[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Analysis / BasicAliasAnalysis.cpp
blobf3c30c258c19e4f2b49452a0f568f1a81292445e
1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the primary stateless implementation of the
10 // Alias Analysis interface that implements identities (two different
11 // globals cannot alias, etc), but does no stateful analysis.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/CaptureTracking.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/PhiValues.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/KnownBits.h"
57 #include <cassert>
58 #include <cstdint>
59 #include <cstdlib>
60 #include <utility>
62 #define DEBUG_TYPE "basicaa"
64 using namespace llvm;
66 /// Enable analysis of recursive PHI nodes.
67 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
68 cl::init(false));
70 /// By default, even on 32-bit architectures we use 64-bit integers for
71 /// calculations. This will allow us to more-aggressively decompose indexing
72 /// expressions calculated using i64 values (e.g., long long in C) which is
73 /// common enough to worry about.
74 static cl::opt<bool> ForceAtLeast64Bits("basicaa-force-at-least-64b",
75 cl::Hidden, cl::init(true));
76 static cl::opt<bool> DoubleCalcBits("basicaa-double-calc-bits",
77 cl::Hidden, cl::init(false));
79 /// SearchLimitReached / SearchTimes shows how often the limit of
80 /// to decompose GEPs is reached. It will affect the precision
81 /// of basic alias analysis.
82 STATISTIC(SearchLimitReached, "Number of times the limit to "
83 "decompose GEPs is reached");
84 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
86 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
87 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
88 /// careful with value equivalence. We use reachability to make sure a value
89 /// cannot be involved in a cycle.
90 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
92 // The max limit of the search depth in DecomposeGEPExpression() and
93 // GetUnderlyingObject(), both functions need to use the same search
94 // depth otherwise the algorithm in aliasGEP will assert.
95 static const unsigned MaxLookupSearchDepth = 6;
97 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
98 FunctionAnalysisManager::Invalidator &Inv) {
99 // We don't care if this analysis itself is preserved, it has no state. But
100 // we need to check that the analyses it depends on have been. Note that we
101 // may be created without handles to some analyses and in that case don't
102 // depend on them.
103 if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
104 (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
105 (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) ||
106 (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
107 return true;
109 // Otherwise this analysis result remains valid.
110 return false;
113 //===----------------------------------------------------------------------===//
114 // Useful predicates
115 //===----------------------------------------------------------------------===//
117 /// Returns true if the pointer is to a function-local object that never
118 /// escapes from the function.
119 static bool isNonEscapingLocalObject(
120 const Value *V,
121 SmallDenseMap<const Value *, bool, 8> *IsCapturedCache = nullptr) {
122 SmallDenseMap<const Value *, bool, 8>::iterator CacheIt;
123 if (IsCapturedCache) {
124 bool Inserted;
125 std::tie(CacheIt, Inserted) = IsCapturedCache->insert({V, false});
126 if (!Inserted)
127 // Found cached result, return it!
128 return CacheIt->second;
131 // If this is a local allocation, check to see if it escapes.
132 if (isa<AllocaInst>(V) || isNoAliasCall(V)) {
133 // Set StoreCaptures to True so that we can assume in our callers that the
134 // pointer is not the result of a load instruction. Currently
135 // PointerMayBeCaptured doesn't have any special analysis for the
136 // StoreCaptures=false case; if it did, our callers could be refined to be
137 // more precise.
138 auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
139 if (IsCapturedCache)
140 CacheIt->second = Ret;
141 return Ret;
144 // If this is an argument that corresponds to a byval or noalias argument,
145 // then it has not escaped before entering the function. Check if it escapes
146 // inside the function.
147 if (const Argument *A = dyn_cast<Argument>(V))
148 if (A->hasByValAttr() || A->hasNoAliasAttr()) {
149 // Note even if the argument is marked nocapture, we still need to check
150 // for copies made inside the function. The nocapture attribute only
151 // specifies that there are no copies made that outlive the function.
152 auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
153 if (IsCapturedCache)
154 CacheIt->second = Ret;
155 return Ret;
158 return false;
161 /// Returns true if the pointer is one which would have been considered an
162 /// escape by isNonEscapingLocalObject.
163 static bool isEscapeSource(const Value *V) {
164 if (isa<CallBase>(V))
165 return true;
167 if (isa<Argument>(V))
168 return true;
170 // The load case works because isNonEscapingLocalObject considers all
171 // stores to be escapes (it passes true for the StoreCaptures argument
172 // to PointerMayBeCaptured).
173 if (isa<LoadInst>(V))
174 return true;
176 return false;
179 /// Returns the size of the object specified by V or UnknownSize if unknown.
180 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
181 const TargetLibraryInfo &TLI,
182 bool NullIsValidLoc,
183 bool RoundToAlign = false) {
184 uint64_t Size;
185 ObjectSizeOpts Opts;
186 Opts.RoundToAlign = RoundToAlign;
187 Opts.NullIsUnknownSize = NullIsValidLoc;
188 if (getObjectSize(V, Size, DL, &TLI, Opts))
189 return Size;
190 return MemoryLocation::UnknownSize;
193 /// Returns true if we can prove that the object specified by V is smaller than
194 /// Size.
195 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
196 const DataLayout &DL,
197 const TargetLibraryInfo &TLI,
198 bool NullIsValidLoc) {
199 // Note that the meanings of the "object" are slightly different in the
200 // following contexts:
201 // c1: llvm::getObjectSize()
202 // c2: llvm.objectsize() intrinsic
203 // c3: isObjectSmallerThan()
204 // c1 and c2 share the same meaning; however, the meaning of "object" in c3
205 // refers to the "entire object".
207 // Consider this example:
208 // char *p = (char*)malloc(100)
209 // char *q = p+80;
211 // In the context of c1 and c2, the "object" pointed by q refers to the
212 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
214 // However, in the context of c3, the "object" refers to the chunk of memory
215 // being allocated. So, the "object" has 100 bytes, and q points to the middle
216 // the "object". In case q is passed to isObjectSmallerThan() as the 1st
217 // parameter, before the llvm::getObjectSize() is called to get the size of
218 // entire object, we should:
219 // - either rewind the pointer q to the base-address of the object in
220 // question (in this case rewind to p), or
221 // - just give up. It is up to caller to make sure the pointer is pointing
222 // to the base address the object.
224 // We go for 2nd option for simplicity.
225 if (!isIdentifiedObject(V))
226 return false;
228 // This function needs to use the aligned object size because we allow
229 // reads a bit past the end given sufficient alignment.
230 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
231 /*RoundToAlign*/ true);
233 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
236 /// Return the minimal extent from \p V to the end of the underlying object,
237 /// assuming the result is used in an aliasing query. E.g., we do use the query
238 /// location size and the fact that null pointers cannot alias here.
239 static uint64_t getMinimalExtentFrom(const Value &V,
240 const LocationSize &LocSize,
241 const DataLayout &DL,
242 bool NullIsValidLoc) {
243 // If we have dereferenceability information we know a lower bound for the
244 // extent as accesses for a lower offset would be valid. We need to exclude
245 // the "or null" part if null is a valid pointer.
246 bool CanBeNull;
247 uint64_t DerefBytes = V.getPointerDereferenceableBytes(DL, CanBeNull);
248 DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
249 // If queried with a precise location size, we assume that location size to be
250 // accessed, thus valid.
251 if (LocSize.isPrecise())
252 DerefBytes = std::max(DerefBytes, LocSize.getValue());
253 return DerefBytes;
256 /// Returns true if we can prove that the object specified by V has size Size.
257 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
258 const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
259 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
260 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
263 //===----------------------------------------------------------------------===//
264 // GetElementPtr Instruction Decomposition and Analysis
265 //===----------------------------------------------------------------------===//
267 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
268 /// B are constant integers.
270 /// Returns the scale and offset values as APInts and return V as a Value*, and
271 /// return whether we looked through any sign or zero extends. The incoming
272 /// Value is known to have IntegerType, and it may already be sign or zero
273 /// extended.
275 /// Note that this looks through extends, so the high bits may not be
276 /// represented in the result.
277 /*static*/ const Value *BasicAAResult::GetLinearExpression(
278 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
279 unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
280 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
281 assert(V->getType()->isIntegerTy() && "Not an integer value");
283 // Limit our recursion depth.
284 if (Depth == 6) {
285 Scale = 1;
286 Offset = 0;
287 return V;
290 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
291 // If it's a constant, just convert it to an offset and remove the variable.
292 // If we've been called recursively, the Offset bit width will be greater
293 // than the constant's (the Offset's always as wide as the outermost call),
294 // so we'll zext here and process any extension in the isa<SExtInst> &
295 // isa<ZExtInst> cases below.
296 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
297 assert(Scale == 0 && "Constant values don't have a scale");
298 return V;
301 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
302 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
303 // If we've been called recursively, then Offset and Scale will be wider
304 // than the BOp operands. We'll always zext it here as we'll process sign
305 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
306 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
308 switch (BOp->getOpcode()) {
309 default:
310 // We don't understand this instruction, so we can't decompose it any
311 // further.
312 Scale = 1;
313 Offset = 0;
314 return V;
315 case Instruction::Or:
316 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't
317 // analyze it.
318 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
319 BOp, DT)) {
320 Scale = 1;
321 Offset = 0;
322 return V;
324 LLVM_FALLTHROUGH;
325 case Instruction::Add:
326 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
327 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
328 Offset += RHS;
329 break;
330 case Instruction::Sub:
331 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
332 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
333 Offset -= RHS;
334 break;
335 case Instruction::Mul:
336 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
337 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
338 Offset *= RHS;
339 Scale *= RHS;
340 break;
341 case Instruction::Shl:
342 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
343 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
345 // We're trying to linearize an expression of the kind:
346 // shl i8 -128, 36
347 // where the shift count exceeds the bitwidth of the type.
348 // We can't decompose this further (the expression would return
349 // a poison value).
350 if (Offset.getBitWidth() < RHS.getLimitedValue() ||
351 Scale.getBitWidth() < RHS.getLimitedValue()) {
352 Scale = 1;
353 Offset = 0;
354 return V;
357 Offset <<= RHS.getLimitedValue();
358 Scale <<= RHS.getLimitedValue();
359 // the semantics of nsw and nuw for left shifts don't match those of
360 // multiplications, so we won't propagate them.
361 NSW = NUW = false;
362 return V;
365 if (isa<OverflowingBinaryOperator>(BOp)) {
366 NUW &= BOp->hasNoUnsignedWrap();
367 NSW &= BOp->hasNoSignedWrap();
369 return V;
373 // Since GEP indices are sign extended anyway, we don't care about the high
374 // bits of a sign or zero extended value - just scales and offsets. The
375 // extensions have to be consistent though.
376 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
377 Value *CastOp = cast<CastInst>(V)->getOperand(0);
378 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
379 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
380 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
381 const Value *Result =
382 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
383 Depth + 1, AC, DT, NSW, NUW);
385 // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
386 // by just incrementing the number of bits we've extended by.
387 unsigned ExtendedBy = NewWidth - SmallWidth;
389 if (isa<SExtInst>(V) && ZExtBits == 0) {
390 // sext(sext(%x, a), b) == sext(%x, a + b)
392 if (NSW) {
393 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
394 // into sext(%x) + sext(c). We'll sext the Offset ourselves:
395 unsigned OldWidth = Offset.getBitWidth();
396 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
397 } else {
398 // We may have signed-wrapped, so don't decompose sext(%x + c) into
399 // sext(%x) + sext(c)
400 Scale = 1;
401 Offset = 0;
402 Result = CastOp;
403 ZExtBits = OldZExtBits;
404 SExtBits = OldSExtBits;
406 SExtBits += ExtendedBy;
407 } else {
408 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
410 if (!NUW) {
411 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
412 // zext(%x) + zext(c)
413 Scale = 1;
414 Offset = 0;
415 Result = CastOp;
416 ZExtBits = OldZExtBits;
417 SExtBits = OldSExtBits;
419 ZExtBits += ExtendedBy;
422 return Result;
425 Scale = 1;
426 Offset = 0;
427 return V;
430 /// To ensure a pointer offset fits in an integer of size PointerSize
431 /// (in bits) when that size is smaller than the maximum pointer size. This is
432 /// an issue, for example, in particular for 32b pointers with negative indices
433 /// that rely on two's complement wrap-arounds for precise alias information
434 /// where the maximum pointer size is 64b.
435 static APInt adjustToPointerSize(APInt Offset, unsigned PointerSize) {
436 assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!");
437 unsigned ShiftBits = Offset.getBitWidth() - PointerSize;
438 return (Offset << ShiftBits).ashr(ShiftBits);
441 static unsigned getMaxPointerSize(const DataLayout &DL) {
442 unsigned MaxPointerSize = DL.getMaxPointerSizeInBits();
443 if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64;
444 if (DoubleCalcBits) MaxPointerSize *= 2;
446 return MaxPointerSize;
449 /// If V is a symbolic pointer expression, decompose it into a base pointer
450 /// with a constant offset and a number of scaled symbolic offsets.
452 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
453 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
454 /// specified amount, but which may have other unrepresented high bits. As
455 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
457 /// When DataLayout is around, this function is capable of analyzing everything
458 /// that GetUnderlyingObject can look through. To be able to do that
459 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
460 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
461 /// through pointer casts.
462 bool BasicAAResult::DecomposeGEPExpression(const Value *V,
463 DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC,
464 DominatorTree *DT) {
465 // Limit recursion depth to limit compile time in crazy cases.
466 unsigned MaxLookup = MaxLookupSearchDepth;
467 SearchTimes++;
469 unsigned MaxPointerSize = getMaxPointerSize(DL);
470 Decomposed.VarIndices.clear();
471 do {
472 // See if this is a bitcast or GEP.
473 const Operator *Op = dyn_cast<Operator>(V);
474 if (!Op) {
475 // The only non-operator case we can handle are GlobalAliases.
476 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
477 if (!GA->isInterposable()) {
478 V = GA->getAliasee();
479 continue;
482 Decomposed.Base = V;
483 return false;
486 if (Op->getOpcode() == Instruction::BitCast ||
487 Op->getOpcode() == Instruction::AddrSpaceCast) {
488 V = Op->getOperand(0);
489 continue;
492 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
493 if (!GEPOp) {
494 if (const auto *Call = dyn_cast<CallBase>(V)) {
495 // CaptureTracking can know about special capturing properties of some
496 // intrinsics like launder.invariant.group, that can't be expressed with
497 // the attributes, but have properties like returning aliasing pointer.
498 // Because some analysis may assume that nocaptured pointer is not
499 // returned from some special intrinsic (because function would have to
500 // be marked with returns attribute), it is crucial to use this function
501 // because it should be in sync with CaptureTracking. Not using it may
502 // cause weird miscompilations where 2 aliasing pointers are assumed to
503 // noalias.
504 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
505 V = RP;
506 continue;
510 // If it's not a GEP, hand it off to SimplifyInstruction to see if it
511 // can come up with something. This matches what GetUnderlyingObject does.
512 if (const Instruction *I = dyn_cast<Instruction>(V))
513 // TODO: Get a DominatorTree and AssumptionCache and use them here
514 // (these are both now available in this function, but this should be
515 // updated when GetUnderlyingObject is updated). TLI should be
516 // provided also.
517 if (const Value *Simplified =
518 SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
519 V = Simplified;
520 continue;
523 Decomposed.Base = V;
524 return false;
527 // Don't attempt to analyze GEPs over unsized objects.
528 if (!GEPOp->getSourceElementType()->isSized()) {
529 Decomposed.Base = V;
530 return false;
533 unsigned AS = GEPOp->getPointerAddressSpace();
534 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
535 gep_type_iterator GTI = gep_type_begin(GEPOp);
536 unsigned PointerSize = DL.getPointerSizeInBits(AS);
537 // Assume all GEP operands are constants until proven otherwise.
538 bool GepHasConstantOffset = true;
539 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
540 I != E; ++I, ++GTI) {
541 const Value *Index = *I;
542 // Compute the (potentially symbolic) offset in bytes for this index.
543 if (StructType *STy = GTI.getStructTypeOrNull()) {
544 // For a struct, add the member offset.
545 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
546 if (FieldNo == 0)
547 continue;
549 Decomposed.StructOffset +=
550 DL.getStructLayout(STy)->getElementOffset(FieldNo);
551 continue;
554 // For an array/pointer, add the element offset, explicitly scaled.
555 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
556 if (CIdx->isZero())
557 continue;
558 Decomposed.OtherOffset +=
559 (DL.getTypeAllocSize(GTI.getIndexedType()) *
560 CIdx->getValue().sextOrSelf(MaxPointerSize))
561 .sextOrTrunc(MaxPointerSize);
562 continue;
565 GepHasConstantOffset = false;
567 APInt Scale(MaxPointerSize, DL.getTypeAllocSize(GTI.getIndexedType()));
568 unsigned ZExtBits = 0, SExtBits = 0;
570 // If the integer type is smaller than the pointer size, it is implicitly
571 // sign extended to pointer size.
572 unsigned Width = Index->getType()->getIntegerBitWidth();
573 if (PointerSize > Width)
574 SExtBits += PointerSize - Width;
576 // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
577 APInt IndexScale(Width, 0), IndexOffset(Width, 0);
578 bool NSW = true, NUW = true;
579 const Value *OrigIndex = Index;
580 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
581 SExtBits, DL, 0, AC, DT, NSW, NUW);
583 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
584 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
586 // It can be the case that, even through C1*V+C2 does not overflow for
587 // relevant values of V, (C2*Scale) can overflow. In that case, we cannot
588 // decompose the expression in this way.
590 // FIXME: C1*Scale and the other operations in the decomposed
591 // (C1*Scale)*V+C2*Scale can also overflow. We should check for this
592 // possibility.
593 APInt WideScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize*2) *
594 Scale.sext(MaxPointerSize*2);
595 if (WideScaledOffset.getMinSignedBits() > MaxPointerSize) {
596 Index = OrigIndex;
597 IndexScale = 1;
598 IndexOffset = 0;
600 ZExtBits = SExtBits = 0;
601 if (PointerSize > Width)
602 SExtBits += PointerSize - Width;
603 } else {
604 Decomposed.OtherOffset += IndexOffset.sextOrTrunc(MaxPointerSize) * Scale;
605 Scale *= IndexScale.sextOrTrunc(MaxPointerSize);
608 // If we already had an occurrence of this index variable, merge this
609 // scale into it. For example, we want to handle:
610 // A[x][x] -> x*16 + x*4 -> x*20
611 // This also ensures that 'x' only appears in the index list once.
612 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
613 if (Decomposed.VarIndices[i].V == Index &&
614 Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
615 Decomposed.VarIndices[i].SExtBits == SExtBits) {
616 Scale += Decomposed.VarIndices[i].Scale;
617 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
618 break;
622 // Make sure that we have a scale that makes sense for this target's
623 // pointer size.
624 Scale = adjustToPointerSize(Scale, PointerSize);
626 if (!!Scale) {
627 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale};
628 Decomposed.VarIndices.push_back(Entry);
632 // Take care of wrap-arounds
633 if (GepHasConstantOffset) {
634 Decomposed.StructOffset =
635 adjustToPointerSize(Decomposed.StructOffset, PointerSize);
636 Decomposed.OtherOffset =
637 adjustToPointerSize(Decomposed.OtherOffset, PointerSize);
640 // Analyze the base pointer next.
641 V = GEPOp->getOperand(0);
642 } while (--MaxLookup);
644 // If the chain of expressions is too deep, just return early.
645 Decomposed.Base = V;
646 SearchLimitReached++;
647 return true;
650 /// Returns whether the given pointer value points to memory that is local to
651 /// the function, with global constants being considered local to all
652 /// functions.
653 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
654 AAQueryInfo &AAQI, bool OrLocal) {
655 assert(Visited.empty() && "Visited must be cleared after use!");
657 unsigned MaxLookup = 8;
658 SmallVector<const Value *, 16> Worklist;
659 Worklist.push_back(Loc.Ptr);
660 do {
661 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
662 if (!Visited.insert(V).second) {
663 Visited.clear();
664 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
667 // An alloca instruction defines local memory.
668 if (OrLocal && isa<AllocaInst>(V))
669 continue;
671 // A global constant counts as local memory for our purposes.
672 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
673 // Note: this doesn't require GV to be "ODR" because it isn't legal for a
674 // global to be marked constant in some modules and non-constant in
675 // others. GV may even be a declaration, not a definition.
676 if (!GV->isConstant()) {
677 Visited.clear();
678 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
680 continue;
683 // If both select values point to local memory, then so does the select.
684 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
685 Worklist.push_back(SI->getTrueValue());
686 Worklist.push_back(SI->getFalseValue());
687 continue;
690 // If all values incoming to a phi node point to local memory, then so does
691 // the phi.
692 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
693 // Don't bother inspecting phi nodes with many operands.
694 if (PN->getNumIncomingValues() > MaxLookup) {
695 Visited.clear();
696 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
698 for (Value *IncValue : PN->incoming_values())
699 Worklist.push_back(IncValue);
700 continue;
703 // Otherwise be conservative.
704 Visited.clear();
705 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
706 } while (!Worklist.empty() && --MaxLookup);
708 Visited.clear();
709 return Worklist.empty();
712 /// Returns the behavior when calling the given call site.
713 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
714 if (Call->doesNotAccessMemory())
715 // Can't do better than this.
716 return FMRB_DoesNotAccessMemory;
718 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
720 // If the callsite knows it only reads memory, don't return worse
721 // than that.
722 if (Call->onlyReadsMemory())
723 Min = FMRB_OnlyReadsMemory;
724 else if (Call->doesNotReadMemory())
725 Min = FMRB_DoesNotReadMemory;
727 if (Call->onlyAccessesArgMemory())
728 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
729 else if (Call->onlyAccessesInaccessibleMemory())
730 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
731 else if (Call->onlyAccessesInaccessibleMemOrArgMem())
732 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
734 // If the call has operand bundles then aliasing attributes from the function
735 // it calls do not directly apply to the call. This can be made more precise
736 // in the future.
737 if (!Call->hasOperandBundles())
738 if (const Function *F = Call->getCalledFunction())
739 Min =
740 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
742 return Min;
745 /// Returns the behavior when calling the given function. For use when the call
746 /// site is not known.
747 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
748 // If the function declares it doesn't access memory, we can't do better.
749 if (F->doesNotAccessMemory())
750 return FMRB_DoesNotAccessMemory;
752 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
754 // If the function declares it only reads memory, go with that.
755 if (F->onlyReadsMemory())
756 Min = FMRB_OnlyReadsMemory;
757 else if (F->doesNotReadMemory())
758 Min = FMRB_DoesNotReadMemory;
760 if (F->onlyAccessesArgMemory())
761 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
762 else if (F->onlyAccessesInaccessibleMemory())
763 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
764 else if (F->onlyAccessesInaccessibleMemOrArgMem())
765 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
767 return Min;
770 /// Returns true if this is a writeonly (i.e Mod only) parameter.
771 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
772 const TargetLibraryInfo &TLI) {
773 if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
774 return true;
776 // We can bound the aliasing properties of memset_pattern16 just as we can
777 // for memcpy/memset. This is particularly important because the
778 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
779 // whenever possible.
780 // FIXME Consider handling this in InferFunctionAttr.cpp together with other
781 // attributes.
782 LibFunc F;
783 if (Call->getCalledFunction() &&
784 TLI.getLibFunc(*Call->getCalledFunction(), F) &&
785 F == LibFunc_memset_pattern16 && TLI.has(F))
786 if (ArgIdx == 0)
787 return true;
789 // TODO: memset_pattern4, memset_pattern8
790 // TODO: _chk variants
791 // TODO: strcmp, strcpy
793 return false;
796 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
797 unsigned ArgIdx) {
798 // Checking for known builtin intrinsics and target library functions.
799 if (isWriteOnlyParam(Call, ArgIdx, TLI))
800 return ModRefInfo::Mod;
802 if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
803 return ModRefInfo::Ref;
805 if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
806 return ModRefInfo::NoModRef;
808 return AAResultBase::getArgModRefInfo(Call, ArgIdx);
811 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
812 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
813 return II && II->getIntrinsicID() == IID;
816 #ifndef NDEBUG
817 static const Function *getParent(const Value *V) {
818 if (const Instruction *inst = dyn_cast<Instruction>(V)) {
819 if (!inst->getParent())
820 return nullptr;
821 return inst->getParent()->getParent();
824 if (const Argument *arg = dyn_cast<Argument>(V))
825 return arg->getParent();
827 return nullptr;
830 static bool notDifferentParent(const Value *O1, const Value *O2) {
832 const Function *F1 = getParent(O1);
833 const Function *F2 = getParent(O2);
835 return !F1 || !F2 || F1 == F2;
837 #endif
839 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
840 const MemoryLocation &LocB,
841 AAQueryInfo &AAQI) {
842 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
843 "BasicAliasAnalysis doesn't support interprocedural queries.");
845 // If we have a directly cached entry for these locations, we have recursed
846 // through this once, so just return the cached results. Notably, when this
847 // happens, we don't clear the cache.
848 auto CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocA, LocB));
849 if (CacheIt != AAQI.AliasCache.end())
850 return CacheIt->second;
852 CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocB, LocA));
853 if (CacheIt != AAQI.AliasCache.end())
854 return CacheIt->second;
856 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
857 LocB.Size, LocB.AATags, AAQI);
859 VisitedPhiBBs.clear();
860 return Alias;
863 /// Checks to see if the specified callsite can clobber the specified memory
864 /// object.
866 /// Since we only look at local properties of this function, we really can't
867 /// say much about this query. We do, however, use simple "address taken"
868 /// analysis on local objects.
869 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
870 const MemoryLocation &Loc,
871 AAQueryInfo &AAQI) {
872 assert(notDifferentParent(Call, Loc.Ptr) &&
873 "AliasAnalysis query involving multiple functions!");
875 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
877 // Calls marked 'tail' cannot read or write allocas from the current frame
878 // because the current frame might be destroyed by the time they run. However,
879 // a tail call may use an alloca with byval. Calling with byval copies the
880 // contents of the alloca into argument registers or stack slots, so there is
881 // no lifetime issue.
882 if (isa<AllocaInst>(Object))
883 if (const CallInst *CI = dyn_cast<CallInst>(Call))
884 if (CI->isTailCall() &&
885 !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
886 return ModRefInfo::NoModRef;
888 // Stack restore is able to modify unescaped dynamic allocas. Assume it may
889 // modify them even though the alloca is not escaped.
890 if (auto *AI = dyn_cast<AllocaInst>(Object))
891 if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
892 return ModRefInfo::Mod;
894 // If the pointer is to a locally allocated object that does not escape,
895 // then the call can not mod/ref the pointer unless the call takes the pointer
896 // as an argument, and itself doesn't capture it.
897 if (!isa<Constant>(Object) && Call != Object &&
898 isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) {
900 // Optimistically assume that call doesn't touch Object and check this
901 // assumption in the following loop.
902 ModRefInfo Result = ModRefInfo::NoModRef;
903 bool IsMustAlias = true;
905 unsigned OperandNo = 0;
906 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
907 CI != CE; ++CI, ++OperandNo) {
908 // Only look at the no-capture or byval pointer arguments. If this
909 // pointer were passed to arguments that were neither of these, then it
910 // couldn't be no-capture.
911 if (!(*CI)->getType()->isPointerTy() ||
912 (!Call->doesNotCapture(OperandNo) &&
913 OperandNo < Call->getNumArgOperands() &&
914 !Call->isByValArgument(OperandNo)))
915 continue;
917 // Call doesn't access memory through this operand, so we don't care
918 // if it aliases with Object.
919 if (Call->doesNotAccessMemory(OperandNo))
920 continue;
922 // If this is a no-capture pointer argument, see if we can tell that it
923 // is impossible to alias the pointer we're checking.
924 AliasResult AR = getBestAAResults().alias(MemoryLocation(*CI),
925 MemoryLocation(Object), AAQI);
926 if (AR != MustAlias)
927 IsMustAlias = false;
928 // Operand doesn't alias 'Object', continue looking for other aliases
929 if (AR == NoAlias)
930 continue;
931 // Operand aliases 'Object', but call doesn't modify it. Strengthen
932 // initial assumption and keep looking in case if there are more aliases.
933 if (Call->onlyReadsMemory(OperandNo)) {
934 Result = setRef(Result);
935 continue;
937 // Operand aliases 'Object' but call only writes into it.
938 if (Call->doesNotReadMemory(OperandNo)) {
939 Result = setMod(Result);
940 continue;
942 // This operand aliases 'Object' and call reads and writes into it.
943 // Setting ModRef will not yield an early return below, MustAlias is not
944 // used further.
945 Result = ModRefInfo::ModRef;
946 break;
949 // No operand aliases, reset Must bit. Add below if at least one aliases
950 // and all aliases found are MustAlias.
951 if (isNoModRef(Result))
952 IsMustAlias = false;
954 // Early return if we improved mod ref information
955 if (!isModAndRefSet(Result)) {
956 if (isNoModRef(Result))
957 return ModRefInfo::NoModRef;
958 return IsMustAlias ? setMust(Result) : clearMust(Result);
962 // If the call is to malloc or calloc, we can assume that it doesn't
963 // modify any IR visible value. This is only valid because we assume these
964 // routines do not read values visible in the IR. TODO: Consider special
965 // casing realloc and strdup routines which access only their arguments as
966 // well. Or alternatively, replace all of this with inaccessiblememonly once
967 // that's implemented fully.
968 if (isMallocOrCallocLikeFn(Call, &TLI)) {
969 // Be conservative if the accessed pointer may alias the allocation -
970 // fallback to the generic handling below.
971 if (getBestAAResults().alias(MemoryLocation(Call), Loc, AAQI) == NoAlias)
972 return ModRefInfo::NoModRef;
975 // The semantics of memcpy intrinsics forbid overlap between their respective
976 // operands, i.e., source and destination of any given memcpy must no-alias.
977 // If Loc must-aliases either one of these two locations, then it necessarily
978 // no-aliases the other.
979 if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) {
980 AliasResult SrcAA, DestAA;
982 if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst),
983 Loc, AAQI)) == MustAlias)
984 // Loc is exactly the memcpy source thus disjoint from memcpy dest.
985 return ModRefInfo::Ref;
986 if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst),
987 Loc, AAQI)) == MustAlias)
988 // The converse case.
989 return ModRefInfo::Mod;
991 // It's also possible for Loc to alias both src and dest, or neither.
992 ModRefInfo rv = ModRefInfo::NoModRef;
993 if (SrcAA != NoAlias)
994 rv = setRef(rv);
995 if (DestAA != NoAlias)
996 rv = setMod(rv);
997 return rv;
1000 // While the assume intrinsic is marked as arbitrarily writing so that
1001 // proper control dependencies will be maintained, it never aliases any
1002 // particular memory location.
1003 if (isIntrinsicCall(Call, Intrinsic::assume))
1004 return ModRefInfo::NoModRef;
1006 // Like assumes, guard intrinsics are also marked as arbitrarily writing so
1007 // that proper control dependencies are maintained but they never mods any
1008 // particular memory location.
1010 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1011 // heap state at the point the guard is issued needs to be consistent in case
1012 // the guard invokes the "deopt" continuation.
1013 if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
1014 return ModRefInfo::Ref;
1016 // Like assumes, invariant.start intrinsics were also marked as arbitrarily
1017 // writing so that proper control dependencies are maintained but they never
1018 // mod any particular memory location visible to the IR.
1019 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
1020 // intrinsic is now modeled as reading memory. This prevents hoisting the
1021 // invariant.start intrinsic over stores. Consider:
1022 // *ptr = 40;
1023 // *ptr = 50;
1024 // invariant_start(ptr)
1025 // int val = *ptr;
1026 // print(val);
1028 // This cannot be transformed to:
1030 // *ptr = 40;
1031 // invariant_start(ptr)
1032 // *ptr = 50;
1033 // int val = *ptr;
1034 // print(val);
1036 // The transformation will cause the second store to be ignored (based on
1037 // rules of invariant.start) and print 40, while the first program always
1038 // prints 50.
1039 if (isIntrinsicCall(Call, Intrinsic::invariant_start))
1040 return ModRefInfo::Ref;
1042 // The AAResultBase base class has some smarts, lets use them.
1043 return AAResultBase::getModRefInfo(Call, Loc, AAQI);
1046 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
1047 const CallBase *Call2,
1048 AAQueryInfo &AAQI) {
1049 // While the assume intrinsic is marked as arbitrarily writing so that
1050 // proper control dependencies will be maintained, it never aliases any
1051 // particular memory location.
1052 if (isIntrinsicCall(Call1, Intrinsic::assume) ||
1053 isIntrinsicCall(Call2, Intrinsic::assume))
1054 return ModRefInfo::NoModRef;
1056 // Like assumes, guard intrinsics are also marked as arbitrarily writing so
1057 // that proper control dependencies are maintained but they never mod any
1058 // particular memory location.
1060 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1061 // heap state at the point the guard is issued needs to be consistent in case
1062 // the guard invokes the "deopt" continuation.
1064 // NB! This function is *not* commutative, so we special case two
1065 // possibilities for guard intrinsics.
1067 if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
1068 return isModSet(createModRefInfo(getModRefBehavior(Call2)))
1069 ? ModRefInfo::Ref
1070 : ModRefInfo::NoModRef;
1072 if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
1073 return isModSet(createModRefInfo(getModRefBehavior(Call1)))
1074 ? ModRefInfo::Mod
1075 : ModRefInfo::NoModRef;
1077 // The AAResultBase base class has some smarts, lets use them.
1078 return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
1081 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
1082 /// both having the exact same pointer operand.
1083 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
1084 LocationSize MaybeV1Size,
1085 const GEPOperator *GEP2,
1086 LocationSize MaybeV2Size,
1087 const DataLayout &DL) {
1088 assert(GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1089 GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1090 GEP1->getPointerOperandType() == GEP2->getPointerOperandType() &&
1091 "Expected GEPs with the same pointer operand");
1093 // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
1094 // such that the struct field accesses provably cannot alias.
1095 // We also need at least two indices (the pointer, and the struct field).
1096 if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
1097 GEP1->getNumIndices() < 2)
1098 return MayAlias;
1100 // If we don't know the size of the accesses through both GEPs, we can't
1101 // determine whether the struct fields accessed can't alias.
1102 if (MaybeV1Size == LocationSize::unknown() ||
1103 MaybeV2Size == LocationSize::unknown())
1104 return MayAlias;
1106 const uint64_t V1Size = MaybeV1Size.getValue();
1107 const uint64_t V2Size = MaybeV2Size.getValue();
1109 ConstantInt *C1 =
1110 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
1111 ConstantInt *C2 =
1112 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
1114 // If the last (struct) indices are constants and are equal, the other indices
1115 // might be also be dynamically equal, so the GEPs can alias.
1116 if (C1 && C2) {
1117 unsigned BitWidth = std::max(C1->getBitWidth(), C2->getBitWidth());
1118 if (C1->getValue().sextOrSelf(BitWidth) ==
1119 C2->getValue().sextOrSelf(BitWidth))
1120 return MayAlias;
1123 // Find the last-indexed type of the GEP, i.e., the type you'd get if
1124 // you stripped the last index.
1125 // On the way, look at each indexed type. If there's something other
1126 // than an array, different indices can lead to different final types.
1127 SmallVector<Value *, 8> IntermediateIndices;
1129 // Insert the first index; we don't need to check the type indexed
1130 // through it as it only drops the pointer indirection.
1131 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
1132 IntermediateIndices.push_back(GEP1->getOperand(1));
1134 // Insert all the remaining indices but the last one.
1135 // Also, check that they all index through arrays.
1136 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
1137 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
1138 GEP1->getSourceElementType(), IntermediateIndices)))
1139 return MayAlias;
1140 IntermediateIndices.push_back(GEP1->getOperand(i + 1));
1143 auto *Ty = GetElementPtrInst::getIndexedType(
1144 GEP1->getSourceElementType(), IntermediateIndices);
1145 StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
1147 if (isa<SequentialType>(Ty)) {
1148 // We know that:
1149 // - both GEPs begin indexing from the exact same pointer;
1150 // - the last indices in both GEPs are constants, indexing into a sequential
1151 // type (array or pointer);
1152 // - both GEPs only index through arrays prior to that.
1154 // Because array indices greater than the number of elements are valid in
1155 // GEPs, unless we know the intermediate indices are identical between
1156 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
1157 // partially overlap. We also need to check that the loaded size matches
1158 // the element size, otherwise we could still have overlap.
1159 const uint64_t ElementSize =
1160 DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
1161 if (V1Size != ElementSize || V2Size != ElementSize)
1162 return MayAlias;
1164 for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
1165 if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
1166 return MayAlias;
1168 // Now we know that the array/pointer that GEP1 indexes into and that
1169 // that GEP2 indexes into must either precisely overlap or be disjoint.
1170 // Because they cannot partially overlap and because fields in an array
1171 // cannot overlap, if we can prove the final indices are different between
1172 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
1174 // If the last indices are constants, we've already checked they don't
1175 // equal each other so we can exit early.
1176 if (C1 && C2)
1177 return NoAlias;
1179 Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1);
1180 Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1);
1181 if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) {
1182 // If one of the indices is a PHI node, be safe and only use
1183 // computeKnownBits so we don't make any assumptions about the
1184 // relationships between the two indices. This is important if we're
1185 // asking about values from different loop iterations. See PR32314.
1186 // TODO: We may be able to change the check so we only do this when
1187 // we definitely looked through a PHINode.
1188 if (GEP1LastIdx != GEP2LastIdx &&
1189 GEP1LastIdx->getType() == GEP2LastIdx->getType()) {
1190 KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL);
1191 KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL);
1192 if (Known1.Zero.intersects(Known2.One) ||
1193 Known1.One.intersects(Known2.Zero))
1194 return NoAlias;
1196 } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL))
1197 return NoAlias;
1199 return MayAlias;
1200 } else if (!LastIndexedStruct || !C1 || !C2) {
1201 return MayAlias;
1204 if (C1->getValue().getActiveBits() > 64 ||
1205 C2->getValue().getActiveBits() > 64)
1206 return MayAlias;
1208 // We know that:
1209 // - both GEPs begin indexing from the exact same pointer;
1210 // - the last indices in both GEPs are constants, indexing into a struct;
1211 // - said indices are different, hence, the pointed-to fields are different;
1212 // - both GEPs only index through arrays prior to that.
1214 // This lets us determine that the struct that GEP1 indexes into and the
1215 // struct that GEP2 indexes into must either precisely overlap or be
1216 // completely disjoint. Because they cannot partially overlap, indexing into
1217 // different non-overlapping fields of the struct will never alias.
1219 // Therefore, the only remaining thing needed to show that both GEPs can't
1220 // alias is that the fields are not overlapping.
1221 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
1222 const uint64_t StructSize = SL->getSizeInBytes();
1223 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
1224 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
1226 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
1227 uint64_t V2Off, uint64_t V2Size) {
1228 return V1Off < V2Off && V1Off + V1Size <= V2Off &&
1229 ((V2Off + V2Size <= StructSize) ||
1230 (V2Off + V2Size - StructSize <= V1Off));
1233 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
1234 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
1235 return NoAlias;
1237 return MayAlias;
1240 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the
1241 // beginning of the object the GEP points would have a negative offset with
1242 // repsect to the alloca, that means the GEP can not alias pointer (b).
1243 // Note that the pointer based on the alloca may not be a GEP. For
1244 // example, it may be the alloca itself.
1245 // The same applies if (b) is based on a GlobalVariable. Note that just being
1246 // based on isIdentifiedObject() is not enough - we need an identified object
1247 // that does not permit access to negative offsets. For example, a negative
1248 // offset from a noalias argument or call can be inbounds w.r.t the actual
1249 // underlying object.
1251 // For example, consider:
1253 // struct { int f0, int f1, ...} foo;
1254 // foo alloca;
1255 // foo* random = bar(alloca);
1256 // int *f0 = &alloca.f0
1257 // int *f1 = &random->f1;
1259 // Which is lowered, approximately, to:
1261 // %alloca = alloca %struct.foo
1262 // %random = call %struct.foo* @random(%struct.foo* %alloca)
1263 // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
1264 // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
1266 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
1267 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also
1268 // point into the same object. But since %f0 points to the beginning of %alloca,
1269 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher
1270 // than (%alloca - 1), and so is not inbounds, a contradiction.
1271 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
1272 const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
1273 LocationSize MaybeObjectAccessSize) {
1274 // If the object access size is unknown, or the GEP isn't inbounds, bail.
1275 if (MaybeObjectAccessSize == LocationSize::unknown() || !GEPOp->isInBounds())
1276 return false;
1278 const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue();
1280 // We need the object to be an alloca or a globalvariable, and want to know
1281 // the offset of the pointer from the object precisely, so no variable
1282 // indices are allowed.
1283 if (!(isa<AllocaInst>(DecompObject.Base) ||
1284 isa<GlobalVariable>(DecompObject.Base)) ||
1285 !DecompObject.VarIndices.empty())
1286 return false;
1288 APInt ObjectBaseOffset = DecompObject.StructOffset +
1289 DecompObject.OtherOffset;
1291 // If the GEP has no variable indices, we know the precise offset
1292 // from the base, then use it. If the GEP has variable indices,
1293 // we can't get exact GEP offset to identify pointer alias. So return
1294 // false in that case.
1295 if (!DecompGEP.VarIndices.empty())
1296 return false;
1298 APInt GEPBaseOffset = DecompGEP.StructOffset;
1299 GEPBaseOffset += DecompGEP.OtherOffset;
1301 return GEPBaseOffset.sge(ObjectBaseOffset + (int64_t)ObjectAccessSize);
1304 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1305 /// another pointer.
1307 /// We know that V1 is a GEP, but we don't know anything about V2.
1308 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
1309 /// V2.
1310 AliasResult BasicAAResult::aliasGEP(
1311 const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
1312 const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
1313 const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
1314 DecomposedGEP DecompGEP1, DecompGEP2;
1315 unsigned MaxPointerSize = getMaxPointerSize(DL);
1316 DecompGEP1.StructOffset = DecompGEP1.OtherOffset = APInt(MaxPointerSize, 0);
1317 DecompGEP2.StructOffset = DecompGEP2.OtherOffset = APInt(MaxPointerSize, 0);
1319 bool GEP1MaxLookupReached =
1320 DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT);
1321 bool GEP2MaxLookupReached =
1322 DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT);
1324 APInt GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset;
1325 APInt GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset;
1327 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1328 "DecomposeGEPExpression returned a result different from "
1329 "GetUnderlyingObject");
1331 // If the GEP's offset relative to its base is such that the base would
1332 // fall below the start of the object underlying V2, then the GEP and V2
1333 // cannot alias.
1334 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1335 isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
1336 return NoAlias;
1337 // If we have two gep instructions with must-alias or not-alias'ing base
1338 // pointers, figure out if the indexes to the GEP tell us anything about the
1339 // derived pointer.
1340 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
1341 // Check for the GEP base being at a negative offset, this time in the other
1342 // direction.
1343 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1344 isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
1345 return NoAlias;
1346 // Do the base pointers alias?
1347 AliasResult BaseAlias =
1348 aliasCheck(UnderlyingV1, LocationSize::unknown(), AAMDNodes(),
1349 UnderlyingV2, LocationSize::unknown(), AAMDNodes(), AAQI);
1351 // Check for geps of non-aliasing underlying pointers where the offsets are
1352 // identical.
1353 if ((BaseAlias == MayAlias) && V1Size == V2Size) {
1354 // Do the base pointers alias assuming type and size.
1355 AliasResult PreciseBaseAlias = aliasCheck(
1356 UnderlyingV1, V1Size, V1AAInfo, UnderlyingV2, V2Size, V2AAInfo, AAQI);
1357 if (PreciseBaseAlias == NoAlias) {
1358 // See if the computed offset from the common pointer tells us about the
1359 // relation of the resulting pointer.
1360 // If the max search depth is reached the result is undefined
1361 if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1362 return MayAlias;
1364 // Same offsets.
1365 if (GEP1BaseOffset == GEP2BaseOffset &&
1366 DecompGEP1.VarIndices == DecompGEP2.VarIndices)
1367 return NoAlias;
1371 // If we get a No or May, then return it immediately, no amount of analysis
1372 // will improve this situation.
1373 if (BaseAlias != MustAlias) {
1374 assert(BaseAlias == NoAlias || BaseAlias == MayAlias);
1375 return BaseAlias;
1378 // Otherwise, we have a MustAlias. Since the base pointers alias each other
1379 // exactly, see if the computed offset from the common pointer tells us
1380 // about the relation of the resulting pointer.
1381 // If we know the two GEPs are based off of the exact same pointer (and not
1382 // just the same underlying object), see if that tells us anything about
1383 // the resulting pointers.
1384 if (GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1385 GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1386 GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) {
1387 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
1388 // If we couldn't find anything interesting, don't abandon just yet.
1389 if (R != MayAlias)
1390 return R;
1393 // If the max search depth is reached, the result is undefined
1394 if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1395 return MayAlias;
1397 // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1398 // symbolic difference.
1399 GEP1BaseOffset -= GEP2BaseOffset;
1400 GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
1402 } else {
1403 // Check to see if these two pointers are related by the getelementptr
1404 // instruction. If one pointer is a GEP with a non-zero index of the other
1405 // pointer, we know they cannot alias.
1407 // If both accesses are unknown size, we can't do anything useful here.
1408 if (V1Size == LocationSize::unknown() && V2Size == LocationSize::unknown())
1409 return MayAlias;
1411 AliasResult R = aliasCheck(UnderlyingV1, LocationSize::unknown(),
1412 AAMDNodes(), V2, LocationSize::unknown(),
1413 V2AAInfo, AAQI, nullptr, UnderlyingV2);
1414 if (R != MustAlias) {
1415 // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1416 // If V2 is known not to alias GEP base pointer, then the two values
1417 // cannot alias per GEP semantics: "Any memory access must be done through
1418 // a pointer value associated with an address range of the memory access,
1419 // otherwise the behavior is undefined.".
1420 assert(R == NoAlias || R == MayAlias);
1421 return R;
1424 // If the max search depth is reached the result is undefined
1425 if (GEP1MaxLookupReached)
1426 return MayAlias;
1429 // In the two GEP Case, if there is no difference in the offsets of the
1430 // computed pointers, the resultant pointers are a must alias. This
1431 // happens when we have two lexically identical GEP's (for example).
1433 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1434 // must aliases the GEP, the end result is a must alias also.
1435 if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty())
1436 return MustAlias;
1438 // If there is a constant difference between the pointers, but the difference
1439 // is less than the size of the associated memory object, then we know
1440 // that the objects are partially overlapping. If the difference is
1441 // greater, we know they do not overlap.
1442 if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) {
1443 if (GEP1BaseOffset.sge(0)) {
1444 if (V2Size != LocationSize::unknown()) {
1445 if (GEP1BaseOffset.ult(V2Size.getValue()))
1446 return PartialAlias;
1447 return NoAlias;
1449 } else {
1450 // We have the situation where:
1451 // + +
1452 // | BaseOffset |
1453 // ---------------->|
1454 // |-->V1Size |-------> V2Size
1455 // GEP1 V2
1456 // We need to know that V2Size is not unknown, otherwise we might have
1457 // stripped a gep with negative index ('gep <ptr>, -1, ...).
1458 if (V1Size != LocationSize::unknown() &&
1459 V2Size != LocationSize::unknown()) {
1460 if ((-GEP1BaseOffset).ult(V1Size.getValue()))
1461 return PartialAlias;
1462 return NoAlias;
1467 if (!DecompGEP1.VarIndices.empty()) {
1468 APInt Modulo(MaxPointerSize, 0);
1469 bool AllPositive = true;
1470 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1472 // Try to distinguish something like &A[i][1] against &A[42][0].
1473 // Grab the least significant bit set in any of the scales. We
1474 // don't need std::abs here (even if the scale's negative) as we'll
1475 // be ^'ing Modulo with itself later.
1476 Modulo |= DecompGEP1.VarIndices[i].Scale;
1478 if (AllPositive) {
1479 // If the Value could change between cycles, then any reasoning about
1480 // the Value this cycle may not hold in the next cycle. We'll just
1481 // give up if we can't determine conditions that hold for every cycle:
1482 const Value *V = DecompGEP1.VarIndices[i].V;
1484 KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, DT);
1485 bool SignKnownZero = Known.isNonNegative();
1486 bool SignKnownOne = Known.isNegative();
1488 // Zero-extension widens the variable, and so forces the sign
1489 // bit to zero.
1490 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1491 SignKnownZero |= IsZExt;
1492 SignKnownOne &= !IsZExt;
1494 // If the variable begins with a zero then we know it's
1495 // positive, regardless of whether the value is signed or
1496 // unsigned.
1497 APInt Scale = DecompGEP1.VarIndices[i].Scale;
1498 AllPositive =
1499 (SignKnownZero && Scale.sge(0)) || (SignKnownOne && Scale.slt(0));
1503 Modulo = Modulo ^ (Modulo & (Modulo - 1));
1505 // We can compute the difference between the two addresses
1506 // mod Modulo. Check whether that difference guarantees that the
1507 // two locations do not alias.
1508 APInt ModOffset = GEP1BaseOffset & (Modulo - 1);
1509 if (V1Size != LocationSize::unknown() &&
1510 V2Size != LocationSize::unknown() && ModOffset.uge(V2Size.getValue()) &&
1511 (Modulo - ModOffset).uge(V1Size.getValue()))
1512 return NoAlias;
1514 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1515 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1516 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1517 if (AllPositive && GEP1BaseOffset.sgt(0) &&
1518 V2Size != LocationSize::unknown() &&
1519 GEP1BaseOffset.uge(V2Size.getValue()))
1520 return NoAlias;
1522 if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
1523 GEP1BaseOffset, &AC, DT))
1524 return NoAlias;
1527 // Statically, we can see that the base objects are the same, but the
1528 // pointers have dynamic offsets which we can't resolve. And none of our
1529 // little tricks above worked.
1530 return MayAlias;
1533 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1534 // If the results agree, take it.
1535 if (A == B)
1536 return A;
1537 // A mix of PartialAlias and MustAlias is PartialAlias.
1538 if ((A == PartialAlias && B == MustAlias) ||
1539 (B == PartialAlias && A == MustAlias))
1540 return PartialAlias;
1541 // Otherwise, we don't know anything.
1542 return MayAlias;
1545 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1546 /// against another.
1547 AliasResult
1548 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
1549 const AAMDNodes &SIAAInfo, const Value *V2,
1550 LocationSize V2Size, const AAMDNodes &V2AAInfo,
1551 const Value *UnderV2, AAQueryInfo &AAQI) {
1552 // If the values are Selects with the same condition, we can do a more precise
1553 // check: just check for aliases between the values on corresponding arms.
1554 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1555 if (SI->getCondition() == SI2->getCondition()) {
1556 AliasResult Alias =
1557 aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, SI2->getTrueValue(),
1558 V2Size, V2AAInfo, AAQI);
1559 if (Alias == MayAlias)
1560 return MayAlias;
1561 AliasResult ThisAlias =
1562 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1563 SI2->getFalseValue(), V2Size, V2AAInfo, AAQI);
1564 return MergeAliasResults(ThisAlias, Alias);
1567 // If both arms of the Select node NoAlias or MustAlias V2, then returns
1568 // NoAlias / MustAlias. Otherwise, returns MayAlias.
1569 AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(),
1570 SISize, SIAAInfo, AAQI, UnderV2);
1571 if (Alias == MayAlias)
1572 return MayAlias;
1574 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(),
1575 SISize, SIAAInfo, AAQI, UnderV2);
1576 return MergeAliasResults(ThisAlias, Alias);
1579 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1580 /// another.
1581 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1582 const AAMDNodes &PNAAInfo, const Value *V2,
1583 LocationSize V2Size,
1584 const AAMDNodes &V2AAInfo,
1585 const Value *UnderV2, AAQueryInfo &AAQI) {
1586 // Track phi nodes we have visited. We use this information when we determine
1587 // value equivalence.
1588 VisitedPhiBBs.insert(PN->getParent());
1590 // If the values are PHIs in the same block, we can do a more precise
1591 // as well as efficient check: just check for aliases between the values
1592 // on corresponding edges.
1593 if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1594 if (PN2->getParent() == PN->getParent()) {
1595 AAQueryInfo::LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
1596 MemoryLocation(V2, V2Size, V2AAInfo));
1597 if (PN > V2)
1598 std::swap(Locs.first, Locs.second);
1599 // Analyse the PHIs' inputs under the assumption that the PHIs are
1600 // NoAlias.
1601 // If the PHIs are May/MustAlias there must be (recursively) an input
1602 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1603 // there must be an operation on the PHIs within the PHIs' value cycle
1604 // that causes a MayAlias.
1605 // Pretend the phis do not alias.
1606 AliasResult Alias = NoAlias;
1607 AliasResult OrigAliasResult;
1609 // Limited lifetime iterator invalidated by the aliasCheck call below.
1610 auto CacheIt = AAQI.AliasCache.find(Locs);
1611 assert((CacheIt != AAQI.AliasCache.end()) &&
1612 "There must exist an entry for the phi node");
1613 OrigAliasResult = CacheIt->second;
1614 CacheIt->second = NoAlias;
1617 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1618 AliasResult ThisAlias =
1619 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1620 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1621 V2Size, V2AAInfo, AAQI);
1622 Alias = MergeAliasResults(ThisAlias, Alias);
1623 if (Alias == MayAlias)
1624 break;
1627 // Reset if speculation failed.
1628 if (Alias != NoAlias) {
1629 auto Pair =
1630 AAQI.AliasCache.insert(std::make_pair(Locs, OrigAliasResult));
1631 assert(!Pair.second && "Entry must have existed");
1632 Pair.first->second = OrigAliasResult;
1634 return Alias;
1637 SmallVector<Value *, 4> V1Srcs;
1638 bool isRecursive = false;
1639 if (PV) {
1640 // If we have PhiValues then use it to get the underlying phi values.
1641 const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
1642 // If we have more phi values than the search depth then return MayAlias
1643 // conservatively to avoid compile time explosion. The worst possible case
1644 // is if both sides are PHI nodes. In which case, this is O(m x n) time
1645 // where 'm' and 'n' are the number of PHI sources.
1646 if (PhiValueSet.size() > MaxLookupSearchDepth)
1647 return MayAlias;
1648 // Add the values to V1Srcs
1649 for (Value *PV1 : PhiValueSet) {
1650 if (EnableRecPhiAnalysis) {
1651 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
1652 // Check whether the incoming value is a GEP that advances the pointer
1653 // result of this PHI node (e.g. in a loop). If this is the case, we
1654 // would recurse and always get a MayAlias. Handle this case specially
1655 // below.
1656 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
1657 isa<ConstantInt>(PV1GEP->idx_begin())) {
1658 isRecursive = true;
1659 continue;
1663 V1Srcs.push_back(PV1);
1665 } else {
1666 // If we don't have PhiInfo then just look at the operands of the phi itself
1667 // FIXME: Remove this once we can guarantee that we have PhiInfo always
1668 SmallPtrSet<Value *, 4> UniqueSrc;
1669 for (Value *PV1 : PN->incoming_values()) {
1670 if (isa<PHINode>(PV1))
1671 // If any of the source itself is a PHI, return MayAlias conservatively
1672 // to avoid compile time explosion. The worst possible case is if both
1673 // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1674 // and 'n' are the number of PHI sources.
1675 return MayAlias;
1677 if (EnableRecPhiAnalysis)
1678 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
1679 // Check whether the incoming value is a GEP that advances the pointer
1680 // result of this PHI node (e.g. in a loop). If this is the case, we
1681 // would recurse and always get a MayAlias. Handle this case specially
1682 // below.
1683 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
1684 isa<ConstantInt>(PV1GEP->idx_begin())) {
1685 isRecursive = true;
1686 continue;
1690 if (UniqueSrc.insert(PV1).second)
1691 V1Srcs.push_back(PV1);
1695 // If V1Srcs is empty then that means that the phi has no underlying non-phi
1696 // value. This should only be possible in blocks unreachable from the entry
1697 // block, but return MayAlias just in case.
1698 if (V1Srcs.empty())
1699 return MayAlias;
1701 // If this PHI node is recursive, set the size of the accessed memory to
1702 // unknown to represent all the possible values the GEP could advance the
1703 // pointer to.
1704 if (isRecursive)
1705 PNSize = LocationSize::unknown();
1707 AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize,
1708 PNAAInfo, AAQI, UnderV2);
1710 // Early exit if the check of the first PHI source against V2 is MayAlias.
1711 // Other results are not possible.
1712 if (Alias == MayAlias)
1713 return MayAlias;
1715 // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1716 // NoAlias / MustAlias. Otherwise, returns MayAlias.
1717 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1718 Value *V = V1Srcs[i];
1720 AliasResult ThisAlias =
1721 aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, AAQI, UnderV2);
1722 Alias = MergeAliasResults(ThisAlias, Alias);
1723 if (Alias == MayAlias)
1724 break;
1727 return Alias;
1730 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1731 /// array references.
1732 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1733 AAMDNodes V1AAInfo, const Value *V2,
1734 LocationSize V2Size, AAMDNodes V2AAInfo,
1735 AAQueryInfo &AAQI, const Value *O1,
1736 const Value *O2) {
1737 // If either of the memory references is empty, it doesn't matter what the
1738 // pointer values are.
1739 if (V1Size.isZero() || V2Size.isZero())
1740 return NoAlias;
1742 // Strip off any casts if they exist.
1743 V1 = V1->stripPointerCastsAndInvariantGroups();
1744 V2 = V2->stripPointerCastsAndInvariantGroups();
1746 // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1747 // value for undef that aliases nothing in the program.
1748 if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1749 return NoAlias;
1751 // Are we checking for alias of the same value?
1752 // Because we look 'through' phi nodes, we could look at "Value" pointers from
1753 // different iterations. We must therefore make sure that this is not the
1754 // case. The function isValueEqualInPotentialCycles ensures that this cannot
1755 // happen by looking at the visited phi nodes and making sure they cannot
1756 // reach the value.
1757 if (isValueEqualInPotentialCycles(V1, V2))
1758 return MustAlias;
1760 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1761 return NoAlias; // Scalars cannot alias each other
1763 // Figure out what objects these things are pointing to if we can.
1764 if (O1 == nullptr)
1765 O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
1767 if (O2 == nullptr)
1768 O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
1770 // Null values in the default address space don't point to any object, so they
1771 // don't alias any other pointer.
1772 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1773 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1774 return NoAlias;
1775 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1776 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1777 return NoAlias;
1779 if (O1 != O2) {
1780 // If V1/V2 point to two different objects, we know that we have no alias.
1781 if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1782 return NoAlias;
1784 // Constant pointers can't alias with non-const isIdentifiedObject objects.
1785 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1786 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1787 return NoAlias;
1789 // Function arguments can't alias with things that are known to be
1790 // unambigously identified at the function level.
1791 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1792 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1793 return NoAlias;
1795 // If one pointer is the result of a call/invoke or load and the other is a
1796 // non-escaping local object within the same function, then we know the
1797 // object couldn't escape to a point where the call could return it.
1799 // Note that if the pointers are in different functions, there are a
1800 // variety of complications. A call with a nocapture argument may still
1801 // temporary store the nocapture argument's value in a temporary memory
1802 // location if that memory location doesn't escape. Or it may pass a
1803 // nocapture value to other functions as long as they don't capture it.
1804 if (isEscapeSource(O1) &&
1805 isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache))
1806 return NoAlias;
1807 if (isEscapeSource(O2) &&
1808 isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache))
1809 return NoAlias;
1812 // If the size of one access is larger than the entire object on the other
1813 // side, then we know such behavior is undefined and can assume no alias.
1814 bool NullIsValidLocation = NullPointerIsDefined(&F);
1815 if ((isObjectSmallerThan(
1816 O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
1817 TLI, NullIsValidLocation)) ||
1818 (isObjectSmallerThan(
1819 O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
1820 TLI, NullIsValidLocation)))
1821 return NoAlias;
1823 // Check the cache before climbing up use-def chains. This also terminates
1824 // otherwise infinitely recursive queries.
1825 AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1826 MemoryLocation(V2, V2Size, V2AAInfo));
1827 if (V1 > V2)
1828 std::swap(Locs.first, Locs.second);
1829 std::pair<AAQueryInfo::AliasCacheT::iterator, bool> Pair =
1830 AAQI.AliasCache.try_emplace(Locs, MayAlias);
1831 if (!Pair.second)
1832 return Pair.first->second;
1834 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1835 // GEP can't simplify, we don't even look at the PHI cases.
1836 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1837 std::swap(V1, V2);
1838 std::swap(V1Size, V2Size);
1839 std::swap(O1, O2);
1840 std::swap(V1AAInfo, V2AAInfo);
1842 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1843 AliasResult Result =
1844 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI);
1845 if (Result != MayAlias) {
1846 auto ItInsPair = AAQI.AliasCache.insert(std::make_pair(Locs, Result));
1847 assert(!ItInsPair.second && "Entry must have existed");
1848 ItInsPair.first->second = Result;
1849 return Result;
1853 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1854 std::swap(V1, V2);
1855 std::swap(O1, O2);
1856 std::swap(V1Size, V2Size);
1857 std::swap(V1AAInfo, V2AAInfo);
1859 if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1860 AliasResult Result =
1861 aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
1862 if (Result != MayAlias) {
1863 Pair = AAQI.AliasCache.try_emplace(Locs, Result);
1864 assert(!Pair.second && "Entry must have existed");
1865 return Pair.first->second = Result;
1869 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1870 std::swap(V1, V2);
1871 std::swap(O1, O2);
1872 std::swap(V1Size, V2Size);
1873 std::swap(V1AAInfo, V2AAInfo);
1875 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1876 AliasResult Result =
1877 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
1878 if (Result != MayAlias) {
1879 Pair = AAQI.AliasCache.try_emplace(Locs, Result);
1880 assert(!Pair.second && "Entry must have existed");
1881 return Pair.first->second = Result;
1885 // If both pointers are pointing into the same object and one of them
1886 // accesses the entire object, then the accesses must overlap in some way.
1887 if (O1 == O2)
1888 if (V1Size.isPrecise() && V2Size.isPrecise() &&
1889 (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
1890 isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) {
1891 Pair = AAQI.AliasCache.try_emplace(Locs, PartialAlias);
1892 assert(!Pair.second && "Entry must have existed");
1893 return Pair.first->second = PartialAlias;
1896 // Recurse back into the best AA results we have, potentially with refined
1897 // memory locations. We have already ensured that BasicAA has a MayAlias
1898 // cache result for these, so any recursion back into BasicAA won't loop.
1899 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second, AAQI);
1900 Pair = AAQI.AliasCache.try_emplace(Locs, Result);
1901 assert(!Pair.second && "Entry must have existed");
1902 return Pair.first->second = Result;
1905 /// Check whether two Values can be considered equivalent.
1907 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1908 /// they can not be part of a cycle in the value graph by looking at all
1909 /// visited phi nodes an making sure that the phis cannot reach the value. We
1910 /// have to do this because we are looking through phi nodes (That is we say
1911 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1912 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1913 const Value *V2) {
1914 if (V != V2)
1915 return false;
1917 const Instruction *Inst = dyn_cast<Instruction>(V);
1918 if (!Inst)
1919 return true;
1921 if (VisitedPhiBBs.empty())
1922 return true;
1924 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1925 return false;
1927 // Make sure that the visited phis cannot reach the Value. This ensures that
1928 // the Values cannot come from different iterations of a potential cycle the
1929 // phi nodes could be involved in.
1930 for (auto *P : VisitedPhiBBs)
1931 if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT, LI))
1932 return false;
1934 return true;
1937 /// Computes the symbolic difference between two de-composed GEPs.
1939 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1940 /// instructions GEP1 and GEP2 which have common base pointers.
1941 void BasicAAResult::GetIndexDifference(
1942 SmallVectorImpl<VariableGEPIndex> &Dest,
1943 const SmallVectorImpl<VariableGEPIndex> &Src) {
1944 if (Src.empty())
1945 return;
1947 for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1948 const Value *V = Src[i].V;
1949 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1950 APInt Scale = Src[i].Scale;
1952 // Find V in Dest. This is N^2, but pointer indices almost never have more
1953 // than a few variable indexes.
1954 for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1955 if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1956 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1957 continue;
1959 // If we found it, subtract off Scale V's from the entry in Dest. If it
1960 // goes to zero, remove the entry.
1961 if (Dest[j].Scale != Scale)
1962 Dest[j].Scale -= Scale;
1963 else
1964 Dest.erase(Dest.begin() + j);
1965 Scale = 0;
1966 break;
1969 // If we didn't consume this entry, add it to the end of the Dest list.
1970 if (!!Scale) {
1971 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
1972 Dest.push_back(Entry);
1977 bool BasicAAResult::constantOffsetHeuristic(
1978 const SmallVectorImpl<VariableGEPIndex> &VarIndices,
1979 LocationSize MaybeV1Size, LocationSize MaybeV2Size, APInt BaseOffset,
1980 AssumptionCache *AC, DominatorTree *DT) {
1981 if (VarIndices.size() != 2 || MaybeV1Size == LocationSize::unknown() ||
1982 MaybeV2Size == LocationSize::unknown())
1983 return false;
1985 const uint64_t V1Size = MaybeV1Size.getValue();
1986 const uint64_t V2Size = MaybeV2Size.getValue();
1988 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1990 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1991 Var0.Scale != -Var1.Scale)
1992 return false;
1994 unsigned Width = Var1.V->getType()->getIntegerBitWidth();
1996 // We'll strip off the Extensions of Var0 and Var1 and do another round
1997 // of GetLinearExpression decomposition. In the example above, if Var0
1998 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
2000 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
2001 V1Offset(Width, 0);
2002 bool NSW = true, NUW = true;
2003 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
2004 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
2005 V0SExtBits, DL, 0, AC, DT, NSW, NUW);
2006 NSW = true;
2007 NUW = true;
2008 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
2009 V1SExtBits, DL, 0, AC, DT, NSW, NUW);
2011 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
2012 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
2013 return false;
2015 // We have a hit - Var0 and Var1 only differ by a constant offset!
2017 // If we've been sext'ed then zext'd the maximum difference between Var0 and
2018 // Var1 is possible to calculate, but we're just interested in the absolute
2019 // minimum difference between the two. The minimum distance may occur due to
2020 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
2021 // the minimum distance between %i and %i + 5 is 3.
2022 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
2023 MinDiff = APIntOps::umin(MinDiff, Wrapped);
2024 APInt MinDiffBytes =
2025 MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
2027 // We can't definitely say whether GEP1 is before or after V2 due to wrapping
2028 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
2029 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
2030 // V2Size can fit in the MinDiffBytes gap.
2031 return MinDiffBytes.uge(V1Size + BaseOffset.abs()) &&
2032 MinDiffBytes.uge(V2Size + BaseOffset.abs());
2035 //===----------------------------------------------------------------------===//
2036 // BasicAliasAnalysis Pass
2037 //===----------------------------------------------------------------------===//
2039 AnalysisKey BasicAA::Key;
2041 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
2042 return BasicAAResult(F.getParent()->getDataLayout(),
2044 AM.getResult<TargetLibraryAnalysis>(F),
2045 AM.getResult<AssumptionAnalysis>(F),
2046 &AM.getResult<DominatorTreeAnalysis>(F),
2047 AM.getCachedResult<LoopAnalysis>(F),
2048 AM.getCachedResult<PhiValuesAnalysis>(F));
2051 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
2052 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
2055 char BasicAAWrapperPass::ID = 0;
2057 void BasicAAWrapperPass::anchor() {}
2059 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
2060 "Basic Alias Analysis (stateless AA impl)", false, true)
2061 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2062 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2063 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2064 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
2065 "Basic Alias Analysis (stateless AA impl)", false, true)
2067 FunctionPass *llvm::createBasicAAWrapperPass() {
2068 return new BasicAAWrapperPass();
2071 bool BasicAAWrapperPass::runOnFunction(Function &F) {
2072 auto &ACT = getAnalysis<AssumptionCacheTracker>();
2073 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
2074 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
2075 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
2076 auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
2078 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
2079 TLIWP.getTLI(F), ACT.getAssumptionCache(F),
2080 &DTWP.getDomTree(),
2081 LIWP ? &LIWP->getLoopInfo() : nullptr,
2082 PVWP ? &PVWP->getResult() : nullptr));
2084 return false;
2087 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2088 AU.setPreservesAll();
2089 AU.addRequired<AssumptionCacheTracker>();
2090 AU.addRequired<DominatorTreeWrapperPass>();
2091 AU.addRequired<TargetLibraryInfoWrapperPass>();
2092 AU.addUsedIfAvailable<PhiValuesWrapperPass>();
2095 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
2096 return BasicAAResult(
2097 F.getParent()->getDataLayout(), F,
2098 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
2099 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));