[InstCombine] Signed saturation patterns
[llvm-complete.git] / include / llvm / Analysis / BlockFrequencyInfoImpl.h
blobbfe4fb14a2b868274bb8552695a5a2d8262c9d76
1 //==- BlockFrequencyInfoImpl.h - Block Frequency Implementation --*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Shared implementation of BlockFrequency for IR and Machine Instructions.
10 // See the documentation below for BlockFrequencyInfoImpl for details.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
15 #define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/GraphTraits.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/SparseBitVector.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/Support/BlockFrequency.h"
28 #include "llvm/Support/BranchProbability.h"
29 #include "llvm/Support/DOTGraphTraits.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/Format.h"
33 #include "llvm/Support/ScaledNumber.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <cassert>
37 #include <cstddef>
38 #include <cstdint>
39 #include <deque>
40 #include <iterator>
41 #include <limits>
42 #include <list>
43 #include <string>
44 #include <utility>
45 #include <vector>
47 #define DEBUG_TYPE "block-freq"
49 namespace llvm {
51 class BranchProbabilityInfo;
52 class Function;
53 class Loop;
54 class LoopInfo;
55 class MachineBasicBlock;
56 class MachineBranchProbabilityInfo;
57 class MachineFunction;
58 class MachineLoop;
59 class MachineLoopInfo;
61 namespace bfi_detail {
63 struct IrreducibleGraph;
65 // This is part of a workaround for a GCC 4.7 crash on lambdas.
66 template <class BT> struct BlockEdgesAdder;
68 /// Mass of a block.
69 ///
70 /// This class implements a sort of fixed-point fraction always between 0.0 and
71 /// 1.0. getMass() == std::numeric_limits<uint64_t>::max() indicates a value of
72 /// 1.0.
73 ///
74 /// Masses can be added and subtracted. Simple saturation arithmetic is used,
75 /// so arithmetic operations never overflow or underflow.
76 ///
77 /// Masses can be multiplied. Multiplication treats full mass as 1.0 and uses
78 /// an inexpensive floating-point algorithm that's off-by-one (almost, but not
79 /// quite, maximum precision).
80 ///
81 /// Masses can be scaled by \a BranchProbability at maximum precision.
82 class BlockMass {
83 uint64_t Mass = 0;
85 public:
86 BlockMass() = default;
87 explicit BlockMass(uint64_t Mass) : Mass(Mass) {}
89 static BlockMass getEmpty() { return BlockMass(); }
91 static BlockMass getFull() {
92 return BlockMass(std::numeric_limits<uint64_t>::max());
95 uint64_t getMass() const { return Mass; }
97 bool isFull() const { return Mass == std::numeric_limits<uint64_t>::max(); }
98 bool isEmpty() const { return !Mass; }
100 bool operator!() const { return isEmpty(); }
102 /// Add another mass.
104 /// Adds another mass, saturating at \a isFull() rather than overflowing.
105 BlockMass &operator+=(BlockMass X) {
106 uint64_t Sum = Mass + X.Mass;
107 Mass = Sum < Mass ? std::numeric_limits<uint64_t>::max() : Sum;
108 return *this;
111 /// Subtract another mass.
113 /// Subtracts another mass, saturating at \a isEmpty() rather than
114 /// undeflowing.
115 BlockMass &operator-=(BlockMass X) {
116 uint64_t Diff = Mass - X.Mass;
117 Mass = Diff > Mass ? 0 : Diff;
118 return *this;
121 BlockMass &operator*=(BranchProbability P) {
122 Mass = P.scale(Mass);
123 return *this;
126 bool operator==(BlockMass X) const { return Mass == X.Mass; }
127 bool operator!=(BlockMass X) const { return Mass != X.Mass; }
128 bool operator<=(BlockMass X) const { return Mass <= X.Mass; }
129 bool operator>=(BlockMass X) const { return Mass >= X.Mass; }
130 bool operator<(BlockMass X) const { return Mass < X.Mass; }
131 bool operator>(BlockMass X) const { return Mass > X.Mass; }
133 /// Convert to scaled number.
135 /// Convert to \a ScaledNumber. \a isFull() gives 1.0, while \a isEmpty()
136 /// gives slightly above 0.0.
137 ScaledNumber<uint64_t> toScaled() const;
139 void dump() const;
140 raw_ostream &print(raw_ostream &OS) const;
143 inline BlockMass operator+(BlockMass L, BlockMass R) {
144 return BlockMass(L) += R;
146 inline BlockMass operator-(BlockMass L, BlockMass R) {
147 return BlockMass(L) -= R;
149 inline BlockMass operator*(BlockMass L, BranchProbability R) {
150 return BlockMass(L) *= R;
152 inline BlockMass operator*(BranchProbability L, BlockMass R) {
153 return BlockMass(R) *= L;
156 inline raw_ostream &operator<<(raw_ostream &OS, BlockMass X) {
157 return X.print(OS);
160 } // end namespace bfi_detail
162 /// Base class for BlockFrequencyInfoImpl
164 /// BlockFrequencyInfoImplBase has supporting data structures and some
165 /// algorithms for BlockFrequencyInfoImplBase. Only algorithms that depend on
166 /// the block type (or that call such algorithms) are skipped here.
168 /// Nevertheless, the majority of the overall algorithm documention lives with
169 /// BlockFrequencyInfoImpl. See there for details.
170 class BlockFrequencyInfoImplBase {
171 public:
172 using Scaled64 = ScaledNumber<uint64_t>;
173 using BlockMass = bfi_detail::BlockMass;
175 /// Representative of a block.
177 /// This is a simple wrapper around an index into the reverse-post-order
178 /// traversal of the blocks.
180 /// Unlike a block pointer, its order has meaning (location in the
181 /// topological sort) and it's class is the same regardless of block type.
182 struct BlockNode {
183 using IndexType = uint32_t;
185 IndexType Index;
187 BlockNode() : Index(std::numeric_limits<uint32_t>::max()) {}
188 BlockNode(IndexType Index) : Index(Index) {}
190 bool operator==(const BlockNode &X) const { return Index == X.Index; }
191 bool operator!=(const BlockNode &X) const { return Index != X.Index; }
192 bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
193 bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
194 bool operator<(const BlockNode &X) const { return Index < X.Index; }
195 bool operator>(const BlockNode &X) const { return Index > X.Index; }
197 bool isValid() const { return Index <= getMaxIndex(); }
199 static size_t getMaxIndex() {
200 return std::numeric_limits<uint32_t>::max() - 1;
204 /// Stats about a block itself.
205 struct FrequencyData {
206 Scaled64 Scaled;
207 uint64_t Integer;
210 /// Data about a loop.
212 /// Contains the data necessary to represent a loop as a pseudo-node once it's
213 /// packaged.
214 struct LoopData {
215 using ExitMap = SmallVector<std::pair<BlockNode, BlockMass>, 4>;
216 using NodeList = SmallVector<BlockNode, 4>;
217 using HeaderMassList = SmallVector<BlockMass, 1>;
219 LoopData *Parent; ///< The parent loop.
220 bool IsPackaged = false; ///< Whether this has been packaged.
221 uint32_t NumHeaders = 1; ///< Number of headers.
222 ExitMap Exits; ///< Successor edges (and weights).
223 NodeList Nodes; ///< Header and the members of the loop.
224 HeaderMassList BackedgeMass; ///< Mass returned to each loop header.
225 BlockMass Mass;
226 Scaled64 Scale;
228 LoopData(LoopData *Parent, const BlockNode &Header)
229 : Parent(Parent), Nodes(1, Header), BackedgeMass(1) {}
231 template <class It1, class It2>
232 LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther,
233 It2 LastOther)
234 : Parent(Parent), Nodes(FirstHeader, LastHeader) {
235 NumHeaders = Nodes.size();
236 Nodes.insert(Nodes.end(), FirstOther, LastOther);
237 BackedgeMass.resize(NumHeaders);
240 bool isHeader(const BlockNode &Node) const {
241 if (isIrreducible())
242 return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders,
243 Node);
244 return Node == Nodes[0];
247 BlockNode getHeader() const { return Nodes[0]; }
248 bool isIrreducible() const { return NumHeaders > 1; }
250 HeaderMassList::difference_type getHeaderIndex(const BlockNode &B) {
251 assert(isHeader(B) && "this is only valid on loop header blocks");
252 if (isIrreducible())
253 return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) -
254 Nodes.begin();
255 return 0;
258 NodeList::const_iterator members_begin() const {
259 return Nodes.begin() + NumHeaders;
262 NodeList::const_iterator members_end() const { return Nodes.end(); }
263 iterator_range<NodeList::const_iterator> members() const {
264 return make_range(members_begin(), members_end());
268 /// Index of loop information.
269 struct WorkingData {
270 BlockNode Node; ///< This node.
271 LoopData *Loop = nullptr; ///< The loop this block is inside.
272 BlockMass Mass; ///< Mass distribution from the entry block.
274 WorkingData(const BlockNode &Node) : Node(Node) {}
276 bool isLoopHeader() const { return Loop && Loop->isHeader(Node); }
278 bool isDoubleLoopHeader() const {
279 return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() &&
280 Loop->Parent->isHeader(Node);
283 LoopData *getContainingLoop() const {
284 if (!isLoopHeader())
285 return Loop;
286 if (!isDoubleLoopHeader())
287 return Loop->Parent;
288 return Loop->Parent->Parent;
291 /// Resolve a node to its representative.
293 /// Get the node currently representing Node, which could be a containing
294 /// loop.
296 /// This function should only be called when distributing mass. As long as
297 /// there are no irreducible edges to Node, then it will have complexity
298 /// O(1) in this context.
300 /// In general, the complexity is O(L), where L is the number of loop
301 /// headers Node has been packaged into. Since this method is called in
302 /// the context of distributing mass, L will be the number of loop headers
303 /// an early exit edge jumps out of.
304 BlockNode getResolvedNode() const {
305 auto L = getPackagedLoop();
306 return L ? L->getHeader() : Node;
309 LoopData *getPackagedLoop() const {
310 if (!Loop || !Loop->IsPackaged)
311 return nullptr;
312 auto L = Loop;
313 while (L->Parent && L->Parent->IsPackaged)
314 L = L->Parent;
315 return L;
318 /// Get the appropriate mass for a node.
320 /// Get appropriate mass for Node. If Node is a loop-header (whose loop
321 /// has been packaged), returns the mass of its pseudo-node. If it's a
322 /// node inside a packaged loop, it returns the loop's mass.
323 BlockMass &getMass() {
324 if (!isAPackage())
325 return Mass;
326 if (!isADoublePackage())
327 return Loop->Mass;
328 return Loop->Parent->Mass;
331 /// Has ContainingLoop been packaged up?
332 bool isPackaged() const { return getResolvedNode() != Node; }
334 /// Has Loop been packaged up?
335 bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; }
337 /// Has Loop been packaged up twice?
338 bool isADoublePackage() const {
339 return isDoubleLoopHeader() && Loop->Parent->IsPackaged;
343 /// Unscaled probability weight.
345 /// Probability weight for an edge in the graph (including the
346 /// successor/target node).
348 /// All edges in the original function are 32-bit. However, exit edges from
349 /// loop packages are taken from 64-bit exit masses, so we need 64-bits of
350 /// space in general.
352 /// In addition to the raw weight amount, Weight stores the type of the edge
353 /// in the current context (i.e., the context of the loop being processed).
354 /// Is this a local edge within the loop, an exit from the loop, or a
355 /// backedge to the loop header?
356 struct Weight {
357 enum DistType { Local, Exit, Backedge };
358 DistType Type = Local;
359 BlockNode TargetNode;
360 uint64_t Amount = 0;
362 Weight() = default;
363 Weight(DistType Type, BlockNode TargetNode, uint64_t Amount)
364 : Type(Type), TargetNode(TargetNode), Amount(Amount) {}
367 /// Distribution of unscaled probability weight.
369 /// Distribution of unscaled probability weight to a set of successors.
371 /// This class collates the successor edge weights for later processing.
373 /// \a DidOverflow indicates whether \a Total did overflow while adding to
374 /// the distribution. It should never overflow twice.
375 struct Distribution {
376 using WeightList = SmallVector<Weight, 4>;
378 WeightList Weights; ///< Individual successor weights.
379 uint64_t Total = 0; ///< Sum of all weights.
380 bool DidOverflow = false; ///< Whether \a Total did overflow.
382 Distribution() = default;
384 void addLocal(const BlockNode &Node, uint64_t Amount) {
385 add(Node, Amount, Weight::Local);
388 void addExit(const BlockNode &Node, uint64_t Amount) {
389 add(Node, Amount, Weight::Exit);
392 void addBackedge(const BlockNode &Node, uint64_t Amount) {
393 add(Node, Amount, Weight::Backedge);
396 /// Normalize the distribution.
398 /// Combines multiple edges to the same \a Weight::TargetNode and scales
399 /// down so that \a Total fits into 32-bits.
401 /// This is linear in the size of \a Weights. For the vast majority of
402 /// cases, adjacent edge weights are combined by sorting WeightList and
403 /// combining adjacent weights. However, for very large edge lists an
404 /// auxiliary hash table is used.
405 void normalize();
407 private:
408 void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
411 /// Data about each block. This is used downstream.
412 std::vector<FrequencyData> Freqs;
414 /// Whether each block is an irreducible loop header.
415 /// This is used downstream.
416 SparseBitVector<> IsIrrLoopHeader;
418 /// Loop data: see initializeLoops().
419 std::vector<WorkingData> Working;
421 /// Indexed information about loops.
422 std::list<LoopData> Loops;
424 /// Virtual destructor.
426 /// Need a virtual destructor to mask the compiler warning about
427 /// getBlockName().
428 virtual ~BlockFrequencyInfoImplBase() = default;
430 /// Add all edges out of a packaged loop to the distribution.
432 /// Adds all edges from LocalLoopHead to Dist. Calls addToDist() to add each
433 /// successor edge.
435 /// \return \c true unless there's an irreducible backedge.
436 bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
437 Distribution &Dist);
439 /// Add an edge to the distribution.
441 /// Adds an edge to Succ to Dist. If \c LoopHead.isValid(), then whether the
442 /// edge is local/exit/backedge is in the context of LoopHead. Otherwise,
443 /// every edge should be a local edge (since all the loops are packaged up).
445 /// \return \c true unless aborted due to an irreducible backedge.
446 bool addToDist(Distribution &Dist, const LoopData *OuterLoop,
447 const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
449 LoopData &getLoopPackage(const BlockNode &Head) {
450 assert(Head.Index < Working.size());
451 assert(Working[Head.Index].isLoopHeader());
452 return *Working[Head.Index].Loop;
455 /// Analyze irreducible SCCs.
457 /// Separate irreducible SCCs from \c G, which is an explict graph of \c
458 /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr).
459 /// Insert them into \a Loops before \c Insert.
461 /// \return the \c LoopData nodes representing the irreducible SCCs.
462 iterator_range<std::list<LoopData>::iterator>
463 analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop,
464 std::list<LoopData>::iterator Insert);
466 /// Update a loop after packaging irreducible SCCs inside of it.
468 /// Update \c OuterLoop. Before finding irreducible control flow, it was
469 /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a
470 /// LoopData::BackedgeMass need to be reset. Also, nodes that were packaged
471 /// up need to be removed from \a OuterLoop::Nodes.
472 void updateLoopWithIrreducible(LoopData &OuterLoop);
474 /// Distribute mass according to a distribution.
476 /// Distributes the mass in Source according to Dist. If LoopHead.isValid(),
477 /// backedges and exits are stored in its entry in Loops.
479 /// Mass is distributed in parallel from two copies of the source mass.
480 void distributeMass(const BlockNode &Source, LoopData *OuterLoop,
481 Distribution &Dist);
483 /// Compute the loop scale for a loop.
484 void computeLoopScale(LoopData &Loop);
486 /// Adjust the mass of all headers in an irreducible loop.
488 /// Initially, irreducible loops are assumed to distribute their mass
489 /// equally among its headers. This can lead to wrong frequency estimates
490 /// since some headers may be executed more frequently than others.
492 /// This adjusts header mass distribution so it matches the weights of
493 /// the backedges going into each of the loop headers.
494 void adjustLoopHeaderMass(LoopData &Loop);
496 void distributeIrrLoopHeaderMass(Distribution &Dist);
498 /// Package up a loop.
499 void packageLoop(LoopData &Loop);
501 /// Unwrap loops.
502 void unwrapLoops();
504 /// Finalize frequency metrics.
506 /// Calculates final frequencies and cleans up no-longer-needed data
507 /// structures.
508 void finalizeMetrics();
510 /// Clear all memory.
511 void clear();
513 virtual std::string getBlockName(const BlockNode &Node) const;
514 std::string getLoopName(const LoopData &Loop) const;
516 virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
517 void dump() const { print(dbgs()); }
519 Scaled64 getFloatingBlockFreq(const BlockNode &Node) const;
521 BlockFrequency getBlockFreq(const BlockNode &Node) const;
522 Optional<uint64_t> getBlockProfileCount(const Function &F,
523 const BlockNode &Node,
524 bool AllowSynthetic = false) const;
525 Optional<uint64_t> getProfileCountFromFreq(const Function &F,
526 uint64_t Freq,
527 bool AllowSynthetic = false) const;
528 bool isIrrLoopHeader(const BlockNode &Node);
530 void setBlockFreq(const BlockNode &Node, uint64_t Freq);
532 raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const;
533 raw_ostream &printBlockFreq(raw_ostream &OS,
534 const BlockFrequency &Freq) const;
536 uint64_t getEntryFreq() const {
537 assert(!Freqs.empty());
538 return Freqs[0].Integer;
542 namespace bfi_detail {
544 template <class BlockT> struct TypeMap {};
545 template <> struct TypeMap<BasicBlock> {
546 using BlockT = BasicBlock;
547 using FunctionT = Function;
548 using BranchProbabilityInfoT = BranchProbabilityInfo;
549 using LoopT = Loop;
550 using LoopInfoT = LoopInfo;
552 template <> struct TypeMap<MachineBasicBlock> {
553 using BlockT = MachineBasicBlock;
554 using FunctionT = MachineFunction;
555 using BranchProbabilityInfoT = MachineBranchProbabilityInfo;
556 using LoopT = MachineLoop;
557 using LoopInfoT = MachineLoopInfo;
560 /// Get the name of a MachineBasicBlock.
562 /// Get the name of a MachineBasicBlock. It's templated so that including from
563 /// CodeGen is unnecessary (that would be a layering issue).
565 /// This is used mainly for debug output. The name is similar to
566 /// MachineBasicBlock::getFullName(), but skips the name of the function.
567 template <class BlockT> std::string getBlockName(const BlockT *BB) {
568 assert(BB && "Unexpected nullptr");
569 auto MachineName = "BB" + Twine(BB->getNumber());
570 if (BB->getBasicBlock())
571 return (MachineName + "[" + BB->getName() + "]").str();
572 return MachineName.str();
574 /// Get the name of a BasicBlock.
575 template <> inline std::string getBlockName(const BasicBlock *BB) {
576 assert(BB && "Unexpected nullptr");
577 return BB->getName().str();
580 /// Graph of irreducible control flow.
582 /// This graph is used for determining the SCCs in a loop (or top-level
583 /// function) that has irreducible control flow.
585 /// During the block frequency algorithm, the local graphs are defined in a
586 /// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock
587 /// graphs for most edges, but getting others from \a LoopData::ExitMap. The
588 /// latter only has successor information.
590 /// \a IrreducibleGraph makes this graph explicit. It's in a form that can use
591 /// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator),
592 /// and it explicitly lists predecessors and successors. The initialization
593 /// that relies on \c MachineBasicBlock is defined in the header.
594 struct IrreducibleGraph {
595 using BFIBase = BlockFrequencyInfoImplBase;
597 BFIBase &BFI;
599 using BlockNode = BFIBase::BlockNode;
600 struct IrrNode {
601 BlockNode Node;
602 unsigned NumIn = 0;
603 std::deque<const IrrNode *> Edges;
605 IrrNode(const BlockNode &Node) : Node(Node) {}
607 using iterator = std::deque<const IrrNode *>::const_iterator;
609 iterator pred_begin() const { return Edges.begin(); }
610 iterator succ_begin() const { return Edges.begin() + NumIn; }
611 iterator pred_end() const { return succ_begin(); }
612 iterator succ_end() const { return Edges.end(); }
614 BlockNode Start;
615 const IrrNode *StartIrr = nullptr;
616 std::vector<IrrNode> Nodes;
617 SmallDenseMap<uint32_t, IrrNode *, 4> Lookup;
619 /// Construct an explicit graph containing irreducible control flow.
621 /// Construct an explicit graph of the control flow in \c OuterLoop (or the
622 /// top-level function, if \c OuterLoop is \c nullptr). Uses \c
623 /// addBlockEdges to add block successors that have not been packaged into
624 /// loops.
626 /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected
627 /// user of this.
628 template <class BlockEdgesAdder>
629 IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop,
630 BlockEdgesAdder addBlockEdges) : BFI(BFI) {
631 initialize(OuterLoop, addBlockEdges);
634 template <class BlockEdgesAdder>
635 void initialize(const BFIBase::LoopData *OuterLoop,
636 BlockEdgesAdder addBlockEdges);
637 void addNodesInLoop(const BFIBase::LoopData &OuterLoop);
638 void addNodesInFunction();
640 void addNode(const BlockNode &Node) {
641 Nodes.emplace_back(Node);
642 BFI.Working[Node.Index].getMass() = BlockMass::getEmpty();
645 void indexNodes();
646 template <class BlockEdgesAdder>
647 void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop,
648 BlockEdgesAdder addBlockEdges);
649 void addEdge(IrrNode &Irr, const BlockNode &Succ,
650 const BFIBase::LoopData *OuterLoop);
653 template <class BlockEdgesAdder>
654 void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop,
655 BlockEdgesAdder addBlockEdges) {
656 if (OuterLoop) {
657 addNodesInLoop(*OuterLoop);
658 for (auto N : OuterLoop->Nodes)
659 addEdges(N, OuterLoop, addBlockEdges);
660 } else {
661 addNodesInFunction();
662 for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
663 addEdges(Index, OuterLoop, addBlockEdges);
665 StartIrr = Lookup[Start.Index];
668 template <class BlockEdgesAdder>
669 void IrreducibleGraph::addEdges(const BlockNode &Node,
670 const BFIBase::LoopData *OuterLoop,
671 BlockEdgesAdder addBlockEdges) {
672 auto L = Lookup.find(Node.Index);
673 if (L == Lookup.end())
674 return;
675 IrrNode &Irr = *L->second;
676 const auto &Working = BFI.Working[Node.Index];
678 if (Working.isAPackage())
679 for (const auto &I : Working.Loop->Exits)
680 addEdge(Irr, I.first, OuterLoop);
681 else
682 addBlockEdges(*this, Irr, OuterLoop);
685 } // end namespace bfi_detail
687 /// Shared implementation for block frequency analysis.
689 /// This is a shared implementation of BlockFrequencyInfo and
690 /// MachineBlockFrequencyInfo, and calculates the relative frequencies of
691 /// blocks.
693 /// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block,
694 /// which is called the header. A given loop, L, can have sub-loops, which are
695 /// loops within the subgraph of L that exclude its header. (A "trivial" SCC
696 /// consists of a single block that does not have a self-edge.)
698 /// In addition to loops, this algorithm has limited support for irreducible
699 /// SCCs, which are SCCs with multiple entry blocks. Irreducible SCCs are
700 /// discovered on they fly, and modelled as loops with multiple headers.
702 /// The headers of irreducible sub-SCCs consist of its entry blocks and all
703 /// nodes that are targets of a backedge within it (excluding backedges within
704 /// true sub-loops). Block frequency calculations act as if a block is
705 /// inserted that intercepts all the edges to the headers. All backedges and
706 /// entries point to this block. Its successors are the headers, which split
707 /// the frequency evenly.
709 /// This algorithm leverages BlockMass and ScaledNumber to maintain precision,
710 /// separates mass distribution from loop scaling, and dithers to eliminate
711 /// probability mass loss.
713 /// The implementation is split between BlockFrequencyInfoImpl, which knows the
714 /// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
715 /// BlockFrequencyInfoImplBase, which doesn't. The base class uses \a
716 /// BlockNode, a wrapper around a uint32_t. BlockNode is numbered from 0 in
717 /// reverse-post order. This gives two advantages: it's easy to compare the
718 /// relative ordering of two nodes, and maps keyed on BlockT can be represented
719 /// by vectors.
721 /// This algorithm is O(V+E), unless there is irreducible control flow, in
722 /// which case it's O(V*E) in the worst case.
724 /// These are the main stages:
726 /// 0. Reverse post-order traversal (\a initializeRPOT()).
728 /// Run a single post-order traversal and save it (in reverse) in RPOT.
729 /// All other stages make use of this ordering. Save a lookup from BlockT
730 /// to BlockNode (the index into RPOT) in Nodes.
732 /// 1. Loop initialization (\a initializeLoops()).
734 /// Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
735 /// the algorithm. In particular, store the immediate members of each loop
736 /// in reverse post-order.
738 /// 2. Calculate mass and scale in loops (\a computeMassInLoops()).
740 /// For each loop (bottom-up), distribute mass through the DAG resulting
741 /// from ignoring backedges and treating sub-loops as a single pseudo-node.
742 /// Track the backedge mass distributed to the loop header, and use it to
743 /// calculate the loop scale (number of loop iterations). Immediate
744 /// members that represent sub-loops will already have been visited and
745 /// packaged into a pseudo-node.
747 /// Distributing mass in a loop is a reverse-post-order traversal through
748 /// the loop. Start by assigning full mass to the Loop header. For each
749 /// node in the loop:
751 /// - Fetch and categorize the weight distribution for its successors.
752 /// If this is a packaged-subloop, the weight distribution is stored
753 /// in \a LoopData::Exits. Otherwise, fetch it from
754 /// BranchProbabilityInfo.
756 /// - Each successor is categorized as \a Weight::Local, a local edge
757 /// within the current loop, \a Weight::Backedge, a backedge to the
758 /// loop header, or \a Weight::Exit, any successor outside the loop.
759 /// The weight, the successor, and its category are stored in \a
760 /// Distribution. There can be multiple edges to each successor.
762 /// - If there's a backedge to a non-header, there's an irreducible SCC.
763 /// The usual flow is temporarily aborted. \a
764 /// computeIrreducibleMass() finds the irreducible SCCs within the
765 /// loop, packages them up, and restarts the flow.
767 /// - Normalize the distribution: scale weights down so that their sum
768 /// is 32-bits, and coalesce multiple edges to the same node.
770 /// - Distribute the mass accordingly, dithering to minimize mass loss,
771 /// as described in \a distributeMass().
773 /// In the case of irreducible loops, instead of a single loop header,
774 /// there will be several. The computation of backedge masses is similar
775 /// but instead of having a single backedge mass, there will be one
776 /// backedge per loop header. In these cases, each backedge will carry
777 /// a mass proportional to the edge weights along the corresponding
778 /// path.
780 /// At the end of propagation, the full mass assigned to the loop will be
781 /// distributed among the loop headers proportionally according to the
782 /// mass flowing through their backedges.
784 /// Finally, calculate the loop scale from the accumulated backedge mass.
786 /// 3. Distribute mass in the function (\a computeMassInFunction()).
788 /// Finally, distribute mass through the DAG resulting from packaging all
789 /// loops in the function. This uses the same algorithm as distributing
790 /// mass in a loop, except that there are no exit or backedge edges.
792 /// 4. Unpackage loops (\a unwrapLoops()).
794 /// Initialize each block's frequency to a floating point representation of
795 /// its mass.
797 /// Visit loops top-down, scaling the frequencies of its immediate members
798 /// by the loop's pseudo-node's frequency.
800 /// 5. Convert frequencies to a 64-bit range (\a finalizeMetrics()).
802 /// Using the min and max frequencies as a guide, translate floating point
803 /// frequencies to an appropriate range in uint64_t.
805 /// It has some known flaws.
807 /// - The model of irreducible control flow is a rough approximation.
809 /// Modelling irreducible control flow exactly involves setting up and
810 /// solving a group of infinite geometric series. Such precision is
811 /// unlikely to be worthwhile, since most of our algorithms give up on
812 /// irreducible control flow anyway.
814 /// Nevertheless, we might find that we need to get closer. Here's a sort
815 /// of TODO list for the model with diminishing returns, to be completed as
816 /// necessary.
818 /// - The headers for the \a LoopData representing an irreducible SCC
819 /// include non-entry blocks. When these extra blocks exist, they
820 /// indicate a self-contained irreducible sub-SCC. We could treat them
821 /// as sub-loops, rather than arbitrarily shoving the problematic
822 /// blocks into the headers of the main irreducible SCC.
824 /// - Entry frequencies are assumed to be evenly split between the
825 /// headers of a given irreducible SCC, which is the only option if we
826 /// need to compute mass in the SCC before its parent loop. Instead,
827 /// we could partially compute mass in the parent loop, and stop when
828 /// we get to the SCC. Here, we have the correct ratio of entry
829 /// masses, which we can use to adjust their relative frequencies.
830 /// Compute mass in the SCC, and then continue propagation in the
831 /// parent.
833 /// - We can propagate mass iteratively through the SCC, for some fixed
834 /// number of iterations. Each iteration starts by assigning the entry
835 /// blocks their backedge mass from the prior iteration. The final
836 /// mass for each block (and each exit, and the total backedge mass
837 /// used for computing loop scale) is the sum of all iterations.
838 /// (Running this until fixed point would "solve" the geometric
839 /// series by simulation.)
840 template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
841 // This is part of a workaround for a GCC 4.7 crash on lambdas.
842 friend struct bfi_detail::BlockEdgesAdder<BT>;
844 using BlockT = typename bfi_detail::TypeMap<BT>::BlockT;
845 using FunctionT = typename bfi_detail::TypeMap<BT>::FunctionT;
846 using BranchProbabilityInfoT =
847 typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT;
848 using LoopT = typename bfi_detail::TypeMap<BT>::LoopT;
849 using LoopInfoT = typename bfi_detail::TypeMap<BT>::LoopInfoT;
850 using Successor = GraphTraits<const BlockT *>;
851 using Predecessor = GraphTraits<Inverse<const BlockT *>>;
853 const BranchProbabilityInfoT *BPI = nullptr;
854 const LoopInfoT *LI = nullptr;
855 const FunctionT *F = nullptr;
857 // All blocks in reverse postorder.
858 std::vector<const BlockT *> RPOT;
859 DenseMap<const BlockT *, BlockNode> Nodes;
861 using rpot_iterator = typename std::vector<const BlockT *>::const_iterator;
863 rpot_iterator rpot_begin() const { return RPOT.begin(); }
864 rpot_iterator rpot_end() const { return RPOT.end(); }
866 size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }
868 BlockNode getNode(const rpot_iterator &I) const {
869 return BlockNode(getIndex(I));
871 BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB); }
873 const BlockT *getBlock(const BlockNode &Node) const {
874 assert(Node.Index < RPOT.size());
875 return RPOT[Node.Index];
878 /// Run (and save) a post-order traversal.
880 /// Saves a reverse post-order traversal of all the nodes in \a F.
881 void initializeRPOT();
883 /// Initialize loop data.
885 /// Build up \a Loops using \a LoopInfo. \a LoopInfo gives us a mapping from
886 /// each block to the deepest loop it's in, but we need the inverse. For each
887 /// loop, we store in reverse post-order its "immediate" members, defined as
888 /// the header, the headers of immediate sub-loops, and all other blocks in
889 /// the loop that are not in sub-loops.
890 void initializeLoops();
892 /// Propagate to a block's successors.
894 /// In the context of distributing mass through \c OuterLoop, divide the mass
895 /// currently assigned to \c Node between its successors.
897 /// \return \c true unless there's an irreducible backedge.
898 bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);
900 /// Compute mass in a particular loop.
902 /// Assign mass to \c Loop's header, and then for each block in \c Loop in
903 /// reverse post-order, distribute mass to its successors. Only visits nodes
904 /// that have not been packaged into sub-loops.
906 /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop.
907 /// \return \c true unless there's an irreducible backedge.
908 bool computeMassInLoop(LoopData &Loop);
910 /// Try to compute mass in the top-level function.
912 /// Assign mass to the entry block, and then for each block in reverse
913 /// post-order, distribute mass to its successors. Skips nodes that have
914 /// been packaged into loops.
916 /// \pre \a computeMassInLoops() has been called.
917 /// \return \c true unless there's an irreducible backedge.
918 bool tryToComputeMassInFunction();
920 /// Compute mass in (and package up) irreducible SCCs.
922 /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front
923 /// of \c Insert), and call \a computeMassInLoop() on each of them.
925 /// If \c OuterLoop is \c nullptr, it refers to the top-level function.
927 /// \pre \a computeMassInLoop() has been called for each subloop of \c
928 /// OuterLoop.
929 /// \pre \c Insert points at the last loop successfully processed by \a
930 /// computeMassInLoop().
931 /// \pre \c OuterLoop has irreducible SCCs.
932 void computeIrreducibleMass(LoopData *OuterLoop,
933 std::list<LoopData>::iterator Insert);
935 /// Compute mass in all loops.
937 /// For each loop bottom-up, call \a computeMassInLoop().
939 /// \a computeMassInLoop() aborts (and returns \c false) on loops that
940 /// contain a irreducible sub-SCCs. Use \a computeIrreducibleMass() and then
941 /// re-enter \a computeMassInLoop().
943 /// \post \a computeMassInLoop() has returned \c true for every loop.
944 void computeMassInLoops();
946 /// Compute mass in the top-level function.
948 /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to
949 /// compute mass in the top-level function.
951 /// \post \a tryToComputeMassInFunction() has returned \c true.
952 void computeMassInFunction();
954 std::string getBlockName(const BlockNode &Node) const override {
955 return bfi_detail::getBlockName(getBlock(Node));
958 public:
959 BlockFrequencyInfoImpl() = default;
961 const FunctionT *getFunction() const { return F; }
963 void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI,
964 const LoopInfoT &LI);
966 using BlockFrequencyInfoImplBase::getEntryFreq;
968 BlockFrequency getBlockFreq(const BlockT *BB) const {
969 return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
972 Optional<uint64_t> getBlockProfileCount(const Function &F,
973 const BlockT *BB,
974 bool AllowSynthetic = false) const {
975 return BlockFrequencyInfoImplBase::getBlockProfileCount(F, getNode(BB),
976 AllowSynthetic);
979 Optional<uint64_t> getProfileCountFromFreq(const Function &F,
980 uint64_t Freq,
981 bool AllowSynthetic = false) const {
982 return BlockFrequencyInfoImplBase::getProfileCountFromFreq(F, Freq,
983 AllowSynthetic);
986 bool isIrrLoopHeader(const BlockT *BB) {
987 return BlockFrequencyInfoImplBase::isIrrLoopHeader(getNode(BB));
990 void setBlockFreq(const BlockT *BB, uint64_t Freq);
992 Scaled64 getFloatingBlockFreq(const BlockT *BB) const {
993 return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
996 const BranchProbabilityInfoT &getBPI() const { return *BPI; }
998 /// Print the frequencies for the current function.
1000 /// Prints the frequencies for the blocks in the current function.
1002 /// Blocks are printed in the natural iteration order of the function, rather
1003 /// than reverse post-order. This provides two advantages: writing -analyze
1004 /// tests is easier (since blocks come out in source order), and even
1005 /// unreachable blocks are printed.
1007 /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so
1008 /// we need to override it here.
1009 raw_ostream &print(raw_ostream &OS) const override;
1011 using BlockFrequencyInfoImplBase::dump;
1012 using BlockFrequencyInfoImplBase::printBlockFreq;
1014 raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const {
1015 return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB));
1019 template <class BT>
1020 void BlockFrequencyInfoImpl<BT>::calculate(const FunctionT &F,
1021 const BranchProbabilityInfoT &BPI,
1022 const LoopInfoT &LI) {
1023 // Save the parameters.
1024 this->BPI = &BPI;
1025 this->LI = &LI;
1026 this->F = &F;
1028 // Clean up left-over data structures.
1029 BlockFrequencyInfoImplBase::clear();
1030 RPOT.clear();
1031 Nodes.clear();
1033 // Initialize.
1034 LLVM_DEBUG(dbgs() << "\nblock-frequency: " << F.getName()
1035 << "\n================="
1036 << std::string(F.getName().size(), '=') << "\n");
1037 initializeRPOT();
1038 initializeLoops();
1040 // Visit loops in post-order to find the local mass distribution, and then do
1041 // the full function.
1042 computeMassInLoops();
1043 computeMassInFunction();
1044 unwrapLoops();
1045 finalizeMetrics();
1048 template <class BT>
1049 void BlockFrequencyInfoImpl<BT>::setBlockFreq(const BlockT *BB, uint64_t Freq) {
1050 if (Nodes.count(BB))
1051 BlockFrequencyInfoImplBase::setBlockFreq(getNode(BB), Freq);
1052 else {
1053 // If BB is a newly added block after BFI is done, we need to create a new
1054 // BlockNode for it assigned with a new index. The index can be determined
1055 // by the size of Freqs.
1056 BlockNode NewNode(Freqs.size());
1057 Nodes[BB] = NewNode;
1058 Freqs.emplace_back();
1059 BlockFrequencyInfoImplBase::setBlockFreq(NewNode, Freq);
1063 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
1064 const BlockT *Entry = &F->front();
1065 RPOT.reserve(F->size());
1066 std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
1067 std::reverse(RPOT.begin(), RPOT.end());
1069 assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
1070 "More nodes in function than Block Frequency Info supports");
1072 LLVM_DEBUG(dbgs() << "reverse-post-order-traversal\n");
1073 for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
1074 BlockNode Node = getNode(I);
1075 LLVM_DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node)
1076 << "\n");
1077 Nodes[*I] = Node;
1080 Working.reserve(RPOT.size());
1081 for (size_t Index = 0; Index < RPOT.size(); ++Index)
1082 Working.emplace_back(Index);
1083 Freqs.resize(RPOT.size());
1086 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
1087 LLVM_DEBUG(dbgs() << "loop-detection\n");
1088 if (LI->empty())
1089 return;
1091 // Visit loops top down and assign them an index.
1092 std::deque<std::pair<const LoopT *, LoopData *>> Q;
1093 for (const LoopT *L : *LI)
1094 Q.emplace_back(L, nullptr);
1095 while (!Q.empty()) {
1096 const LoopT *Loop = Q.front().first;
1097 LoopData *Parent = Q.front().second;
1098 Q.pop_front();
1100 BlockNode Header = getNode(Loop->getHeader());
1101 assert(Header.isValid());
1103 Loops.emplace_back(Parent, Header);
1104 Working[Header.Index].Loop = &Loops.back();
1105 LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
1107 for (const LoopT *L : *Loop)
1108 Q.emplace_back(L, &Loops.back());
1111 // Visit nodes in reverse post-order and add them to their deepest containing
1112 // loop.
1113 for (size_t Index = 0; Index < RPOT.size(); ++Index) {
1114 // Loop headers have already been mostly mapped.
1115 if (Working[Index].isLoopHeader()) {
1116 LoopData *ContainingLoop = Working[Index].getContainingLoop();
1117 if (ContainingLoop)
1118 ContainingLoop->Nodes.push_back(Index);
1119 continue;
1122 const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
1123 if (!Loop)
1124 continue;
1126 // Add this node to its containing loop's member list.
1127 BlockNode Header = getNode(Loop->getHeader());
1128 assert(Header.isValid());
1129 const auto &HeaderData = Working[Header.Index];
1130 assert(HeaderData.isLoopHeader());
1132 Working[Index].Loop = HeaderData.Loop;
1133 HeaderData.Loop->Nodes.push_back(Index);
1134 LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header)
1135 << ": member = " << getBlockName(Index) << "\n");
1139 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
1140 // Visit loops with the deepest first, and the top-level loops last.
1141 for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
1142 if (computeMassInLoop(*L))
1143 continue;
1144 auto Next = std::next(L);
1145 computeIrreducibleMass(&*L, L.base());
1146 L = std::prev(Next);
1147 if (computeMassInLoop(*L))
1148 continue;
1149 llvm_unreachable("unhandled irreducible control flow");
1153 template <class BT>
1154 bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) {
1155 // Compute mass in loop.
1156 LLVM_DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n");
1158 if (Loop.isIrreducible()) {
1159 LLVM_DEBUG(dbgs() << "isIrreducible = true\n");
1160 Distribution Dist;
1161 unsigned NumHeadersWithWeight = 0;
1162 Optional<uint64_t> MinHeaderWeight;
1163 DenseSet<uint32_t> HeadersWithoutWeight;
1164 HeadersWithoutWeight.reserve(Loop.NumHeaders);
1165 for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
1166 auto &HeaderNode = Loop.Nodes[H];
1167 const BlockT *Block = getBlock(HeaderNode);
1168 IsIrrLoopHeader.set(Loop.Nodes[H].Index);
1169 Optional<uint64_t> HeaderWeight = Block->getIrrLoopHeaderWeight();
1170 if (!HeaderWeight) {
1171 LLVM_DEBUG(dbgs() << "Missing irr loop header metadata on "
1172 << getBlockName(HeaderNode) << "\n");
1173 HeadersWithoutWeight.insert(H);
1174 continue;
1176 LLVM_DEBUG(dbgs() << getBlockName(HeaderNode)
1177 << " has irr loop header weight "
1178 << HeaderWeight.getValue() << "\n");
1179 NumHeadersWithWeight++;
1180 uint64_t HeaderWeightValue = HeaderWeight.getValue();
1181 if (!MinHeaderWeight || HeaderWeightValue < MinHeaderWeight)
1182 MinHeaderWeight = HeaderWeightValue;
1183 if (HeaderWeightValue) {
1184 Dist.addLocal(HeaderNode, HeaderWeightValue);
1187 // As a heuristic, if some headers don't have a weight, give them the
1188 // minimium weight seen (not to disrupt the existing trends too much by
1189 // using a weight that's in the general range of the other headers' weights,
1190 // and the minimum seems to perform better than the average.)
1191 // FIXME: better update in the passes that drop the header weight.
1192 // If no headers have a weight, give them even weight (use weight 1).
1193 if (!MinHeaderWeight)
1194 MinHeaderWeight = 1;
1195 for (uint32_t H : HeadersWithoutWeight) {
1196 auto &HeaderNode = Loop.Nodes[H];
1197 assert(!getBlock(HeaderNode)->getIrrLoopHeaderWeight() &&
1198 "Shouldn't have a weight metadata");
1199 uint64_t MinWeight = MinHeaderWeight.getValue();
1200 LLVM_DEBUG(dbgs() << "Giving weight " << MinWeight << " to "
1201 << getBlockName(HeaderNode) << "\n");
1202 if (MinWeight)
1203 Dist.addLocal(HeaderNode, MinWeight);
1205 distributeIrrLoopHeaderMass(Dist);
1206 for (const BlockNode &M : Loop.Nodes)
1207 if (!propagateMassToSuccessors(&Loop, M))
1208 llvm_unreachable("unhandled irreducible control flow");
1209 if (NumHeadersWithWeight == 0)
1210 // No headers have a metadata. Adjust header mass.
1211 adjustLoopHeaderMass(Loop);
1212 } else {
1213 Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
1214 if (!propagateMassToSuccessors(&Loop, Loop.getHeader()))
1215 llvm_unreachable("irreducible control flow to loop header!?");
1216 for (const BlockNode &M : Loop.members())
1217 if (!propagateMassToSuccessors(&Loop, M))
1218 // Irreducible backedge.
1219 return false;
1222 computeLoopScale(Loop);
1223 packageLoop(Loop);
1224 return true;
1227 template <class BT>
1228 bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() {
1229 // Compute mass in function.
1230 LLVM_DEBUG(dbgs() << "compute-mass-in-function\n");
1231 assert(!Working.empty() && "no blocks in function");
1232 assert(!Working[0].isLoopHeader() && "entry block is a loop header");
1234 Working[0].getMass() = BlockMass::getFull();
1235 for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
1236 // Check for nodes that have been packaged.
1237 BlockNode Node = getNode(I);
1238 if (Working[Node.Index].isPackaged())
1239 continue;
1241 if (!propagateMassToSuccessors(nullptr, Node))
1242 return false;
1244 return true;
1247 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
1248 if (tryToComputeMassInFunction())
1249 return;
1250 computeIrreducibleMass(nullptr, Loops.begin());
1251 if (tryToComputeMassInFunction())
1252 return;
1253 llvm_unreachable("unhandled irreducible control flow");
1256 /// \note This should be a lambda, but that crashes GCC 4.7.
1257 namespace bfi_detail {
1259 template <class BT> struct BlockEdgesAdder {
1260 using BlockT = BT;
1261 using LoopData = BlockFrequencyInfoImplBase::LoopData;
1262 using Successor = GraphTraits<const BlockT *>;
1264 const BlockFrequencyInfoImpl<BT> &BFI;
1266 explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI)
1267 : BFI(BFI) {}
1269 void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr,
1270 const LoopData *OuterLoop) {
1271 const BlockT *BB = BFI.RPOT[Irr.Node.Index];
1272 for (const auto Succ : children<const BlockT *>(BB))
1273 G.addEdge(Irr, BFI.getNode(Succ), OuterLoop);
1277 } // end namespace bfi_detail
1279 template <class BT>
1280 void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass(
1281 LoopData *OuterLoop, std::list<LoopData>::iterator Insert) {
1282 LLVM_DEBUG(dbgs() << "analyze-irreducible-in-";
1283 if (OuterLoop) dbgs()
1284 << "loop: " << getLoopName(*OuterLoop) << "\n";
1285 else dbgs() << "function\n");
1287 using namespace bfi_detail;
1289 // Ideally, addBlockEdges() would be declared here as a lambda, but that
1290 // crashes GCC 4.7.
1291 BlockEdgesAdder<BT> addBlockEdges(*this);
1292 IrreducibleGraph G(*this, OuterLoop, addBlockEdges);
1294 for (auto &L : analyzeIrreducible(G, OuterLoop, Insert))
1295 computeMassInLoop(L);
1297 if (!OuterLoop)
1298 return;
1299 updateLoopWithIrreducible(*OuterLoop);
1302 // A helper function that converts a branch probability into weight.
1303 inline uint32_t getWeightFromBranchProb(const BranchProbability Prob) {
1304 return Prob.getNumerator();
1307 template <class BT>
1308 bool
1309 BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
1310 const BlockNode &Node) {
1311 LLVM_DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
1312 // Calculate probability for successors.
1313 Distribution Dist;
1314 if (auto *Loop = Working[Node.Index].getPackagedLoop()) {
1315 assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop");
1316 if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist))
1317 // Irreducible backedge.
1318 return false;
1319 } else {
1320 const BlockT *BB = getBlock(Node);
1321 for (auto SI = GraphTraits<const BlockT *>::child_begin(BB),
1322 SE = GraphTraits<const BlockT *>::child_end(BB);
1323 SI != SE; ++SI)
1324 if (!addToDist(
1325 Dist, OuterLoop, Node, getNode(*SI),
1326 getWeightFromBranchProb(BPI->getEdgeProbability(BB, SI))))
1327 // Irreducible backedge.
1328 return false;
1331 // Distribute mass to successors, saving exit and backedge data in the
1332 // loop header.
1333 distributeMass(Node, OuterLoop, Dist);
1334 return true;
1337 template <class BT>
1338 raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const {
1339 if (!F)
1340 return OS;
1341 OS << "block-frequency-info: " << F->getName() << "\n";
1342 for (const BlockT &BB : *F) {
1343 OS << " - " << bfi_detail::getBlockName(&BB) << ": float = ";
1344 getFloatingBlockFreq(&BB).print(OS, 5)
1345 << ", int = " << getBlockFreq(&BB).getFrequency();
1346 if (Optional<uint64_t> ProfileCount =
1347 BlockFrequencyInfoImplBase::getBlockProfileCount(
1348 F->getFunction(), getNode(&BB)))
1349 OS << ", count = " << ProfileCount.getValue();
1350 if (Optional<uint64_t> IrrLoopHeaderWeight =
1351 BB.getIrrLoopHeaderWeight())
1352 OS << ", irr_loop_header_weight = " << IrrLoopHeaderWeight.getValue();
1353 OS << "\n";
1356 // Add an extra newline for readability.
1357 OS << "\n";
1358 return OS;
1361 // Graph trait base class for block frequency information graph
1362 // viewer.
1364 enum GVDAGType { GVDT_None, GVDT_Fraction, GVDT_Integer, GVDT_Count };
1366 template <class BlockFrequencyInfoT, class BranchProbabilityInfoT>
1367 struct BFIDOTGraphTraitsBase : public DefaultDOTGraphTraits {
1368 using GTraits = GraphTraits<BlockFrequencyInfoT *>;
1369 using NodeRef = typename GTraits::NodeRef;
1370 using EdgeIter = typename GTraits::ChildIteratorType;
1371 using NodeIter = typename GTraits::nodes_iterator;
1373 uint64_t MaxFrequency = 0;
1375 explicit BFIDOTGraphTraitsBase(bool isSimple = false)
1376 : DefaultDOTGraphTraits(isSimple) {}
1378 static std::string getGraphName(const BlockFrequencyInfoT *G) {
1379 return G->getFunction()->getName();
1382 std::string getNodeAttributes(NodeRef Node, const BlockFrequencyInfoT *Graph,
1383 unsigned HotPercentThreshold = 0) {
1384 std::string Result;
1385 if (!HotPercentThreshold)
1386 return Result;
1388 // Compute MaxFrequency on the fly:
1389 if (!MaxFrequency) {
1390 for (NodeIter I = GTraits::nodes_begin(Graph),
1391 E = GTraits::nodes_end(Graph);
1392 I != E; ++I) {
1393 NodeRef N = *I;
1394 MaxFrequency =
1395 std::max(MaxFrequency, Graph->getBlockFreq(N).getFrequency());
1398 BlockFrequency Freq = Graph->getBlockFreq(Node);
1399 BlockFrequency HotFreq =
1400 (BlockFrequency(MaxFrequency) *
1401 BranchProbability::getBranchProbability(HotPercentThreshold, 100));
1403 if (Freq < HotFreq)
1404 return Result;
1406 raw_string_ostream OS(Result);
1407 OS << "color=\"red\"";
1408 OS.flush();
1409 return Result;
1412 std::string getNodeLabel(NodeRef Node, const BlockFrequencyInfoT *Graph,
1413 GVDAGType GType, int layout_order = -1) {
1414 std::string Result;
1415 raw_string_ostream OS(Result);
1417 if (layout_order != -1)
1418 OS << Node->getName() << "[" << layout_order << "] : ";
1419 else
1420 OS << Node->getName() << " : ";
1421 switch (GType) {
1422 case GVDT_Fraction:
1423 Graph->printBlockFreq(OS, Node);
1424 break;
1425 case GVDT_Integer:
1426 OS << Graph->getBlockFreq(Node).getFrequency();
1427 break;
1428 case GVDT_Count: {
1429 auto Count = Graph->getBlockProfileCount(Node);
1430 if (Count)
1431 OS << Count.getValue();
1432 else
1433 OS << "Unknown";
1434 break;
1436 case GVDT_None:
1437 llvm_unreachable("If we are not supposed to render a graph we should "
1438 "never reach this point.");
1440 return Result;
1443 std::string getEdgeAttributes(NodeRef Node, EdgeIter EI,
1444 const BlockFrequencyInfoT *BFI,
1445 const BranchProbabilityInfoT *BPI,
1446 unsigned HotPercentThreshold = 0) {
1447 std::string Str;
1448 if (!BPI)
1449 return Str;
1451 BranchProbability BP = BPI->getEdgeProbability(Node, EI);
1452 uint32_t N = BP.getNumerator();
1453 uint32_t D = BP.getDenominator();
1454 double Percent = 100.0 * N / D;
1455 raw_string_ostream OS(Str);
1456 OS << format("label=\"%.1f%%\"", Percent);
1458 if (HotPercentThreshold) {
1459 BlockFrequency EFreq = BFI->getBlockFreq(Node) * BP;
1460 BlockFrequency HotFreq = BlockFrequency(MaxFrequency) *
1461 BranchProbability(HotPercentThreshold, 100);
1463 if (EFreq >= HotFreq) {
1464 OS << ",color=\"red\"";
1468 OS.flush();
1469 return Str;
1473 } // end namespace llvm
1475 #undef DEBUG_TYPE
1477 #endif // LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H