1 //===- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ----------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file declares the SelectionDAG class, and transitively defines the
10 // SDNode class and subclasses.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_CODEGEN_SELECTIONDAG_H
15 #define LLVM_CODEGEN_SELECTIONDAG_H
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/FoldingSet.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/ilist.h"
27 #include "llvm/ADT/iterator.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/CodeGen/DAGCombine.h"
30 #include "llvm/CodeGen/FunctionLoweringInfo.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/SelectionDAGNodes.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/DebugLoc.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/Support/Allocator.h"
40 #include "llvm/Support/ArrayRecycler.h"
41 #include "llvm/Support/AtomicOrdering.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/CodeGen.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MachineValueType.h"
46 #include "llvm/Support/RecyclingAllocator.h"
68 class LegacyDivergenceAnalysis
;
70 class MachineBasicBlock
;
71 class MachineConstantPoolValue
;
73 class OptimizationRemarkEmitter
;
77 class SelectionDAGTargetInfo
;
78 class TargetLibraryInfo
;
81 class TargetSubtargetInfo
;
84 class SDVTListNode
: public FoldingSetNode
{
85 friend struct FoldingSetTrait
<SDVTListNode
>;
87 /// A reference to an Interned FoldingSetNodeID for this node.
88 /// The Allocator in SelectionDAG holds the data.
89 /// SDVTList contains all types which are frequently accessed in SelectionDAG.
90 /// The size of this list is not expected to be big so it won't introduce
92 FoldingSetNodeIDRef FastID
;
95 /// The hash value for SDVTList is fixed, so cache it to avoid
100 SDVTListNode(const FoldingSetNodeIDRef ID
, const EVT
*VT
, unsigned int Num
) :
101 FastID(ID
), VTs(VT
), NumVTs(Num
) {
102 HashValue
= ID
.ComputeHash();
105 SDVTList
getSDVTList() {
106 SDVTList result
= {VTs
, NumVTs
};
111 /// Specialize FoldingSetTrait for SDVTListNode
112 /// to avoid computing temp FoldingSetNodeID and hash value.
113 template<> struct FoldingSetTrait
<SDVTListNode
> : DefaultFoldingSetTrait
<SDVTListNode
> {
114 static void Profile(const SDVTListNode
&X
, FoldingSetNodeID
& ID
) {
118 static bool Equals(const SDVTListNode
&X
, const FoldingSetNodeID
&ID
,
119 unsigned IDHash
, FoldingSetNodeID
&TempID
) {
120 if (X
.HashValue
!= IDHash
)
122 return ID
== X
.FastID
;
125 static unsigned ComputeHash(const SDVTListNode
&X
, FoldingSetNodeID
&TempID
) {
130 template <> struct ilist_alloc_traits
<SDNode
> {
131 static void deleteNode(SDNode
*) {
132 llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
136 /// Keeps track of dbg_value information through SDISel. We do
137 /// not build SDNodes for these so as not to perturb the generated code;
138 /// instead the info is kept off to the side in this structure. Each SDNode may
139 /// have one or more associated dbg_value entries. This information is kept in
141 /// Byval parameters are handled separately because they don't use alloca's,
142 /// which busts the normal mechanism. There is good reason for handling all
143 /// parameters separately: they may not have code generated for them, they
144 /// should always go at the beginning of the function regardless of other code
145 /// motion, and debug info for them is potentially useful even if the parameter
146 /// is unused. Right now only byval parameters are handled separately.
148 BumpPtrAllocator Alloc
;
149 SmallVector
<SDDbgValue
*, 32> DbgValues
;
150 SmallVector
<SDDbgValue
*, 32> ByvalParmDbgValues
;
151 SmallVector
<SDDbgLabel
*, 4> DbgLabels
;
152 using DbgValMapType
= DenseMap
<const SDNode
*, SmallVector
<SDDbgValue
*, 2>>;
153 DbgValMapType DbgValMap
;
156 SDDbgInfo() = default;
157 SDDbgInfo(const SDDbgInfo
&) = delete;
158 SDDbgInfo
&operator=(const SDDbgInfo
&) = delete;
160 void add(SDDbgValue
*V
, const SDNode
*Node
, bool isParameter
) {
162 ByvalParmDbgValues
.push_back(V
);
163 } else DbgValues
.push_back(V
);
165 DbgValMap
[Node
].push_back(V
);
168 void add(SDDbgLabel
*L
) {
169 DbgLabels
.push_back(L
);
172 /// Invalidate all DbgValues attached to the node and remove
173 /// it from the Node-to-DbgValues map.
174 void erase(const SDNode
*Node
);
179 ByvalParmDbgValues
.clear();
184 BumpPtrAllocator
&getAlloc() { return Alloc
; }
187 return DbgValues
.empty() && ByvalParmDbgValues
.empty() && DbgLabels
.empty();
190 ArrayRef
<SDDbgValue
*> getSDDbgValues(const SDNode
*Node
) const {
191 auto I
= DbgValMap
.find(Node
);
192 if (I
!= DbgValMap
.end())
194 return ArrayRef
<SDDbgValue
*>();
197 using DbgIterator
= SmallVectorImpl
<SDDbgValue
*>::iterator
;
198 using DbgLabelIterator
= SmallVectorImpl
<SDDbgLabel
*>::iterator
;
200 DbgIterator
DbgBegin() { return DbgValues
.begin(); }
201 DbgIterator
DbgEnd() { return DbgValues
.end(); }
202 DbgIterator
ByvalParmDbgBegin() { return ByvalParmDbgValues
.begin(); }
203 DbgIterator
ByvalParmDbgEnd() { return ByvalParmDbgValues
.end(); }
204 DbgLabelIterator
DbgLabelBegin() { return DbgLabels
.begin(); }
205 DbgLabelIterator
DbgLabelEnd() { return DbgLabels
.end(); }
208 void checkForCycles(const SelectionDAG
*DAG
, bool force
= false);
210 /// This is used to represent a portion of an LLVM function in a low-level
211 /// Data Dependence DAG representation suitable for instruction selection.
212 /// This DAG is constructed as the first step of instruction selection in order
213 /// to allow implementation of machine specific optimizations
214 /// and code simplifications.
216 /// The representation used by the SelectionDAG is a target-independent
217 /// representation, which has some similarities to the GCC RTL representation,
218 /// but is significantly more simple, powerful, and is a graph form instead of a
222 const TargetMachine
&TM
;
223 const SelectionDAGTargetInfo
*TSI
= nullptr;
224 const TargetLowering
*TLI
= nullptr;
225 const TargetLibraryInfo
*LibInfo
= nullptr;
227 Pass
*SDAGISelPass
= nullptr;
228 LLVMContext
*Context
;
229 CodeGenOpt::Level OptLevel
;
231 LegacyDivergenceAnalysis
* DA
= nullptr;
232 FunctionLoweringInfo
* FLI
= nullptr;
234 /// The function-level optimization remark emitter. Used to emit remarks
235 /// whenever manipulating the DAG.
236 OptimizationRemarkEmitter
*ORE
;
238 /// The starting token.
241 /// The root of the entire DAG.
244 /// A linked list of nodes in the current DAG.
245 ilist
<SDNode
> AllNodes
;
247 /// The AllocatorType for allocating SDNodes. We use
248 /// pool allocation with recycling.
249 using NodeAllocatorType
= RecyclingAllocator
<BumpPtrAllocator
, SDNode
,
250 sizeof(LargestSDNode
),
251 alignof(MostAlignedSDNode
)>;
253 /// Pool allocation for nodes.
254 NodeAllocatorType NodeAllocator
;
256 /// This structure is used to memoize nodes, automatically performing
257 /// CSE with existing nodes when a duplicate is requested.
258 FoldingSet
<SDNode
> CSEMap
;
260 /// Pool allocation for machine-opcode SDNode operands.
261 BumpPtrAllocator OperandAllocator
;
262 ArrayRecycler
<SDUse
> OperandRecycler
;
264 /// Pool allocation for misc. objects that are created once per SelectionDAG.
265 BumpPtrAllocator Allocator
;
267 /// Tracks dbg_value and dbg_label information through SDISel.
270 using CallSiteInfo
= MachineFunction::CallSiteInfo
;
271 using CallSiteInfoImpl
= MachineFunction::CallSiteInfoImpl
;
273 struct CallSiteDbgInfo
{
275 MDNode
*HeapAllocSite
= nullptr;
278 DenseMap
<const SDNode
*, CallSiteDbgInfo
> SDCallSiteDbgInfo
;
280 uint16_t NextPersistentId
= 0;
283 /// Clients of various APIs that cause global effects on
284 /// the DAG can optionally implement this interface. This allows the clients
285 /// to handle the various sorts of updates that happen.
287 /// A DAGUpdateListener automatically registers itself with DAG when it is
288 /// constructed, and removes itself when destroyed in RAII fashion.
289 struct DAGUpdateListener
{
290 DAGUpdateListener
*const Next
;
293 explicit DAGUpdateListener(SelectionDAG
&D
)
294 : Next(D
.UpdateListeners
), DAG(D
) {
295 DAG
.UpdateListeners
= this;
298 virtual ~DAGUpdateListener() {
299 assert(DAG
.UpdateListeners
== this &&
300 "DAGUpdateListeners must be destroyed in LIFO order");
301 DAG
.UpdateListeners
= Next
;
304 /// The node N that was deleted and, if E is not null, an
305 /// equivalent node E that replaced it.
306 virtual void NodeDeleted(SDNode
*N
, SDNode
*E
);
308 /// The node N that was updated.
309 virtual void NodeUpdated(SDNode
*N
);
311 /// The node N that was inserted.
312 virtual void NodeInserted(SDNode
*N
);
315 struct DAGNodeDeletedListener
: public DAGUpdateListener
{
316 std::function
<void(SDNode
*, SDNode
*)> Callback
;
318 DAGNodeDeletedListener(SelectionDAG
&DAG
,
319 std::function
<void(SDNode
*, SDNode
*)> Callback
)
320 : DAGUpdateListener(DAG
), Callback(std::move(Callback
)) {}
322 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{ Callback(N
, E
); }
325 virtual void anchor();
328 /// When true, additional steps are taken to
329 /// ensure that getConstant() and similar functions return DAG nodes that
330 /// have legal types. This is important after type legalization since
331 /// any illegally typed nodes generated after this point will not experience
332 /// type legalization.
333 bool NewNodesMustHaveLegalTypes
= false;
336 /// DAGUpdateListener is a friend so it can manipulate the listener stack.
337 friend struct DAGUpdateListener
;
339 /// Linked list of registered DAGUpdateListener instances.
340 /// This stack is maintained by DAGUpdateListener RAII.
341 DAGUpdateListener
*UpdateListeners
= nullptr;
343 /// Implementation of setSubgraphColor.
344 /// Return whether we had to truncate the search.
345 bool setSubgraphColorHelper(SDNode
*N
, const char *Color
,
346 DenseSet
<SDNode
*> &visited
,
347 int level
, bool &printed
);
349 template <typename SDNodeT
, typename
... ArgTypes
>
350 SDNodeT
*newSDNode(ArgTypes
&&... Args
) {
351 return new (NodeAllocator
.template Allocate
<SDNodeT
>())
352 SDNodeT(std::forward
<ArgTypes
>(Args
)...);
355 /// Build a synthetic SDNodeT with the given args and extract its subclass
356 /// data as an integer (e.g. for use in a folding set).
358 /// The args to this function are the same as the args to SDNodeT's
359 /// constructor, except the second arg (assumed to be a const DebugLoc&) is
361 template <typename SDNodeT
, typename
... ArgTypes
>
362 static uint16_t getSyntheticNodeSubclassData(unsigned IROrder
,
363 ArgTypes
&&... Args
) {
364 // The compiler can reduce this expression to a constant iff we pass an
365 // empty DebugLoc. Thankfully, the debug location doesn't have any bearing
366 // on the subclass data.
367 return SDNodeT(IROrder
, DebugLoc(), std::forward
<ArgTypes
>(Args
)...)
368 .getRawSubclassData();
371 template <typename SDNodeTy
>
372 static uint16_t getSyntheticNodeSubclassData(unsigned Opc
, unsigned Order
,
373 SDVTList VTs
, EVT MemoryVT
,
374 MachineMemOperand
*MMO
) {
375 return SDNodeTy(Opc
, Order
, DebugLoc(), VTs
, MemoryVT
, MMO
)
376 .getRawSubclassData();
379 void createOperands(SDNode
*Node
, ArrayRef
<SDValue
> Vals
);
381 void removeOperands(SDNode
*Node
) {
382 if (!Node
->OperandList
)
384 OperandRecycler
.deallocate(
385 ArrayRecycler
<SDUse
>::Capacity::get(Node
->NumOperands
),
387 Node
->NumOperands
= 0;
388 Node
->OperandList
= nullptr;
390 void CreateTopologicalOrder(std::vector
<SDNode
*>& Order
);
393 // Maximum depth for recursive analysis such as computeKnownBits, etc.
394 static constexpr unsigned MaxRecursionDepth
= 6;
396 explicit SelectionDAG(const TargetMachine
&TM
, CodeGenOpt::Level
);
397 SelectionDAG(const SelectionDAG
&) = delete;
398 SelectionDAG
&operator=(const SelectionDAG
&) = delete;
401 /// Prepare this SelectionDAG to process code in the given MachineFunction.
402 void init(MachineFunction
&NewMF
, OptimizationRemarkEmitter
&NewORE
,
403 Pass
*PassPtr
, const TargetLibraryInfo
*LibraryInfo
,
404 LegacyDivergenceAnalysis
* Divergence
);
406 void setFunctionLoweringInfo(FunctionLoweringInfo
* FuncInfo
) {
410 /// Clear state and free memory necessary to make this
411 /// SelectionDAG ready to process a new block.
414 MachineFunction
&getMachineFunction() const { return *MF
; }
415 const Pass
*getPass() const { return SDAGISelPass
; }
417 const DataLayout
&getDataLayout() const { return MF
->getDataLayout(); }
418 const TargetMachine
&getTarget() const { return TM
; }
419 const TargetSubtargetInfo
&getSubtarget() const { return MF
->getSubtarget(); }
420 const TargetLowering
&getTargetLoweringInfo() const { return *TLI
; }
421 const TargetLibraryInfo
&getLibInfo() const { return *LibInfo
; }
422 const SelectionDAGTargetInfo
&getSelectionDAGInfo() const { return *TSI
; }
423 const LegacyDivergenceAnalysis
*getDivergenceAnalysis() const { return DA
; }
424 LLVMContext
*getContext() const {return Context
; }
425 OptimizationRemarkEmitter
&getORE() const { return *ORE
; }
427 /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
428 void viewGraph(const std::string
&Title
);
432 std::map
<const SDNode
*, std::string
> NodeGraphAttrs
;
435 /// Clear all previously defined node graph attributes.
436 /// Intended to be used from a debugging tool (eg. gdb).
437 void clearGraphAttrs();
439 /// Set graph attributes for a node. (eg. "color=red".)
440 void setGraphAttrs(const SDNode
*N
, const char *Attrs
);
442 /// Get graph attributes for a node. (eg. "color=red".)
443 /// Used from getNodeAttributes.
444 const std::string
getGraphAttrs(const SDNode
*N
) const;
446 /// Convenience for setting node color attribute.
447 void setGraphColor(const SDNode
*N
, const char *Color
);
449 /// Convenience for setting subgraph color attribute.
450 void setSubgraphColor(SDNode
*N
, const char *Color
);
452 using allnodes_const_iterator
= ilist
<SDNode
>::const_iterator
;
454 allnodes_const_iterator
allnodes_begin() const { return AllNodes
.begin(); }
455 allnodes_const_iterator
allnodes_end() const { return AllNodes
.end(); }
457 using allnodes_iterator
= ilist
<SDNode
>::iterator
;
459 allnodes_iterator
allnodes_begin() { return AllNodes
.begin(); }
460 allnodes_iterator
allnodes_end() { return AllNodes
.end(); }
462 ilist
<SDNode
>::size_type
allnodes_size() const {
463 return AllNodes
.size();
466 iterator_range
<allnodes_iterator
> allnodes() {
467 return make_range(allnodes_begin(), allnodes_end());
469 iterator_range
<allnodes_const_iterator
> allnodes() const {
470 return make_range(allnodes_begin(), allnodes_end());
473 /// Return the root tag of the SelectionDAG.
474 const SDValue
&getRoot() const { return Root
; }
476 /// Return the token chain corresponding to the entry of the function.
477 SDValue
getEntryNode() const {
478 return SDValue(const_cast<SDNode
*>(&EntryNode
), 0);
481 /// Set the current root tag of the SelectionDAG.
483 const SDValue
&setRoot(SDValue N
) {
484 assert((!N
.getNode() || N
.getValueType() == MVT::Other
) &&
485 "DAG root value is not a chain!");
487 checkForCycles(N
.getNode(), this);
490 checkForCycles(this);
495 void VerifyDAGDiverence();
498 /// This iterates over the nodes in the SelectionDAG, folding
499 /// certain types of nodes together, or eliminating superfluous nodes. The
500 /// Level argument controls whether Combine is allowed to produce nodes and
501 /// types that are illegal on the target.
502 void Combine(CombineLevel Level
, AAResults
*AA
,
503 CodeGenOpt::Level OptLevel
);
505 /// This transforms the SelectionDAG into a SelectionDAG that
506 /// only uses types natively supported by the target.
507 /// Returns "true" if it made any changes.
509 /// Note that this is an involved process that may invalidate pointers into
511 bool LegalizeTypes();
513 /// This transforms the SelectionDAG into a SelectionDAG that is
514 /// compatible with the target instruction selector, as indicated by the
515 /// TargetLowering object.
517 /// Note that this is an involved process that may invalidate pointers into
521 /// Transforms a SelectionDAG node and any operands to it into a node
522 /// that is compatible with the target instruction selector, as indicated by
523 /// the TargetLowering object.
525 /// \returns true if \c N is a valid, legal node after calling this.
527 /// This essentially runs a single recursive walk of the \c Legalize process
528 /// over the given node (and its operands). This can be used to incrementally
529 /// legalize the DAG. All of the nodes which are directly replaced,
530 /// potentially including N, are added to the output parameter \c
531 /// UpdatedNodes so that the delta to the DAG can be understood by the
534 /// When this returns false, N has been legalized in a way that make the
535 /// pointer passed in no longer valid. It may have even been deleted from the
536 /// DAG, and so it shouldn't be used further. When this returns true, the
537 /// N passed in is a legal node, and can be immediately processed as such.
538 /// This may still have done some work on the DAG, and will still populate
539 /// UpdatedNodes with any new nodes replacing those originally in the DAG.
540 bool LegalizeOp(SDNode
*N
, SmallSetVector
<SDNode
*, 16> &UpdatedNodes
);
542 /// This transforms the SelectionDAG into a SelectionDAG
543 /// that only uses vector math operations supported by the target. This is
544 /// necessary as a separate step from Legalize because unrolling a vector
545 /// operation can introduce illegal types, which requires running
546 /// LegalizeTypes again.
548 /// This returns true if it made any changes; in that case, LegalizeTypes
549 /// is called again before Legalize.
551 /// Note that this is an involved process that may invalidate pointers into
553 bool LegalizeVectors();
555 /// This method deletes all unreachable nodes in the SelectionDAG.
556 void RemoveDeadNodes();
558 /// Remove the specified node from the system. This node must
559 /// have no referrers.
560 void DeleteNode(SDNode
*N
);
562 /// Return an SDVTList that represents the list of values specified.
563 SDVTList
getVTList(EVT VT
);
564 SDVTList
getVTList(EVT VT1
, EVT VT2
);
565 SDVTList
getVTList(EVT VT1
, EVT VT2
, EVT VT3
);
566 SDVTList
getVTList(EVT VT1
, EVT VT2
, EVT VT3
, EVT VT4
);
567 SDVTList
getVTList(ArrayRef
<EVT
> VTs
);
569 //===--------------------------------------------------------------------===//
570 // Node creation methods.
572 /// Create a ConstantSDNode wrapping a constant value.
573 /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
575 /// If only legal types can be produced, this does the necessary
576 /// transformations (e.g., if the vector element type is illegal).
578 SDValue
getConstant(uint64_t Val
, const SDLoc
&DL
, EVT VT
,
579 bool isTarget
= false, bool isOpaque
= false);
580 SDValue
getConstant(const APInt
&Val
, const SDLoc
&DL
, EVT VT
,
581 bool isTarget
= false, bool isOpaque
= false);
583 SDValue
getAllOnesConstant(const SDLoc
&DL
, EVT VT
, bool IsTarget
= false,
584 bool IsOpaque
= false) {
585 return getConstant(APInt::getAllOnesValue(VT
.getScalarSizeInBits()), DL
,
586 VT
, IsTarget
, IsOpaque
);
589 SDValue
getConstant(const ConstantInt
&Val
, const SDLoc
&DL
, EVT VT
,
590 bool isTarget
= false, bool isOpaque
= false);
591 SDValue
getIntPtrConstant(uint64_t Val
, const SDLoc
&DL
,
592 bool isTarget
= false);
593 SDValue
getShiftAmountConstant(uint64_t Val
, EVT VT
, const SDLoc
&DL
,
594 bool LegalTypes
= true);
596 SDValue
getTargetConstant(uint64_t Val
, const SDLoc
&DL
, EVT VT
,
597 bool isOpaque
= false) {
598 return getConstant(Val
, DL
, VT
, true, isOpaque
);
600 SDValue
getTargetConstant(const APInt
&Val
, const SDLoc
&DL
, EVT VT
,
601 bool isOpaque
= false) {
602 return getConstant(Val
, DL
, VT
, true, isOpaque
);
604 SDValue
getTargetConstant(const ConstantInt
&Val
, const SDLoc
&DL
, EVT VT
,
605 bool isOpaque
= false) {
606 return getConstant(Val
, DL
, VT
, true, isOpaque
);
609 /// Create a true or false constant of type \p VT using the target's
610 /// BooleanContent for type \p OpVT.
611 SDValue
getBoolConstant(bool V
, const SDLoc
&DL
, EVT VT
, EVT OpVT
);
614 /// Create a ConstantFPSDNode wrapping a constant value.
615 /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
617 /// If only legal types can be produced, this does the necessary
618 /// transformations (e.g., if the vector element type is illegal).
619 /// The forms that take a double should only be used for simple constants
620 /// that can be exactly represented in VT. No checks are made.
622 SDValue
getConstantFP(double Val
, const SDLoc
&DL
, EVT VT
,
623 bool isTarget
= false);
624 SDValue
getConstantFP(const APFloat
&Val
, const SDLoc
&DL
, EVT VT
,
625 bool isTarget
= false);
626 SDValue
getConstantFP(const ConstantFP
&V
, const SDLoc
&DL
, EVT VT
,
627 bool isTarget
= false);
628 SDValue
getTargetConstantFP(double Val
, const SDLoc
&DL
, EVT VT
) {
629 return getConstantFP(Val
, DL
, VT
, true);
631 SDValue
getTargetConstantFP(const APFloat
&Val
, const SDLoc
&DL
, EVT VT
) {
632 return getConstantFP(Val
, DL
, VT
, true);
634 SDValue
getTargetConstantFP(const ConstantFP
&Val
, const SDLoc
&DL
, EVT VT
) {
635 return getConstantFP(Val
, DL
, VT
, true);
639 SDValue
getGlobalAddress(const GlobalValue
*GV
, const SDLoc
&DL
, EVT VT
,
640 int64_t offset
= 0, bool isTargetGA
= false,
641 unsigned TargetFlags
= 0);
642 SDValue
getTargetGlobalAddress(const GlobalValue
*GV
, const SDLoc
&DL
, EVT VT
,
643 int64_t offset
= 0, unsigned TargetFlags
= 0) {
644 return getGlobalAddress(GV
, DL
, VT
, offset
, true, TargetFlags
);
646 SDValue
getFrameIndex(int FI
, EVT VT
, bool isTarget
= false);
647 SDValue
getTargetFrameIndex(int FI
, EVT VT
) {
648 return getFrameIndex(FI
, VT
, true);
650 SDValue
getJumpTable(int JTI
, EVT VT
, bool isTarget
= false,
651 unsigned TargetFlags
= 0);
652 SDValue
getTargetJumpTable(int JTI
, EVT VT
, unsigned TargetFlags
= 0) {
653 return getJumpTable(JTI
, VT
, true, TargetFlags
);
655 SDValue
getConstantPool(const Constant
*C
, EVT VT
, unsigned Align
= 0,
656 int Offs
= 0, bool isT
= false,
657 unsigned TargetFlags
= 0);
658 SDValue
getTargetConstantPool(const Constant
*C
, EVT VT
, unsigned Align
= 0,
659 int Offset
= 0, unsigned TargetFlags
= 0) {
660 return getConstantPool(C
, VT
, Align
, Offset
, true, TargetFlags
);
662 SDValue
getConstantPool(MachineConstantPoolValue
*C
, EVT VT
,
663 unsigned Align
= 0, int Offs
= 0, bool isT
=false,
664 unsigned TargetFlags
= 0);
665 SDValue
getTargetConstantPool(MachineConstantPoolValue
*C
, EVT VT
,
666 unsigned Align
= 0, int Offset
= 0,
667 unsigned TargetFlags
= 0) {
668 return getConstantPool(C
, VT
, Align
, Offset
, true, TargetFlags
);
670 SDValue
getTargetIndex(int Index
, EVT VT
, int64_t Offset
= 0,
671 unsigned TargetFlags
= 0);
672 // When generating a branch to a BB, we don't in general know enough
673 // to provide debug info for the BB at that time, so keep this one around.
674 SDValue
getBasicBlock(MachineBasicBlock
*MBB
);
675 SDValue
getBasicBlock(MachineBasicBlock
*MBB
, SDLoc dl
);
676 SDValue
getExternalSymbol(const char *Sym
, EVT VT
);
677 SDValue
getExternalSymbol(const char *Sym
, const SDLoc
&dl
, EVT VT
);
678 SDValue
getTargetExternalSymbol(const char *Sym
, EVT VT
,
679 unsigned TargetFlags
= 0);
680 SDValue
getMCSymbol(MCSymbol
*Sym
, EVT VT
);
682 SDValue
getValueType(EVT
);
683 SDValue
getRegister(unsigned Reg
, EVT VT
);
684 SDValue
getRegisterMask(const uint32_t *RegMask
);
685 SDValue
getEHLabel(const SDLoc
&dl
, SDValue Root
, MCSymbol
*Label
);
686 SDValue
getLabelNode(unsigned Opcode
, const SDLoc
&dl
, SDValue Root
,
688 SDValue
getBlockAddress(const BlockAddress
*BA
, EVT VT
, int64_t Offset
= 0,
689 bool isTarget
= false, unsigned TargetFlags
= 0);
690 SDValue
getTargetBlockAddress(const BlockAddress
*BA
, EVT VT
,
691 int64_t Offset
= 0, unsigned TargetFlags
= 0) {
692 return getBlockAddress(BA
, VT
, Offset
, true, TargetFlags
);
695 SDValue
getCopyToReg(SDValue Chain
, const SDLoc
&dl
, unsigned Reg
,
697 return getNode(ISD::CopyToReg
, dl
, MVT::Other
, Chain
,
698 getRegister(Reg
, N
.getValueType()), N
);
701 // This version of the getCopyToReg method takes an extra operand, which
702 // indicates that there is potentially an incoming glue value (if Glue is not
703 // null) and that there should be a glue result.
704 SDValue
getCopyToReg(SDValue Chain
, const SDLoc
&dl
, unsigned Reg
, SDValue N
,
706 SDVTList VTs
= getVTList(MVT::Other
, MVT::Glue
);
707 SDValue Ops
[] = { Chain
, getRegister(Reg
, N
.getValueType()), N
, Glue
};
708 return getNode(ISD::CopyToReg
, dl
, VTs
,
709 makeArrayRef(Ops
, Glue
.getNode() ? 4 : 3));
712 // Similar to last getCopyToReg() except parameter Reg is a SDValue
713 SDValue
getCopyToReg(SDValue Chain
, const SDLoc
&dl
, SDValue Reg
, SDValue N
,
715 SDVTList VTs
= getVTList(MVT::Other
, MVT::Glue
);
716 SDValue Ops
[] = { Chain
, Reg
, N
, Glue
};
717 return getNode(ISD::CopyToReg
, dl
, VTs
,
718 makeArrayRef(Ops
, Glue
.getNode() ? 4 : 3));
721 SDValue
getCopyFromReg(SDValue Chain
, const SDLoc
&dl
, unsigned Reg
, EVT VT
) {
722 SDVTList VTs
= getVTList(VT
, MVT::Other
);
723 SDValue Ops
[] = { Chain
, getRegister(Reg
, VT
) };
724 return getNode(ISD::CopyFromReg
, dl
, VTs
, Ops
);
727 // This version of the getCopyFromReg method takes an extra operand, which
728 // indicates that there is potentially an incoming glue value (if Glue is not
729 // null) and that there should be a glue result.
730 SDValue
getCopyFromReg(SDValue Chain
, const SDLoc
&dl
, unsigned Reg
, EVT VT
,
732 SDVTList VTs
= getVTList(VT
, MVT::Other
, MVT::Glue
);
733 SDValue Ops
[] = { Chain
, getRegister(Reg
, VT
), Glue
};
734 return getNode(ISD::CopyFromReg
, dl
, VTs
,
735 makeArrayRef(Ops
, Glue
.getNode() ? 3 : 2));
738 SDValue
getCondCode(ISD::CondCode Cond
);
740 /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
741 /// which must be a vector type, must match the number of mask elements
742 /// NumElts. An integer mask element equal to -1 is treated as undefined.
743 SDValue
getVectorShuffle(EVT VT
, const SDLoc
&dl
, SDValue N1
, SDValue N2
,
746 /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
747 /// which must be a vector type, must match the number of operands in Ops.
748 /// The operands must have the same type as (or, for integers, a type wider
749 /// than) VT's element type.
750 SDValue
getBuildVector(EVT VT
, const SDLoc
&DL
, ArrayRef
<SDValue
> Ops
) {
751 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
752 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, Ops
);
755 /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
756 /// which must be a vector type, must match the number of operands in Ops.
757 /// The operands must have the same type as (or, for integers, a type wider
758 /// than) VT's element type.
759 SDValue
getBuildVector(EVT VT
, const SDLoc
&DL
, ArrayRef
<SDUse
> Ops
) {
760 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
761 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, Ops
);
764 /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
765 /// elements. VT must be a vector type. Op's type must be the same as (or,
766 /// for integers, a type wider than) VT's element type.
767 SDValue
getSplatBuildVector(EVT VT
, const SDLoc
&DL
, SDValue Op
) {
768 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
769 if (Op
.getOpcode() == ISD::UNDEF
) {
770 assert((VT
.getVectorElementType() == Op
.getValueType() ||
772 VT
.getVectorElementType().bitsLE(Op
.getValueType()))) &&
773 "A splatted value must have a width equal or (for integers) "
774 "greater than the vector element type!");
775 return getNode(ISD::UNDEF
, SDLoc(), VT
);
778 SmallVector
<SDValue
, 16> Ops(VT
.getVectorNumElements(), Op
);
779 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, Ops
);
782 /// Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
783 /// the shuffle node in input but with swapped operands.
785 /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
786 SDValue
getCommutedVectorShuffle(const ShuffleVectorSDNode
&SV
);
788 /// Convert Op, which must be of float type, to the
789 /// float type VT, by either extending or rounding (by truncation).
790 SDValue
getFPExtendOrRound(SDValue Op
, const SDLoc
&DL
, EVT VT
);
792 /// Convert Op, which must be of integer type, to the
793 /// integer type VT, by either any-extending or truncating it.
794 SDValue
getAnyExtOrTrunc(SDValue Op
, const SDLoc
&DL
, EVT VT
);
796 /// Convert Op, which must be of integer type, to the
797 /// integer type VT, by either sign-extending or truncating it.
798 SDValue
getSExtOrTrunc(SDValue Op
, const SDLoc
&DL
, EVT VT
);
800 /// Convert Op, which must be of integer type, to the
801 /// integer type VT, by either zero-extending or truncating it.
802 SDValue
getZExtOrTrunc(SDValue Op
, const SDLoc
&DL
, EVT VT
);
804 /// Return the expression required to zero extend the Op
805 /// value assuming it was the smaller SrcTy value.
806 SDValue
getZeroExtendInReg(SDValue Op
, const SDLoc
&DL
, EVT VT
);
808 /// Convert Op, which must be of integer type, to the integer type VT, by
809 /// either truncating it or performing either zero or sign extension as
810 /// appropriate extension for the pointer's semantics.
811 SDValue
getPtrExtOrTrunc(SDValue Op
, const SDLoc
&DL
, EVT VT
);
813 /// Return the expression required to extend the Op as a pointer value
814 /// assuming it was the smaller SrcTy value. This may be either a zero extend
815 /// or a sign extend.
816 SDValue
getPtrExtendInReg(SDValue Op
, const SDLoc
&DL
, EVT VT
);
818 /// Convert Op, which must be of integer type, to the integer type VT,
819 /// by using an extension appropriate for the target's
820 /// BooleanContent for type OpVT or truncating it.
821 SDValue
getBoolExtOrTrunc(SDValue Op
, const SDLoc
&SL
, EVT VT
, EVT OpVT
);
823 /// Create a bitwise NOT operation as (XOR Val, -1).
824 SDValue
getNOT(const SDLoc
&DL
, SDValue Val
, EVT VT
);
826 /// Create a logical NOT operation as (XOR Val, BooleanOne).
827 SDValue
getLogicalNOT(const SDLoc
&DL
, SDValue Val
, EVT VT
);
829 /// Create an add instruction with appropriate flags when used for
830 /// addressing some offset of an object. i.e. if a load is split into multiple
831 /// components, create an add nuw from the base pointer to the offset.
832 SDValue
getObjectPtrOffset(const SDLoc
&SL
, SDValue Op
, int64_t Offset
) {
833 EVT VT
= Op
.getValueType();
834 return getObjectPtrOffset(SL
, Op
, getConstant(Offset
, SL
, VT
));
837 SDValue
getObjectPtrOffset(const SDLoc
&SL
, SDValue Op
, SDValue Offset
) {
838 EVT VT
= Op
.getValueType();
840 // The object itself can't wrap around the address space, so it shouldn't be
841 // possible for the adds of the offsets to the split parts to overflow.
843 Flags
.setNoUnsignedWrap(true);
844 return getNode(ISD::ADD
, SL
, VT
, Op
, Offset
, Flags
);
847 /// Return a new CALLSEQ_START node, that starts new call frame, in which
848 /// InSize bytes are set up inside CALLSEQ_START..CALLSEQ_END sequence and
849 /// OutSize specifies part of the frame set up prior to the sequence.
850 SDValue
getCALLSEQ_START(SDValue Chain
, uint64_t InSize
, uint64_t OutSize
,
852 SDVTList VTs
= getVTList(MVT::Other
, MVT::Glue
);
853 SDValue Ops
[] = { Chain
,
854 getIntPtrConstant(InSize
, DL
, true),
855 getIntPtrConstant(OutSize
, DL
, true) };
856 return getNode(ISD::CALLSEQ_START
, DL
, VTs
, Ops
);
859 /// Return a new CALLSEQ_END node, which always must have a
860 /// glue result (to ensure it's not CSE'd).
861 /// CALLSEQ_END does not have a useful SDLoc.
862 SDValue
getCALLSEQ_END(SDValue Chain
, SDValue Op1
, SDValue Op2
,
863 SDValue InGlue
, const SDLoc
&DL
) {
864 SDVTList NodeTys
= getVTList(MVT::Other
, MVT::Glue
);
865 SmallVector
<SDValue
, 4> Ops
;
866 Ops
.push_back(Chain
);
869 if (InGlue
.getNode())
870 Ops
.push_back(InGlue
);
871 return getNode(ISD::CALLSEQ_END
, DL
, NodeTys
, Ops
);
874 /// Return true if the result of this operation is always undefined.
875 bool isUndef(unsigned Opcode
, ArrayRef
<SDValue
> Ops
);
877 /// Return an UNDEF node. UNDEF does not have a useful SDLoc.
878 SDValue
getUNDEF(EVT VT
) {
879 return getNode(ISD::UNDEF
, SDLoc(), VT
);
882 /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
883 SDValue
getGLOBAL_OFFSET_TABLE(EVT VT
) {
884 return getNode(ISD::GLOBAL_OFFSET_TABLE
, SDLoc(), VT
);
887 /// Gets or creates the specified node.
889 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
890 ArrayRef
<SDUse
> Ops
);
891 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
892 ArrayRef
<SDValue
> Ops
, const SDNodeFlags Flags
= SDNodeFlags());
893 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, ArrayRef
<EVT
> ResultTys
,
894 ArrayRef
<SDValue
> Ops
);
895 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
,
896 ArrayRef
<SDValue
> Ops
);
898 // Specialize based on number of operands.
899 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
);
900 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
, SDValue Operand
,
901 const SDNodeFlags Flags
= SDNodeFlags());
902 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
, SDValue N1
,
903 SDValue N2
, const SDNodeFlags Flags
= SDNodeFlags());
904 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
, SDValue N1
,
905 SDValue N2
, SDValue N3
,
906 const SDNodeFlags Flags
= SDNodeFlags());
907 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
, SDValue N1
,
908 SDValue N2
, SDValue N3
, SDValue N4
);
909 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
, SDValue N1
,
910 SDValue N2
, SDValue N3
, SDValue N4
, SDValue N5
);
912 // Specialize again based on number of operands for nodes with a VTList
913 // rather than a single VT.
914 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
);
915 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
, SDValue N
);
916 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
, SDValue N1
,
918 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
, SDValue N1
,
919 SDValue N2
, SDValue N3
);
920 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
, SDValue N1
,
921 SDValue N2
, SDValue N3
, SDValue N4
);
922 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
, SDValue N1
,
923 SDValue N2
, SDValue N3
, SDValue N4
, SDValue N5
);
925 /// Compute a TokenFactor to force all the incoming stack arguments to be
926 /// loaded from the stack. This is used in tail call lowering to protect
927 /// stack arguments from being clobbered.
928 SDValue
getStackArgumentTokenFactor(SDValue Chain
);
930 SDValue
getMemcpy(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
, SDValue Src
,
931 SDValue Size
, unsigned Align
, bool isVol
, bool AlwaysInline
,
932 bool isTailCall
, MachinePointerInfo DstPtrInfo
,
933 MachinePointerInfo SrcPtrInfo
);
935 SDValue
getMemmove(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
, SDValue Src
,
936 SDValue Size
, unsigned Align
, bool isVol
, bool isTailCall
,
937 MachinePointerInfo DstPtrInfo
,
938 MachinePointerInfo SrcPtrInfo
);
940 SDValue
getMemset(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
, SDValue Src
,
941 SDValue Size
, unsigned Align
, bool isVol
, bool isTailCall
,
942 MachinePointerInfo DstPtrInfo
);
944 SDValue
getAtomicMemcpy(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
,
945 unsigned DstAlign
, SDValue Src
, unsigned SrcAlign
,
946 SDValue Size
, Type
*SizeTy
, unsigned ElemSz
,
947 bool isTailCall
, MachinePointerInfo DstPtrInfo
,
948 MachinePointerInfo SrcPtrInfo
);
950 SDValue
getAtomicMemmove(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
,
951 unsigned DstAlign
, SDValue Src
, unsigned SrcAlign
,
952 SDValue Size
, Type
*SizeTy
, unsigned ElemSz
,
953 bool isTailCall
, MachinePointerInfo DstPtrInfo
,
954 MachinePointerInfo SrcPtrInfo
);
956 SDValue
getAtomicMemset(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
,
957 unsigned DstAlign
, SDValue Value
, SDValue Size
,
958 Type
*SizeTy
, unsigned ElemSz
, bool isTailCall
,
959 MachinePointerInfo DstPtrInfo
);
961 /// Helper function to make it easier to build SetCC's if you just have an
962 /// ISD::CondCode instead of an SDValue.
963 SDValue
getSetCC(const SDLoc
&DL
, EVT VT
, SDValue LHS
, SDValue RHS
,
964 ISD::CondCode Cond
) {
965 assert(LHS
.getValueType().isVector() == RHS
.getValueType().isVector() &&
966 "Cannot compare scalars to vectors");
967 assert(LHS
.getValueType().isVector() == VT
.isVector() &&
968 "Cannot compare scalars to vectors");
969 assert(Cond
!= ISD::SETCC_INVALID
&&
970 "Cannot create a setCC of an invalid node.");
971 return getNode(ISD::SETCC
, DL
, VT
, LHS
, RHS
, getCondCode(Cond
));
974 /// Helper function to make it easier to build Select's if you just have
975 /// operands and don't want to check for vector.
976 SDValue
getSelect(const SDLoc
&DL
, EVT VT
, SDValue Cond
, SDValue LHS
,
978 assert(LHS
.getValueType() == RHS
.getValueType() &&
979 "Cannot use select on differing types");
980 assert(VT
.isVector() == LHS
.getValueType().isVector() &&
981 "Cannot mix vectors and scalars");
982 auto Opcode
= Cond
.getValueType().isVector() ? ISD::VSELECT
: ISD::SELECT
;
983 return getNode(Opcode
, DL
, VT
, Cond
, LHS
, RHS
);
986 /// Helper function to make it easier to build SelectCC's if you just have an
987 /// ISD::CondCode instead of an SDValue.
988 SDValue
getSelectCC(const SDLoc
&DL
, SDValue LHS
, SDValue RHS
, SDValue True
,
989 SDValue False
, ISD::CondCode Cond
) {
990 return getNode(ISD::SELECT_CC
, DL
, True
.getValueType(), LHS
, RHS
, True
,
991 False
, getCondCode(Cond
));
994 /// Try to simplify a select/vselect into 1 of its operands or a constant.
995 SDValue
simplifySelect(SDValue Cond
, SDValue TVal
, SDValue FVal
);
997 /// Try to simplify a shift into 1 of its operands or a constant.
998 SDValue
simplifyShift(SDValue X
, SDValue Y
);
1000 /// Try to simplify a floating-point binary operation into 1 of its operands
1002 SDValue
simplifyFPBinop(unsigned Opcode
, SDValue X
, SDValue Y
);
1004 /// VAArg produces a result and token chain, and takes a pointer
1005 /// and a source value as input.
1006 SDValue
getVAArg(EVT VT
, const SDLoc
&dl
, SDValue Chain
, SDValue Ptr
,
1007 SDValue SV
, unsigned Align
);
1009 /// Gets a node for an atomic cmpxchg op. There are two
1010 /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
1011 /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
1012 /// a success flag (initially i1), and a chain.
1013 SDValue
getAtomicCmpSwap(unsigned Opcode
, const SDLoc
&dl
, EVT MemVT
,
1014 SDVTList VTs
, SDValue Chain
, SDValue Ptr
,
1015 SDValue Cmp
, SDValue Swp
, MachineMemOperand
*MMO
);
1017 /// Gets a node for an atomic op, produces result (if relevant)
1018 /// and chain and takes 2 operands.
1019 SDValue
getAtomic(unsigned Opcode
, const SDLoc
&dl
, EVT MemVT
, SDValue Chain
,
1020 SDValue Ptr
, SDValue Val
, MachineMemOperand
*MMO
);
1022 /// Gets a node for an atomic op, produces result and chain and
1023 /// takes 1 operand.
1024 SDValue
getAtomic(unsigned Opcode
, const SDLoc
&dl
, EVT MemVT
, EVT VT
,
1025 SDValue Chain
, SDValue Ptr
, MachineMemOperand
*MMO
);
1027 /// Gets a node for an atomic op, produces result and chain and takes N
1029 SDValue
getAtomic(unsigned Opcode
, const SDLoc
&dl
, EVT MemVT
,
1030 SDVTList VTList
, ArrayRef
<SDValue
> Ops
,
1031 MachineMemOperand
*MMO
);
1033 /// Creates a MemIntrinsicNode that may produce a
1034 /// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
1035 /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not
1036 /// less than FIRST_TARGET_MEMORY_OPCODE.
1037 SDValue
getMemIntrinsicNode(
1038 unsigned Opcode
, const SDLoc
&dl
, SDVTList VTList
,
1039 ArrayRef
<SDValue
> Ops
, EVT MemVT
,
1040 MachinePointerInfo PtrInfo
,
1042 MachineMemOperand::Flags Flags
1043 = MachineMemOperand::MOLoad
| MachineMemOperand::MOStore
,
1045 const AAMDNodes
&AAInfo
= AAMDNodes());
1047 SDValue
getMemIntrinsicNode(unsigned Opcode
, const SDLoc
&dl
, SDVTList VTList
,
1048 ArrayRef
<SDValue
> Ops
, EVT MemVT
,
1049 MachineMemOperand
*MMO
);
1051 /// Creates a LifetimeSDNode that starts (`IsStart==true`) or ends
1052 /// (`IsStart==false`) the lifetime of the portion of `FrameIndex` between
1053 /// offsets `Offset` and `Offset + Size`.
1054 SDValue
getLifetimeNode(bool IsStart
, const SDLoc
&dl
, SDValue Chain
,
1055 int FrameIndex
, int64_t Size
, int64_t Offset
= -1);
1057 /// Create a MERGE_VALUES node from the given operands.
1058 SDValue
getMergeValues(ArrayRef
<SDValue
> Ops
, const SDLoc
&dl
);
1060 /// Loads are not normal binary operators: their result type is not
1061 /// determined by their operands, and they produce a value AND a token chain.
1063 /// This function will set the MOLoad flag on MMOFlags, but you can set it if
1064 /// you want. The MOStore flag must not be set.
1065 SDValue
getLoad(EVT VT
, const SDLoc
&dl
, SDValue Chain
, SDValue Ptr
,
1066 MachinePointerInfo PtrInfo
, unsigned Alignment
= 0,
1067 MachineMemOperand::Flags MMOFlags
= MachineMemOperand::MONone
,
1068 const AAMDNodes
&AAInfo
= AAMDNodes(),
1069 const MDNode
*Ranges
= nullptr);
1070 SDValue
getLoad(EVT VT
, const SDLoc
&dl
, SDValue Chain
, SDValue Ptr
,
1071 MachineMemOperand
*MMO
);
1073 getExtLoad(ISD::LoadExtType ExtType
, const SDLoc
&dl
, EVT VT
, SDValue Chain
,
1074 SDValue Ptr
, MachinePointerInfo PtrInfo
, EVT MemVT
,
1075 unsigned Alignment
= 0,
1076 MachineMemOperand::Flags MMOFlags
= MachineMemOperand::MONone
,
1077 const AAMDNodes
&AAInfo
= AAMDNodes());
1078 SDValue
getExtLoad(ISD::LoadExtType ExtType
, const SDLoc
&dl
, EVT VT
,
1079 SDValue Chain
, SDValue Ptr
, EVT MemVT
,
1080 MachineMemOperand
*MMO
);
1081 SDValue
getIndexedLoad(SDValue OrigLoad
, const SDLoc
&dl
, SDValue Base
,
1082 SDValue Offset
, ISD::MemIndexedMode AM
);
1083 SDValue
getLoad(ISD::MemIndexedMode AM
, ISD::LoadExtType ExtType
, EVT VT
,
1084 const SDLoc
&dl
, SDValue Chain
, SDValue Ptr
, SDValue Offset
,
1085 MachinePointerInfo PtrInfo
, EVT MemVT
, unsigned Alignment
= 0,
1086 MachineMemOperand::Flags MMOFlags
= MachineMemOperand::MONone
,
1087 const AAMDNodes
&AAInfo
= AAMDNodes(),
1088 const MDNode
*Ranges
= nullptr);
1089 SDValue
getLoad(ISD::MemIndexedMode AM
, ISD::LoadExtType ExtType
, EVT VT
,
1090 const SDLoc
&dl
, SDValue Chain
, SDValue Ptr
, SDValue Offset
,
1091 EVT MemVT
, MachineMemOperand
*MMO
);
1093 /// Helper function to build ISD::STORE nodes.
1095 /// This function will set the MOStore flag on MMOFlags, but you can set it if
1096 /// you want. The MOLoad and MOInvariant flags must not be set.
1098 getStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
, SDValue Ptr
,
1099 MachinePointerInfo PtrInfo
, unsigned Alignment
= 0,
1100 MachineMemOperand::Flags MMOFlags
= MachineMemOperand::MONone
,
1101 const AAMDNodes
&AAInfo
= AAMDNodes());
1102 SDValue
getStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
, SDValue Ptr
,
1103 MachineMemOperand
*MMO
);
1105 getTruncStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
, SDValue Ptr
,
1106 MachinePointerInfo PtrInfo
, EVT SVT
, unsigned Alignment
= 0,
1107 MachineMemOperand::Flags MMOFlags
= MachineMemOperand::MONone
,
1108 const AAMDNodes
&AAInfo
= AAMDNodes());
1109 SDValue
getTruncStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
,
1110 SDValue Ptr
, EVT SVT
, MachineMemOperand
*MMO
);
1111 SDValue
getIndexedStore(SDValue OrigStore
, const SDLoc
&dl
, SDValue Base
,
1112 SDValue Offset
, ISD::MemIndexedMode AM
);
1114 /// Returns sum of the base pointer and offset.
1115 SDValue
getMemBasePlusOffset(SDValue Base
, unsigned Offset
, const SDLoc
&DL
);
1117 SDValue
getMaskedLoad(EVT VT
, const SDLoc
&dl
, SDValue Chain
, SDValue Ptr
,
1118 SDValue Mask
, SDValue Src0
, EVT MemVT
,
1119 MachineMemOperand
*MMO
, ISD::LoadExtType
,
1120 bool IsExpanding
= false);
1121 SDValue
getMaskedStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
,
1122 SDValue Ptr
, SDValue Mask
, EVT MemVT
,
1123 MachineMemOperand
*MMO
, bool IsTruncating
= false,
1124 bool IsCompressing
= false);
1125 SDValue
getMaskedGather(SDVTList VTs
, EVT VT
, const SDLoc
&dl
,
1126 ArrayRef
<SDValue
> Ops
, MachineMemOperand
*MMO
,
1127 ISD::MemIndexType IndexType
);
1128 SDValue
getMaskedScatter(SDVTList VTs
, EVT VT
, const SDLoc
&dl
,
1129 ArrayRef
<SDValue
> Ops
, MachineMemOperand
*MMO
,
1130 ISD::MemIndexType IndexType
);
1132 /// Return (create a new or find existing) a target-specific node.
1133 /// TargetMemSDNode should be derived class from MemSDNode.
1134 template <class TargetMemSDNode
>
1135 SDValue
getTargetMemSDNode(SDVTList VTs
, ArrayRef
<SDValue
> Ops
,
1136 const SDLoc
&dl
, EVT MemVT
,
1137 MachineMemOperand
*MMO
);
1139 /// Construct a node to track a Value* through the backend.
1140 SDValue
getSrcValue(const Value
*v
);
1142 /// Return an MDNodeSDNode which holds an MDNode.
1143 SDValue
getMDNode(const MDNode
*MD
);
1145 /// Return a bitcast using the SDLoc of the value operand, and casting to the
1146 /// provided type. Use getNode to set a custom SDLoc.
1147 SDValue
getBitcast(EVT VT
, SDValue V
);
1149 /// Return an AddrSpaceCastSDNode.
1150 SDValue
getAddrSpaceCast(const SDLoc
&dl
, EVT VT
, SDValue Ptr
, unsigned SrcAS
,
1153 /// Return the specified value casted to
1154 /// the target's desired shift amount type.
1155 SDValue
getShiftAmountOperand(EVT LHSTy
, SDValue Op
);
1157 /// Expand the specified \c ISD::VAARG node as the Legalize pass would.
1158 SDValue
expandVAArg(SDNode
*Node
);
1160 /// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
1161 SDValue
expandVACopy(SDNode
*Node
);
1163 /// Returs an GlobalAddress of the function from the current module with
1164 /// name matching the given ExternalSymbol. Additionally can provide the
1165 /// matched function.
1166 /// Panics the function doesn't exists.
1167 SDValue
getSymbolFunctionGlobalAddress(SDValue Op
,
1168 Function
**TargetFunction
= nullptr);
1170 /// *Mutate* the specified node in-place to have the
1171 /// specified operands. If the resultant node already exists in the DAG,
1172 /// this does not modify the specified node, instead it returns the node that
1173 /// already exists. If the resultant node does not exist in the DAG, the
1174 /// input node is returned. As a degenerate case, if you specify the same
1175 /// input operands as the node already has, the input node is returned.
1176 SDNode
*UpdateNodeOperands(SDNode
*N
, SDValue Op
);
1177 SDNode
*UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
);
1178 SDNode
*UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
,
1180 SDNode
*UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
,
1181 SDValue Op3
, SDValue Op4
);
1182 SDNode
*UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
,
1183 SDValue Op3
, SDValue Op4
, SDValue Op5
);
1184 SDNode
*UpdateNodeOperands(SDNode
*N
, ArrayRef
<SDValue
> Ops
);
1186 /// Creates a new TokenFactor containing \p Vals. If \p Vals contains 64k
1187 /// values or more, move values into new TokenFactors in 64k-1 blocks, until
1188 /// the final TokenFactor has less than 64k operands.
1189 SDValue
getTokenFactor(const SDLoc
&DL
, SmallVectorImpl
<SDValue
> &Vals
);
1191 /// *Mutate* the specified machine node's memory references to the provided
1193 void setNodeMemRefs(MachineSDNode
*N
,
1194 ArrayRef
<MachineMemOperand
*> NewMemRefs
);
1196 // Propagates the change in divergence to users
1197 void updateDivergence(SDNode
* N
);
1199 /// These are used for target selectors to *mutate* the
1200 /// specified node to have the specified return type, Target opcode, and
1201 /// operands. Note that target opcodes are stored as
1202 /// ~TargetOpcode in the node opcode field. The resultant node is returned.
1203 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT
);
1204 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT
, SDValue Op1
);
1205 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT
,
1206 SDValue Op1
, SDValue Op2
);
1207 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT
,
1208 SDValue Op1
, SDValue Op2
, SDValue Op3
);
1209 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT
,
1210 ArrayRef
<SDValue
> Ops
);
1211 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT1
, EVT VT2
);
1212 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT1
,
1213 EVT VT2
, ArrayRef
<SDValue
> Ops
);
1214 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT1
,
1215 EVT VT2
, EVT VT3
, ArrayRef
<SDValue
> Ops
);
1216 SDNode
*SelectNodeTo(SDNode
*N
, unsigned TargetOpc
, EVT VT1
,
1217 EVT VT2
, SDValue Op1
);
1218 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT1
,
1219 EVT VT2
, SDValue Op1
, SDValue Op2
);
1220 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, SDVTList VTs
,
1221 ArrayRef
<SDValue
> Ops
);
1223 /// This *mutates* the specified node to have the specified
1224 /// return type, opcode, and operands.
1225 SDNode
*MorphNodeTo(SDNode
*N
, unsigned Opc
, SDVTList VTs
,
1226 ArrayRef
<SDValue
> Ops
);
1228 /// Mutate the specified strict FP node to its non-strict equivalent,
1229 /// unlinking the node from its chain and dropping the metadata arguments.
1230 /// The node must be a strict FP node.
1231 SDNode
*mutateStrictFPToFP(SDNode
*Node
);
1233 /// These are used for target selectors to create a new node
1234 /// with specified return type(s), MachineInstr opcode, and operands.
1236 /// Note that getMachineNode returns the resultant node. If there is already
1237 /// a node of the specified opcode and operands, it returns that node instead
1238 /// of the current one.
1239 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT
);
1240 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT
,
1242 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT
,
1243 SDValue Op1
, SDValue Op2
);
1244 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT
,
1245 SDValue Op1
, SDValue Op2
, SDValue Op3
);
1246 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT
,
1247 ArrayRef
<SDValue
> Ops
);
1248 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT1
,
1249 EVT VT2
, SDValue Op1
, SDValue Op2
);
1250 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT1
,
1251 EVT VT2
, SDValue Op1
, SDValue Op2
, SDValue Op3
);
1252 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT1
,
1253 EVT VT2
, ArrayRef
<SDValue
> Ops
);
1254 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT1
,
1255 EVT VT2
, EVT VT3
, SDValue Op1
, SDValue Op2
);
1256 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT1
,
1257 EVT VT2
, EVT VT3
, SDValue Op1
, SDValue Op2
,
1259 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT1
,
1260 EVT VT2
, EVT VT3
, ArrayRef
<SDValue
> Ops
);
1261 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
1262 ArrayRef
<EVT
> ResultTys
, ArrayRef
<SDValue
> Ops
);
1263 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, SDVTList VTs
,
1264 ArrayRef
<SDValue
> Ops
);
1266 /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
1267 SDValue
getTargetExtractSubreg(int SRIdx
, const SDLoc
&DL
, EVT VT
,
1270 /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
1271 SDValue
getTargetInsertSubreg(int SRIdx
, const SDLoc
&DL
, EVT VT
,
1272 SDValue Operand
, SDValue Subreg
);
1274 /// Get the specified node if it's already available, or else return NULL.
1275 SDNode
*getNodeIfExists(unsigned Opcode
, SDVTList VTList
, ArrayRef
<SDValue
> Ops
,
1276 const SDNodeFlags Flags
= SDNodeFlags());
1278 /// Creates a SDDbgValue node.
1279 SDDbgValue
*getDbgValue(DIVariable
*Var
, DIExpression
*Expr
, SDNode
*N
,
1280 unsigned R
, bool IsIndirect
, const DebugLoc
&DL
,
1283 /// Creates a constant SDDbgValue node.
1284 SDDbgValue
*getConstantDbgValue(DIVariable
*Var
, DIExpression
*Expr
,
1285 const Value
*C
, const DebugLoc
&DL
,
1288 /// Creates a FrameIndex SDDbgValue node.
1289 SDDbgValue
*getFrameIndexDbgValue(DIVariable
*Var
, DIExpression
*Expr
,
1290 unsigned FI
, bool IsIndirect
,
1291 const DebugLoc
&DL
, unsigned O
);
1293 /// Creates a VReg SDDbgValue node.
1294 SDDbgValue
*getVRegDbgValue(DIVariable
*Var
, DIExpression
*Expr
,
1295 unsigned VReg
, bool IsIndirect
,
1296 const DebugLoc
&DL
, unsigned O
);
1298 /// Creates a SDDbgLabel node.
1299 SDDbgLabel
*getDbgLabel(DILabel
*Label
, const DebugLoc
&DL
, unsigned O
);
1301 /// Transfer debug values from one node to another, while optionally
1302 /// generating fragment expressions for split-up values. If \p InvalidateDbg
1303 /// is set, debug values are invalidated after they are transferred.
1304 void transferDbgValues(SDValue From
, SDValue To
, unsigned OffsetInBits
= 0,
1305 unsigned SizeInBits
= 0, bool InvalidateDbg
= true);
1307 /// Remove the specified node from the system. If any of its
1308 /// operands then becomes dead, remove them as well. Inform UpdateListener
1309 /// for each node deleted.
1310 void RemoveDeadNode(SDNode
*N
);
1312 /// This method deletes the unreachable nodes in the
1313 /// given list, and any nodes that become unreachable as a result.
1314 void RemoveDeadNodes(SmallVectorImpl
<SDNode
*> &DeadNodes
);
1316 /// Modify anything using 'From' to use 'To' instead.
1317 /// This can cause recursive merging of nodes in the DAG. Use the first
1318 /// version if 'From' is known to have a single result, use the second
1319 /// if you have two nodes with identical results (or if 'To' has a superset
1320 /// of the results of 'From'), use the third otherwise.
1322 /// These methods all take an optional UpdateListener, which (if not null) is
1323 /// informed about nodes that are deleted and modified due to recursive
1324 /// changes in the dag.
1326 /// These functions only replace all existing uses. It's possible that as
1327 /// these replacements are being performed, CSE may cause the From node
1328 /// to be given new uses. These new uses of From are left in place, and
1329 /// not automatically transferred to To.
1331 void ReplaceAllUsesWith(SDValue From
, SDValue To
);
1332 void ReplaceAllUsesWith(SDNode
*From
, SDNode
*To
);
1333 void ReplaceAllUsesWith(SDNode
*From
, const SDValue
*To
);
1335 /// Replace any uses of From with To, leaving
1336 /// uses of other values produced by From.getNode() alone.
1337 void ReplaceAllUsesOfValueWith(SDValue From
, SDValue To
);
1339 /// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
1340 /// This correctly handles the case where
1341 /// there is an overlap between the From values and the To values.
1342 void ReplaceAllUsesOfValuesWith(const SDValue
*From
, const SDValue
*To
,
1345 /// If an existing load has uses of its chain, create a token factor node with
1346 /// that chain and the new memory node's chain and update users of the old
1347 /// chain to the token factor. This ensures that the new memory node will have
1348 /// the same relative memory dependency position as the old load. Returns the
1349 /// new merged load chain.
1350 SDValue
makeEquivalentMemoryOrdering(LoadSDNode
*Old
, SDValue New
);
1352 /// Topological-sort the AllNodes list and a
1353 /// assign a unique node id for each node in the DAG based on their
1354 /// topological order. Returns the number of nodes.
1355 unsigned AssignTopologicalOrder();
1357 /// Move node N in the AllNodes list to be immediately
1358 /// before the given iterator Position. This may be used to update the
1359 /// topological ordering when the list of nodes is modified.
1360 void RepositionNode(allnodes_iterator Position
, SDNode
*N
) {
1361 AllNodes
.insert(Position
, AllNodes
.remove(N
));
1364 /// Returns an APFloat semantics tag appropriate for the given type. If VT is
1365 /// a vector type, the element semantics are returned.
1366 static const fltSemantics
&EVTToAPFloatSemantics(EVT VT
) {
1367 switch (VT
.getScalarType().getSimpleVT().SimpleTy
) {
1368 default: llvm_unreachable("Unknown FP format");
1369 case MVT::f16
: return APFloat::IEEEhalf();
1370 case MVT::f32
: return APFloat::IEEEsingle();
1371 case MVT::f64
: return APFloat::IEEEdouble();
1372 case MVT::f80
: return APFloat::x87DoubleExtended();
1373 case MVT::f128
: return APFloat::IEEEquad();
1374 case MVT::ppcf128
: return APFloat::PPCDoubleDouble();
1378 /// Add a dbg_value SDNode. If SD is non-null that means the
1379 /// value is produced by SD.
1380 void AddDbgValue(SDDbgValue
*DB
, SDNode
*SD
, bool isParameter
);
1382 /// Add a dbg_label SDNode.
1383 void AddDbgLabel(SDDbgLabel
*DB
);
1385 /// Get the debug values which reference the given SDNode.
1386 ArrayRef
<SDDbgValue
*> GetDbgValues(const SDNode
* SD
) const {
1387 return DbgInfo
->getSDDbgValues(SD
);
1391 /// Return true if there are any SDDbgValue nodes associated
1392 /// with this SelectionDAG.
1393 bool hasDebugValues() const { return !DbgInfo
->empty(); }
1395 SDDbgInfo::DbgIterator
DbgBegin() const { return DbgInfo
->DbgBegin(); }
1396 SDDbgInfo::DbgIterator
DbgEnd() const { return DbgInfo
->DbgEnd(); }
1398 SDDbgInfo::DbgIterator
ByvalParmDbgBegin() const {
1399 return DbgInfo
->ByvalParmDbgBegin();
1401 SDDbgInfo::DbgIterator
ByvalParmDbgEnd() const {
1402 return DbgInfo
->ByvalParmDbgEnd();
1405 SDDbgInfo::DbgLabelIterator
DbgLabelBegin() const {
1406 return DbgInfo
->DbgLabelBegin();
1408 SDDbgInfo::DbgLabelIterator
DbgLabelEnd() const {
1409 return DbgInfo
->DbgLabelEnd();
1412 /// To be invoked on an SDNode that is slated to be erased. This
1413 /// function mirrors \c llvm::salvageDebugInfo.
1414 void salvageDebugInfo(SDNode
&N
);
1418 /// Create a stack temporary, suitable for holding the specified value type.
1419 /// If minAlign is specified, the slot size will have at least that alignment.
1420 SDValue
CreateStackTemporary(EVT VT
, unsigned minAlign
= 1);
1422 /// Create a stack temporary suitable for holding either of the specified
1424 SDValue
CreateStackTemporary(EVT VT1
, EVT VT2
);
1426 SDValue
FoldSymbolOffset(unsigned Opcode
, EVT VT
,
1427 const GlobalAddressSDNode
*GA
,
1430 SDValue
FoldConstantArithmetic(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
1431 SDNode
*N1
, SDNode
*N2
);
1433 SDValue
FoldConstantArithmetic(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
1434 const ConstantSDNode
*C1
,
1435 const ConstantSDNode
*C2
);
1437 SDValue
FoldConstantVectorArithmetic(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
1438 ArrayRef
<SDValue
> Ops
,
1439 const SDNodeFlags Flags
= SDNodeFlags());
1441 /// Fold floating-point operations with 2 operands when both operands are
1442 /// constants and/or undefined.
1443 SDValue
foldConstantFPMath(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
1444 SDValue N1
, SDValue N2
);
1446 /// Constant fold a setcc to true or false.
1447 SDValue
FoldSetCC(EVT VT
, SDValue N1
, SDValue N2
, ISD::CondCode Cond
,
1450 /// See if the specified operand can be simplified with the knowledge that
1451 /// only the bits specified by DemandedBits are used. If so, return the
1452 /// simpler operand, otherwise return a null SDValue.
1454 /// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
1455 /// simplify nodes with multiple uses more aggressively.)
1456 SDValue
GetDemandedBits(SDValue V
, const APInt
&DemandedBits
);
1458 /// See if the specified operand can be simplified with the knowledge that
1459 /// only the bits specified by DemandedBits are used in the elements specified
1460 /// by DemandedElts. If so, return the simpler operand, otherwise return a
1463 /// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
1464 /// simplify nodes with multiple uses more aggressively.)
1465 SDValue
GetDemandedBits(SDValue V
, const APInt
&DemandedBits
,
1466 const APInt
&DemandedElts
);
1468 /// Return true if the sign bit of Op is known to be zero.
1469 /// We use this predicate to simplify operations downstream.
1470 bool SignBitIsZero(SDValue Op
, unsigned Depth
= 0) const;
1472 /// Return true if 'Op & Mask' is known to be zero. We
1473 /// use this predicate to simplify operations downstream. Op and Mask are
1474 /// known to be the same type.
1475 bool MaskedValueIsZero(SDValue Op
, const APInt
&Mask
,
1476 unsigned Depth
= 0) const;
1478 /// Return true if 'Op & Mask' is known to be zero in DemandedElts. We
1479 /// use this predicate to simplify operations downstream. Op and Mask are
1480 /// known to be the same type.
1481 bool MaskedValueIsZero(SDValue Op
, const APInt
&Mask
,
1482 const APInt
&DemandedElts
, unsigned Depth
= 0) const;
1484 /// Return true if '(Op & Mask) == Mask'.
1485 /// Op and Mask are known to be the same type.
1486 bool MaskedValueIsAllOnes(SDValue Op
, const APInt
&Mask
,
1487 unsigned Depth
= 0) const;
1489 /// Determine which bits of Op are known to be either zero or one and return
1490 /// them in Known. For vectors, the known bits are those that are shared by
1491 /// every vector element.
1492 /// Targets can implement the computeKnownBitsForTargetNode method in the
1493 /// TargetLowering class to allow target nodes to be understood.
1494 KnownBits
computeKnownBits(SDValue Op
, unsigned Depth
= 0) const;
1496 /// Determine which bits of Op are known to be either zero or one and return
1497 /// them in Known. The DemandedElts argument allows us to only collect the
1498 /// known bits that are shared by the requested vector elements.
1499 /// Targets can implement the computeKnownBitsForTargetNode method in the
1500 /// TargetLowering class to allow target nodes to be understood.
1501 KnownBits
computeKnownBits(SDValue Op
, const APInt
&DemandedElts
,
1502 unsigned Depth
= 0) const;
1504 /// Used to represent the possible overflow behavior of an operation.
1505 /// Never: the operation cannot overflow.
1506 /// Always: the operation will always overflow.
1507 /// Sometime: the operation may or may not overflow.
1514 /// Determine if the result of the addition of 2 node can overflow.
1515 OverflowKind
computeOverflowKind(SDValue N0
, SDValue N1
) const;
1517 /// Test if the given value is known to have exactly one bit set. This differs
1518 /// from computeKnownBits in that it doesn't necessarily determine which bit
1520 bool isKnownToBeAPowerOfTwo(SDValue Val
) const;
1522 /// Return the number of times the sign bit of the register is replicated into
1523 /// the other bits. We know that at least 1 bit is always equal to the sign
1524 /// bit (itself), but other cases can give us information. For example,
1525 /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1526 /// to each other, so we return 3. Targets can implement the
1527 /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
1528 /// target nodes to be understood.
1529 unsigned ComputeNumSignBits(SDValue Op
, unsigned Depth
= 0) const;
1531 /// Return the number of times the sign bit of the register is replicated into
1532 /// the other bits. We know that at least 1 bit is always equal to the sign
1533 /// bit (itself), but other cases can give us information. For example,
1534 /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1535 /// to each other, so we return 3. The DemandedElts argument allows
1536 /// us to only collect the minimum sign bits of the requested vector elements.
1537 /// Targets can implement the ComputeNumSignBitsForTarget method in the
1538 /// TargetLowering class to allow target nodes to be understood.
1539 unsigned ComputeNumSignBits(SDValue Op
, const APInt
&DemandedElts
,
1540 unsigned Depth
= 0) const;
1542 /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
1543 /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
1544 /// is guaranteed to have the same semantics as an ADD. This handles the
1546 /// X|Cst == X+Cst iff X&Cst = 0.
1547 bool isBaseWithConstantOffset(SDValue Op
) const;
1549 /// Test whether the given SDValue is known to never be NaN. If \p SNaN is
1550 /// true, returns if \p Op is known to never be a signaling NaN (it may still
1552 bool isKnownNeverNaN(SDValue Op
, bool SNaN
= false, unsigned Depth
= 0) const;
1554 /// \returns true if \p Op is known to never be a signaling NaN.
1555 bool isKnownNeverSNaN(SDValue Op
, unsigned Depth
= 0) const {
1556 return isKnownNeverNaN(Op
, true, Depth
);
1559 /// Test whether the given floating point SDValue is known to never be
1560 /// positive or negative zero.
1561 bool isKnownNeverZeroFloat(SDValue Op
) const;
1563 /// Test whether the given SDValue is known to contain non-zero value(s).
1564 bool isKnownNeverZero(SDValue Op
) const;
1566 /// Test whether two SDValues are known to compare equal. This
1567 /// is true if they are the same value, or if one is negative zero and the
1568 /// other positive zero.
1569 bool isEqualTo(SDValue A
, SDValue B
) const;
1571 /// Return true if A and B have no common bits set. As an example, this can
1572 /// allow an 'add' to be transformed into an 'or'.
1573 bool haveNoCommonBitsSet(SDValue A
, SDValue B
) const;
1575 /// Test whether \p V has a splatted value for all the demanded elements.
1577 /// On success \p UndefElts will indicate the elements that have UNDEF
1578 /// values instead of the splat value, this is only guaranteed to be correct
1579 /// for \p DemandedElts.
1581 /// NOTE: The function will return true for a demanded splat of UNDEF values.
1582 bool isSplatValue(SDValue V
, const APInt
&DemandedElts
, APInt
&UndefElts
);
1584 /// Test whether \p V has a splatted value.
1585 bool isSplatValue(SDValue V
, bool AllowUndefs
= false);
1587 /// If V is a splatted value, return the source vector and its splat index.
1588 SDValue
getSplatSourceVector(SDValue V
, int &SplatIndex
);
1590 /// If V is a splat vector, return its scalar source operand by extracting
1591 /// that element from the source vector.
1592 SDValue
getSplatValue(SDValue V
);
1594 /// Match a binop + shuffle pyramid that represents a horizontal reduction
1595 /// over the elements of a vector starting from the EXTRACT_VECTOR_ELT node /p
1596 /// Extract. The reduction must use one of the opcodes listed in /p
1597 /// CandidateBinOps and on success /p BinOp will contain the matching opcode.
1598 /// Returns the vector that is being reduced on, or SDValue() if a reduction
1599 /// was not matched. If \p AllowPartials is set then in the case of a
1600 /// reduction pattern that only matches the first few stages, the extracted
1601 /// subvector of the start of the reduction is returned.
1602 SDValue
matchBinOpReduction(SDNode
*Extract
, ISD::NodeType
&BinOp
,
1603 ArrayRef
<ISD::NodeType
> CandidateBinOps
,
1604 bool AllowPartials
= false);
1606 /// Utility function used by legalize and lowering to
1607 /// "unroll" a vector operation by splitting out the scalars and operating
1608 /// on each element individually. If the ResNE is 0, fully unroll the vector
1609 /// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
1610 /// If the ResNE is greater than the width of the vector op, unroll the
1611 /// vector op and fill the end of the resulting vector with UNDEFS.
1612 SDValue
UnrollVectorOp(SDNode
*N
, unsigned ResNE
= 0);
1614 /// Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
1615 /// This is a separate function because those opcodes have two results.
1616 std::pair
<SDValue
, SDValue
> UnrollVectorOverflowOp(SDNode
*N
,
1617 unsigned ResNE
= 0);
1619 /// Return true if loads are next to each other and can be
1620 /// merged. Check that both are nonvolatile and if LD is loading
1621 /// 'Bytes' bytes from a location that is 'Dist' units away from the
1622 /// location that the 'Base' load is loading from.
1623 bool areNonVolatileConsecutiveLoads(LoadSDNode
*LD
, LoadSDNode
*Base
,
1624 unsigned Bytes
, int Dist
) const;
1626 /// Infer alignment of a load / store address. Return 0 if
1627 /// it cannot be inferred.
1628 unsigned InferPtrAlignment(SDValue Ptr
) const;
1630 /// Compute the VTs needed for the low/hi parts of a type
1631 /// which is split (or expanded) into two not necessarily identical pieces.
1632 std::pair
<EVT
, EVT
> GetSplitDestVTs(const EVT
&VT
) const;
1634 /// Split the vector with EXTRACT_SUBVECTOR using the provides
1635 /// VTs and return the low/high part.
1636 std::pair
<SDValue
, SDValue
> SplitVector(const SDValue
&N
, const SDLoc
&DL
,
1637 const EVT
&LoVT
, const EVT
&HiVT
);
1639 /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
1640 std::pair
<SDValue
, SDValue
> SplitVector(const SDValue
&N
, const SDLoc
&DL
) {
1642 std::tie(LoVT
, HiVT
) = GetSplitDestVTs(N
.getValueType());
1643 return SplitVector(N
, DL
, LoVT
, HiVT
);
1646 /// Split the node's operand with EXTRACT_SUBVECTOR and
1647 /// return the low/high part.
1648 std::pair
<SDValue
, SDValue
> SplitVectorOperand(const SDNode
*N
, unsigned OpNo
)
1650 return SplitVector(N
->getOperand(OpNo
), SDLoc(N
));
1653 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
1654 SDValue
WidenVector(const SDValue
&N
, const SDLoc
&DL
);
1656 /// Append the extracted elements from Start to Count out of the vector Op
1657 /// in Args. If Count is 0, all of the elements will be extracted.
1658 void ExtractVectorElements(SDValue Op
, SmallVectorImpl
<SDValue
> &Args
,
1659 unsigned Start
= 0, unsigned Count
= 0);
1661 /// Compute the default alignment value for the given type.
1662 unsigned getEVTAlignment(EVT MemoryVT
) const;
1664 /// Test whether the given value is a constant int or similar node.
1665 SDNode
*isConstantIntBuildVectorOrConstantInt(SDValue N
);
1667 /// Test whether the given value is a constant FP or similar node.
1668 SDNode
*isConstantFPBuildVectorOrConstantFP(SDValue N
);
1670 /// \returns true if \p N is any kind of constant or build_vector of
1671 /// constants, int or float. If a vector, it may not necessarily be a splat.
1672 inline bool isConstantValueOfAnyType(SDValue N
) {
1673 return isConstantIntBuildVectorOrConstantInt(N
) ||
1674 isConstantFPBuildVectorOrConstantFP(N
);
1677 void addCallSiteInfo(const SDNode
*CallNode
, CallSiteInfoImpl
&&CallInfo
) {
1678 SDCallSiteDbgInfo
[CallNode
].CSInfo
= std::move(CallInfo
);
1681 CallSiteInfo
getSDCallSiteInfo(const SDNode
*CallNode
) {
1682 auto I
= SDCallSiteDbgInfo
.find(CallNode
);
1683 if (I
!= SDCallSiteDbgInfo
.end())
1684 return std::move(I
->second
).CSInfo
;
1685 return CallSiteInfo();
1688 void addHeapAllocSite(const SDNode
*Node
, MDNode
*MD
) {
1689 SDCallSiteDbgInfo
[Node
].HeapAllocSite
= MD
;
1692 /// Return the HeapAllocSite type associated with the SDNode, if it exists.
1693 MDNode
*getHeapAllocSite(const SDNode
*Node
) {
1694 auto It
= SDCallSiteDbgInfo
.find(Node
);
1695 if (It
== SDCallSiteDbgInfo
.end())
1697 return It
->second
.HeapAllocSite
;
1701 void InsertNode(SDNode
*N
);
1702 bool RemoveNodeFromCSEMaps(SDNode
*N
);
1703 void AddModifiedNodeToCSEMaps(SDNode
*N
);
1704 SDNode
*FindModifiedNodeSlot(SDNode
*N
, SDValue Op
, void *&InsertPos
);
1705 SDNode
*FindModifiedNodeSlot(SDNode
*N
, SDValue Op1
, SDValue Op2
,
1707 SDNode
*FindModifiedNodeSlot(SDNode
*N
, ArrayRef
<SDValue
> Ops
,
1709 SDNode
*UpdateSDLocOnMergeSDNode(SDNode
*N
, const SDLoc
&loc
);
1711 void DeleteNodeNotInCSEMaps(SDNode
*N
);
1712 void DeallocateNode(SDNode
*N
);
1714 void allnodes_clear();
1716 /// Look up the node specified by ID in CSEMap. If it exists, return it. If
1717 /// not, return the insertion token that will make insertion faster. This
1718 /// overload is for nodes other than Constant or ConstantFP, use the other one
1720 SDNode
*FindNodeOrInsertPos(const FoldingSetNodeID
&ID
, void *&InsertPos
);
1722 /// Look up the node specified by ID in CSEMap. If it exists, return it. If
1723 /// not, return the insertion token that will make insertion faster. Performs
1724 /// additional processing for constant nodes.
1725 SDNode
*FindNodeOrInsertPos(const FoldingSetNodeID
&ID
, const SDLoc
&DL
,
1728 /// List of non-single value types.
1729 FoldingSet
<SDVTListNode
> VTListMap
;
1731 /// Maps to auto-CSE operations.
1732 std::vector
<CondCodeSDNode
*> CondCodeNodes
;
1734 std::vector
<SDNode
*> ValueTypeNodes
;
1735 std::map
<EVT
, SDNode
*, EVT::compareRawBits
> ExtendedValueTypeNodes
;
1736 StringMap
<SDNode
*> ExternalSymbols
;
1738 std::map
<std::pair
<std::string
, unsigned>, SDNode
*> TargetExternalSymbols
;
1739 DenseMap
<MCSymbol
*, SDNode
*> MCSymbols
;
1742 template <> struct GraphTraits
<SelectionDAG
*> : public GraphTraits
<SDNode
*> {
1743 using nodes_iterator
= pointer_iterator
<SelectionDAG::allnodes_iterator
>;
1745 static nodes_iterator
nodes_begin(SelectionDAG
*G
) {
1746 return nodes_iterator(G
->allnodes_begin());
1749 static nodes_iterator
nodes_end(SelectionDAG
*G
) {
1750 return nodes_iterator(G
->allnodes_end());
1754 template <class TargetMemSDNode
>
1755 SDValue
SelectionDAG::getTargetMemSDNode(SDVTList VTs
,
1756 ArrayRef
<SDValue
> Ops
,
1757 const SDLoc
&dl
, EVT MemVT
,
1758 MachineMemOperand
*MMO
) {
1759 /// Compose node ID and try to find an existing node.
1760 FoldingSetNodeID ID
;
1762 TargetMemSDNode(dl
.getIROrder(), DebugLoc(), VTs
, MemVT
, MMO
).getOpcode();
1763 ID
.AddInteger(Opcode
);
1764 ID
.AddPointer(VTs
.VTs
);
1765 for (auto& Op
: Ops
) {
1766 ID
.AddPointer(Op
.getNode());
1767 ID
.AddInteger(Op
.getResNo());
1769 ID
.AddInteger(MemVT
.getRawBits());
1770 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
1771 ID
.AddInteger(getSyntheticNodeSubclassData
<TargetMemSDNode
>(
1772 dl
.getIROrder(), VTs
, MemVT
, MMO
));
1775 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
1776 cast
<TargetMemSDNode
>(E
)->refineAlignment(MMO
);
1777 return SDValue(E
, 0);
1780 /// Existing node was not found. Create a new one.
1781 auto *N
= newSDNode
<TargetMemSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), VTs
,
1783 createOperands(N
, Ops
);
1784 CSEMap
.InsertNode(N
, IP
);
1786 return SDValue(N
, 0);
1789 } // end namespace llvm
1791 #endif // LLVM_CODEGEN_SELECTIONDAG_H