1 //===-LTO.h - LLVM Link Time Optimizer ------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file declares functions and classes used to support LTO. It is intended
10 // to be used both by LTO classes as well as by clients (gold-plugin) that
11 // don't utilize the LTO code generator interfaces.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_LTO_LTO_H
16 #define LLVM_LTO_LTO_H
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/StringSet.h"
21 #include "llvm/IR/DiagnosticInfo.h"
22 #include "llvm/IR/ModuleSummaryIndex.h"
23 #include "llvm/IR/RemarkStreamer.h"
24 #include "llvm/LTO/Config.h"
25 #include "llvm/Linker/IRMover.h"
26 #include "llvm/Object/IRSymtab.h"
27 #include "llvm/Support/Error.h"
28 #include "llvm/Support/ToolOutputFile.h"
29 #include "llvm/Support/thread.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Transforms/IPO/FunctionImport.h"
38 class MemoryBufferRef
;
41 class raw_pwrite_stream
;
43 /// Resolve linkage for prevailing symbols in the \p Index. Linkage changes
44 /// recorded in the index and the ThinLTO backends must apply the changes to
45 /// the module via thinLTOResolvePrevailingInModule.
47 /// This is done for correctness (if value exported, ensure we always
48 /// emit a copy), and compile-time optimization (allow drop of duplicates).
49 void thinLTOResolvePrevailingInIndex(
50 ModuleSummaryIndex
&Index
,
51 function_ref
<bool(GlobalValue::GUID
, const GlobalValueSummary
*)>
53 function_ref
<void(StringRef
, GlobalValue::GUID
, GlobalValue::LinkageTypes
)>
55 const DenseSet
<GlobalValue::GUID
> &GUIDPreservedSymbols
);
57 /// Update the linkages in the given \p Index to mark exported values
58 /// as external and non-exported values as internal. The ThinLTO backends
59 /// must apply the changes to the Module via thinLTOInternalizeModule.
60 void thinLTOInternalizeAndPromoteInIndex(
61 ModuleSummaryIndex
&Index
,
62 function_ref
<bool(StringRef
, GlobalValue::GUID
)> isExported
,
63 function_ref
<bool(GlobalValue::GUID
, const GlobalValueSummary
*)>
66 /// Computes a unique hash for the Module considering the current list of
67 /// export/import and other global analysis results.
68 /// The hash is produced in \p Key.
69 void computeLTOCacheKey(
70 SmallString
<40> &Key
, const lto::Config
&Conf
,
71 const ModuleSummaryIndex
&Index
, StringRef ModuleID
,
72 const FunctionImporter::ImportMapTy
&ImportList
,
73 const FunctionImporter::ExportSetTy
&ExportList
,
74 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
> &ResolvedODR
,
75 const GVSummaryMapTy
&DefinedGlobals
,
76 const std::set
<GlobalValue::GUID
> &CfiFunctionDefs
= {},
77 const std::set
<GlobalValue::GUID
> &CfiFunctionDecls
= {});
81 /// Given the original \p Path to an output file, replace any path
82 /// prefix matching \p OldPrefix with \p NewPrefix. Also, create the
83 /// resulting directory if it does not yet exist.
84 std::string
getThinLTOOutputFile(const std::string
&Path
,
85 const std::string
&OldPrefix
,
86 const std::string
&NewPrefix
);
88 /// Setup optimization remarks.
89 Expected
<std::unique_ptr
<ToolOutputFile
>>
90 setupOptimizationRemarks(LLVMContext
&Context
, StringRef RemarksFilename
,
91 StringRef RemarksPasses
, StringRef RemarksFormat
,
92 bool RemarksWithHotness
, int Count
= -1);
94 /// Setups the output file for saving statistics.
95 Expected
<std::unique_ptr
<ToolOutputFile
>>
96 setupStatsFile(StringRef StatsFilename
);
99 struct SymbolResolution
;
100 class ThinBackendProc
;
102 /// An input file. This is a symbol table wrapper that only exposes the
103 /// information that an LTO client should need in order to do symbol resolution.
109 // FIXME: Remove LTO class friendship once we have bitcode symbol tables.
111 InputFile() = default;
113 std::vector
<BitcodeModule
> Mods
;
114 SmallVector
<char, 0> Strtab
;
115 std::vector
<Symbol
> Symbols
;
117 // [begin, end) for each module
118 std::vector
<std::pair
<size_t, size_t>> ModuleSymIndices
;
120 StringRef TargetTriple
, SourceFileName
, COFFLinkerOpts
;
121 std::vector
<StringRef
> DependentLibraries
;
122 std::vector
<StringRef
> ComdatTable
;
127 /// Create an InputFile.
128 static Expected
<std::unique_ptr
<InputFile
>> create(MemoryBufferRef Object
);
130 /// The purpose of this class is to only expose the symbol information that an
131 /// LTO client should need in order to do symbol resolution.
132 class Symbol
: irsymtab::Symbol
{
136 Symbol(const irsymtab::Symbol
&S
) : irsymtab::Symbol(S
) {}
138 using irsymtab::Symbol::isUndefined
;
139 using irsymtab::Symbol::isCommon
;
140 using irsymtab::Symbol::isWeak
;
141 using irsymtab::Symbol::isIndirect
;
142 using irsymtab::Symbol::getName
;
143 using irsymtab::Symbol::getIRName
;
144 using irsymtab::Symbol::getVisibility
;
145 using irsymtab::Symbol::canBeOmittedFromSymbolTable
;
146 using irsymtab::Symbol::isTLS
;
147 using irsymtab::Symbol::getComdatIndex
;
148 using irsymtab::Symbol::getCommonSize
;
149 using irsymtab::Symbol::getCommonAlignment
;
150 using irsymtab::Symbol::getCOFFWeakExternalFallback
;
151 using irsymtab::Symbol::getSectionName
;
152 using irsymtab::Symbol::isExecutable
;
153 using irsymtab::Symbol::isUsed
;
156 /// A range over the symbols in this InputFile.
157 ArrayRef
<Symbol
> symbols() const { return Symbols
; }
159 /// Returns linker options specified in the input file.
160 StringRef
getCOFFLinkerOpts() const { return COFFLinkerOpts
; }
162 /// Returns dependent library specifiers from the input file.
163 ArrayRef
<StringRef
> getDependentLibraries() const { return DependentLibraries
; }
165 /// Returns the path to the InputFile.
166 StringRef
getName() const;
168 /// Returns the input file's target triple.
169 StringRef
getTargetTriple() const { return TargetTriple
; }
171 /// Returns the source file path specified at compile time.
172 StringRef
getSourceFileName() const { return SourceFileName
; }
174 // Returns a table with all the comdats used by this file.
175 ArrayRef
<StringRef
> getComdatTable() const { return ComdatTable
; }
177 // Returns the only BitcodeModule from InputFile.
178 BitcodeModule
&getSingleBitcodeModule();
181 ArrayRef
<Symbol
> module_symbols(unsigned I
) const {
182 const auto &Indices
= ModuleSymIndices
[I
];
183 return {Symbols
.data() + Indices
.first
, Symbols
.data() + Indices
.second
};
187 /// This class wraps an output stream for a native object. Most clients should
188 /// just be able to return an instance of this base class from the stream
189 /// callback, but if a client needs to perform some action after the stream is
190 /// written to, that can be done by deriving from this class and overriding the
192 class NativeObjectStream
{
194 NativeObjectStream(std::unique_ptr
<raw_pwrite_stream
> OS
) : OS(std::move(OS
)) {}
195 std::unique_ptr
<raw_pwrite_stream
> OS
;
196 virtual ~NativeObjectStream() = default;
199 /// This type defines the callback to add a native object that is generated on
202 /// Stream callbacks must be thread safe.
204 std::function
<std::unique_ptr
<NativeObjectStream
>(unsigned Task
)>;
206 /// This is the type of a native object cache. To request an item from the
207 /// cache, pass a unique string as the Key. For hits, the cached file will be
208 /// added to the link and this function will return AddStreamFn(). For misses,
209 /// the cache will return a stream callback which must be called at most once to
210 /// produce content for the stream. The native object stream produced by the
211 /// stream callback will add the file to the link after the stream is written
214 /// Clients generally look like this:
216 /// if (AddStreamFn AddStream = Cache(Task, Key))
217 /// ProduceContent(AddStream);
218 using NativeObjectCache
=
219 std::function
<AddStreamFn(unsigned Task
, StringRef Key
)>;
221 /// A ThinBackend defines what happens after the thin-link phase during ThinLTO.
222 /// The details of this type definition aren't important; clients can only
223 /// create a ThinBackend using one of the create*ThinBackend() functions below.
224 using ThinBackend
= std::function
<std::unique_ptr
<ThinBackendProc
>(
225 Config
&C
, ModuleSummaryIndex
&CombinedIndex
,
226 StringMap
<GVSummaryMapTy
> &ModuleToDefinedGVSummaries
,
227 AddStreamFn AddStream
, NativeObjectCache Cache
)>;
229 /// This ThinBackend runs the individual backend jobs in-process.
230 ThinBackend
createInProcessThinBackend(unsigned ParallelismLevel
);
232 /// This ThinBackend writes individual module indexes to files, instead of
233 /// running the individual backend jobs. This backend is for distributed builds
234 /// where separate processes will invoke the real backends.
236 /// To find the path to write the index to, the backend checks if the path has a
237 /// prefix of OldPrefix; if so, it replaces that prefix with NewPrefix. It then
238 /// appends ".thinlto.bc" and writes the index to that path. If
239 /// ShouldEmitImportsFiles is true it also writes a list of imported files to a
240 /// similar path with ".imports" appended instead.
241 /// LinkedObjectsFile is an output stream to write the list of object files for
242 /// the final ThinLTO linking. Can be nullptr.
243 /// OnWrite is callback which receives module identifier and notifies LTO user
244 /// that index file for the module (and optionally imports file) was created.
245 using IndexWriteCallback
= std::function
<void(const std::string
&)>;
246 ThinBackend
createWriteIndexesThinBackend(std::string OldPrefix
,
247 std::string NewPrefix
,
248 bool ShouldEmitImportsFiles
,
249 raw_fd_ostream
*LinkedObjectsFile
,
250 IndexWriteCallback OnWrite
);
252 /// This class implements a resolution-based interface to LLVM's LTO
253 /// functionality. It supports regular LTO, parallel LTO code generation and
254 /// ThinLTO. You can use it from a linker in the following way:
255 /// - Set hooks and code generation options (see lto::Config struct defined in
256 /// Config.h), and use the lto::Config object to create an lto::LTO object.
257 /// - Create lto::InputFile objects using lto::InputFile::create(), then use
258 /// the symbols() function to enumerate its symbols and compute a resolution
259 /// for each symbol (see SymbolResolution below).
260 /// - After the linker has visited each input file (and each regular object
261 /// file) and computed a resolution for each symbol, take each lto::InputFile
262 /// and pass it and an array of symbol resolutions to the add() function.
263 /// - Call the getMaxTasks() function to get an upper bound on the number of
264 /// native object files that LTO may add to the link.
265 /// - Call the run() function. This function will use the supplied AddStream
266 /// and Cache functions to add up to getMaxTasks() native object files to
272 /// Create an LTO object. A default constructed LTO object has a reasonable
273 /// production configuration, but you can customize it by passing arguments to
274 /// this constructor.
275 /// FIXME: We do currently require the DiagHandler field to be set in Conf.
276 /// Until that is fixed, a Config argument is required.
277 LTO(Config Conf
, ThinBackend Backend
= nullptr,
278 unsigned ParallelCodeGenParallelismLevel
= 1);
281 /// Add an input file to the LTO link, using the provided symbol resolutions.
282 /// The symbol resolutions must appear in the enumeration order given by
283 /// InputFile::symbols().
284 Error
add(std::unique_ptr
<InputFile
> Obj
, ArrayRef
<SymbolResolution
> Res
);
286 /// Returns an upper bound on the number of tasks that the client may expect.
287 /// This may only be called after all IR object files have been added. For a
288 /// full description of tasks see LTOBackend.h.
289 unsigned getMaxTasks() const;
291 /// Runs the LTO pipeline. This function calls the supplied AddStream
292 /// function to add native object files to the link.
294 /// The Cache parameter is optional. If supplied, it will be used to cache
295 /// native object files and add them to the link.
297 /// The client will receive at most one callback (via either AddStream or
298 /// Cache) for each task identifier.
299 Error
run(AddStreamFn AddStream
, NativeObjectCache Cache
= nullptr);
301 /// Static method that returns a list of libcall symbols that can be generated
302 /// by LTO but might not be visible from bitcode symbol table.
303 static ArrayRef
<const char*> getRuntimeLibcallSymbols();
308 struct RegularLTOState
{
309 RegularLTOState(unsigned ParallelCodeGenParallelismLevel
, Config
&Conf
);
310 struct CommonResolution
{
313 /// Record if at least one instance of the common was marked as prevailing
314 bool Prevailing
= false;
316 std::map
<std::string
, CommonResolution
> Commons
;
318 unsigned ParallelCodeGenParallelismLevel
;
320 std::unique_ptr
<Module
> CombinedModule
;
321 std::unique_ptr
<IRMover
> Mover
;
323 // This stores the information about a regular LTO module that we have added
324 // to the link. It will either be linked immediately (for modules without
325 // summaries) or after summary-based dead stripping (for modules with
328 std::unique_ptr
<Module
> M
;
329 std::vector
<GlobalValue
*> Keep
;
331 std::vector
<AddedModule
> ModsWithSummaries
;
334 struct ThinLTOState
{
335 ThinLTOState(ThinBackend Backend
);
338 ModuleSummaryIndex CombinedIndex
;
339 MapVector
<StringRef
, BitcodeModule
> ModuleMap
;
340 DenseMap
<GlobalValue::GUID
, StringRef
> PrevailingModuleForGUID
;
343 // The global resolution for a particular (mangled) symbol name. This is in
344 // particular necessary to track whether each symbol can be internalized.
345 // Because any input file may introduce a new cross-partition reference, we
346 // cannot make any final internalization decisions until all input files have
347 // been added and the client has called run(). During run() we apply
348 // internalization decisions either directly to the module (for regular LTO)
349 // or to the combined index (for ThinLTO).
350 struct GlobalResolution
{
351 /// The unmangled name of the global.
354 /// Keep track if the symbol is visible outside of a module with a summary
355 /// (i.e. in either a regular object or a regular LTO module without a
357 bool VisibleOutsideSummary
= false;
359 bool UnnamedAddr
= true;
361 /// True if module contains the prevailing definition.
362 bool Prevailing
= false;
364 /// Returns true if module contains the prevailing definition and symbol is
365 /// an IR symbol. For example when module-level inline asm block is used,
366 /// symbol can be prevailing in module but have no IR name.
367 bool isPrevailingIRSymbol() const { return Prevailing
&& !IRName
.empty(); }
369 /// This field keeps track of the partition number of this global. The
370 /// regular LTO object is partition 0, while each ThinLTO object has its own
371 /// partition number from 1 onwards.
373 /// Any global that is defined or used by more than one partition, or that
374 /// is referenced externally, may not be internalized.
376 /// Partitions generally have a one-to-one correspondence with tasks, except
377 /// that we use partition 0 for all parallel LTO code generation partitions.
378 /// Any partitioning of the combined LTO object is done internally by the
380 unsigned Partition
= Unknown
;
382 /// Special partition numbers.
384 /// A partition number has not yet been assigned to this global.
387 /// This global is either used by more than one partition or has an
388 /// external reference, and therefore cannot be internalized.
391 /// The RegularLTO partition
396 // Global mapping from mangled symbol names to resolutions.
397 StringMap
<GlobalResolution
> GlobalResolutions
;
399 void addModuleToGlobalRes(ArrayRef
<InputFile::Symbol
> Syms
,
400 ArrayRef
<SymbolResolution
> Res
, unsigned Partition
,
403 // These functions take a range of symbol resolutions [ResI, ResE) and consume
404 // the resolutions used by a single input module by incrementing ResI. After
405 // these functions return, [ResI, ResE) will refer to the resolution range for
406 // the remaining modules in the InputFile.
407 Error
addModule(InputFile
&Input
, unsigned ModI
,
408 const SymbolResolution
*&ResI
, const SymbolResolution
*ResE
);
410 Expected
<RegularLTOState::AddedModule
>
411 addRegularLTO(BitcodeModule BM
, ArrayRef
<InputFile::Symbol
> Syms
,
412 const SymbolResolution
*&ResI
, const SymbolResolution
*ResE
);
413 Error
linkRegularLTO(RegularLTOState::AddedModule Mod
,
414 bool LivenessFromIndex
);
416 Error
addThinLTO(BitcodeModule BM
, ArrayRef
<InputFile::Symbol
> Syms
,
417 const SymbolResolution
*&ResI
, const SymbolResolution
*ResE
);
419 Error
runRegularLTO(AddStreamFn AddStream
);
420 Error
runThinLTO(AddStreamFn AddStream
, NativeObjectCache Cache
,
421 const DenseSet
<GlobalValue::GUID
> &GUIDPreservedSymbols
);
423 Error
checkPartiallySplit();
425 mutable bool CalledGetMaxTasks
= false;
427 // Use Optional to distinguish false from not yet initialized.
428 Optional
<bool> EnableSplitLTOUnit
;
431 /// The resolution for a symbol. The linker must provide a SymbolResolution for
432 /// each global symbol based on its internal resolution of that symbol.
433 struct SymbolResolution
{
435 : Prevailing(0), FinalDefinitionInLinkageUnit(0), VisibleToRegularObj(0),
436 LinkerRedefined(0) {}
438 /// The linker has chosen this definition of the symbol.
439 unsigned Prevailing
: 1;
441 /// The definition of this symbol is unpreemptable at runtime and is known to
442 /// be in this linkage unit.
443 unsigned FinalDefinitionInLinkageUnit
: 1;
445 /// The definition of this symbol is visible outside of the LTO unit.
446 unsigned VisibleToRegularObj
: 1;
448 /// Linker redefined version of the symbol which appeared in -wrap or -defsym
450 unsigned LinkerRedefined
: 1;