1 //===- llvm/CodeGen/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file describes how to lower LLVM code to machine code. This has two
13 /// 1. Which ValueTypes are natively supported by the target.
14 /// 2. Which operations are supported for supported ValueTypes.
15 /// 3. Cost thresholds for alternative implementations of certain operations.
17 /// In addition it has a few other components, like information about FP
20 //===----------------------------------------------------------------------===//
22 #ifndef LLVM_CODEGEN_TARGETLOWERING_H
23 #define LLVM_CODEGEN_TARGETLOWERING_H
25 #include "llvm/ADT/APInt.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/CodeGen/DAGCombine.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/RuntimeLibcalls.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetCallingConv.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/CallSite.h"
40 #include "llvm/IR/CallingConv.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InlineAsm.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/MC/MCRegisterInfo.h"
50 #include "llvm/Support/Alignment.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/MachineValueType.h"
55 #include "llvm/Target/TargetMachine.h"
68 class BranchProbability
;
73 class FunctionLoweringInfo
;
78 class LegacyDivergenceAnalysis
;
80 class MachineBasicBlock
;
81 class MachineFunction
;
83 class MachineJumpTableInfo
;
85 class MachineRegisterInfo
;
89 class TargetRegisterClass
;
90 class TargetLibraryInfo
;
91 class TargetRegisterInfo
;
97 None
, // No preference
98 Source
, // Follow source order.
99 RegPressure
, // Scheduling for lowest register pressure.
100 Hybrid
, // Scheduling for both latency and register pressure.
101 ILP
, // Scheduling for ILP in low register pressure mode.
102 VLIW
// Scheduling for VLIW targets.
105 } // end namespace Sched
107 /// This base class for TargetLowering contains the SelectionDAG-independent
108 /// parts that can be used from the rest of CodeGen.
109 class TargetLoweringBase
{
111 /// This enum indicates whether operations are valid for a target, and if not,
112 /// what action should be used to make them valid.
113 enum LegalizeAction
: uint8_t {
114 Legal
, // The target natively supports this operation.
115 Promote
, // This operation should be executed in a larger type.
116 Expand
, // Try to expand this to other ops, otherwise use a libcall.
117 LibCall
, // Don't try to expand this to other ops, always use a libcall.
118 Custom
// Use the LowerOperation hook to implement custom lowering.
121 /// This enum indicates whether a types are legal for a target, and if not,
122 /// what action should be used to make them valid.
123 enum LegalizeTypeAction
: uint8_t {
124 TypeLegal
, // The target natively supports this type.
125 TypePromoteInteger
, // Replace this integer with a larger one.
126 TypeExpandInteger
, // Split this integer into two of half the size.
127 TypeSoftenFloat
, // Convert this float to a same size integer type.
128 TypeExpandFloat
, // Split this float into two of half the size.
129 TypeScalarizeVector
, // Replace this one-element vector with its element.
130 TypeSplitVector
, // Split this vector into two of half the size.
131 TypeWidenVector
, // This vector should be widened into a larger vector.
132 TypePromoteFloat
// Replace this float with a larger one.
135 /// LegalizeKind holds the legalization kind that needs to happen to EVT
136 /// in order to type-legalize it.
137 using LegalizeKind
= std::pair
<LegalizeTypeAction
, EVT
>;
139 /// Enum that describes how the target represents true/false values.
140 enum BooleanContent
{
141 UndefinedBooleanContent
, // Only bit 0 counts, the rest can hold garbage.
142 ZeroOrOneBooleanContent
, // All bits zero except for bit 0.
143 ZeroOrNegativeOneBooleanContent
// All bits equal to bit 0.
146 /// Enum that describes what type of support for selects the target has.
147 enum SelectSupportKind
{
148 ScalarValSelect
, // The target supports scalar selects (ex: cmov).
149 ScalarCondVectorVal
, // The target supports selects with a scalar condition
150 // and vector values (ex: cmov).
151 VectorMaskSelect
// The target supports vector selects with a vector
152 // mask (ex: x86 blends).
155 /// Enum that specifies what an atomic load/AtomicRMWInst is expanded
156 /// to, if at all. Exists because different targets have different levels of
157 /// support for these atomic instructions, and also have different options
158 /// w.r.t. what they should expand to.
159 enum class AtomicExpansionKind
{
160 None
, // Don't expand the instruction.
161 LLSC
, // Expand the instruction into loadlinked/storeconditional; used
163 LLOnly
, // Expand the (load) instruction into just a load-linked, which has
164 // greater atomic guarantees than a normal load.
165 CmpXChg
, // Expand the instruction into cmpxchg; used by at least X86.
166 MaskedIntrinsic
, // Use a target-specific intrinsic for the LL/SC loop.
169 /// Enum that specifies when a multiplication should be expanded.
170 enum class MulExpansionKind
{
171 Always
, // Always expand the instruction.
172 OnlyLegalOrCustom
, // Only expand when the resulting instructions are legal
178 Value
*Val
= nullptr;
179 SDValue Node
= SDValue();
189 bool IsSwiftSelf
: 1;
190 bool IsSwiftError
: 1;
191 uint16_t Alignment
= 0;
192 Type
*ByValType
= nullptr;
195 : IsSExt(false), IsZExt(false), IsInReg(false), IsSRet(false),
196 IsNest(false), IsByVal(false), IsInAlloca(false), IsReturned(false),
197 IsSwiftSelf(false), IsSwiftError(false) {}
199 void setAttributes(const CallBase
*Call
, unsigned ArgIdx
);
201 void setAttributes(ImmutableCallSite
*CS
, unsigned ArgIdx
) {
202 return setAttributes(cast
<CallBase
>(CS
->getInstruction()), ArgIdx
);
205 using ArgListTy
= std::vector
<ArgListEntry
>;
207 virtual void markLibCallAttributes(MachineFunction
*MF
, unsigned CC
,
208 ArgListTy
&Args
) const {};
210 static ISD::NodeType
getExtendForContent(BooleanContent Content
) {
212 case UndefinedBooleanContent
:
213 // Extend by adding rubbish bits.
214 return ISD::ANY_EXTEND
;
215 case ZeroOrOneBooleanContent
:
216 // Extend by adding zero bits.
217 return ISD::ZERO_EXTEND
;
218 case ZeroOrNegativeOneBooleanContent
:
219 // Extend by copying the sign bit.
220 return ISD::SIGN_EXTEND
;
222 llvm_unreachable("Invalid content kind");
225 /// NOTE: The TargetMachine owns TLOF.
226 explicit TargetLoweringBase(const TargetMachine
&TM
);
227 TargetLoweringBase(const TargetLoweringBase
&) = delete;
228 TargetLoweringBase
&operator=(const TargetLoweringBase
&) = delete;
229 virtual ~TargetLoweringBase() = default;
232 /// Initialize all of the actions to default values.
236 const TargetMachine
&getTargetMachine() const { return TM
; }
238 virtual bool useSoftFloat() const { return false; }
240 /// Return the pointer type for the given address space, defaults to
241 /// the pointer type from the data layout.
242 /// FIXME: The default needs to be removed once all the code is updated.
243 virtual MVT
getPointerTy(const DataLayout
&DL
, uint32_t AS
= 0) const {
244 return MVT::getIntegerVT(DL
.getPointerSizeInBits(AS
));
247 /// Return the in-memory pointer type for the given address space, defaults to
248 /// the pointer type from the data layout. FIXME: The default needs to be
249 /// removed once all the code is updated.
250 MVT
getPointerMemTy(const DataLayout
&DL
, uint32_t AS
= 0) const {
251 return MVT::getIntegerVT(DL
.getPointerSizeInBits(AS
));
254 /// Return the type for frame index, which is determined by
255 /// the alloca address space specified through the data layout.
256 MVT
getFrameIndexTy(const DataLayout
&DL
) const {
257 return getPointerTy(DL
, DL
.getAllocaAddrSpace());
260 /// Return the type for operands of fence.
261 /// TODO: Let fence operands be of i32 type and remove this.
262 virtual MVT
getFenceOperandTy(const DataLayout
&DL
) const {
263 return getPointerTy(DL
);
266 /// EVT is not used in-tree, but is used by out-of-tree target.
267 /// A documentation for this function would be nice...
268 virtual MVT
getScalarShiftAmountTy(const DataLayout
&, EVT
) const;
270 EVT
getShiftAmountTy(EVT LHSTy
, const DataLayout
&DL
,
271 bool LegalTypes
= true) const;
273 /// Returns the type to be used for the index operand of:
274 /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
275 /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
276 virtual MVT
getVectorIdxTy(const DataLayout
&DL
) const {
277 return getPointerTy(DL
);
280 virtual bool isSelectSupported(SelectSupportKind
/*kind*/) const {
284 /// Return true if it is profitable to convert a select of FP constants into
285 /// a constant pool load whose address depends on the select condition. The
286 /// parameter may be used to differentiate a select with FP compare from
288 virtual bool reduceSelectOfFPConstantLoads(EVT CmpOpVT
) const {
292 /// Return true if multiple condition registers are available.
293 bool hasMultipleConditionRegisters() const {
294 return HasMultipleConditionRegisters
;
297 /// Return true if the target has BitExtract instructions.
298 bool hasExtractBitsInsn() const { return HasExtractBitsInsn
; }
300 /// Return the preferred vector type legalization action.
301 virtual TargetLoweringBase::LegalizeTypeAction
302 getPreferredVectorAction(MVT VT
) const {
303 // The default action for one element vectors is to scalarize
304 if (VT
.getVectorNumElements() == 1)
305 return TypeScalarizeVector
;
306 // The default action for an odd-width vector is to widen.
307 if (!VT
.isPow2VectorType())
308 return TypeWidenVector
;
309 // The default action for other vectors is to promote
310 return TypePromoteInteger
;
313 // There are two general methods for expanding a BUILD_VECTOR node:
314 // 1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
316 // 2. Build the vector on the stack and then load it.
317 // If this function returns true, then method (1) will be used, subject to
318 // the constraint that all of the necessary shuffles are legal (as determined
319 // by isShuffleMaskLegal). If this function returns false, then method (2) is
320 // always used. The vector type, and the number of defined values, are
323 shouldExpandBuildVectorWithShuffles(EVT
/* VT */,
324 unsigned DefinedValues
) const {
325 return DefinedValues
< 3;
328 /// Return true if integer divide is usually cheaper than a sequence of
329 /// several shifts, adds, and multiplies for this target.
330 /// The definition of "cheaper" may depend on whether we're optimizing
331 /// for speed or for size.
332 virtual bool isIntDivCheap(EVT VT
, AttributeList Attr
) const { return false; }
334 /// Return true if the target can handle a standalone remainder operation.
335 virtual bool hasStandaloneRem(EVT VT
) const {
339 /// Return true if SQRT(X) shouldn't be replaced with X*RSQRT(X).
340 virtual bool isFsqrtCheap(SDValue X
, SelectionDAG
&DAG
) const {
341 // Default behavior is to replace SQRT(X) with X*RSQRT(X).
345 /// Reciprocal estimate status values used by the functions below.
346 enum ReciprocalEstimate
: int {
352 /// Return a ReciprocalEstimate enum value for a square root of the given type
353 /// based on the function's attributes. If the operation is not overridden by
354 /// the function's attributes, "Unspecified" is returned and target defaults
355 /// are expected to be used for instruction selection.
356 int getRecipEstimateSqrtEnabled(EVT VT
, MachineFunction
&MF
) const;
358 /// Return a ReciprocalEstimate enum value for a division of the given type
359 /// based on the function's attributes. If the operation is not overridden by
360 /// the function's attributes, "Unspecified" is returned and target defaults
361 /// are expected to be used for instruction selection.
362 int getRecipEstimateDivEnabled(EVT VT
, MachineFunction
&MF
) const;
364 /// Return the refinement step count for a square root of the given type based
365 /// on the function's attributes. If the operation is not overridden by
366 /// the function's attributes, "Unspecified" is returned and target defaults
367 /// are expected to be used for instruction selection.
368 int getSqrtRefinementSteps(EVT VT
, MachineFunction
&MF
) const;
370 /// Return the refinement step count for a division of the given type based
371 /// on the function's attributes. If the operation is not overridden by
372 /// the function's attributes, "Unspecified" is returned and target defaults
373 /// are expected to be used for instruction selection.
374 int getDivRefinementSteps(EVT VT
, MachineFunction
&MF
) const;
376 /// Returns true if target has indicated at least one type should be bypassed.
377 bool isSlowDivBypassed() const { return !BypassSlowDivWidths
.empty(); }
379 /// Returns map of slow types for division or remainder with corresponding
381 const DenseMap
<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
382 return BypassSlowDivWidths
;
385 /// Return true if Flow Control is an expensive operation that should be
387 bool isJumpExpensive() const { return JumpIsExpensive
; }
389 /// Return true if selects are only cheaper than branches if the branch is
390 /// unlikely to be predicted right.
391 bool isPredictableSelectExpensive() const {
392 return PredictableSelectIsExpensive
;
395 /// If a branch or a select condition is skewed in one direction by more than
396 /// this factor, it is very likely to be predicted correctly.
397 virtual BranchProbability
getPredictableBranchThreshold() const;
399 /// Return true if the following transform is beneficial:
400 /// fold (conv (load x)) -> (load (conv*)x)
401 /// On architectures that don't natively support some vector loads
402 /// efficiently, casting the load to a smaller vector of larger types and
403 /// loading is more efficient, however, this can be undone by optimizations in
405 virtual bool isLoadBitCastBeneficial(EVT LoadVT
, EVT BitcastVT
,
406 const SelectionDAG
&DAG
,
407 const MachineMemOperand
&MMO
) const {
408 // Don't do if we could do an indexed load on the original type, but not on
410 if (!LoadVT
.isSimple() || !BitcastVT
.isSimple())
413 MVT LoadMVT
= LoadVT
.getSimpleVT();
415 // Don't bother doing this if it's just going to be promoted again later, as
416 // doing so might interfere with other combines.
417 if (getOperationAction(ISD::LOAD
, LoadMVT
) == Promote
&&
418 getTypeToPromoteTo(ISD::LOAD
, LoadMVT
) == BitcastVT
.getSimpleVT())
422 return allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), BitcastVT
,
426 /// Return true if the following transform is beneficial:
427 /// (store (y (conv x)), y*)) -> (store x, (x*))
428 virtual bool isStoreBitCastBeneficial(EVT StoreVT
, EVT BitcastVT
,
429 const SelectionDAG
&DAG
,
430 const MachineMemOperand
&MMO
) const {
431 // Default to the same logic as loads.
432 return isLoadBitCastBeneficial(StoreVT
, BitcastVT
, DAG
, MMO
);
435 /// Return true if it is expected to be cheaper to do a store of a non-zero
436 /// vector constant with the given size and type for the address space than to
437 /// store the individual scalar element constants.
438 virtual bool storeOfVectorConstantIsCheap(EVT MemVT
,
440 unsigned AddrSpace
) const {
444 /// Allow store merging for the specified type after legalization in addition
445 /// to before legalization. This may transform stores that do not exist
446 /// earlier (for example, stores created from intrinsics).
447 virtual bool mergeStoresAfterLegalization(EVT MemVT
) const {
451 /// Returns if it's reasonable to merge stores to MemVT size.
452 virtual bool canMergeStoresTo(unsigned AS
, EVT MemVT
,
453 const SelectionDAG
&DAG
) const {
457 /// Return true if it is cheap to speculate a call to intrinsic cttz.
458 virtual bool isCheapToSpeculateCttz() const {
462 /// Return true if it is cheap to speculate a call to intrinsic ctlz.
463 virtual bool isCheapToSpeculateCtlz() const {
467 /// Return true if ctlz instruction is fast.
468 virtual bool isCtlzFast() const {
472 /// Return true if it is safe to transform an integer-domain bitwise operation
473 /// into the equivalent floating-point operation. This should be set to true
474 /// if the target has IEEE-754-compliant fabs/fneg operations for the input
476 virtual bool hasBitPreservingFPLogic(EVT VT
) const {
480 /// Return true if it is cheaper to split the store of a merged int val
481 /// from a pair of smaller values into multiple stores.
482 virtual bool isMultiStoresCheaperThanBitsMerge(EVT LTy
, EVT HTy
) const {
486 /// Return if the target supports combining a
489 /// %andResult = and %val1, #mask
490 /// %icmpResult = icmp %andResult, 0
492 /// into a single machine instruction of a form like:
494 /// cc = test %register, #mask
496 virtual bool isMaskAndCmp0FoldingBeneficial(const Instruction
&AndI
) const {
500 /// Use bitwise logic to make pairs of compares more efficient. For example:
501 /// and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
502 /// This should be true when it takes more than one instruction to lower
503 /// setcc (cmp+set on x86 scalar), when bitwise ops are faster than logic on
504 /// condition bits (crand on PowerPC), and/or when reducing cmp+br is a win.
505 virtual bool convertSetCCLogicToBitwiseLogic(EVT VT
) const {
509 /// Return the preferred operand type if the target has a quick way to compare
510 /// integer values of the given size. Assume that any legal integer type can
511 /// be compared efficiently. Targets may override this to allow illegal wide
512 /// types to return a vector type if there is support to compare that type.
513 virtual MVT
hasFastEqualityCompare(unsigned NumBits
) const {
514 MVT VT
= MVT::getIntegerVT(NumBits
);
515 return isTypeLegal(VT
) ? VT
: MVT::INVALID_SIMPLE_VALUE_TYPE
;
518 /// Return true if the target should transform:
519 /// (X & Y) == Y ---> (~X & Y) == 0
520 /// (X & Y) != Y ---> (~X & Y) != 0
522 /// This may be profitable if the target has a bitwise and-not operation that
523 /// sets comparison flags. A target may want to limit the transformation based
524 /// on the type of Y or if Y is a constant.
526 /// Note that the transform will not occur if Y is known to be a power-of-2
527 /// because a mask and compare of a single bit can be handled by inverting the
528 /// predicate, for example:
529 /// (X & 8) == 8 ---> (X & 8) != 0
530 virtual bool hasAndNotCompare(SDValue Y
) const {
534 /// Return true if the target has a bitwise and-not operation:
536 /// This can be used to simplify select or other instructions.
537 virtual bool hasAndNot(SDValue X
) const {
538 // If the target has the more complex version of this operation, assume that
539 // it has this operation too.
540 return hasAndNotCompare(X
);
543 /// Return true if the target has a bit-test instruction:
544 /// (X & (1 << Y)) ==/!= 0
545 /// This knowledge can be used to prevent breaking the pattern,
546 /// or creating it if it could be recognized.
547 virtual bool hasBitTest(SDValue X
, SDValue Y
) const { return false; }
549 /// There are two ways to clear extreme bits (either low or high):
550 /// Mask: x & (-1 << y) (the instcombine canonical form)
551 /// Shifts: x >> y << y
552 /// Return true if the variant with 2 variable shifts is preferred.
553 /// Return false if there is no preference.
554 virtual bool shouldFoldMaskToVariableShiftPair(SDValue X
) const {
555 // By default, let's assume that no one prefers shifts.
559 /// Return true if it is profitable to fold a pair of shifts into a mask.
560 /// This is usually true on most targets. But some targets, like Thumb1,
561 /// have immediate shift instructions, but no immediate "and" instruction;
562 /// this makes the fold unprofitable.
563 virtual bool shouldFoldConstantShiftPairToMask(const SDNode
*N
,
564 CombineLevel Level
) const {
568 /// Should we tranform the IR-optimal check for whether given truncation
569 /// down into KeptBits would be truncating or not:
570 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
571 /// Into it's more traditional form:
572 /// ((%x << C) a>> C) dstcond %x
573 /// Return true if we should transform.
574 /// Return false if there is no preference.
575 virtual bool shouldTransformSignedTruncationCheck(EVT XVT
,
576 unsigned KeptBits
) const {
577 // By default, let's assume that no one prefers shifts.
581 /// Given the pattern
582 /// (X & (C l>>/<< Y)) ==/!= 0
583 /// return true if it should be transformed into:
584 /// ((X <</l>> Y) & C) ==/!= 0
585 /// WARNING: if 'X' is a constant, the fold may deadlock!
586 /// FIXME: we could avoid passing XC, but we can't use isConstOrConstSplat()
587 /// here because it can end up being not linked in.
588 virtual bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
589 SDValue X
, ConstantSDNode
*XC
, ConstantSDNode
*CC
, SDValue Y
,
590 unsigned OldShiftOpcode
, unsigned NewShiftOpcode
,
591 SelectionDAG
&DAG
) const {
592 if (hasBitTest(X
, Y
)) {
593 // One interesting pattern that we'd want to form is 'bit test':
594 // ((1 << Y) & C) ==/!= 0
595 // But we also need to be careful not to try to reverse that fold.
597 // Is this '1 << Y' ?
598 if (OldShiftOpcode
== ISD::SHL
&& CC
->isOne())
599 return false; // Keep the 'bit test' pattern.
601 // Will it be '1 << Y' after the transform ?
602 if (XC
&& NewShiftOpcode
== ISD::SHL
&& XC
->isOne())
603 return true; // Do form the 'bit test' pattern.
606 // If 'X' is a constant, and we transform, then we will immediately
607 // try to undo the fold, thus causing endless combine loop.
608 // So by default, let's assume everyone prefers the fold
609 // iff 'X' is not a constant.
613 /// These two forms are equivalent:
614 /// sub %y, (xor %x, -1)
615 /// add (add %x, 1), %y
616 /// The variant with two add's is IR-canonical.
617 /// Some targets may prefer one to the other.
618 virtual bool preferIncOfAddToSubOfNot(EVT VT
) const {
619 // By default, let's assume that everyone prefers the form with two add's.
623 /// Return true if the target wants to use the optimization that
624 /// turns ext(promotableInst1(...(promotableInstN(load)))) into
625 /// promotedInst1(...(promotedInstN(ext(load)))).
626 bool enableExtLdPromotion() const { return EnableExtLdPromotion
; }
628 /// Return true if the target can combine store(extractelement VectorTy,
630 /// \p Cost[out] gives the cost of that transformation when this is true.
631 virtual bool canCombineStoreAndExtract(Type
*VectorTy
, Value
*Idx
,
632 unsigned &Cost
) const {
636 /// Return true if inserting a scalar into a variable element of an undef
637 /// vector is more efficiently handled by splatting the scalar instead.
638 virtual bool shouldSplatInsEltVarIndex(EVT
) const {
642 /// Return true if target always beneficiates from combining into FMA for a
643 /// given value type. This must typically return false on targets where FMA
644 /// takes more cycles to execute than FADD.
645 virtual bool enableAggressiveFMAFusion(EVT VT
) const {
649 /// Return the ValueType of the result of SETCC operations.
650 virtual EVT
getSetCCResultType(const DataLayout
&DL
, LLVMContext
&Context
,
653 /// Return the ValueType for comparison libcalls. Comparions libcalls include
654 /// floating point comparion calls, and Ordered/Unordered check calls on
655 /// floating point numbers.
657 MVT::SimpleValueType
getCmpLibcallReturnType() const;
659 /// For targets without i1 registers, this gives the nature of the high-bits
660 /// of boolean values held in types wider than i1.
662 /// "Boolean values" are special true/false values produced by nodes like
663 /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
664 /// Not to be confused with general values promoted from i1. Some cpus
665 /// distinguish between vectors of boolean and scalars; the isVec parameter
666 /// selects between the two kinds. For example on X86 a scalar boolean should
667 /// be zero extended from i1, while the elements of a vector of booleans
668 /// should be sign extended from i1.
670 /// Some cpus also treat floating point types the same way as they treat
671 /// vectors instead of the way they treat scalars.
672 BooleanContent
getBooleanContents(bool isVec
, bool isFloat
) const {
674 return BooleanVectorContents
;
675 return isFloat
? BooleanFloatContents
: BooleanContents
;
678 BooleanContent
getBooleanContents(EVT Type
) const {
679 return getBooleanContents(Type
.isVector(), Type
.isFloatingPoint());
682 /// Return target scheduling preference.
683 Sched::Preference
getSchedulingPreference() const {
684 return SchedPreferenceInfo
;
687 /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
688 /// for different nodes. This function returns the preference (or none) for
690 virtual Sched::Preference
getSchedulingPreference(SDNode
*) const {
694 /// Return the register class that should be used for the specified value
696 virtual const TargetRegisterClass
*getRegClassFor(MVT VT
, bool isDivergent
= false) const {
698 const TargetRegisterClass
*RC
= RegClassForVT
[VT
.SimpleTy
];
699 assert(RC
&& "This value type is not natively supported!");
703 /// Allows target to decide about the register class of the
704 /// specific value that is live outside the defining block.
705 /// Returns true if the value needs uniform register class.
706 virtual bool requiresUniformRegister(MachineFunction
&MF
,
707 const Value
*) const {
711 /// Return the 'representative' register class for the specified value
714 /// The 'representative' register class is the largest legal super-reg
715 /// register class for the register class of the value type. For example, on
716 /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
717 /// register class is GR64 on x86_64.
718 virtual const TargetRegisterClass
*getRepRegClassFor(MVT VT
) const {
719 const TargetRegisterClass
*RC
= RepRegClassForVT
[VT
.SimpleTy
];
723 /// Return the cost of the 'representative' register class for the specified
725 virtual uint8_t getRepRegClassCostFor(MVT VT
) const {
726 return RepRegClassCostForVT
[VT
.SimpleTy
];
729 /// Return true if SHIFT instructions should be expanded to SHIFT_PARTS
730 /// instructions, and false if a library call is preferred (e.g for code-size
732 virtual bool shouldExpandShift(SelectionDAG
&DAG
, SDNode
*N
) const {
736 /// Return true if the target has native support for the specified value type.
737 /// This means that it has a register that directly holds it without
738 /// promotions or expansions.
739 bool isTypeLegal(EVT VT
) const {
740 assert(!VT
.isSimple() ||
741 (unsigned)VT
.getSimpleVT().SimpleTy
< array_lengthof(RegClassForVT
));
742 return VT
.isSimple() && RegClassForVT
[VT
.getSimpleVT().SimpleTy
] != nullptr;
745 class ValueTypeActionImpl
{
746 /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
747 /// that indicates how instruction selection should deal with the type.
748 LegalizeTypeAction ValueTypeActions
[MVT::LAST_VALUETYPE
];
751 ValueTypeActionImpl() {
752 std::fill(std::begin(ValueTypeActions
), std::end(ValueTypeActions
),
756 LegalizeTypeAction
getTypeAction(MVT VT
) const {
757 return ValueTypeActions
[VT
.SimpleTy
];
760 void setTypeAction(MVT VT
, LegalizeTypeAction Action
) {
761 ValueTypeActions
[VT
.SimpleTy
] = Action
;
765 const ValueTypeActionImpl
&getValueTypeActions() const {
766 return ValueTypeActions
;
769 /// Return how we should legalize values of this type, either it is already
770 /// legal (return 'Legal') or we need to promote it to a larger type (return
771 /// 'Promote'), or we need to expand it into multiple registers of smaller
772 /// integer type (return 'Expand'). 'Custom' is not an option.
773 LegalizeTypeAction
getTypeAction(LLVMContext
&Context
, EVT VT
) const {
774 return getTypeConversion(Context
, VT
).first
;
776 LegalizeTypeAction
getTypeAction(MVT VT
) const {
777 return ValueTypeActions
.getTypeAction(VT
);
780 /// For types supported by the target, this is an identity function. For
781 /// types that must be promoted to larger types, this returns the larger type
782 /// to promote to. For integer types that are larger than the largest integer
783 /// register, this contains one step in the expansion to get to the smaller
784 /// register. For illegal floating point types, this returns the integer type
786 EVT
getTypeToTransformTo(LLVMContext
&Context
, EVT VT
) const {
787 return getTypeConversion(Context
, VT
).second
;
790 /// For types supported by the target, this is an identity function. For
791 /// types that must be expanded (i.e. integer types that are larger than the
792 /// largest integer register or illegal floating point types), this returns
793 /// the largest legal type it will be expanded to.
794 EVT
getTypeToExpandTo(LLVMContext
&Context
, EVT VT
) const {
795 assert(!VT
.isVector());
797 switch (getTypeAction(Context
, VT
)) {
800 case TypeExpandInteger
:
801 VT
= getTypeToTransformTo(Context
, VT
);
804 llvm_unreachable("Type is not legal nor is it to be expanded!");
809 /// Vector types are broken down into some number of legal first class types.
810 /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
811 /// promoted EVT::f64 values with the X86 FP stack. Similarly, EVT::v2i64
812 /// turns into 4 EVT::i32 values with both PPC and X86.
814 /// This method returns the number of registers needed, and the VT for each
815 /// register. It also returns the VT and quantity of the intermediate values
816 /// before they are promoted/expanded.
817 unsigned getVectorTypeBreakdown(LLVMContext
&Context
, EVT VT
,
819 unsigned &NumIntermediates
,
820 MVT
&RegisterVT
) const;
822 /// Certain targets such as MIPS require that some types such as vectors are
823 /// always broken down into scalars in some contexts. This occurs even if the
824 /// vector type is legal.
825 virtual unsigned getVectorTypeBreakdownForCallingConv(
826 LLVMContext
&Context
, CallingConv::ID CC
, EVT VT
, EVT
&IntermediateVT
,
827 unsigned &NumIntermediates
, MVT
&RegisterVT
) const {
828 return getVectorTypeBreakdown(Context
, VT
, IntermediateVT
, NumIntermediates
,
832 struct IntrinsicInfo
{
833 unsigned opc
= 0; // target opcode
834 EVT memVT
; // memory VT
836 // value representing memory location
837 PointerUnion
<const Value
*, const PseudoSourceValue
*> ptrVal
;
839 int offset
= 0; // offset off of ptrVal
840 uint64_t size
= 0; // the size of the memory location
841 // (taken from memVT if zero)
842 MaybeAlign align
= Align::None(); // alignment
844 MachineMemOperand::Flags flags
= MachineMemOperand::MONone
;
845 IntrinsicInfo() = default;
848 /// Given an intrinsic, checks if on the target the intrinsic will need to map
849 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
850 /// true and store the intrinsic information into the IntrinsicInfo that was
851 /// passed to the function.
852 virtual bool getTgtMemIntrinsic(IntrinsicInfo
&, const CallInst
&,
854 unsigned /*Intrinsic*/) const {
858 /// Returns true if the target can instruction select the specified FP
859 /// immediate natively. If false, the legalizer will materialize the FP
860 /// immediate as a load from a constant pool.
861 virtual bool isFPImmLegal(const APFloat
& /*Imm*/, EVT
/*VT*/,
862 bool ForCodeSize
= false) const {
866 /// Targets can use this to indicate that they only support *some*
867 /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
868 /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
870 virtual bool isShuffleMaskLegal(ArrayRef
<int> /*Mask*/, EVT
/*VT*/) const {
874 /// Returns true if the operation can trap for the value type.
876 /// VT must be a legal type. By default, we optimistically assume most
877 /// operations don't trap except for integer divide and remainder.
878 virtual bool canOpTrap(unsigned Op
, EVT VT
) const;
880 /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
881 /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
882 /// constant pool entry.
883 virtual bool isVectorClearMaskLegal(ArrayRef
<int> /*Mask*/,
888 /// Return how this operation should be treated: either it is legal, needs to
889 /// be promoted to a larger size, needs to be expanded to some other code
890 /// sequence, or the target has a custom expander for it.
891 LegalizeAction
getOperationAction(unsigned Op
, EVT VT
) const {
892 if (VT
.isExtended()) return Expand
;
893 // If a target-specific SDNode requires legalization, require the target
894 // to provide custom legalization for it.
895 if (Op
>= array_lengthof(OpActions
[0])) return Custom
;
896 return OpActions
[(unsigned)VT
.getSimpleVT().SimpleTy
][Op
];
899 /// Custom method defined by each target to indicate if an operation which
900 /// may require a scale is supported natively by the target.
901 /// If not, the operation is illegal.
902 virtual bool isSupportedFixedPointOperation(unsigned Op
, EVT VT
,
903 unsigned Scale
) const {
907 /// Some fixed point operations may be natively supported by the target but
908 /// only for specific scales. This method allows for checking
909 /// if the width is supported by the target for a given operation that may
911 LegalizeAction
getFixedPointOperationAction(unsigned Op
, EVT VT
,
912 unsigned Scale
) const {
913 auto Action
= getOperationAction(Op
, VT
);
917 // This operation is supported in this type but may only work on specific
922 llvm_unreachable("Unexpected fixed point operation.");
924 case ISD::SMULFIXSAT
:
926 case ISD::UMULFIXSAT
:
927 Supported
= isSupportedFixedPointOperation(Op
, VT
, Scale
);
931 return Supported
? Action
: Expand
;
934 // If Op is a strict floating-point operation, return the result
935 // of getOperationAction for the equivalent non-strict operation.
936 LegalizeAction
getStrictFPOperationAction(unsigned Op
, EVT VT
) const {
939 default: llvm_unreachable("Unexpected FP pseudo-opcode");
940 case ISD::STRICT_FADD
: EqOpc
= ISD::FADD
; break;
941 case ISD::STRICT_FSUB
: EqOpc
= ISD::FSUB
; break;
942 case ISD::STRICT_FMUL
: EqOpc
= ISD::FMUL
; break;
943 case ISD::STRICT_FDIV
: EqOpc
= ISD::FDIV
; break;
944 case ISD::STRICT_FREM
: EqOpc
= ISD::FREM
; break;
945 case ISD::STRICT_FSQRT
: EqOpc
= ISD::FSQRT
; break;
946 case ISD::STRICT_FPOW
: EqOpc
= ISD::FPOW
; break;
947 case ISD::STRICT_FPOWI
: EqOpc
= ISD::FPOWI
; break;
948 case ISD::STRICT_FMA
: EqOpc
= ISD::FMA
; break;
949 case ISD::STRICT_FSIN
: EqOpc
= ISD::FSIN
; break;
950 case ISD::STRICT_FCOS
: EqOpc
= ISD::FCOS
; break;
951 case ISD::STRICT_FEXP
: EqOpc
= ISD::FEXP
; break;
952 case ISD::STRICT_FEXP2
: EqOpc
= ISD::FEXP2
; break;
953 case ISD::STRICT_FLOG
: EqOpc
= ISD::FLOG
; break;
954 case ISD::STRICT_FLOG10
: EqOpc
= ISD::FLOG10
; break;
955 case ISD::STRICT_FLOG2
: EqOpc
= ISD::FLOG2
; break;
956 case ISD::STRICT_LRINT
: EqOpc
= ISD::LRINT
; break;
957 case ISD::STRICT_LLRINT
: EqOpc
= ISD::LLRINT
; break;
958 case ISD::STRICT_FRINT
: EqOpc
= ISD::FRINT
; break;
959 case ISD::STRICT_FNEARBYINT
: EqOpc
= ISD::FNEARBYINT
; break;
960 case ISD::STRICT_FMAXNUM
: EqOpc
= ISD::FMAXNUM
; break;
961 case ISD::STRICT_FMINNUM
: EqOpc
= ISD::FMINNUM
; break;
962 case ISD::STRICT_FCEIL
: EqOpc
= ISD::FCEIL
; break;
963 case ISD::STRICT_FFLOOR
: EqOpc
= ISD::FFLOOR
; break;
964 case ISD::STRICT_LROUND
: EqOpc
= ISD::LROUND
; break;
965 case ISD::STRICT_LLROUND
: EqOpc
= ISD::LLROUND
; break;
966 case ISD::STRICT_FROUND
: EqOpc
= ISD::FROUND
; break;
967 case ISD::STRICT_FTRUNC
: EqOpc
= ISD::FTRUNC
; break;
968 case ISD::STRICT_FP_TO_SINT
: EqOpc
= ISD::FP_TO_SINT
; break;
969 case ISD::STRICT_FP_TO_UINT
: EqOpc
= ISD::FP_TO_UINT
; break;
970 case ISD::STRICT_FP_ROUND
: EqOpc
= ISD::FP_ROUND
; break;
971 case ISD::STRICT_FP_EXTEND
: EqOpc
= ISD::FP_EXTEND
; break;
974 return getOperationAction(EqOpc
, VT
);
977 /// Return true if the specified operation is legal on this target or can be
978 /// made legal with custom lowering. This is used to help guide high-level
979 /// lowering decisions.
980 bool isOperationLegalOrCustom(unsigned Op
, EVT VT
) const {
981 return (VT
== MVT::Other
|| isTypeLegal(VT
)) &&
982 (getOperationAction(Op
, VT
) == Legal
||
983 getOperationAction(Op
, VT
) == Custom
);
986 /// Return true if the specified operation is legal on this target or can be
987 /// made legal using promotion. This is used to help guide high-level lowering
989 bool isOperationLegalOrPromote(unsigned Op
, EVT VT
) const {
990 return (VT
== MVT::Other
|| isTypeLegal(VT
)) &&
991 (getOperationAction(Op
, VT
) == Legal
||
992 getOperationAction(Op
, VT
) == Promote
);
995 /// Return true if the specified operation is legal on this target or can be
996 /// made legal with custom lowering or using promotion. This is used to help
997 /// guide high-level lowering decisions.
998 bool isOperationLegalOrCustomOrPromote(unsigned Op
, EVT VT
) const {
999 return (VT
== MVT::Other
|| isTypeLegal(VT
)) &&
1000 (getOperationAction(Op
, VT
) == Legal
||
1001 getOperationAction(Op
, VT
) == Custom
||
1002 getOperationAction(Op
, VT
) == Promote
);
1005 /// Return true if the operation uses custom lowering, regardless of whether
1006 /// the type is legal or not.
1007 bool isOperationCustom(unsigned Op
, EVT VT
) const {
1008 return getOperationAction(Op
, VT
) == Custom
;
1011 /// Return true if lowering to a jump table is allowed.
1012 virtual bool areJTsAllowed(const Function
*Fn
) const {
1013 if (Fn
->getFnAttribute("no-jump-tables").getValueAsString() == "true")
1016 return isOperationLegalOrCustom(ISD::BR_JT
, MVT::Other
) ||
1017 isOperationLegalOrCustom(ISD::BRIND
, MVT::Other
);
1020 /// Check whether the range [Low,High] fits in a machine word.
1021 bool rangeFitsInWord(const APInt
&Low
, const APInt
&High
,
1022 const DataLayout
&DL
) const {
1023 // FIXME: Using the pointer type doesn't seem ideal.
1024 uint64_t BW
= DL
.getIndexSizeInBits(0u);
1025 uint64_t Range
= (High
- Low
).getLimitedValue(UINT64_MAX
- 1) + 1;
1029 /// Return true if lowering to a jump table is suitable for a set of case
1030 /// clusters which may contain \p NumCases cases, \p Range range of values.
1031 virtual bool isSuitableForJumpTable(const SwitchInst
*SI
, uint64_t NumCases
,
1032 uint64_t Range
) const {
1033 // FIXME: This function check the maximum table size and density, but the
1034 // minimum size is not checked. It would be nice if the minimum size is
1035 // also combined within this function. Currently, the minimum size check is
1036 // performed in findJumpTable() in SelectionDAGBuiler and
1037 // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1038 const bool OptForSize
= SI
->getParent()->getParent()->hasOptSize();
1039 const unsigned MinDensity
= getMinimumJumpTableDensity(OptForSize
);
1040 const unsigned MaxJumpTableSize
= getMaximumJumpTableSize();
1042 // Check whether the number of cases is small enough and
1043 // the range is dense enough for a jump table.
1044 if ((OptForSize
|| Range
<= MaxJumpTableSize
) &&
1045 (NumCases
* 100 >= Range
* MinDensity
)) {
1051 /// Return true if lowering to a bit test is suitable for a set of case
1052 /// clusters which contains \p NumDests unique destinations, \p Low and
1053 /// \p High as its lowest and highest case values, and expects \p NumCmps
1054 /// case value comparisons. Check if the number of destinations, comparison
1055 /// metric, and range are all suitable.
1056 bool isSuitableForBitTests(unsigned NumDests
, unsigned NumCmps
,
1057 const APInt
&Low
, const APInt
&High
,
1058 const DataLayout
&DL
) const {
1059 // FIXME: I don't think NumCmps is the correct metric: a single case and a
1060 // range of cases both require only one branch to lower. Just looking at the
1061 // number of clusters and destinations should be enough to decide whether to
1064 // To lower a range with bit tests, the range must fit the bitwidth of a
1066 if (!rangeFitsInWord(Low
, High
, DL
))
1069 // Decide whether it's profitable to lower this range with bit tests. Each
1070 // destination requires a bit test and branch, and there is an overall range
1071 // check branch. For a small number of clusters, separate comparisons might
1072 // be cheaper, and for many destinations, splitting the range might be
1074 return (NumDests
== 1 && NumCmps
>= 3) || (NumDests
== 2 && NumCmps
>= 5) ||
1075 (NumDests
== 3 && NumCmps
>= 6);
1078 /// Return true if the specified operation is illegal on this target or
1079 /// unlikely to be made legal with custom lowering. This is used to help guide
1080 /// high-level lowering decisions.
1081 bool isOperationExpand(unsigned Op
, EVT VT
) const {
1082 return (!isTypeLegal(VT
) || getOperationAction(Op
, VT
) == Expand
);
1085 /// Return true if the specified operation is legal on this target.
1086 bool isOperationLegal(unsigned Op
, EVT VT
) const {
1087 return (VT
== MVT::Other
|| isTypeLegal(VT
)) &&
1088 getOperationAction(Op
, VT
) == Legal
;
1091 /// Return how this load with extension should be treated: either it is legal,
1092 /// needs to be promoted to a larger size, needs to be expanded to some other
1093 /// code sequence, or the target has a custom expander for it.
1094 LegalizeAction
getLoadExtAction(unsigned ExtType
, EVT ValVT
,
1096 if (ValVT
.isExtended() || MemVT
.isExtended()) return Expand
;
1097 unsigned ValI
= (unsigned) ValVT
.getSimpleVT().SimpleTy
;
1098 unsigned MemI
= (unsigned) MemVT
.getSimpleVT().SimpleTy
;
1099 assert(ExtType
< ISD::LAST_LOADEXT_TYPE
&& ValI
< MVT::LAST_VALUETYPE
&&
1100 MemI
< MVT::LAST_VALUETYPE
&& "Table isn't big enough!");
1101 unsigned Shift
= 4 * ExtType
;
1102 return (LegalizeAction
)((LoadExtActions
[ValI
][MemI
] >> Shift
) & 0xf);
1105 /// Return true if the specified load with extension is legal on this target.
1106 bool isLoadExtLegal(unsigned ExtType
, EVT ValVT
, EVT MemVT
) const {
1107 return getLoadExtAction(ExtType
, ValVT
, MemVT
) == Legal
;
1110 /// Return true if the specified load with extension is legal or custom
1112 bool isLoadExtLegalOrCustom(unsigned ExtType
, EVT ValVT
, EVT MemVT
) const {
1113 return getLoadExtAction(ExtType
, ValVT
, MemVT
) == Legal
||
1114 getLoadExtAction(ExtType
, ValVT
, MemVT
) == Custom
;
1117 /// Return how this store with truncation should be treated: either it is
1118 /// legal, needs to be promoted to a larger size, needs to be expanded to some
1119 /// other code sequence, or the target has a custom expander for it.
1120 LegalizeAction
getTruncStoreAction(EVT ValVT
, EVT MemVT
) const {
1121 if (ValVT
.isExtended() || MemVT
.isExtended()) return Expand
;
1122 unsigned ValI
= (unsigned) ValVT
.getSimpleVT().SimpleTy
;
1123 unsigned MemI
= (unsigned) MemVT
.getSimpleVT().SimpleTy
;
1124 assert(ValI
< MVT::LAST_VALUETYPE
&& MemI
< MVT::LAST_VALUETYPE
&&
1125 "Table isn't big enough!");
1126 return TruncStoreActions
[ValI
][MemI
];
1129 /// Return true if the specified store with truncation is legal on this
1131 bool isTruncStoreLegal(EVT ValVT
, EVT MemVT
) const {
1132 return isTypeLegal(ValVT
) && getTruncStoreAction(ValVT
, MemVT
) == Legal
;
1135 /// Return true if the specified store with truncation has solution on this
1137 bool isTruncStoreLegalOrCustom(EVT ValVT
, EVT MemVT
) const {
1138 return isTypeLegal(ValVT
) &&
1139 (getTruncStoreAction(ValVT
, MemVT
) == Legal
||
1140 getTruncStoreAction(ValVT
, MemVT
) == Custom
);
1143 /// Return how the indexed load should be treated: either it is legal, needs
1144 /// to be promoted to a larger size, needs to be expanded to some other code
1145 /// sequence, or the target has a custom expander for it.
1147 getIndexedLoadAction(unsigned IdxMode
, MVT VT
) const {
1148 assert(IdxMode
< ISD::LAST_INDEXED_MODE
&& VT
.isValid() &&
1149 "Table isn't big enough!");
1150 unsigned Ty
= (unsigned)VT
.SimpleTy
;
1151 return (LegalizeAction
)((IndexedModeActions
[Ty
][IdxMode
] & 0xf0) >> 4);
1154 /// Return true if the specified indexed load is legal on this target.
1155 bool isIndexedLoadLegal(unsigned IdxMode
, EVT VT
) const {
1156 return VT
.isSimple() &&
1157 (getIndexedLoadAction(IdxMode
, VT
.getSimpleVT()) == Legal
||
1158 getIndexedLoadAction(IdxMode
, VT
.getSimpleVT()) == Custom
);
1161 /// Return how the indexed store should be treated: either it is legal, needs
1162 /// to be promoted to a larger size, needs to be expanded to some other code
1163 /// sequence, or the target has a custom expander for it.
1165 getIndexedStoreAction(unsigned IdxMode
, MVT VT
) const {
1166 assert(IdxMode
< ISD::LAST_INDEXED_MODE
&& VT
.isValid() &&
1167 "Table isn't big enough!");
1168 unsigned Ty
= (unsigned)VT
.SimpleTy
;
1169 return (LegalizeAction
)(IndexedModeActions
[Ty
][IdxMode
] & 0x0f);
1172 /// Return true if the specified indexed load is legal on this target.
1173 bool isIndexedStoreLegal(unsigned IdxMode
, EVT VT
) const {
1174 return VT
.isSimple() &&
1175 (getIndexedStoreAction(IdxMode
, VT
.getSimpleVT()) == Legal
||
1176 getIndexedStoreAction(IdxMode
, VT
.getSimpleVT()) == Custom
);
1179 /// Return how the condition code should be treated: either it is legal, needs
1180 /// to be expanded to some other code sequence, or the target has a custom
1181 /// expander for it.
1183 getCondCodeAction(ISD::CondCode CC
, MVT VT
) const {
1184 assert((unsigned)CC
< array_lengthof(CondCodeActions
) &&
1185 ((unsigned)VT
.SimpleTy
>> 3) < array_lengthof(CondCodeActions
[0]) &&
1186 "Table isn't big enough!");
1187 // See setCondCodeAction for how this is encoded.
1188 uint32_t Shift
= 4 * (VT
.SimpleTy
& 0x7);
1189 uint32_t Value
= CondCodeActions
[CC
][VT
.SimpleTy
>> 3];
1190 LegalizeAction Action
= (LegalizeAction
) ((Value
>> Shift
) & 0xF);
1191 assert(Action
!= Promote
&& "Can't promote condition code!");
1195 /// Return true if the specified condition code is legal on this target.
1196 bool isCondCodeLegal(ISD::CondCode CC
, MVT VT
) const {
1197 return getCondCodeAction(CC
, VT
) == Legal
;
1200 /// Return true if the specified condition code is legal or custom on this
1202 bool isCondCodeLegalOrCustom(ISD::CondCode CC
, MVT VT
) const {
1203 return getCondCodeAction(CC
, VT
) == Legal
||
1204 getCondCodeAction(CC
, VT
) == Custom
;
1207 /// If the action for this operation is to promote, this method returns the
1208 /// ValueType to promote to.
1209 MVT
getTypeToPromoteTo(unsigned Op
, MVT VT
) const {
1210 assert(getOperationAction(Op
, VT
) == Promote
&&
1211 "This operation isn't promoted!");
1213 // See if this has an explicit type specified.
1214 std::map
<std::pair
<unsigned, MVT::SimpleValueType
>,
1215 MVT::SimpleValueType
>::const_iterator PTTI
=
1216 PromoteToType
.find(std::make_pair(Op
, VT
.SimpleTy
));
1217 if (PTTI
!= PromoteToType
.end()) return PTTI
->second
;
1219 assert((VT
.isInteger() || VT
.isFloatingPoint()) &&
1220 "Cannot autopromote this type, add it with AddPromotedToType.");
1224 NVT
= (MVT::SimpleValueType
)(NVT
.SimpleTy
+1);
1225 assert(NVT
.isInteger() == VT
.isInteger() && NVT
!= MVT::isVoid
&&
1226 "Didn't find type to promote to!");
1227 } while (!isTypeLegal(NVT
) ||
1228 getOperationAction(Op
, NVT
) == Promote
);
1232 /// Return the EVT corresponding to this LLVM type. This is fixed by the LLVM
1233 /// operations except for the pointer size. If AllowUnknown is true, this
1234 /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
1235 /// otherwise it will assert.
1236 EVT
getValueType(const DataLayout
&DL
, Type
*Ty
,
1237 bool AllowUnknown
= false) const {
1238 // Lower scalar pointers to native pointer types.
1239 if (auto *PTy
= dyn_cast
<PointerType
>(Ty
))
1240 return getPointerTy(DL
, PTy
->getAddressSpace());
1242 if (auto *VTy
= dyn_cast
<VectorType
>(Ty
)) {
1243 Type
*EltTy
= VTy
->getElementType();
1244 // Lower vectors of pointers to native pointer types.
1245 if (auto *PTy
= dyn_cast
<PointerType
>(EltTy
)) {
1246 EVT
PointerTy(getPointerTy(DL
, PTy
->getAddressSpace()));
1247 EltTy
= PointerTy
.getTypeForEVT(Ty
->getContext());
1249 return EVT::getVectorVT(Ty
->getContext(), EVT::getEVT(EltTy
, false),
1250 VTy
->getElementCount());
1253 return EVT::getEVT(Ty
, AllowUnknown
);
1256 EVT
getMemValueType(const DataLayout
&DL
, Type
*Ty
,
1257 bool AllowUnknown
= false) const {
1258 // Lower scalar pointers to native pointer types.
1259 if (PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
))
1260 return getPointerMemTy(DL
, PTy
->getAddressSpace());
1261 else if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
)) {
1262 Type
*Elm
= VTy
->getElementType();
1263 if (PointerType
*PT
= dyn_cast
<PointerType
>(Elm
)) {
1264 EVT
PointerTy(getPointerMemTy(DL
, PT
->getAddressSpace()));
1265 Elm
= PointerTy
.getTypeForEVT(Ty
->getContext());
1267 return EVT::getVectorVT(Ty
->getContext(), EVT::getEVT(Elm
, false),
1268 VTy
->getNumElements());
1271 return getValueType(DL
, Ty
, AllowUnknown
);
1275 /// Return the MVT corresponding to this LLVM type. See getValueType.
1276 MVT
getSimpleValueType(const DataLayout
&DL
, Type
*Ty
,
1277 bool AllowUnknown
= false) const {
1278 return getValueType(DL
, Ty
, AllowUnknown
).getSimpleVT();
1281 /// Return the desired alignment for ByVal or InAlloca aggregate function
1282 /// arguments in the caller parameter area. This is the actual alignment, not
1284 virtual unsigned getByValTypeAlignment(Type
*Ty
, const DataLayout
&DL
) const;
1286 /// Return the type of registers that this ValueType will eventually require.
1287 MVT
getRegisterType(MVT VT
) const {
1288 assert((unsigned)VT
.SimpleTy
< array_lengthof(RegisterTypeForVT
));
1289 return RegisterTypeForVT
[VT
.SimpleTy
];
1292 /// Return the type of registers that this ValueType will eventually require.
1293 MVT
getRegisterType(LLVMContext
&Context
, EVT VT
) const {
1294 if (VT
.isSimple()) {
1295 assert((unsigned)VT
.getSimpleVT().SimpleTy
<
1296 array_lengthof(RegisterTypeForVT
));
1297 return RegisterTypeForVT
[VT
.getSimpleVT().SimpleTy
];
1299 if (VT
.isVector()) {
1302 unsigned NumIntermediates
;
1303 (void)getVectorTypeBreakdown(Context
, VT
, VT1
,
1304 NumIntermediates
, RegisterVT
);
1307 if (VT
.isInteger()) {
1308 return getRegisterType(Context
, getTypeToTransformTo(Context
, VT
));
1310 llvm_unreachable("Unsupported extended type!");
1313 /// Return the number of registers that this ValueType will eventually
1316 /// This is one for any types promoted to live in larger registers, but may be
1317 /// more than one for types (like i64) that are split into pieces. For types
1318 /// like i140, which are first promoted then expanded, it is the number of
1319 /// registers needed to hold all the bits of the original type. For an i140
1320 /// on a 32 bit machine this means 5 registers.
1321 unsigned getNumRegisters(LLVMContext
&Context
, EVT VT
) const {
1322 if (VT
.isSimple()) {
1323 assert((unsigned)VT
.getSimpleVT().SimpleTy
<
1324 array_lengthof(NumRegistersForVT
));
1325 return NumRegistersForVT
[VT
.getSimpleVT().SimpleTy
];
1327 if (VT
.isVector()) {
1330 unsigned NumIntermediates
;
1331 return getVectorTypeBreakdown(Context
, VT
, VT1
, NumIntermediates
, VT2
);
1333 if (VT
.isInteger()) {
1334 unsigned BitWidth
= VT
.getSizeInBits();
1335 unsigned RegWidth
= getRegisterType(Context
, VT
).getSizeInBits();
1336 return (BitWidth
+ RegWidth
- 1) / RegWidth
;
1338 llvm_unreachable("Unsupported extended type!");
1341 /// Certain combinations of ABIs, Targets and features require that types
1342 /// are legal for some operations and not for other operations.
1343 /// For MIPS all vector types must be passed through the integer register set.
1344 virtual MVT
getRegisterTypeForCallingConv(LLVMContext
&Context
,
1345 CallingConv::ID CC
, EVT VT
) const {
1346 return getRegisterType(Context
, VT
);
1349 /// Certain targets require unusual breakdowns of certain types. For MIPS,
1350 /// this occurs when a vector type is used, as vector are passed through the
1351 /// integer register set.
1352 virtual unsigned getNumRegistersForCallingConv(LLVMContext
&Context
,
1355 return getNumRegisters(Context
, VT
);
1358 /// Certain targets have context senstive alignment requirements, where one
1359 /// type has the alignment requirement of another type.
1360 virtual Align
getABIAlignmentForCallingConv(Type
*ArgTy
,
1361 DataLayout DL
) const {
1362 return Align(DL
.getABITypeAlignment(ArgTy
));
1365 /// If true, then instruction selection should seek to shrink the FP constant
1366 /// of the specified type to a smaller type in order to save space and / or
1368 virtual bool ShouldShrinkFPConstant(EVT
) const { return true; }
1370 /// Return true if it is profitable to reduce a load to a smaller type.
1371 /// Example: (i16 (trunc (i32 (load x))) -> i16 load x
1372 virtual bool shouldReduceLoadWidth(SDNode
*Load
, ISD::LoadExtType ExtTy
,
1374 // By default, assume that it is cheaper to extract a subvector from a wide
1375 // vector load rather than creating multiple narrow vector loads.
1376 if (NewVT
.isVector() && !Load
->hasOneUse())
1382 /// When splitting a value of the specified type into parts, does the Lo
1383 /// or Hi part come first? This usually follows the endianness, except
1384 /// for ppcf128, where the Hi part always comes first.
1385 bool hasBigEndianPartOrdering(EVT VT
, const DataLayout
&DL
) const {
1386 return DL
.isBigEndian() || VT
== MVT::ppcf128
;
1389 /// If true, the target has custom DAG combine transformations that it can
1390 /// perform for the specified node.
1391 bool hasTargetDAGCombine(ISD::NodeType NT
) const {
1392 assert(unsigned(NT
>> 3) < array_lengthof(TargetDAGCombineArray
));
1393 return TargetDAGCombineArray
[NT
>> 3] & (1 << (NT
&7));
1396 unsigned getGatherAllAliasesMaxDepth() const {
1397 return GatherAllAliasesMaxDepth
;
1400 /// Returns the size of the platform's va_list object.
1401 virtual unsigned getVaListSizeInBits(const DataLayout
&DL
) const {
1402 return getPointerTy(DL
).getSizeInBits();
1405 /// Get maximum # of store operations permitted for llvm.memset
1407 /// This function returns the maximum number of store operations permitted
1408 /// to replace a call to llvm.memset. The value is set by the target at the
1409 /// performance threshold for such a replacement. If OptSize is true,
1410 /// return the limit for functions that have OptSize attribute.
1411 unsigned getMaxStoresPerMemset(bool OptSize
) const {
1412 return OptSize
? MaxStoresPerMemsetOptSize
: MaxStoresPerMemset
;
1415 /// Get maximum # of store operations permitted for llvm.memcpy
1417 /// This function returns the maximum number of store operations permitted
1418 /// to replace a call to llvm.memcpy. The value is set by the target at the
1419 /// performance threshold for such a replacement. If OptSize is true,
1420 /// return the limit for functions that have OptSize attribute.
1421 unsigned getMaxStoresPerMemcpy(bool OptSize
) const {
1422 return OptSize
? MaxStoresPerMemcpyOptSize
: MaxStoresPerMemcpy
;
1425 /// \brief Get maximum # of store operations to be glued together
1427 /// This function returns the maximum number of store operations permitted
1428 /// to glue together during lowering of llvm.memcpy. The value is set by
1429 // the target at the performance threshold for such a replacement.
1430 virtual unsigned getMaxGluedStoresPerMemcpy() const {
1431 return MaxGluedStoresPerMemcpy
;
1434 /// Get maximum # of load operations permitted for memcmp
1436 /// This function returns the maximum number of load operations permitted
1437 /// to replace a call to memcmp. The value is set by the target at the
1438 /// performance threshold for such a replacement. If OptSize is true,
1439 /// return the limit for functions that have OptSize attribute.
1440 unsigned getMaxExpandSizeMemcmp(bool OptSize
) const {
1441 return OptSize
? MaxLoadsPerMemcmpOptSize
: MaxLoadsPerMemcmp
;
1444 /// Get maximum # of store operations permitted for llvm.memmove
1446 /// This function returns the maximum number of store operations permitted
1447 /// to replace a call to llvm.memmove. The value is set by the target at the
1448 /// performance threshold for such a replacement. If OptSize is true,
1449 /// return the limit for functions that have OptSize attribute.
1450 unsigned getMaxStoresPerMemmove(bool OptSize
) const {
1451 return OptSize
? MaxStoresPerMemmoveOptSize
: MaxStoresPerMemmove
;
1454 /// Determine if the target supports unaligned memory accesses.
1456 /// This function returns true if the target allows unaligned memory accesses
1457 /// of the specified type in the given address space. If true, it also returns
1458 /// whether the unaligned memory access is "fast" in the last argument by
1459 /// reference. This is used, for example, in situations where an array
1460 /// copy/move/set is converted to a sequence of store operations. Its use
1461 /// helps to ensure that such replacements don't generate code that causes an
1462 /// alignment error (trap) on the target machine.
1463 virtual bool allowsMisalignedMemoryAccesses(
1464 EVT
, unsigned AddrSpace
= 0, unsigned Align
= 1,
1465 MachineMemOperand::Flags Flags
= MachineMemOperand::MONone
,
1466 bool * /*Fast*/ = nullptr) const {
1470 /// LLT handling variant.
1471 virtual bool allowsMisalignedMemoryAccesses(
1472 LLT
, unsigned AddrSpace
= 0, unsigned Align
= 1,
1473 MachineMemOperand::Flags Flags
= MachineMemOperand::MONone
,
1474 bool * /*Fast*/ = nullptr) const {
1478 /// This function returns true if the memory access is aligned or if the
1479 /// target allows this specific unaligned memory access. If the access is
1480 /// allowed, the optional final parameter returns if the access is also fast
1481 /// (as defined by the target).
1482 bool allowsMemoryAccessForAlignment(
1483 LLVMContext
&Context
, const DataLayout
&DL
, EVT VT
,
1484 unsigned AddrSpace
= 0, unsigned Alignment
= 1,
1485 MachineMemOperand::Flags Flags
= MachineMemOperand::MONone
,
1486 bool *Fast
= nullptr) const;
1488 /// Return true if the memory access of this type is aligned or if the target
1489 /// allows this specific unaligned access for the given MachineMemOperand.
1490 /// If the access is allowed, the optional final parameter returns if the
1491 /// access is also fast (as defined by the target).
1492 bool allowsMemoryAccessForAlignment(LLVMContext
&Context
,
1493 const DataLayout
&DL
, EVT VT
,
1494 const MachineMemOperand
&MMO
,
1495 bool *Fast
= nullptr) const;
1497 /// Return true if the target supports a memory access of this type for the
1498 /// given address space and alignment. If the access is allowed, the optional
1499 /// final parameter returns if the access is also fast (as defined by the
1502 allowsMemoryAccess(LLVMContext
&Context
, const DataLayout
&DL
, EVT VT
,
1503 unsigned AddrSpace
= 0, unsigned Alignment
= 1,
1504 MachineMemOperand::Flags Flags
= MachineMemOperand::MONone
,
1505 bool *Fast
= nullptr) const;
1507 /// Return true if the target supports a memory access of this type for the
1508 /// given MachineMemOperand. If the access is allowed, the optional
1509 /// final parameter returns if the access is also fast (as defined by the
1511 bool allowsMemoryAccess(LLVMContext
&Context
, const DataLayout
&DL
, EVT VT
,
1512 const MachineMemOperand
&MMO
,
1513 bool *Fast
= nullptr) const;
1515 /// Returns the target specific optimal type for load and store operations as
1516 /// a result of memset, memcpy, and memmove lowering.
1518 /// If DstAlign is zero that means it's safe to destination alignment can
1519 /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
1520 /// a need to check it against alignment requirement, probably because the
1521 /// source does not need to be loaded. If 'IsMemset' is true, that means it's
1522 /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
1523 /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
1524 /// does not need to be loaded. It returns EVT::Other if the type should be
1525 /// determined using generic target-independent logic.
1527 getOptimalMemOpType(uint64_t /*Size*/, unsigned /*DstAlign*/,
1528 unsigned /*SrcAlign*/, bool /*IsMemset*/,
1529 bool /*ZeroMemset*/, bool /*MemcpyStrSrc*/,
1530 const AttributeList
& /*FuncAttributes*/) const {
1535 /// LLT returning variant.
1537 getOptimalMemOpLLT(uint64_t /*Size*/, unsigned /*DstAlign*/,
1538 unsigned /*SrcAlign*/, bool /*IsMemset*/,
1539 bool /*ZeroMemset*/, bool /*MemcpyStrSrc*/,
1540 const AttributeList
& /*FuncAttributes*/) const {
1544 /// Returns true if it's safe to use load / store of the specified type to
1545 /// expand memcpy / memset inline.
1547 /// This is mostly true for all types except for some special cases. For
1548 /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
1549 /// fstpl which also does type conversion. Note the specified type doesn't
1550 /// have to be legal as the hook is used before type legalization.
1551 virtual bool isSafeMemOpType(MVT
/*VT*/) const { return true; }
1553 /// Determine if we should use _setjmp or setjmp to implement llvm.setjmp.
1554 bool usesUnderscoreSetJmp() const {
1555 return UseUnderscoreSetJmp
;
1558 /// Determine if we should use _longjmp or longjmp to implement llvm.longjmp.
1559 bool usesUnderscoreLongJmp() const {
1560 return UseUnderscoreLongJmp
;
1563 /// Return lower limit for number of blocks in a jump table.
1564 virtual unsigned getMinimumJumpTableEntries() const;
1566 /// Return lower limit of the density in a jump table.
1567 unsigned getMinimumJumpTableDensity(bool OptForSize
) const;
1569 /// Return upper limit for number of entries in a jump table.
1570 /// Zero if no limit.
1571 unsigned getMaximumJumpTableSize() const;
1573 virtual bool isJumpTableRelative() const {
1574 return TM
.isPositionIndependent();
1577 /// If a physical register, this specifies the register that
1578 /// llvm.savestack/llvm.restorestack should save and restore.
1579 unsigned getStackPointerRegisterToSaveRestore() const {
1580 return StackPointerRegisterToSaveRestore
;
1583 /// If a physical register, this returns the register that receives the
1584 /// exception address on entry to an EH pad.
1586 getExceptionPointerRegister(const Constant
*PersonalityFn
) const {
1587 // 0 is guaranteed to be the NoRegister value on all targets
1591 /// If a physical register, this returns the register that receives the
1592 /// exception typeid on entry to a landing pad.
1594 getExceptionSelectorRegister(const Constant
*PersonalityFn
) const {
1595 // 0 is guaranteed to be the NoRegister value on all targets
1599 virtual bool needsFixedCatchObjects() const {
1600 report_fatal_error("Funclet EH is not implemented for this target");
1603 /// Return the minimum stack alignment of an argument.
1604 Align
getMinStackArgumentAlignment() const {
1605 return MinStackArgumentAlignment
;
1608 /// Return the minimum function alignment.
1609 Align
getMinFunctionAlignment() const { return MinFunctionAlignment
; }
1611 /// Return the preferred function alignment.
1612 Align
getPrefFunctionAlignment() const { return PrefFunctionAlignment
; }
1614 /// Return the preferred loop alignment.
1615 virtual Align
getPrefLoopAlignment(MachineLoop
*ML
= nullptr) const {
1616 return PrefLoopAlignment
;
1619 /// Should loops be aligned even when the function is marked OptSize (but not
1621 virtual bool alignLoopsWithOptSize() const {
1625 /// If the target has a standard location for the stack protector guard,
1626 /// returns the address of that location. Otherwise, returns nullptr.
1627 /// DEPRECATED: please override useLoadStackGuardNode and customize
1628 /// LOAD_STACK_GUARD, or customize \@llvm.stackguard().
1629 virtual Value
*getIRStackGuard(IRBuilder
<> &IRB
) const;
1631 /// Inserts necessary declarations for SSP (stack protection) purpose.
1632 /// Should be used only when getIRStackGuard returns nullptr.
1633 virtual void insertSSPDeclarations(Module
&M
) const;
1635 /// Return the variable that's previously inserted by insertSSPDeclarations,
1636 /// if any, otherwise return nullptr. Should be used only when
1637 /// getIRStackGuard returns nullptr.
1638 virtual Value
*getSDagStackGuard(const Module
&M
) const;
1640 /// If this function returns true, stack protection checks should XOR the
1641 /// frame pointer (or whichever pointer is used to address locals) into the
1642 /// stack guard value before checking it. getIRStackGuard must return nullptr
1643 /// if this returns true.
1644 virtual bool useStackGuardXorFP() const { return false; }
1646 /// If the target has a standard stack protection check function that
1647 /// performs validation and error handling, returns the function. Otherwise,
1648 /// returns nullptr. Must be previously inserted by insertSSPDeclarations.
1649 /// Should be used only when getIRStackGuard returns nullptr.
1650 virtual Function
*getSSPStackGuardCheck(const Module
&M
) const;
1653 Value
*getDefaultSafeStackPointerLocation(IRBuilder
<> &IRB
,
1657 /// Returns the target-specific address of the unsafe stack pointer.
1658 virtual Value
*getSafeStackPointerLocation(IRBuilder
<> &IRB
) const;
1660 /// Returns the name of the symbol used to emit stack probes or the empty
1661 /// string if not applicable.
1662 virtual StringRef
getStackProbeSymbolName(MachineFunction
&MF
) const {
1666 /// Returns true if a cast between SrcAS and DestAS is a noop.
1667 virtual bool isNoopAddrSpaceCast(unsigned SrcAS
, unsigned DestAS
) const {
1671 /// Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g. we
1672 /// are happy to sink it into basic blocks. A cast may be free, but not
1673 /// necessarily a no-op. e.g. a free truncate from a 64-bit to 32-bit pointer.
1674 virtual bool isFreeAddrSpaceCast(unsigned SrcAS
, unsigned DestAS
) const {
1675 return isNoopAddrSpaceCast(SrcAS
, DestAS
);
1678 /// Return true if the pointer arguments to CI should be aligned by aligning
1679 /// the object whose address is being passed. If so then MinSize is set to the
1680 /// minimum size the object must be to be aligned and PrefAlign is set to the
1681 /// preferred alignment.
1682 virtual bool shouldAlignPointerArgs(CallInst
* /*CI*/, unsigned & /*MinSize*/,
1683 unsigned & /*PrefAlign*/) const {
1687 //===--------------------------------------------------------------------===//
1688 /// \name Helpers for TargetTransformInfo implementations
1691 /// Get the ISD node that corresponds to the Instruction class opcode.
1692 int InstructionOpcodeToISD(unsigned Opcode
) const;
1694 /// Estimate the cost of type-legalization and the legalized type.
1695 std::pair
<int, MVT
> getTypeLegalizationCost(const DataLayout
&DL
,
1700 //===--------------------------------------------------------------------===//
1701 /// \name Helpers for atomic expansion.
1704 /// Returns the maximum atomic operation size (in bits) supported by
1705 /// the backend. Atomic operations greater than this size (as well
1706 /// as ones that are not naturally aligned), will be expanded by
1707 /// AtomicExpandPass into an __atomic_* library call.
1708 unsigned getMaxAtomicSizeInBitsSupported() const {
1709 return MaxAtomicSizeInBitsSupported
;
1712 /// Returns the size of the smallest cmpxchg or ll/sc instruction
1713 /// the backend supports. Any smaller operations are widened in
1714 /// AtomicExpandPass.
1716 /// Note that *unlike* operations above the maximum size, atomic ops
1717 /// are still natively supported below the minimum; they just
1718 /// require a more complex expansion.
1719 unsigned getMinCmpXchgSizeInBits() const { return MinCmpXchgSizeInBits
; }
1721 /// Whether the target supports unaligned atomic operations.
1722 bool supportsUnalignedAtomics() const { return SupportsUnalignedAtomics
; }
1724 /// Whether AtomicExpandPass should automatically insert fences and reduce
1725 /// ordering for this atomic. This should be true for most architectures with
1726 /// weak memory ordering. Defaults to false.
1727 virtual bool shouldInsertFencesForAtomic(const Instruction
*I
) const {
1731 /// Perform a load-linked operation on Addr, returning a "Value *" with the
1732 /// corresponding pointee type. This may entail some non-trivial operations to
1733 /// truncate or reconstruct types that will be illegal in the backend. See
1734 /// ARMISelLowering for an example implementation.
1735 virtual Value
*emitLoadLinked(IRBuilder
<> &Builder
, Value
*Addr
,
1736 AtomicOrdering Ord
) const {
1737 llvm_unreachable("Load linked unimplemented on this target");
1740 /// Perform a store-conditional operation to Addr. Return the status of the
1741 /// store. This should be 0 if the store succeeded, non-zero otherwise.
1742 virtual Value
*emitStoreConditional(IRBuilder
<> &Builder
, Value
*Val
,
1743 Value
*Addr
, AtomicOrdering Ord
) const {
1744 llvm_unreachable("Store conditional unimplemented on this target");
1747 /// Perform a masked atomicrmw using a target-specific intrinsic. This
1748 /// represents the core LL/SC loop which will be lowered at a late stage by
1750 virtual Value
*emitMaskedAtomicRMWIntrinsic(IRBuilder
<> &Builder
,
1752 Value
*AlignedAddr
, Value
*Incr
,
1753 Value
*Mask
, Value
*ShiftAmt
,
1754 AtomicOrdering Ord
) const {
1755 llvm_unreachable("Masked atomicrmw expansion unimplemented on this target");
1758 /// Perform a masked cmpxchg using a target-specific intrinsic. This
1759 /// represents the core LL/SC loop which will be lowered at a late stage by
1761 virtual Value
*emitMaskedAtomicCmpXchgIntrinsic(
1762 IRBuilder
<> &Builder
, AtomicCmpXchgInst
*CI
, Value
*AlignedAddr
,
1763 Value
*CmpVal
, Value
*NewVal
, Value
*Mask
, AtomicOrdering Ord
) const {
1764 llvm_unreachable("Masked cmpxchg expansion unimplemented on this target");
1767 /// Inserts in the IR a target-specific intrinsic specifying a fence.
1768 /// It is called by AtomicExpandPass before expanding an
1769 /// AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad
1770 /// if shouldInsertFencesForAtomic returns true.
1772 /// Inst is the original atomic instruction, prior to other expansions that
1773 /// may be performed.
1775 /// This function should either return a nullptr, or a pointer to an IR-level
1776 /// Instruction*. Even complex fence sequences can be represented by a
1777 /// single Instruction* through an intrinsic to be lowered later.
1778 /// Backends should override this method to produce target-specific intrinsic
1779 /// for their fences.
1780 /// FIXME: Please note that the default implementation here in terms of
1781 /// IR-level fences exists for historical/compatibility reasons and is
1782 /// *unsound* ! Fences cannot, in general, be used to restore sequential
1783 /// consistency. For example, consider the following example:
1784 /// atomic<int> x = y = 0;
1785 /// int r1, r2, r3, r4;
1796 /// r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all
1797 /// seq_cst. But if they are lowered to monotonic accesses, no amount of
1798 /// IR-level fences can prevent it.
1800 virtual Instruction
*emitLeadingFence(IRBuilder
<> &Builder
, Instruction
*Inst
,
1801 AtomicOrdering Ord
) const {
1802 if (isReleaseOrStronger(Ord
) && Inst
->hasAtomicStore())
1803 return Builder
.CreateFence(Ord
);
1808 virtual Instruction
*emitTrailingFence(IRBuilder
<> &Builder
,
1810 AtomicOrdering Ord
) const {
1811 if (isAcquireOrStronger(Ord
))
1812 return Builder
.CreateFence(Ord
);
1818 // Emits code that executes when the comparison result in the ll/sc
1819 // expansion of a cmpxchg instruction is such that the store-conditional will
1820 // not execute. This makes it possible to balance out the load-linked with
1821 // a dedicated instruction, if desired.
1822 // E.g., on ARM, if ldrex isn't followed by strex, the exclusive monitor would
1823 // be unnecessarily held, except if clrex, inserted by this hook, is executed.
1824 virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilder
<> &Builder
) const {}
1826 /// Returns true if the given (atomic) store should be expanded by the
1827 /// IR-level AtomicExpand pass into an "atomic xchg" which ignores its input.
1828 virtual bool shouldExpandAtomicStoreInIR(StoreInst
*SI
) const {
1832 /// Returns true if arguments should be sign-extended in lib calls.
1833 virtual bool shouldSignExtendTypeInLibCall(EVT Type
, bool IsSigned
) const {
1837 /// Returns true if arguments should be extended in lib calls.
1838 virtual bool shouldExtendTypeInLibCall(EVT Type
) const {
1842 /// Returns how the given (atomic) load should be expanded by the
1843 /// IR-level AtomicExpand pass.
1844 virtual AtomicExpansionKind
shouldExpandAtomicLoadInIR(LoadInst
*LI
) const {
1845 return AtomicExpansionKind::None
;
1848 /// Returns how the given atomic cmpxchg should be expanded by the IR-level
1849 /// AtomicExpand pass.
1850 virtual AtomicExpansionKind
1851 shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst
*AI
) const {
1852 return AtomicExpansionKind::None
;
1855 /// Returns how the IR-level AtomicExpand pass should expand the given
1856 /// AtomicRMW, if at all. Default is to never expand.
1857 virtual AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst
*RMW
) const {
1858 return RMW
->isFloatingPointOperation() ?
1859 AtomicExpansionKind::CmpXChg
: AtomicExpansionKind::None
;
1862 /// On some platforms, an AtomicRMW that never actually modifies the value
1863 /// (such as fetch_add of 0) can be turned into a fence followed by an
1864 /// atomic load. This may sound useless, but it makes it possible for the
1865 /// processor to keep the cacheline shared, dramatically improving
1866 /// performance. And such idempotent RMWs are useful for implementing some
1867 /// kinds of locks, see for example (justification + benchmarks):
1868 /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
1869 /// This method tries doing that transformation, returning the atomic load if
1870 /// it succeeds, and nullptr otherwise.
1871 /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
1872 /// another round of expansion.
1874 lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst
*RMWI
) const {
1878 /// Returns how the platform's atomic operations are extended (ZERO_EXTEND,
1879 /// SIGN_EXTEND, or ANY_EXTEND).
1880 virtual ISD::NodeType
getExtendForAtomicOps() const {
1881 return ISD::ZERO_EXTEND
;
1886 /// Returns true if we should normalize
1887 /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
1888 /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely
1889 /// that it saves us from materializing N0 and N1 in an integer register.
1890 /// Targets that are able to perform and/or on flags should return false here.
1891 virtual bool shouldNormalizeToSelectSequence(LLVMContext
&Context
,
1893 // If a target has multiple condition registers, then it likely has logical
1894 // operations on those registers.
1895 if (hasMultipleConditionRegisters())
1897 // Only do the transform if the value won't be split into multiple
1899 LegalizeTypeAction Action
= getTypeAction(Context
, VT
);
1900 return Action
!= TypeExpandInteger
&& Action
!= TypeExpandFloat
&&
1901 Action
!= TypeSplitVector
;
1904 virtual bool isProfitableToCombineMinNumMaxNum(EVT VT
) const { return true; }
1906 /// Return true if a select of constants (select Cond, C1, C2) should be
1907 /// transformed into simple math ops with the condition value. For example:
1908 /// select Cond, C1, C1-1 --> add (zext Cond), C1-1
1909 virtual bool convertSelectOfConstantsToMath(EVT VT
) const {
1913 /// Return true if it is profitable to transform an integer
1914 /// multiplication-by-constant into simpler operations like shifts and adds.
1915 /// This may be true if the target does not directly support the
1916 /// multiplication operation for the specified type or the sequence of simpler
1917 /// ops is faster than the multiply.
1918 virtual bool decomposeMulByConstant(LLVMContext
&Context
,
1919 EVT VT
, SDValue C
) const {
1923 /// Return true if it is more correct/profitable to use strict FP_TO_INT
1924 /// conversion operations - canonicalizing the FP source value instead of
1925 /// converting all cases and then selecting based on value.
1926 /// This may be true if the target throws exceptions for out of bounds
1927 /// conversions or has fast FP CMOV.
1928 virtual bool shouldUseStrictFP_TO_INT(EVT FpVT
, EVT IntVT
,
1929 bool IsSigned
) const {
1933 //===--------------------------------------------------------------------===//
1934 // TargetLowering Configuration Methods - These methods should be invoked by
1935 // the derived class constructor to configure this object for the target.
1938 /// Specify how the target extends the result of integer and floating point
1939 /// boolean values from i1 to a wider type. See getBooleanContents.
1940 void setBooleanContents(BooleanContent Ty
) {
1941 BooleanContents
= Ty
;
1942 BooleanFloatContents
= Ty
;
1945 /// Specify how the target extends the result of integer and floating point
1946 /// boolean values from i1 to a wider type. See getBooleanContents.
1947 void setBooleanContents(BooleanContent IntTy
, BooleanContent FloatTy
) {
1948 BooleanContents
= IntTy
;
1949 BooleanFloatContents
= FloatTy
;
1952 /// Specify how the target extends the result of a vector boolean value from a
1953 /// vector of i1 to a wider type. See getBooleanContents.
1954 void setBooleanVectorContents(BooleanContent Ty
) {
1955 BooleanVectorContents
= Ty
;
1958 /// Specify the target scheduling preference.
1959 void setSchedulingPreference(Sched::Preference Pref
) {
1960 SchedPreferenceInfo
= Pref
;
1963 /// Indicate whether this target prefers to use _setjmp to implement
1964 /// llvm.setjmp or the version without _. Defaults to false.
1965 void setUseUnderscoreSetJmp(bool Val
) {
1966 UseUnderscoreSetJmp
= Val
;
1969 /// Indicate whether this target prefers to use _longjmp to implement
1970 /// llvm.longjmp or the version without _. Defaults to false.
1971 void setUseUnderscoreLongJmp(bool Val
) {
1972 UseUnderscoreLongJmp
= Val
;
1975 /// Indicate the minimum number of blocks to generate jump tables.
1976 void setMinimumJumpTableEntries(unsigned Val
);
1978 /// Indicate the maximum number of entries in jump tables.
1979 /// Set to zero to generate unlimited jump tables.
1980 void setMaximumJumpTableSize(unsigned);
1982 /// If set to a physical register, this specifies the register that
1983 /// llvm.savestack/llvm.restorestack should save and restore.
1984 void setStackPointerRegisterToSaveRestore(unsigned R
) {
1985 StackPointerRegisterToSaveRestore
= R
;
1988 /// Tells the code generator that the target has multiple (allocatable)
1989 /// condition registers that can be used to store the results of comparisons
1990 /// for use by selects and conditional branches. With multiple condition
1991 /// registers, the code generator will not aggressively sink comparisons into
1992 /// the blocks of their users.
1993 void setHasMultipleConditionRegisters(bool hasManyRegs
= true) {
1994 HasMultipleConditionRegisters
= hasManyRegs
;
1997 /// Tells the code generator that the target has BitExtract instructions.
1998 /// The code generator will aggressively sink "shift"s into the blocks of
1999 /// their users if the users will generate "and" instructions which can be
2000 /// combined with "shift" to BitExtract instructions.
2001 void setHasExtractBitsInsn(bool hasExtractInsn
= true) {
2002 HasExtractBitsInsn
= hasExtractInsn
;
2005 /// Tells the code generator not to expand logic operations on comparison
2006 /// predicates into separate sequences that increase the amount of flow
2008 void setJumpIsExpensive(bool isExpensive
= true);
2010 /// Tells the code generator which bitwidths to bypass.
2011 void addBypassSlowDiv(unsigned int SlowBitWidth
, unsigned int FastBitWidth
) {
2012 BypassSlowDivWidths
[SlowBitWidth
] = FastBitWidth
;
2015 /// Add the specified register class as an available regclass for the
2016 /// specified value type. This indicates the selector can handle values of
2017 /// that class natively.
2018 void addRegisterClass(MVT VT
, const TargetRegisterClass
*RC
) {
2019 assert((unsigned)VT
.SimpleTy
< array_lengthof(RegClassForVT
));
2020 RegClassForVT
[VT
.SimpleTy
] = RC
;
2023 /// Return the largest legal super-reg register class of the register class
2024 /// for the specified type and its associated "cost".
2025 virtual std::pair
<const TargetRegisterClass
*, uint8_t>
2026 findRepresentativeClass(const TargetRegisterInfo
*TRI
, MVT VT
) const;
2028 /// Once all of the register classes are added, this allows us to compute
2029 /// derived properties we expose.
2030 void computeRegisterProperties(const TargetRegisterInfo
*TRI
);
2032 /// Indicate that the specified operation does not work with the specified
2033 /// type and indicate what to do about it. Note that VT may refer to either
2034 /// the type of a result or that of an operand of Op.
2035 void setOperationAction(unsigned Op
, MVT VT
,
2036 LegalizeAction Action
) {
2037 assert(Op
< array_lengthof(OpActions
[0]) && "Table isn't big enough!");
2038 OpActions
[(unsigned)VT
.SimpleTy
][Op
] = Action
;
2041 /// Indicate that the specified load with extension does not work with the
2042 /// specified type and indicate what to do about it.
2043 void setLoadExtAction(unsigned ExtType
, MVT ValVT
, MVT MemVT
,
2044 LegalizeAction Action
) {
2045 assert(ExtType
< ISD::LAST_LOADEXT_TYPE
&& ValVT
.isValid() &&
2046 MemVT
.isValid() && "Table isn't big enough!");
2047 assert((unsigned)Action
< 0x10 && "too many bits for bitfield array");
2048 unsigned Shift
= 4 * ExtType
;
2049 LoadExtActions
[ValVT
.SimpleTy
][MemVT
.SimpleTy
] &= ~((uint16_t)0xF << Shift
);
2050 LoadExtActions
[ValVT
.SimpleTy
][MemVT
.SimpleTy
] |= (uint16_t)Action
<< Shift
;
2053 /// Indicate that the specified truncating store does not work with the
2054 /// specified type and indicate what to do about it.
2055 void setTruncStoreAction(MVT ValVT
, MVT MemVT
,
2056 LegalizeAction Action
) {
2057 assert(ValVT
.isValid() && MemVT
.isValid() && "Table isn't big enough!");
2058 TruncStoreActions
[(unsigned)ValVT
.SimpleTy
][MemVT
.SimpleTy
] = Action
;
2061 /// Indicate that the specified indexed load does or does not work with the
2062 /// specified type and indicate what to do abort it.
2064 /// NOTE: All indexed mode loads are initialized to Expand in
2065 /// TargetLowering.cpp
2066 void setIndexedLoadAction(unsigned IdxMode
, MVT VT
,
2067 LegalizeAction Action
) {
2068 assert(VT
.isValid() && IdxMode
< ISD::LAST_INDEXED_MODE
&&
2069 (unsigned)Action
< 0xf && "Table isn't big enough!");
2070 // Load action are kept in the upper half.
2071 IndexedModeActions
[(unsigned)VT
.SimpleTy
][IdxMode
] &= ~0xf0;
2072 IndexedModeActions
[(unsigned)VT
.SimpleTy
][IdxMode
] |= ((uint8_t)Action
) <<4;
2075 /// Indicate that the specified indexed store does or does not work with the
2076 /// specified type and indicate what to do about it.
2078 /// NOTE: All indexed mode stores are initialized to Expand in
2079 /// TargetLowering.cpp
2080 void setIndexedStoreAction(unsigned IdxMode
, MVT VT
,
2081 LegalizeAction Action
) {
2082 assert(VT
.isValid() && IdxMode
< ISD::LAST_INDEXED_MODE
&&
2083 (unsigned)Action
< 0xf && "Table isn't big enough!");
2084 // Store action are kept in the lower half.
2085 IndexedModeActions
[(unsigned)VT
.SimpleTy
][IdxMode
] &= ~0x0f;
2086 IndexedModeActions
[(unsigned)VT
.SimpleTy
][IdxMode
] |= ((uint8_t)Action
);
2089 /// Indicate that the specified condition code is or isn't supported on the
2090 /// target and indicate what to do about it.
2091 void setCondCodeAction(ISD::CondCode CC
, MVT VT
,
2092 LegalizeAction Action
) {
2093 assert(VT
.isValid() && (unsigned)CC
< array_lengthof(CondCodeActions
) &&
2094 "Table isn't big enough!");
2095 assert((unsigned)Action
< 0x10 && "too many bits for bitfield array");
2096 /// The lower 3 bits of the SimpleTy index into Nth 4bit set from the 32-bit
2097 /// value and the upper 29 bits index into the second dimension of the array
2098 /// to select what 32-bit value to use.
2099 uint32_t Shift
= 4 * (VT
.SimpleTy
& 0x7);
2100 CondCodeActions
[CC
][VT
.SimpleTy
>> 3] &= ~((uint32_t)0xF << Shift
);
2101 CondCodeActions
[CC
][VT
.SimpleTy
>> 3] |= (uint32_t)Action
<< Shift
;
2104 /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
2105 /// to trying a larger integer/fp until it can find one that works. If that
2106 /// default is insufficient, this method can be used by the target to override
2108 void AddPromotedToType(unsigned Opc
, MVT OrigVT
, MVT DestVT
) {
2109 PromoteToType
[std::make_pair(Opc
, OrigVT
.SimpleTy
)] = DestVT
.SimpleTy
;
2112 /// Convenience method to set an operation to Promote and specify the type
2113 /// in a single call.
2114 void setOperationPromotedToType(unsigned Opc
, MVT OrigVT
, MVT DestVT
) {
2115 setOperationAction(Opc
, OrigVT
, Promote
);
2116 AddPromotedToType(Opc
, OrigVT
, DestVT
);
2119 /// Targets should invoke this method for each target independent node that
2120 /// they want to provide a custom DAG combiner for by implementing the
2121 /// PerformDAGCombine virtual method.
2122 void setTargetDAGCombine(ISD::NodeType NT
) {
2123 assert(unsigned(NT
>> 3) < array_lengthof(TargetDAGCombineArray
));
2124 TargetDAGCombineArray
[NT
>> 3] |= 1 << (NT
&7);
2127 /// Set the target's minimum function alignment.
2128 void setMinFunctionAlignment(Align Alignment
) {
2129 MinFunctionAlignment
= Alignment
;
2132 /// Set the target's preferred function alignment. This should be set if
2133 /// there is a performance benefit to higher-than-minimum alignment
2134 void setPrefFunctionAlignment(Align Alignment
) {
2135 PrefFunctionAlignment
= Alignment
;
2138 /// Set the target's preferred loop alignment. Default alignment is one, it
2139 /// means the target does not care about loop alignment. The target may also
2140 /// override getPrefLoopAlignment to provide per-loop values.
2141 void setPrefLoopAlignment(Align Alignment
) { PrefLoopAlignment
= Alignment
; }
2143 /// Set the minimum stack alignment of an argument.
2144 void setMinStackArgumentAlignment(Align Alignment
) {
2145 MinStackArgumentAlignment
= Alignment
;
2148 /// Set the maximum atomic operation size supported by the
2149 /// backend. Atomic operations greater than this size (as well as
2150 /// ones that are not naturally aligned), will be expanded by
2151 /// AtomicExpandPass into an __atomic_* library call.
2152 void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits
) {
2153 MaxAtomicSizeInBitsSupported
= SizeInBits
;
2156 /// Sets the minimum cmpxchg or ll/sc size supported by the backend.
2157 void setMinCmpXchgSizeInBits(unsigned SizeInBits
) {
2158 MinCmpXchgSizeInBits
= SizeInBits
;
2161 /// Sets whether unaligned atomic operations are supported.
2162 void setSupportsUnalignedAtomics(bool UnalignedSupported
) {
2163 SupportsUnalignedAtomics
= UnalignedSupported
;
2167 //===--------------------------------------------------------------------===//
2168 // Addressing mode description hooks (used by LSR etc).
2171 /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
2172 /// instructions reading the address. This allows as much computation as
2173 /// possible to be done in the address mode for that operand. This hook lets
2174 /// targets also pass back when this should be done on intrinsics which
2176 virtual bool getAddrModeArguments(IntrinsicInst
* /*I*/,
2177 SmallVectorImpl
<Value
*> &/*Ops*/,
2178 Type
*&/*AccessTy*/) const {
2182 /// This represents an addressing mode of:
2183 /// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
2184 /// If BaseGV is null, there is no BaseGV.
2185 /// If BaseOffs is zero, there is no base offset.
2186 /// If HasBaseReg is false, there is no base register.
2187 /// If Scale is zero, there is no ScaleReg. Scale of 1 indicates a reg with
2190 GlobalValue
*BaseGV
= nullptr;
2191 int64_t BaseOffs
= 0;
2192 bool HasBaseReg
= false;
2194 AddrMode() = default;
2197 /// Return true if the addressing mode represented by AM is legal for this
2198 /// target, for a load/store of the specified type.
2200 /// The type may be VoidTy, in which case only return true if the addressing
2201 /// mode is legal for a load/store of any legal type. TODO: Handle
2202 /// pre/postinc as well.
2204 /// If the address space cannot be determined, it will be -1.
2206 /// TODO: Remove default argument
2207 virtual bool isLegalAddressingMode(const DataLayout
&DL
, const AddrMode
&AM
,
2208 Type
*Ty
, unsigned AddrSpace
,
2209 Instruction
*I
= nullptr) const;
2211 /// Return the cost of the scaling factor used in the addressing mode
2212 /// represented by AM for this target, for a load/store of the specified type.
2214 /// If the AM is supported, the return value must be >= 0.
2215 /// If the AM is not supported, it returns a negative value.
2216 /// TODO: Handle pre/postinc as well.
2217 /// TODO: Remove default argument
2218 virtual int getScalingFactorCost(const DataLayout
&DL
, const AddrMode
&AM
,
2219 Type
*Ty
, unsigned AS
= 0) const {
2220 // Default: assume that any scaling factor used in a legal AM is free.
2221 if (isLegalAddressingMode(DL
, AM
, Ty
, AS
))
2226 /// Return true if the specified immediate is legal icmp immediate, that is
2227 /// the target has icmp instructions which can compare a register against the
2228 /// immediate without having to materialize the immediate into a register.
2229 virtual bool isLegalICmpImmediate(int64_t) const {
2233 /// Return true if the specified immediate is legal add immediate, that is the
2234 /// target has add instructions which can add a register with the immediate
2235 /// without having to materialize the immediate into a register.
2236 virtual bool isLegalAddImmediate(int64_t) const {
2240 /// Return true if the specified immediate is legal for the value input of a
2241 /// store instruction.
2242 virtual bool isLegalStoreImmediate(int64_t Value
) const {
2243 // Default implementation assumes that at least 0 works since it is likely
2244 // that a zero register exists or a zero immediate is allowed.
2248 /// Return true if it's significantly cheaper to shift a vector by a uniform
2249 /// scalar than by an amount which will vary across each lane. On x86, for
2250 /// example, there is a "psllw" instruction for the former case, but no simple
2251 /// instruction for a general "a << b" operation on vectors.
2252 virtual bool isVectorShiftByScalarCheap(Type
*Ty
) const {
2256 /// Returns true if the opcode is a commutative binary operation.
2257 virtual bool isCommutativeBinOp(unsigned Opcode
) const {
2258 // FIXME: This should get its info from the td file.
2268 case ISD::SMUL_LOHI
:
2269 case ISD::UMUL_LOHI
:
2283 case ISD::FMINNUM_IEEE
:
2284 case ISD::FMAXNUM_IEEE
:
2288 default: return false;
2292 /// Return true if the node is a math/logic binary operator.
2293 virtual bool isBinOp(unsigned Opcode
) const {
2294 // A commutative binop must be a binop.
2295 if (isCommutativeBinOp(Opcode
))
2297 // These are non-commutative binops.
2316 /// Return true if it's free to truncate a value of type FromTy to type
2317 /// ToTy. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
2318 /// by referencing its sub-register AX.
2319 /// Targets must return false when FromTy <= ToTy.
2320 virtual bool isTruncateFree(Type
*FromTy
, Type
*ToTy
) const {
2324 /// Return true if a truncation from FromTy to ToTy is permitted when deciding
2325 /// whether a call is in tail position. Typically this means that both results
2326 /// would be assigned to the same register or stack slot, but it could mean
2327 /// the target performs adequate checks of its own before proceeding with the
2328 /// tail call. Targets must return false when FromTy <= ToTy.
2329 virtual bool allowTruncateForTailCall(Type
*FromTy
, Type
*ToTy
) const {
2333 virtual bool isTruncateFree(EVT FromVT
, EVT ToVT
) const {
2337 virtual bool isProfitableToHoist(Instruction
*I
) const { return true; }
2339 /// Return true if the extension represented by \p I is free.
2340 /// Unlikely the is[Z|FP]ExtFree family which is based on types,
2341 /// this method can use the context provided by \p I to decide
2342 /// whether or not \p I is free.
2343 /// This method extends the behavior of the is[Z|FP]ExtFree family.
2344 /// In other words, if is[Z|FP]Free returns true, then this method
2345 /// returns true as well. The converse is not true.
2346 /// The target can perform the adequate checks by overriding isExtFreeImpl.
2347 /// \pre \p I must be a sign, zero, or fp extension.
2348 bool isExtFree(const Instruction
*I
) const {
2349 switch (I
->getOpcode()) {
2350 case Instruction::FPExt
:
2351 if (isFPExtFree(EVT::getEVT(I
->getType()),
2352 EVT::getEVT(I
->getOperand(0)->getType())))
2355 case Instruction::ZExt
:
2356 if (isZExtFree(I
->getOperand(0)->getType(), I
->getType()))
2359 case Instruction::SExt
:
2362 llvm_unreachable("Instruction is not an extension");
2364 return isExtFreeImpl(I
);
2367 /// Return true if \p Load and \p Ext can form an ExtLoad.
2368 /// For example, in AArch64
2369 /// %L = load i8, i8* %ptr
2370 /// %E = zext i8 %L to i32
2371 /// can be lowered into one load instruction
2373 bool isExtLoad(const LoadInst
*Load
, const Instruction
*Ext
,
2374 const DataLayout
&DL
) const {
2375 EVT VT
= getValueType(DL
, Ext
->getType());
2376 EVT LoadVT
= getValueType(DL
, Load
->getType());
2378 // If the load has other users and the truncate is not free, the ext
2379 // probably isn't free.
2380 if (!Load
->hasOneUse() && (isTypeLegal(LoadVT
) || !isTypeLegal(VT
)) &&
2381 !isTruncateFree(Ext
->getType(), Load
->getType()))
2384 // Check whether the target supports casts folded into loads.
2386 if (isa
<ZExtInst
>(Ext
))
2387 LType
= ISD::ZEXTLOAD
;
2389 assert(isa
<SExtInst
>(Ext
) && "Unexpected ext type!");
2390 LType
= ISD::SEXTLOAD
;
2393 return isLoadExtLegal(LType
, VT
, LoadVT
);
2396 /// Return true if any actual instruction that defines a value of type FromTy
2397 /// implicitly zero-extends the value to ToTy in the result register.
2399 /// The function should return true when it is likely that the truncate can
2400 /// be freely folded with an instruction defining a value of FromTy. If
2401 /// the defining instruction is unknown (because you're looking at a
2402 /// function argument, PHI, etc.) then the target may require an
2403 /// explicit truncate, which is not necessarily free, but this function
2404 /// does not deal with those cases.
2405 /// Targets must return false when FromTy >= ToTy.
2406 virtual bool isZExtFree(Type
*FromTy
, Type
*ToTy
) const {
2410 virtual bool isZExtFree(EVT FromTy
, EVT ToTy
) const {
2414 /// Return true if sign-extension from FromTy to ToTy is cheaper than
2416 virtual bool isSExtCheaperThanZExt(EVT FromTy
, EVT ToTy
) const {
2420 /// Return true if sinking I's operands to the same basic block as I is
2421 /// profitable, e.g. because the operands can be folded into a target
2422 /// instruction during instruction selection. After calling the function
2423 /// \p Ops contains the Uses to sink ordered by dominance (dominating users
2425 virtual bool shouldSinkOperands(Instruction
*I
,
2426 SmallVectorImpl
<Use
*> &Ops
) const {
2430 /// Return true if the target supplies and combines to a paired load
2431 /// two loaded values of type LoadedType next to each other in memory.
2432 /// RequiredAlignment gives the minimal alignment constraints that must be met
2433 /// to be able to select this paired load.
2435 /// This information is *not* used to generate actual paired loads, but it is
2436 /// used to generate a sequence of loads that is easier to combine into a
2438 /// For instance, something like this:
2439 /// a = load i64* addr
2440 /// b = trunc i64 a to i32
2441 /// c = lshr i64 a, 32
2442 /// d = trunc i64 c to i32
2443 /// will be optimized into:
2444 /// b = load i32* addr1
2445 /// d = load i32* addr2
2446 /// Where addr1 = addr2 +/- sizeof(i32).
2448 /// In other words, unless the target performs a post-isel load combining,
2449 /// this information should not be provided because it will generate more
2451 virtual bool hasPairedLoad(EVT
/*LoadedType*/,
2452 unsigned & /*RequiredAlignment*/) const {
2456 /// Return true if the target has a vector blend instruction.
2457 virtual bool hasVectorBlend() const { return false; }
2459 /// Get the maximum supported factor for interleaved memory accesses.
2460 /// Default to be the minimum interleave factor: 2.
2461 virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; }
2463 /// Lower an interleaved load to target specific intrinsics. Return
2464 /// true on success.
2466 /// \p LI is the vector load instruction.
2467 /// \p Shuffles is the shufflevector list to DE-interleave the loaded vector.
2468 /// \p Indices is the corresponding indices for each shufflevector.
2469 /// \p Factor is the interleave factor.
2470 virtual bool lowerInterleavedLoad(LoadInst
*LI
,
2471 ArrayRef
<ShuffleVectorInst
*> Shuffles
,
2472 ArrayRef
<unsigned> Indices
,
2473 unsigned Factor
) const {
2477 /// Lower an interleaved store to target specific intrinsics. Return
2478 /// true on success.
2480 /// \p SI is the vector store instruction.
2481 /// \p SVI is the shufflevector to RE-interleave the stored vector.
2482 /// \p Factor is the interleave factor.
2483 virtual bool lowerInterleavedStore(StoreInst
*SI
, ShuffleVectorInst
*SVI
,
2484 unsigned Factor
) const {
2488 /// Return true if zero-extending the specific node Val to type VT2 is free
2489 /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
2490 /// because it's folded such as X86 zero-extending loads).
2491 virtual bool isZExtFree(SDValue Val
, EVT VT2
) const {
2492 return isZExtFree(Val
.getValueType(), VT2
);
2495 /// Return true if an fpext operation is free (for instance, because
2496 /// single-precision floating-point numbers are implicitly extended to
2497 /// double-precision).
2498 virtual bool isFPExtFree(EVT DestVT
, EVT SrcVT
) const {
2499 assert(SrcVT
.isFloatingPoint() && DestVT
.isFloatingPoint() &&
2500 "invalid fpext types");
2504 /// Return true if an fpext operation input to an \p Opcode operation is free
2505 /// (for instance, because half-precision floating-point numbers are
2506 /// implicitly extended to float-precision) for an FMA instruction.
2507 virtual bool isFPExtFoldable(unsigned Opcode
, EVT DestVT
, EVT SrcVT
) const {
2508 assert(DestVT
.isFloatingPoint() && SrcVT
.isFloatingPoint() &&
2509 "invalid fpext types");
2510 return isFPExtFree(DestVT
, SrcVT
);
2513 /// Return true if folding a vector load into ExtVal (a sign, zero, or any
2514 /// extend node) is profitable.
2515 virtual bool isVectorLoadExtDesirable(SDValue ExtVal
) const { return false; }
2517 /// Return true if an fneg operation is free to the point where it is never
2518 /// worthwhile to replace it with a bitwise operation.
2519 virtual bool isFNegFree(EVT VT
) const {
2520 assert(VT
.isFloatingPoint());
2524 /// Return true if an fabs operation is free to the point where it is never
2525 /// worthwhile to replace it with a bitwise operation.
2526 virtual bool isFAbsFree(EVT VT
) const {
2527 assert(VT
.isFloatingPoint());
2531 /// Return true if an FMA operation is faster than a pair of fmul and fadd
2532 /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
2533 /// returns true, otherwise fmuladd is expanded to fmul + fadd.
2535 /// NOTE: This may be called before legalization on types for which FMAs are
2536 /// not legal, but should return true if those types will eventually legalize
2537 /// to types that support FMAs. After legalization, it will only be called on
2538 /// types that support FMAs (via Legal or Custom actions)
2539 virtual bool isFMAFasterThanFMulAndFAdd(EVT
) const {
2543 /// Return true if it's profitable to narrow operations of type VT1 to
2544 /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
2546 virtual bool isNarrowingProfitable(EVT
/*VT1*/, EVT
/*VT2*/) const {
2550 /// Return true if it is beneficial to convert a load of a constant to
2551 /// just the constant itself.
2552 /// On some targets it might be more efficient to use a combination of
2553 /// arithmetic instructions to materialize the constant instead of loading it
2554 /// from a constant pool.
2555 virtual bool shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
2560 /// Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type
2561 /// from this source type with this index. This is needed because
2562 /// EXTRACT_SUBVECTOR usually has custom lowering that depends on the index of
2563 /// the first element, and only the target knows which lowering is cheap.
2564 virtual bool isExtractSubvectorCheap(EVT ResVT
, EVT SrcVT
,
2565 unsigned Index
) const {
2569 /// Try to convert an extract element of a vector binary operation into an
2570 /// extract element followed by a scalar operation.
2571 virtual bool shouldScalarizeBinop(SDValue VecOp
) const {
2575 /// Return true if extraction of a scalar element from the given vector type
2576 /// at the given index is cheap. For example, if scalar operations occur on
2577 /// the same register file as vector operations, then an extract element may
2578 /// be a sub-register rename rather than an actual instruction.
2579 virtual bool isExtractVecEltCheap(EVT VT
, unsigned Index
) const {
2583 /// Try to convert math with an overflow comparison into the corresponding DAG
2584 /// node operation. Targets may want to override this independently of whether
2585 /// the operation is legal/custom for the given type because it may obscure
2586 /// matching of other patterns.
2587 virtual bool shouldFormOverflowOp(unsigned Opcode
, EVT VT
) const {
2588 // TODO: The default logic is inherited from code in CodeGenPrepare.
2589 // The opcode should not make a difference by default?
2590 if (Opcode
!= ISD::UADDO
)
2593 // Allow the transform as long as we have an integer type that is not
2594 // obviously illegal and unsupported.
2597 return VT
.isSimple() || !isOperationExpand(Opcode
, VT
);
2600 // Return true if it is profitable to use a scalar input to a BUILD_VECTOR
2601 // even if the vector itself has multiple uses.
2602 virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT
) const {
2606 // Return true if CodeGenPrepare should consider splitting large offset of a
2607 // GEP to make the GEP fit into the addressing mode and can be sunk into the
2608 // same blocks of its users.
2609 virtual bool shouldConsiderGEPOffsetSplit() const { return false; }
2611 // Return the shift amount threshold for profitable transforms into shifts.
2612 // Transforms creating shifts above the returned value will be avoided.
2613 virtual unsigned getShiftAmountThreshold(EVT VT
) const {
2614 return VT
.getScalarSizeInBits();
2617 //===--------------------------------------------------------------------===//
2618 // Runtime Library hooks
2621 /// Rename the default libcall routine name for the specified libcall.
2622 void setLibcallName(RTLIB::Libcall Call
, const char *Name
) {
2623 LibcallRoutineNames
[Call
] = Name
;
2626 /// Get the libcall routine name for the specified libcall.
2627 const char *getLibcallName(RTLIB::Libcall Call
) const {
2628 return LibcallRoutineNames
[Call
];
2631 /// Override the default CondCode to be used to test the result of the
2632 /// comparison libcall against zero.
2633 void setCmpLibcallCC(RTLIB::Libcall Call
, ISD::CondCode CC
) {
2634 CmpLibcallCCs
[Call
] = CC
;
2637 /// Get the CondCode that's to be used to test the result of the comparison
2638 /// libcall against zero.
2639 ISD::CondCode
getCmpLibcallCC(RTLIB::Libcall Call
) const {
2640 return CmpLibcallCCs
[Call
];
2643 /// Set the CallingConv that should be used for the specified libcall.
2644 void setLibcallCallingConv(RTLIB::Libcall Call
, CallingConv::ID CC
) {
2645 LibcallCallingConvs
[Call
] = CC
;
2648 /// Get the CallingConv that should be used for the specified libcall.
2649 CallingConv::ID
getLibcallCallingConv(RTLIB::Libcall Call
) const {
2650 return LibcallCallingConvs
[Call
];
2653 /// Execute target specific actions to finalize target lowering.
2654 /// This is used to set extra flags in MachineFrameInformation and freezing
2655 /// the set of reserved registers.
2656 /// The default implementation just freezes the set of reserved registers.
2657 virtual void finalizeLowering(MachineFunction
&MF
) const;
2660 const TargetMachine
&TM
;
2662 /// Tells the code generator that the target has multiple (allocatable)
2663 /// condition registers that can be used to store the results of comparisons
2664 /// for use by selects and conditional branches. With multiple condition
2665 /// registers, the code generator will not aggressively sink comparisons into
2666 /// the blocks of their users.
2667 bool HasMultipleConditionRegisters
;
2669 /// Tells the code generator that the target has BitExtract instructions.
2670 /// The code generator will aggressively sink "shift"s into the blocks of
2671 /// their users if the users will generate "and" instructions which can be
2672 /// combined with "shift" to BitExtract instructions.
2673 bool HasExtractBitsInsn
;
2675 /// Tells the code generator to bypass slow divide or remainder
2676 /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
2677 /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
2678 /// div/rem when the operands are positive and less than 256.
2679 DenseMap
<unsigned int, unsigned int> BypassSlowDivWidths
;
2681 /// Tells the code generator that it shouldn't generate extra flow control
2682 /// instructions and should attempt to combine flow control instructions via
2684 bool JumpIsExpensive
;
2686 /// This target prefers to use _setjmp to implement llvm.setjmp.
2688 /// Defaults to false.
2689 bool UseUnderscoreSetJmp
;
2691 /// This target prefers to use _longjmp to implement llvm.longjmp.
2693 /// Defaults to false.
2694 bool UseUnderscoreLongJmp
;
2696 /// Information about the contents of the high-bits in boolean values held in
2697 /// a type wider than i1. See getBooleanContents.
2698 BooleanContent BooleanContents
;
2700 /// Information about the contents of the high-bits in boolean values held in
2701 /// a type wider than i1. See getBooleanContents.
2702 BooleanContent BooleanFloatContents
;
2704 /// Information about the contents of the high-bits in boolean vector values
2705 /// when the element type is wider than i1. See getBooleanContents.
2706 BooleanContent BooleanVectorContents
;
2708 /// The target scheduling preference: shortest possible total cycles or lowest
2710 Sched::Preference SchedPreferenceInfo
;
2712 /// The minimum alignment that any argument on the stack needs to have.
2713 Align MinStackArgumentAlignment
;
2715 /// The minimum function alignment (used when optimizing for size, and to
2716 /// prevent explicitly provided alignment from leading to incorrect code).
2717 Align MinFunctionAlignment
;
2719 /// The preferred function alignment (used when alignment unspecified and
2720 /// optimizing for speed).
2721 Align PrefFunctionAlignment
;
2723 /// The preferred loop alignment (in log2 bot in bytes).
2724 Align PrefLoopAlignment
;
2726 /// Size in bits of the maximum atomics size the backend supports.
2727 /// Accesses larger than this will be expanded by AtomicExpandPass.
2728 unsigned MaxAtomicSizeInBitsSupported
;
2730 /// Size in bits of the minimum cmpxchg or ll/sc operation the
2731 /// backend supports.
2732 unsigned MinCmpXchgSizeInBits
;
2734 /// This indicates if the target supports unaligned atomic operations.
2735 bool SupportsUnalignedAtomics
;
2737 /// If set to a physical register, this specifies the register that
2738 /// llvm.savestack/llvm.restorestack should save and restore.
2739 unsigned StackPointerRegisterToSaveRestore
;
2741 /// This indicates the default register class to use for each ValueType the
2742 /// target supports natively.
2743 const TargetRegisterClass
*RegClassForVT
[MVT::LAST_VALUETYPE
];
2744 unsigned char NumRegistersForVT
[MVT::LAST_VALUETYPE
];
2745 MVT RegisterTypeForVT
[MVT::LAST_VALUETYPE
];
2747 /// This indicates the "representative" register class to use for each
2748 /// ValueType the target supports natively. This information is used by the
2749 /// scheduler to track register pressure. By default, the representative
2750 /// register class is the largest legal super-reg register class of the
2751 /// register class of the specified type. e.g. On x86, i8, i16, and i32's
2752 /// representative class would be GR32.
2753 const TargetRegisterClass
*RepRegClassForVT
[MVT::LAST_VALUETYPE
];
2755 /// This indicates the "cost" of the "representative" register class for each
2756 /// ValueType. The cost is used by the scheduler to approximate register
2758 uint8_t RepRegClassCostForVT
[MVT::LAST_VALUETYPE
];
2760 /// For any value types we are promoting or expanding, this contains the value
2761 /// type that we are changing to. For Expanded types, this contains one step
2762 /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
2763 /// (e.g. i64 -> i16). For types natively supported by the system, this holds
2764 /// the same type (e.g. i32 -> i32).
2765 MVT TransformToType
[MVT::LAST_VALUETYPE
];
2767 /// For each operation and each value type, keep a LegalizeAction that
2768 /// indicates how instruction selection should deal with the operation. Most
2769 /// operations are Legal (aka, supported natively by the target), but
2770 /// operations that are not should be described. Note that operations on
2771 /// non-legal value types are not described here.
2772 LegalizeAction OpActions
[MVT::LAST_VALUETYPE
][ISD::BUILTIN_OP_END
];
2774 /// For each load extension type and each value type, keep a LegalizeAction
2775 /// that indicates how instruction selection should deal with a load of a
2776 /// specific value type and extension type. Uses 4-bits to store the action
2777 /// for each of the 4 load ext types.
2778 uint16_t LoadExtActions
[MVT::LAST_VALUETYPE
][MVT::LAST_VALUETYPE
];
2780 /// For each value type pair keep a LegalizeAction that indicates whether a
2781 /// truncating store of a specific value type and truncating type is legal.
2782 LegalizeAction TruncStoreActions
[MVT::LAST_VALUETYPE
][MVT::LAST_VALUETYPE
];
2784 /// For each indexed mode and each value type, keep a pair of LegalizeAction
2785 /// that indicates how instruction selection should deal with the load /
2788 /// The first dimension is the value_type for the reference. The second
2789 /// dimension represents the various modes for load store.
2790 uint8_t IndexedModeActions
[MVT::LAST_VALUETYPE
][ISD::LAST_INDEXED_MODE
];
2792 /// For each condition code (ISD::CondCode) keep a LegalizeAction that
2793 /// indicates how instruction selection should deal with the condition code.
2795 /// Because each CC action takes up 4 bits, we need to have the array size be
2796 /// large enough to fit all of the value types. This can be done by rounding
2797 /// up the MVT::LAST_VALUETYPE value to the next multiple of 8.
2798 uint32_t CondCodeActions
[ISD::SETCC_INVALID
][(MVT::LAST_VALUETYPE
+ 7) / 8];
2800 ValueTypeActionImpl ValueTypeActions
;
2803 LegalizeKind
getTypeConversion(LLVMContext
&Context
, EVT VT
) const;
2805 /// Targets can specify ISD nodes that they would like PerformDAGCombine
2806 /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
2809 TargetDAGCombineArray
[(ISD::BUILTIN_OP_END
+CHAR_BIT
-1)/CHAR_BIT
];
2811 /// For operations that must be promoted to a specific type, this holds the
2812 /// destination type. This map should be sparse, so don't hold it as an
2815 /// Targets add entries to this map with AddPromotedToType(..), clients access
2816 /// this with getTypeToPromoteTo(..).
2817 std::map
<std::pair
<unsigned, MVT::SimpleValueType
>, MVT::SimpleValueType
>
2820 /// Stores the name each libcall.
2821 const char *LibcallRoutineNames
[RTLIB::UNKNOWN_LIBCALL
+ 1];
2823 /// The ISD::CondCode that should be used to test the result of each of the
2824 /// comparison libcall against zero.
2825 ISD::CondCode CmpLibcallCCs
[RTLIB::UNKNOWN_LIBCALL
];
2827 /// Stores the CallingConv that should be used for each libcall.
2828 CallingConv::ID LibcallCallingConvs
[RTLIB::UNKNOWN_LIBCALL
];
2830 /// Set default libcall names and calling conventions.
2831 void InitLibcalls(const Triple
&TT
);
2834 /// Return true if the extension represented by \p I is free.
2835 /// \pre \p I is a sign, zero, or fp extension and
2836 /// is[Z|FP]ExtFree of the related types is not true.
2837 virtual bool isExtFreeImpl(const Instruction
*I
) const { return false; }
2839 /// Depth that GatherAllAliases should should continue looking for chain
2840 /// dependencies when trying to find a more preferable chain. As an
2841 /// approximation, this should be more than the number of consecutive stores
2842 /// expected to be merged.
2843 unsigned GatherAllAliasesMaxDepth
;
2845 /// \brief Specify maximum number of store instructions per memset call.
2847 /// When lowering \@llvm.memset this field specifies the maximum number of
2848 /// store operations that may be substituted for the call to memset. Targets
2849 /// must set this value based on the cost threshold for that target. Targets
2850 /// should assume that the memset will be done using as many of the largest
2851 /// store operations first, followed by smaller ones, if necessary, per
2852 /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
2853 /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
2854 /// store. This only applies to setting a constant array of a constant size.
2855 unsigned MaxStoresPerMemset
;
2856 /// Likewise for functions with the OptSize attribute.
2857 unsigned MaxStoresPerMemsetOptSize
;
2859 /// \brief Specify maximum number of store instructions per memcpy call.
2861 /// When lowering \@llvm.memcpy this field specifies the maximum number of
2862 /// store operations that may be substituted for a call to memcpy. Targets
2863 /// must set this value based on the cost threshold for that target. Targets
2864 /// should assume that the memcpy will be done using as many of the largest
2865 /// store operations first, followed by smaller ones, if necessary, per
2866 /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
2867 /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
2868 /// and one 1-byte store. This only applies to copying a constant array of
2870 unsigned MaxStoresPerMemcpy
;
2871 /// Likewise for functions with the OptSize attribute.
2872 unsigned MaxStoresPerMemcpyOptSize
;
2873 /// \brief Specify max number of store instructions to glue in inlined memcpy.
2875 /// When memcpy is inlined based on MaxStoresPerMemcpy, specify maximum number
2876 /// of store instructions to keep together. This helps in pairing and
2877 // vectorization later on.
2878 unsigned MaxGluedStoresPerMemcpy
= 0;
2880 /// \brief Specify maximum number of load instructions per memcmp call.
2882 /// When lowering \@llvm.memcmp this field specifies the maximum number of
2883 /// pairs of load operations that may be substituted for a call to memcmp.
2884 /// Targets must set this value based on the cost threshold for that target.
2885 /// Targets should assume that the memcmp will be done using as many of the
2886 /// largest load operations first, followed by smaller ones, if necessary, per
2887 /// alignment restrictions. For example, loading 7 bytes on a 32-bit machine
2888 /// with 32-bit alignment would result in one 4-byte load, a one 2-byte load
2889 /// and one 1-byte load. This only applies to copying a constant array of
2891 unsigned MaxLoadsPerMemcmp
;
2892 /// Likewise for functions with the OptSize attribute.
2893 unsigned MaxLoadsPerMemcmpOptSize
;
2895 /// \brief Specify maximum number of store instructions per memmove call.
2897 /// When lowering \@llvm.memmove this field specifies the maximum number of
2898 /// store instructions that may be substituted for a call to memmove. Targets
2899 /// must set this value based on the cost threshold for that target. Targets
2900 /// should assume that the memmove will be done using as many of the largest
2901 /// store operations first, followed by smaller ones, if necessary, per
2902 /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
2903 /// with 8-bit alignment would result in nine 1-byte stores. This only
2904 /// applies to copying a constant array of constant size.
2905 unsigned MaxStoresPerMemmove
;
2906 /// Likewise for functions with the OptSize attribute.
2907 unsigned MaxStoresPerMemmoveOptSize
;
2909 /// Tells the code generator that select is more expensive than a branch if
2910 /// the branch is usually predicted right.
2911 bool PredictableSelectIsExpensive
;
2913 /// \see enableExtLdPromotion.
2914 bool EnableExtLdPromotion
;
2916 /// Return true if the value types that can be represented by the specified
2917 /// register class are all legal.
2918 bool isLegalRC(const TargetRegisterInfo
&TRI
,
2919 const TargetRegisterClass
&RC
) const;
2921 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
2922 /// sequence of memory operands that is recognized by PrologEpilogInserter.
2923 MachineBasicBlock
*emitPatchPoint(MachineInstr
&MI
,
2924 MachineBasicBlock
*MBB
) const;
2926 /// Replace/modify the XRay custom event operands with target-dependent
2928 MachineBasicBlock
*emitXRayCustomEvent(MachineInstr
&MI
,
2929 MachineBasicBlock
*MBB
) const;
2931 /// Replace/modify the XRay typed event operands with target-dependent
2933 MachineBasicBlock
*emitXRayTypedEvent(MachineInstr
&MI
,
2934 MachineBasicBlock
*MBB
) const;
2937 /// This class defines information used to lower LLVM code to legal SelectionDAG
2938 /// operators that the target instruction selector can accept natively.
2940 /// This class also defines callbacks that targets must implement to lower
2941 /// target-specific constructs to SelectionDAG operators.
2942 class TargetLowering
: public TargetLoweringBase
{
2944 struct DAGCombinerInfo
;
2945 struct MakeLibCallOptions
;
2947 TargetLowering(const TargetLowering
&) = delete;
2948 TargetLowering
&operator=(const TargetLowering
&) = delete;
2950 /// NOTE: The TargetMachine owns TLOF.
2951 explicit TargetLowering(const TargetMachine
&TM
);
2953 bool isPositionIndependent() const;
2955 virtual bool isSDNodeSourceOfDivergence(const SDNode
*N
,
2956 FunctionLoweringInfo
*FLI
,
2957 LegacyDivergenceAnalysis
*DA
) const {
2961 virtual bool isSDNodeAlwaysUniform(const SDNode
* N
) const {
2965 /// Returns true by value, base pointer and offset pointer and addressing mode
2966 /// by reference if the node's address can be legally represented as
2967 /// pre-indexed load / store address.
2968 virtual bool getPreIndexedAddressParts(SDNode
* /*N*/, SDValue
&/*Base*/,
2969 SDValue
&/*Offset*/,
2970 ISD::MemIndexedMode
&/*AM*/,
2971 SelectionDAG
&/*DAG*/) const {
2975 /// Returns true by value, base pointer and offset pointer and addressing mode
2976 /// by reference if this node can be combined with a load / store to form a
2977 /// post-indexed load / store.
2978 virtual bool getPostIndexedAddressParts(SDNode
* /*N*/, SDNode
* /*Op*/,
2980 SDValue
&/*Offset*/,
2981 ISD::MemIndexedMode
&/*AM*/,
2982 SelectionDAG
&/*DAG*/) const {
2986 /// Returns true if the specified base+offset is a legal indexed addressing
2987 /// mode for this target. \p MI is the load or store instruction that is being
2988 /// considered for transformation.
2989 virtual bool isIndexingLegal(MachineInstr
&MI
, Register Base
, Register Offset
,
2990 bool IsPre
, MachineRegisterInfo
&MRI
) const {
2994 /// Return the entry encoding for a jump table in the current function. The
2995 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
2996 virtual unsigned getJumpTableEncoding() const;
2998 virtual const MCExpr
*
2999 LowerCustomJumpTableEntry(const MachineJumpTableInfo
* /*MJTI*/,
3000 const MachineBasicBlock
* /*MBB*/, unsigned /*uid*/,
3001 MCContext
&/*Ctx*/) const {
3002 llvm_unreachable("Need to implement this hook if target has custom JTIs");
3005 /// Returns relocation base for the given PIC jumptable.
3006 virtual SDValue
getPICJumpTableRelocBase(SDValue Table
,
3007 SelectionDAG
&DAG
) const;
3009 /// This returns the relocation base for the given PIC jumptable, the same as
3010 /// getPICJumpTableRelocBase, but as an MCExpr.
3011 virtual const MCExpr
*
3012 getPICJumpTableRelocBaseExpr(const MachineFunction
*MF
,
3013 unsigned JTI
, MCContext
&Ctx
) const;
3015 /// Return true if folding a constant offset with the given GlobalAddress is
3016 /// legal. It is frequently not legal in PIC relocation models.
3017 virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const;
3019 bool isInTailCallPosition(SelectionDAG
&DAG
, SDNode
*Node
,
3020 SDValue
&Chain
) const;
3022 void softenSetCCOperands(SelectionDAG
&DAG
, EVT VT
, SDValue
&NewLHS
,
3023 SDValue
&NewRHS
, ISD::CondCode
&CCCode
,
3024 const SDLoc
&DL
, const SDValue OldLHS
,
3025 const SDValue OldRHS
) const;
3027 /// Returns a pair of (return value, chain).
3028 /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC.
3029 std::pair
<SDValue
, SDValue
> makeLibCall(SelectionDAG
&DAG
, RTLIB::Libcall LC
,
3030 EVT RetVT
, ArrayRef
<SDValue
> Ops
,
3031 MakeLibCallOptions CallOptions
,
3032 const SDLoc
&dl
) const;
3034 /// Check whether parameters to a call that are passed in callee saved
3035 /// registers are the same as from the calling function. This needs to be
3036 /// checked for tail call eligibility.
3037 bool parametersInCSRMatch(const MachineRegisterInfo
&MRI
,
3038 const uint32_t *CallerPreservedMask
,
3039 const SmallVectorImpl
<CCValAssign
> &ArgLocs
,
3040 const SmallVectorImpl
<SDValue
> &OutVals
) const;
3042 //===--------------------------------------------------------------------===//
3043 // TargetLowering Optimization Methods
3046 /// A convenience struct that encapsulates a DAG, and two SDValues for
3047 /// returning information from TargetLowering to its clients that want to
3049 struct TargetLoweringOpt
{
3056 explicit TargetLoweringOpt(SelectionDAG
&InDAG
,
3058 DAG(InDAG
), LegalTys(LT
), LegalOps(LO
) {}
3060 bool LegalTypes() const { return LegalTys
; }
3061 bool LegalOperations() const { return LegalOps
; }
3063 bool CombineTo(SDValue O
, SDValue N
) {
3070 /// Determines the optimal series of memory ops to replace the memset / memcpy.
3071 /// Return true if the number of memory ops is below the threshold (Limit).
3072 /// It returns the types of the sequence of memory ops to perform
3073 /// memset / memcpy by reference.
3074 bool findOptimalMemOpLowering(std::vector
<EVT
> &MemOps
,
3075 unsigned Limit
, uint64_t Size
,
3076 unsigned DstAlign
, unsigned SrcAlign
,
3081 unsigned DstAS
, unsigned SrcAS
,
3082 const AttributeList
&FuncAttributes
) const;
3084 /// Check to see if the specified operand of the specified instruction is a
3085 /// constant integer. If so, check to see if there are any bits set in the
3086 /// constant that are not demanded. If so, shrink the constant and return
3088 bool ShrinkDemandedConstant(SDValue Op
, const APInt
&Demanded
,
3089 TargetLoweringOpt
&TLO
) const;
3091 // Target hook to do target-specific const optimization, which is called by
3092 // ShrinkDemandedConstant. This function should return true if the target
3093 // doesn't want ShrinkDemandedConstant to further optimize the constant.
3094 virtual bool targetShrinkDemandedConstant(SDValue Op
, const APInt
&Demanded
,
3095 TargetLoweringOpt
&TLO
) const {
3099 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. This
3100 /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
3101 /// generalized for targets with other types of implicit widening casts.
3102 bool ShrinkDemandedOp(SDValue Op
, unsigned BitWidth
, const APInt
&Demanded
,
3103 TargetLoweringOpt
&TLO
) const;
3105 /// Look at Op. At this point, we know that only the DemandedBits bits of the
3106 /// result of Op are ever used downstream. If we can use this information to
3107 /// simplify Op, create a new simplified DAG node and return true, returning
3108 /// the original and new nodes in Old and New. Otherwise, analyze the
3109 /// expression and return a mask of KnownOne and KnownZero bits for the
3110 /// expression (used to simplify the caller). The KnownZero/One bits may only
3111 /// be accurate for those bits in the Demanded masks.
3112 /// \p AssumeSingleUse When this parameter is true, this function will
3113 /// attempt to simplify \p Op even if there are multiple uses.
3114 /// Callers are responsible for correctly updating the DAG based on the
3115 /// results of this function, because simply replacing replacing TLO.Old
3116 /// with TLO.New will be incorrect when this parameter is true and TLO.Old
3117 /// has multiple uses.
3118 bool SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
,
3119 const APInt
&DemandedElts
, KnownBits
&Known
,
3120 TargetLoweringOpt
&TLO
, unsigned Depth
= 0,
3121 bool AssumeSingleUse
= false) const;
3123 /// Helper wrapper around SimplifyDemandedBits, demanding all elements.
3124 /// Adds Op back to the worklist upon success.
3125 bool SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
,
3126 KnownBits
&Known
, TargetLoweringOpt
&TLO
,
3128 bool AssumeSingleUse
= false) const;
3130 /// Helper wrapper around SimplifyDemandedBits.
3131 /// Adds Op back to the worklist upon success.
3132 bool SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedMask
,
3133 DAGCombinerInfo
&DCI
) const;
3135 /// More limited version of SimplifyDemandedBits that can be used to "look
3136 /// through" ops that don't contribute to the DemandedBits/DemandedElts -
3137 /// bitwise ops etc.
3138 SDValue
SimplifyMultipleUseDemandedBits(SDValue Op
, const APInt
&DemandedBits
,
3139 const APInt
&DemandedElts
,
3141 unsigned Depth
) const;
3143 /// Look at Vector Op. At this point, we know that only the DemandedElts
3144 /// elements of the result of Op are ever used downstream. If we can use
3145 /// this information to simplify Op, create a new simplified DAG node and
3146 /// return true, storing the original and new nodes in TLO.
3147 /// Otherwise, analyze the expression and return a mask of KnownUndef and
3148 /// KnownZero elements for the expression (used to simplify the caller).
3149 /// The KnownUndef/Zero elements may only be accurate for those bits
3150 /// in the DemandedMask.
3151 /// \p AssumeSingleUse When this parameter is true, this function will
3152 /// attempt to simplify \p Op even if there are multiple uses.
3153 /// Callers are responsible for correctly updating the DAG based on the
3154 /// results of this function, because simply replacing replacing TLO.Old
3155 /// with TLO.New will be incorrect when this parameter is true and TLO.Old
3156 /// has multiple uses.
3157 bool SimplifyDemandedVectorElts(SDValue Op
, const APInt
&DemandedEltMask
,
3158 APInt
&KnownUndef
, APInt
&KnownZero
,
3159 TargetLoweringOpt
&TLO
, unsigned Depth
= 0,
3160 bool AssumeSingleUse
= false) const;
3162 /// Helper wrapper around SimplifyDemandedVectorElts.
3163 /// Adds Op back to the worklist upon success.
3164 bool SimplifyDemandedVectorElts(SDValue Op
, const APInt
&DemandedElts
,
3165 APInt
&KnownUndef
, APInt
&KnownZero
,
3166 DAGCombinerInfo
&DCI
) const;
3168 /// Determine which of the bits specified in Mask are known to be either zero
3169 /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
3170 /// argument allows us to only collect the known bits that are shared by the
3171 /// requested vector elements.
3172 virtual void computeKnownBitsForTargetNode(const SDValue Op
,
3174 const APInt
&DemandedElts
,
3175 const SelectionDAG
&DAG
,
3176 unsigned Depth
= 0) const;
3177 /// Determine which of the bits specified in Mask are known to be either zero
3178 /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
3179 /// argument allows us to only collect the known bits that are shared by the
3180 /// requested vector elements. This is for GISel.
3181 virtual void computeKnownBitsForTargetInstr(GISelKnownBits
&Analysis
,
3182 Register R
, KnownBits
&Known
,
3183 const APInt
&DemandedElts
,
3184 const MachineRegisterInfo
&MRI
,
3185 unsigned Depth
= 0) const;
3187 /// Determine which of the bits of FrameIndex \p FIOp are known to be 0.
3188 /// Default implementation computes low bits based on alignment
3189 /// information. This should preserve known bits passed into it.
3190 virtual void computeKnownBitsForFrameIndex(const SDValue FIOp
,
3192 const APInt
&DemandedElts
,
3193 const SelectionDAG
&DAG
,
3194 unsigned Depth
= 0) const;
3196 /// This method can be implemented by targets that want to expose additional
3197 /// information about sign bits to the DAG Combiner. The DemandedElts
3198 /// argument allows us to only collect the minimum sign bits that are shared
3199 /// by the requested vector elements.
3200 virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op
,
3201 const APInt
&DemandedElts
,
3202 const SelectionDAG
&DAG
,
3203 unsigned Depth
= 0) const;
3205 /// Attempt to simplify any target nodes based on the demanded vector
3206 /// elements, returning true on success. Otherwise, analyze the expression and
3207 /// return a mask of KnownUndef and KnownZero elements for the expression
3208 /// (used to simplify the caller). The KnownUndef/Zero elements may only be
3209 /// accurate for those bits in the DemandedMask.
3210 virtual bool SimplifyDemandedVectorEltsForTargetNode(
3211 SDValue Op
, const APInt
&DemandedElts
, APInt
&KnownUndef
,
3212 APInt
&KnownZero
, TargetLoweringOpt
&TLO
, unsigned Depth
= 0) const;
3214 /// Attempt to simplify any target nodes based on the demanded bits/elts,
3215 /// returning true on success. Otherwise, analyze the
3216 /// expression and return a mask of KnownOne and KnownZero bits for the
3217 /// expression (used to simplify the caller). The KnownZero/One bits may only
3218 /// be accurate for those bits in the Demanded masks.
3219 virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op
,
3220 const APInt
&DemandedBits
,
3221 const APInt
&DemandedElts
,
3223 TargetLoweringOpt
&TLO
,
3224 unsigned Depth
= 0) const;
3226 /// More limited version of SimplifyDemandedBits that can be used to "look
3227 /// through" ops that don't contribute to the DemandedBits/DemandedElts -
3228 /// bitwise ops etc.
3229 virtual SDValue
SimplifyMultipleUseDemandedBitsForTargetNode(
3230 SDValue Op
, const APInt
&DemandedBits
, const APInt
&DemandedElts
,
3231 SelectionDAG
&DAG
, unsigned Depth
) const;
3233 /// Tries to build a legal vector shuffle using the provided parameters
3234 /// or equivalent variations. The Mask argument maybe be modified as the
3235 /// function tries different variations.
3236 /// Returns an empty SDValue if the operation fails.
3237 SDValue
buildLegalVectorShuffle(EVT VT
, const SDLoc
&DL
, SDValue N0
,
3238 SDValue N1
, MutableArrayRef
<int> Mask
,
3239 SelectionDAG
&DAG
) const;
3241 /// This method returns the constant pool value that will be loaded by LD.
3242 /// NOTE: You must check for implicit extensions of the constant by LD.
3243 virtual const Constant
*getTargetConstantFromLoad(LoadSDNode
*LD
) const;
3245 /// If \p SNaN is false, \returns true if \p Op is known to never be any
3246 /// NaN. If \p sNaN is true, returns if \p Op is known to never be a signaling
3248 virtual bool isKnownNeverNaNForTargetNode(SDValue Op
,
3249 const SelectionDAG
&DAG
,
3251 unsigned Depth
= 0) const;
3252 struct DAGCombinerInfo
{
3253 void *DC
; // The DAG Combiner object.
3255 bool CalledByLegalizer
;
3260 DAGCombinerInfo(SelectionDAG
&dag
, CombineLevel level
, bool cl
, void *dc
)
3261 : DC(dc
), Level(level
), CalledByLegalizer(cl
), DAG(dag
) {}
3263 bool isBeforeLegalize() const { return Level
== BeforeLegalizeTypes
; }
3264 bool isBeforeLegalizeOps() const { return Level
< AfterLegalizeVectorOps
; }
3265 bool isAfterLegalizeDAG() const {
3266 return Level
== AfterLegalizeDAG
;
3268 CombineLevel
getDAGCombineLevel() { return Level
; }
3269 bool isCalledByLegalizer() const { return CalledByLegalizer
; }
3271 void AddToWorklist(SDNode
*N
);
3272 SDValue
CombineTo(SDNode
*N
, ArrayRef
<SDValue
> To
, bool AddTo
= true);
3273 SDValue
CombineTo(SDNode
*N
, SDValue Res
, bool AddTo
= true);
3274 SDValue
CombineTo(SDNode
*N
, SDValue Res0
, SDValue Res1
, bool AddTo
= true);
3276 bool recursivelyDeleteUnusedNodes(SDNode
*N
);
3278 void CommitTargetLoweringOpt(const TargetLoweringOpt
&TLO
);
3281 /// Return if the N is a constant or constant vector equal to the true value
3282 /// from getBooleanContents().
3283 bool isConstTrueVal(const SDNode
*N
) const;
3285 /// Return if the N is a constant or constant vector equal to the false value
3286 /// from getBooleanContents().
3287 bool isConstFalseVal(const SDNode
*N
) const;
3289 /// Return if \p N is a True value when extended to \p VT.
3290 bool isExtendedTrueVal(const ConstantSDNode
*N
, EVT VT
, bool SExt
) const;
3292 /// Try to simplify a setcc built with the specified operands and cc. If it is
3293 /// unable to simplify it, return a null SDValue.
3294 SDValue
SimplifySetCC(EVT VT
, SDValue N0
, SDValue N1
, ISD::CondCode Cond
,
3295 bool foldBooleans
, DAGCombinerInfo
&DCI
,
3296 const SDLoc
&dl
) const;
3298 // For targets which wrap address, unwrap for analysis.
3299 virtual SDValue
unwrapAddress(SDValue N
) const { return N
; }
3301 /// Returns true (and the GlobalValue and the offset) if the node is a
3302 /// GlobalAddress + offset.
3304 isGAPlusOffset(SDNode
*N
, const GlobalValue
* &GA
, int64_t &Offset
) const;
3306 /// This method will be invoked for all target nodes and for any
3307 /// target-independent nodes that the target has registered with invoke it
3310 /// The semantics are as follows:
3312 /// SDValue.Val == 0 - No change was made
3313 /// SDValue.Val == N - N was replaced, is dead, and is already handled.
3314 /// otherwise - N should be replaced by the returned Operand.
3316 /// In addition, methods provided by DAGCombinerInfo may be used to perform
3317 /// more complex transformations.
3319 virtual SDValue
PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
3321 /// Return true if it is profitable to move this shift by a constant amount
3322 /// though its operand, adjusting any immediate operands as necessary to
3323 /// preserve semantics. This transformation may not be desirable if it
3324 /// disrupts a particularly auspicious target-specific tree (e.g. bitfield
3325 /// extraction in AArch64). By default, it returns true.
3327 /// @param N the shift node
3328 /// @param Level the current DAGCombine legalization level.
3329 virtual bool isDesirableToCommuteWithShift(const SDNode
*N
,
3330 CombineLevel Level
) const {
3334 // Return true if it is profitable to combine a BUILD_VECTOR with a stride-pattern
3335 // to a shuffle and a truncate.
3336 // Example of such a combine:
3337 // v4i32 build_vector((extract_elt V, 1),
3338 // (extract_elt V, 3),
3339 // (extract_elt V, 5),
3340 // (extract_elt V, 7))
3342 // v4i32 truncate (bitcast (shuffle<1,u,3,u,5,u,7,u> V, u) to v4i64)
3343 virtual bool isDesirableToCombineBuildVectorToShuffleTruncate(
3344 ArrayRef
<int> ShuffleMask
, EVT SrcVT
, EVT TruncVT
) const {
3348 /// Return true if the target has native support for the specified value type
3349 /// and it is 'desirable' to use the type for the given node type. e.g. On x86
3350 /// i16 is legal, but undesirable since i16 instruction encodings are longer
3351 /// and some i16 instructions are slow.
3352 virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT
) const {
3353 // By default, assume all legal types are desirable.
3354 return isTypeLegal(VT
);
3357 /// Return true if it is profitable for dag combiner to transform a floating
3358 /// point op of specified opcode to a equivalent op of an integer
3359 /// type. e.g. f32 load -> i32 load can be profitable on ARM.
3360 virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
3365 /// This method query the target whether it is beneficial for dag combiner to
3366 /// promote the specified node. If true, it should return the desired
3367 /// promotion type by reference.
3368 virtual bool IsDesirableToPromoteOp(SDValue
/*Op*/, EVT
&/*PVT*/) const {
3372 /// Return true if the target supports swifterror attribute. It optimizes
3373 /// loads and stores to reading and writing a specific register.
3374 virtual bool supportSwiftError() const {
3378 /// Return true if the target supports that a subset of CSRs for the given
3379 /// machine function is handled explicitly via copies.
3380 virtual bool supportSplitCSR(MachineFunction
*MF
) const {
3384 /// Perform necessary initialization to handle a subset of CSRs explicitly
3385 /// via copies. This function is called at the beginning of instruction
3387 virtual void initializeSplitCSR(MachineBasicBlock
*Entry
) const {
3388 llvm_unreachable("Not Implemented");
3391 /// Insert explicit copies in entry and exit blocks. We copy a subset of
3392 /// CSRs to virtual registers in the entry block, and copy them back to
3393 /// physical registers in the exit blocks. This function is called at the end
3394 /// of instruction selection.
3395 virtual void insertCopiesSplitCSR(
3396 MachineBasicBlock
*Entry
,
3397 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const {
3398 llvm_unreachable("Not Implemented");
3401 /// Return 1 if we can compute the negated form of the specified expression
3402 /// for the same cost as the expression itself, or 2 if we can compute the
3403 /// negated form more cheaply than the expression itself. Else return 0.
3404 virtual char isNegatibleForFree(SDValue Op
, SelectionDAG
&DAG
,
3405 bool LegalOperations
, bool ForCodeSize
,
3406 unsigned Depth
= 0) const;
3408 /// If isNegatibleForFree returns true, return the newly negated expression.
3409 virtual SDValue
getNegatedExpression(SDValue Op
, SelectionDAG
&DAG
,
3410 bool LegalOperations
, bool ForCodeSize
,
3411 unsigned Depth
= 0) const;
3413 //===--------------------------------------------------------------------===//
3414 // Lowering methods - These methods must be implemented by targets so that
3415 // the SelectionDAGBuilder code knows how to lower these.
3418 /// This hook must be implemented to lower the incoming (formal) arguments,
3419 /// described by the Ins array, into the specified DAG. The implementation
3420 /// should fill in the InVals array with legal-type argument values, and
3421 /// return the resulting token chain value.
3422 virtual SDValue
LowerFormalArguments(
3423 SDValue
/*Chain*/, CallingConv::ID
/*CallConv*/, bool /*isVarArg*/,
3424 const SmallVectorImpl
<ISD::InputArg
> & /*Ins*/, const SDLoc
& /*dl*/,
3425 SelectionDAG
& /*DAG*/, SmallVectorImpl
<SDValue
> & /*InVals*/) const {
3426 llvm_unreachable("Not Implemented");
3429 /// This structure contains all information that is necessary for lowering
3430 /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
3431 /// needs to lower a call, and targets will see this struct in their LowerCall
3433 struct CallLoweringInfo
{
3435 Type
*RetTy
= nullptr;
3440 bool DoesNotReturn
: 1;
3441 bool IsReturnValueUsed
: 1;
3442 bool IsConvergent
: 1;
3443 bool IsPatchPoint
: 1;
3445 // IsTailCall should be modified by implementations of
3446 // TargetLowering::LowerCall that perform tail call conversions.
3447 bool IsTailCall
= false;
3449 // Is Call lowering done post SelectionDAG type legalization.
3450 bool IsPostTypeLegalization
= false;
3452 unsigned NumFixedArgs
= -1;
3453 CallingConv::ID CallConv
= CallingConv::C
;
3458 ImmutableCallSite CS
;
3459 SmallVector
<ISD::OutputArg
, 32> Outs
;
3460 SmallVector
<SDValue
, 32> OutVals
;
3461 SmallVector
<ISD::InputArg
, 32> Ins
;
3462 SmallVector
<SDValue
, 4> InVals
;
3464 CallLoweringInfo(SelectionDAG
&DAG
)
3465 : RetSExt(false), RetZExt(false), IsVarArg(false), IsInReg(false),
3466 DoesNotReturn(false), IsReturnValueUsed(true), IsConvergent(false),
3467 IsPatchPoint(false), DAG(DAG
) {}
3469 CallLoweringInfo
&setDebugLoc(const SDLoc
&dl
) {
3474 CallLoweringInfo
&setChain(SDValue InChain
) {
3479 // setCallee with target/module-specific attributes
3480 CallLoweringInfo
&setLibCallee(CallingConv::ID CC
, Type
*ResultType
,
3481 SDValue Target
, ArgListTy
&&ArgsList
) {
3485 NumFixedArgs
= ArgsList
.size();
3486 Args
= std::move(ArgsList
);
3488 DAG
.getTargetLoweringInfo().markLibCallAttributes(
3489 &(DAG
.getMachineFunction()), CC
, Args
);
3493 CallLoweringInfo
&setCallee(CallingConv::ID CC
, Type
*ResultType
,
3494 SDValue Target
, ArgListTy
&&ArgsList
) {
3498 NumFixedArgs
= ArgsList
.size();
3499 Args
= std::move(ArgsList
);
3503 CallLoweringInfo
&setCallee(Type
*ResultType
, FunctionType
*FTy
,
3504 SDValue Target
, ArgListTy
&&ArgsList
,
3505 ImmutableCallSite Call
) {
3508 IsInReg
= Call
.hasRetAttr(Attribute::InReg
);
3510 Call
.doesNotReturn() ||
3511 (!Call
.isInvoke() &&
3512 isa
<UnreachableInst
>(Call
.getInstruction()->getNextNode()));
3513 IsVarArg
= FTy
->isVarArg();
3514 IsReturnValueUsed
= !Call
.getInstruction()->use_empty();
3515 RetSExt
= Call
.hasRetAttr(Attribute::SExt
);
3516 RetZExt
= Call
.hasRetAttr(Attribute::ZExt
);
3520 CallConv
= Call
.getCallingConv();
3521 NumFixedArgs
= FTy
->getNumParams();
3522 Args
= std::move(ArgsList
);
3529 CallLoweringInfo
&setInRegister(bool Value
= true) {
3534 CallLoweringInfo
&setNoReturn(bool Value
= true) {
3535 DoesNotReturn
= Value
;
3539 CallLoweringInfo
&setVarArg(bool Value
= true) {
3544 CallLoweringInfo
&setTailCall(bool Value
= true) {
3549 CallLoweringInfo
&setDiscardResult(bool Value
= true) {
3550 IsReturnValueUsed
= !Value
;
3554 CallLoweringInfo
&setConvergent(bool Value
= true) {
3555 IsConvergent
= Value
;
3559 CallLoweringInfo
&setSExtResult(bool Value
= true) {
3564 CallLoweringInfo
&setZExtResult(bool Value
= true) {
3569 CallLoweringInfo
&setIsPatchPoint(bool Value
= true) {
3570 IsPatchPoint
= Value
;
3574 CallLoweringInfo
&setIsPostTypeLegalization(bool Value
=true) {
3575 IsPostTypeLegalization
= Value
;
3579 ArgListTy
&getArgs() {
3584 /// This structure is used to pass arguments to makeLibCall function.
3585 struct MakeLibCallOptions
{
3586 // By passing type list before soften to makeLibCall, the target hook
3587 // shouldExtendTypeInLibCall can get the original type before soften.
3588 ArrayRef
<EVT
> OpsVTBeforeSoften
;
3589 EVT RetVTBeforeSoften
;
3591 bool DoesNotReturn
: 1;
3592 bool IsReturnValueUsed
: 1;
3593 bool IsPostTypeLegalization
: 1;
3596 MakeLibCallOptions()
3597 : IsSExt(false), DoesNotReturn(false), IsReturnValueUsed(true),
3598 IsPostTypeLegalization(false), IsSoften(false) {}
3600 MakeLibCallOptions
&setSExt(bool Value
= true) {
3605 MakeLibCallOptions
&setNoReturn(bool Value
= true) {
3606 DoesNotReturn
= Value
;
3610 MakeLibCallOptions
&setDiscardResult(bool Value
= true) {
3611 IsReturnValueUsed
= !Value
;
3615 MakeLibCallOptions
&setIsPostTypeLegalization(bool Value
= true) {
3616 IsPostTypeLegalization
= Value
;
3620 MakeLibCallOptions
&setTypeListBeforeSoften(ArrayRef
<EVT
> OpsVT
, EVT RetVT
,
3621 bool Value
= true) {
3622 OpsVTBeforeSoften
= OpsVT
;
3623 RetVTBeforeSoften
= RetVT
;
3629 /// This function lowers an abstract call to a function into an actual call.
3630 /// This returns a pair of operands. The first element is the return value
3631 /// for the function (if RetTy is not VoidTy). The second element is the
3632 /// outgoing token chain. It calls LowerCall to do the actual lowering.
3633 std::pair
<SDValue
, SDValue
> LowerCallTo(CallLoweringInfo
&CLI
) const;
3635 /// This hook must be implemented to lower calls into the specified
3636 /// DAG. The outgoing arguments to the call are described by the Outs array,
3637 /// and the values to be returned by the call are described by the Ins
3638 /// array. The implementation should fill in the InVals array with legal-type
3639 /// return values from the call, and return the resulting token chain value.
3641 LowerCall(CallLoweringInfo
&/*CLI*/,
3642 SmallVectorImpl
<SDValue
> &/*InVals*/) const {
3643 llvm_unreachable("Not Implemented");
3646 /// Target-specific cleanup for formal ByVal parameters.
3647 virtual void HandleByVal(CCState
*, unsigned &, unsigned) const {}
3649 /// This hook should be implemented to check whether the return values
3650 /// described by the Outs array can fit into the return registers. If false
3651 /// is returned, an sret-demotion is performed.
3652 virtual bool CanLowerReturn(CallingConv::ID
/*CallConv*/,
3653 MachineFunction
&/*MF*/, bool /*isVarArg*/,
3654 const SmallVectorImpl
<ISD::OutputArg
> &/*Outs*/,
3655 LLVMContext
&/*Context*/) const
3657 // Return true by default to get preexisting behavior.
3661 /// This hook must be implemented to lower outgoing return values, described
3662 /// by the Outs array, into the specified DAG. The implementation should
3663 /// return the resulting token chain value.
3664 virtual SDValue
LowerReturn(SDValue
/*Chain*/, CallingConv::ID
/*CallConv*/,
3666 const SmallVectorImpl
<ISD::OutputArg
> & /*Outs*/,
3667 const SmallVectorImpl
<SDValue
> & /*OutVals*/,
3668 const SDLoc
& /*dl*/,
3669 SelectionDAG
& /*DAG*/) const {
3670 llvm_unreachable("Not Implemented");
3673 /// Return true if result of the specified node is used by a return node
3674 /// only. It also compute and return the input chain for the tail call.
3676 /// This is used to determine whether it is possible to codegen a libcall as
3677 /// tail call at legalization time.
3678 virtual bool isUsedByReturnOnly(SDNode
*, SDValue
&/*Chain*/) const {
3682 /// Return true if the target may be able emit the call instruction as a tail
3683 /// call. This is used by optimization passes to determine if it's profitable
3684 /// to duplicate return instructions to enable tailcall optimization.
3685 virtual bool mayBeEmittedAsTailCall(const CallInst
*) const {
3689 /// Return the builtin name for the __builtin___clear_cache intrinsic
3690 /// Default is to invoke the clear cache library call
3691 virtual const char * getClearCacheBuiltinName() const {
3692 return "__clear_cache";
3695 /// Return the register ID of the name passed in. Used by named register
3696 /// global variables extension. There is no target-independent behaviour
3697 /// so the default action is to bail.
3698 virtual Register
getRegisterByName(const char* RegName
, EVT VT
,
3699 const MachineFunction
&MF
) const {
3700 report_fatal_error("Named registers not implemented for this target");
3703 /// Return the type that should be used to zero or sign extend a
3704 /// zeroext/signext integer return value. FIXME: Some C calling conventions
3705 /// require the return type to be promoted, but this is not true all the time,
3706 /// e.g. i1/i8/i16 on x86/x86_64. It is also not necessary for non-C calling
3707 /// conventions. The frontend should handle this and include all of the
3708 /// necessary information.
3709 virtual EVT
getTypeForExtReturn(LLVMContext
&Context
, EVT VT
,
3710 ISD::NodeType
/*ExtendKind*/) const {
3711 EVT MinVT
= getRegisterType(Context
, MVT::i32
);
3712 return VT
.bitsLT(MinVT
) ? MinVT
: VT
;
3715 /// For some targets, an LLVM struct type must be broken down into multiple
3716 /// simple types, but the calling convention specifies that the entire struct
3717 /// must be passed in a block of consecutive registers.
3719 functionArgumentNeedsConsecutiveRegisters(Type
*Ty
, CallingConv::ID CallConv
,
3720 bool isVarArg
) const {
3724 /// For most targets, an LLVM type must be broken down into multiple
3725 /// smaller types. Usually the halves are ordered according to the endianness
3726 /// but for some platform that would break. So this method will default to
3727 /// matching the endianness but can be overridden.
3729 shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout
&DL
) const {
3730 return DL
.isLittleEndian();
3733 /// Returns a 0 terminated array of registers that can be safely used as
3734 /// scratch registers.
3735 virtual const MCPhysReg
*getScratchRegisters(CallingConv::ID CC
) const {
3739 /// This callback is used to prepare for a volatile or atomic load.
3740 /// It takes a chain node as input and returns the chain for the load itself.
3742 /// Having a callback like this is necessary for targets like SystemZ,
3743 /// which allows a CPU to reuse the result of a previous load indefinitely,
3744 /// even if a cache-coherent store is performed by another CPU. The default
3745 /// implementation does nothing.
3746 virtual SDValue
prepareVolatileOrAtomicLoad(SDValue Chain
, const SDLoc
&DL
,
3747 SelectionDAG
&DAG
) const {
3751 /// This callback is used to inspect load/store instructions and add
3752 /// target-specific MachineMemOperand flags to them. The default
3753 /// implementation does nothing.
3754 virtual MachineMemOperand::Flags
getMMOFlags(const Instruction
&I
) const {
3755 return MachineMemOperand::MONone
;
3758 /// Should SelectionDAG lower an atomic store of the given kind as a normal
3759 /// StoreSDNode (as opposed to an AtomicSDNode)? NOTE: The intention is to
3760 /// eventually migrate all targets to the using StoreSDNodes, but porting is
3761 /// being done target at a time.
3762 virtual bool lowerAtomicStoreAsStoreSDNode(const StoreInst
&SI
) const {
3763 assert(SI
.isAtomic() && "violated precondition");
3767 /// Should SelectionDAG lower an atomic load of the given kind as a normal
3768 /// LoadSDNode (as opposed to an AtomicSDNode)? NOTE: The intention is to
3769 /// eventually migrate all targets to the using LoadSDNodes, but porting is
3770 /// being done target at a time.
3771 virtual bool lowerAtomicLoadAsLoadSDNode(const LoadInst
&LI
) const {
3772 assert(LI
.isAtomic() && "violated precondition");
3777 /// This callback is invoked by the type legalizer to legalize nodes with an
3778 /// illegal operand type but legal result types. It replaces the
3779 /// LowerOperation callback in the type Legalizer. The reason we can not do
3780 /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
3781 /// use this callback.
3783 /// TODO: Consider merging with ReplaceNodeResults.
3785 /// The target places new result values for the node in Results (their number
3786 /// and types must exactly match those of the original return values of
3787 /// the node), or leaves Results empty, which indicates that the node is not
3788 /// to be custom lowered after all.
3789 /// The default implementation calls LowerOperation.
3790 virtual void LowerOperationWrapper(SDNode
*N
,
3791 SmallVectorImpl
<SDValue
> &Results
,
3792 SelectionDAG
&DAG
) const;
3794 /// This callback is invoked for operations that are unsupported by the
3795 /// target, which are registered to use 'custom' lowering, and whose defined
3796 /// values are all legal. If the target has no operations that require custom
3797 /// lowering, it need not implement this. The default implementation of this
3799 virtual SDValue
LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const;
3801 /// This callback is invoked when a node result type is illegal for the
3802 /// target, and the operation was registered to use 'custom' lowering for that
3803 /// result type. The target places new result values for the node in Results
3804 /// (their number and types must exactly match those of the original return
3805 /// values of the node), or leaves Results empty, which indicates that the
3806 /// node is not to be custom lowered after all.
3808 /// If the target has no operations that require custom lowering, it need not
3809 /// implement this. The default implementation aborts.
3810 virtual void ReplaceNodeResults(SDNode
* /*N*/,
3811 SmallVectorImpl
<SDValue
> &/*Results*/,
3812 SelectionDAG
&/*DAG*/) const {
3813 llvm_unreachable("ReplaceNodeResults not implemented for this target!");
3816 /// This method returns the name of a target specific DAG node.
3817 virtual const char *getTargetNodeName(unsigned Opcode
) const;
3819 /// This method returns a target specific FastISel object, or null if the
3820 /// target does not support "fast" ISel.
3821 virtual FastISel
*createFastISel(FunctionLoweringInfo
&,
3822 const TargetLibraryInfo
*) const {
3826 bool verifyReturnAddressArgumentIsConstant(SDValue Op
,
3827 SelectionDAG
&DAG
) const;
3829 //===--------------------------------------------------------------------===//
3830 // Inline Asm Support hooks
3833 /// This hook allows the target to expand an inline asm call to be explicit
3834 /// llvm code if it wants to. This is useful for turning simple inline asms
3835 /// into LLVM intrinsics, which gives the compiler more information about the
3836 /// behavior of the code.
3837 virtual bool ExpandInlineAsm(CallInst
*) const {
3841 enum ConstraintType
{
3842 C_Register
, // Constraint represents specific register(s).
3843 C_RegisterClass
, // Constraint represents any of register(s) in class.
3844 C_Memory
, // Memory constraint.
3845 C_Immediate
, // Requires an immediate.
3846 C_Other
, // Something else.
3847 C_Unknown
// Unsupported constraint.
3850 enum ConstraintWeight
{
3852 CW_Invalid
= -1, // No match.
3853 CW_Okay
= 0, // Acceptable.
3854 CW_Good
= 1, // Good weight.
3855 CW_Better
= 2, // Better weight.
3856 CW_Best
= 3, // Best weight.
3858 // Well-known weights.
3859 CW_SpecificReg
= CW_Okay
, // Specific register operands.
3860 CW_Register
= CW_Good
, // Register operands.
3861 CW_Memory
= CW_Better
, // Memory operands.
3862 CW_Constant
= CW_Best
, // Constant operand.
3863 CW_Default
= CW_Okay
// Default or don't know type.
3866 /// This contains information for each constraint that we are lowering.
3867 struct AsmOperandInfo
: public InlineAsm::ConstraintInfo
{
3868 /// This contains the actual string for the code, like "m". TargetLowering
3869 /// picks the 'best' code from ConstraintInfo::Codes that most closely
3870 /// matches the operand.
3871 std::string ConstraintCode
;
3873 /// Information about the constraint code, e.g. Register, RegisterClass,
3874 /// Memory, Other, Unknown.
3875 TargetLowering::ConstraintType ConstraintType
= TargetLowering::C_Unknown
;
3877 /// If this is the result output operand or a clobber, this is null,
3878 /// otherwise it is the incoming operand to the CallInst. This gets
3879 /// modified as the asm is processed.
3880 Value
*CallOperandVal
= nullptr;
3882 /// The ValueType for the operand value.
3883 MVT ConstraintVT
= MVT::Other
;
3885 /// Copy constructor for copying from a ConstraintInfo.
3886 AsmOperandInfo(InlineAsm::ConstraintInfo Info
)
3887 : InlineAsm::ConstraintInfo(std::move(Info
)) {}
3889 /// Return true of this is an input operand that is a matching constraint
3891 bool isMatchingInputConstraint() const;
3893 /// If this is an input matching constraint, this method returns the output
3894 /// operand it matches.
3895 unsigned getMatchedOperand() const;
3898 using AsmOperandInfoVector
= std::vector
<AsmOperandInfo
>;
3900 /// Split up the constraint string from the inline assembly value into the
3901 /// specific constraints and their prefixes, and also tie in the associated
3902 /// operand values. If this returns an empty vector, and if the constraint
3903 /// string itself isn't empty, there was an error parsing.
3904 virtual AsmOperandInfoVector
ParseConstraints(const DataLayout
&DL
,
3905 const TargetRegisterInfo
*TRI
,
3906 ImmutableCallSite CS
) const;
3908 /// Examine constraint type and operand type and determine a weight value.
3909 /// The operand object must already have been set up with the operand type.
3910 virtual ConstraintWeight
getMultipleConstraintMatchWeight(
3911 AsmOperandInfo
&info
, int maIndex
) const;
3913 /// Examine constraint string and operand type and determine a weight value.
3914 /// The operand object must already have been set up with the operand type.
3915 virtual ConstraintWeight
getSingleConstraintMatchWeight(
3916 AsmOperandInfo
&info
, const char *constraint
) const;
3918 /// Determines the constraint code and constraint type to use for the specific
3919 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
3920 /// If the actual operand being passed in is available, it can be passed in as
3921 /// Op, otherwise an empty SDValue can be passed.
3922 virtual void ComputeConstraintToUse(AsmOperandInfo
&OpInfo
,
3924 SelectionDAG
*DAG
= nullptr) const;
3926 /// Given a constraint, return the type of constraint it is for this target.
3927 virtual ConstraintType
getConstraintType(StringRef Constraint
) const;
3929 /// Given a physical register constraint (e.g. {edx}), return the register
3930 /// number and the register class for the register.
3932 /// Given a register class constraint, like 'r', if this corresponds directly
3933 /// to an LLVM register class, return a register of 0 and the register class
3936 /// This should only be used for C_Register constraints. On error, this
3937 /// returns a register number of 0 and a null register class pointer.
3938 virtual std::pair
<unsigned, const TargetRegisterClass
*>
3939 getRegForInlineAsmConstraint(const TargetRegisterInfo
*TRI
,
3940 StringRef Constraint
, MVT VT
) const;
3942 virtual unsigned getInlineAsmMemConstraint(StringRef ConstraintCode
) const {
3943 if (ConstraintCode
== "i")
3944 return InlineAsm::Constraint_i
;
3945 else if (ConstraintCode
== "m")
3946 return InlineAsm::Constraint_m
;
3947 return InlineAsm::Constraint_Unknown
;
3950 /// Try to replace an X constraint, which matches anything, with another that
3951 /// has more specific requirements based on the type of the corresponding
3952 /// operand. This returns null if there is no replacement to make.
3953 virtual const char *LowerXConstraint(EVT ConstraintVT
) const;
3955 /// Lower the specified operand into the Ops vector. If it is invalid, don't
3956 /// add anything to Ops.
3957 virtual void LowerAsmOperandForConstraint(SDValue Op
, std::string
&Constraint
,
3958 std::vector
<SDValue
> &Ops
,
3959 SelectionDAG
&DAG
) const;
3961 // Lower custom output constraints. If invalid, return SDValue().
3962 virtual SDValue
LowerAsmOutputForConstraint(SDValue
&Chain
, SDValue
&Flag
,
3964 const AsmOperandInfo
&OpInfo
,
3965 SelectionDAG
&DAG
) const;
3967 //===--------------------------------------------------------------------===//
3968 // Div utility functions
3970 SDValue
BuildSDIV(SDNode
*N
, SelectionDAG
&DAG
, bool IsAfterLegalization
,
3971 SmallVectorImpl
<SDNode
*> &Created
) const;
3972 SDValue
BuildUDIV(SDNode
*N
, SelectionDAG
&DAG
, bool IsAfterLegalization
,
3973 SmallVectorImpl
<SDNode
*> &Created
) const;
3975 /// Targets may override this function to provide custom SDIV lowering for
3976 /// power-of-2 denominators. If the target returns an empty SDValue, LLVM
3977 /// assumes SDIV is expensive and replaces it with a series of other integer
3979 virtual SDValue
BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
,
3981 SmallVectorImpl
<SDNode
*> &Created
) const;
3983 /// Indicate whether this target prefers to combine FDIVs with the same
3984 /// divisor. If the transform should never be done, return zero. If the
3985 /// transform should be done, return the minimum number of divisor uses
3986 /// that must exist.
3987 virtual unsigned combineRepeatedFPDivisors() const {
3991 /// Hooks for building estimates in place of slower divisions and square
3994 /// Return either a square root or its reciprocal estimate value for the input
3996 /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
3997 /// 'Enabled' as set by a potential default override attribute.
3998 /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
3999 /// refinement iterations required to generate a sufficient (though not
4000 /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
4001 /// The boolean UseOneConstNR output is used to select a Newton-Raphson
4002 /// algorithm implementation that uses either one or two constants.
4003 /// The boolean Reciprocal is used to select whether the estimate is for the
4004 /// square root of the input operand or the reciprocal of its square root.
4005 /// A target may choose to implement its own refinement within this function.
4006 /// If that's true, then return '0' as the number of RefinementSteps to avoid
4007 /// any further refinement of the estimate.
4008 /// An empty SDValue return means no estimate sequence can be created.
4009 virtual SDValue
getSqrtEstimate(SDValue Operand
, SelectionDAG
&DAG
,
4010 int Enabled
, int &RefinementSteps
,
4011 bool &UseOneConstNR
, bool Reciprocal
) const {
4015 /// Return a reciprocal estimate value for the input operand.
4016 /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
4017 /// 'Enabled' as set by a potential default override attribute.
4018 /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
4019 /// refinement iterations required to generate a sufficient (though not
4020 /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
4021 /// A target may choose to implement its own refinement within this function.
4022 /// If that's true, then return '0' as the number of RefinementSteps to avoid
4023 /// any further refinement of the estimate.
4024 /// An empty SDValue return means no estimate sequence can be created.
4025 virtual SDValue
getRecipEstimate(SDValue Operand
, SelectionDAG
&DAG
,
4026 int Enabled
, int &RefinementSteps
) const {
4030 //===--------------------------------------------------------------------===//
4031 // Legalization utility functions
4034 /// Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes,
4035 /// respectively, each computing an n/2-bit part of the result.
4036 /// \param Result A vector that will be filled with the parts of the result
4037 /// in little-endian order.
4038 /// \param LL Low bits of the LHS of the MUL. You can use this parameter
4039 /// if you want to control how low bits are extracted from the LHS.
4040 /// \param LH High bits of the LHS of the MUL. See LL for meaning.
4041 /// \param RL Low bits of the RHS of the MUL. See LL for meaning
4042 /// \param RH High bits of the RHS of the MUL. See LL for meaning.
4043 /// \returns true if the node has been expanded, false if it has not
4044 bool expandMUL_LOHI(unsigned Opcode
, EVT VT
, SDLoc dl
, SDValue LHS
,
4045 SDValue RHS
, SmallVectorImpl
<SDValue
> &Result
, EVT HiLoVT
,
4046 SelectionDAG
&DAG
, MulExpansionKind Kind
,
4047 SDValue LL
= SDValue(), SDValue LH
= SDValue(),
4048 SDValue RL
= SDValue(), SDValue RH
= SDValue()) const;
4050 /// Expand a MUL into two nodes. One that computes the high bits of
4051 /// the result and one that computes the low bits.
4052 /// \param HiLoVT The value type to use for the Lo and Hi nodes.
4053 /// \param LL Low bits of the LHS of the MUL. You can use this parameter
4054 /// if you want to control how low bits are extracted from the LHS.
4055 /// \param LH High bits of the LHS of the MUL. See LL for meaning.
4056 /// \param RL Low bits of the RHS of the MUL. See LL for meaning
4057 /// \param RH High bits of the RHS of the MUL. See LL for meaning.
4058 /// \returns true if the node has been expanded. false if it has not
4059 bool expandMUL(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
, EVT HiLoVT
,
4060 SelectionDAG
&DAG
, MulExpansionKind Kind
,
4061 SDValue LL
= SDValue(), SDValue LH
= SDValue(),
4062 SDValue RL
= SDValue(), SDValue RH
= SDValue()) const;
4064 /// Expand funnel shift.
4065 /// \param N Node to expand
4066 /// \param Result output after conversion
4067 /// \returns True, if the expansion was successful, false otherwise
4068 bool expandFunnelShift(SDNode
*N
, SDValue
&Result
, SelectionDAG
&DAG
) const;
4070 /// Expand rotations.
4071 /// \param N Node to expand
4072 /// \param Result output after conversion
4073 /// \returns True, if the expansion was successful, false otherwise
4074 bool expandROT(SDNode
*N
, SDValue
&Result
, SelectionDAG
&DAG
) const;
4076 /// Expand float(f32) to SINT(i64) conversion
4077 /// \param N Node to expand
4078 /// \param Result output after conversion
4079 /// \returns True, if the expansion was successful, false otherwise
4080 bool expandFP_TO_SINT(SDNode
*N
, SDValue
&Result
, SelectionDAG
&DAG
) const;
4082 /// Expand float to UINT conversion
4083 /// \param N Node to expand
4084 /// \param Result output after conversion
4085 /// \returns True, if the expansion was successful, false otherwise
4086 bool expandFP_TO_UINT(SDNode
*N
, SDValue
&Result
, SDValue
&Chain
, SelectionDAG
&DAG
) const;
4088 /// Expand UINT(i64) to double(f64) conversion
4089 /// \param N Node to expand
4090 /// \param Result output after conversion
4091 /// \returns True, if the expansion was successful, false otherwise
4092 bool expandUINT_TO_FP(SDNode
*N
, SDValue
&Result
, SelectionDAG
&DAG
) const;
4094 /// Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
4095 SDValue
expandFMINNUM_FMAXNUM(SDNode
*N
, SelectionDAG
&DAG
) const;
4097 /// Expand CTPOP nodes. Expands vector/scalar CTPOP nodes,
4098 /// vector nodes can only succeed if all operations are legal/custom.
4099 /// \param N Node to expand
4100 /// \param Result output after conversion
4101 /// \returns True, if the expansion was successful, false otherwise
4102 bool expandCTPOP(SDNode
*N
, SDValue
&Result
, SelectionDAG
&DAG
) const;
4104 /// Expand CTLZ/CTLZ_ZERO_UNDEF nodes. Expands vector/scalar CTLZ nodes,
4105 /// vector nodes can only succeed if all operations are legal/custom.
4106 /// \param N Node to expand
4107 /// \param Result output after conversion
4108 /// \returns True, if the expansion was successful, false otherwise
4109 bool expandCTLZ(SDNode
*N
, SDValue
&Result
, SelectionDAG
&DAG
) const;
4111 /// Expand CTTZ/CTTZ_ZERO_UNDEF nodes. Expands vector/scalar CTTZ nodes,
4112 /// vector nodes can only succeed if all operations are legal/custom.
4113 /// \param N Node to expand
4114 /// \param Result output after conversion
4115 /// \returns True, if the expansion was successful, false otherwise
4116 bool expandCTTZ(SDNode
*N
, SDValue
&Result
, SelectionDAG
&DAG
) const;
4118 /// Expand ABS nodes. Expands vector/scalar ABS nodes,
4119 /// vector nodes can only succeed if all operations are legal/custom.
4120 /// (ABS x) -> (XOR (ADD x, (SRA x, type_size)), (SRA x, type_size))
4121 /// \param N Node to expand
4122 /// \param Result output after conversion
4123 /// \returns True, if the expansion was successful, false otherwise
4124 bool expandABS(SDNode
*N
, SDValue
&Result
, SelectionDAG
&DAG
) const;
4126 /// Turn load of vector type into a load of the individual elements.
4127 /// \param LD load to expand
4128 /// \returns MERGE_VALUEs of the scalar loads with their chains.
4129 SDValue
scalarizeVectorLoad(LoadSDNode
*LD
, SelectionDAG
&DAG
) const;
4131 // Turn a store of a vector type into stores of the individual elements.
4132 /// \param ST Store with a vector value type
4133 /// \returns MERGE_VALUs of the individual store chains.
4134 SDValue
scalarizeVectorStore(StoreSDNode
*ST
, SelectionDAG
&DAG
) const;
4136 /// Expands an unaligned load to 2 half-size loads for an integer, and
4137 /// possibly more for vectors.
4138 std::pair
<SDValue
, SDValue
> expandUnalignedLoad(LoadSDNode
*LD
,
4139 SelectionDAG
&DAG
) const;
4141 /// Expands an unaligned store to 2 half-size stores for integer values, and
4142 /// possibly more for vectors.
4143 SDValue
expandUnalignedStore(StoreSDNode
*ST
, SelectionDAG
&DAG
) const;
4145 /// Increments memory address \p Addr according to the type of the value
4146 /// \p DataVT that should be stored. If the data is stored in compressed
4147 /// form, the memory address should be incremented according to the number of
4148 /// the stored elements. This number is equal to the number of '1's bits
4150 /// \p DataVT is a vector type. \p Mask is a vector value.
4151 /// \p DataVT and \p Mask have the same number of vector elements.
4152 SDValue
IncrementMemoryAddress(SDValue Addr
, SDValue Mask
, const SDLoc
&DL
,
4153 EVT DataVT
, SelectionDAG
&DAG
,
4154 bool IsCompressedMemory
) const;
4156 /// Get a pointer to vector element \p Idx located in memory for a vector of
4157 /// type \p VecVT starting at a base address of \p VecPtr. If \p Idx is out of
4158 /// bounds the returned pointer is unspecified, but will be within the vector
4160 SDValue
getVectorElementPointer(SelectionDAG
&DAG
, SDValue VecPtr
, EVT VecVT
,
4161 SDValue Index
) const;
4163 /// Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT. This
4164 /// method accepts integers as its arguments.
4165 SDValue
expandAddSubSat(SDNode
*Node
, SelectionDAG
&DAG
) const;
4167 /// Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT]. This
4168 /// method accepts integers as its arguments.
4169 SDValue
expandFixedPointMul(SDNode
*Node
, SelectionDAG
&DAG
) const;
4171 /// Method for building the DAG expansion of ISD::U(ADD|SUB)O. Expansion
4172 /// always suceeds and populates the Result and Overflow arguments.
4173 void expandUADDSUBO(SDNode
*Node
, SDValue
&Result
, SDValue
&Overflow
,
4174 SelectionDAG
&DAG
) const;
4176 /// Method for building the DAG expansion of ISD::S(ADD|SUB)O. Expansion
4177 /// always suceeds and populates the Result and Overflow arguments.
4178 void expandSADDSUBO(SDNode
*Node
, SDValue
&Result
, SDValue
&Overflow
,
4179 SelectionDAG
&DAG
) const;
4181 /// Method for building the DAG expansion of ISD::[US]MULO. Returns whether
4182 /// expansion was successful and populates the Result and Overflow arguments.
4183 bool expandMULO(SDNode
*Node
, SDValue
&Result
, SDValue
&Overflow
,
4184 SelectionDAG
&DAG
) const;
4186 /// Expand a VECREDUCE_* into an explicit calculation. If Count is specified,
4187 /// only the first Count elements of the vector are used.
4188 SDValue
expandVecReduce(SDNode
*Node
, SelectionDAG
&DAG
) const;
4190 //===--------------------------------------------------------------------===//
4191 // Instruction Emitting Hooks
4194 /// This method should be implemented by targets that mark instructions with
4195 /// the 'usesCustomInserter' flag. These instructions are special in various
4196 /// ways, which require special support to insert. The specified MachineInstr
4197 /// is created but not inserted into any basic blocks, and this method is
4198 /// called to expand it into a sequence of instructions, potentially also
4199 /// creating new basic blocks and control flow.
4200 /// As long as the returned basic block is different (i.e., we created a new
4201 /// one), the custom inserter is free to modify the rest of \p MBB.
4202 virtual MachineBasicBlock
*
4203 EmitInstrWithCustomInserter(MachineInstr
&MI
, MachineBasicBlock
*MBB
) const;
4205 /// This method should be implemented by targets that mark instructions with
4206 /// the 'hasPostISelHook' flag. These instructions must be adjusted after
4207 /// instruction selection by target hooks. e.g. To fill in optional defs for
4208 /// ARM 's' setting instructions.
4209 virtual void AdjustInstrPostInstrSelection(MachineInstr
&MI
,
4210 SDNode
*Node
) const;
4212 /// If this function returns true, SelectionDAGBuilder emits a
4213 /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
4214 virtual bool useLoadStackGuardNode() const {
4218 virtual SDValue
emitStackGuardXorFP(SelectionDAG
&DAG
, SDValue Val
,
4219 const SDLoc
&DL
) const {
4220 llvm_unreachable("not implemented for this target");
4223 /// Lower TLS global address SDNode for target independent emulated TLS model.
4224 virtual SDValue
LowerToTLSEmulatedModel(const GlobalAddressSDNode
*GA
,
4225 SelectionDAG
&DAG
) const;
4227 /// Expands target specific indirect branch for the case of JumpTable
4229 virtual SDValue
expandIndirectJTBranch(const SDLoc
& dl
, SDValue Value
, SDValue Addr
,
4230 SelectionDAG
&DAG
) const {
4231 return DAG
.getNode(ISD::BRIND
, dl
, MVT::Other
, Value
, Addr
);
4234 // seteq(x, 0) -> truncate(srl(ctlz(zext(x)), log2(#bits)))
4235 // If we're comparing for equality to zero and isCtlzFast is true, expose the
4236 // fact that this can be implemented as a ctlz/srl pair, so that the dag
4237 // combiner can fold the new nodes.
4238 SDValue
lowerCmpEqZeroToCtlzSrl(SDValue Op
, SelectionDAG
&DAG
) const;
4241 SDValue
foldSetCCWithAnd(EVT VT
, SDValue N0
, SDValue N1
, ISD::CondCode Cond
,
4242 const SDLoc
&DL
, DAGCombinerInfo
&DCI
) const;
4243 SDValue
foldSetCCWithBinOp(EVT VT
, SDValue N0
, SDValue N1
, ISD::CondCode Cond
,
4244 const SDLoc
&DL
, DAGCombinerInfo
&DCI
) const;
4246 SDValue
optimizeSetCCOfSignedTruncationCheck(EVT SCCVT
, SDValue N0
,
4247 SDValue N1
, ISD::CondCode Cond
,
4248 DAGCombinerInfo
&DCI
,
4249 const SDLoc
&DL
) const;
4251 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
4252 SDValue
optimizeSetCCByHoistingAndByConstFromLogicalShift(
4253 EVT SCCVT
, SDValue N0
, SDValue N1C
, ISD::CondCode Cond
,
4254 DAGCombinerInfo
&DCI
, const SDLoc
&DL
) const;
4256 SDValue
prepareUREMEqFold(EVT SETCCVT
, SDValue REMNode
,
4257 SDValue CompTargetNode
, ISD::CondCode Cond
,
4258 DAGCombinerInfo
&DCI
, const SDLoc
&DL
,
4259 SmallVectorImpl
<SDNode
*> &Created
) const;
4260 SDValue
buildUREMEqFold(EVT SETCCVT
, SDValue REMNode
, SDValue CompTargetNode
,
4261 ISD::CondCode Cond
, DAGCombinerInfo
&DCI
,
4262 const SDLoc
&DL
) const;
4264 SDValue
prepareSREMEqFold(EVT SETCCVT
, SDValue REMNode
,
4265 SDValue CompTargetNode
, ISD::CondCode Cond
,
4266 DAGCombinerInfo
&DCI
, const SDLoc
&DL
,
4267 SmallVectorImpl
<SDNode
*> &Created
) const;
4268 SDValue
buildSREMEqFold(EVT SETCCVT
, SDValue REMNode
, SDValue CompTargetNode
,
4269 ISD::CondCode Cond
, DAGCombinerInfo
&DCI
,
4270 const SDLoc
&DL
) const;
4273 /// Given an LLVM IR type and return type attributes, compute the return value
4274 /// EVTs and flags, and optionally also the offsets, if the return value is
4275 /// being lowered to memory.
4276 void GetReturnInfo(CallingConv::ID CC
, Type
*ReturnType
, AttributeList attr
,
4277 SmallVectorImpl
<ISD::OutputArg
> &Outs
,
4278 const TargetLowering
&TLI
, const DataLayout
&DL
);
4280 } // end namespace llvm
4282 #endif // LLVM_CODEGEN_TARGETLOWERING_H