[InstCombine] Signed saturation patterns
[llvm-complete.git] / include / llvm / IR / Value.h
blobf2c4b3b3f2032021289144f81b3511f424d125c2
1 //===- llvm/Value.h - Definition of the Value class -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the Value class.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_IR_VALUE_H
14 #define LLVM_IR_VALUE_H
16 #include "llvm-c/Types.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/iterator_range.h"
19 #include "llvm/IR/Use.h"
20 #include "llvm/Support/Alignment.h"
21 #include "llvm/Support/CBindingWrapping.h"
22 #include "llvm/Support/Casting.h"
23 #include <cassert>
24 #include <iterator>
25 #include <memory>
27 namespace llvm {
29 class APInt;
30 class Argument;
31 class BasicBlock;
32 class Constant;
33 class ConstantData;
34 class ConstantAggregate;
35 class DataLayout;
36 class Function;
37 class GlobalAlias;
38 class GlobalIFunc;
39 class GlobalIndirectSymbol;
40 class GlobalObject;
41 class GlobalValue;
42 class GlobalVariable;
43 class InlineAsm;
44 class Instruction;
45 class LLVMContext;
46 class Module;
47 class ModuleSlotTracker;
48 class raw_ostream;
49 template<typename ValueTy> class StringMapEntry;
50 class StringRef;
51 class Twine;
52 class Type;
53 class User;
55 using ValueName = StringMapEntry<Value *>;
57 //===----------------------------------------------------------------------===//
58 // Value Class
59 //===----------------------------------------------------------------------===//
61 /// LLVM Value Representation
62 ///
63 /// This is a very important LLVM class. It is the base class of all values
64 /// computed by a program that may be used as operands to other values. Value is
65 /// the super class of other important classes such as Instruction and Function.
66 /// All Values have a Type. Type is not a subclass of Value. Some values can
67 /// have a name and they belong to some Module. Setting the name on the Value
68 /// automatically updates the module's symbol table.
69 ///
70 /// Every value has a "use list" that keeps track of which other Values are
71 /// using this Value. A Value can also have an arbitrary number of ValueHandle
72 /// objects that watch it and listen to RAUW and Destroy events. See
73 /// llvm/IR/ValueHandle.h for details.
74 class Value {
75 // The least-significant bit of the first word of Value *must* be zero:
76 // http://www.llvm.org/docs/ProgrammersManual.html#the-waymarking-algorithm
77 Type *VTy;
78 Use *UseList;
80 friend class ValueAsMetadata; // Allow access to IsUsedByMD.
81 friend class ValueHandleBase;
83 const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast)
84 unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
86 protected:
87 /// Hold subclass data that can be dropped.
88 ///
89 /// This member is similar to SubclassData, however it is for holding
90 /// information which may be used to aid optimization, but which may be
91 /// cleared to zero without affecting conservative interpretation.
92 unsigned char SubclassOptionalData : 7;
94 private:
95 /// Hold arbitrary subclass data.
96 ///
97 /// This member is defined by this class, but is not used for anything.
98 /// Subclasses can use it to hold whatever state they find useful. This
99 /// field is initialized to zero by the ctor.
100 unsigned short SubclassData;
102 protected:
103 /// The number of operands in the subclass.
105 /// This member is defined by this class, but not used for anything.
106 /// Subclasses can use it to store their number of operands, if they have
107 /// any.
109 /// This is stored here to save space in User on 64-bit hosts. Since most
110 /// instances of Value have operands, 32-bit hosts aren't significantly
111 /// affected.
113 /// Note, this should *NOT* be used directly by any class other than User.
114 /// User uses this value to find the Use list.
115 enum : unsigned { NumUserOperandsBits = 28 };
116 unsigned NumUserOperands : NumUserOperandsBits;
118 // Use the same type as the bitfield above so that MSVC will pack them.
119 unsigned IsUsedByMD : 1;
120 unsigned HasName : 1;
121 unsigned HasHungOffUses : 1;
122 unsigned HasDescriptor : 1;
124 private:
125 template <typename UseT> // UseT == 'Use' or 'const Use'
126 class use_iterator_impl
127 : public std::iterator<std::forward_iterator_tag, UseT *> {
128 friend class Value;
130 UseT *U;
132 explicit use_iterator_impl(UseT *u) : U(u) {}
134 public:
135 use_iterator_impl() : U() {}
137 bool operator==(const use_iterator_impl &x) const { return U == x.U; }
138 bool operator!=(const use_iterator_impl &x) const { return !operator==(x); }
140 use_iterator_impl &operator++() { // Preincrement
141 assert(U && "Cannot increment end iterator!");
142 U = U->getNext();
143 return *this;
146 use_iterator_impl operator++(int) { // Postincrement
147 auto tmp = *this;
148 ++*this;
149 return tmp;
152 UseT &operator*() const {
153 assert(U && "Cannot dereference end iterator!");
154 return *U;
157 UseT *operator->() const { return &operator*(); }
159 operator use_iterator_impl<const UseT>() const {
160 return use_iterator_impl<const UseT>(U);
164 template <typename UserTy> // UserTy == 'User' or 'const User'
165 class user_iterator_impl
166 : public std::iterator<std::forward_iterator_tag, UserTy *> {
167 use_iterator_impl<Use> UI;
168 explicit user_iterator_impl(Use *U) : UI(U) {}
169 friend class Value;
171 public:
172 user_iterator_impl() = default;
174 bool operator==(const user_iterator_impl &x) const { return UI == x.UI; }
175 bool operator!=(const user_iterator_impl &x) const { return !operator==(x); }
177 /// Returns true if this iterator is equal to user_end() on the value.
178 bool atEnd() const { return *this == user_iterator_impl(); }
180 user_iterator_impl &operator++() { // Preincrement
181 ++UI;
182 return *this;
185 user_iterator_impl operator++(int) { // Postincrement
186 auto tmp = *this;
187 ++*this;
188 return tmp;
191 // Retrieve a pointer to the current User.
192 UserTy *operator*() const {
193 return UI->getUser();
196 UserTy *operator->() const { return operator*(); }
198 operator user_iterator_impl<const UserTy>() const {
199 return user_iterator_impl<const UserTy>(*UI);
202 Use &getUse() const { return *UI; }
205 protected:
206 Value(Type *Ty, unsigned scid);
208 /// Value's destructor should be virtual by design, but that would require
209 /// that Value and all of its subclasses have a vtable that effectively
210 /// duplicates the information in the value ID. As a size optimization, the
211 /// destructor has been protected, and the caller should manually call
212 /// deleteValue.
213 ~Value(); // Use deleteValue() to delete a generic Value.
215 public:
216 Value(const Value &) = delete;
217 Value &operator=(const Value &) = delete;
219 /// Delete a pointer to a generic Value.
220 void deleteValue();
222 /// Support for debugging, callable in GDB: V->dump()
223 void dump() const;
225 /// Implement operator<< on Value.
226 /// @{
227 void print(raw_ostream &O, bool IsForDebug = false) const;
228 void print(raw_ostream &O, ModuleSlotTracker &MST,
229 bool IsForDebug = false) const;
230 /// @}
232 /// Print the name of this Value out to the specified raw_ostream.
234 /// This is useful when you just want to print 'int %reg126', not the
235 /// instruction that generated it. If you specify a Module for context, then
236 /// even constanst get pretty-printed; for example, the type of a null
237 /// pointer is printed symbolically.
238 /// @{
239 void printAsOperand(raw_ostream &O, bool PrintType = true,
240 const Module *M = nullptr) const;
241 void printAsOperand(raw_ostream &O, bool PrintType,
242 ModuleSlotTracker &MST) const;
243 /// @}
245 /// All values are typed, get the type of this value.
246 Type *getType() const { return VTy; }
248 /// All values hold a context through their type.
249 LLVMContext &getContext() const;
251 // All values can potentially be named.
252 bool hasName() const { return HasName; }
253 ValueName *getValueName() const;
254 void setValueName(ValueName *VN);
256 private:
257 void destroyValueName();
258 enum class ReplaceMetadataUses { No, Yes };
259 void doRAUW(Value *New, ReplaceMetadataUses);
260 void setNameImpl(const Twine &Name);
262 public:
263 /// Return a constant reference to the value's name.
265 /// This guaranteed to return the same reference as long as the value is not
266 /// modified. If the value has a name, this does a hashtable lookup, so it's
267 /// not free.
268 StringRef getName() const;
270 /// Change the name of the value.
272 /// Choose a new unique name if the provided name is taken.
274 /// \param Name The new name; or "" if the value's name should be removed.
275 void setName(const Twine &Name);
277 /// Transfer the name from V to this value.
279 /// After taking V's name, sets V's name to empty.
281 /// \note It is an error to call V->takeName(V).
282 void takeName(Value *V);
284 /// Change all uses of this to point to a new Value.
286 /// Go through the uses list for this definition and make each use point to
287 /// "V" instead of "this". After this completes, 'this's use list is
288 /// guaranteed to be empty.
289 void replaceAllUsesWith(Value *V);
291 /// Change non-metadata uses of this to point to a new Value.
293 /// Go through the uses list for this definition and make each use point to
294 /// "V" instead of "this". This function skips metadata entries in the list.
295 void replaceNonMetadataUsesWith(Value *V);
297 /// Go through the uses list for this definition and make each use point
298 /// to "V" if the callback ShouldReplace returns true for the given Use.
299 /// Unlike replaceAllUsesWith() this function does not support basic block
300 /// values or constant users.
301 void replaceUsesWithIf(Value *New,
302 llvm::function_ref<bool(Use &U)> ShouldReplace) {
303 assert(New && "Value::replaceUsesWithIf(<null>) is invalid!");
304 assert(New->getType() == getType() &&
305 "replaceUses of value with new value of different type!");
307 for (use_iterator UI = use_begin(), E = use_end(); UI != E;) {
308 Use &U = *UI;
309 ++UI;
310 if (!ShouldReplace(U))
311 continue;
312 U.set(New);
316 /// replaceUsesOutsideBlock - Go through the uses list for this definition and
317 /// make each use point to "V" instead of "this" when the use is outside the
318 /// block. 'This's use list is expected to have at least one element.
319 /// Unlike replaceAllUsesWith() this function does not support basic block
320 /// values or constant users.
321 void replaceUsesOutsideBlock(Value *V, BasicBlock *BB);
323 //----------------------------------------------------------------------
324 // Methods for handling the chain of uses of this Value.
326 // Materializing a function can introduce new uses, so these methods come in
327 // two variants:
328 // The methods that start with materialized_ check the uses that are
329 // currently known given which functions are materialized. Be very careful
330 // when using them since you might not get all uses.
331 // The methods that don't start with materialized_ assert that modules is
332 // fully materialized.
333 void assertModuleIsMaterializedImpl() const;
334 // This indirection exists so we can keep assertModuleIsMaterializedImpl()
335 // around in release builds of Value.cpp to be linked with other code built
336 // in debug mode. But this avoids calling it in any of the release built code.
337 void assertModuleIsMaterialized() const {
338 #ifndef NDEBUG
339 assertModuleIsMaterializedImpl();
340 #endif
343 bool use_empty() const {
344 assertModuleIsMaterialized();
345 return UseList == nullptr;
348 bool materialized_use_empty() const {
349 return UseList == nullptr;
352 using use_iterator = use_iterator_impl<Use>;
353 using const_use_iterator = use_iterator_impl<const Use>;
355 use_iterator materialized_use_begin() { return use_iterator(UseList); }
356 const_use_iterator materialized_use_begin() const {
357 return const_use_iterator(UseList);
359 use_iterator use_begin() {
360 assertModuleIsMaterialized();
361 return materialized_use_begin();
363 const_use_iterator use_begin() const {
364 assertModuleIsMaterialized();
365 return materialized_use_begin();
367 use_iterator use_end() { return use_iterator(); }
368 const_use_iterator use_end() const { return const_use_iterator(); }
369 iterator_range<use_iterator> materialized_uses() {
370 return make_range(materialized_use_begin(), use_end());
372 iterator_range<const_use_iterator> materialized_uses() const {
373 return make_range(materialized_use_begin(), use_end());
375 iterator_range<use_iterator> uses() {
376 assertModuleIsMaterialized();
377 return materialized_uses();
379 iterator_range<const_use_iterator> uses() const {
380 assertModuleIsMaterialized();
381 return materialized_uses();
384 bool user_empty() const {
385 assertModuleIsMaterialized();
386 return UseList == nullptr;
389 using user_iterator = user_iterator_impl<User>;
390 using const_user_iterator = user_iterator_impl<const User>;
392 user_iterator materialized_user_begin() { return user_iterator(UseList); }
393 const_user_iterator materialized_user_begin() const {
394 return const_user_iterator(UseList);
396 user_iterator user_begin() {
397 assertModuleIsMaterialized();
398 return materialized_user_begin();
400 const_user_iterator user_begin() const {
401 assertModuleIsMaterialized();
402 return materialized_user_begin();
404 user_iterator user_end() { return user_iterator(); }
405 const_user_iterator user_end() const { return const_user_iterator(); }
406 User *user_back() {
407 assertModuleIsMaterialized();
408 return *materialized_user_begin();
410 const User *user_back() const {
411 assertModuleIsMaterialized();
412 return *materialized_user_begin();
414 iterator_range<user_iterator> materialized_users() {
415 return make_range(materialized_user_begin(), user_end());
417 iterator_range<const_user_iterator> materialized_users() const {
418 return make_range(materialized_user_begin(), user_end());
420 iterator_range<user_iterator> users() {
421 assertModuleIsMaterialized();
422 return materialized_users();
424 iterator_range<const_user_iterator> users() const {
425 assertModuleIsMaterialized();
426 return materialized_users();
429 /// Return true if there is exactly one user of this value.
431 /// This is specialized because it is a common request and does not require
432 /// traversing the whole use list.
433 bool hasOneUse() const {
434 const_use_iterator I = use_begin(), E = use_end();
435 if (I == E) return false;
436 return ++I == E;
439 /// Return true if this Value has exactly N users.
440 bool hasNUses(unsigned N) const;
442 /// Return true if this value has N users or more.
444 /// This is logically equivalent to getNumUses() >= N.
445 bool hasNUsesOrMore(unsigned N) const;
447 /// Check if this value is used in the specified basic block.
448 bool isUsedInBasicBlock(const BasicBlock *BB) const;
450 /// This method computes the number of uses of this Value.
452 /// This is a linear time operation. Use hasOneUse, hasNUses, or
453 /// hasNUsesOrMore to check for specific values.
454 unsigned getNumUses() const;
456 /// This method should only be used by the Use class.
457 void addUse(Use &U) { U.addToList(&UseList); }
459 /// Concrete subclass of this.
461 /// An enumeration for keeping track of the concrete subclass of Value that
462 /// is actually instantiated. Values of this enumeration are kept in the
463 /// Value classes SubclassID field. They are used for concrete type
464 /// identification.
465 enum ValueTy {
466 #define HANDLE_VALUE(Name) Name##Val,
467 #include "llvm/IR/Value.def"
469 // Markers:
470 #define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val,
471 #include "llvm/IR/Value.def"
474 /// Return an ID for the concrete type of this object.
476 /// This is used to implement the classof checks. This should not be used
477 /// for any other purpose, as the values may change as LLVM evolves. Also,
478 /// note that for instructions, the Instruction's opcode is added to
479 /// InstructionVal. So this means three things:
480 /// # there is no value with code InstructionVal (no opcode==0).
481 /// # there are more possible values for the value type than in ValueTy enum.
482 /// # the InstructionVal enumerator must be the highest valued enumerator in
483 /// the ValueTy enum.
484 unsigned getValueID() const {
485 return SubclassID;
488 /// Return the raw optional flags value contained in this value.
490 /// This should only be used when testing two Values for equivalence.
491 unsigned getRawSubclassOptionalData() const {
492 return SubclassOptionalData;
495 /// Clear the optional flags contained in this value.
496 void clearSubclassOptionalData() {
497 SubclassOptionalData = 0;
500 /// Check the optional flags for equality.
501 bool hasSameSubclassOptionalData(const Value *V) const {
502 return SubclassOptionalData == V->SubclassOptionalData;
505 /// Return true if there is a value handle associated with this value.
506 bool hasValueHandle() const { return HasValueHandle; }
508 /// Return true if there is metadata referencing this value.
509 bool isUsedByMetadata() const { return IsUsedByMD; }
511 /// Return true if this value is a swifterror value.
513 /// swifterror values can be either a function argument or an alloca with a
514 /// swifterror attribute.
515 bool isSwiftError() const;
517 /// Strip off pointer casts, all-zero GEPs and address space casts.
519 /// Returns the original uncasted value. If this is called on a non-pointer
520 /// value, it returns 'this'.
521 const Value *stripPointerCasts() const;
522 Value *stripPointerCasts() {
523 return const_cast<Value *>(
524 static_cast<const Value *>(this)->stripPointerCasts());
527 /// Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
529 /// Returns the original uncasted value. If this is called on a non-pointer
530 /// value, it returns 'this'.
531 const Value *stripPointerCastsAndAliases() const;
532 Value *stripPointerCastsAndAliases() {
533 return const_cast<Value *>(
534 static_cast<const Value *>(this)->stripPointerCastsAndAliases());
537 /// Strip off pointer casts, all-zero GEPs and address space casts
538 /// but ensures the representation of the result stays the same.
540 /// Returns the original uncasted value with the same representation. If this
541 /// is called on a non-pointer value, it returns 'this'.
542 const Value *stripPointerCastsSameRepresentation() const;
543 Value *stripPointerCastsSameRepresentation() {
544 return const_cast<Value *>(static_cast<const Value *>(this)
545 ->stripPointerCastsSameRepresentation());
548 /// Strip off pointer casts, all-zero GEPs and invariant group info.
550 /// Returns the original uncasted value. If this is called on a non-pointer
551 /// value, it returns 'this'. This function should be used only in
552 /// Alias analysis.
553 const Value *stripPointerCastsAndInvariantGroups() const;
554 Value *stripPointerCastsAndInvariantGroups() {
555 return const_cast<Value *>(static_cast<const Value *>(this)
556 ->stripPointerCastsAndInvariantGroups());
559 /// Strip off pointer casts and all-constant inbounds GEPs.
561 /// Returns the original pointer value. If this is called on a non-pointer
562 /// value, it returns 'this'.
563 const Value *stripInBoundsConstantOffsets() const;
564 Value *stripInBoundsConstantOffsets() {
565 return const_cast<Value *>(
566 static_cast<const Value *>(this)->stripInBoundsConstantOffsets());
569 /// Accumulate the constant offset this value has compared to a base pointer.
570 /// Only 'getelementptr' instructions (GEPs) with constant indices are
571 /// accumulated but other instructions, e.g., casts, are stripped away as
572 /// well. The accumulated constant offset is added to \p Offset and the base
573 /// pointer is returned.
575 /// The APInt \p Offset has to have a bit-width equal to the IntPtr type for
576 /// the address space of 'this' pointer value, e.g., use
577 /// DataLayout::getIndexTypeSizeInBits(Ty).
579 /// If \p AllowNonInbounds is true, constant offsets in GEPs are stripped and
580 /// accumulated even if the GEP is not "inbounds".
582 /// If this is called on a non-pointer value, it returns 'this' and the
583 /// \p Offset is not modified.
585 /// Note that this function will never return a nullptr. It will also never
586 /// manipulate the \p Offset in a way that would not match the difference
587 /// between the underlying value and the returned one. Thus, if no constant
588 /// offset was found, the returned value is the underlying one and \p Offset
589 /// is unchanged.
590 const Value *stripAndAccumulateConstantOffsets(const DataLayout &DL,
591 APInt &Offset,
592 bool AllowNonInbounds) const;
593 Value *stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset,
594 bool AllowNonInbounds) {
595 return const_cast<Value *>(
596 static_cast<const Value *>(this)->stripAndAccumulateConstantOffsets(
597 DL, Offset, AllowNonInbounds));
600 /// This is a wrapper around stripAndAccumulateConstantOffsets with the
601 /// in-bounds requirement set to false.
602 const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
603 APInt &Offset) const {
604 return stripAndAccumulateConstantOffsets(DL, Offset,
605 /* AllowNonInbounds */ false);
607 Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
608 APInt &Offset) {
609 return stripAndAccumulateConstantOffsets(DL, Offset,
610 /* AllowNonInbounds */ false);
613 /// Strip off pointer casts and inbounds GEPs.
615 /// Returns the original pointer value. If this is called on a non-pointer
616 /// value, it returns 'this'.
617 const Value *stripInBoundsOffsets() const;
618 Value *stripInBoundsOffsets() {
619 return const_cast<Value *>(
620 static_cast<const Value *>(this)->stripInBoundsOffsets());
623 /// Returns the number of bytes known to be dereferenceable for the
624 /// pointer value.
626 /// If CanBeNull is set by this function the pointer can either be null or be
627 /// dereferenceable up to the returned number of bytes.
628 uint64_t getPointerDereferenceableBytes(const DataLayout &DL,
629 bool &CanBeNull) const;
631 /// Returns an alignment of the pointer value.
633 /// Returns an alignment which is either specified explicitly, e.g. via
634 /// align attribute of a function argument, or guaranteed by DataLayout.
635 MaybeAlign getPointerAlignment(const DataLayout &DL) const;
637 /// Translate PHI node to its predecessor from the given basic block.
639 /// If this value is a PHI node with CurBB as its parent, return the value in
640 /// the PHI node corresponding to PredBB. If not, return ourself. This is
641 /// useful if you want to know the value something has in a predecessor
642 /// block.
643 const Value *DoPHITranslation(const BasicBlock *CurBB,
644 const BasicBlock *PredBB) const;
645 Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) {
646 return const_cast<Value *>(
647 static_cast<const Value *>(this)->DoPHITranslation(CurBB, PredBB));
650 /// The maximum alignment for instructions.
652 /// This is the greatest alignment value supported by load, store, and alloca
653 /// instructions, and global values.
654 static const unsigned MaxAlignmentExponent = 29;
655 static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
657 /// Mutate the type of this Value to be of the specified type.
659 /// Note that this is an extremely dangerous operation which can create
660 /// completely invalid IR very easily. It is strongly recommended that you
661 /// recreate IR objects with the right types instead of mutating them in
662 /// place.
663 void mutateType(Type *Ty) {
664 VTy = Ty;
667 /// Sort the use-list.
669 /// Sorts the Value's use-list by Cmp using a stable mergesort. Cmp is
670 /// expected to compare two \a Use references.
671 template <class Compare> void sortUseList(Compare Cmp);
673 /// Reverse the use-list.
674 void reverseUseList();
676 private:
677 /// Merge two lists together.
679 /// Merges \c L and \c R using \c Cmp. To enable stable sorts, always pushes
680 /// "equal" items from L before items from R.
682 /// \return the first element in the list.
684 /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update).
685 template <class Compare>
686 static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) {
687 Use *Merged;
688 Use **Next = &Merged;
690 while (true) {
691 if (!L) {
692 *Next = R;
693 break;
695 if (!R) {
696 *Next = L;
697 break;
699 if (Cmp(*R, *L)) {
700 *Next = R;
701 Next = &R->Next;
702 R = R->Next;
703 } else {
704 *Next = L;
705 Next = &L->Next;
706 L = L->Next;
710 return Merged;
713 protected:
714 unsigned short getSubclassDataFromValue() const { return SubclassData; }
715 void setValueSubclassData(unsigned short D) { SubclassData = D; }
718 struct ValueDeleter { void operator()(Value *V) { V->deleteValue(); } };
720 /// Use this instead of std::unique_ptr<Value> or std::unique_ptr<Instruction>.
721 /// Those don't work because Value and Instruction's destructors are protected,
722 /// aren't virtual, and won't destroy the complete object.
723 using unique_value = std::unique_ptr<Value, ValueDeleter>;
725 inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
726 V.print(OS);
727 return OS;
730 void Use::set(Value *V) {
731 if (Val) removeFromList();
732 Val = V;
733 if (V) V->addUse(*this);
736 Value *Use::operator=(Value *RHS) {
737 set(RHS);
738 return RHS;
741 const Use &Use::operator=(const Use &RHS) {
742 set(RHS.Val);
743 return *this;
746 template <class Compare> void Value::sortUseList(Compare Cmp) {
747 if (!UseList || !UseList->Next)
748 // No need to sort 0 or 1 uses.
749 return;
751 // Note: this function completely ignores Prev pointers until the end when
752 // they're fixed en masse.
754 // Create a binomial vector of sorted lists, visiting uses one at a time and
755 // merging lists as necessary.
756 const unsigned MaxSlots = 32;
757 Use *Slots[MaxSlots];
759 // Collect the first use, turning it into a single-item list.
760 Use *Next = UseList->Next;
761 UseList->Next = nullptr;
762 unsigned NumSlots = 1;
763 Slots[0] = UseList;
765 // Collect all but the last use.
766 while (Next->Next) {
767 Use *Current = Next;
768 Next = Current->Next;
770 // Turn Current into a single-item list.
771 Current->Next = nullptr;
773 // Save Current in the first available slot, merging on collisions.
774 unsigned I;
775 for (I = 0; I < NumSlots; ++I) {
776 if (!Slots[I])
777 break;
779 // Merge two lists, doubling the size of Current and emptying slot I.
781 // Since the uses in Slots[I] originally preceded those in Current, send
782 // Slots[I] in as the left parameter to maintain a stable sort.
783 Current = mergeUseLists(Slots[I], Current, Cmp);
784 Slots[I] = nullptr;
786 // Check if this is a new slot.
787 if (I == NumSlots) {
788 ++NumSlots;
789 assert(NumSlots <= MaxSlots && "Use list bigger than 2^32");
792 // Found an open slot.
793 Slots[I] = Current;
796 // Merge all the lists together.
797 assert(Next && "Expected one more Use");
798 assert(!Next->Next && "Expected only one Use");
799 UseList = Next;
800 for (unsigned I = 0; I < NumSlots; ++I)
801 if (Slots[I])
802 // Since the uses in Slots[I] originally preceded those in UseList, send
803 // Slots[I] in as the left parameter to maintain a stable sort.
804 UseList = mergeUseLists(Slots[I], UseList, Cmp);
806 // Fix the Prev pointers.
807 for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) {
808 I->setPrev(Prev);
809 Prev = &I->Next;
813 // isa - Provide some specializations of isa so that we don't have to include
814 // the subtype header files to test to see if the value is a subclass...
816 template <> struct isa_impl<Constant, Value> {
817 static inline bool doit(const Value &Val) {
818 static_assert(Value::ConstantFirstVal == 0, "Val.getValueID() >= Value::ConstantFirstVal");
819 return Val.getValueID() <= Value::ConstantLastVal;
823 template <> struct isa_impl<ConstantData, Value> {
824 static inline bool doit(const Value &Val) {
825 return Val.getValueID() >= Value::ConstantDataFirstVal &&
826 Val.getValueID() <= Value::ConstantDataLastVal;
830 template <> struct isa_impl<ConstantAggregate, Value> {
831 static inline bool doit(const Value &Val) {
832 return Val.getValueID() >= Value::ConstantAggregateFirstVal &&
833 Val.getValueID() <= Value::ConstantAggregateLastVal;
837 template <> struct isa_impl<Argument, Value> {
838 static inline bool doit (const Value &Val) {
839 return Val.getValueID() == Value::ArgumentVal;
843 template <> struct isa_impl<InlineAsm, Value> {
844 static inline bool doit(const Value &Val) {
845 return Val.getValueID() == Value::InlineAsmVal;
849 template <> struct isa_impl<Instruction, Value> {
850 static inline bool doit(const Value &Val) {
851 return Val.getValueID() >= Value::InstructionVal;
855 template <> struct isa_impl<BasicBlock, Value> {
856 static inline bool doit(const Value &Val) {
857 return Val.getValueID() == Value::BasicBlockVal;
861 template <> struct isa_impl<Function, Value> {
862 static inline bool doit(const Value &Val) {
863 return Val.getValueID() == Value::FunctionVal;
867 template <> struct isa_impl<GlobalVariable, Value> {
868 static inline bool doit(const Value &Val) {
869 return Val.getValueID() == Value::GlobalVariableVal;
873 template <> struct isa_impl<GlobalAlias, Value> {
874 static inline bool doit(const Value &Val) {
875 return Val.getValueID() == Value::GlobalAliasVal;
879 template <> struct isa_impl<GlobalIFunc, Value> {
880 static inline bool doit(const Value &Val) {
881 return Val.getValueID() == Value::GlobalIFuncVal;
885 template <> struct isa_impl<GlobalIndirectSymbol, Value> {
886 static inline bool doit(const Value &Val) {
887 return isa<GlobalAlias>(Val) || isa<GlobalIFunc>(Val);
891 template <> struct isa_impl<GlobalValue, Value> {
892 static inline bool doit(const Value &Val) {
893 return isa<GlobalObject>(Val) || isa<GlobalIndirectSymbol>(Val);
897 template <> struct isa_impl<GlobalObject, Value> {
898 static inline bool doit(const Value &Val) {
899 return isa<GlobalVariable>(Val) || isa<Function>(Val);
903 // Create wrappers for C Binding types (see CBindingWrapping.h).
904 DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)
906 // Specialized opaque value conversions.
907 inline Value **unwrap(LLVMValueRef *Vals) {
908 return reinterpret_cast<Value**>(Vals);
911 template<typename T>
912 inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
913 #ifndef NDEBUG
914 for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
915 unwrap<T>(*I); // For side effect of calling assert on invalid usage.
916 #endif
917 (void)Length;
918 return reinterpret_cast<T**>(Vals);
921 inline LLVMValueRef *wrap(const Value **Vals) {
922 return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
925 } // end namespace llvm
927 #endif // LLVM_IR_VALUE_H