[InstCombine] Signed saturation patterns
[llvm-complete.git] / include / llvm / Analysis / MemorySSA.h
blobe89bf26a7234b9f5f9d1b873364d1dea5062de92
1 //===- MemorySSA.h - Build Memory SSA ---------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file exposes an interface to building/using memory SSA to
11 /// walk memory instructions using a use/def graph.
12 ///
13 /// Memory SSA class builds an SSA form that links together memory access
14 /// instructions such as loads, stores, atomics, and calls. Additionally, it
15 /// does a trivial form of "heap versioning" Every time the memory state changes
16 /// in the program, we generate a new heap version. It generates
17 /// MemoryDef/Uses/Phis that are overlayed on top of the existing instructions.
18 ///
19 /// As a trivial example,
20 /// define i32 @main() #0 {
21 /// entry:
22 /// %call = call noalias i8* @_Znwm(i64 4) #2
23 /// %0 = bitcast i8* %call to i32*
24 /// %call1 = call noalias i8* @_Znwm(i64 4) #2
25 /// %1 = bitcast i8* %call1 to i32*
26 /// store i32 5, i32* %0, align 4
27 /// store i32 7, i32* %1, align 4
28 /// %2 = load i32* %0, align 4
29 /// %3 = load i32* %1, align 4
30 /// %add = add nsw i32 %2, %3
31 /// ret i32 %add
32 /// }
33 ///
34 /// Will become
35 /// define i32 @main() #0 {
36 /// entry:
37 /// ; 1 = MemoryDef(0)
38 /// %call = call noalias i8* @_Znwm(i64 4) #3
39 /// %2 = bitcast i8* %call to i32*
40 /// ; 2 = MemoryDef(1)
41 /// %call1 = call noalias i8* @_Znwm(i64 4) #3
42 /// %4 = bitcast i8* %call1 to i32*
43 /// ; 3 = MemoryDef(2)
44 /// store i32 5, i32* %2, align 4
45 /// ; 4 = MemoryDef(3)
46 /// store i32 7, i32* %4, align 4
47 /// ; MemoryUse(3)
48 /// %7 = load i32* %2, align 4
49 /// ; MemoryUse(4)
50 /// %8 = load i32* %4, align 4
51 /// %add = add nsw i32 %7, %8
52 /// ret i32 %add
53 /// }
54 ///
55 /// Given this form, all the stores that could ever effect the load at %8 can be
56 /// gotten by using the MemoryUse associated with it, and walking from use to
57 /// def until you hit the top of the function.
58 ///
59 /// Each def also has a list of users associated with it, so you can walk from
60 /// both def to users, and users to defs. Note that we disambiguate MemoryUses,
61 /// but not the RHS of MemoryDefs. You can see this above at %7, which would
62 /// otherwise be a MemoryUse(4). Being disambiguated means that for a given
63 /// store, all the MemoryUses on its use lists are may-aliases of that store
64 /// (but the MemoryDefs on its use list may not be).
65 ///
66 /// MemoryDefs are not disambiguated because it would require multiple reaching
67 /// definitions, which would require multiple phis, and multiple memoryaccesses
68 /// per instruction.
70 //===----------------------------------------------------------------------===//
72 #ifndef LLVM_ANALYSIS_MEMORYSSA_H
73 #define LLVM_ANALYSIS_MEMORYSSA_H
75 #include "llvm/ADT/DenseMap.h"
76 #include "llvm/ADT/GraphTraits.h"
77 #include "llvm/ADT/SmallPtrSet.h"
78 #include "llvm/ADT/SmallVector.h"
79 #include "llvm/ADT/ilist.h"
80 #include "llvm/ADT/ilist_node.h"
81 #include "llvm/ADT/iterator.h"
82 #include "llvm/ADT/iterator_range.h"
83 #include "llvm/ADT/simple_ilist.h"
84 #include "llvm/Analysis/AliasAnalysis.h"
85 #include "llvm/Analysis/MemoryLocation.h"
86 #include "llvm/Analysis/PHITransAddr.h"
87 #include "llvm/IR/BasicBlock.h"
88 #include "llvm/IR/DerivedUser.h"
89 #include "llvm/IR/Dominators.h"
90 #include "llvm/IR/Module.h"
91 #include "llvm/IR/Type.h"
92 #include "llvm/IR/Use.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/IR/ValueHandle.h"
96 #include "llvm/Pass.h"
97 #include "llvm/Support/Casting.h"
98 #include <algorithm>
99 #include <cassert>
100 #include <cstddef>
101 #include <iterator>
102 #include <memory>
103 #include <utility>
105 namespace llvm {
107 /// Enables memory ssa as a dependency for loop passes.
108 extern cl::opt<bool> EnableMSSALoopDependency;
110 class Function;
111 class Instruction;
112 class MemoryAccess;
113 class MemorySSAWalker;
114 class LLVMContext;
115 class raw_ostream;
117 namespace MSSAHelpers {
119 struct AllAccessTag {};
120 struct DefsOnlyTag {};
122 } // end namespace MSSAHelpers
124 enum : unsigned {
125 // Used to signify what the default invalid ID is for MemoryAccess's
126 // getID()
127 INVALID_MEMORYACCESS_ID = -1U
130 template <class T> class memoryaccess_def_iterator_base;
131 using memoryaccess_def_iterator = memoryaccess_def_iterator_base<MemoryAccess>;
132 using const_memoryaccess_def_iterator =
133 memoryaccess_def_iterator_base<const MemoryAccess>;
135 // The base for all memory accesses. All memory accesses in a block are
136 // linked together using an intrusive list.
137 class MemoryAccess
138 : public DerivedUser,
139 public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>,
140 public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>> {
141 public:
142 using AllAccessType =
143 ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>;
144 using DefsOnlyType =
145 ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>;
147 MemoryAccess(const MemoryAccess &) = delete;
148 MemoryAccess &operator=(const MemoryAccess &) = delete;
150 void *operator new(size_t) = delete;
152 // Methods for support type inquiry through isa, cast, and
153 // dyn_cast
154 static bool classof(const Value *V) {
155 unsigned ID = V->getValueID();
156 return ID == MemoryUseVal || ID == MemoryPhiVal || ID == MemoryDefVal;
159 BasicBlock *getBlock() const { return Block; }
161 void print(raw_ostream &OS) const;
162 void dump() const;
164 /// The user iterators for a memory access
165 using iterator = user_iterator;
166 using const_iterator = const_user_iterator;
168 /// This iterator walks over all of the defs in a given
169 /// MemoryAccess. For MemoryPhi nodes, this walks arguments. For
170 /// MemoryUse/MemoryDef, this walks the defining access.
171 memoryaccess_def_iterator defs_begin();
172 const_memoryaccess_def_iterator defs_begin() const;
173 memoryaccess_def_iterator defs_end();
174 const_memoryaccess_def_iterator defs_end() const;
176 /// Get the iterators for the all access list and the defs only list
177 /// We default to the all access list.
178 AllAccessType::self_iterator getIterator() {
179 return this->AllAccessType::getIterator();
181 AllAccessType::const_self_iterator getIterator() const {
182 return this->AllAccessType::getIterator();
184 AllAccessType::reverse_self_iterator getReverseIterator() {
185 return this->AllAccessType::getReverseIterator();
187 AllAccessType::const_reverse_self_iterator getReverseIterator() const {
188 return this->AllAccessType::getReverseIterator();
190 DefsOnlyType::self_iterator getDefsIterator() {
191 return this->DefsOnlyType::getIterator();
193 DefsOnlyType::const_self_iterator getDefsIterator() const {
194 return this->DefsOnlyType::getIterator();
196 DefsOnlyType::reverse_self_iterator getReverseDefsIterator() {
197 return this->DefsOnlyType::getReverseIterator();
199 DefsOnlyType::const_reverse_self_iterator getReverseDefsIterator() const {
200 return this->DefsOnlyType::getReverseIterator();
203 protected:
204 friend class MemoryDef;
205 friend class MemoryPhi;
206 friend class MemorySSA;
207 friend class MemoryUse;
208 friend class MemoryUseOrDef;
210 /// Used by MemorySSA to change the block of a MemoryAccess when it is
211 /// moved.
212 void setBlock(BasicBlock *BB) { Block = BB; }
214 /// Used for debugging and tracking things about MemoryAccesses.
215 /// Guaranteed unique among MemoryAccesses, no guarantees otherwise.
216 inline unsigned getID() const;
218 MemoryAccess(LLVMContext &C, unsigned Vty, DeleteValueTy DeleteValue,
219 BasicBlock *BB, unsigned NumOperands)
220 : DerivedUser(Type::getVoidTy(C), Vty, nullptr, NumOperands, DeleteValue),
221 Block(BB) {}
223 // Use deleteValue() to delete a generic MemoryAccess.
224 ~MemoryAccess() = default;
226 private:
227 BasicBlock *Block;
230 template <>
231 struct ilist_alloc_traits<MemoryAccess> {
232 static void deleteNode(MemoryAccess *MA) { MA->deleteValue(); }
235 inline raw_ostream &operator<<(raw_ostream &OS, const MemoryAccess &MA) {
236 MA.print(OS);
237 return OS;
240 /// Class that has the common methods + fields of memory uses/defs. It's
241 /// a little awkward to have, but there are many cases where we want either a
242 /// use or def, and there are many cases where uses are needed (defs aren't
243 /// acceptable), and vice-versa.
245 /// This class should never be instantiated directly; make a MemoryUse or
246 /// MemoryDef instead.
247 class MemoryUseOrDef : public MemoryAccess {
248 public:
249 void *operator new(size_t) = delete;
251 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
253 /// Get the instruction that this MemoryUse represents.
254 Instruction *getMemoryInst() const { return MemoryInstruction; }
256 /// Get the access that produces the memory state used by this Use.
257 MemoryAccess *getDefiningAccess() const { return getOperand(0); }
259 static bool classof(const Value *MA) {
260 return MA->getValueID() == MemoryUseVal || MA->getValueID() == MemoryDefVal;
263 // Sadly, these have to be public because they are needed in some of the
264 // iterators.
265 inline bool isOptimized() const;
266 inline MemoryAccess *getOptimized() const;
267 inline void setOptimized(MemoryAccess *);
269 // Retrieve AliasResult type of the optimized access. Ideally this would be
270 // returned by the caching walker and may go away in the future.
271 Optional<AliasResult> getOptimizedAccessType() const {
272 return OptimizedAccessAlias;
275 /// Reset the ID of what this MemoryUse was optimized to, causing it to
276 /// be rewalked by the walker if necessary.
277 /// This really should only be called by tests.
278 inline void resetOptimized();
280 protected:
281 friend class MemorySSA;
282 friend class MemorySSAUpdater;
284 MemoryUseOrDef(LLVMContext &C, MemoryAccess *DMA, unsigned Vty,
285 DeleteValueTy DeleteValue, Instruction *MI, BasicBlock *BB,
286 unsigned NumOperands)
287 : MemoryAccess(C, Vty, DeleteValue, BB, NumOperands),
288 MemoryInstruction(MI), OptimizedAccessAlias(MayAlias) {
289 setDefiningAccess(DMA);
292 // Use deleteValue() to delete a generic MemoryUseOrDef.
293 ~MemoryUseOrDef() = default;
295 void setOptimizedAccessType(Optional<AliasResult> AR) {
296 OptimizedAccessAlias = AR;
299 void setDefiningAccess(MemoryAccess *DMA, bool Optimized = false,
300 Optional<AliasResult> AR = MayAlias) {
301 if (!Optimized) {
302 setOperand(0, DMA);
303 return;
305 setOptimized(DMA);
306 setOptimizedAccessType(AR);
309 private:
310 Instruction *MemoryInstruction;
311 Optional<AliasResult> OptimizedAccessAlias;
314 /// Represents read-only accesses to memory
316 /// In particular, the set of Instructions that will be represented by
317 /// MemoryUse's is exactly the set of Instructions for which
318 /// AliasAnalysis::getModRefInfo returns "Ref".
319 class MemoryUse final : public MemoryUseOrDef {
320 public:
321 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
323 MemoryUse(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB)
324 : MemoryUseOrDef(C, DMA, MemoryUseVal, deleteMe, MI, BB,
325 /*NumOperands=*/1) {}
327 // allocate space for exactly one operand
328 void *operator new(size_t s) { return User::operator new(s, 1); }
330 static bool classof(const Value *MA) {
331 return MA->getValueID() == MemoryUseVal;
334 void print(raw_ostream &OS) const;
336 void setOptimized(MemoryAccess *DMA) {
337 OptimizedID = DMA->getID();
338 setOperand(0, DMA);
341 bool isOptimized() const {
342 return getDefiningAccess() && OptimizedID == getDefiningAccess()->getID();
345 MemoryAccess *getOptimized() const {
346 return getDefiningAccess();
349 void resetOptimized() {
350 OptimizedID = INVALID_MEMORYACCESS_ID;
353 protected:
354 friend class MemorySSA;
356 private:
357 static void deleteMe(DerivedUser *Self);
359 unsigned OptimizedID = INVALID_MEMORYACCESS_ID;
362 template <>
363 struct OperandTraits<MemoryUse> : public FixedNumOperandTraits<MemoryUse, 1> {};
364 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUse, MemoryAccess)
366 /// Represents a read-write access to memory, whether it is a must-alias,
367 /// or a may-alias.
369 /// In particular, the set of Instructions that will be represented by
370 /// MemoryDef's is exactly the set of Instructions for which
371 /// AliasAnalysis::getModRefInfo returns "Mod" or "ModRef".
372 /// Note that, in order to provide def-def chains, all defs also have a use
373 /// associated with them. This use points to the nearest reaching
374 /// MemoryDef/MemoryPhi.
375 class MemoryDef final : public MemoryUseOrDef {
376 public:
377 friend class MemorySSA;
379 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
381 MemoryDef(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB,
382 unsigned Ver)
383 : MemoryUseOrDef(C, DMA, MemoryDefVal, deleteMe, MI, BB,
384 /*NumOperands=*/2),
385 ID(Ver) {}
387 // allocate space for exactly two operands
388 void *operator new(size_t s) { return User::operator new(s, 2); }
390 static bool classof(const Value *MA) {
391 return MA->getValueID() == MemoryDefVal;
394 void setOptimized(MemoryAccess *MA) {
395 setOperand(1, MA);
396 OptimizedID = MA->getID();
399 MemoryAccess *getOptimized() const {
400 return cast_or_null<MemoryAccess>(getOperand(1));
403 bool isOptimized() const {
404 return getOptimized() && OptimizedID == getOptimized()->getID();
407 void resetOptimized() {
408 OptimizedID = INVALID_MEMORYACCESS_ID;
409 setOperand(1, nullptr);
412 void print(raw_ostream &OS) const;
414 unsigned getID() const { return ID; }
416 private:
417 static void deleteMe(DerivedUser *Self);
419 const unsigned ID;
420 unsigned OptimizedID = INVALID_MEMORYACCESS_ID;
423 template <>
424 struct OperandTraits<MemoryDef> : public FixedNumOperandTraits<MemoryDef, 2> {};
425 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryDef, MemoryAccess)
427 template <>
428 struct OperandTraits<MemoryUseOrDef> {
429 static Use *op_begin(MemoryUseOrDef *MUD) {
430 if (auto *MU = dyn_cast<MemoryUse>(MUD))
431 return OperandTraits<MemoryUse>::op_begin(MU);
432 return OperandTraits<MemoryDef>::op_begin(cast<MemoryDef>(MUD));
435 static Use *op_end(MemoryUseOrDef *MUD) {
436 if (auto *MU = dyn_cast<MemoryUse>(MUD))
437 return OperandTraits<MemoryUse>::op_end(MU);
438 return OperandTraits<MemoryDef>::op_end(cast<MemoryDef>(MUD));
441 static unsigned operands(const MemoryUseOrDef *MUD) {
442 if (const auto *MU = dyn_cast<MemoryUse>(MUD))
443 return OperandTraits<MemoryUse>::operands(MU);
444 return OperandTraits<MemoryDef>::operands(cast<MemoryDef>(MUD));
447 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUseOrDef, MemoryAccess)
449 /// Represents phi nodes for memory accesses.
451 /// These have the same semantic as regular phi nodes, with the exception that
452 /// only one phi will ever exist in a given basic block.
453 /// Guaranteeing one phi per block means guaranteeing there is only ever one
454 /// valid reaching MemoryDef/MemoryPHI along each path to the phi node.
455 /// This is ensured by not allowing disambiguation of the RHS of a MemoryDef or
456 /// a MemoryPhi's operands.
457 /// That is, given
458 /// if (a) {
459 /// store %a
460 /// store %b
461 /// }
462 /// it *must* be transformed into
463 /// if (a) {
464 /// 1 = MemoryDef(liveOnEntry)
465 /// store %a
466 /// 2 = MemoryDef(1)
467 /// store %b
468 /// }
469 /// and *not*
470 /// if (a) {
471 /// 1 = MemoryDef(liveOnEntry)
472 /// store %a
473 /// 2 = MemoryDef(liveOnEntry)
474 /// store %b
475 /// }
476 /// even if the two stores do not conflict. Otherwise, both 1 and 2 reach the
477 /// end of the branch, and if there are not two phi nodes, one will be
478 /// disconnected completely from the SSA graph below that point.
479 /// Because MemoryUse's do not generate new definitions, they do not have this
480 /// issue.
481 class MemoryPhi final : public MemoryAccess {
482 // allocate space for exactly zero operands
483 void *operator new(size_t s) { return User::operator new(s); }
485 public:
486 /// Provide fast operand accessors
487 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
489 MemoryPhi(LLVMContext &C, BasicBlock *BB, unsigned Ver, unsigned NumPreds = 0)
490 : MemoryAccess(C, MemoryPhiVal, deleteMe, BB, 0), ID(Ver),
491 ReservedSpace(NumPreds) {
492 allocHungoffUses(ReservedSpace);
495 // Block iterator interface. This provides access to the list of incoming
496 // basic blocks, which parallels the list of incoming values.
497 using block_iterator = BasicBlock **;
498 using const_block_iterator = BasicBlock *const *;
500 block_iterator block_begin() {
501 auto *Ref = reinterpret_cast<Use::UserRef *>(op_begin() + ReservedSpace);
502 return reinterpret_cast<block_iterator>(Ref + 1);
505 const_block_iterator block_begin() const {
506 const auto *Ref =
507 reinterpret_cast<const Use::UserRef *>(op_begin() + ReservedSpace);
508 return reinterpret_cast<const_block_iterator>(Ref + 1);
511 block_iterator block_end() { return block_begin() + getNumOperands(); }
513 const_block_iterator block_end() const {
514 return block_begin() + getNumOperands();
517 iterator_range<block_iterator> blocks() {
518 return make_range(block_begin(), block_end());
521 iterator_range<const_block_iterator> blocks() const {
522 return make_range(block_begin(), block_end());
525 op_range incoming_values() { return operands(); }
527 const_op_range incoming_values() const { return operands(); }
529 /// Return the number of incoming edges
530 unsigned getNumIncomingValues() const { return getNumOperands(); }
532 /// Return incoming value number x
533 MemoryAccess *getIncomingValue(unsigned I) const { return getOperand(I); }
534 void setIncomingValue(unsigned I, MemoryAccess *V) {
535 assert(V && "PHI node got a null value!");
536 setOperand(I, V);
539 static unsigned getOperandNumForIncomingValue(unsigned I) { return I; }
540 static unsigned getIncomingValueNumForOperand(unsigned I) { return I; }
542 /// Return incoming basic block number @p i.
543 BasicBlock *getIncomingBlock(unsigned I) const { return block_begin()[I]; }
545 /// Return incoming basic block corresponding
546 /// to an operand of the PHI.
547 BasicBlock *getIncomingBlock(const Use &U) const {
548 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
549 return getIncomingBlock(unsigned(&U - op_begin()));
552 /// Return incoming basic block corresponding
553 /// to value use iterator.
554 BasicBlock *getIncomingBlock(MemoryAccess::const_user_iterator I) const {
555 return getIncomingBlock(I.getUse());
558 void setIncomingBlock(unsigned I, BasicBlock *BB) {
559 assert(BB && "PHI node got a null basic block!");
560 block_begin()[I] = BB;
563 /// Add an incoming value to the end of the PHI list
564 void addIncoming(MemoryAccess *V, BasicBlock *BB) {
565 if (getNumOperands() == ReservedSpace)
566 growOperands(); // Get more space!
567 // Initialize some new operands.
568 setNumHungOffUseOperands(getNumOperands() + 1);
569 setIncomingValue(getNumOperands() - 1, V);
570 setIncomingBlock(getNumOperands() - 1, BB);
573 /// Return the first index of the specified basic
574 /// block in the value list for this PHI. Returns -1 if no instance.
575 int getBasicBlockIndex(const BasicBlock *BB) const {
576 for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
577 if (block_begin()[I] == BB)
578 return I;
579 return -1;
582 MemoryAccess *getIncomingValueForBlock(const BasicBlock *BB) const {
583 int Idx = getBasicBlockIndex(BB);
584 assert(Idx >= 0 && "Invalid basic block argument!");
585 return getIncomingValue(Idx);
588 // After deleting incoming position I, the order of incoming may be changed.
589 void unorderedDeleteIncoming(unsigned I) {
590 unsigned E = getNumOperands();
591 assert(I < E && "Cannot remove out of bounds Phi entry.");
592 // MemoryPhi must have at least two incoming values, otherwise the MemoryPhi
593 // itself should be deleted.
594 assert(E >= 2 && "Cannot only remove incoming values in MemoryPhis with "
595 "at least 2 values.");
596 setIncomingValue(I, getIncomingValue(E - 1));
597 setIncomingBlock(I, block_begin()[E - 1]);
598 setOperand(E - 1, nullptr);
599 block_begin()[E - 1] = nullptr;
600 setNumHungOffUseOperands(getNumOperands() - 1);
603 // After deleting entries that satisfy Pred, remaining entries may have
604 // changed order.
605 template <typename Fn> void unorderedDeleteIncomingIf(Fn &&Pred) {
606 for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
607 if (Pred(getIncomingValue(I), getIncomingBlock(I))) {
608 unorderedDeleteIncoming(I);
609 E = getNumOperands();
610 --I;
612 assert(getNumOperands() >= 1 &&
613 "Cannot remove all incoming blocks in a MemoryPhi.");
616 // After deleting incoming block BB, the incoming blocks order may be changed.
617 void unorderedDeleteIncomingBlock(const BasicBlock *BB) {
618 unorderedDeleteIncomingIf(
619 [&](const MemoryAccess *, const BasicBlock *B) { return BB == B; });
622 // After deleting incoming memory access MA, the incoming accesses order may
623 // be changed.
624 void unorderedDeleteIncomingValue(const MemoryAccess *MA) {
625 unorderedDeleteIncomingIf(
626 [&](const MemoryAccess *M, const BasicBlock *) { return MA == M; });
629 static bool classof(const Value *V) {
630 return V->getValueID() == MemoryPhiVal;
633 void print(raw_ostream &OS) const;
635 unsigned getID() const { return ID; }
637 protected:
638 friend class MemorySSA;
640 /// this is more complicated than the generic
641 /// User::allocHungoffUses, because we have to allocate Uses for the incoming
642 /// values and pointers to the incoming blocks, all in one allocation.
643 void allocHungoffUses(unsigned N) {
644 User::allocHungoffUses(N, /* IsPhi */ true);
647 private:
648 // For debugging only
649 const unsigned ID;
650 unsigned ReservedSpace;
652 /// This grows the operand list in response to a push_back style of
653 /// operation. This grows the number of ops by 1.5 times.
654 void growOperands() {
655 unsigned E = getNumOperands();
656 // 2 op PHI nodes are VERY common, so reserve at least enough for that.
657 ReservedSpace = std::max(E + E / 2, 2u);
658 growHungoffUses(ReservedSpace, /* IsPhi */ true);
661 static void deleteMe(DerivedUser *Self);
664 inline unsigned MemoryAccess::getID() const {
665 assert((isa<MemoryDef>(this) || isa<MemoryPhi>(this)) &&
666 "only memory defs and phis have ids");
667 if (const auto *MD = dyn_cast<MemoryDef>(this))
668 return MD->getID();
669 return cast<MemoryPhi>(this)->getID();
672 inline bool MemoryUseOrDef::isOptimized() const {
673 if (const auto *MD = dyn_cast<MemoryDef>(this))
674 return MD->isOptimized();
675 return cast<MemoryUse>(this)->isOptimized();
678 inline MemoryAccess *MemoryUseOrDef::getOptimized() const {
679 if (const auto *MD = dyn_cast<MemoryDef>(this))
680 return MD->getOptimized();
681 return cast<MemoryUse>(this)->getOptimized();
684 inline void MemoryUseOrDef::setOptimized(MemoryAccess *MA) {
685 if (auto *MD = dyn_cast<MemoryDef>(this))
686 MD->setOptimized(MA);
687 else
688 cast<MemoryUse>(this)->setOptimized(MA);
691 inline void MemoryUseOrDef::resetOptimized() {
692 if (auto *MD = dyn_cast<MemoryDef>(this))
693 MD->resetOptimized();
694 else
695 cast<MemoryUse>(this)->resetOptimized();
698 template <> struct OperandTraits<MemoryPhi> : public HungoffOperandTraits<2> {};
699 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryPhi, MemoryAccess)
701 /// Encapsulates MemorySSA, including all data associated with memory
702 /// accesses.
703 class MemorySSA {
704 public:
705 MemorySSA(Function &, AliasAnalysis *, DominatorTree *);
707 // MemorySSA must remain where it's constructed; Walkers it creates store
708 // pointers to it.
709 MemorySSA(MemorySSA &&) = delete;
711 ~MemorySSA();
713 MemorySSAWalker *getWalker();
714 MemorySSAWalker *getSkipSelfWalker();
716 /// Given a memory Mod/Ref'ing instruction, get the MemorySSA
717 /// access associated with it. If passed a basic block gets the memory phi
718 /// node that exists for that block, if there is one. Otherwise, this will get
719 /// a MemoryUseOrDef.
720 MemoryUseOrDef *getMemoryAccess(const Instruction *I) const {
721 return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I));
724 MemoryPhi *getMemoryAccess(const BasicBlock *BB) const {
725 return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB)));
728 void dump() const;
729 void print(raw_ostream &) const;
731 /// Return true if \p MA represents the live on entry value
733 /// Loads and stores from pointer arguments and other global values may be
734 /// defined by memory operations that do not occur in the current function, so
735 /// they may be live on entry to the function. MemorySSA represents such
736 /// memory state by the live on entry definition, which is guaranteed to occur
737 /// before any other memory access in the function.
738 inline bool isLiveOnEntryDef(const MemoryAccess *MA) const {
739 return MA == LiveOnEntryDef.get();
742 inline MemoryAccess *getLiveOnEntryDef() const {
743 return LiveOnEntryDef.get();
746 // Sadly, iplists, by default, owns and deletes pointers added to the
747 // list. It's not currently possible to have two iplists for the same type,
748 // where one owns the pointers, and one does not. This is because the traits
749 // are per-type, not per-tag. If this ever changes, we should make the
750 // DefList an iplist.
751 using AccessList = iplist<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>;
752 using DefsList =
753 simple_ilist<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>;
755 /// Return the list of MemoryAccess's for a given basic block.
757 /// This list is not modifiable by the user.
758 const AccessList *getBlockAccesses(const BasicBlock *BB) const {
759 return getWritableBlockAccesses(BB);
762 /// Return the list of MemoryDef's and MemoryPhi's for a given basic
763 /// block.
765 /// This list is not modifiable by the user.
766 const DefsList *getBlockDefs(const BasicBlock *BB) const {
767 return getWritableBlockDefs(BB);
770 /// Given two memory accesses in the same basic block, determine
771 /// whether MemoryAccess \p A dominates MemoryAccess \p B.
772 bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const;
774 /// Given two memory accesses in potentially different blocks,
775 /// determine whether MemoryAccess \p A dominates MemoryAccess \p B.
776 bool dominates(const MemoryAccess *A, const MemoryAccess *B) const;
778 /// Given a MemoryAccess and a Use, determine whether MemoryAccess \p A
779 /// dominates Use \p B.
780 bool dominates(const MemoryAccess *A, const Use &B) const;
782 /// Verify that MemorySSA is self consistent (IE definitions dominate
783 /// all uses, uses appear in the right places). This is used by unit tests.
784 void verifyMemorySSA() const;
786 /// Used in various insertion functions to specify whether we are talking
787 /// about the beginning or end of a block.
788 enum InsertionPlace { Beginning, End };
790 protected:
791 // Used by Memory SSA annotater, dumpers, and wrapper pass
792 friend class MemorySSAAnnotatedWriter;
793 friend class MemorySSAPrinterLegacyPass;
794 friend class MemorySSAUpdater;
796 void verifyPrevDefInPhis(Function &F) const;
797 void verifyDefUses(Function &F) const;
798 void verifyDomination(Function &F) const;
799 void verifyOrdering(Function &F) const;
800 void verifyDominationNumbers(const Function &F) const;
802 // This is used by the use optimizer and updater.
803 AccessList *getWritableBlockAccesses(const BasicBlock *BB) const {
804 auto It = PerBlockAccesses.find(BB);
805 return It == PerBlockAccesses.end() ? nullptr : It->second.get();
808 // This is used by the use optimizer and updater.
809 DefsList *getWritableBlockDefs(const BasicBlock *BB) const {
810 auto It = PerBlockDefs.find(BB);
811 return It == PerBlockDefs.end() ? nullptr : It->second.get();
814 // These is used by the updater to perform various internal MemorySSA
815 // machinsations. They do not always leave the IR in a correct state, and
816 // relies on the updater to fixup what it breaks, so it is not public.
818 void moveTo(MemoryUseOrDef *What, BasicBlock *BB, AccessList::iterator Where);
819 void moveTo(MemoryAccess *What, BasicBlock *BB, InsertionPlace Point);
821 // Rename the dominator tree branch rooted at BB.
822 void renamePass(BasicBlock *BB, MemoryAccess *IncomingVal,
823 SmallPtrSetImpl<BasicBlock *> &Visited) {
824 renamePass(DT->getNode(BB), IncomingVal, Visited, true, true);
827 void removeFromLookups(MemoryAccess *);
828 void removeFromLists(MemoryAccess *, bool ShouldDelete = true);
829 void insertIntoListsForBlock(MemoryAccess *, const BasicBlock *,
830 InsertionPlace);
831 void insertIntoListsBefore(MemoryAccess *, const BasicBlock *,
832 AccessList::iterator);
833 MemoryUseOrDef *createDefinedAccess(Instruction *, MemoryAccess *,
834 const MemoryUseOrDef *Template = nullptr,
835 bool CreationMustSucceed = true);
837 private:
838 template <class AliasAnalysisType> class ClobberWalkerBase;
839 template <class AliasAnalysisType> class CachingWalker;
840 template <class AliasAnalysisType> class SkipSelfWalker;
841 class OptimizeUses;
843 CachingWalker<AliasAnalysis> *getWalkerImpl();
844 void buildMemorySSA(BatchAAResults &BAA);
845 void optimizeUses();
847 void prepareForMoveTo(MemoryAccess *, BasicBlock *);
848 void verifyUseInDefs(MemoryAccess *, MemoryAccess *) const;
850 using AccessMap = DenseMap<const BasicBlock *, std::unique_ptr<AccessList>>;
851 using DefsMap = DenseMap<const BasicBlock *, std::unique_ptr<DefsList>>;
853 void
854 determineInsertionPoint(const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks);
855 void markUnreachableAsLiveOnEntry(BasicBlock *BB);
856 bool dominatesUse(const MemoryAccess *, const MemoryAccess *) const;
857 MemoryPhi *createMemoryPhi(BasicBlock *BB);
858 template <typename AliasAnalysisType>
859 MemoryUseOrDef *createNewAccess(Instruction *, AliasAnalysisType *,
860 const MemoryUseOrDef *Template = nullptr);
861 MemoryAccess *findDominatingDef(BasicBlock *, enum InsertionPlace);
862 void placePHINodes(const SmallPtrSetImpl<BasicBlock *> &);
863 MemoryAccess *renameBlock(BasicBlock *, MemoryAccess *, bool);
864 void renameSuccessorPhis(BasicBlock *, MemoryAccess *, bool);
865 void renamePass(DomTreeNode *, MemoryAccess *IncomingVal,
866 SmallPtrSetImpl<BasicBlock *> &Visited,
867 bool SkipVisited = false, bool RenameAllUses = false);
868 AccessList *getOrCreateAccessList(const BasicBlock *);
869 DefsList *getOrCreateDefsList(const BasicBlock *);
870 void renumberBlock(const BasicBlock *) const;
871 AliasAnalysis *AA;
872 DominatorTree *DT;
873 Function &F;
875 // Memory SSA mappings
876 DenseMap<const Value *, MemoryAccess *> ValueToMemoryAccess;
878 // These two mappings contain the main block to access/def mappings for
879 // MemorySSA. The list contained in PerBlockAccesses really owns all the
880 // MemoryAccesses.
881 // Both maps maintain the invariant that if a block is found in them, the
882 // corresponding list is not empty, and if a block is not found in them, the
883 // corresponding list is empty.
884 AccessMap PerBlockAccesses;
885 DefsMap PerBlockDefs;
886 std::unique_ptr<MemoryAccess, ValueDeleter> LiveOnEntryDef;
888 // Domination mappings
889 // Note that the numbering is local to a block, even though the map is
890 // global.
891 mutable SmallPtrSet<const BasicBlock *, 16> BlockNumberingValid;
892 mutable DenseMap<const MemoryAccess *, unsigned long> BlockNumbering;
894 // Memory SSA building info
895 std::unique_ptr<ClobberWalkerBase<AliasAnalysis>> WalkerBase;
896 std::unique_ptr<CachingWalker<AliasAnalysis>> Walker;
897 std::unique_ptr<SkipSelfWalker<AliasAnalysis>> SkipWalker;
898 unsigned NextID;
901 // Internal MemorySSA utils, for use by MemorySSA classes and walkers
902 class MemorySSAUtil {
903 protected:
904 friend class GVNHoist;
905 friend class MemorySSAWalker;
907 // This function should not be used by new passes.
908 static bool defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
909 AliasAnalysis &AA);
912 // This pass does eager building and then printing of MemorySSA. It is used by
913 // the tests to be able to build, dump, and verify Memory SSA.
914 class MemorySSAPrinterLegacyPass : public FunctionPass {
915 public:
916 MemorySSAPrinterLegacyPass();
918 bool runOnFunction(Function &) override;
919 void getAnalysisUsage(AnalysisUsage &AU) const override;
921 static char ID;
924 /// An analysis that produces \c MemorySSA for a function.
926 class MemorySSAAnalysis : public AnalysisInfoMixin<MemorySSAAnalysis> {
927 friend AnalysisInfoMixin<MemorySSAAnalysis>;
929 static AnalysisKey Key;
931 public:
932 // Wrap MemorySSA result to ensure address stability of internal MemorySSA
933 // pointers after construction. Use a wrapper class instead of plain
934 // unique_ptr<MemorySSA> to avoid build breakage on MSVC.
935 struct Result {
936 Result(std::unique_ptr<MemorySSA> &&MSSA) : MSSA(std::move(MSSA)) {}
938 MemorySSA &getMSSA() { return *MSSA.get(); }
940 std::unique_ptr<MemorySSA> MSSA;
942 bool invalidate(Function &F, const PreservedAnalyses &PA,
943 FunctionAnalysisManager::Invalidator &Inv);
946 Result run(Function &F, FunctionAnalysisManager &AM);
949 /// Printer pass for \c MemorySSA.
950 class MemorySSAPrinterPass : public PassInfoMixin<MemorySSAPrinterPass> {
951 raw_ostream &OS;
953 public:
954 explicit MemorySSAPrinterPass(raw_ostream &OS) : OS(OS) {}
956 PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
959 /// Verifier pass for \c MemorySSA.
960 struct MemorySSAVerifierPass : PassInfoMixin<MemorySSAVerifierPass> {
961 PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
964 /// Legacy analysis pass which computes \c MemorySSA.
965 class MemorySSAWrapperPass : public FunctionPass {
966 public:
967 MemorySSAWrapperPass();
969 static char ID;
971 bool runOnFunction(Function &) override;
972 void releaseMemory() override;
973 MemorySSA &getMSSA() { return *MSSA; }
974 const MemorySSA &getMSSA() const { return *MSSA; }
976 void getAnalysisUsage(AnalysisUsage &AU) const override;
978 void verifyAnalysis() const override;
979 void print(raw_ostream &OS, const Module *M = nullptr) const override;
981 private:
982 std::unique_ptr<MemorySSA> MSSA;
985 /// This is the generic walker interface for walkers of MemorySSA.
986 /// Walkers are used to be able to further disambiguate the def-use chains
987 /// MemorySSA gives you, or otherwise produce better info than MemorySSA gives
988 /// you.
989 /// In particular, while the def-use chains provide basic information, and are
990 /// guaranteed to give, for example, the nearest may-aliasing MemoryDef for a
991 /// MemoryUse as AliasAnalysis considers it, a user mant want better or other
992 /// information. In particular, they may want to use SCEV info to further
993 /// disambiguate memory accesses, or they may want the nearest dominating
994 /// may-aliasing MemoryDef for a call or a store. This API enables a
995 /// standardized interface to getting and using that info.
996 class MemorySSAWalker {
997 public:
998 MemorySSAWalker(MemorySSA *);
999 virtual ~MemorySSAWalker() = default;
1001 using MemoryAccessSet = SmallVector<MemoryAccess *, 8>;
1003 /// Given a memory Mod/Ref/ModRef'ing instruction, calling this
1004 /// will give you the nearest dominating MemoryAccess that Mod's the location
1005 /// the instruction accesses (by skipping any def which AA can prove does not
1006 /// alias the location(s) accessed by the instruction given).
1008 /// Note that this will return a single access, and it must dominate the
1009 /// Instruction, so if an operand of a MemoryPhi node Mod's the instruction,
1010 /// this will return the MemoryPhi, not the operand. This means that
1011 /// given:
1012 /// if (a) {
1013 /// 1 = MemoryDef(liveOnEntry)
1014 /// store %a
1015 /// } else {
1016 /// 2 = MemoryDef(liveOnEntry)
1017 /// store %b
1018 /// }
1019 /// 3 = MemoryPhi(2, 1)
1020 /// MemoryUse(3)
1021 /// load %a
1023 /// calling this API on load(%a) will return the MemoryPhi, not the MemoryDef
1024 /// in the if (a) branch.
1025 MemoryAccess *getClobberingMemoryAccess(const Instruction *I) {
1026 MemoryAccess *MA = MSSA->getMemoryAccess(I);
1027 assert(MA && "Handed an instruction that MemorySSA doesn't recognize?");
1028 return getClobberingMemoryAccess(MA);
1031 /// Does the same thing as getClobberingMemoryAccess(const Instruction *I),
1032 /// but takes a MemoryAccess instead of an Instruction.
1033 virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) = 0;
1035 /// Given a potentially clobbering memory access and a new location,
1036 /// calling this will give you the nearest dominating clobbering MemoryAccess
1037 /// (by skipping non-aliasing def links).
1039 /// This version of the function is mainly used to disambiguate phi translated
1040 /// pointers, where the value of a pointer may have changed from the initial
1041 /// memory access. Note that this expects to be handed either a MemoryUse,
1042 /// or an already potentially clobbering access. Unlike the above API, if
1043 /// given a MemoryDef that clobbers the pointer as the starting access, it
1044 /// will return that MemoryDef, whereas the above would return the clobber
1045 /// starting from the use side of the memory def.
1046 virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
1047 const MemoryLocation &) = 0;
1049 /// Given a memory access, invalidate anything this walker knows about
1050 /// that access.
1051 /// This API is used by walkers that store information to perform basic cache
1052 /// invalidation. This will be called by MemorySSA at appropriate times for
1053 /// the walker it uses or returns.
1054 virtual void invalidateInfo(MemoryAccess *) {}
1056 protected:
1057 friend class MemorySSA; // For updating MSSA pointer in MemorySSA move
1058 // constructor.
1059 MemorySSA *MSSA;
1062 /// A MemorySSAWalker that does no alias queries, or anything else. It
1063 /// simply returns the links as they were constructed by the builder.
1064 class DoNothingMemorySSAWalker final : public MemorySSAWalker {
1065 public:
1066 // Keep the overrides below from hiding the Instruction overload of
1067 // getClobberingMemoryAccess.
1068 using MemorySSAWalker::getClobberingMemoryAccess;
1070 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
1071 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
1072 const MemoryLocation &) override;
1075 using MemoryAccessPair = std::pair<MemoryAccess *, MemoryLocation>;
1076 using ConstMemoryAccessPair = std::pair<const MemoryAccess *, MemoryLocation>;
1078 /// Iterator base class used to implement const and non-const iterators
1079 /// over the defining accesses of a MemoryAccess.
1080 template <class T>
1081 class memoryaccess_def_iterator_base
1082 : public iterator_facade_base<memoryaccess_def_iterator_base<T>,
1083 std::forward_iterator_tag, T, ptrdiff_t, T *,
1084 T *> {
1085 using BaseT = typename memoryaccess_def_iterator_base::iterator_facade_base;
1087 public:
1088 memoryaccess_def_iterator_base(T *Start) : Access(Start) {}
1089 memoryaccess_def_iterator_base() = default;
1091 bool operator==(const memoryaccess_def_iterator_base &Other) const {
1092 return Access == Other.Access && (!Access || ArgNo == Other.ArgNo);
1095 // This is a bit ugly, but for MemoryPHI's, unlike PHINodes, you can't get the
1096 // block from the operand in constant time (In a PHINode, the uselist has
1097 // both, so it's just subtraction). We provide it as part of the
1098 // iterator to avoid callers having to linear walk to get the block.
1099 // If the operation becomes constant time on MemoryPHI's, this bit of
1100 // abstraction breaking should be removed.
1101 BasicBlock *getPhiArgBlock() const {
1102 MemoryPhi *MP = dyn_cast<MemoryPhi>(Access);
1103 assert(MP && "Tried to get phi arg block when not iterating over a PHI");
1104 return MP->getIncomingBlock(ArgNo);
1107 typename BaseT::iterator::pointer operator*() const {
1108 assert(Access && "Tried to access past the end of our iterator");
1109 // Go to the first argument for phis, and the defining access for everything
1110 // else.
1111 if (const MemoryPhi *MP = dyn_cast<MemoryPhi>(Access))
1112 return MP->getIncomingValue(ArgNo);
1113 return cast<MemoryUseOrDef>(Access)->getDefiningAccess();
1116 using BaseT::operator++;
1117 memoryaccess_def_iterator_base &operator++() {
1118 assert(Access && "Hit end of iterator");
1119 if (const MemoryPhi *MP = dyn_cast<MemoryPhi>(Access)) {
1120 if (++ArgNo >= MP->getNumIncomingValues()) {
1121 ArgNo = 0;
1122 Access = nullptr;
1124 } else {
1125 Access = nullptr;
1127 return *this;
1130 private:
1131 T *Access = nullptr;
1132 unsigned ArgNo = 0;
1135 inline memoryaccess_def_iterator MemoryAccess::defs_begin() {
1136 return memoryaccess_def_iterator(this);
1139 inline const_memoryaccess_def_iterator MemoryAccess::defs_begin() const {
1140 return const_memoryaccess_def_iterator(this);
1143 inline memoryaccess_def_iterator MemoryAccess::defs_end() {
1144 return memoryaccess_def_iterator();
1147 inline const_memoryaccess_def_iterator MemoryAccess::defs_end() const {
1148 return const_memoryaccess_def_iterator();
1151 /// GraphTraits for a MemoryAccess, which walks defs in the normal case,
1152 /// and uses in the inverse case.
1153 template <> struct GraphTraits<MemoryAccess *> {
1154 using NodeRef = MemoryAccess *;
1155 using ChildIteratorType = memoryaccess_def_iterator;
1157 static NodeRef getEntryNode(NodeRef N) { return N; }
1158 static ChildIteratorType child_begin(NodeRef N) { return N->defs_begin(); }
1159 static ChildIteratorType child_end(NodeRef N) { return N->defs_end(); }
1162 template <> struct GraphTraits<Inverse<MemoryAccess *>> {
1163 using NodeRef = MemoryAccess *;
1164 using ChildIteratorType = MemoryAccess::iterator;
1166 static NodeRef getEntryNode(NodeRef N) { return N; }
1167 static ChildIteratorType child_begin(NodeRef N) { return N->user_begin(); }
1168 static ChildIteratorType child_end(NodeRef N) { return N->user_end(); }
1171 /// Provide an iterator that walks defs, giving both the memory access,
1172 /// and the current pointer location, updating the pointer location as it
1173 /// changes due to phi node translation.
1175 /// This iterator, while somewhat specialized, is what most clients actually
1176 /// want when walking upwards through MemorySSA def chains. It takes a pair of
1177 /// <MemoryAccess,MemoryLocation>, and walks defs, properly translating the
1178 /// memory location through phi nodes for the user.
1179 class upward_defs_iterator
1180 : public iterator_facade_base<upward_defs_iterator,
1181 std::forward_iterator_tag,
1182 const MemoryAccessPair> {
1183 using BaseT = upward_defs_iterator::iterator_facade_base;
1185 public:
1186 upward_defs_iterator(const MemoryAccessPair &Info)
1187 : DefIterator(Info.first), Location(Info.second),
1188 OriginalAccess(Info.first) {
1189 CurrentPair.first = nullptr;
1191 WalkingPhi = Info.first && isa<MemoryPhi>(Info.first);
1192 fillInCurrentPair();
1195 upward_defs_iterator() { CurrentPair.first = nullptr; }
1197 bool operator==(const upward_defs_iterator &Other) const {
1198 return DefIterator == Other.DefIterator;
1201 BaseT::iterator::reference operator*() const {
1202 assert(DefIterator != OriginalAccess->defs_end() &&
1203 "Tried to access past the end of our iterator");
1204 return CurrentPair;
1207 using BaseT::operator++;
1208 upward_defs_iterator &operator++() {
1209 assert(DefIterator != OriginalAccess->defs_end() &&
1210 "Tried to access past the end of the iterator");
1211 ++DefIterator;
1212 if (DefIterator != OriginalAccess->defs_end())
1213 fillInCurrentPair();
1214 return *this;
1217 BasicBlock *getPhiArgBlock() const { return DefIterator.getPhiArgBlock(); }
1219 private:
1220 void fillInCurrentPair() {
1221 CurrentPair.first = *DefIterator;
1222 if (WalkingPhi && Location.Ptr) {
1223 PHITransAddr Translator(
1224 const_cast<Value *>(Location.Ptr),
1225 OriginalAccess->getBlock()->getModule()->getDataLayout(), nullptr);
1226 if (!Translator.PHITranslateValue(OriginalAccess->getBlock(),
1227 DefIterator.getPhiArgBlock(), nullptr,
1228 false))
1229 if (Translator.getAddr() != Location.Ptr) {
1230 CurrentPair.second = Location.getWithNewPtr(Translator.getAddr());
1231 return;
1234 CurrentPair.second = Location;
1237 MemoryAccessPair CurrentPair;
1238 memoryaccess_def_iterator DefIterator;
1239 MemoryLocation Location;
1240 MemoryAccess *OriginalAccess = nullptr;
1241 bool WalkingPhi = false;
1244 inline upward_defs_iterator upward_defs_begin(const MemoryAccessPair &Pair) {
1245 return upward_defs_iterator(Pair);
1248 inline upward_defs_iterator upward_defs_end() { return upward_defs_iterator(); }
1250 inline iterator_range<upward_defs_iterator>
1251 upward_defs(const MemoryAccessPair &Pair) {
1252 return make_range(upward_defs_begin(Pair), upward_defs_end());
1255 /// Walks the defining accesses of MemoryDefs. Stops after we hit something that
1256 /// has no defining use (e.g. a MemoryPhi or liveOnEntry). Note that, when
1257 /// comparing against a null def_chain_iterator, this will compare equal only
1258 /// after walking said Phi/liveOnEntry.
1260 /// The UseOptimizedChain flag specifies whether to walk the clobbering
1261 /// access chain, or all the accesses.
1263 /// Normally, MemoryDef are all just def/use linked together, so a def_chain on
1264 /// a MemoryDef will walk all MemoryDefs above it in the program until it hits
1265 /// a phi node. The optimized chain walks the clobbering access of a store.
1266 /// So if you are just trying to find, given a store, what the next
1267 /// thing that would clobber the same memory is, you want the optimized chain.
1268 template <class T, bool UseOptimizedChain = false>
1269 struct def_chain_iterator
1270 : public iterator_facade_base<def_chain_iterator<T, UseOptimizedChain>,
1271 std::forward_iterator_tag, MemoryAccess *> {
1272 def_chain_iterator() : MA(nullptr) {}
1273 def_chain_iterator(T MA) : MA(MA) {}
1275 T operator*() const { return MA; }
1277 def_chain_iterator &operator++() {
1278 // N.B. liveOnEntry has a null defining access.
1279 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
1280 if (UseOptimizedChain && MUD->isOptimized())
1281 MA = MUD->getOptimized();
1282 else
1283 MA = MUD->getDefiningAccess();
1284 } else {
1285 MA = nullptr;
1288 return *this;
1291 bool operator==(const def_chain_iterator &O) const { return MA == O.MA; }
1293 private:
1294 T MA;
1297 template <class T>
1298 inline iterator_range<def_chain_iterator<T>>
1299 def_chain(T MA, MemoryAccess *UpTo = nullptr) {
1300 #ifdef EXPENSIVE_CHECKS
1301 assert((!UpTo || find(def_chain(MA), UpTo) != def_chain_iterator<T>()) &&
1302 "UpTo isn't in the def chain!");
1303 #endif
1304 return make_range(def_chain_iterator<T>(MA), def_chain_iterator<T>(UpTo));
1307 template <class T>
1308 inline iterator_range<def_chain_iterator<T, true>> optimized_def_chain(T MA) {
1309 return make_range(def_chain_iterator<T, true>(MA),
1310 def_chain_iterator<T, true>(nullptr));
1313 } // end namespace llvm
1315 #endif // LLVM_ANALYSIS_MEMORYSSA_H