Any new code will be inserted in AfterBB.
872 Builder.SetInsertPoint(AfterBB);
874 // Restore the unshadowed variable.
875 if (OldVal)
876 NamedValues[VarName] = OldVal;
877 else
878 NamedValues.erase(VarName);
881 // for expr always returns 0.0.
882 return Constant::getNullValue(Type::getDoubleTy(TheContext));
885 Value *VarExprAST::Codegen() {
886 std::vector<AllocaInst *> OldBindings;
888 Function *TheFunction = Builder.GetInsertBlock()->getParent();
890 // Register all variables and emit their initializer.
891 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
892 const std::string &VarName = VarNames[i].first;
893 ExprAST *Init = VarNames[i].second;
895 // Emit the initializer before adding the variable to scope, this prevents
896 // the initializer from referencing the variable itself, and permits stuff
897 // like this:
898 // var a = 1 in
899 // var a = a in ... # refers to outer 'a'.
900 Value *InitVal;
901 if (Init) {
902 InitVal = Init->Codegen();
903 if (InitVal == 0) return 0;
904 } else { // If not specified, use 0.0.
905 InitVal = ConstantFP::get(TheContext, APFloat(0.0));
908 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
909 Builder.CreateStore(InitVal, Alloca);
911 // Remember the old variable binding so that we can restore the binding when
912 // we unrecurse.
913 OldBindings.push_back(NamedValues[VarName]);
915 // Remember this binding.
916 NamedValues[VarName] = Alloca;
919 // Codegen the body, now that all vars are in scope.
920 Value *BodyVal = Body->Codegen();
921 if (BodyVal == 0) return 0;
923 // Pop all our variables from scope.
924 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
925 NamedValues[VarNames[i].first] = OldBindings[i];
927 // Return the body computation.
928 return BodyVal;
931 Function *PrototypeAST::Codegen() {
932 // Make the function type: double(double,double) etc.
933 std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
934 FunctionType *FT =
935 FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);
937 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
938 // If F conflicted, there was already something named 'Name'. If it has a
939 // body, don't allow redefinition or reextern.
940 if (F->getName() != Name) {
941 // Delete the one we just made and get the existing one.
942 F->eraseFromParent();
943 F = TheModule->getFunction(Name);
944 // If F already has a body, reject this.
945 if (!F->empty()) {
946 ErrorF("redefinition of function");
947 return 0;
949 // If F took a different number of args, reject.
950 if (F->arg_size() != Args.size()) {
951 ErrorF("redefinition of function with different # args");
952 return 0;
956 // Set names for all arguments.
957 unsigned Idx = 0;
958 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
959 ++AI, ++Idx)
960 AI->setName(Args[Idx]);
962 return F;
965 /// CreateArgumentAllocas - Create an alloca for each argument and register the
966 /// argument in the symbol table so that references to it will succeed.
967 void PrototypeAST::CreateArgumentAllocas(Function *F) {
968 Function::arg_iterator AI = F->arg_begin();
969 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
970 // Create an alloca for this variable.
971 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
973 // Store the initial value into the alloca.
974 Builder.CreateStore(AI, Alloca);
976 // Add arguments to variable symbol table.
977 NamedValues[Args[Idx]] = Alloca;
981 Function *FunctionAST::Codegen() {
982 NamedValues.clear();
984 Function *TheFunction = Proto->Codegen();
985 if (TheFunction == 0)
986 return 0;
988 // If this is an operator, install it.
989 if (Proto->isBinaryOp())
990 BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
992 // Create a new basic block to start insertion into.
993 BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
994 Builder.SetInsertPoint(BB);
996 // Add all arguments to the symbol table and create their allocas.
997 Proto->CreateArgumentAllocas(TheFunction);
999 if (Value *RetVal = Body->Codegen()) {
1000 // Finish off the function.
1001 Builder.CreateRet(RetVal);
1003 // Validate the generated code, checking for consistency.
1004 verifyFunction(*TheFunction);
1006 // Optimize the function.
1007 TheFPM->run(*TheFunction);
1009 return TheFunction;
1012 // Error reading body, remove function.
1013 TheFunction->eraseFromParent();
1015 if (Proto->isBinaryOp())
1016 BinopPrecedence.erase(Proto->getOperatorName());
1017 return 0;
1020 //===----------------------------------------------------------------------===//
1021 // Top-Level parsing and JIT Driver
1022 //===----------------------------------------------------------------------===//
1024 static ExecutionEngine *TheExecutionEngine;
1026 static void HandleDefinition() {
1027 if (FunctionAST *F = ParseDefinition()) {
1028 if (Function *LF = F->Codegen()) {
1029 #ifndef MINIMAL_STDERR_OUTPUT
1030 fprintf(stderr, "Read function definition:");
1031 LF->dump();
1032 #endif
1034 } else {
1035 // Skip token for error recovery.
1036 getNextToken();
1040 static void HandleExtern() {
1041 if (PrototypeAST *P = ParseExtern()) {
1042 if (Function *F = P->Codegen()) {
1043 #ifndef MINIMAL_STDERR_OUTPUT
1044 fprintf(stderr, "Read extern: ");
1045 F->dump();
1046 #endif
1048 } else {
1049 // Skip token for error recovery.
1050 getNextToken();
1054 static void HandleTopLevelExpression() {
1055 // Evaluate a top-level expression into an anonymous function.
1056 if (FunctionAST *F = ParseTopLevelExpr()) {
1057 if (Function *LF = F->Codegen()) {
1058 // JIT the function, returning a function pointer.
1059 void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
1060 // Cast it to the right type (takes no arguments, returns a double) so we
1061 // can call it as a native function.
1062 double (*FP)() = (double (*)())(intptr_t)FPtr;
1063 #ifdef MINIMAL_STDERR_OUTPUT
1064 FP();
1065 #else
1066 fprintf(stderr, "Evaluated to %f\n", FP());
1067 #endif
1069 } else {
1070 // Skip token for error recovery.
1071 getNextToken();
1075 /// top ::= definition | external | expression | ';'
1076 static void MainLoop() {
1077 while (1) {
1078 #ifndef MINIMAL_STDERR_OUTPUT
1079 fprintf(stderr, "ready> ");
1080 #endif
1081 switch (CurTok) {
1082 case tok_eof: return;
1083 case ';': getNextToken(); break; // ignore top-level semicolons.
1084 case tok_def: HandleDefinition(); break;
1085 case tok_extern: HandleExtern(); break;
1086 default: HandleTopLevelExpression(); break;
1091 //===----------------------------------------------------------------------===//
1092 // "Library" functions that can be "extern'd" from user code.
1093 //===----------------------------------------------------------------------===//
1095 /// putchard - putchar that takes a double and returns 0.
1096 extern "C"
1097 double putchard(double X) {
1098 putchar((char)X);
1099 return 0;
1102 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1103 extern "C"
1104 double printd(double X) {
1105 printf("%f", X);
1106 return 0;
1109 extern "C"
1110 double printlf() {
1111 printf("\n");
1112 return 0;
1115 //===----------------------------------------------------------------------===//
1116 // Command line input file handlers
1117 //===----------------------------------------------------------------------===//
1119 Module* parseInputIR(std::string InputFile) {
1120 SMDiagnostic Err;
1121 Module *M = ParseIRFile(InputFile, Err, TheContext);
1122 if (!M) {
1123 Err.print("IR parsing failed: ", errs());
1124 return NULL;
1127 return M;
1130 //===----------------------------------------------------------------------===//
1131 // Main driver code.
1132 //===----------------------------------------------------------------------===//
1134 int main(int argc, char **argv) {
1135 InitializeNativeTarget();
1136 LLVMContext &Context = TheContext;
1138 cl::ParseCommandLineOptions(argc, argv,
1139 "Kaleidoscope example program\n");
1141 // Install standard binary operators.
1142 // 1 is lowest precedence.
1143 BinopPrecedence['='] = 2;
1144 BinopPrecedence['<'] = 10;
1145 BinopPrecedence['+'] = 20;
1146 BinopPrecedence['-'] = 20;
1147 BinopPrecedence['/'] = 40;
1148 BinopPrecedence['*'] = 40; // highest.
1150 // Make the module, which holds all the code.
1151 if (!InputIR.empty()) {
1152 TheModule = parseInputIR(InputIR);
1153 } else {
1154 TheModule = new Module("my cool jit", Context);
1157 // Create the JIT. This takes ownership of the module.
1158 std::string ErrStr;
1159 TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
1160 if (!TheExecutionEngine) {
1161 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
1162 exit(1);
1165 FunctionPassManager OurFPM(TheModule);
1167 // Set up the optimizer pipeline. Start with registering info about how the
1168 // target lays out data structures.
1169 OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
1170 // Provide basic AliasAnalysis support for GVN.
1171 OurFPM.add(createBasicAliasAnalysisPass());
1172 // Promote allocas to registers.
1173 OurFPM.add(createPromoteMemoryToRegisterPass());
1174 // Do simple "peephole" optimizations and bit-twiddling optzns.
1175 OurFPM.add(createInstructionCombiningPass());
1176 // Reassociate expressions.
1177 OurFPM.add(createReassociatePass());
1178 // Eliminate Common SubExpressions.
1179 OurFPM.add(createGVNPass());
1180 // Simplify the control flow graph (deleting unreachable blocks, etc).
1181 OurFPM.add(createCFGSimplificationPass());
1183 OurFPM.doInitialization();
1185 // Set the global so the code gen can use this.
1186 TheFPM = &OurFPM;
1188 // Prime the first token.
1189 #ifndef MINIMAL_STDERR_OUTPUT
1190 fprintf(stderr, "ready> ");
1191 #endif
1192 getNextToken();
1194 // Run the main "interpreter loop" now.
1195 MainLoop();
1197 // Print out all of the generated code.
1198 TheFPM = 0;
1199 #if !defined(MINIMAL_STDERR_OUTPUT) || defined(DUMP_FINAL_MODULE)
1200 TheModule->dump();
1201 #endif
1202 return 0;