1 //===-- CFG.cpp - BasicBlock analysis --------------------------------------==//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This family of functions performs analyses on basic blocks, and instructions
10 // contained within basic blocks.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/CFG.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/IR/Dominators.h"
22 /// FindFunctionBackedges - Analyze the specified function to find all of the
23 /// loop backedges in the function and return them. This is a relatively cheap
24 /// (compared to computing dominators and loop info) analysis.
26 /// The output is added to Result, as pairs of <from,to> edge info.
27 void llvm::FindFunctionBackedges(const Function
&F
,
28 SmallVectorImpl
<std::pair
<const BasicBlock
*,const BasicBlock
*> > &Result
) {
29 const BasicBlock
*BB
= &F
.getEntryBlock();
33 SmallPtrSet
<const BasicBlock
*, 8> Visited
;
34 SmallVector
<std::pair
<const BasicBlock
*, succ_const_iterator
>, 8> VisitStack
;
35 SmallPtrSet
<const BasicBlock
*, 8> InStack
;
38 VisitStack
.push_back(std::make_pair(BB
, succ_begin(BB
)));
41 std::pair
<const BasicBlock
*, succ_const_iterator
> &Top
= VisitStack
.back();
42 const BasicBlock
*ParentBB
= Top
.first
;
43 succ_const_iterator
&I
= Top
.second
;
45 bool FoundNew
= false;
46 while (I
!= succ_end(ParentBB
)) {
48 if (Visited
.insert(BB
).second
) {
52 // Successor is in VisitStack, it's a back edge.
53 if (InStack
.count(BB
))
54 Result
.push_back(std::make_pair(ParentBB
, BB
));
58 // Go down one level if there is a unvisited successor.
60 VisitStack
.push_back(std::make_pair(BB
, succ_begin(BB
)));
63 InStack
.erase(VisitStack
.pop_back_val().first
);
65 } while (!VisitStack
.empty());
68 /// GetSuccessorNumber - Search for the specified successor of basic block BB
69 /// and return its position in the terminator instruction's list of
70 /// successors. It is an error to call this with a block that is not a
72 unsigned llvm::GetSuccessorNumber(const BasicBlock
*BB
,
73 const BasicBlock
*Succ
) {
74 const Instruction
*Term
= BB
->getTerminator();
76 unsigned e
= Term
->getNumSuccessors();
78 for (unsigned i
= 0; ; ++i
) {
79 assert(i
!= e
&& "Didn't find edge?");
80 if (Term
->getSuccessor(i
) == Succ
)
85 /// isCriticalEdge - Return true if the specified edge is a critical edge.
86 /// Critical edges are edges from a block with multiple successors to a block
87 /// with multiple predecessors.
88 bool llvm::isCriticalEdge(const Instruction
*TI
, unsigned SuccNum
,
89 bool AllowIdenticalEdges
) {
90 assert(SuccNum
< TI
->getNumSuccessors() && "Illegal edge specification!");
91 return isCriticalEdge(TI
, TI
->getSuccessor(SuccNum
), AllowIdenticalEdges
);
94 bool llvm::isCriticalEdge(const Instruction
*TI
, const BasicBlock
*Dest
,
95 bool AllowIdenticalEdges
) {
96 assert(TI
->isTerminator() && "Must be a terminator to have successors!");
97 if (TI
->getNumSuccessors() == 1) return false;
99 assert(find(predecessors(Dest
), TI
->getParent()) != pred_end(Dest
) &&
100 "No edge between TI's block and Dest.");
102 const_pred_iterator I
= pred_begin(Dest
), E
= pred_end(Dest
);
104 // If there is more than one predecessor, this is a critical edge...
105 assert(I
!= E
&& "No preds, but we have an edge to the block?");
106 const BasicBlock
*FirstPred
= *I
;
107 ++I
; // Skip one edge due to the incoming arc from TI.
108 if (!AllowIdenticalEdges
)
111 // If AllowIdenticalEdges is true, then we allow this edge to be considered
112 // non-critical iff all preds come from TI's block.
119 // LoopInfo contains a mapping from basic block to the innermost loop. Find
120 // the outermost loop in the loop nest that contains BB.
121 static const Loop
*getOutermostLoop(const LoopInfo
*LI
, const BasicBlock
*BB
) {
122 const Loop
*L
= LI
->getLoopFor(BB
);
124 while (const Loop
*Parent
= L
->getParentLoop())
130 bool llvm::isPotentiallyReachableFromMany(
131 SmallVectorImpl
<BasicBlock
*> &Worklist
, BasicBlock
*StopBB
,
132 const SmallPtrSetImpl
<BasicBlock
*> *ExclusionSet
, const DominatorTree
*DT
,
133 const LoopInfo
*LI
) {
134 // When the stop block is unreachable, it's dominated from everywhere,
135 // regardless of whether there's a path between the two blocks.
136 if (DT
&& !DT
->isReachableFromEntry(StopBB
))
139 // We can't skip directly from a block that dominates the stop block if the
140 // exclusion block is potentially in between.
141 if (ExclusionSet
&& !ExclusionSet
->empty())
144 // Normally any block in a loop is reachable from any other block in a loop,
145 // however excluded blocks might partition the body of a loop to make that
147 SmallPtrSet
<const Loop
*, 8> LoopsWithHoles
;
148 if (LI
&& ExclusionSet
) {
149 for (auto BB
: *ExclusionSet
) {
150 if (const Loop
*L
= getOutermostLoop(LI
, BB
))
151 LoopsWithHoles
.insert(L
);
155 const Loop
*StopLoop
= LI
? getOutermostLoop(LI
, StopBB
) : nullptr;
157 // Limit the number of blocks we visit. The goal is to avoid run-away compile
158 // times on large CFGs without hampering sensible code. Arbitrarily chosen.
160 SmallPtrSet
<const BasicBlock
*, 32> Visited
;
162 BasicBlock
*BB
= Worklist
.pop_back_val();
163 if (!Visited
.insert(BB
).second
)
167 if (ExclusionSet
&& ExclusionSet
->count(BB
))
169 if (DT
&& DT
->dominates(BB
, StopBB
))
172 const Loop
*Outer
= nullptr;
174 Outer
= getOutermostLoop(LI
, BB
);
175 // If we're in a loop with a hole, not all blocks in the loop are
176 // reachable from all other blocks. That implies we can't simply jump to
177 // the loop's exit blocks, as that exit might need to pass through an
178 // excluded block. Clear Outer so we process BB's successors.
179 if (LoopsWithHoles
.count(Outer
))
181 if (StopLoop
&& Outer
== StopLoop
)
186 // We haven't been able to prove it one way or the other. Conservatively
187 // answer true -- that there is potentially a path.
192 // All blocks in a single loop are reachable from all other blocks. From
193 // any of these blocks, we can skip directly to the exits of the loop,
194 // ignoring any other blocks inside the loop body.
195 Outer
->getExitBlocks(Worklist
);
197 Worklist
.append(succ_begin(BB
), succ_end(BB
));
199 } while (!Worklist
.empty());
201 // We have exhausted all possible paths and are certain that 'To' can not be
202 // reached from 'From'.
206 bool llvm::isPotentiallyReachable(const BasicBlock
*A
, const BasicBlock
*B
,
207 const DominatorTree
*DT
, const LoopInfo
*LI
) {
208 assert(A
->getParent() == B
->getParent() &&
209 "This analysis is function-local!");
211 SmallVector
<BasicBlock
*, 32> Worklist
;
212 Worklist
.push_back(const_cast<BasicBlock
*>(A
));
214 return isPotentiallyReachableFromMany(Worklist
, const_cast<BasicBlock
*>(B
),
218 bool llvm::isPotentiallyReachable(
219 const Instruction
*A
, const Instruction
*B
,
220 const SmallPtrSetImpl
<BasicBlock
*> *ExclusionSet
, const DominatorTree
*DT
,
221 const LoopInfo
*LI
) {
222 assert(A
->getParent()->getParent() == B
->getParent()->getParent() &&
223 "This analysis is function-local!");
225 SmallVector
<BasicBlock
*, 32> Worklist
;
227 if (A
->getParent() == B
->getParent()) {
228 // The same block case is special because it's the only time we're looking
229 // within a single block to see which instruction comes first. Once we
230 // start looking at multiple blocks, the first instruction of the block is
231 // reachable, so we only need to determine reachability between whole
233 BasicBlock
*BB
= const_cast<BasicBlock
*>(A
->getParent());
235 // If the block is in a loop then we can reach any instruction in the block
236 // from any other instruction in the block by going around a backedge.
237 if (LI
&& LI
->getLoopFor(BB
) != nullptr)
240 // Linear scan, start at 'A', see whether we hit 'B' or the end first.
241 for (BasicBlock::const_iterator I
= A
->getIterator(), E
= BB
->end(); I
!= E
;
247 // Can't be in a loop if it's the entry block -- the entry block may not
248 // have predecessors.
249 if (BB
== &BB
->getParent()->getEntryBlock())
252 // Otherwise, continue doing the normal per-BB CFG walk.
253 Worklist
.append(succ_begin(BB
), succ_end(BB
));
255 if (Worklist
.empty()) {
256 // We've proven that there's no path!
260 Worklist
.push_back(const_cast<BasicBlock
*>(A
->getParent()));
264 if (DT
->isReachableFromEntry(A
->getParent()) &&
265 !DT
->isReachableFromEntry(B
->getParent()))
267 if (!ExclusionSet
|| ExclusionSet
->empty()) {
268 if (A
->getParent() == &A
->getParent()->getParent()->getEntryBlock() &&
269 DT
->isReachableFromEntry(B
->getParent()))
271 if (B
->getParent() == &A
->getParent()->getParent()->getEntryBlock() &&
272 DT
->isReachableFromEntry(A
->getParent()))
277 return isPotentiallyReachableFromMany(
278 Worklist
, const_cast<BasicBlock
*>(B
->getParent()), ExclusionSet
, DT
, LI
);