1 //===- llvm/Support/KnownBits.h - Stores known zeros/ones -------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains a class for representing known zeros and ones used by
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_SUPPORT_KNOWNBITS_H
15 #define LLVM_SUPPORT_KNOWNBITS_H
17 #include "llvm/ADT/APInt.h"
21 // Struct for tracking the known zeros and ones of a value.
27 // Internal constructor for creating a KnownBits from two APInts.
28 KnownBits(APInt Zero
, APInt One
)
29 : Zero(std::move(Zero
)), One(std::move(One
)) {}
32 // Default construct Zero and One.
35 /// Create a known bits object of BitWidth bits initialized to unknown.
36 KnownBits(unsigned BitWidth
) : Zero(BitWidth
, 0), One(BitWidth
, 0) {}
38 /// Get the bit width of this value.
39 unsigned getBitWidth() const {
40 assert(Zero
.getBitWidth() == One
.getBitWidth() &&
41 "Zero and One should have the same width!");
42 return Zero
.getBitWidth();
45 /// Returns true if there is conflicting information.
46 bool hasConflict() const { return Zero
.intersects(One
); }
48 /// Returns true if we know the value of all bits.
49 bool isConstant() const {
50 assert(!hasConflict() && "KnownBits conflict!");
51 return Zero
.countPopulation() + One
.countPopulation() == getBitWidth();
54 /// Returns the value when all bits have a known value. This just returns One
55 /// with a protective assertion.
56 const APInt
&getConstant() const {
57 assert(isConstant() && "Can only get value when all bits are known");
61 /// Returns true if we don't know any bits.
62 bool isUnknown() const { return Zero
.isNullValue() && One
.isNullValue(); }
64 /// Resets the known state of all bits.
70 /// Returns true if value is all zero.
72 assert(!hasConflict() && "KnownBits conflict!");
73 return Zero
.isAllOnesValue();
76 /// Returns true if value is all one bits.
77 bool isAllOnes() const {
78 assert(!hasConflict() && "KnownBits conflict!");
79 return One
.isAllOnesValue();
82 /// Make all bits known to be zero and discard any previous information.
88 /// Make all bits known to be one and discard any previous information.
94 /// Returns true if this value is known to be negative.
95 bool isNegative() const { return One
.isSignBitSet(); }
97 /// Returns true if this value is known to be non-negative.
98 bool isNonNegative() const { return Zero
.isSignBitSet(); }
100 /// Make this value negative.
101 void makeNegative() {
105 /// Make this value non-negative.
106 void makeNonNegative() {
110 /// Truncate the underlying known Zero and One bits. This is equivalent
111 /// to truncating the value we're tracking.
112 KnownBits
trunc(unsigned BitWidth
) const {
113 return KnownBits(Zero
.trunc(BitWidth
), One
.trunc(BitWidth
));
116 /// Extends the underlying known Zero and One bits.
117 /// By setting ExtendedBitsAreKnownZero=true this will be equivalent to
118 /// zero extending the value we're tracking.
119 /// With ExtendedBitsAreKnownZero=false the extended bits are set to unknown.
120 KnownBits
zext(unsigned BitWidth
, bool ExtendedBitsAreKnownZero
) const {
121 unsigned OldBitWidth
= getBitWidth();
122 APInt NewZero
= Zero
.zext(BitWidth
);
123 if (ExtendedBitsAreKnownZero
)
124 NewZero
.setBitsFrom(OldBitWidth
);
125 return KnownBits(NewZero
, One
.zext(BitWidth
));
128 /// Sign extends the underlying known Zero and One bits. This is equivalent
129 /// to sign extending the value we're tracking.
130 KnownBits
sext(unsigned BitWidth
) const {
131 return KnownBits(Zero
.sext(BitWidth
), One
.sext(BitWidth
));
134 /// Extends or truncates the underlying known Zero and One bits. When
135 /// extending the extended bits can either be set as known zero (if
136 /// ExtendedBitsAreKnownZero=true) or as unknown (if
137 /// ExtendedBitsAreKnownZero=false).
138 KnownBits
zextOrTrunc(unsigned BitWidth
,
139 bool ExtendedBitsAreKnownZero
) const {
140 if (BitWidth
> getBitWidth())
141 return zext(BitWidth
, ExtendedBitsAreKnownZero
);
142 return KnownBits(Zero
.zextOrTrunc(BitWidth
), One
.zextOrTrunc(BitWidth
));
145 /// Returns the minimum number of trailing zero bits.
146 unsigned countMinTrailingZeros() const {
147 return Zero
.countTrailingOnes();
150 /// Returns the minimum number of trailing one bits.
151 unsigned countMinTrailingOnes() const {
152 return One
.countTrailingOnes();
155 /// Returns the minimum number of leading zero bits.
156 unsigned countMinLeadingZeros() const {
157 return Zero
.countLeadingOnes();
160 /// Returns the minimum number of leading one bits.
161 unsigned countMinLeadingOnes() const {
162 return One
.countLeadingOnes();
165 /// Returns the number of times the sign bit is replicated into the other
167 unsigned countMinSignBits() const {
169 return countMinLeadingZeros();
171 return countMinLeadingOnes();
175 /// Returns the maximum number of trailing zero bits possible.
176 unsigned countMaxTrailingZeros() const {
177 return One
.countTrailingZeros();
180 /// Returns the maximum number of trailing one bits possible.
181 unsigned countMaxTrailingOnes() const {
182 return Zero
.countTrailingZeros();
185 /// Returns the maximum number of leading zero bits possible.
186 unsigned countMaxLeadingZeros() const {
187 return One
.countLeadingZeros();
190 /// Returns the maximum number of leading one bits possible.
191 unsigned countMaxLeadingOnes() const {
192 return Zero
.countLeadingZeros();
195 /// Returns the number of bits known to be one.
196 unsigned countMinPopulation() const {
197 return One
.countPopulation();
200 /// Returns the maximum number of bits that could be one.
201 unsigned countMaxPopulation() const {
202 return getBitWidth() - Zero
.countPopulation();
205 /// Compute known bits resulting from adding LHS, RHS and a 1-bit Carry.
206 static KnownBits
computeForAddCarry(
207 const KnownBits
&LHS
, const KnownBits
&RHS
, const KnownBits
&Carry
);
209 /// Compute known bits resulting from adding LHS and RHS.
210 static KnownBits
computeForAddSub(bool Add
, bool NSW
, const KnownBits
&LHS
,
214 } // end namespace llvm