1 //===- MachineScheduler.h - MachineInstr Scheduling Pass --------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file provides an interface for customizing the standard MachineScheduler
10 // pass. Note that the entire pass may be replaced as follows:
12 // <Target>TargetMachine::createPassConfig(PassManagerBase &PM) {
13 // PM.substitutePass(&MachineSchedulerID, &CustomSchedulerPassID);
16 // The MachineScheduler pass is only responsible for choosing the regions to be
17 // scheduled. Targets can override the DAG builder and scheduler without
18 // replacing the pass as follows:
20 // ScheduleDAGInstrs *<Target>PassConfig::
21 // createMachineScheduler(MachineSchedContext *C) {
22 // return new CustomMachineScheduler(C);
25 // The default scheduler, ScheduleDAGMILive, builds the DAG and drives list
26 // scheduling while updating the instruction stream, register pressure, and live
27 // intervals. Most targets don't need to override the DAG builder and list
28 // scheduler, but subtargets that require custom scheduling heuristics may
29 // plugin an alternate MachineSchedStrategy. The strategy is responsible for
30 // selecting the highest priority node from the list:
32 // ScheduleDAGInstrs *<Target>PassConfig::
33 // createMachineScheduler(MachineSchedContext *C) {
34 // return new ScheduleDAGMILive(C, CustomStrategy(C));
37 // The DAG builder can also be customized in a sense by adding DAG mutations
38 // that will run after DAG building and before list scheduling. DAG mutations
39 // can adjust dependencies based on target-specific knowledge or add weak edges
42 // ScheduleDAGInstrs *<Target>PassConfig::
43 // createMachineScheduler(MachineSchedContext *C) {
44 // ScheduleDAGMI *DAG = createGenericSchedLive(C);
45 // DAG->addMutation(new CustomDAGMutation(...));
49 // A target that supports alternative schedulers can use the
50 // MachineSchedRegistry to allow command line selection. This can be done by
51 // implementing the following boilerplate:
53 // static ScheduleDAGInstrs *createCustomMachineSched(MachineSchedContext *C) {
54 // return new CustomMachineScheduler(C);
56 // static MachineSchedRegistry
57 // SchedCustomRegistry("custom", "Run my target's custom scheduler",
58 // createCustomMachineSched);
61 // Finally, subtargets that don't need to implement custom heuristics but would
62 // like to configure the GenericScheduler's policy for a given scheduler region,
63 // including scheduling direction and register pressure tracking policy, can do
66 // void <SubTarget>Subtarget::
67 // overrideSchedPolicy(MachineSchedPolicy &Policy,
68 // unsigned NumRegionInstrs) const {
69 // Policy.<Flag> = true;
72 //===----------------------------------------------------------------------===//
74 #ifndef LLVM_CODEGEN_MACHINESCHEDULER_H
75 #define LLVM_CODEGEN_MACHINESCHEDULER_H
77 #include "llvm/ADT/ArrayRef.h"
78 #include "llvm/ADT/BitVector.h"
79 #include "llvm/ADT/STLExtras.h"
80 #include "llvm/ADT/SmallVector.h"
81 #include "llvm/ADT/StringRef.h"
82 #include "llvm/ADT/Twine.h"
83 #include "llvm/Analysis/AliasAnalysis.h"
84 #include "llvm/CodeGen/MachineBasicBlock.h"
85 #include "llvm/CodeGen/MachinePassRegistry.h"
86 #include "llvm/CodeGen/RegisterPressure.h"
87 #include "llvm/CodeGen/ScheduleDAG.h"
88 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
89 #include "llvm/CodeGen/ScheduleDAGMutation.h"
90 #include "llvm/CodeGen/TargetSchedule.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/ErrorHandling.h"
101 extern cl::opt
<bool> ForceTopDown
;
102 extern cl::opt
<bool> ForceBottomUp
;
103 extern cl::opt
<bool> VerifyScheduling
;
106 class MachineDominatorTree
;
107 class MachineFunction
;
109 class MachineLoopInfo
;
110 class RegisterClassInfo
;
111 class SchedDFSResult
;
112 class ScheduleHazardRecognizer
;
113 class TargetInstrInfo
;
114 class TargetPassConfig
;
115 class TargetRegisterInfo
;
117 /// MachineSchedContext provides enough context from the MachineScheduler pass
118 /// for the target to instantiate a scheduler.
119 struct MachineSchedContext
{
120 MachineFunction
*MF
= nullptr;
121 const MachineLoopInfo
*MLI
= nullptr;
122 const MachineDominatorTree
*MDT
= nullptr;
123 const TargetPassConfig
*PassConfig
= nullptr;
124 AliasAnalysis
*AA
= nullptr;
125 LiveIntervals
*LIS
= nullptr;
127 RegisterClassInfo
*RegClassInfo
;
129 MachineSchedContext();
130 virtual ~MachineSchedContext();
133 /// MachineSchedRegistry provides a selection of available machine instruction
135 class MachineSchedRegistry
136 : public MachinePassRegistryNode
<
137 ScheduleDAGInstrs
*(*)(MachineSchedContext
*)> {
139 using ScheduleDAGCtor
= ScheduleDAGInstrs
*(*)(MachineSchedContext
*);
141 // RegisterPassParser requires a (misnamed) FunctionPassCtor type.
142 using FunctionPassCtor
= ScheduleDAGCtor
;
144 static MachinePassRegistry
<ScheduleDAGCtor
> Registry
;
146 MachineSchedRegistry(const char *N
, const char *D
, ScheduleDAGCtor C
)
147 : MachinePassRegistryNode(N
, D
, C
) {
151 ~MachineSchedRegistry() { Registry
.Remove(this); }
155 MachineSchedRegistry
*getNext() const {
156 return (MachineSchedRegistry
*)MachinePassRegistryNode::getNext();
159 static MachineSchedRegistry
*getList() {
160 return (MachineSchedRegistry
*)Registry
.getList();
163 static void setListener(MachinePassRegistryListener
<FunctionPassCtor
> *L
) {
164 Registry
.setListener(L
);
170 /// Define a generic scheduling policy for targets that don't provide their own
171 /// MachineSchedStrategy. This can be overriden for each scheduling region
172 /// before building the DAG.
173 struct MachineSchedPolicy
{
174 // Allow the scheduler to disable register pressure tracking.
175 bool ShouldTrackPressure
= false;
176 /// Track LaneMasks to allow reordering of independent subregister writes
177 /// of the same vreg. \sa MachineSchedStrategy::shouldTrackLaneMasks()
178 bool ShouldTrackLaneMasks
= false;
180 // Allow the scheduler to force top-down or bottom-up scheduling. If neither
181 // is true, the scheduler runs in both directions and converges.
182 bool OnlyTopDown
= false;
183 bool OnlyBottomUp
= false;
185 // Disable heuristic that tries to fetch nodes from long dependency chains
187 bool DisableLatencyHeuristic
= false;
189 MachineSchedPolicy() = default;
192 /// MachineSchedStrategy - Interface to the scheduling algorithm used by
195 /// Initialization sequence:
196 /// initPolicy -> shouldTrackPressure -> initialize(DAG) -> registerRoots
197 class MachineSchedStrategy
{
198 virtual void anchor();
201 virtual ~MachineSchedStrategy() = default;
203 /// Optionally override the per-region scheduling policy.
204 virtual void initPolicy(MachineBasicBlock::iterator Begin
,
205 MachineBasicBlock::iterator End
,
206 unsigned NumRegionInstrs
) {}
208 virtual void dumpPolicy() const {}
210 /// Check if pressure tracking is needed before building the DAG and
211 /// initializing this strategy. Called after initPolicy.
212 virtual bool shouldTrackPressure() const { return true; }
214 /// Returns true if lanemasks should be tracked. LaneMask tracking is
215 /// necessary to reorder independent subregister defs for the same vreg.
216 /// This has to be enabled in combination with shouldTrackPressure().
217 virtual bool shouldTrackLaneMasks() const { return false; }
219 // If this method returns true, handling of the scheduling regions
220 // themselves (in case of a scheduling boundary in MBB) will be done
221 // beginning with the topmost region of MBB.
222 virtual bool doMBBSchedRegionsTopDown() const { return false; }
224 /// Initialize the strategy after building the DAG for a new region.
225 virtual void initialize(ScheduleDAGMI
*DAG
) = 0;
227 /// Tell the strategy that MBB is about to be processed.
228 virtual void enterMBB(MachineBasicBlock
*MBB
) {};
230 /// Tell the strategy that current MBB is done.
231 virtual void leaveMBB() {};
233 /// Notify this strategy that all roots have been released (including those
234 /// that depend on EntrySU or ExitSU).
235 virtual void registerRoots() {}
237 /// Pick the next node to schedule, or return NULL. Set IsTopNode to true to
238 /// schedule the node at the top of the unscheduled region. Otherwise it will
239 /// be scheduled at the bottom.
240 virtual SUnit
*pickNode(bool &IsTopNode
) = 0;
242 /// Scheduler callback to notify that a new subtree is scheduled.
243 virtual void scheduleTree(unsigned SubtreeID
) {}
245 /// Notify MachineSchedStrategy that ScheduleDAGMI has scheduled an
246 /// instruction and updated scheduled/remaining flags in the DAG nodes.
247 virtual void schedNode(SUnit
*SU
, bool IsTopNode
) = 0;
249 /// When all predecessor dependencies have been resolved, free this node for
250 /// top-down scheduling.
251 virtual void releaseTopNode(SUnit
*SU
) = 0;
253 /// When all successor dependencies have been resolved, free this node for
254 /// bottom-up scheduling.
255 virtual void releaseBottomNode(SUnit
*SU
) = 0;
258 /// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply
259 /// schedules machine instructions according to the given MachineSchedStrategy
260 /// without much extra book-keeping. This is the common functionality between
261 /// PreRA and PostRA MachineScheduler.
262 class ScheduleDAGMI
: public ScheduleDAGInstrs
{
266 std::unique_ptr
<MachineSchedStrategy
> SchedImpl
;
268 /// Ordered list of DAG postprocessing steps.
269 std::vector
<std::unique_ptr
<ScheduleDAGMutation
>> Mutations
;
271 /// The top of the unscheduled zone.
272 MachineBasicBlock::iterator CurrentTop
;
274 /// The bottom of the unscheduled zone.
275 MachineBasicBlock::iterator CurrentBottom
;
277 /// Record the next node in a scheduled cluster.
278 const SUnit
*NextClusterPred
= nullptr;
279 const SUnit
*NextClusterSucc
= nullptr;
282 /// The number of instructions scheduled so far. Used to cut off the
283 /// scheduler at the point determined by misched-cutoff.
284 unsigned NumInstrsScheduled
= 0;
288 ScheduleDAGMI(MachineSchedContext
*C
, std::unique_ptr
<MachineSchedStrategy
> S
,
289 bool RemoveKillFlags
)
290 : ScheduleDAGInstrs(*C
->MF
, C
->MLI
, RemoveKillFlags
), AA(C
->AA
),
291 LIS(C
->LIS
), SchedImpl(std::move(S
)) {}
293 // Provide a vtable anchor
294 ~ScheduleDAGMI() override
;
296 /// If this method returns true, handling of the scheduling regions
297 /// themselves (in case of a scheduling boundary in MBB) will be done
298 /// beginning with the topmost region of MBB.
299 bool doMBBSchedRegionsTopDown() const override
{
300 return SchedImpl
->doMBBSchedRegionsTopDown();
303 // Returns LiveIntervals instance for use in DAG mutators and such.
304 LiveIntervals
*getLIS() const { return LIS
; }
306 /// Return true if this DAG supports VReg liveness and RegPressure.
307 virtual bool hasVRegLiveness() const { return false; }
309 /// Add a postprocessing step to the DAG builder.
310 /// Mutations are applied in the order that they are added after normal DAG
311 /// building and before MachineSchedStrategy initialization.
313 /// ScheduleDAGMI takes ownership of the Mutation object.
314 void addMutation(std::unique_ptr
<ScheduleDAGMutation
> Mutation
) {
316 Mutations
.push_back(std::move(Mutation
));
319 MachineBasicBlock::iterator
top() const { return CurrentTop
; }
320 MachineBasicBlock::iterator
bottom() const { return CurrentBottom
; }
322 /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
323 /// region. This covers all instructions in a block, while schedule() may only
325 void enterRegion(MachineBasicBlock
*bb
,
326 MachineBasicBlock::iterator begin
,
327 MachineBasicBlock::iterator end
,
328 unsigned regioninstrs
) override
;
330 /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
331 /// reorderable instructions.
332 void schedule() override
;
334 void startBlock(MachineBasicBlock
*bb
) override
;
335 void finishBlock() override
;
337 /// Change the position of an instruction within the basic block and update
338 /// live ranges and region boundary iterators.
339 void moveInstruction(MachineInstr
*MI
, MachineBasicBlock::iterator InsertPos
);
341 const SUnit
*getNextClusterPred() const { return NextClusterPred
; }
343 const SUnit
*getNextClusterSucc() const { return NextClusterSucc
; }
345 void viewGraph(const Twine
&Name
, const Twine
&Title
) override
;
346 void viewGraph() override
;
349 // Top-Level entry points for the schedule() driver...
351 /// Apply each ScheduleDAGMutation step in order. This allows different
352 /// instances of ScheduleDAGMI to perform custom DAG postprocessing.
353 void postprocessDAG();
355 /// Release ExitSU predecessors and setup scheduler queues.
356 void initQueues(ArrayRef
<SUnit
*> TopRoots
, ArrayRef
<SUnit
*> BotRoots
);
358 /// Update scheduler DAG and queues after scheduling an instruction.
359 void updateQueues(SUnit
*SU
, bool IsTopNode
);
361 /// Reinsert debug_values recorded in ScheduleDAGInstrs::DbgValues.
362 void placeDebugValues();
364 /// dump the scheduled Sequence.
365 void dumpSchedule() const;
368 bool checkSchedLimit();
370 void findRootsAndBiasEdges(SmallVectorImpl
<SUnit
*> &TopRoots
,
371 SmallVectorImpl
<SUnit
*> &BotRoots
);
373 void releaseSucc(SUnit
*SU
, SDep
*SuccEdge
);
374 void releaseSuccessors(SUnit
*SU
);
375 void releasePred(SUnit
*SU
, SDep
*PredEdge
);
376 void releasePredecessors(SUnit
*SU
);
379 /// ScheduleDAGMILive is an implementation of ScheduleDAGInstrs that schedules
380 /// machine instructions while updating LiveIntervals and tracking regpressure.
381 class ScheduleDAGMILive
: public ScheduleDAGMI
{
383 RegisterClassInfo
*RegClassInfo
;
385 /// Information about DAG subtrees. If DFSResult is NULL, then SchedulerTrees
387 SchedDFSResult
*DFSResult
= nullptr;
388 BitVector ScheduledTrees
;
390 MachineBasicBlock::iterator LiveRegionEnd
;
392 /// Maps vregs to the SUnits of their uses in the current scheduling region.
393 VReg2SUnitMultiMap VRegUses
;
395 // Map each SU to its summary of pressure changes. This array is updated for
396 // liveness during bottom-up scheduling. Top-down scheduling may proceed but
397 // has no affect on the pressure diffs.
398 PressureDiffs SUPressureDiffs
;
400 /// Register pressure in this region computed by initRegPressure.
401 bool ShouldTrackPressure
= false;
402 bool ShouldTrackLaneMasks
= false;
403 IntervalPressure RegPressure
;
404 RegPressureTracker RPTracker
;
406 /// List of pressure sets that exceed the target's pressure limit before
407 /// scheduling, listed in increasing set ID order. Each pressure set is paired
408 /// with its max pressure in the currently scheduled regions.
409 std::vector
<PressureChange
> RegionCriticalPSets
;
411 /// The top of the unscheduled zone.
412 IntervalPressure TopPressure
;
413 RegPressureTracker TopRPTracker
;
415 /// The bottom of the unscheduled zone.
416 IntervalPressure BotPressure
;
417 RegPressureTracker BotRPTracker
;
419 /// True if disconnected subregister components are already renamed.
420 /// The renaming is only done on demand if lane masks are tracked.
421 bool DisconnectedComponentsRenamed
= false;
424 ScheduleDAGMILive(MachineSchedContext
*C
,
425 std::unique_ptr
<MachineSchedStrategy
> S
)
426 : ScheduleDAGMI(C
, std::move(S
), /*RemoveKillFlags=*/false),
427 RegClassInfo(C
->RegClassInfo
), RPTracker(RegPressure
),
428 TopRPTracker(TopPressure
), BotRPTracker(BotPressure
) {}
430 ~ScheduleDAGMILive() override
;
432 /// Return true if this DAG supports VReg liveness and RegPressure.
433 bool hasVRegLiveness() const override
{ return true; }
435 /// Return true if register pressure tracking is enabled.
436 bool isTrackingPressure() const { return ShouldTrackPressure
; }
438 /// Get current register pressure for the top scheduled instructions.
439 const IntervalPressure
&getTopPressure() const { return TopPressure
; }
440 const RegPressureTracker
&getTopRPTracker() const { return TopRPTracker
; }
442 /// Get current register pressure for the bottom scheduled instructions.
443 const IntervalPressure
&getBotPressure() const { return BotPressure
; }
444 const RegPressureTracker
&getBotRPTracker() const { return BotRPTracker
; }
446 /// Get register pressure for the entire scheduling region before scheduling.
447 const IntervalPressure
&getRegPressure() const { return RegPressure
; }
449 const std::vector
<PressureChange
> &getRegionCriticalPSets() const {
450 return RegionCriticalPSets
;
453 PressureDiff
&getPressureDiff(const SUnit
*SU
) {
454 return SUPressureDiffs
[SU
->NodeNum
];
456 const PressureDiff
&getPressureDiff(const SUnit
*SU
) const {
457 return SUPressureDiffs
[SU
->NodeNum
];
460 /// Compute a DFSResult after DAG building is complete, and before any
461 /// queue comparisons.
462 void computeDFSResult();
464 /// Return a non-null DFS result if the scheduling strategy initialized it.
465 const SchedDFSResult
*getDFSResult() const { return DFSResult
; }
467 BitVector
&getScheduledTrees() { return ScheduledTrees
; }
469 /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
470 /// region. This covers all instructions in a block, while schedule() may only
472 void enterRegion(MachineBasicBlock
*bb
,
473 MachineBasicBlock::iterator begin
,
474 MachineBasicBlock::iterator end
,
475 unsigned regioninstrs
) override
;
477 /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
478 /// reorderable instructions.
479 void schedule() override
;
481 /// Compute the cyclic critical path through the DAG.
482 unsigned computeCyclicCriticalPath();
484 void dump() const override
;
487 // Top-Level entry points for the schedule() driver...
489 /// Call ScheduleDAGInstrs::buildSchedGraph with register pressure tracking
490 /// enabled. This sets up three trackers. RPTracker will cover the entire DAG
491 /// region, TopTracker and BottomTracker will be initialized to the top and
492 /// bottom of the DAG region without covereing any unscheduled instruction.
493 void buildDAGWithRegPressure();
495 /// Release ExitSU predecessors and setup scheduler queues. Re-position
496 /// the Top RP tracker in case the region beginning has changed.
497 void initQueues(ArrayRef
<SUnit
*> TopRoots
, ArrayRef
<SUnit
*> BotRoots
);
499 /// Move an instruction and update register pressure.
500 void scheduleMI(SUnit
*SU
, bool IsTopNode
);
504 void initRegPressure();
506 void updatePressureDiffs(ArrayRef
<RegisterMaskPair
> LiveUses
);
508 void updateScheduledPressure(const SUnit
*SU
,
509 const std::vector
<unsigned> &NewMaxPressure
);
511 void collectVRegUses(SUnit
&SU
);
514 //===----------------------------------------------------------------------===//
516 /// Helpers for implementing custom MachineSchedStrategy classes. These take
517 /// care of the book-keeping associated with list scheduling heuristics.
519 //===----------------------------------------------------------------------===//
521 /// ReadyQueue encapsulates vector of "ready" SUnits with basic convenience
522 /// methods for pushing and removing nodes. ReadyQueue's are uniquely identified
523 /// by an ID. SUnit::NodeQueueId is a mask of the ReadyQueues the SUnit is in.
525 /// This is a convenience class that may be used by implementations of
526 /// MachineSchedStrategy.
530 std::vector
<SUnit
*> Queue
;
533 ReadyQueue(unsigned id
, const Twine
&name
): ID(id
), Name(name
.str()) {}
535 unsigned getID() const { return ID
; }
537 StringRef
getName() const { return Name
; }
539 // SU is in this queue if it's NodeQueueID is a superset of this ID.
540 bool isInQueue(SUnit
*SU
) const { return (SU
->NodeQueueId
& ID
); }
542 bool empty() const { return Queue
.empty(); }
544 void clear() { Queue
.clear(); }
546 unsigned size() const { return Queue
.size(); }
548 using iterator
= std::vector
<SUnit
*>::iterator
;
550 iterator
begin() { return Queue
.begin(); }
552 iterator
end() { return Queue
.end(); }
554 ArrayRef
<SUnit
*> elements() { return Queue
; }
556 iterator
find(SUnit
*SU
) { return llvm::find(Queue
, SU
); }
558 void push(SUnit
*SU
) {
560 SU
->NodeQueueId
|= ID
;
563 iterator
remove(iterator I
) {
564 (*I
)->NodeQueueId
&= ~ID
;
566 unsigned idx
= I
- Queue
.begin();
568 return Queue
.begin() + idx
;
574 /// Summarize the unscheduled region.
575 struct SchedRemainder
{
576 // Critical path through the DAG in expected latency.
577 unsigned CriticalPath
;
578 unsigned CyclicCritPath
;
580 // Scaled count of micro-ops left to schedule.
581 unsigned RemIssueCount
;
583 bool IsAcyclicLatencyLimited
;
585 // Unscheduled resources
586 SmallVector
<unsigned, 16> RemainingCounts
;
588 SchedRemainder() { reset(); }
594 IsAcyclicLatencyLimited
= false;
595 RemainingCounts
.clear();
598 void init(ScheduleDAGMI
*DAG
, const TargetSchedModel
*SchedModel
);
601 /// Each Scheduling boundary is associated with ready queues. It tracks the
602 /// current cycle in the direction of movement, and maintains the state
603 /// of "hazards" and other interlocks at the current cycle.
604 class SchedBoundary
{
606 /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
613 ScheduleDAGMI
*DAG
= nullptr;
614 const TargetSchedModel
*SchedModel
= nullptr;
615 SchedRemainder
*Rem
= nullptr;
617 ReadyQueue Available
;
620 ScheduleHazardRecognizer
*HazardRec
= nullptr;
623 /// True if the pending Q should be checked/updated before scheduling another
627 /// Number of cycles it takes to issue the instructions scheduled in this
628 /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls.
632 /// Micro-ops issued in the current cycle
635 /// MinReadyCycle - Cycle of the soonest available instruction.
636 unsigned MinReadyCycle
;
638 // The expected latency of the critical path in this scheduled zone.
639 unsigned ExpectedLatency
;
641 // The latency of dependence chains leading into this zone.
642 // For each node scheduled bottom-up: DLat = max DLat, N.Depth.
643 // For each cycle scheduled: DLat -= 1.
644 unsigned DependentLatency
;
646 /// Count the scheduled (issued) micro-ops that can be retired by
647 /// time=CurrCycle assuming the first scheduled instr is retired at time=0.
648 unsigned RetiredMOps
;
650 // Count scheduled resources that have been executed. Resources are
651 // considered executed if they become ready in the time that it takes to
652 // saturate any resource including the one in question. Counts are scaled
653 // for direct comparison with other resources. Counts can be compared with
654 // MOps * getMicroOpFactor and Latency * getLatencyFactor.
655 SmallVector
<unsigned, 16> ExecutedResCounts
;
657 /// Cache the max count for a single resource.
658 unsigned MaxExecutedResCount
;
660 // Cache the critical resources ID in this scheduled zone.
661 unsigned ZoneCritResIdx
;
663 // Is the scheduled region resource limited vs. latency limited.
664 bool IsResourceLimited
;
666 // Record the highest cycle at which each resource has been reserved by a
667 // scheduled instruction.
668 SmallVector
<unsigned, 16> ReservedCycles
;
670 // For each PIdx, stores first index into ReservedCycles that corresponds to
672 SmallVector
<unsigned, 16> ReservedCyclesIndex
;
675 // Remember the greatest possible stall as an upper bound on the number of
676 // times we should retry the pending queue because of a hazard.
677 unsigned MaxObservedStall
;
681 /// Pending queues extend the ready queues with the same ID and the
683 SchedBoundary(unsigned ID
, const Twine
&Name
):
684 Available(ID
, Name
+".A"), Pending(ID
<< LogMaxQID
, Name
+".P") {
692 void init(ScheduleDAGMI
*dag
, const TargetSchedModel
*smodel
,
693 SchedRemainder
*rem
);
696 return Available
.getID() == TopQID
;
699 /// Number of cycles to issue the instructions scheduled in this zone.
700 unsigned getCurrCycle() const { return CurrCycle
; }
702 /// Micro-ops issued in the current cycle
703 unsigned getCurrMOps() const { return CurrMOps
; }
705 // The latency of dependence chains leading into this zone.
706 unsigned getDependentLatency() const { return DependentLatency
; }
708 /// Get the number of latency cycles "covered" by the scheduled
709 /// instructions. This is the larger of the critical path within the zone
710 /// and the number of cycles required to issue the instructions.
711 unsigned getScheduledLatency() const {
712 return std::max(ExpectedLatency
, CurrCycle
);
715 unsigned getUnscheduledLatency(SUnit
*SU
) const {
716 return isTop() ? SU
->getHeight() : SU
->getDepth();
719 unsigned getResourceCount(unsigned ResIdx
) const {
720 return ExecutedResCounts
[ResIdx
];
723 /// Get the scaled count of scheduled micro-ops and resources, including
724 /// executed resources.
725 unsigned getCriticalCount() const {
727 return RetiredMOps
* SchedModel
->getMicroOpFactor();
728 return getResourceCount(ZoneCritResIdx
);
731 /// Get a scaled count for the minimum execution time of the scheduled
732 /// micro-ops that are ready to execute by getExecutedCount. Notice the
734 unsigned getExecutedCount() const {
735 return std::max(CurrCycle
* SchedModel
->getLatencyFactor(),
736 MaxExecutedResCount
);
739 unsigned getZoneCritResIdx() const { return ZoneCritResIdx
; }
741 // Is the scheduled region resource limited vs. latency limited.
742 bool isResourceLimited() const { return IsResourceLimited
; }
744 /// Get the difference between the given SUnit's ready time and the current
746 unsigned getLatencyStallCycles(SUnit
*SU
);
748 unsigned getNextResourceCycleByInstance(unsigned InstanceIndex
,
751 std::pair
<unsigned, unsigned> getNextResourceCycle(unsigned PIdx
,
754 bool checkHazard(SUnit
*SU
);
756 unsigned findMaxLatency(ArrayRef
<SUnit
*> ReadySUs
);
758 unsigned getOtherResourceCount(unsigned &OtherCritIdx
);
760 void releaseNode(SUnit
*SU
, unsigned ReadyCycle
);
762 void bumpCycle(unsigned NextCycle
);
764 void incExecutedResources(unsigned PIdx
, unsigned Count
);
766 unsigned countResource(unsigned PIdx
, unsigned Cycles
, unsigned ReadyCycle
);
768 void bumpNode(SUnit
*SU
);
770 void releasePending();
772 void removeReady(SUnit
*SU
);
774 /// Call this before applying any other heuristics to the Available queue.
775 /// Updates the Available/Pending Q's if necessary and returns the single
776 /// available instruction, or NULL if there are multiple candidates.
777 SUnit
*pickOnlyChoice();
779 void dumpScheduledState() const;
782 /// Base class for GenericScheduler. This class maintains information about
783 /// scheduling candidates based on TargetSchedModel making it easy to implement
784 /// heuristics for either preRA or postRA scheduling.
785 class GenericSchedulerBase
: public MachineSchedStrategy
{
787 /// Represent the type of SchedCandidate found within a single queue.
788 /// pickNodeBidirectional depends on these listed by decreasing priority.
789 enum CandReason
: uint8_t {
790 NoCand
, Only1
, PhysReg
, RegExcess
, RegCritical
, Stall
, Cluster
, Weak
,
791 RegMax
, ResourceReduce
, ResourceDemand
, BotHeightReduce
, BotPathReduce
,
792 TopDepthReduce
, TopPathReduce
, NextDefUse
, NodeOrder
};
795 static const char *getReasonStr(GenericSchedulerBase::CandReason Reason
);
798 /// Policy for scheduling the next instruction in the candidate's zone.
800 bool ReduceLatency
= false;
801 unsigned ReduceResIdx
= 0;
802 unsigned DemandResIdx
= 0;
804 CandPolicy() = default;
806 bool operator==(const CandPolicy
&RHS
) const {
807 return ReduceLatency
== RHS
.ReduceLatency
&&
808 ReduceResIdx
== RHS
.ReduceResIdx
&&
809 DemandResIdx
== RHS
.DemandResIdx
;
811 bool operator!=(const CandPolicy
&RHS
) const {
812 return !(*this == RHS
);
816 /// Status of an instruction's critical resource consumption.
817 struct SchedResourceDelta
{
818 // Count critical resources in the scheduled region required by SU.
819 unsigned CritResources
= 0;
821 // Count critical resources from another region consumed by SU.
822 unsigned DemandedResources
= 0;
824 SchedResourceDelta() = default;
826 bool operator==(const SchedResourceDelta
&RHS
) const {
827 return CritResources
== RHS
.CritResources
828 && DemandedResources
== RHS
.DemandedResources
;
830 bool operator!=(const SchedResourceDelta
&RHS
) const {
831 return !operator==(RHS
);
835 /// Store the state used by GenericScheduler heuristics, required for the
836 /// lifetime of one invocation of pickNode().
837 struct SchedCandidate
{
840 // The best SUnit candidate.
843 // The reason for this candidate.
846 // Whether this candidate should be scheduled at top/bottom.
849 // Register pressure values for the best candidate.
850 RegPressureDelta RPDelta
;
852 // Critical resource consumption of the best candidate.
853 SchedResourceDelta ResDelta
;
855 SchedCandidate() { reset(CandPolicy()); }
856 SchedCandidate(const CandPolicy
&Policy
) { reset(Policy
); }
858 void reset(const CandPolicy
&NewPolicy
) {
863 RPDelta
= RegPressureDelta();
864 ResDelta
= SchedResourceDelta();
867 bool isValid() const { return SU
; }
869 // Copy the status of another candidate without changing policy.
870 void setBest(SchedCandidate
&Best
) {
871 assert(Best
.Reason
!= NoCand
&& "uninitialized Sched candidate");
873 Reason
= Best
.Reason
;
875 RPDelta
= Best
.RPDelta
;
876 ResDelta
= Best
.ResDelta
;
879 void initResourceDelta(const ScheduleDAGMI
*DAG
,
880 const TargetSchedModel
*SchedModel
);
884 const MachineSchedContext
*Context
;
885 const TargetSchedModel
*SchedModel
= nullptr;
886 const TargetRegisterInfo
*TRI
= nullptr;
890 GenericSchedulerBase(const MachineSchedContext
*C
) : Context(C
) {}
892 void setPolicy(CandPolicy
&Policy
, bool IsPostRA
, SchedBoundary
&CurrZone
,
893 SchedBoundary
*OtherZone
);
896 void traceCandidate(const SchedCandidate
&Cand
);
900 bool shouldReduceLatency(const CandPolicy
&Policy
, SchedBoundary
&CurrZone
,
901 bool ComputeRemLatency
, unsigned &RemLatency
) const;
904 // Utility functions used by heuristics in tryCandidate().
905 bool tryLess(int TryVal
, int CandVal
,
906 GenericSchedulerBase::SchedCandidate
&TryCand
,
907 GenericSchedulerBase::SchedCandidate
&Cand
,
908 GenericSchedulerBase::CandReason Reason
);
909 bool tryGreater(int TryVal
, int CandVal
,
910 GenericSchedulerBase::SchedCandidate
&TryCand
,
911 GenericSchedulerBase::SchedCandidate
&Cand
,
912 GenericSchedulerBase::CandReason Reason
);
913 bool tryLatency(GenericSchedulerBase::SchedCandidate
&TryCand
,
914 GenericSchedulerBase::SchedCandidate
&Cand
,
915 SchedBoundary
&Zone
);
916 bool tryPressure(const PressureChange
&TryP
,
917 const PressureChange
&CandP
,
918 GenericSchedulerBase::SchedCandidate
&TryCand
,
919 GenericSchedulerBase::SchedCandidate
&Cand
,
920 GenericSchedulerBase::CandReason Reason
,
921 const TargetRegisterInfo
*TRI
,
922 const MachineFunction
&MF
);
923 unsigned getWeakLeft(const SUnit
*SU
, bool isTop
);
924 int biasPhysReg(const SUnit
*SU
, bool isTop
);
926 /// GenericScheduler shrinks the unscheduled zone using heuristics to balance
928 class GenericScheduler
: public GenericSchedulerBase
{
930 GenericScheduler(const MachineSchedContext
*C
):
931 GenericSchedulerBase(C
), Top(SchedBoundary::TopQID
, "TopQ"),
932 Bot(SchedBoundary::BotQID
, "BotQ") {}
934 void initPolicy(MachineBasicBlock::iterator Begin
,
935 MachineBasicBlock::iterator End
,
936 unsigned NumRegionInstrs
) override
;
938 void dumpPolicy() const override
;
940 bool shouldTrackPressure() const override
{
941 return RegionPolicy
.ShouldTrackPressure
;
944 bool shouldTrackLaneMasks() const override
{
945 return RegionPolicy
.ShouldTrackLaneMasks
;
948 void initialize(ScheduleDAGMI
*dag
) override
;
950 SUnit
*pickNode(bool &IsTopNode
) override
;
952 void schedNode(SUnit
*SU
, bool IsTopNode
) override
;
954 void releaseTopNode(SUnit
*SU
) override
{
958 Top
.releaseNode(SU
, SU
->TopReadyCycle
);
959 TopCand
.SU
= nullptr;
962 void releaseBottomNode(SUnit
*SU
) override
{
966 Bot
.releaseNode(SU
, SU
->BotReadyCycle
);
967 BotCand
.SU
= nullptr;
970 void registerRoots() override
;
973 ScheduleDAGMILive
*DAG
= nullptr;
975 MachineSchedPolicy RegionPolicy
;
977 // State of the top and bottom scheduled instruction boundaries.
981 /// Candidate last picked from Top boundary.
982 SchedCandidate TopCand
;
983 /// Candidate last picked from Bot boundary.
984 SchedCandidate BotCand
;
986 void checkAcyclicLatency();
988 void initCandidate(SchedCandidate
&Cand
, SUnit
*SU
, bool AtTop
,
989 const RegPressureTracker
&RPTracker
,
990 RegPressureTracker
&TempTracker
);
992 virtual void tryCandidate(SchedCandidate
&Cand
, SchedCandidate
&TryCand
,
993 SchedBoundary
*Zone
) const;
995 SUnit
*pickNodeBidirectional(bool &IsTopNode
);
997 void pickNodeFromQueue(SchedBoundary
&Zone
,
998 const CandPolicy
&ZonePolicy
,
999 const RegPressureTracker
&RPTracker
,
1000 SchedCandidate
&Candidate
);
1002 void reschedulePhysReg(SUnit
*SU
, bool isTop
);
1005 /// PostGenericScheduler - Interface to the scheduling algorithm used by
1008 /// Callbacks from ScheduleDAGMI:
1009 /// initPolicy -> initialize(DAG) -> registerRoots -> pickNode ...
1010 class PostGenericScheduler
: public GenericSchedulerBase
{
1014 SmallVector
<SUnit
*, 8> BotRoots
;
1017 PostGenericScheduler(const MachineSchedContext
*C
):
1018 GenericSchedulerBase(C
), Top(SchedBoundary::TopQID
, "TopQ") {}
1020 ~PostGenericScheduler() override
= default;
1022 void initPolicy(MachineBasicBlock::iterator Begin
,
1023 MachineBasicBlock::iterator End
,
1024 unsigned NumRegionInstrs
) override
{
1025 /* no configurable policy */
1028 /// PostRA scheduling does not track pressure.
1029 bool shouldTrackPressure() const override
{ return false; }
1031 void initialize(ScheduleDAGMI
*Dag
) override
;
1033 void registerRoots() override
;
1035 SUnit
*pickNode(bool &IsTopNode
) override
;
1037 void scheduleTree(unsigned SubtreeID
) override
{
1038 llvm_unreachable("PostRA scheduler does not support subtree analysis.");
1041 void schedNode(SUnit
*SU
, bool IsTopNode
) override
;
1043 void releaseTopNode(SUnit
*SU
) override
{
1044 if (SU
->isScheduled
)
1046 Top
.releaseNode(SU
, SU
->TopReadyCycle
);
1049 // Only called for roots.
1050 void releaseBottomNode(SUnit
*SU
) override
{
1051 BotRoots
.push_back(SU
);
1055 void tryCandidate(SchedCandidate
&Cand
, SchedCandidate
&TryCand
);
1057 void pickNodeFromQueue(SchedCandidate
&Cand
);
1060 /// Create the standard converging machine scheduler. This will be used as the
1061 /// default scheduler if the target does not set a default.
1062 /// Adds default DAG mutations.
1063 ScheduleDAGMILive
*createGenericSchedLive(MachineSchedContext
*C
);
1065 /// Create a generic scheduler with no vreg liveness or DAG mutation passes.
1066 ScheduleDAGMI
*createGenericSchedPostRA(MachineSchedContext
*C
);
1068 std::unique_ptr
<ScheduleDAGMutation
>
1069 createLoadClusterDAGMutation(const TargetInstrInfo
*TII
,
1070 const TargetRegisterInfo
*TRI
);
1072 std::unique_ptr
<ScheduleDAGMutation
>
1073 createStoreClusterDAGMutation(const TargetInstrInfo
*TII
,
1074 const TargetRegisterInfo
*TRI
);
1076 std::unique_ptr
<ScheduleDAGMutation
>
1077 createCopyConstrainDAGMutation(const TargetInstrInfo
*TII
,
1078 const TargetRegisterInfo
*TRI
);
1080 } // end namespace llvm
1082 #endif // LLVM_CODEGEN_MACHINESCHEDULER_H