[InstCombine] Signed saturation patterns
[llvm-complete.git] / include / llvm / CodeGen / MachineDominators.h
blobe4d7a02f8c48ed8bfb41685aaa07644610c76e7f
1 //==- llvm/CodeGen/MachineDominators.h - Machine Dom Calculation -*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines classes mirroring those in llvm/Analysis/Dominators.h,
10 // but for target-specific code rather than target-independent IR.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_CODEGEN_MACHINEDOMINATORS_H
15 #define LLVM_CODEGEN_MACHINEDOMINATORS_H
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/Support/GenericDomTree.h"
23 #include "llvm/Support/GenericDomTreeConstruction.h"
24 #include <cassert>
25 #include <memory>
26 #include <vector>
28 namespace llvm {
30 template <>
31 inline void DominatorTreeBase<MachineBasicBlock, false>::addRoot(
32 MachineBasicBlock *MBB) {
33 this->Roots.push_back(MBB);
36 extern template class DomTreeNodeBase<MachineBasicBlock>;
37 extern template class DominatorTreeBase<MachineBasicBlock, false>; // DomTree
38 extern template class DominatorTreeBase<MachineBasicBlock, true>; // PostDomTree
40 using MachineDomTreeNode = DomTreeNodeBase<MachineBasicBlock>;
42 //===-------------------------------------
43 /// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
44 /// compute a normal dominator tree.
45 ///
46 class MachineDominatorTree : public MachineFunctionPass {
47 using DomTreeT = DomTreeBase<MachineBasicBlock>;
49 /// Helper structure used to hold all the basic blocks
50 /// involved in the split of a critical edge.
51 struct CriticalEdge {
52 MachineBasicBlock *FromBB;
53 MachineBasicBlock *ToBB;
54 MachineBasicBlock *NewBB;
57 /// Pile up all the critical edges to be split.
58 /// The splitting of a critical edge is local and thus, it is possible
59 /// to apply several of those changes at the same time.
60 mutable SmallVector<CriticalEdge, 32> CriticalEdgesToSplit;
62 /// Remember all the basic blocks that are inserted during
63 /// edge splitting.
64 /// Invariant: NewBBs == all the basic blocks contained in the NewBB
65 /// field of all the elements of CriticalEdgesToSplit.
66 /// I.e., forall elt in CriticalEdgesToSplit, it exists BB in NewBBs
67 /// such as BB == elt.NewBB.
68 mutable SmallSet<MachineBasicBlock *, 32> NewBBs;
70 /// The DominatorTreeBase that is used to compute a normal dominator tree.
71 std::unique_ptr<DomTreeT> DT;
73 /// Apply all the recorded critical edges to the DT.
74 /// This updates the underlying DT information in a way that uses
75 /// the fast query path of DT as much as possible.
76 ///
77 /// \post CriticalEdgesToSplit.empty().
78 void applySplitCriticalEdges() const;
80 public:
81 static char ID; // Pass ID, replacement for typeid
83 MachineDominatorTree();
85 DomTreeT &getBase() {
86 if (!DT) DT.reset(new DomTreeT());
87 applySplitCriticalEdges();
88 return *DT;
91 void getAnalysisUsage(AnalysisUsage &AU) const override;
93 /// getRoots - Return the root blocks of the current CFG. This may include
94 /// multiple blocks if we are computing post dominators. For forward
95 /// dominators, this will always be a single block (the entry node).
96 ///
97 const SmallVectorImpl<MachineBasicBlock*> &getRoots() const {
98 applySplitCriticalEdges();
99 return DT->getRoots();
102 MachineBasicBlock *getRoot() const {
103 applySplitCriticalEdges();
104 return DT->getRoot();
107 MachineDomTreeNode *getRootNode() const {
108 applySplitCriticalEdges();
109 return DT->getRootNode();
112 bool runOnMachineFunction(MachineFunction &F) override;
114 bool dominates(const MachineDomTreeNode *A,
115 const MachineDomTreeNode *B) const {
116 applySplitCriticalEdges();
117 return DT->dominates(A, B);
120 bool dominates(const MachineBasicBlock *A, const MachineBasicBlock *B) const {
121 applySplitCriticalEdges();
122 return DT->dominates(A, B);
125 // dominates - Return true if A dominates B. This performs the
126 // special checks necessary if A and B are in the same basic block.
127 bool dominates(const MachineInstr *A, const MachineInstr *B) const {
128 applySplitCriticalEdges();
129 const MachineBasicBlock *BBA = A->getParent(), *BBB = B->getParent();
130 if (BBA != BBB) return DT->dominates(BBA, BBB);
132 // Loop through the basic block until we find A or B.
133 MachineBasicBlock::const_iterator I = BBA->begin();
134 for (; &*I != A && &*I != B; ++I)
135 /*empty*/ ;
137 return &*I == A;
140 bool properlyDominates(const MachineDomTreeNode *A,
141 const MachineDomTreeNode *B) const {
142 applySplitCriticalEdges();
143 return DT->properlyDominates(A, B);
146 bool properlyDominates(const MachineBasicBlock *A,
147 const MachineBasicBlock *B) const {
148 applySplitCriticalEdges();
149 return DT->properlyDominates(A, B);
152 /// findNearestCommonDominator - Find nearest common dominator basic block
153 /// for basic block A and B. If there is no such block then return NULL.
154 MachineBasicBlock *findNearestCommonDominator(MachineBasicBlock *A,
155 MachineBasicBlock *B) {
156 applySplitCriticalEdges();
157 return DT->findNearestCommonDominator(A, B);
160 MachineDomTreeNode *operator[](MachineBasicBlock *BB) const {
161 applySplitCriticalEdges();
162 return DT->getNode(BB);
165 /// getNode - return the (Post)DominatorTree node for the specified basic
166 /// block. This is the same as using operator[] on this class.
168 MachineDomTreeNode *getNode(MachineBasicBlock *BB) const {
169 applySplitCriticalEdges();
170 return DT->getNode(BB);
173 /// addNewBlock - Add a new node to the dominator tree information. This
174 /// creates a new node as a child of DomBB dominator node,linking it into
175 /// the children list of the immediate dominator.
176 MachineDomTreeNode *addNewBlock(MachineBasicBlock *BB,
177 MachineBasicBlock *DomBB) {
178 applySplitCriticalEdges();
179 return DT->addNewBlock(BB, DomBB);
182 /// changeImmediateDominator - This method is used to update the dominator
183 /// tree information when a node's immediate dominator changes.
185 void changeImmediateDominator(MachineBasicBlock *N,
186 MachineBasicBlock *NewIDom) {
187 applySplitCriticalEdges();
188 DT->changeImmediateDominator(N, NewIDom);
191 void changeImmediateDominator(MachineDomTreeNode *N,
192 MachineDomTreeNode *NewIDom) {
193 applySplitCriticalEdges();
194 DT->changeImmediateDominator(N, NewIDom);
197 /// eraseNode - Removes a node from the dominator tree. Block must not
198 /// dominate any other blocks. Removes node from its immediate dominator's
199 /// children list. Deletes dominator node associated with basic block BB.
200 void eraseNode(MachineBasicBlock *BB) {
201 applySplitCriticalEdges();
202 DT->eraseNode(BB);
205 /// splitBlock - BB is split and now it has one successor. Update dominator
206 /// tree to reflect this change.
207 void splitBlock(MachineBasicBlock* NewBB) {
208 applySplitCriticalEdges();
209 DT->splitBlock(NewBB);
212 /// isReachableFromEntry - Return true if A is dominated by the entry
213 /// block of the function containing it.
214 bool isReachableFromEntry(const MachineBasicBlock *A) {
215 applySplitCriticalEdges();
216 return DT->isReachableFromEntry(A);
219 void releaseMemory() override;
221 void verifyAnalysis() const override;
223 void print(raw_ostream &OS, const Module*) const override;
225 /// Record that the critical edge (FromBB, ToBB) has been
226 /// split with NewBB.
227 /// This is best to use this method instead of directly update the
228 /// underlying information, because this helps mitigating the
229 /// number of time the DT information is invalidated.
231 /// \note Do not use this method with regular edges.
233 /// \note To benefit from the compile time improvement incurred by this
234 /// method, the users of this method have to limit the queries to the DT
235 /// interface between two edges splitting. In other words, they have to
236 /// pack the splitting of critical edges as much as possible.
237 void recordSplitCriticalEdge(MachineBasicBlock *FromBB,
238 MachineBasicBlock *ToBB,
239 MachineBasicBlock *NewBB) {
240 bool Inserted = NewBBs.insert(NewBB).second;
241 (void)Inserted;
242 assert(Inserted &&
243 "A basic block inserted via edge splitting cannot appear twice");
244 CriticalEdgesToSplit.push_back({FromBB, ToBB, NewBB});
248 //===-------------------------------------
249 /// DominatorTree GraphTraits specialization so the DominatorTree can be
250 /// iterable by generic graph iterators.
253 template <class Node, class ChildIterator>
254 struct MachineDomTreeGraphTraitsBase {
255 using NodeRef = Node *;
256 using ChildIteratorType = ChildIterator;
258 static NodeRef getEntryNode(NodeRef N) { return N; }
259 static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
260 static ChildIteratorType child_end(NodeRef N) { return N->end(); }
263 template <class T> struct GraphTraits;
265 template <>
266 struct GraphTraits<MachineDomTreeNode *>
267 : public MachineDomTreeGraphTraitsBase<MachineDomTreeNode,
268 MachineDomTreeNode::iterator> {};
270 template <>
271 struct GraphTraits<const MachineDomTreeNode *>
272 : public MachineDomTreeGraphTraitsBase<const MachineDomTreeNode,
273 MachineDomTreeNode::const_iterator> {
276 template <> struct GraphTraits<MachineDominatorTree*>
277 : public GraphTraits<MachineDomTreeNode *> {
278 static NodeRef getEntryNode(MachineDominatorTree *DT) {
279 return DT->getRootNode();
283 } // end namespace llvm
285 #endif // LLVM_CODEGEN_MACHINEDOMINATORS_H