[InstCombine] Signed saturation patterns
[llvm-complete.git] / examples / Kaleidoscope / MCJIT / initial / toy.cpp
blob9b84fd443d65724d010196837961f3e12ec20fe8
1 #include "llvm/Analysis/Passes.h"
2 #include "llvm/ExecutionEngine/ExecutionEngine.h"
3 #include "llvm/ExecutionEngine/MCJIT.h"
4 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
5 #include "llvm/IR/DataLayout.h"
6 #include "llvm/IR/DerivedTypes.h"
7 #include "llvm/IR/IRBuilder.h"
8 #include "llvm/IR/LLVMContext.h"
9 #include "llvm/IR/LegacyPassManager.h"
10 #include "llvm/IR/Module.h"
11 #include "llvm/IR/Verifier.h"
12 #include "llvm/Support/TargetSelect.h"
13 #include "llvm/Transforms/Scalar.h"
14 #include <cctype>
15 #include <cstdio>
16 #include <map>
17 #include <string>
18 #include <vector>
19 using namespace llvm;
21 //===----------------------------------------------------------------------===//
22 // Lexer
23 //===----------------------------------------------------------------------===//
25 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
26 // of these for known things.
27 enum Token {
28 tok_eof = -1,
30 // commands
31 tok_def = -2, tok_extern = -3,
33 // primary
34 tok_identifier = -4, tok_number = -5,
36 // control
37 tok_if = -6, tok_then = -7, tok_else = -8,
38 tok_for = -9, tok_in = -10,
40 // operators
41 tok_binary = -11, tok_unary = -12,
43 // var definition
44 tok_var = -13
47 static std::string IdentifierStr; // Filled in if tok_identifier
48 static double NumVal; // Filled in if tok_number
50 /// gettok - Return the next token from standard input.
51 static int gettok() {
52 static int LastChar = ' ';
54 // Skip any whitespace.
55 while (isspace(LastChar))
56 LastChar = getchar();
58 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
59 IdentifierStr = LastChar;
60 while (isalnum((LastChar = getchar())))
61 IdentifierStr += LastChar;
63 if (IdentifierStr == "def") return tok_def;
64 if (IdentifierStr == "extern") return tok_extern;
65 if (IdentifierStr == "if") return tok_if;
66 if (IdentifierStr == "then") return tok_then;
67 if (IdentifierStr == "else") return tok_else;
68 if (IdentifierStr == "for") return tok_for;
69 if (IdentifierStr == "in") return tok_in;
70 if (IdentifierStr == "binary") return tok_binary;
71 if (IdentifierStr == "unary") return tok_unary;
72 if (IdentifierStr == "var") return tok_var;
73 return tok_identifier;
76 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
77 std::string NumStr;
78 do {
79 NumStr += LastChar;
80 LastChar = getchar();
81 } while (isdigit(LastChar) || LastChar == '.');
83 NumVal = strtod(NumStr.c_str(), 0);
84 return tok_number;
87 if (LastChar == '#') {
88 // Comment until end of line.
89 do LastChar = getchar();
90 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
92 if (LastChar != EOF)
93 return gettok();
96 // Check for end of file. Don't eat the EOF.
97 if (LastChar == EOF)
98 return tok_eof;
100 // Otherwise, just return the character as its ascii value.
101 int ThisChar = LastChar;
102 LastChar = getchar();
103 return ThisChar;
106 //===----------------------------------------------------------------------===//
107 // Abstract Syntax Tree (aka Parse Tree)
108 //===----------------------------------------------------------------------===//
110 /// ExprAST - Base class for all expression nodes.
111 class ExprAST {
112 public:
113 virtual ~ExprAST() {}
114 virtual Value *Codegen() = 0;
117 /// NumberExprAST - Expression class for numeric literals like "1.0".
118 class NumberExprAST : public ExprAST {
119 double Val;
120 public:
121 NumberExprAST(double val) : Val(val) {}
122 virtual Value *Codegen();
125 /// VariableExprAST - Expression class for referencing a variable, like "a".
126 class VariableExprAST : public ExprAST {
127 std::string Name;
128 public:
129 VariableExprAST(const std::string &name) : Name(name) {}
130 const std::string &getName() const { return Name; }
131 virtual Value *Codegen();
134 /// UnaryExprAST - Expression class for a unary operator.
135 class UnaryExprAST : public ExprAST {
136 char Opcode;
137 ExprAST *Operand;
138 public:
139 UnaryExprAST(char opcode, ExprAST *operand)
140 : Opcode(opcode), Operand(operand) {}
141 virtual Value *Codegen();
144 /// BinaryExprAST - Expression class for a binary operator.
145 class BinaryExprAST : public ExprAST {
146 char Op;
147 ExprAST *LHS, *RHS;
148 public:
149 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
150 : Op(op), LHS(lhs), RHS(rhs) {}
151 virtual Value *Codegen();
154 /// CallExprAST - Expression class for function calls.
155 class CallExprAST : public ExprAST {
156 std::string Callee;
157 std::vector<ExprAST*> Args;
158 public:
159 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
160 : Callee(callee), Args(args) {}
161 virtual Value *Codegen();
164 /// IfExprAST - Expression class for if/then/else.
165 class IfExprAST : public ExprAST {
166 ExprAST *Cond, *Then, *Else;
167 public:
168 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
169 : Cond(cond), Then(then), Else(_else) {}
170 virtual Value *Codegen();
173 /// ForExprAST - Expression class for for/in.
174 class ForExprAST : public ExprAST {
175 std::string VarName;
176 ExprAST *Start, *End, *Step, *Body;
177 public:
178 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
179 ExprAST *step, ExprAST *body)
180 : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
181 virtual Value *Codegen();
184 /// VarExprAST - Expression class for var/in
185 class VarExprAST : public ExprAST {
186 std::vector<std::pair<std::string, ExprAST*> > VarNames;
187 ExprAST *Body;
188 public:
189 VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
190 ExprAST *body)
191 : VarNames(varnames), Body(body) {}
193 virtual Value *Codegen();
196 /// PrototypeAST - This class represents the "prototype" for a function,
197 /// which captures its argument names as well as if it is an operator.
198 class PrototypeAST {
199 std::string Name;
200 std::vector<std::string> Args;
201 bool isOperator;
202 unsigned Precedence; // Precedence if a binary op.
203 public:
204 PrototypeAST(const std::string &name, const std::vector<std::string> &args,
205 bool isoperator = false, unsigned prec = 0)
206 : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
208 bool isUnaryOp() const { return isOperator && Args.size() == 1; }
209 bool isBinaryOp() const { return isOperator && Args.size() == 2; }
211 char getOperatorName() const {
212 assert(isUnaryOp() || isBinaryOp());
213 return Name[Name.size()-1];
216 unsigned getBinaryPrecedence() const { return Precedence; }
218 Function *Codegen();
220 void CreateArgumentAllocas(Function *F);
223 /// FunctionAST - This class represents a function definition itself.
224 class FunctionAST {
225 PrototypeAST *Proto;
226 ExprAST *Body;
227 public:
228 FunctionAST(PrototypeAST *proto, ExprAST *body)
229 : Proto(proto), Body(body) {}
231 Function *Codegen();
234 //===----------------------------------------------------------------------===//
235 // Parser
236 //===----------------------------------------------------------------------===//
238 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
239 /// token the parser is looking at. getNextToken reads another token from the
240 /// lexer and updates CurTok with its results.
241 static int CurTok;
242 static int getNextToken() {
243 return CurTok = gettok();
246 /// BinopPrecedence - This holds the precedence for each binary operator that is
247 /// defined.
248 static std::map<char, int> BinopPrecedence;
250 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
251 static int GetTokPrecedence() {
252 if (!isascii(CurTok))
253 return -1;
255 // Make sure it's a declared binop.
256 int TokPrec = BinopPrecedence[CurTok];
257 if (TokPrec <= 0) return -1;
258 return TokPrec;
261 /// Error* - These are little helper functions for error handling.
262 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
263 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
264 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
266 static ExprAST *ParseExpression();
268 /// identifierexpr
269 /// ::= identifier
270 /// ::= identifier '(' expression* ')'
271 static ExprAST *ParseIdentifierExpr() {
272 std::string IdName = IdentifierStr;
274 getNextToken(); // eat identifier.
276 if (CurTok != '(') // Simple variable ref.
277 return new VariableExprAST(IdName);
279 // Call.
280 getNextToken(); // eat (
281 std::vector<ExprAST*> Args;
282 if (CurTok != ')') {
283 while (1) {
284 ExprAST *Arg = ParseExpression();
285 if (!Arg) return 0;
286 Args.push_back(Arg);
288 if (CurTok == ')') break;
290 if (CurTok != ',')
291 return Error("Expected ')' or ',' in argument list");
292 getNextToken();
296 // Eat the ')'.
297 getNextToken();
299 return new CallExprAST(IdName, Args);
302 /// numberexpr ::= number
303 static ExprAST *ParseNumberExpr() {
304 ExprAST *Result = new NumberExprAST(NumVal);
305 getNextToken(); // consume the number
306 return Result;
309 /// parenexpr ::= '(' expression ')'
310 static ExprAST *ParseParenExpr() {
311 getNextToken(); // eat (.
312 ExprAST *V = ParseExpression();
313 if (!V) return 0;
315 if (CurTok != ')')
316 return Error("expected ')'");
317 getNextToken(); // eat ).
318 return V;
321 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
322 static ExprAST *ParseIfExpr() {
323 getNextToken(); // eat the if.
325 // condition.
326 ExprAST *Cond = ParseExpression();
327 if (!Cond) return 0;
329 if (CurTok != tok_then)
330 return Error("expected then");
331 getNextToken(); // eat the then
333 ExprAST *Then = ParseExpression();
334 if (Then == 0) return 0;
336 if (CurTok != tok_else)
337 return Error("expected else");
339 getNextToken();
341 ExprAST *Else = ParseExpression();
342 if (!Else) return 0;
344 return new IfExprAST(Cond, Then, Else);
347 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
348 static ExprAST *ParseForExpr() {
349 getNextToken(); // eat the for.
351 if (CurTok != tok_identifier)
352 return Error("expected identifier after for");
354 std::string IdName = IdentifierStr;
355 getNextToken(); // eat identifier.
357 if (CurTok != '=')
358 return Error("expected '=' after for");
359 getNextToken(); // eat '='.
362 ExprAST *Start = ParseExpression();
363 if (Start == 0) return 0;
364 if (CurTok != ',')
365 return Error("expected ',' after for start value");
366 getNextToken();
368 ExprAST *End = ParseExpression();
369 if (End == 0) return 0;
371 // The step value is optional.
372 ExprAST *Step = 0;
373 if (CurTok == ',') {
374 getNextToken();
375 Step = ParseExpression();
376 if (Step == 0) return 0;
379 if (CurTok != tok_in)
380 return Error("expected 'in' after for");
381 getNextToken(); // eat 'in'.
383 ExprAST *Body = ParseExpression();
384 if (Body == 0) return 0;
386 return new ForExprAST(IdName, Start, End, Step, Body);
389 /// varexpr ::= 'var' identifier ('=' expression)?
390 // (',' identifier ('=' expression)?)* 'in' expression
391 static ExprAST *ParseVarExpr() {
392 getNextToken(); // eat the var.
394 std::vector<std::pair<std::string, ExprAST*> > VarNames;
396 // At least one variable name is required.
397 if (CurTok != tok_identifier)
398 return Error("expected identifier after var");
400 while (1) {
401 std::string Name = IdentifierStr;
402 getNextToken(); // eat identifier.
404 // Read the optional initializer.
405 ExprAST *Init = 0;
406 if (CurTok == '=') {
407 getNextToken(); // eat the '='.
409 Init = ParseExpression();
410 if (Init == 0) return 0;
413 VarNames.push_back(std::make_pair(Name, Init));
415 // End of var list, exit loop.
416 if (CurTok != ',') break;
417 getNextToken(); // eat the ','.
419 if (CurTok != tok_identifier)
420 return Error("expected identifier list after var");
423 // At this point, we have to have 'in'.
424 if (CurTok != tok_in)
425 return Error("expected 'in' keyword after 'var'");
426 getNextToken(); // eat 'in'.
428 ExprAST *Body = ParseExpression();
429 if (Body == 0) return 0;
431 return new VarExprAST(VarNames, Body);
434 /// primary
435 /// ::= identifierexpr
436 /// ::= numberexpr
437 /// ::= parenexpr
438 /// ::= ifexpr
439 /// ::= forexpr
440 /// ::= varexpr
441 static ExprAST *ParsePrimary() {
442 switch (CurTok) {
443 default: return Error("unknown token when expecting an expression");
444 case tok_identifier: return ParseIdentifierExpr();
445 case tok_number: return ParseNumberExpr();
446 case '(': return ParseParenExpr();
447 case tok_if: return ParseIfExpr();
448 case tok_for: return ParseForExpr();
449 case tok_var: return ParseVarExpr();
453 /// unary
454 /// ::= primary
455 /// ::= '!' unary
456 static ExprAST *ParseUnary() {
457 // If the current token is not an operator, it must be a primary expr.
458 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
459 return ParsePrimary();
461 // If this is a unary operator, read it.
462 int Opc = CurTok;
463 getNextToken();
464 if (ExprAST *Operand = ParseUnary())
465 return new UnaryExprAST(Opc, Operand);
466 return 0;
469 /// binoprhs
470 /// ::= ('+' unary)*
471 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
472 // If this is a binop, find its precedence.
473 while (1) {
474 int TokPrec = GetTokPrecedence();
476 // If this is a binop that binds at least as tightly as the current binop,
477 // consume it, otherwise we are done.
478 if (TokPrec < ExprPrec)
479 return LHS;
481 // Okay, we know this is a binop.
482 int BinOp = CurTok;
483 getNextToken(); // eat binop
485 // Parse the unary expression after the binary operator.
486 ExprAST *RHS = ParseUnary();
487 if (!RHS) return 0;
489 // If BinOp binds less tightly with RHS than the operator after RHS, let
490 // the pending operator take RHS as its LHS.
491 int NextPrec = GetTokPrecedence();
492 if (TokPrec < NextPrec) {
493 RHS = ParseBinOpRHS(TokPrec+1, RHS);
494 if (RHS == 0) return 0;
497 // Merge LHS/RHS.
498 LHS = new BinaryExprAST(BinOp, LHS, RHS);
502 /// expression
503 /// ::= unary binoprhs
505 static ExprAST *ParseExpression() {
506 ExprAST *LHS = ParseUnary();
507 if (!LHS) return 0;
509 return ParseBinOpRHS(0, LHS);
512 /// prototype
513 /// ::= id '(' id* ')'
514 /// ::= binary LETTER number? (id, id)
515 /// ::= unary LETTER (id)
516 static PrototypeAST *ParsePrototype() {
517 std::string FnName;
519 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
520 unsigned BinaryPrecedence = 30;
522 switch (CurTok) {
523 default:
524 return ErrorP("Expected function name in prototype");
525 case tok_identifier:
526 FnName = IdentifierStr;
527 Kind = 0;
528 getNextToken();
529 break;
530 case tok_unary:
531 getNextToken();
532 if (!isascii(CurTok))
533 return ErrorP("Expected unary operator");
534 FnName = "unary";
535 FnName += (char)CurTok;
536 Kind = 1;
537 getNextToken();
538 break;
539 case tok_binary:
540 getNextToken();
541 if (!isascii(CurTok))
542 return ErrorP("Expected binary operator");
543 FnName = "binary";
544 FnName += (char)CurTok;
545 Kind = 2;
546 getNextToken();
548 // Read the precedence if present.
549 if (CurTok == tok_number) {
550 if (NumVal < 1 || NumVal > 100)
551 return ErrorP("Invalid precedecnce: must be 1..100");
552 BinaryPrecedence = (unsigned)NumVal;
553 getNextToken();
555 break;
558 if (CurTok != '(')
559 return ErrorP("Expected '(' in prototype");
561 std::vector<std::string> ArgNames;
562 while (getNextToken() == tok_identifier)
563 ArgNames.push_back(IdentifierStr);
564 if (CurTok != ')')
565 return ErrorP("Expected ')' in prototype");
567 // success.
568 getNextToken(); // eat ')'.
570 // Verify right number of names for operator.
571 if (Kind && ArgNames.size() != Kind)
572 return ErrorP("Invalid number of operands for operator");
574 return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
577 /// definition ::= 'def' prototype expression
578 static FunctionAST *ParseDefinition() {
579 getNextToken(); // eat def.
580 PrototypeAST *Proto = ParsePrototype();
581 if (Proto == 0) return 0;
583 if (ExprAST *E = ParseExpression())
584 return new FunctionAST(Proto, E);
585 return 0;
588 /// toplevelexpr ::= expression
589 static FunctionAST *ParseTopLevelExpr() {
590 if (ExprAST *E = ParseExpression()) {
591 // Make an anonymous proto.
592 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
593 return new FunctionAST(Proto, E);
595 return 0;
598 /// external ::= 'extern' prototype
599 static PrototypeAST *ParseExtern() {
600 getNextToken(); // eat extern.
601 return ParsePrototype();
604 //===----------------------------------------------------------------------===//
605 // Quick and dirty hack
606 //===----------------------------------------------------------------------===//
608 // FIXME: Obviously we can do better than this
609 std::string GenerateUniqueName(const char *root)
611 static int i = 0;
612 char s[16];
613 sprintf(s, "%s%d", root, i++);
614 std::string S = s;
615 return S;
618 std::string MakeLegalFunctionName(std::string Name)
620 std::string NewName;
621 if (!Name.length())
622 return GenerateUniqueName("anon_func_");
624 // Start with what we have
625 NewName = Name;
627 // Look for a numberic first character
628 if (NewName.find_first_of("0123456789") == 0) {
629 NewName.insert(0, 1, 'n');
632 // Replace illegal characters with their ASCII equivalent
633 std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
634 size_t pos;
635 while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
636 char old_c = NewName.at(pos);
637 char new_str[16];
638 sprintf(new_str, "%d", (int)old_c);
639 NewName = NewName.replace(pos, 1, new_str);
642 return NewName;
645 //===----------------------------------------------------------------------===//
646 // MCJIT helper class
647 //===----------------------------------------------------------------------===//
649 class MCJITHelper
651 public:
652 MCJITHelper(LLVMContext& C) : Context(C), OpenModule(NULL) {}
653 ~MCJITHelper();
655 Function *getFunction(const std::string FnName);
656 Module *getModuleForNewFunction();
657 void *getPointerToFunction(Function* F);
658 void *getPointerToNamedFunction(const std::string &Name);
659 void dump();
661 private:
662 typedef std::vector<Module*> ModuleVector;
663 typedef std::vector<ExecutionEngine*> EngineVector;
665 LLVMContext &Context;
666 Module *OpenModule;
667 ModuleVector Modules;
668 EngineVector Engines;
671 class HelpingMemoryManager : public SectionMemoryManager
673 HelpingMemoryManager(const HelpingMemoryManager&) = delete;
674 void operator=(const HelpingMemoryManager&) = delete;
676 public:
677 HelpingMemoryManager(MCJITHelper *Helper) : MasterHelper(Helper) {}
678 virtual ~HelpingMemoryManager() {}
680 /// This method returns the address of the specified function.
681 /// Our implementation will attempt to find functions in other
682 /// modules associated with the MCJITHelper to cross link functions
683 /// from one generated module to another.
685 /// If \p AbortOnFailure is false and no function with the given name is
686 /// found, this function returns a null pointer. Otherwise, it prints a
687 /// message to stderr and aborts.
688 virtual void *getPointerToNamedFunction(const std::string &Name,
689 bool AbortOnFailure = true);
690 private:
691 MCJITHelper *MasterHelper;
694 void *HelpingMemoryManager::getPointerToNamedFunction(const std::string &Name,
695 bool AbortOnFailure)
697 // Try the standard symbol resolution first, but ask it not to abort.
698 void *pfn = SectionMemoryManager::getPointerToNamedFunction(Name, false);
699 if (pfn)
700 return pfn;
702 pfn = MasterHelper->getPointerToNamedFunction(Name);
703 if (!pfn && AbortOnFailure)
704 report_fatal_error("Program used external function '" + Name +
705 "' which could not be resolved!");
706 return pfn;
709 MCJITHelper::~MCJITHelper()
711 if (OpenModule)
712 delete OpenModule;
713 EngineVector::iterator begin = Engines.begin();
714 EngineVector::iterator end = Engines.end();
715 EngineVector::iterator it;
716 for (it = begin; it != end; ++it)
717 delete *it;
720 Function *MCJITHelper::getFunction(const std::string FnName) {
721 ModuleVector::iterator begin = Modules.begin();
722 ModuleVector::iterator end = Modules.end();
723 ModuleVector::iterator it;
724 for (it = begin; it != end; ++it) {
725 Function *F = (*it)->getFunction(FnName);
726 if (F) {
727 if (*it == OpenModule)
728 return F;
730 assert(OpenModule != NULL);
732 // This function is in a module that has already been JITed.
733 // We need to generate a new prototype for external linkage.
734 Function *PF = OpenModule->getFunction(FnName);
735 if (PF && !PF->empty()) {
736 ErrorF("redefinition of function across modules");
737 return 0;
740 // If we don't have a prototype yet, create one.
741 if (!PF)
742 PF = Function::Create(F->getFunctionType(),
743 Function::ExternalLinkage,
744 FnName,
745 OpenModule);
746 return PF;
749 return NULL;
752 Module *MCJITHelper::getModuleForNewFunction() {
753 // If we have a Module that hasn't been JITed, use that.
754 if (OpenModule)
755 return OpenModule;
757 // Otherwise create a new Module.
758 std::string ModName = GenerateUniqueName("mcjit_module_");
759 Module *M = new Module(ModName, Context);
760 Modules.push_back(M);
761 OpenModule = M;
762 return M;
765 void *MCJITHelper::getPointerToFunction(Function* F) {
766 // See if an existing instance of MCJIT has this function.
767 EngineVector::iterator begin = Engines.begin();
768 EngineVector::iterator end = Engines.end();
769 EngineVector::iterator it;
770 for (it = begin; it != end; ++it) {
771 void *P = (*it)->getPointerToFunction(F);
772 if (P)
773 return P;
776 // If we didn't find the function, see if we can generate it.
777 if (OpenModule) {
778 std::string ErrStr;
779 ExecutionEngine *NewEngine = EngineBuilder(OpenModule)
780 .setErrorStr(&ErrStr)
781 .setMCJITMemoryManager(new HelpingMemoryManager(this))
782 .create();
783 if (!NewEngine) {
784 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
785 exit(1);
788 // Create a function pass manager for this engine
789 FunctionPassManager *FPM = new FunctionPassManager(OpenModule);
791 // Set up the optimizer pipeline. Start with registering info about how the
792 // target lays out data structures.
793 FPM->add(new DataLayout(*NewEngine->getDataLayout()));
794 // Provide basic AliasAnalysis support for GVN.
795 FPM->add(createBasicAliasAnalysisPass());
796 // Promote allocas to registers.
797 FPM->add(createPromoteMemoryToRegisterPass());
798 // Do simple "peephole" optimizations and bit-twiddling optzns.
799 FPM->add(createInstructionCombiningPass());
800 // Reassociate expressions.
801 FPM->add(createReassociatePass());
802 // Eliminate Common SubExpressions.
803 FPM->add(createGVNPass());
804 // Simplify the control flow graph (deleting unreachable blocks, etc).
805 FPM->add(createCFGSimplificationPass());
806 FPM->doInitialization();
808 // For each function in the module
809 Module::iterator it;
810 Module::iterator end = OpenModule->end();
811 for (it = OpenModule->begin(); it != end; ++it) {
812 // Run the FPM on this function
813 FPM->run(*it);
816 // We don't need this anymore
817 delete FPM;
819 OpenModule = NULL;
820 Engines.push_back(NewEngine);
821 NewEngine->finalizeObject();
822 return NewEngine->getPointerToFunction(F);
824 return NULL;
827 void *MCJITHelper::getPointerToNamedFunction(const std::string &Name)
829 // Look for the function in each of our execution engines.
830 EngineVector::iterator begin = Engines.begin();
831 EngineVector::iterator end = Engines.end();
832 EngineVector::iterator it;
833 for (it = begin; it != end; ++it) {
834 if (Function *F = (*it)->FindFunctionNamed(Name.c_str()))
835 return (*it)->getPointerToFunction(F);
838 return NULL;
841 void MCJITHelper::dump()
843 ModuleVector::iterator begin = Modules.begin();
844 ModuleVector::iterator end = Modules.end();
845 ModuleVector::iterator it;
846 for (it = begin; it != end; ++it)
847 (*it)->dump();
850 //===----------------------------------------------------------------------===//
851 // Code Generation
852 //===----------------------------------------------------------------------===//
854 static MCJITHelper *TheHelper;
855 static LLVMContext TheContext;
856 static IRBuilder<> Builder(TheContext);
857 static std::map<std::string, AllocaInst*> NamedValues;
859 Value *ErrorV(const char *Str) { Error(Str); return 0; }
861 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
862 /// the function. This is used for mutable variables etc.
863 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
864 const std::string &VarName) {
865 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
866 TheFunction->getEntryBlock().begin());
867 return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), 0, VarName.c_str());
870 Value *NumberExprAST::Codegen() {
871 return ConstantFP::get(TheContext, APFloat(Val));
874 Value *VariableExprAST::Codegen() {
875 // Look this variable up in the function.
876 Value *V = NamedValues[Name];
877 char ErrStr[256];
878 sprintf(ErrStr, "Unknown variable name %s", Name.c_str());
879 if (V == 0) return ErrorV(ErrStr);
881 // Load the value.
882 return Builder.CreateLoad(V, Name.c_str());
885 Value *UnaryExprAST::Codegen() {
886 Value *OperandV = Operand->Codegen();
887 if (OperandV == 0) return 0;
889 Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode));
890 if (F == 0)
891 return ErrorV("Unknown unary operator");
893 return Builder.CreateCall(F, OperandV, "unop");
896 Value *BinaryExprAST::Codegen() {
897 // Special case '=' because we don't want to emit the LHS as an expression.
898 if (Op == '=') {
899 // Assignment requires the LHS to be an identifier.
900 VariableExprAST *LHSE = static_cast<VariableExprAST*>(LHS);
901 if (!LHSE)
902 return ErrorV("destination of '=' must be a variable");
903 // Codegen the RHS.
904 Value *Val = RHS->Codegen();
905 if (Val == 0) return 0;
907 // Look up the name.
908 Value *Variable = NamedValues[LHSE->getName()];
909 if (Variable == 0) return ErrorV("Unknown variable name");
911 Builder.CreateStore(Val, Variable);
912 return Val;
915 Value *L = LHS->Codegen();
916 Value *R = RHS->Codegen();
917 if (L == 0 || R == 0) return 0;
919 switch (Op) {
920 case '+': return Builder.CreateFAdd(L, R, "addtmp");
921 case '-': return Builder.CreateFSub(L, R, "subtmp");
922 case '*': return Builder.CreateFMul(L, R, "multmp");
923 case '/': return Builder.CreateFDiv(L, R, "divtmp");
924 case '<':
925 L = Builder.CreateFCmpULT(L, R, "cmptmp");
926 // Convert bool 0/1 to double 0.0 or 1.0
927 return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");
928 default: break;
931 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
932 // a call to it.
933 Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("binary")+Op));
934 assert(F && "binary operator not found!");
936 Value *Ops[] = { L, R };
937 return Builder.CreateCall(F, Ops, "binop");
940 Value *CallExprAST::Codegen() {
941 // Look up the name in the global module table.
942 Function *CalleeF = TheHelper->getFunction(Callee);
943 if (CalleeF == 0)
944 return ErrorV("Unknown function referenced");
946 // If argument mismatch error.
947 if (CalleeF->arg_size() != Args.size())
948 return ErrorV("Incorrect # arguments passed");
950 std::vector<Value*> ArgsV;
951 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
952 ArgsV.push_back(Args[i]->Codegen());
953 if (ArgsV.back() == 0) return 0;
956 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
959 Value *IfExprAST::Codegen() {
960 Value *CondV = Cond->Codegen();
961 if (CondV == 0) return 0;
963 // Convert condition to a bool by comparing equal to 0.0.
964 CondV = Builder.CreateFCmpONE(
965 CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");
967 Function *TheFunction = Builder.GetInsertBlock()->getParent();
969 // Create blocks for the then and else cases. Insert the 'then' block at the
970 // end of the function.
971 BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
972 BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
973 BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");
975 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
977 // Emit then value.
978 Builder.SetInsertPoint(ThenBB);
980 Value *ThenV = Then->Codegen();
981 if (ThenV == 0) return 0;
983 Builder.CreateBr(MergeBB);
984 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
985 ThenBB = Builder.GetInsertBlock();
987 // Emit else block.
988 TheFunction->getBasicBlockList().push_back(ElseBB);
989 Builder.SetInsertPoint(ElseBB);
991 Value *ElseV = Else->Codegen();
992 if (ElseV == 0) return 0;
994 Builder.CreateBr(MergeBB);
995 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
996 ElseBB = Builder.GetInsertBlock();
998 // Emit merge block.
999 TheFunction->getBasicBlockList().push_back(MergeBB);
1000 Builder.SetInsertPoint(MergeBB);
1001 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");
1003 PN->addIncoming(ThenV, ThenBB);
1004 PN->addIncoming(ElseV, ElseBB);
1005 return PN;
1008 Value *ForExprAST::Codegen() {
1009 // Output this as:
1010 // var = alloca double
1011 // ...
1012 // start = startexpr
1013 // store start -> var
1014 // goto loop
1015 // loop:
1016 // ...
1017 // bodyexpr
1018 // ...
1019 // loopend:
1020 // step = stepexpr
1021 // endcond = endexpr
1023 // curvar = load var
1024 // nextvar = curvar + step
1025 // store nextvar -> var
1026 // br endcond, loop, endloop
1027 // outloop:
1029 Function *TheFunction = Builder.GetInsertBlock()->getParent();
1031 // Create an alloca for the variable in the entry block.
1032 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1034 // Emit the start code first, without 'variable' in scope.
1035 Value *StartVal = Start->Codegen();
1036 if (StartVal == 0) return 0;
1038 // Store the value into the alloca.
1039 Builder.CreateStore(StartVal, Alloca);
1041 // Make the new basic block for the loop header, inserting after current
1042 // block.
1043 BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);
1045 // Insert an explicit fall through from the current block to the LoopBB.
1046 Builder.CreateBr(LoopBB);
1048 // Start insertion in LoopBB.
1049 Builder.SetInsertPoint(LoopBB);
1051 // Within the loop, the variable is defined equal to the PHI node. If it
1052 // shadows an existing variable, we have to restore it, so save it now.
1053 AllocaInst *OldVal = NamedValues[VarName];
1054 NamedValues[VarName] = Alloca;
1056 // Emit the body of the loop. This, like any other expr, can change the
1057 // current BB. Note that we ignore the value computed by the body, but don't
1058 // allow an error.
1059 if (Body->Codegen() == 0)
1060 return 0;
1062 // Emit the step value.
1063 Value *StepVal;
1064 if (Step) {
1065 StepVal = Step->Codegen();
1066 if (StepVal == 0) return 0;
1067 } else {
1068 // If not specified, use 1.0.
1069 StepVal = ConstantFP::get(TheContext, APFloat(1.0));
1072 // Compute the end condition.
1073 Value *EndCond = End->Codegen();
1074 if (EndCond == 0) return EndCond;
1076 // Reload, increment, and restore the alloca. This handles the case where
1077 // the body of the loop mutates the variable.
1078 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
1079 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
1080 Builder.CreateStore(NextVar, Alloca);
1082 // Convert condition to a bool by comparing equal to 0.0.
1083 EndCond = Builder.CreateFCmpONE(
1084 EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");
1086 // Create the "after loop" block and insert it.
1087 BasicBlock *AfterBB =
1088 BasicBlock::Create(TheContext, "afterloop", TheFunction);
1090 // Insert the conditional branch into the end of LoopEndBB.
1091 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
1093 // Any new code will be inserted in AfterBB.
1094 Builder.SetInsertPoint(AfterBB);
1096 // Restore the unshadowed variable.
1097 if (OldVal)
1098 NamedValues[VarName] = OldVal;
1099 else
1100 NamedValues.erase(VarName);
1103 // for expr always returns 0.0.
1104 return Constant::getNullValue(Type::getDoubleTy(TheContext));
1107 Value *VarExprAST::Codegen() {
1108 std::vector<AllocaInst *> OldBindings;
1110 Function *TheFunction = Builder.GetInsertBlock()->getParent();
1112 // Register all variables and emit their initializer.
1113 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
1114 const std::string &VarName = VarNames[i].first;
1115 ExprAST *Init = VarNames[i].second;
1117 // Emit the initializer before adding the variable to scope, this prevents
1118 // the initializer from referencing the variable itself, and permits stuff
1119 // like this:
1120 // var a = 1 in
1121 // var a = a in ... # refers to outer 'a'.
1122 Value *InitVal;
1123 if (Init) {
1124 InitVal = Init->Codegen();
1125 if (InitVal == 0) return 0;
1126 } else { // If not specified, use 0.0.
1127 InitVal = ConstantFP::get(TheContext, APFloat(0.0));
1130 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1131 Builder.CreateStore(InitVal, Alloca);
1133 // Remember the old variable binding so that we can restore the binding when
1134 // we unrecurse.
1135 OldBindings.push_back(NamedValues[VarName]);
1137 // Remember this binding.
1138 NamedValues[VarName] = Alloca;
1141 // Codegen the body, now that all vars are in scope.
1142 Value *BodyVal = Body->Codegen();
1143 if (BodyVal == 0) return 0;
1145 // Pop all our variables from scope.
1146 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1147 NamedValues[VarNames[i].first] = OldBindings[i];
1149 // Return the body computation.
1150 return BodyVal;
1153 Function *PrototypeAST::Codegen() {
1154 // Make the function type: double(double,double) etc.
1155 std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
1156 FunctionType *FT =
1157 FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);
1159 std::string FnName = MakeLegalFunctionName(Name);
1161 Module* M = TheHelper->getModuleForNewFunction();
1163 Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, M);
1165 // If F conflicted, there was already something named 'FnName'. If it has a
1166 // body, don't allow redefinition or reextern.
1167 if (F->getName() != FnName) {
1168 // Delete the one we just made and get the existing one.
1169 F->eraseFromParent();
1170 F = M->getFunction(Name);
1172 // If F already has a body, reject this.
1173 if (!F->empty()) {
1174 ErrorF("redefinition of function");
1175 return 0;
1178 // If F took a different number of args, reject.
1179 if (F->arg_size() != Args.size()) {
1180 ErrorF("redefinition of function with different # args");
1181 return 0;
1185 // Set names for all arguments.
1186 unsigned Idx = 0;
1187 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
1188 ++AI, ++Idx)
1189 AI->setName(Args[Idx]);
1191 return F;
1194 /// CreateArgumentAllocas - Create an alloca for each argument and register the
1195 /// argument in the symbol table so that references to it will succeed.
1196 void PrototypeAST::CreateArgumentAllocas(Function *F) {
1197 Function::arg_iterator AI = F->arg_begin();
1198 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
1199 // Create an alloca for this variable.
1200 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
1202 // Store the initial value into the alloca.
1203 Builder.CreateStore(AI, Alloca);
1205 // Add arguments to variable symbol table.
1206 NamedValues[Args[Idx]] = Alloca;
1210 Function *FunctionAST::Codegen() {
1211 NamedValues.clear();
1213 Function *TheFunction = Proto->Codegen();
1214 if (TheFunction == 0)
1215 return 0;
1217 // If this is an operator, install it.
1218 if (Proto->isBinaryOp())
1219 BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
1221 // Create a new basic block to start insertion into.
1222 BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
1223 Builder.SetInsertPoint(BB);
1225 // Add all arguments to the symbol table and create their allocas.
1226 Proto->CreateArgumentAllocas(TheFunction);
1228 if (Value *RetVal = Body->Codegen()) {
1229 // Finish off the function.
1230 Builder.CreateRet(RetVal);
1232 // Validate the generated code, checking for consistency.
1233 verifyFunction(*TheFunction);
1235 return TheFunction;
1238 // Error reading body, remove function.
1239 TheFunction->eraseFromParent();
1241 if (Proto->isBinaryOp())
1242 BinopPrecedence.erase(Proto->getOperatorName());
1243 return 0;
1246 //===----------------------------------------------------------------------===//
1247 // Top-Level parsing and JIT Driver
1248 //===----------------------------------------------------------------------===//
1250 static void HandleDefinition() {
1251 if (FunctionAST *F = ParseDefinition()) {
1252 if (Function *LF = F->Codegen()) {
1253 #ifndef MINIMAL_STDERR_OUTPUT
1254 fprintf(stderr, "Read function definition:");
1255 LF->print(errs());
1256 fprintf(stderr, "\n");
1257 #endif
1259 } else {
1260 // Skip token for error recovery.
1261 getNextToken();
1265 static void HandleExtern() {
1266 if (PrototypeAST *P = ParseExtern()) {
1267 if (Function *F = P->Codegen()) {
1268 #ifndef MINIMAL_STDERR_OUTPUT
1269 fprintf(stderr, "Read extern: ");
1270 F->print(errs());
1271 fprintf(stderr, "\n");
1272 #endif
1274 } else {
1275 // Skip token for error recovery.
1276 getNextToken();
1280 static void HandleTopLevelExpression() {
1281 // Evaluate a top-level expression into an anonymous function.
1282 if (FunctionAST *F = ParseTopLevelExpr()) {
1283 if (Function *LF = F->Codegen()) {
1284 // JIT the function, returning a function pointer.
1285 void *FPtr = TheHelper->getPointerToFunction(LF);
1287 // Cast it to the right type (takes no arguments, returns a double) so we
1288 // can call it as a native function.
1289 double (*FP)() = (double (*)())(intptr_t)FPtr;
1290 #ifdef MINIMAL_STDERR_OUTPUT
1291 FP();
1292 #else
1293 fprintf(stderr, "Evaluated to %f\n", FP());
1294 #endif
1296 } else {
1297 // Skip token for error recovery.
1298 getNextToken();
1302 /// top ::= definition | external | expression | ';'
1303 static void MainLoop() {
1304 while (1) {
1305 #ifndef MINIMAL_STDERR_OUTPUT
1306 fprintf(stderr, "ready> ");
1307 #endif
1308 switch (CurTok) {
1309 case tok_eof: return;
1310 case ';': getNextToken(); break; // ignore top-level semicolons.
1311 case tok_def: HandleDefinition(); break;
1312 case tok_extern: HandleExtern(); break;
1313 default: HandleTopLevelExpression(); break;
1318 //===----------------------------------------------------------------------===//
1319 // "Library" functions that can be "extern'd" from user code.
1320 //===----------------------------------------------------------------------===//
1322 /// putchard - putchar that takes a double and returns 0.
1323 extern "C"
1324 double putchard(double X) {
1325 putchar((char)X);
1326 return 0;
1329 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1330 extern "C"
1331 double printd(double X) {
1332 printf("%f", X);
1333 return 0;
1336 extern "C"
1337 double printlf() {
1338 printf("\n");
1339 return 0;
1342 //===----------------------------------------------------------------------===//
1343 // Main driver code.
1344 //===----------------------------------------------------------------------===//
1346 int main() {
1347 InitializeNativeTarget();
1348 InitializeNativeTargetAsmPrinter();
1349 InitializeNativeTargetAsmParser();
1350 LLVMContext &Context = TheContext;
1352 // Install standard binary operators.
1353 // 1 is lowest precedence.
1354 BinopPrecedence['='] = 2;
1355 BinopPrecedence['<'] = 10;
1356 BinopPrecedence['+'] = 20;
1357 BinopPrecedence['-'] = 20;
1358 BinopPrecedence['/'] = 40;
1359 BinopPrecedence['*'] = 40; // highest.
1361 // Prime the first token.
1362 #ifndef MINIMAL_STDERR_OUTPUT
1363 fprintf(stderr, "ready> ");
1364 #endif
1365 getNextToken();
1367 // Make the helper, which holds all the code.
1368 TheHelper = new MCJITHelper(Context);
1370 // Run the main "interpreter loop" now.
1371 MainLoop();
1373 #ifndef MINIMAL_STDERR_OUTPUT
1374 // Print out all of the generated code.
1375 TheHelper->print(errs());
1376 #endif
1378 return 0;