[InstCombine] Signed saturation patterns
[llvm-complete.git] / include / llvm / Analysis / TargetTransformInfo.h
blobd6fa884116546b51c4113a9db8a2ee1d74292986
1 //===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This pass exposes codegen information to IR-level passes. Every
10 /// transformation that uses codegen information is broken into three parts:
11 /// 1. The IR-level analysis pass.
12 /// 2. The IR-level transformation interface which provides the needed
13 /// information.
14 /// 3. Codegen-level implementation which uses target-specific hooks.
15 ///
16 /// This file defines #2, which is the interface that IR-level transformations
17 /// use for querying the codegen.
18 ///
19 //===----------------------------------------------------------------------===//
21 #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
22 #define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/PassManager.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Support/AtomicOrdering.h"
29 #include "llvm/Support/DataTypes.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/ScalarEvolution.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/Analysis/AssumptionCache.h"
34 #include <functional>
36 namespace llvm {
38 namespace Intrinsic {
39 enum ID : unsigned;
42 class AssumptionCache;
43 class BranchInst;
44 class Function;
45 class GlobalValue;
46 class IntrinsicInst;
47 class LoadInst;
48 class Loop;
49 class SCEV;
50 class ScalarEvolution;
51 class StoreInst;
52 class SwitchInst;
53 class TargetLibraryInfo;
54 class Type;
55 class User;
56 class Value;
58 /// Information about a load/store intrinsic defined by the target.
59 struct MemIntrinsicInfo {
60 /// This is the pointer that the intrinsic is loading from or storing to.
61 /// If this is non-null, then analysis/optimization passes can assume that
62 /// this intrinsic is functionally equivalent to a load/store from this
63 /// pointer.
64 Value *PtrVal = nullptr;
66 // Ordering for atomic operations.
67 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
69 // Same Id is set by the target for corresponding load/store intrinsics.
70 unsigned short MatchingId = 0;
72 bool ReadMem = false;
73 bool WriteMem = false;
74 bool IsVolatile = false;
76 bool isUnordered() const {
77 return (Ordering == AtomicOrdering::NotAtomic ||
78 Ordering == AtomicOrdering::Unordered) && !IsVolatile;
82 /// Attributes of a target dependent hardware loop.
83 struct HardwareLoopInfo {
84 HardwareLoopInfo() = delete;
85 HardwareLoopInfo(Loop *L) : L(L) {}
86 Loop *L = nullptr;
87 BasicBlock *ExitBlock = nullptr;
88 BranchInst *ExitBranch = nullptr;
89 const SCEV *ExitCount = nullptr;
90 IntegerType *CountType = nullptr;
91 Value *LoopDecrement = nullptr; // Decrement the loop counter by this
92 // value in every iteration.
93 bool IsNestingLegal = false; // Can a hardware loop be a parent to
94 // another hardware loop?
95 bool CounterInReg = false; // Should loop counter be updated in
96 // the loop via a phi?
97 bool PerformEntryTest = false; // Generate the intrinsic which also performs
98 // icmp ne zero on the loop counter value and
99 // produces an i1 to guard the loop entry.
100 bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI,
101 DominatorTree &DT, bool ForceNestedLoop = false,
102 bool ForceHardwareLoopPHI = false);
103 bool canAnalyze(LoopInfo &LI);
106 /// This pass provides access to the codegen interfaces that are needed
107 /// for IR-level transformations.
108 class TargetTransformInfo {
109 public:
110 /// Construct a TTI object using a type implementing the \c Concept
111 /// API below.
113 /// This is used by targets to construct a TTI wrapping their target-specific
114 /// implementation that encodes appropriate costs for their target.
115 template <typename T> TargetTransformInfo(T Impl);
117 /// Construct a baseline TTI object using a minimal implementation of
118 /// the \c Concept API below.
120 /// The TTI implementation will reflect the information in the DataLayout
121 /// provided if non-null.
122 explicit TargetTransformInfo(const DataLayout &DL);
124 // Provide move semantics.
125 TargetTransformInfo(TargetTransformInfo &&Arg);
126 TargetTransformInfo &operator=(TargetTransformInfo &&RHS);
128 // We need to define the destructor out-of-line to define our sub-classes
129 // out-of-line.
130 ~TargetTransformInfo();
132 /// Handle the invalidation of this information.
134 /// When used as a result of \c TargetIRAnalysis this method will be called
135 /// when the function this was computed for changes. When it returns false,
136 /// the information is preserved across those changes.
137 bool invalidate(Function &, const PreservedAnalyses &,
138 FunctionAnalysisManager::Invalidator &) {
139 // FIXME: We should probably in some way ensure that the subtarget
140 // information for a function hasn't changed.
141 return false;
144 /// \name Generic Target Information
145 /// @{
147 /// The kind of cost model.
149 /// There are several different cost models that can be customized by the
150 /// target. The normalization of each cost model may be target specific.
151 enum TargetCostKind {
152 TCK_RecipThroughput, ///< Reciprocal throughput.
153 TCK_Latency, ///< The latency of instruction.
154 TCK_CodeSize ///< Instruction code size.
157 /// Query the cost of a specified instruction.
159 /// Clients should use this interface to query the cost of an existing
160 /// instruction. The instruction must have a valid parent (basic block).
162 /// Note, this method does not cache the cost calculation and it
163 /// can be expensive in some cases.
164 int getInstructionCost(const Instruction *I, enum TargetCostKind kind) const {
165 switch (kind){
166 case TCK_RecipThroughput:
167 return getInstructionThroughput(I);
169 case TCK_Latency:
170 return getInstructionLatency(I);
172 case TCK_CodeSize:
173 return getUserCost(I);
175 llvm_unreachable("Unknown instruction cost kind");
178 /// Underlying constants for 'cost' values in this interface.
180 /// Many APIs in this interface return a cost. This enum defines the
181 /// fundamental values that should be used to interpret (and produce) those
182 /// costs. The costs are returned as an int rather than a member of this
183 /// enumeration because it is expected that the cost of one IR instruction
184 /// may have a multiplicative factor to it or otherwise won't fit directly
185 /// into the enum. Moreover, it is common to sum or average costs which works
186 /// better as simple integral values. Thus this enum only provides constants.
187 /// Also note that the returned costs are signed integers to make it natural
188 /// to add, subtract, and test with zero (a common boundary condition). It is
189 /// not expected that 2^32 is a realistic cost to be modeling at any point.
191 /// Note that these costs should usually reflect the intersection of code-size
192 /// cost and execution cost. A free instruction is typically one that folds
193 /// into another instruction. For example, reg-to-reg moves can often be
194 /// skipped by renaming the registers in the CPU, but they still are encoded
195 /// and thus wouldn't be considered 'free' here.
196 enum TargetCostConstants {
197 TCC_Free = 0, ///< Expected to fold away in lowering.
198 TCC_Basic = 1, ///< The cost of a typical 'add' instruction.
199 TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
202 /// Estimate the cost of a specific operation when lowered.
204 /// Note that this is designed to work on an arbitrary synthetic opcode, and
205 /// thus work for hypothetical queries before an instruction has even been
206 /// formed. However, this does *not* work for GEPs, and must not be called
207 /// for a GEP instruction. Instead, use the dedicated getGEPCost interface as
208 /// analyzing a GEP's cost required more information.
210 /// Typically only the result type is required, and the operand type can be
211 /// omitted. However, if the opcode is one of the cast instructions, the
212 /// operand type is required.
214 /// The returned cost is defined in terms of \c TargetCostConstants, see its
215 /// comments for a detailed explanation of the cost values.
216 int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy = nullptr) const;
218 /// Estimate the cost of a GEP operation when lowered.
220 /// The contract for this function is the same as \c getOperationCost except
221 /// that it supports an interface that provides extra information specific to
222 /// the GEP operation.
223 int getGEPCost(Type *PointeeType, const Value *Ptr,
224 ArrayRef<const Value *> Operands) const;
226 /// Estimate the cost of a EXT operation when lowered.
228 /// The contract for this function is the same as \c getOperationCost except
229 /// that it supports an interface that provides extra information specific to
230 /// the EXT operation.
231 int getExtCost(const Instruction *I, const Value *Src) const;
233 /// Estimate the cost of a function call when lowered.
235 /// The contract for this is the same as \c getOperationCost except that it
236 /// supports an interface that provides extra information specific to call
237 /// instructions.
239 /// This is the most basic query for estimating call cost: it only knows the
240 /// function type and (potentially) the number of arguments at the call site.
241 /// The latter is only interesting for varargs function types.
242 int getCallCost(FunctionType *FTy, int NumArgs = -1,
243 const User *U = nullptr) const;
245 /// Estimate the cost of calling a specific function when lowered.
247 /// This overload adds the ability to reason about the particular function
248 /// being called in the event it is a library call with special lowering.
249 int getCallCost(const Function *F, int NumArgs = -1,
250 const User *U = nullptr) const;
252 /// Estimate the cost of calling a specific function when lowered.
254 /// This overload allows specifying a set of candidate argument values.
255 int getCallCost(const Function *F, ArrayRef<const Value *> Arguments,
256 const User *U = nullptr) const;
258 /// \returns A value by which our inlining threshold should be multiplied.
259 /// This is primarily used to bump up the inlining threshold wholesale on
260 /// targets where calls are unusually expensive.
262 /// TODO: This is a rather blunt instrument. Perhaps altering the costs of
263 /// individual classes of instructions would be better.
264 unsigned getInliningThresholdMultiplier() const;
266 /// \returns Vector bonus in percent.
268 /// Vector bonuses: We want to more aggressively inline vector-dense kernels
269 /// and apply this bonus based on the percentage of vector instructions. A
270 /// bonus is applied if the vector instructions exceed 50% and half that amount
271 /// is applied if it exceeds 10%. Note that these bonuses are some what
272 /// arbitrary and evolved over time by accident as much as because they are
273 /// principled bonuses.
274 /// FIXME: It would be nice to base the bonus values on something more
275 /// scientific. A target may has no bonus on vector instructions.
276 int getInlinerVectorBonusPercent() const;
278 /// Estimate the cost of an intrinsic when lowered.
280 /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
281 int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
282 ArrayRef<Type *> ParamTys,
283 const User *U = nullptr) const;
285 /// Estimate the cost of an intrinsic when lowered.
287 /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
288 int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
289 ArrayRef<const Value *> Arguments,
290 const User *U = nullptr) const;
292 /// \return the expected cost of a memcpy, which could e.g. depend on the
293 /// source/destination type and alignment and the number of bytes copied.
294 int getMemcpyCost(const Instruction *I) const;
296 /// \return The estimated number of case clusters when lowering \p 'SI'.
297 /// \p JTSize Set a jump table size only when \p SI is suitable for a jump
298 /// table.
299 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
300 unsigned &JTSize) const;
302 /// Estimate the cost of a given IR user when lowered.
304 /// This can estimate the cost of either a ConstantExpr or Instruction when
305 /// lowered. It has two primary advantages over the \c getOperationCost and
306 /// \c getGEPCost above, and one significant disadvantage: it can only be
307 /// used when the IR construct has already been formed.
309 /// The advantages are that it can inspect the SSA use graph to reason more
310 /// accurately about the cost. For example, all-constant-GEPs can often be
311 /// folded into a load or other instruction, but if they are used in some
312 /// other context they may not be folded. This routine can distinguish such
313 /// cases.
315 /// \p Operands is a list of operands which can be a result of transformations
316 /// of the current operands. The number of the operands on the list must equal
317 /// to the number of the current operands the IR user has. Their order on the
318 /// list must be the same as the order of the current operands the IR user
319 /// has.
321 /// The returned cost is defined in terms of \c TargetCostConstants, see its
322 /// comments for a detailed explanation of the cost values.
323 int getUserCost(const User *U, ArrayRef<const Value *> Operands) const;
325 /// This is a helper function which calls the two-argument getUserCost
326 /// with \p Operands which are the current operands U has.
327 int getUserCost(const User *U) const {
328 SmallVector<const Value *, 4> Operands(U->value_op_begin(),
329 U->value_op_end());
330 return getUserCost(U, Operands);
333 /// Return true if branch divergence exists.
335 /// Branch divergence has a significantly negative impact on GPU performance
336 /// when threads in the same wavefront take different paths due to conditional
337 /// branches.
338 bool hasBranchDivergence() const;
340 /// Returns whether V is a source of divergence.
342 /// This function provides the target-dependent information for
343 /// the target-independent LegacyDivergenceAnalysis. LegacyDivergenceAnalysis first
344 /// builds the dependency graph, and then runs the reachability algorithm
345 /// starting with the sources of divergence.
346 bool isSourceOfDivergence(const Value *V) const;
348 // Returns true for the target specific
349 // set of operations which produce uniform result
350 // even taking non-uniform arguments
351 bool isAlwaysUniform(const Value *V) const;
353 /// Returns the address space ID for a target's 'flat' address space. Note
354 /// this is not necessarily the same as addrspace(0), which LLVM sometimes
355 /// refers to as the generic address space. The flat address space is a
356 /// generic address space that can be used access multiple segments of memory
357 /// with different address spaces. Access of a memory location through a
358 /// pointer with this address space is expected to be legal but slower
359 /// compared to the same memory location accessed through a pointer with a
360 /// different address space.
362 /// This is for targets with different pointer representations which can
363 /// be converted with the addrspacecast instruction. If a pointer is converted
364 /// to this address space, optimizations should attempt to replace the access
365 /// with the source address space.
367 /// \returns ~0u if the target does not have such a flat address space to
368 /// optimize away.
369 unsigned getFlatAddressSpace() const;
371 /// Return any intrinsic address operand indexes which may be rewritten if
372 /// they use a flat address space pointer.
374 /// \returns true if the intrinsic was handled.
375 bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
376 Intrinsic::ID IID) const;
378 /// Rewrite intrinsic call \p II such that \p OldV will be replaced with \p
379 /// NewV, which has a different address space. This should happen for every
380 /// operand index that collectFlatAddressOperands returned for the intrinsic.
381 /// \returns true if the intrinsic /// was handled.
382 bool rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
383 Value *OldV, Value *NewV) const;
385 /// Test whether calls to a function lower to actual program function
386 /// calls.
388 /// The idea is to test whether the program is likely to require a 'call'
389 /// instruction or equivalent in order to call the given function.
391 /// FIXME: It's not clear that this is a good or useful query API. Client's
392 /// should probably move to simpler cost metrics using the above.
393 /// Alternatively, we could split the cost interface into distinct code-size
394 /// and execution-speed costs. This would allow modelling the core of this
395 /// query more accurately as a call is a single small instruction, but
396 /// incurs significant execution cost.
397 bool isLoweredToCall(const Function *F) const;
399 struct LSRCost {
400 /// TODO: Some of these could be merged. Also, a lexical ordering
401 /// isn't always optimal.
402 unsigned Insns;
403 unsigned NumRegs;
404 unsigned AddRecCost;
405 unsigned NumIVMuls;
406 unsigned NumBaseAdds;
407 unsigned ImmCost;
408 unsigned SetupCost;
409 unsigned ScaleCost;
412 /// Parameters that control the generic loop unrolling transformation.
413 struct UnrollingPreferences {
414 /// The cost threshold for the unrolled loop. Should be relative to the
415 /// getUserCost values returned by this API, and the expectation is that
416 /// the unrolled loop's instructions when run through that interface should
417 /// not exceed this cost. However, this is only an estimate. Also, specific
418 /// loops may be unrolled even with a cost above this threshold if deemed
419 /// profitable. Set this to UINT_MAX to disable the loop body cost
420 /// restriction.
421 unsigned Threshold;
422 /// If complete unrolling will reduce the cost of the loop, we will boost
423 /// the Threshold by a certain percent to allow more aggressive complete
424 /// unrolling. This value provides the maximum boost percentage that we
425 /// can apply to Threshold (The value should be no less than 100).
426 /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
427 /// MaxPercentThresholdBoost / 100)
428 /// E.g. if complete unrolling reduces the loop execution time by 50%
429 /// then we boost the threshold by the factor of 2x. If unrolling is not
430 /// expected to reduce the running time, then we do not increase the
431 /// threshold.
432 unsigned MaxPercentThresholdBoost;
433 /// The cost threshold for the unrolled loop when optimizing for size (set
434 /// to UINT_MAX to disable).
435 unsigned OptSizeThreshold;
436 /// The cost threshold for the unrolled loop, like Threshold, but used
437 /// for partial/runtime unrolling (set to UINT_MAX to disable).
438 unsigned PartialThreshold;
439 /// The cost threshold for the unrolled loop when optimizing for size, like
440 /// OptSizeThreshold, but used for partial/runtime unrolling (set to
441 /// UINT_MAX to disable).
442 unsigned PartialOptSizeThreshold;
443 /// A forced unrolling factor (the number of concatenated bodies of the
444 /// original loop in the unrolled loop body). When set to 0, the unrolling
445 /// transformation will select an unrolling factor based on the current cost
446 /// threshold and other factors.
447 unsigned Count;
448 /// A forced peeling factor (the number of bodied of the original loop
449 /// that should be peeled off before the loop body). When set to 0, the
450 /// unrolling transformation will select a peeling factor based on profile
451 /// information and other factors.
452 unsigned PeelCount;
453 /// Default unroll count for loops with run-time trip count.
454 unsigned DefaultUnrollRuntimeCount;
455 // Set the maximum unrolling factor. The unrolling factor may be selected
456 // using the appropriate cost threshold, but may not exceed this number
457 // (set to UINT_MAX to disable). This does not apply in cases where the
458 // loop is being fully unrolled.
459 unsigned MaxCount;
460 /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
461 /// applies even if full unrolling is selected. This allows a target to fall
462 /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
463 unsigned FullUnrollMaxCount;
464 // Represents number of instructions optimized when "back edge"
465 // becomes "fall through" in unrolled loop.
466 // For now we count a conditional branch on a backedge and a comparison
467 // feeding it.
468 unsigned BEInsns;
469 /// Allow partial unrolling (unrolling of loops to expand the size of the
470 /// loop body, not only to eliminate small constant-trip-count loops).
471 bool Partial;
472 /// Allow runtime unrolling (unrolling of loops to expand the size of the
473 /// loop body even when the number of loop iterations is not known at
474 /// compile time).
475 bool Runtime;
476 /// Allow generation of a loop remainder (extra iterations after unroll).
477 bool AllowRemainder;
478 /// Allow emitting expensive instructions (such as divisions) when computing
479 /// the trip count of a loop for runtime unrolling.
480 bool AllowExpensiveTripCount;
481 /// Apply loop unroll on any kind of loop
482 /// (mainly to loops that fail runtime unrolling).
483 bool Force;
484 /// Allow using trip count upper bound to unroll loops.
485 bool UpperBound;
486 /// Allow peeling off loop iterations.
487 bool AllowPeeling;
488 /// Allow unrolling of all the iterations of the runtime loop remainder.
489 bool UnrollRemainder;
490 /// Allow unroll and jam. Used to enable unroll and jam for the target.
491 bool UnrollAndJam;
492 /// Allow peeling basing on profile. Uses to enable peeling off all
493 /// iterations basing on provided profile.
494 /// If the value is true the peeling cost model can decide to peel only
495 /// some iterations and in this case it will set this to false.
496 bool PeelProfiledIterations;
497 /// Threshold for unroll and jam, for inner loop size. The 'Threshold'
498 /// value above is used during unroll and jam for the outer loop size.
499 /// This value is used in the same manner to limit the size of the inner
500 /// loop.
501 unsigned UnrollAndJamInnerLoopThreshold;
504 /// Get target-customized preferences for the generic loop unrolling
505 /// transformation. The caller will initialize UP with the current
506 /// target-independent defaults.
507 void getUnrollingPreferences(Loop *L, ScalarEvolution &,
508 UnrollingPreferences &UP) const;
510 /// Query the target whether it would be profitable to convert the given loop
511 /// into a hardware loop.
512 bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
513 AssumptionCache &AC,
514 TargetLibraryInfo *LibInfo,
515 HardwareLoopInfo &HWLoopInfo) const;
517 /// @}
519 /// \name Scalar Target Information
520 /// @{
522 /// Flags indicating the kind of support for population count.
524 /// Compared to the SW implementation, HW support is supposed to
525 /// significantly boost the performance when the population is dense, and it
526 /// may or may not degrade performance if the population is sparse. A HW
527 /// support is considered as "Fast" if it can outperform, or is on a par
528 /// with, SW implementation when the population is sparse; otherwise, it is
529 /// considered as "Slow".
530 enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware };
532 /// Return true if the specified immediate is legal add immediate, that
533 /// is the target has add instructions which can add a register with the
534 /// immediate without having to materialize the immediate into a register.
535 bool isLegalAddImmediate(int64_t Imm) const;
537 /// Return true if the specified immediate is legal icmp immediate,
538 /// that is the target has icmp instructions which can compare a register
539 /// against the immediate without having to materialize the immediate into a
540 /// register.
541 bool isLegalICmpImmediate(int64_t Imm) const;
543 /// Return true if the addressing mode represented by AM is legal for
544 /// this target, for a load/store of the specified type.
545 /// The type may be VoidTy, in which case only return true if the addressing
546 /// mode is legal for a load/store of any legal type.
547 /// If target returns true in LSRWithInstrQueries(), I may be valid.
548 /// TODO: Handle pre/postinc as well.
549 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
550 bool HasBaseReg, int64_t Scale,
551 unsigned AddrSpace = 0,
552 Instruction *I = nullptr) const;
554 /// Return true if LSR cost of C1 is lower than C1.
555 bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
556 TargetTransformInfo::LSRCost &C2) const;
558 /// Return true if the target can fuse a compare and branch.
559 /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
560 /// calculation for the instructions in a loop.
561 bool canMacroFuseCmp() const;
563 /// Return true if the target can save a compare for loop count, for example
564 /// hardware loop saves a compare.
565 bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
566 DominatorTree *DT, AssumptionCache *AC,
567 TargetLibraryInfo *LibInfo) const;
569 /// \return True is LSR should make efforts to create/preserve post-inc
570 /// addressing mode expressions.
571 bool shouldFavorPostInc() const;
573 /// Return true if LSR should make efforts to generate indexed addressing
574 /// modes that operate across loop iterations.
575 bool shouldFavorBackedgeIndex(const Loop *L) const;
577 /// Return true if the target supports masked store.
578 bool isLegalMaskedStore(Type *DataType, MaybeAlign Alignment) const;
579 /// Return true if the target supports masked load.
580 bool isLegalMaskedLoad(Type *DataType, MaybeAlign Alignment) const;
582 /// Return true if the target supports nontemporal store.
583 bool isLegalNTStore(Type *DataType, Align Alignment) const;
584 /// Return true if the target supports nontemporal load.
585 bool isLegalNTLoad(Type *DataType, Align Alignment) const;
587 /// Return true if the target supports masked scatter.
588 bool isLegalMaskedScatter(Type *DataType) const;
589 /// Return true if the target supports masked gather.
590 bool isLegalMaskedGather(Type *DataType) const;
592 /// Return true if the target supports masked compress store.
593 bool isLegalMaskedCompressStore(Type *DataType) const;
594 /// Return true if the target supports masked expand load.
595 bool isLegalMaskedExpandLoad(Type *DataType) const;
597 /// Return true if the target has a unified operation to calculate division
598 /// and remainder. If so, the additional implicit multiplication and
599 /// subtraction required to calculate a remainder from division are free. This
600 /// can enable more aggressive transformations for division and remainder than
601 /// would typically be allowed using throughput or size cost models.
602 bool hasDivRemOp(Type *DataType, bool IsSigned) const;
604 /// Return true if the given instruction (assumed to be a memory access
605 /// instruction) has a volatile variant. If that's the case then we can avoid
606 /// addrspacecast to generic AS for volatile loads/stores. Default
607 /// implementation returns false, which prevents address space inference for
608 /// volatile loads/stores.
609 bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const;
611 /// Return true if target doesn't mind addresses in vectors.
612 bool prefersVectorizedAddressing() const;
614 /// Return the cost of the scaling factor used in the addressing
615 /// mode represented by AM for this target, for a load/store
616 /// of the specified type.
617 /// If the AM is supported, the return value must be >= 0.
618 /// If the AM is not supported, it returns a negative value.
619 /// TODO: Handle pre/postinc as well.
620 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
621 bool HasBaseReg, int64_t Scale,
622 unsigned AddrSpace = 0) const;
624 /// Return true if the loop strength reduce pass should make
625 /// Instruction* based TTI queries to isLegalAddressingMode(). This is
626 /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
627 /// immediate offset and no index register.
628 bool LSRWithInstrQueries() const;
630 /// Return true if it's free to truncate a value of type Ty1 to type
631 /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
632 /// by referencing its sub-register AX.
633 bool isTruncateFree(Type *Ty1, Type *Ty2) const;
635 /// Return true if it is profitable to hoist instruction in the
636 /// then/else to before if.
637 bool isProfitableToHoist(Instruction *I) const;
639 bool useAA() const;
641 /// Return true if this type is legal.
642 bool isTypeLegal(Type *Ty) const;
644 /// Return true if switches should be turned into lookup tables for the
645 /// target.
646 bool shouldBuildLookupTables() const;
648 /// Return true if switches should be turned into lookup tables
649 /// containing this constant value for the target.
650 bool shouldBuildLookupTablesForConstant(Constant *C) const;
652 /// Return true if the input function which is cold at all call sites,
653 /// should use coldcc calling convention.
654 bool useColdCCForColdCall(Function &F) const;
656 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
658 unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
659 unsigned VF) const;
661 /// If target has efficient vector element load/store instructions, it can
662 /// return true here so that insertion/extraction costs are not added to
663 /// the scalarization cost of a load/store.
664 bool supportsEfficientVectorElementLoadStore() const;
666 /// Don't restrict interleaved unrolling to small loops.
667 bool enableAggressiveInterleaving(bool LoopHasReductions) const;
669 /// Returns options for expansion of memcmp. IsZeroCmp is
670 // true if this is the expansion of memcmp(p1, p2, s) == 0.
671 struct MemCmpExpansionOptions {
672 // Return true if memcmp expansion is enabled.
673 operator bool() const { return MaxNumLoads > 0; }
675 // Maximum number of load operations.
676 unsigned MaxNumLoads = 0;
678 // The list of available load sizes (in bytes), sorted in decreasing order.
679 SmallVector<unsigned, 8> LoadSizes;
681 // For memcmp expansion when the memcmp result is only compared equal or
682 // not-equal to 0, allow up to this number of load pairs per block. As an
683 // example, this may allow 'memcmp(a, b, 3) == 0' in a single block:
684 // a0 = load2bytes &a[0]
685 // b0 = load2bytes &b[0]
686 // a2 = load1byte &a[2]
687 // b2 = load1byte &b[2]
688 // r = cmp eq (a0 ^ b0 | a2 ^ b2), 0
689 unsigned NumLoadsPerBlock = 1;
691 // Set to true to allow overlapping loads. For example, 7-byte compares can
692 // be done with two 4-byte compares instead of 4+2+1-byte compares. This
693 // requires all loads in LoadSizes to be doable in an unaligned way.
694 bool AllowOverlappingLoads = false;
696 MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
697 bool IsZeroCmp) const;
699 /// Enable matching of interleaved access groups.
700 bool enableInterleavedAccessVectorization() const;
702 /// Enable matching of interleaved access groups that contain predicated
703 /// accesses or gaps and therefore vectorized using masked
704 /// vector loads/stores.
705 bool enableMaskedInterleavedAccessVectorization() const;
707 /// Indicate that it is potentially unsafe to automatically vectorize
708 /// floating-point operations because the semantics of vector and scalar
709 /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
710 /// does not support IEEE-754 denormal numbers, while depending on the
711 /// platform, scalar floating-point math does.
712 /// This applies to floating-point math operations and calls, not memory
713 /// operations, shuffles, or casts.
714 bool isFPVectorizationPotentiallyUnsafe() const;
716 /// Determine if the target supports unaligned memory accesses.
717 bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
718 unsigned BitWidth, unsigned AddressSpace = 0,
719 unsigned Alignment = 1,
720 bool *Fast = nullptr) const;
722 /// Return hardware support for population count.
723 PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
725 /// Return true if the hardware has a fast square-root instruction.
726 bool haveFastSqrt(Type *Ty) const;
728 /// Return true if it is faster to check if a floating-point value is NaN
729 /// (or not-NaN) versus a comparison against a constant FP zero value.
730 /// Targets should override this if materializing a 0.0 for comparison is
731 /// generally as cheap as checking for ordered/unordered.
732 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const;
734 /// Return the expected cost of supporting the floating point operation
735 /// of the specified type.
736 int getFPOpCost(Type *Ty) const;
738 /// Return the expected cost of materializing for the given integer
739 /// immediate of the specified type.
740 int getIntImmCost(const APInt &Imm, Type *Ty) const;
742 /// Return the expected cost of materialization for the given integer
743 /// immediate of the specified type for a given instruction. The cost can be
744 /// zero if the immediate can be folded into the specified instruction.
745 int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
746 Type *Ty) const;
747 int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
748 Type *Ty) const;
750 /// Return the expected cost for the given integer when optimising
751 /// for size. This is different than the other integer immediate cost
752 /// functions in that it is subtarget agnostic. This is useful when you e.g.
753 /// target one ISA such as Aarch32 but smaller encodings could be possible
754 /// with another such as Thumb. This return value is used as a penalty when
755 /// the total costs for a constant is calculated (the bigger the cost, the
756 /// more beneficial constant hoisting is).
757 int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
758 Type *Ty) const;
759 /// @}
761 /// \name Vector Target Information
762 /// @{
764 /// The various kinds of shuffle patterns for vector queries.
765 enum ShuffleKind {
766 SK_Broadcast, ///< Broadcast element 0 to all other elements.
767 SK_Reverse, ///< Reverse the order of the vector.
768 SK_Select, ///< Selects elements from the corresponding lane of
769 ///< either source operand. This is equivalent to a
770 ///< vector select with a constant condition operand.
771 SK_Transpose, ///< Transpose two vectors.
772 SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset.
773 SK_ExtractSubvector,///< ExtractSubvector Index indicates start offset.
774 SK_PermuteTwoSrc, ///< Merge elements from two source vectors into one
775 ///< with any shuffle mask.
776 SK_PermuteSingleSrc ///< Shuffle elements of single source vector with any
777 ///< shuffle mask.
780 /// Additional information about an operand's possible values.
781 enum OperandValueKind {
782 OK_AnyValue, // Operand can have any value.
783 OK_UniformValue, // Operand is uniform (splat of a value).
784 OK_UniformConstantValue, // Operand is uniform constant.
785 OK_NonUniformConstantValue // Operand is a non uniform constant value.
788 /// Additional properties of an operand's values.
789 enum OperandValueProperties { OP_None = 0, OP_PowerOf2 = 1 };
791 /// \return the number of registers in the target-provided register class.
792 unsigned getNumberOfRegisters(unsigned ClassID) const;
794 /// \return the target-provided register class ID for the provided type,
795 /// accounting for type promotion and other type-legalization techniques that the target might apply.
796 /// However, it specifically does not account for the scalarization or splitting of vector types.
797 /// Should a vector type require scalarization or splitting into multiple underlying vector registers,
798 /// that type should be mapped to a register class containing no registers.
799 /// Specifically, this is designed to provide a simple, high-level view of the register allocation
800 /// later performed by the backend. These register classes don't necessarily map onto the
801 /// register classes used by the backend.
802 /// FIXME: It's not currently possible to determine how many registers
803 /// are used by the provided type.
804 unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const;
806 /// \return the target-provided register class name
807 const char* getRegisterClassName(unsigned ClassID) const;
809 /// \return The width of the largest scalar or vector register type.
810 unsigned getRegisterBitWidth(bool Vector) const;
812 /// \return The width of the smallest vector register type.
813 unsigned getMinVectorRegisterBitWidth() const;
815 /// \return True if the vectorization factor should be chosen to
816 /// make the vector of the smallest element type match the size of a
817 /// vector register. For wider element types, this could result in
818 /// creating vectors that span multiple vector registers.
819 /// If false, the vectorization factor will be chosen based on the
820 /// size of the widest element type.
821 bool shouldMaximizeVectorBandwidth(bool OptSize) const;
823 /// \return The minimum vectorization factor for types of given element
824 /// bit width, or 0 if there is no minimum VF. The returned value only
825 /// applies when shouldMaximizeVectorBandwidth returns true.
826 unsigned getMinimumVF(unsigned ElemWidth) const;
828 /// \return True if it should be considered for address type promotion.
829 /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
830 /// profitable without finding other extensions fed by the same input.
831 bool shouldConsiderAddressTypePromotion(
832 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;
834 /// \return The size of a cache line in bytes.
835 unsigned getCacheLineSize() const;
837 /// The possible cache levels
838 enum class CacheLevel {
839 L1D, // The L1 data cache
840 L2D, // The L2 data cache
842 // We currently do not model L3 caches, as their sizes differ widely between
843 // microarchitectures. Also, we currently do not have a use for L3 cache
844 // size modeling yet.
847 /// \return The size of the cache level in bytes, if available.
848 llvm::Optional<unsigned> getCacheSize(CacheLevel Level) const;
850 /// \return The associativity of the cache level, if available.
851 llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) const;
853 /// \return How much before a load we should place the prefetch
854 /// instruction. This is currently measured in number of
855 /// instructions.
856 unsigned getPrefetchDistance() const;
858 /// \return Some HW prefetchers can handle accesses up to a certain
859 /// constant stride. This is the minimum stride in bytes where it
860 /// makes sense to start adding SW prefetches. The default is 1,
861 /// i.e. prefetch with any stride.
862 unsigned getMinPrefetchStride() const;
864 /// \return The maximum number of iterations to prefetch ahead. If
865 /// the required number of iterations is more than this number, no
866 /// prefetching is performed.
867 unsigned getMaxPrefetchIterationsAhead() const;
869 /// \return The maximum interleave factor that any transform should try to
870 /// perform for this target. This number depends on the level of parallelism
871 /// and the number of execution units in the CPU.
872 unsigned getMaxInterleaveFactor(unsigned VF) const;
874 /// Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
875 static OperandValueKind getOperandInfo(Value *V,
876 OperandValueProperties &OpProps);
878 /// This is an approximation of reciprocal throughput of a math/logic op.
879 /// A higher cost indicates less expected throughput.
880 /// From Agner Fog's guides, reciprocal throughput is "the average number of
881 /// clock cycles per instruction when the instructions are not part of a
882 /// limiting dependency chain."
883 /// Therefore, costs should be scaled to account for multiple execution units
884 /// on the target that can process this type of instruction. For example, if
885 /// there are 5 scalar integer units and 2 vector integer units that can
886 /// calculate an 'add' in a single cycle, this model should indicate that the
887 /// cost of the vector add instruction is 2.5 times the cost of the scalar
888 /// add instruction.
889 /// \p Args is an optional argument which holds the instruction operands
890 /// values so the TTI can analyze those values searching for special
891 /// cases or optimizations based on those values.
892 int getArithmeticInstrCost(
893 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info = OK_AnyValue,
894 OperandValueKind Opd2Info = OK_AnyValue,
895 OperandValueProperties Opd1PropInfo = OP_None,
896 OperandValueProperties Opd2PropInfo = OP_None,
897 ArrayRef<const Value *> Args = ArrayRef<const Value *>()) const;
899 /// \return The cost of a shuffle instruction of kind Kind and of type Tp.
900 /// The index and subtype parameters are used by the subvector insertion and
901 /// extraction shuffle kinds to show the insert/extract point and the type of
902 /// the subvector being inserted/extracted.
903 /// NOTE: For subvector extractions Tp represents the source type.
904 int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index = 0,
905 Type *SubTp = nullptr) const;
907 /// \return The expected cost of cast instructions, such as bitcast, trunc,
908 /// zext, etc. If there is an existing instruction that holds Opcode, it
909 /// may be passed in the 'I' parameter.
910 int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
911 const Instruction *I = nullptr) const;
913 /// \return The expected cost of a sign- or zero-extended vector extract. Use
914 /// -1 to indicate that there is no information about the index value.
915 int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
916 unsigned Index = -1) const;
918 /// \return The expected cost of control-flow related instructions such as
919 /// Phi, Ret, Br.
920 int getCFInstrCost(unsigned Opcode) const;
922 /// \returns The expected cost of compare and select instructions. If there
923 /// is an existing instruction that holds Opcode, it may be passed in the
924 /// 'I' parameter.
925 int getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
926 Type *CondTy = nullptr, const Instruction *I = nullptr) const;
928 /// \return The expected cost of vector Insert and Extract.
929 /// Use -1 to indicate that there is no information on the index value.
930 int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index = -1) const;
932 /// \return The cost of Load and Store instructions.
933 int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
934 unsigned AddressSpace, const Instruction *I = nullptr) const;
936 /// \return The cost of masked Load and Store instructions.
937 int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
938 unsigned AddressSpace) const;
940 /// \return The cost of Gather or Scatter operation
941 /// \p Opcode - is a type of memory access Load or Store
942 /// \p DataTy - a vector type of the data to be loaded or stored
943 /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
944 /// \p VariableMask - true when the memory access is predicated with a mask
945 /// that is not a compile-time constant
946 /// \p Alignment - alignment of single element
947 int getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr,
948 bool VariableMask, unsigned Alignment) const;
950 /// \return The cost of the interleaved memory operation.
951 /// \p Opcode is the memory operation code
952 /// \p VecTy is the vector type of the interleaved access.
953 /// \p Factor is the interleave factor
954 /// \p Indices is the indices for interleaved load members (as interleaved
955 /// load allows gaps)
956 /// \p Alignment is the alignment of the memory operation
957 /// \p AddressSpace is address space of the pointer.
958 /// \p UseMaskForCond indicates if the memory access is predicated.
959 /// \p UseMaskForGaps indicates if gaps should be masked.
960 int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
961 ArrayRef<unsigned> Indices, unsigned Alignment,
962 unsigned AddressSpace,
963 bool UseMaskForCond = false,
964 bool UseMaskForGaps = false) const;
966 /// Calculate the cost of performing a vector reduction.
968 /// This is the cost of reducing the vector value of type \p Ty to a scalar
969 /// value using the operation denoted by \p Opcode. The form of the reduction
970 /// can either be a pairwise reduction or a reduction that splits the vector
971 /// at every reduction level.
973 /// Pairwise:
974 /// (v0, v1, v2, v3)
975 /// ((v0+v1), (v2+v3), undef, undef)
976 /// Split:
977 /// (v0, v1, v2, v3)
978 /// ((v0+v2), (v1+v3), undef, undef)
979 int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
980 bool IsPairwiseForm) const;
981 int getMinMaxReductionCost(Type *Ty, Type *CondTy, bool IsPairwiseForm,
982 bool IsUnsigned) const;
984 /// \returns The cost of Intrinsic instructions. Analyses the real arguments.
985 /// Three cases are handled: 1. scalar instruction 2. vector instruction
986 /// 3. scalar instruction which is to be vectorized with VF.
987 int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
988 ArrayRef<Value *> Args, FastMathFlags FMF,
989 unsigned VF = 1) const;
991 /// \returns The cost of Intrinsic instructions. Types analysis only.
992 /// If ScalarizationCostPassed is UINT_MAX, the cost of scalarizing the
993 /// arguments and the return value will be computed based on types.
994 int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
995 ArrayRef<Type *> Tys, FastMathFlags FMF,
996 unsigned ScalarizationCostPassed = UINT_MAX) const;
998 /// \returns The cost of Call instructions.
999 int getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) const;
1001 /// \returns The number of pieces into which the provided type must be
1002 /// split during legalization. Zero is returned when the answer is unknown.
1003 unsigned getNumberOfParts(Type *Tp) const;
1005 /// \returns The cost of the address computation. For most targets this can be
1006 /// merged into the instruction indexing mode. Some targets might want to
1007 /// distinguish between address computation for memory operations on vector
1008 /// types and scalar types. Such targets should override this function.
1009 /// The 'SE' parameter holds pointer for the scalar evolution object which
1010 /// is used in order to get the Ptr step value in case of constant stride.
1011 /// The 'Ptr' parameter holds SCEV of the access pointer.
1012 int getAddressComputationCost(Type *Ty, ScalarEvolution *SE = nullptr,
1013 const SCEV *Ptr = nullptr) const;
1015 /// \returns The cost, if any, of keeping values of the given types alive
1016 /// over a callsite.
1018 /// Some types may require the use of register classes that do not have
1019 /// any callee-saved registers, so would require a spill and fill.
1020 unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const;
1022 /// \returns True if the intrinsic is a supported memory intrinsic. Info
1023 /// will contain additional information - whether the intrinsic may write
1024 /// or read to memory, volatility and the pointer. Info is undefined
1025 /// if false is returned.
1026 bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;
1028 /// \returns The maximum element size, in bytes, for an element
1029 /// unordered-atomic memory intrinsic.
1030 unsigned getAtomicMemIntrinsicMaxElementSize() const;
1032 /// \returns A value which is the result of the given memory intrinsic. New
1033 /// instructions may be created to extract the result from the given intrinsic
1034 /// memory operation. Returns nullptr if the target cannot create a result
1035 /// from the given intrinsic.
1036 Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
1037 Type *ExpectedType) const;
1039 /// \returns The type to use in a loop expansion of a memcpy call.
1040 Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
1041 unsigned SrcAlign, unsigned DestAlign) const;
1043 /// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
1044 /// \param RemainingBytes The number of bytes to copy.
1046 /// Calculates the operand types to use when copying \p RemainingBytes of
1047 /// memory, where source and destination alignments are \p SrcAlign and
1048 /// \p DestAlign respectively.
1049 void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
1050 LLVMContext &Context,
1051 unsigned RemainingBytes,
1052 unsigned SrcAlign,
1053 unsigned DestAlign) const;
1055 /// \returns True if the two functions have compatible attributes for inlining
1056 /// purposes.
1057 bool areInlineCompatible(const Function *Caller,
1058 const Function *Callee) const;
1060 /// \returns True if the caller and callee agree on how \p Args will be passed
1061 /// to the callee.
1062 /// \param[out] Args The list of compatible arguments. The implementation may
1063 /// filter out any incompatible args from this list.
1064 bool areFunctionArgsABICompatible(const Function *Caller,
1065 const Function *Callee,
1066 SmallPtrSetImpl<Argument *> &Args) const;
1068 /// The type of load/store indexing.
1069 enum MemIndexedMode {
1070 MIM_Unindexed, ///< No indexing.
1071 MIM_PreInc, ///< Pre-incrementing.
1072 MIM_PreDec, ///< Pre-decrementing.
1073 MIM_PostInc, ///< Post-incrementing.
1074 MIM_PostDec ///< Post-decrementing.
1077 /// \returns True if the specified indexed load for the given type is legal.
1078 bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const;
1080 /// \returns True if the specified indexed store for the given type is legal.
1081 bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const;
1083 /// \returns The bitwidth of the largest vector type that should be used to
1084 /// load/store in the given address space.
1085 unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
1087 /// \returns True if the load instruction is legal to vectorize.
1088 bool isLegalToVectorizeLoad(LoadInst *LI) const;
1090 /// \returns True if the store instruction is legal to vectorize.
1091 bool isLegalToVectorizeStore(StoreInst *SI) const;
1093 /// \returns True if it is legal to vectorize the given load chain.
1094 bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
1095 unsigned Alignment,
1096 unsigned AddrSpace) const;
1098 /// \returns True if it is legal to vectorize the given store chain.
1099 bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
1100 unsigned Alignment,
1101 unsigned AddrSpace) const;
1103 /// \returns The new vector factor value if the target doesn't support \p
1104 /// SizeInBytes loads or has a better vector factor.
1105 unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1106 unsigned ChainSizeInBytes,
1107 VectorType *VecTy) const;
1109 /// \returns The new vector factor value if the target doesn't support \p
1110 /// SizeInBytes stores or has a better vector factor.
1111 unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1112 unsigned ChainSizeInBytes,
1113 VectorType *VecTy) const;
1115 /// Flags describing the kind of vector reduction.
1116 struct ReductionFlags {
1117 ReductionFlags() : IsMaxOp(false), IsSigned(false), NoNaN(false) {}
1118 bool IsMaxOp; ///< If the op a min/max kind, true if it's a max operation.
1119 bool IsSigned; ///< Whether the operation is a signed int reduction.
1120 bool NoNaN; ///< If op is an fp min/max, whether NaNs may be present.
1123 /// \returns True if the target wants to handle the given reduction idiom in
1124 /// the intrinsics form instead of the shuffle form.
1125 bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
1126 ReductionFlags Flags) const;
1128 /// \returns True if the target wants to expand the given reduction intrinsic
1129 /// into a shuffle sequence.
1130 bool shouldExpandReduction(const IntrinsicInst *II) const;
1132 /// \returns the size cost of rematerializing a GlobalValue address relative
1133 /// to a stack reload.
1134 unsigned getGISelRematGlobalCost() const;
1136 /// @}
1138 private:
1139 /// Estimate the latency of specified instruction.
1140 /// Returns 1 as the default value.
1141 int getInstructionLatency(const Instruction *I) const;
1143 /// Returns the expected throughput cost of the instruction.
1144 /// Returns -1 if the cost is unknown.
1145 int getInstructionThroughput(const Instruction *I) const;
1147 /// The abstract base class used to type erase specific TTI
1148 /// implementations.
1149 class Concept;
1151 /// The template model for the base class which wraps a concrete
1152 /// implementation in a type erased interface.
1153 template <typename T> class Model;
1155 std::unique_ptr<Concept> TTIImpl;
1158 class TargetTransformInfo::Concept {
1159 public:
1160 virtual ~Concept() = 0;
1161 virtual const DataLayout &getDataLayout() const = 0;
1162 virtual int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) = 0;
1163 virtual int getGEPCost(Type *PointeeType, const Value *Ptr,
1164 ArrayRef<const Value *> Operands) = 0;
1165 virtual int getExtCost(const Instruction *I, const Value *Src) = 0;
1166 virtual int getCallCost(FunctionType *FTy, int NumArgs, const User *U) = 0;
1167 virtual int getCallCost(const Function *F, int NumArgs, const User *U) = 0;
1168 virtual int getCallCost(const Function *F,
1169 ArrayRef<const Value *> Arguments, const User *U) = 0;
1170 virtual unsigned getInliningThresholdMultiplier() = 0;
1171 virtual int getInlinerVectorBonusPercent() = 0;
1172 virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
1173 ArrayRef<Type *> ParamTys, const User *U) = 0;
1174 virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
1175 ArrayRef<const Value *> Arguments,
1176 const User *U) = 0;
1177 virtual int getMemcpyCost(const Instruction *I) = 0;
1178 virtual unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
1179 unsigned &JTSize) = 0;
1180 virtual int
1181 getUserCost(const User *U, ArrayRef<const Value *> Operands) = 0;
1182 virtual bool hasBranchDivergence() = 0;
1183 virtual bool isSourceOfDivergence(const Value *V) = 0;
1184 virtual bool isAlwaysUniform(const Value *V) = 0;
1185 virtual unsigned getFlatAddressSpace() = 0;
1186 virtual bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
1187 Intrinsic::ID IID) const = 0;
1188 virtual bool rewriteIntrinsicWithAddressSpace(
1189 IntrinsicInst *II, Value *OldV, Value *NewV) const = 0;
1190 virtual bool isLoweredToCall(const Function *F) = 0;
1191 virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &,
1192 UnrollingPreferences &UP) = 0;
1193 virtual bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
1194 AssumptionCache &AC,
1195 TargetLibraryInfo *LibInfo,
1196 HardwareLoopInfo &HWLoopInfo) = 0;
1197 virtual bool isLegalAddImmediate(int64_t Imm) = 0;
1198 virtual bool isLegalICmpImmediate(int64_t Imm) = 0;
1199 virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
1200 int64_t BaseOffset, bool HasBaseReg,
1201 int64_t Scale,
1202 unsigned AddrSpace,
1203 Instruction *I) = 0;
1204 virtual bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
1205 TargetTransformInfo::LSRCost &C2) = 0;
1206 virtual bool canMacroFuseCmp() = 0;
1207 virtual bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
1208 LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC,
1209 TargetLibraryInfo *LibInfo) = 0;
1210 virtual bool shouldFavorPostInc() const = 0;
1211 virtual bool shouldFavorBackedgeIndex(const Loop *L) const = 0;
1212 virtual bool isLegalMaskedStore(Type *DataType, MaybeAlign Alignment) = 0;
1213 virtual bool isLegalMaskedLoad(Type *DataType, MaybeAlign Alignment) = 0;
1214 virtual bool isLegalNTStore(Type *DataType, Align Alignment) = 0;
1215 virtual bool isLegalNTLoad(Type *DataType, Align Alignment) = 0;
1216 virtual bool isLegalMaskedScatter(Type *DataType) = 0;
1217 virtual bool isLegalMaskedGather(Type *DataType) = 0;
1218 virtual bool isLegalMaskedCompressStore(Type *DataType) = 0;
1219 virtual bool isLegalMaskedExpandLoad(Type *DataType) = 0;
1220 virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0;
1221 virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0;
1222 virtual bool prefersVectorizedAddressing() = 0;
1223 virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
1224 int64_t BaseOffset, bool HasBaseReg,
1225 int64_t Scale, unsigned AddrSpace) = 0;
1226 virtual bool LSRWithInstrQueries() = 0;
1227 virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0;
1228 virtual bool isProfitableToHoist(Instruction *I) = 0;
1229 virtual bool useAA() = 0;
1230 virtual bool isTypeLegal(Type *Ty) = 0;
1231 virtual bool shouldBuildLookupTables() = 0;
1232 virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0;
1233 virtual bool useColdCCForColdCall(Function &F) = 0;
1234 virtual unsigned
1235 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) = 0;
1236 virtual unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
1237 unsigned VF) = 0;
1238 virtual bool supportsEfficientVectorElementLoadStore() = 0;
1239 virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0;
1240 virtual MemCmpExpansionOptions
1241 enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const = 0;
1242 virtual bool enableInterleavedAccessVectorization() = 0;
1243 virtual bool enableMaskedInterleavedAccessVectorization() = 0;
1244 virtual bool isFPVectorizationPotentiallyUnsafe() = 0;
1245 virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
1246 unsigned BitWidth,
1247 unsigned AddressSpace,
1248 unsigned Alignment,
1249 bool *Fast) = 0;
1250 virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0;
1251 virtual bool haveFastSqrt(Type *Ty) = 0;
1252 virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0;
1253 virtual int getFPOpCost(Type *Ty) = 0;
1254 virtual int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
1255 Type *Ty) = 0;
1256 virtual int getIntImmCost(const APInt &Imm, Type *Ty) = 0;
1257 virtual int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
1258 Type *Ty) = 0;
1259 virtual int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
1260 Type *Ty) = 0;
1261 virtual unsigned getNumberOfRegisters(unsigned ClassID) const = 0;
1262 virtual unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const = 0;
1263 virtual const char* getRegisterClassName(unsigned ClassID) const = 0;
1264 virtual unsigned getRegisterBitWidth(bool Vector) const = 0;
1265 virtual unsigned getMinVectorRegisterBitWidth() = 0;
1266 virtual bool shouldMaximizeVectorBandwidth(bool OptSize) const = 0;
1267 virtual unsigned getMinimumVF(unsigned ElemWidth) const = 0;
1268 virtual bool shouldConsiderAddressTypePromotion(
1269 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0;
1270 virtual unsigned getCacheLineSize() const = 0;
1271 virtual llvm::Optional<unsigned> getCacheSize(CacheLevel Level) const = 0;
1272 virtual llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) const = 0;
1274 /// \return How much before a load we should place the prefetch
1275 /// instruction. This is currently measured in number of
1276 /// instructions.
1277 virtual unsigned getPrefetchDistance() const = 0;
1279 /// \return Some HW prefetchers can handle accesses up to a certain
1280 /// constant stride. This is the minimum stride in bytes where it
1281 /// makes sense to start adding SW prefetches. The default is 1,
1282 /// i.e. prefetch with any stride.
1283 virtual unsigned getMinPrefetchStride() const = 0;
1285 /// \return The maximum number of iterations to prefetch ahead. If
1286 /// the required number of iterations is more than this number, no
1287 /// prefetching is performed.
1288 virtual unsigned getMaxPrefetchIterationsAhead() const = 0;
1290 virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0;
1291 virtual unsigned
1292 getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
1293 OperandValueKind Opd2Info,
1294 OperandValueProperties Opd1PropInfo,
1295 OperandValueProperties Opd2PropInfo,
1296 ArrayRef<const Value *> Args) = 0;
1297 virtual int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
1298 Type *SubTp) = 0;
1299 virtual int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1300 const Instruction *I) = 0;
1301 virtual int getExtractWithExtendCost(unsigned Opcode, Type *Dst,
1302 VectorType *VecTy, unsigned Index) = 0;
1303 virtual int getCFInstrCost(unsigned Opcode) = 0;
1304 virtual int getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
1305 Type *CondTy, const Instruction *I) = 0;
1306 virtual int getVectorInstrCost(unsigned Opcode, Type *Val,
1307 unsigned Index) = 0;
1308 virtual int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
1309 unsigned AddressSpace, const Instruction *I) = 0;
1310 virtual int getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
1311 unsigned Alignment,
1312 unsigned AddressSpace) = 0;
1313 virtual int getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
1314 Value *Ptr, bool VariableMask,
1315 unsigned Alignment) = 0;
1316 virtual int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
1317 unsigned Factor,
1318 ArrayRef<unsigned> Indices,
1319 unsigned Alignment,
1320 unsigned AddressSpace,
1321 bool UseMaskForCond = false,
1322 bool UseMaskForGaps = false) = 0;
1323 virtual int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
1324 bool IsPairwiseForm) = 0;
1325 virtual int getMinMaxReductionCost(Type *Ty, Type *CondTy,
1326 bool IsPairwiseForm, bool IsUnsigned) = 0;
1327 virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
1328 ArrayRef<Type *> Tys, FastMathFlags FMF,
1329 unsigned ScalarizationCostPassed) = 0;
1330 virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
1331 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) = 0;
1332 virtual int getCallInstrCost(Function *F, Type *RetTy,
1333 ArrayRef<Type *> Tys) = 0;
1334 virtual unsigned getNumberOfParts(Type *Tp) = 0;
1335 virtual int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1336 const SCEV *Ptr) = 0;
1337 virtual unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0;
1338 virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst,
1339 MemIntrinsicInfo &Info) = 0;
1340 virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0;
1341 virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
1342 Type *ExpectedType) = 0;
1343 virtual Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
1344 unsigned SrcAlign,
1345 unsigned DestAlign) const = 0;
1346 virtual void getMemcpyLoopResidualLoweringType(
1347 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
1348 unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const = 0;
1349 virtual bool areInlineCompatible(const Function *Caller,
1350 const Function *Callee) const = 0;
1351 virtual bool
1352 areFunctionArgsABICompatible(const Function *Caller, const Function *Callee,
1353 SmallPtrSetImpl<Argument *> &Args) const = 0;
1354 virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0;
1355 virtual bool isIndexedStoreLegal(MemIndexedMode Mode,Type *Ty) const = 0;
1356 virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0;
1357 virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0;
1358 virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0;
1359 virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
1360 unsigned Alignment,
1361 unsigned AddrSpace) const = 0;
1362 virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
1363 unsigned Alignment,
1364 unsigned AddrSpace) const = 0;
1365 virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1366 unsigned ChainSizeInBytes,
1367 VectorType *VecTy) const = 0;
1368 virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1369 unsigned ChainSizeInBytes,
1370 VectorType *VecTy) const = 0;
1371 virtual bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
1372 ReductionFlags) const = 0;
1373 virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0;
1374 virtual unsigned getGISelRematGlobalCost() const = 0;
1375 virtual int getInstructionLatency(const Instruction *I) = 0;
1378 template <typename T>
1379 class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
1380 T Impl;
1382 public:
1383 Model(T Impl) : Impl(std::move(Impl)) {}
1384 ~Model() override {}
1386 const DataLayout &getDataLayout() const override {
1387 return Impl.getDataLayout();
1390 int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) override {
1391 return Impl.getOperationCost(Opcode, Ty, OpTy);
1393 int getGEPCost(Type *PointeeType, const Value *Ptr,
1394 ArrayRef<const Value *> Operands) override {
1395 return Impl.getGEPCost(PointeeType, Ptr, Operands);
1397 int getExtCost(const Instruction *I, const Value *Src) override {
1398 return Impl.getExtCost(I, Src);
1400 int getCallCost(FunctionType *FTy, int NumArgs, const User *U) override {
1401 return Impl.getCallCost(FTy, NumArgs, U);
1403 int getCallCost(const Function *F, int NumArgs, const User *U) override {
1404 return Impl.getCallCost(F, NumArgs, U);
1406 int getCallCost(const Function *F,
1407 ArrayRef<const Value *> Arguments, const User *U) override {
1408 return Impl.getCallCost(F, Arguments, U);
1410 unsigned getInliningThresholdMultiplier() override {
1411 return Impl.getInliningThresholdMultiplier();
1413 int getInlinerVectorBonusPercent() override {
1414 return Impl.getInlinerVectorBonusPercent();
1416 int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
1417 ArrayRef<Type *> ParamTys, const User *U = nullptr) override {
1418 return Impl.getIntrinsicCost(IID, RetTy, ParamTys, U);
1420 int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
1421 ArrayRef<const Value *> Arguments,
1422 const User *U = nullptr) override {
1423 return Impl.getIntrinsicCost(IID, RetTy, Arguments, U);
1425 int getMemcpyCost(const Instruction *I) override {
1426 return Impl.getMemcpyCost(I);
1428 int getUserCost(const User *U, ArrayRef<const Value *> Operands) override {
1429 return Impl.getUserCost(U, Operands);
1431 bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); }
1432 bool isSourceOfDivergence(const Value *V) override {
1433 return Impl.isSourceOfDivergence(V);
1436 bool isAlwaysUniform(const Value *V) override {
1437 return Impl.isAlwaysUniform(V);
1440 unsigned getFlatAddressSpace() override {
1441 return Impl.getFlatAddressSpace();
1444 bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
1445 Intrinsic::ID IID) const override {
1446 return Impl.collectFlatAddressOperands(OpIndexes, IID);
1449 bool rewriteIntrinsicWithAddressSpace(
1450 IntrinsicInst *II, Value *OldV, Value *NewV) const override {
1451 return Impl.rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
1454 bool isLoweredToCall(const Function *F) override {
1455 return Impl.isLoweredToCall(F);
1457 void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1458 UnrollingPreferences &UP) override {
1459 return Impl.getUnrollingPreferences(L, SE, UP);
1461 bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
1462 AssumptionCache &AC,
1463 TargetLibraryInfo *LibInfo,
1464 HardwareLoopInfo &HWLoopInfo) override {
1465 return Impl.isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
1467 bool isLegalAddImmediate(int64_t Imm) override {
1468 return Impl.isLegalAddImmediate(Imm);
1470 bool isLegalICmpImmediate(int64_t Imm) override {
1471 return Impl.isLegalICmpImmediate(Imm);
1473 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
1474 bool HasBaseReg, int64_t Scale,
1475 unsigned AddrSpace,
1476 Instruction *I) override {
1477 return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
1478 Scale, AddrSpace, I);
1480 bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
1481 TargetTransformInfo::LSRCost &C2) override {
1482 return Impl.isLSRCostLess(C1, C2);
1484 bool canMacroFuseCmp() override {
1485 return Impl.canMacroFuseCmp();
1487 bool canSaveCmp(Loop *L, BranchInst **BI,
1488 ScalarEvolution *SE,
1489 LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC,
1490 TargetLibraryInfo *LibInfo) override {
1491 return Impl.canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
1493 bool shouldFavorPostInc() const override {
1494 return Impl.shouldFavorPostInc();
1496 bool shouldFavorBackedgeIndex(const Loop *L) const override {
1497 return Impl.shouldFavorBackedgeIndex(L);
1499 bool isLegalMaskedStore(Type *DataType, MaybeAlign Alignment) override {
1500 return Impl.isLegalMaskedStore(DataType, Alignment);
1502 bool isLegalMaskedLoad(Type *DataType, MaybeAlign Alignment) override {
1503 return Impl.isLegalMaskedLoad(DataType, Alignment);
1505 bool isLegalNTStore(Type *DataType, Align Alignment) override {
1506 return Impl.isLegalNTStore(DataType, Alignment);
1508 bool isLegalNTLoad(Type *DataType, Align Alignment) override {
1509 return Impl.isLegalNTLoad(DataType, Alignment);
1511 bool isLegalMaskedScatter(Type *DataType) override {
1512 return Impl.isLegalMaskedScatter(DataType);
1514 bool isLegalMaskedGather(Type *DataType) override {
1515 return Impl.isLegalMaskedGather(DataType);
1517 bool isLegalMaskedCompressStore(Type *DataType) override {
1518 return Impl.isLegalMaskedCompressStore(DataType);
1520 bool isLegalMaskedExpandLoad(Type *DataType) override {
1521 return Impl.isLegalMaskedExpandLoad(DataType);
1523 bool hasDivRemOp(Type *DataType, bool IsSigned) override {
1524 return Impl.hasDivRemOp(DataType, IsSigned);
1526 bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override {
1527 return Impl.hasVolatileVariant(I, AddrSpace);
1529 bool prefersVectorizedAddressing() override {
1530 return Impl.prefersVectorizedAddressing();
1532 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
1533 bool HasBaseReg, int64_t Scale,
1534 unsigned AddrSpace) override {
1535 return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
1536 Scale, AddrSpace);
1538 bool LSRWithInstrQueries() override {
1539 return Impl.LSRWithInstrQueries();
1541 bool isTruncateFree(Type *Ty1, Type *Ty2) override {
1542 return Impl.isTruncateFree(Ty1, Ty2);
1544 bool isProfitableToHoist(Instruction *I) override {
1545 return Impl.isProfitableToHoist(I);
1547 bool useAA() override { return Impl.useAA(); }
1548 bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); }
1549 bool shouldBuildLookupTables() override {
1550 return Impl.shouldBuildLookupTables();
1552 bool shouldBuildLookupTablesForConstant(Constant *C) override {
1553 return Impl.shouldBuildLookupTablesForConstant(C);
1555 bool useColdCCForColdCall(Function &F) override {
1556 return Impl.useColdCCForColdCall(F);
1559 unsigned getScalarizationOverhead(Type *Ty, bool Insert,
1560 bool Extract) override {
1561 return Impl.getScalarizationOverhead(Ty, Insert, Extract);
1563 unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
1564 unsigned VF) override {
1565 return Impl.getOperandsScalarizationOverhead(Args, VF);
1568 bool supportsEfficientVectorElementLoadStore() override {
1569 return Impl.supportsEfficientVectorElementLoadStore();
1572 bool enableAggressiveInterleaving(bool LoopHasReductions) override {
1573 return Impl.enableAggressiveInterleaving(LoopHasReductions);
1575 MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
1576 bool IsZeroCmp) const override {
1577 return Impl.enableMemCmpExpansion(OptSize, IsZeroCmp);
1579 bool enableInterleavedAccessVectorization() override {
1580 return Impl.enableInterleavedAccessVectorization();
1582 bool enableMaskedInterleavedAccessVectorization() override {
1583 return Impl.enableMaskedInterleavedAccessVectorization();
1585 bool isFPVectorizationPotentiallyUnsafe() override {
1586 return Impl.isFPVectorizationPotentiallyUnsafe();
1588 bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
1589 unsigned BitWidth, unsigned AddressSpace,
1590 unsigned Alignment, bool *Fast) override {
1591 return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
1592 Alignment, Fast);
1594 PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override {
1595 return Impl.getPopcntSupport(IntTyWidthInBit);
1597 bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); }
1599 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override {
1600 return Impl.isFCmpOrdCheaperThanFCmpZero(Ty);
1603 int getFPOpCost(Type *Ty) override { return Impl.getFPOpCost(Ty); }
1605 int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
1606 Type *Ty) override {
1607 return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty);
1609 int getIntImmCost(const APInt &Imm, Type *Ty) override {
1610 return Impl.getIntImmCost(Imm, Ty);
1612 int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
1613 Type *Ty) override {
1614 return Impl.getIntImmCost(Opc, Idx, Imm, Ty);
1616 int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
1617 Type *Ty) override {
1618 return Impl.getIntImmCost(IID, Idx, Imm, Ty);
1620 unsigned getNumberOfRegisters(unsigned ClassID) const override {
1621 return Impl.getNumberOfRegisters(ClassID);
1623 unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const override {
1624 return Impl.getRegisterClassForType(Vector, Ty);
1626 const char* getRegisterClassName(unsigned ClassID) const override {
1627 return Impl.getRegisterClassName(ClassID);
1629 unsigned getRegisterBitWidth(bool Vector) const override {
1630 return Impl.getRegisterBitWidth(Vector);
1632 unsigned getMinVectorRegisterBitWidth() override {
1633 return Impl.getMinVectorRegisterBitWidth();
1635 bool shouldMaximizeVectorBandwidth(bool OptSize) const override {
1636 return Impl.shouldMaximizeVectorBandwidth(OptSize);
1638 unsigned getMinimumVF(unsigned ElemWidth) const override {
1639 return Impl.getMinimumVF(ElemWidth);
1641 bool shouldConsiderAddressTypePromotion(
1642 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override {
1643 return Impl.shouldConsiderAddressTypePromotion(
1644 I, AllowPromotionWithoutCommonHeader);
1646 unsigned getCacheLineSize() const override {
1647 return Impl.getCacheLineSize();
1649 llvm::Optional<unsigned> getCacheSize(CacheLevel Level) const override {
1650 return Impl.getCacheSize(Level);
1652 llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) const override {
1653 return Impl.getCacheAssociativity(Level);
1656 /// Return the preferred prefetch distance in terms of instructions.
1658 unsigned getPrefetchDistance() const override {
1659 return Impl.getPrefetchDistance();
1662 /// Return the minimum stride necessary to trigger software
1663 /// prefetching.
1665 unsigned getMinPrefetchStride() const override {
1666 return Impl.getMinPrefetchStride();
1669 /// Return the maximum prefetch distance in terms of loop
1670 /// iterations.
1672 unsigned getMaxPrefetchIterationsAhead() const override {
1673 return Impl.getMaxPrefetchIterationsAhead();
1676 unsigned getMaxInterleaveFactor(unsigned VF) override {
1677 return Impl.getMaxInterleaveFactor(VF);
1679 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
1680 unsigned &JTSize) override {
1681 return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize);
1683 unsigned
1684 getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
1685 OperandValueKind Opd2Info,
1686 OperandValueProperties Opd1PropInfo,
1687 OperandValueProperties Opd2PropInfo,
1688 ArrayRef<const Value *> Args) override {
1689 return Impl.getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
1690 Opd1PropInfo, Opd2PropInfo, Args);
1692 int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
1693 Type *SubTp) override {
1694 return Impl.getShuffleCost(Kind, Tp, Index, SubTp);
1696 int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1697 const Instruction *I) override {
1698 return Impl.getCastInstrCost(Opcode, Dst, Src, I);
1700 int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
1701 unsigned Index) override {
1702 return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
1704 int getCFInstrCost(unsigned Opcode) override {
1705 return Impl.getCFInstrCost(Opcode);
1707 int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1708 const Instruction *I) override {
1709 return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
1711 int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) override {
1712 return Impl.getVectorInstrCost(Opcode, Val, Index);
1714 int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
1715 unsigned AddressSpace, const Instruction *I) override {
1716 return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
1718 int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
1719 unsigned AddressSpace) override {
1720 return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
1722 int getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
1723 Value *Ptr, bool VariableMask,
1724 unsigned Alignment) override {
1725 return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
1726 Alignment);
1728 int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
1729 ArrayRef<unsigned> Indices, unsigned Alignment,
1730 unsigned AddressSpace, bool UseMaskForCond,
1731 bool UseMaskForGaps) override {
1732 return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
1733 Alignment, AddressSpace,
1734 UseMaskForCond, UseMaskForGaps);
1736 int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
1737 bool IsPairwiseForm) override {
1738 return Impl.getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm);
1740 int getMinMaxReductionCost(Type *Ty, Type *CondTy,
1741 bool IsPairwiseForm, bool IsUnsigned) override {
1742 return Impl.getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned);
1744 int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, ArrayRef<Type *> Tys,
1745 FastMathFlags FMF, unsigned ScalarizationCostPassed) override {
1746 return Impl.getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
1747 ScalarizationCostPassed);
1749 int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
1750 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) override {
1751 return Impl.getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
1753 int getCallInstrCost(Function *F, Type *RetTy,
1754 ArrayRef<Type *> Tys) override {
1755 return Impl.getCallInstrCost(F, RetTy, Tys);
1757 unsigned getNumberOfParts(Type *Tp) override {
1758 return Impl.getNumberOfParts(Tp);
1760 int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1761 const SCEV *Ptr) override {
1762 return Impl.getAddressComputationCost(Ty, SE, Ptr);
1764 unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override {
1765 return Impl.getCostOfKeepingLiveOverCall(Tys);
1767 bool getTgtMemIntrinsic(IntrinsicInst *Inst,
1768 MemIntrinsicInfo &Info) override {
1769 return Impl.getTgtMemIntrinsic(Inst, Info);
1771 unsigned getAtomicMemIntrinsicMaxElementSize() const override {
1772 return Impl.getAtomicMemIntrinsicMaxElementSize();
1774 Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
1775 Type *ExpectedType) override {
1776 return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
1778 Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
1779 unsigned SrcAlign,
1780 unsigned DestAlign) const override {
1781 return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAlign, DestAlign);
1783 void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
1784 LLVMContext &Context,
1785 unsigned RemainingBytes,
1786 unsigned SrcAlign,
1787 unsigned DestAlign) const override {
1788 Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
1789 SrcAlign, DestAlign);
1791 bool areInlineCompatible(const Function *Caller,
1792 const Function *Callee) const override {
1793 return Impl.areInlineCompatible(Caller, Callee);
1795 bool areFunctionArgsABICompatible(
1796 const Function *Caller, const Function *Callee,
1797 SmallPtrSetImpl<Argument *> &Args) const override {
1798 return Impl.areFunctionArgsABICompatible(Caller, Callee, Args);
1800 bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override {
1801 return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout());
1803 bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override {
1804 return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout());
1806 unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override {
1807 return Impl.getLoadStoreVecRegBitWidth(AddrSpace);
1809 bool isLegalToVectorizeLoad(LoadInst *LI) const override {
1810 return Impl.isLegalToVectorizeLoad(LI);
1812 bool isLegalToVectorizeStore(StoreInst *SI) const override {
1813 return Impl.isLegalToVectorizeStore(SI);
1815 bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
1816 unsigned Alignment,
1817 unsigned AddrSpace) const override {
1818 return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
1819 AddrSpace);
1821 bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
1822 unsigned Alignment,
1823 unsigned AddrSpace) const override {
1824 return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
1825 AddrSpace);
1827 unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1828 unsigned ChainSizeInBytes,
1829 VectorType *VecTy) const override {
1830 return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
1832 unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1833 unsigned ChainSizeInBytes,
1834 VectorType *VecTy) const override {
1835 return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
1837 bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
1838 ReductionFlags Flags) const override {
1839 return Impl.useReductionIntrinsic(Opcode, Ty, Flags);
1841 bool shouldExpandReduction(const IntrinsicInst *II) const override {
1842 return Impl.shouldExpandReduction(II);
1845 unsigned getGISelRematGlobalCost() const override {
1846 return Impl.getGISelRematGlobalCost();
1849 int getInstructionLatency(const Instruction *I) override {
1850 return Impl.getInstructionLatency(I);
1854 template <typename T>
1855 TargetTransformInfo::TargetTransformInfo(T Impl)
1856 : TTIImpl(new Model<T>(Impl)) {}
1858 /// Analysis pass providing the \c TargetTransformInfo.
1860 /// The core idea of the TargetIRAnalysis is to expose an interface through
1861 /// which LLVM targets can analyze and provide information about the middle
1862 /// end's target-independent IR. This supports use cases such as target-aware
1863 /// cost modeling of IR constructs.
1865 /// This is a function analysis because much of the cost modeling for targets
1866 /// is done in a subtarget specific way and LLVM supports compiling different
1867 /// functions targeting different subtargets in order to support runtime
1868 /// dispatch according to the observed subtarget.
1869 class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
1870 public:
1871 typedef TargetTransformInfo Result;
1873 /// Default construct a target IR analysis.
1875 /// This will use the module's datalayout to construct a baseline
1876 /// conservative TTI result.
1877 TargetIRAnalysis();
1879 /// Construct an IR analysis pass around a target-provide callback.
1881 /// The callback will be called with a particular function for which the TTI
1882 /// is needed and must return a TTI object for that function.
1883 TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
1885 // Value semantics. We spell out the constructors for MSVC.
1886 TargetIRAnalysis(const TargetIRAnalysis &Arg)
1887 : TTICallback(Arg.TTICallback) {}
1888 TargetIRAnalysis(TargetIRAnalysis &&Arg)
1889 : TTICallback(std::move(Arg.TTICallback)) {}
1890 TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) {
1891 TTICallback = RHS.TTICallback;
1892 return *this;
1894 TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) {
1895 TTICallback = std::move(RHS.TTICallback);
1896 return *this;
1899 Result run(const Function &F, FunctionAnalysisManager &);
1901 private:
1902 friend AnalysisInfoMixin<TargetIRAnalysis>;
1903 static AnalysisKey Key;
1905 /// The callback used to produce a result.
1907 /// We use a completely opaque callback so that targets can provide whatever
1908 /// mechanism they desire for constructing the TTI for a given function.
1910 /// FIXME: Should we really use std::function? It's relatively inefficient.
1911 /// It might be possible to arrange for even stateful callbacks to outlive
1912 /// the analysis and thus use a function_ref which would be lighter weight.
1913 /// This may also be less error prone as the callback is likely to reference
1914 /// the external TargetMachine, and that reference needs to never dangle.
1915 std::function<Result(const Function &)> TTICallback;
1917 /// Helper function used as the callback in the default constructor.
1918 static Result getDefaultTTI(const Function &F);
1921 /// Wrapper pass for TargetTransformInfo.
1923 /// This pass can be constructed from a TTI object which it stores internally
1924 /// and is queried by passes.
1925 class TargetTransformInfoWrapperPass : public ImmutablePass {
1926 TargetIRAnalysis TIRA;
1927 Optional<TargetTransformInfo> TTI;
1929 virtual void anchor();
1931 public:
1932 static char ID;
1934 /// We must provide a default constructor for the pass but it should
1935 /// never be used.
1937 /// Use the constructor below or call one of the creation routines.
1938 TargetTransformInfoWrapperPass();
1940 explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
1942 TargetTransformInfo &getTTI(const Function &F);
1945 /// Create an analysis pass wrapper around a TTI object.
1947 /// This analysis pass just holds the TTI instance and makes it available to
1948 /// clients.
1949 ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
1951 } // End llvm namespace
1953 #endif