[InstCombine] Signed saturation patterns
[llvm-complete.git] / include / llvm / Analysis / SparsePropagation.h
blobfac92e4a25a4104244c24ec69ceceb585fdd240a
1 //===- SparsePropagation.h - Sparse Conditional Property Propagation ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an abstract sparse conditional propagation algorithm,
10 // modeled after SCCP, but with a customizable lattice function.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_ANALYSIS_SPARSEPROPAGATION_H
15 #define LLVM_ANALYSIS_SPARSEPROPAGATION_H
17 #include "llvm/IR/Instructions.h"
18 #include "llvm/Support/Debug.h"
19 #include <set>
21 #define DEBUG_TYPE "sparseprop"
23 namespace llvm {
25 /// A template for translating between LLVM Values and LatticeKeys. Clients must
26 /// provide a specialization of LatticeKeyInfo for their LatticeKey type.
27 template <class LatticeKey> struct LatticeKeyInfo {
28 // static inline Value *getValueFromLatticeKey(LatticeKey Key);
29 // static inline LatticeKey getLatticeKeyFromValue(Value *V);
32 template <class LatticeKey, class LatticeVal,
33 class KeyInfo = LatticeKeyInfo<LatticeKey>>
34 class SparseSolver;
36 /// AbstractLatticeFunction - This class is implemented by the dataflow instance
37 /// to specify what the lattice values are and how they handle merges etc. This
38 /// gives the client the power to compute lattice values from instructions,
39 /// constants, etc. The current requirement is that lattice values must be
40 /// copyable. At the moment, nothing tries to avoid copying. Additionally,
41 /// lattice keys must be able to be used as keys of a mapping data structure.
42 /// Internally, the generic solver currently uses a DenseMap to map lattice keys
43 /// to lattice values. If the lattice key is a non-standard type, a
44 /// specialization of DenseMapInfo must be provided.
45 template <class LatticeKey, class LatticeVal> class AbstractLatticeFunction {
46 private:
47 LatticeVal UndefVal, OverdefinedVal, UntrackedVal;
49 public:
50 AbstractLatticeFunction(LatticeVal undefVal, LatticeVal overdefinedVal,
51 LatticeVal untrackedVal) {
52 UndefVal = undefVal;
53 OverdefinedVal = overdefinedVal;
54 UntrackedVal = untrackedVal;
57 virtual ~AbstractLatticeFunction() = default;
59 LatticeVal getUndefVal() const { return UndefVal; }
60 LatticeVal getOverdefinedVal() const { return OverdefinedVal; }
61 LatticeVal getUntrackedVal() const { return UntrackedVal; }
63 /// IsUntrackedValue - If the specified LatticeKey is obviously uninteresting
64 /// to the analysis (i.e., it would always return UntrackedVal), this
65 /// function can return true to avoid pointless work.
66 virtual bool IsUntrackedValue(LatticeKey Key) { return false; }
68 /// ComputeLatticeVal - Compute and return a LatticeVal corresponding to the
69 /// given LatticeKey.
70 virtual LatticeVal ComputeLatticeVal(LatticeKey Key) {
71 return getOverdefinedVal();
74 /// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is
75 /// one that the we want to handle through ComputeInstructionState.
76 virtual bool IsSpecialCasedPHI(PHINode *PN) { return false; }
78 /// MergeValues - Compute and return the merge of the two specified lattice
79 /// values. Merging should only move one direction down the lattice to
80 /// guarantee convergence (toward overdefined).
81 virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) {
82 return getOverdefinedVal(); // always safe, never useful.
85 /// ComputeInstructionState - Compute the LatticeKeys that change as a result
86 /// of executing instruction \p I. Their associated LatticeVals are store in
87 /// \p ChangedValues.
88 virtual void
89 ComputeInstructionState(Instruction &I,
90 DenseMap<LatticeKey, LatticeVal> &ChangedValues,
91 SparseSolver<LatticeKey, LatticeVal> &SS) = 0;
93 /// PrintLatticeVal - Render the given LatticeVal to the specified stream.
94 virtual void PrintLatticeVal(LatticeVal LV, raw_ostream &OS);
96 /// PrintLatticeKey - Render the given LatticeKey to the specified stream.
97 virtual void PrintLatticeKey(LatticeKey Key, raw_ostream &OS);
99 /// GetValueFromLatticeVal - If the given LatticeVal is representable as an
100 /// LLVM value, return it; otherwise, return nullptr. If a type is given, the
101 /// returned value must have the same type. This function is used by the
102 /// generic solver in attempting to resolve branch and switch conditions.
103 virtual Value *GetValueFromLatticeVal(LatticeVal LV, Type *Ty = nullptr) {
104 return nullptr;
108 /// SparseSolver - This class is a general purpose solver for Sparse Conditional
109 /// Propagation with a programmable lattice function.
110 template <class LatticeKey, class LatticeVal, class KeyInfo>
111 class SparseSolver {
113 /// LatticeFunc - This is the object that knows the lattice and how to
114 /// compute transfer functions.
115 AbstractLatticeFunction<LatticeKey, LatticeVal> *LatticeFunc;
117 /// ValueState - Holds the LatticeVals associated with LatticeKeys.
118 DenseMap<LatticeKey, LatticeVal> ValueState;
120 /// BBExecutable - Holds the basic blocks that are executable.
121 SmallPtrSet<BasicBlock *, 16> BBExecutable;
123 /// ValueWorkList - Holds values that should be processed.
124 SmallVector<Value *, 64> ValueWorkList;
126 /// BBWorkList - Holds basic blocks that should be processed.
127 SmallVector<BasicBlock *, 64> BBWorkList;
129 using Edge = std::pair<BasicBlock *, BasicBlock *>;
131 /// KnownFeasibleEdges - Entries in this set are edges which have already had
132 /// PHI nodes retriggered.
133 std::set<Edge> KnownFeasibleEdges;
135 public:
136 explicit SparseSolver(
137 AbstractLatticeFunction<LatticeKey, LatticeVal> *Lattice)
138 : LatticeFunc(Lattice) {}
139 SparseSolver(const SparseSolver &) = delete;
140 SparseSolver &operator=(const SparseSolver &) = delete;
142 /// Solve - Solve for constants and executable blocks.
143 void Solve();
145 void Print(raw_ostream &OS) const;
147 /// getExistingValueState - Return the LatticeVal object corresponding to the
148 /// given value from the ValueState map. If the value is not in the map,
149 /// UntrackedVal is returned, unlike the getValueState method.
150 LatticeVal getExistingValueState(LatticeKey Key) const {
151 auto I = ValueState.find(Key);
152 return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal();
155 /// getValueState - Return the LatticeVal object corresponding to the given
156 /// value from the ValueState map. If the value is not in the map, its state
157 /// is initialized.
158 LatticeVal getValueState(LatticeKey Key);
160 /// isEdgeFeasible - Return true if the control flow edge from the 'From'
161 /// basic block to the 'To' basic block is currently feasible. If
162 /// AggressiveUndef is true, then this treats values with unknown lattice
163 /// values as undefined. This is generally only useful when solving the
164 /// lattice, not when querying it.
165 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To,
166 bool AggressiveUndef = false);
168 /// isBlockExecutable - Return true if there are any known feasible
169 /// edges into the basic block. This is generally only useful when
170 /// querying the lattice.
171 bool isBlockExecutable(BasicBlock *BB) const {
172 return BBExecutable.count(BB);
175 /// MarkBlockExecutable - This method can be used by clients to mark all of
176 /// the blocks that are known to be intrinsically live in the processed unit.
177 void MarkBlockExecutable(BasicBlock *BB);
179 private:
180 /// UpdateState - When the state of some LatticeKey is potentially updated to
181 /// the given LatticeVal, this function notices and adds the LLVM value
182 /// corresponding the key to the work list, if needed.
183 void UpdateState(LatticeKey Key, LatticeVal LV);
185 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
186 /// work list if it is not already executable.
187 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
189 /// getFeasibleSuccessors - Return a vector of booleans to indicate which
190 /// successors are reachable from a given terminator instruction.
191 void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs,
192 bool AggressiveUndef);
194 void visitInst(Instruction &I);
195 void visitPHINode(PHINode &I);
196 void visitTerminator(Instruction &TI);
199 //===----------------------------------------------------------------------===//
200 // AbstractLatticeFunction Implementation
201 //===----------------------------------------------------------------------===//
203 template <class LatticeKey, class LatticeVal>
204 void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeVal(
205 LatticeVal V, raw_ostream &OS) {
206 if (V == UndefVal)
207 OS << "undefined";
208 else if (V == OverdefinedVal)
209 OS << "overdefined";
210 else if (V == UntrackedVal)
211 OS << "untracked";
212 else
213 OS << "unknown lattice value";
216 template <class LatticeKey, class LatticeVal>
217 void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeKey(
218 LatticeKey Key, raw_ostream &OS) {
219 OS << "unknown lattice key";
222 //===----------------------------------------------------------------------===//
223 // SparseSolver Implementation
224 //===----------------------------------------------------------------------===//
226 template <class LatticeKey, class LatticeVal, class KeyInfo>
227 LatticeVal
228 SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getValueState(LatticeKey Key) {
229 auto I = ValueState.find(Key);
230 if (I != ValueState.end())
231 return I->second; // Common case, in the map
233 if (LatticeFunc->IsUntrackedValue(Key))
234 return LatticeFunc->getUntrackedVal();
235 LatticeVal LV = LatticeFunc->ComputeLatticeVal(Key);
237 // If this value is untracked, don't add it to the map.
238 if (LV == LatticeFunc->getUntrackedVal())
239 return LV;
240 return ValueState[Key] = std::move(LV);
243 template <class LatticeKey, class LatticeVal, class KeyInfo>
244 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::UpdateState(LatticeKey Key,
245 LatticeVal LV) {
246 auto I = ValueState.find(Key);
247 if (I != ValueState.end() && I->second == LV)
248 return; // No change.
250 // Update the state of the given LatticeKey and add its corresponding LLVM
251 // value to the work list.
252 ValueState[Key] = std::move(LV);
253 if (Value *V = KeyInfo::getValueFromLatticeKey(Key))
254 ValueWorkList.push_back(V);
257 template <class LatticeKey, class LatticeVal, class KeyInfo>
258 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::MarkBlockExecutable(
259 BasicBlock *BB) {
260 if (!BBExecutable.insert(BB).second)
261 return;
262 LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
263 BBWorkList.push_back(BB); // Add the block to the work list!
266 template <class LatticeKey, class LatticeVal, class KeyInfo>
267 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::markEdgeExecutable(
268 BasicBlock *Source, BasicBlock *Dest) {
269 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
270 return; // This edge is already known to be executable!
272 LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
273 << " -> " << Dest->getName() << "\n");
275 if (BBExecutable.count(Dest)) {
276 // The destination is already executable, but we just made an edge
277 // feasible that wasn't before. Revisit the PHI nodes in the block
278 // because they have potentially new operands.
279 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
280 visitPHINode(*cast<PHINode>(I));
281 } else {
282 MarkBlockExecutable(Dest);
286 template <class LatticeKey, class LatticeVal, class KeyInfo>
287 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getFeasibleSuccessors(
288 Instruction &TI, SmallVectorImpl<bool> &Succs, bool AggressiveUndef) {
289 Succs.resize(TI.getNumSuccessors());
290 if (TI.getNumSuccessors() == 0)
291 return;
293 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
294 if (BI->isUnconditional()) {
295 Succs[0] = true;
296 return;
299 LatticeVal BCValue;
300 if (AggressiveUndef)
301 BCValue =
302 getValueState(KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
303 else
304 BCValue = getExistingValueState(
305 KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
307 if (BCValue == LatticeFunc->getOverdefinedVal() ||
308 BCValue == LatticeFunc->getUntrackedVal()) {
309 // Overdefined condition variables can branch either way.
310 Succs[0] = Succs[1] = true;
311 return;
314 // If undefined, neither is feasible yet.
315 if (BCValue == LatticeFunc->getUndefVal())
316 return;
318 Constant *C =
319 dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
320 std::move(BCValue), BI->getCondition()->getType()));
321 if (!C || !isa<ConstantInt>(C)) {
322 // Non-constant values can go either way.
323 Succs[0] = Succs[1] = true;
324 return;
327 // Constant condition variables mean the branch can only go a single way
328 Succs[C->isNullValue()] = true;
329 return;
332 if (TI.isExceptionalTerminator() ||
333 TI.isIndirectTerminator()) {
334 Succs.assign(Succs.size(), true);
335 return;
338 SwitchInst &SI = cast<SwitchInst>(TI);
339 LatticeVal SCValue;
340 if (AggressiveUndef)
341 SCValue = getValueState(KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
342 else
343 SCValue = getExistingValueState(
344 KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
346 if (SCValue == LatticeFunc->getOverdefinedVal() ||
347 SCValue == LatticeFunc->getUntrackedVal()) {
348 // All destinations are executable!
349 Succs.assign(TI.getNumSuccessors(), true);
350 return;
353 // If undefined, neither is feasible yet.
354 if (SCValue == LatticeFunc->getUndefVal())
355 return;
357 Constant *C = dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
358 std::move(SCValue), SI.getCondition()->getType()));
359 if (!C || !isa<ConstantInt>(C)) {
360 // All destinations are executable!
361 Succs.assign(TI.getNumSuccessors(), true);
362 return;
364 SwitchInst::CaseHandle Case = *SI.findCaseValue(cast<ConstantInt>(C));
365 Succs[Case.getSuccessorIndex()] = true;
368 template <class LatticeKey, class LatticeVal, class KeyInfo>
369 bool SparseSolver<LatticeKey, LatticeVal, KeyInfo>::isEdgeFeasible(
370 BasicBlock *From, BasicBlock *To, bool AggressiveUndef) {
371 SmallVector<bool, 16> SuccFeasible;
372 Instruction *TI = From->getTerminator();
373 getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef);
375 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
376 if (TI->getSuccessor(i) == To && SuccFeasible[i])
377 return true;
379 return false;
382 template <class LatticeKey, class LatticeVal, class KeyInfo>
383 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitTerminator(
384 Instruction &TI) {
385 SmallVector<bool, 16> SuccFeasible;
386 getFeasibleSuccessors(TI, SuccFeasible, true);
388 BasicBlock *BB = TI.getParent();
390 // Mark all feasible successors executable...
391 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
392 if (SuccFeasible[i])
393 markEdgeExecutable(BB, TI.getSuccessor(i));
396 template <class LatticeKey, class LatticeVal, class KeyInfo>
397 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitPHINode(PHINode &PN) {
398 // The lattice function may store more information on a PHINode than could be
399 // computed from its incoming values. For example, SSI form stores its sigma
400 // functions as PHINodes with a single incoming value.
401 if (LatticeFunc->IsSpecialCasedPHI(&PN)) {
402 DenseMap<LatticeKey, LatticeVal> ChangedValues;
403 LatticeFunc->ComputeInstructionState(PN, ChangedValues, *this);
404 for (auto &ChangedValue : ChangedValues)
405 if (ChangedValue.second != LatticeFunc->getUntrackedVal())
406 UpdateState(std::move(ChangedValue.first),
407 std::move(ChangedValue.second));
408 return;
411 LatticeKey Key = KeyInfo::getLatticeKeyFromValue(&PN);
412 LatticeVal PNIV = getValueState(Key);
413 LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();
415 // If this value is already overdefined (common) just return.
416 if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal())
417 return; // Quick exit
419 // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
420 // and slow us down a lot. Just mark them overdefined.
421 if (PN.getNumIncomingValues() > 64) {
422 UpdateState(Key, Overdefined);
423 return;
426 // Look at all of the executable operands of the PHI node. If any of them
427 // are overdefined, the PHI becomes overdefined as well. Otherwise, ask the
428 // transfer function to give us the merge of the incoming values.
429 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
430 // If the edge is not yet known to be feasible, it doesn't impact the PHI.
431 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true))
432 continue;
434 // Merge in this value.
435 LatticeVal OpVal =
436 getValueState(KeyInfo::getLatticeKeyFromValue(PN.getIncomingValue(i)));
437 if (OpVal != PNIV)
438 PNIV = LatticeFunc->MergeValues(PNIV, OpVal);
440 if (PNIV == Overdefined)
441 break; // Rest of input values don't matter.
444 // Update the PHI with the compute value, which is the merge of the inputs.
445 UpdateState(Key, PNIV);
448 template <class LatticeKey, class LatticeVal, class KeyInfo>
449 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitInst(Instruction &I) {
450 // PHIs are handled by the propagation logic, they are never passed into the
451 // transfer functions.
452 if (PHINode *PN = dyn_cast<PHINode>(&I))
453 return visitPHINode(*PN);
455 // Otherwise, ask the transfer function what the result is. If this is
456 // something that we care about, remember it.
457 DenseMap<LatticeKey, LatticeVal> ChangedValues;
458 LatticeFunc->ComputeInstructionState(I, ChangedValues, *this);
459 for (auto &ChangedValue : ChangedValues)
460 if (ChangedValue.second != LatticeFunc->getUntrackedVal())
461 UpdateState(ChangedValue.first, ChangedValue.second);
463 if (I.isTerminator())
464 visitTerminator(I);
467 template <class LatticeKey, class LatticeVal, class KeyInfo>
468 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Solve() {
469 // Process the work lists until they are empty!
470 while (!BBWorkList.empty() || !ValueWorkList.empty()) {
471 // Process the value work list.
472 while (!ValueWorkList.empty()) {
473 Value *V = ValueWorkList.back();
474 ValueWorkList.pop_back();
476 LLVM_DEBUG(dbgs() << "\nPopped off V-WL: " << *V << "\n");
478 // "V" got into the work list because it made a transition. See if any
479 // users are both live and in need of updating.
480 for (User *U : V->users())
481 if (Instruction *Inst = dyn_cast<Instruction>(U))
482 if (BBExecutable.count(Inst->getParent())) // Inst is executable?
483 visitInst(*Inst);
486 // Process the basic block work list.
487 while (!BBWorkList.empty()) {
488 BasicBlock *BB = BBWorkList.back();
489 BBWorkList.pop_back();
491 LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB);
493 // Notify all instructions in this basic block that they are newly
494 // executable.
495 for (Instruction &I : *BB)
496 visitInst(I);
501 template <class LatticeKey, class LatticeVal, class KeyInfo>
502 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Print(
503 raw_ostream &OS) const {
504 if (ValueState.empty())
505 return;
507 LatticeKey Key;
508 LatticeVal LV;
510 OS << "ValueState:\n";
511 for (auto &Entry : ValueState) {
512 std::tie(Key, LV) = Entry;
513 if (LV == LatticeFunc->getUntrackedVal())
514 continue;
515 OS << "\t";
516 LatticeFunc->PrintLatticeVal(LV, OS);
517 OS << ": ";
518 LatticeFunc->PrintLatticeKey(Key, OS);
519 OS << "\n";
522 } // end namespace llvm
524 #undef DEBUG_TYPE
526 #endif // LLVM_ANALYSIS_SPARSEPROPAGATION_H