1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This simple pass provides alias and mod/ref information for global values
10 // that do not have their address taken, and keeps track of whether functions
11 // read or write memory (are "pure"). For this simple (but very common) case,
12 // we can provide pretty accurate and useful information.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/GlobalsModRef.h"
17 #include "llvm/ADT/SCCIterator.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/InstIterator.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/CommandLine.h"
32 #define DEBUG_TYPE "globalsmodref-aa"
34 STATISTIC(NumNonAddrTakenGlobalVars
,
35 "Number of global vars without address taken");
36 STATISTIC(NumNonAddrTakenFunctions
,"Number of functions without address taken");
37 STATISTIC(NumNoMemFunctions
, "Number of functions that do not access memory");
38 STATISTIC(NumReadMemFunctions
, "Number of functions that only read memory");
39 STATISTIC(NumIndirectGlobalVars
, "Number of indirect global objects");
41 // An option to enable unsafe alias results from the GlobalsModRef analysis.
42 // When enabled, GlobalsModRef will provide no-alias results which in extremely
43 // rare cases may not be conservatively correct. In particular, in the face of
44 // transforms which cause assymetry between how effective GetUnderlyingObject
45 // is for two pointers, it may produce incorrect results.
47 // These unsafe results have been returned by GMR for many years without
48 // causing significant issues in the wild and so we provide a mechanism to
49 // re-enable them for users of LLVM that have a particular performance
50 // sensitivity and no known issues. The option also makes it easy to evaluate
51 // the performance impact of these results.
52 static cl::opt
<bool> EnableUnsafeGlobalsModRefAliasResults(
53 "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden
);
55 /// The mod/ref information collected for a particular function.
57 /// We collect information about mod/ref behavior of a function here, both in
58 /// general and as pertains to specific globals. We only have this detailed
59 /// information when we know *something* useful about the behavior. If we
60 /// saturate to fully general mod/ref, we remove the info for the function.
61 class GlobalsAAResult::FunctionInfo
{
62 typedef SmallDenseMap
<const GlobalValue
*, ModRefInfo
, 16> GlobalInfoMapType
;
64 /// Build a wrapper struct that has 8-byte alignment. All heap allocations
65 /// should provide this much alignment at least, but this makes it clear we
66 /// specifically rely on this amount of alignment.
67 struct alignas(8) AlignedMap
{
69 AlignedMap(const AlignedMap
&Arg
) : Map(Arg
.Map
) {}
70 GlobalInfoMapType Map
;
73 /// Pointer traits for our aligned map.
74 struct AlignedMapPointerTraits
{
75 static inline void *getAsVoidPointer(AlignedMap
*P
) { return P
; }
76 static inline AlignedMap
*getFromVoidPointer(void *P
) {
77 return (AlignedMap
*)P
;
79 enum { NumLowBitsAvailable
= 3 };
80 static_assert(alignof(AlignedMap
) >= (1 << NumLowBitsAvailable
),
81 "AlignedMap insufficiently aligned to have enough low bits.");
84 /// The bit that flags that this function may read any global. This is
85 /// chosen to mix together with ModRefInfo bits.
86 /// FIXME: This assumes ModRefInfo lattice will remain 4 bits!
87 /// It overlaps with ModRefInfo::Must bit!
88 /// FunctionInfo.getModRefInfo() masks out everything except ModRef so
89 /// this remains correct, but the Must info is lost.
90 enum { MayReadAnyGlobal
= 4 };
92 /// Checks to document the invariants of the bit packing here.
93 static_assert((MayReadAnyGlobal
& static_cast<int>(ModRefInfo::MustModRef
)) ==
95 "ModRef and the MayReadAnyGlobal flag bits overlap.");
96 static_assert(((MayReadAnyGlobal
|
97 static_cast<int>(ModRefInfo::MustModRef
)) >>
98 AlignedMapPointerTraits::NumLowBitsAvailable
) == 0,
99 "Insufficient low bits to store our flag and ModRef info.");
102 FunctionInfo() : Info() {}
104 delete Info
.getPointer();
106 // Spell out the copy ond move constructors and assignment operators to get
107 // deep copy semantics and correct move semantics in the face of the
109 FunctionInfo(const FunctionInfo
&Arg
)
110 : Info(nullptr, Arg
.Info
.getInt()) {
111 if (const auto *ArgPtr
= Arg
.Info
.getPointer())
112 Info
.setPointer(new AlignedMap(*ArgPtr
));
114 FunctionInfo(FunctionInfo
&&Arg
)
115 : Info(Arg
.Info
.getPointer(), Arg
.Info
.getInt()) {
116 Arg
.Info
.setPointerAndInt(nullptr, 0);
118 FunctionInfo
&operator=(const FunctionInfo
&RHS
) {
119 delete Info
.getPointer();
120 Info
.setPointerAndInt(nullptr, RHS
.Info
.getInt());
121 if (const auto *RHSPtr
= RHS
.Info
.getPointer())
122 Info
.setPointer(new AlignedMap(*RHSPtr
));
125 FunctionInfo
&operator=(FunctionInfo
&&RHS
) {
126 delete Info
.getPointer();
127 Info
.setPointerAndInt(RHS
.Info
.getPointer(), RHS
.Info
.getInt());
128 RHS
.Info
.setPointerAndInt(nullptr, 0);
132 /// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return
133 /// the corresponding ModRefInfo. It must align in functionality with
135 ModRefInfo
globalClearMayReadAnyGlobal(int I
) const {
136 return ModRefInfo((I
& static_cast<int>(ModRefInfo::ModRef
)) |
137 static_cast<int>(ModRefInfo::NoModRef
));
140 /// Returns the \c ModRefInfo info for this function.
141 ModRefInfo
getModRefInfo() const {
142 return globalClearMayReadAnyGlobal(Info
.getInt());
145 /// Adds new \c ModRefInfo for this function to its state.
146 void addModRefInfo(ModRefInfo NewMRI
) {
147 Info
.setInt(Info
.getInt() | static_cast<int>(setMust(NewMRI
)));
150 /// Returns whether this function may read any global variable, and we don't
151 /// know which global.
152 bool mayReadAnyGlobal() const { return Info
.getInt() & MayReadAnyGlobal
; }
154 /// Sets this function as potentially reading from any global.
155 void setMayReadAnyGlobal() { Info
.setInt(Info
.getInt() | MayReadAnyGlobal
); }
157 /// Returns the \c ModRefInfo info for this function w.r.t. a particular
158 /// global, which may be more precise than the general information above.
159 ModRefInfo
getModRefInfoForGlobal(const GlobalValue
&GV
) const {
160 ModRefInfo GlobalMRI
=
161 mayReadAnyGlobal() ? ModRefInfo::Ref
: ModRefInfo::NoModRef
;
162 if (AlignedMap
*P
= Info
.getPointer()) {
163 auto I
= P
->Map
.find(&GV
);
164 if (I
!= P
->Map
.end())
165 GlobalMRI
= unionModRef(GlobalMRI
, I
->second
);
170 /// Add mod/ref info from another function into ours, saturating towards
172 void addFunctionInfo(const FunctionInfo
&FI
) {
173 addModRefInfo(FI
.getModRefInfo());
175 if (FI
.mayReadAnyGlobal())
176 setMayReadAnyGlobal();
178 if (AlignedMap
*P
= FI
.Info
.getPointer())
179 for (const auto &G
: P
->Map
)
180 addModRefInfoForGlobal(*G
.first
, G
.second
);
183 void addModRefInfoForGlobal(const GlobalValue
&GV
, ModRefInfo NewMRI
) {
184 AlignedMap
*P
= Info
.getPointer();
186 P
= new AlignedMap();
189 auto &GlobalMRI
= P
->Map
[&GV
];
190 GlobalMRI
= unionModRef(GlobalMRI
, NewMRI
);
193 /// Clear a global's ModRef info. Should be used when a global is being
195 void eraseModRefInfoForGlobal(const GlobalValue
&GV
) {
196 if (AlignedMap
*P
= Info
.getPointer())
201 /// All of the information is encoded into a single pointer, with a three bit
202 /// integer in the low three bits. The high bit provides a flag for when this
203 /// function may read any global. The low two bits are the ModRefInfo. And
204 /// the pointer, when non-null, points to a map from GlobalValue to
205 /// ModRefInfo specific to that GlobalValue.
206 PointerIntPair
<AlignedMap
*, 3, unsigned, AlignedMapPointerTraits
> Info
;
209 void GlobalsAAResult::DeletionCallbackHandle::deleted() {
210 Value
*V
= getValPtr();
211 if (auto *F
= dyn_cast
<Function
>(V
))
212 GAR
->FunctionInfos
.erase(F
);
214 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
215 if (GAR
->NonAddressTakenGlobals
.erase(GV
)) {
216 // This global might be an indirect global. If so, remove it and
217 // remove any AllocRelatedValues for it.
218 if (GAR
->IndirectGlobals
.erase(GV
)) {
219 // Remove any entries in AllocsForIndirectGlobals for this global.
220 for (auto I
= GAR
->AllocsForIndirectGlobals
.begin(),
221 E
= GAR
->AllocsForIndirectGlobals
.end();
224 GAR
->AllocsForIndirectGlobals
.erase(I
);
227 // Scan the function info we have collected and remove this global
229 for (auto &FIPair
: GAR
->FunctionInfos
)
230 FIPair
.second
.eraseModRefInfoForGlobal(*GV
);
234 // If this is an allocation related to an indirect global, remove it.
235 GAR
->AllocsForIndirectGlobals
.erase(V
);
237 // And clear out the handle.
239 GAR
->Handles
.erase(I
);
240 // This object is now destroyed!
243 FunctionModRefBehavior
GlobalsAAResult::getModRefBehavior(const Function
*F
) {
244 FunctionModRefBehavior Min
= FMRB_UnknownModRefBehavior
;
246 if (FunctionInfo
*FI
= getFunctionInfo(F
)) {
247 if (!isModOrRefSet(FI
->getModRefInfo()))
248 Min
= FMRB_DoesNotAccessMemory
;
249 else if (!isModSet(FI
->getModRefInfo()))
250 Min
= FMRB_OnlyReadsMemory
;
253 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F
) & Min
);
256 FunctionModRefBehavior
257 GlobalsAAResult::getModRefBehavior(const CallBase
*Call
) {
258 FunctionModRefBehavior Min
= FMRB_UnknownModRefBehavior
;
260 if (!Call
->hasOperandBundles())
261 if (const Function
*F
= Call
->getCalledFunction())
262 if (FunctionInfo
*FI
= getFunctionInfo(F
)) {
263 if (!isModOrRefSet(FI
->getModRefInfo()))
264 Min
= FMRB_DoesNotAccessMemory
;
265 else if (!isModSet(FI
->getModRefInfo()))
266 Min
= FMRB_OnlyReadsMemory
;
269 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(Call
) & Min
);
272 /// Returns the function info for the function, or null if we don't have
273 /// anything useful to say about it.
274 GlobalsAAResult::FunctionInfo
*
275 GlobalsAAResult::getFunctionInfo(const Function
*F
) {
276 auto I
= FunctionInfos
.find(F
);
277 if (I
!= FunctionInfos
.end())
282 /// AnalyzeGlobals - Scan through the users of all of the internal
283 /// GlobalValue's in the program. If none of them have their "address taken"
284 /// (really, their address passed to something nontrivial), record this fact,
285 /// and record the functions that they are used directly in.
286 void GlobalsAAResult::AnalyzeGlobals(Module
&M
) {
287 SmallPtrSet
<Function
*, 32> TrackedFunctions
;
288 for (Function
&F
: M
)
289 if (F
.hasLocalLinkage())
290 if (!AnalyzeUsesOfPointer(&F
)) {
291 // Remember that we are tracking this global.
292 NonAddressTakenGlobals
.insert(&F
);
293 TrackedFunctions
.insert(&F
);
294 Handles
.emplace_front(*this, &F
);
295 Handles
.front().I
= Handles
.begin();
296 ++NumNonAddrTakenFunctions
;
299 SmallPtrSet
<Function
*, 16> Readers
, Writers
;
300 for (GlobalVariable
&GV
: M
.globals())
301 if (GV
.hasLocalLinkage()) {
302 if (!AnalyzeUsesOfPointer(&GV
, &Readers
,
303 GV
.isConstant() ? nullptr : &Writers
)) {
304 // Remember that we are tracking this global, and the mod/ref fns
305 NonAddressTakenGlobals
.insert(&GV
);
306 Handles
.emplace_front(*this, &GV
);
307 Handles
.front().I
= Handles
.begin();
309 for (Function
*Reader
: Readers
) {
310 if (TrackedFunctions
.insert(Reader
).second
) {
311 Handles
.emplace_front(*this, Reader
);
312 Handles
.front().I
= Handles
.begin();
314 FunctionInfos
[Reader
].addModRefInfoForGlobal(GV
, ModRefInfo::Ref
);
317 if (!GV
.isConstant()) // No need to keep track of writers to constants
318 for (Function
*Writer
: Writers
) {
319 if (TrackedFunctions
.insert(Writer
).second
) {
320 Handles
.emplace_front(*this, Writer
);
321 Handles
.front().I
= Handles
.begin();
323 FunctionInfos
[Writer
].addModRefInfoForGlobal(GV
, ModRefInfo::Mod
);
325 ++NumNonAddrTakenGlobalVars
;
327 // If this global holds a pointer type, see if it is an indirect global.
328 if (GV
.getValueType()->isPointerTy() &&
329 AnalyzeIndirectGlobalMemory(&GV
))
330 ++NumIndirectGlobalVars
;
337 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
338 /// If this is used by anything complex (i.e., the address escapes), return
339 /// true. Also, while we are at it, keep track of those functions that read and
340 /// write to the value.
342 /// If OkayStoreDest is non-null, stores into this global are allowed.
343 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value
*V
,
344 SmallPtrSetImpl
<Function
*> *Readers
,
345 SmallPtrSetImpl
<Function
*> *Writers
,
346 GlobalValue
*OkayStoreDest
) {
347 if (!V
->getType()->isPointerTy())
350 for (Use
&U
: V
->uses()) {
351 User
*I
= U
.getUser();
352 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
354 Readers
->insert(LI
->getParent()->getParent());
355 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
356 if (V
== SI
->getOperand(1)) {
358 Writers
->insert(SI
->getParent()->getParent());
359 } else if (SI
->getOperand(1) != OkayStoreDest
) {
360 return true; // Storing the pointer
362 } else if (Operator::getOpcode(I
) == Instruction::GetElementPtr
) {
363 if (AnalyzeUsesOfPointer(I
, Readers
, Writers
))
365 } else if (Operator::getOpcode(I
) == Instruction::BitCast
) {
366 if (AnalyzeUsesOfPointer(I
, Readers
, Writers
, OkayStoreDest
))
368 } else if (auto *Call
= dyn_cast
<CallBase
>(I
)) {
369 // Make sure that this is just the function being called, not that it is
370 // passing into the function.
371 if (Call
->isDataOperand(&U
)) {
372 // Detect calls to free.
373 if (Call
->isArgOperand(&U
) &&
374 isFreeCall(I
, &GetTLI(*Call
->getFunction()))) {
376 Writers
->insert(Call
->getParent()->getParent());
378 return true; // Argument of an unknown call.
381 } else if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(I
)) {
382 if (!isa
<ConstantPointerNull
>(ICI
->getOperand(1)))
383 return true; // Allow comparison against null.
384 } else if (Constant
*C
= dyn_cast
<Constant
>(I
)) {
385 // Ignore constants which don't have any live uses.
386 if (isa
<GlobalValue
>(C
) || C
->isConstantUsed())
396 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
397 /// which holds a pointer type. See if the global always points to non-aliased
398 /// heap memory: that is, all initializers of the globals are allocations, and
399 /// those allocations have no use other than initialization of the global.
400 /// Further, all loads out of GV must directly use the memory, not store the
401 /// pointer somewhere. If this is true, we consider the memory pointed to by
402 /// GV to be owned by GV and can disambiguate other pointers from it.
403 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable
*GV
) {
404 // Keep track of values related to the allocation of the memory, f.e. the
405 // value produced by the malloc call and any casts.
406 std::vector
<Value
*> AllocRelatedValues
;
408 // If the initializer is a valid pointer, bail.
409 if (Constant
*C
= GV
->getInitializer())
410 if (!C
->isNullValue())
413 // Walk the user list of the global. If we find anything other than a direct
414 // load or store, bail out.
415 for (User
*U
: GV
->users()) {
416 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
417 // The pointer loaded from the global can only be used in simple ways:
418 // we allow addressing of it and loading storing to it. We do *not* allow
419 // storing the loaded pointer somewhere else or passing to a function.
420 if (AnalyzeUsesOfPointer(LI
))
421 return false; // Loaded pointer escapes.
422 // TODO: Could try some IP mod/ref of the loaded pointer.
423 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
424 // Storing the global itself.
425 if (SI
->getOperand(0) == GV
)
428 // If storing the null pointer, ignore it.
429 if (isa
<ConstantPointerNull
>(SI
->getOperand(0)))
432 // Check the value being stored.
433 Value
*Ptr
= GetUnderlyingObject(SI
->getOperand(0),
434 GV
->getParent()->getDataLayout());
436 if (!isAllocLikeFn(Ptr
, &GetTLI(*SI
->getFunction())))
437 return false; // Too hard to analyze.
439 // Analyze all uses of the allocation. If any of them are used in a
440 // non-simple way (e.g. stored to another global) bail out.
441 if (AnalyzeUsesOfPointer(Ptr
, /*Readers*/ nullptr, /*Writers*/ nullptr,
443 return false; // Loaded pointer escapes.
445 // Remember that this allocation is related to the indirect global.
446 AllocRelatedValues
.push_back(Ptr
);
448 // Something complex, bail out.
453 // Okay, this is an indirect global. Remember all of the allocations for
454 // this global in AllocsForIndirectGlobals.
455 while (!AllocRelatedValues
.empty()) {
456 AllocsForIndirectGlobals
[AllocRelatedValues
.back()] = GV
;
457 Handles
.emplace_front(*this, AllocRelatedValues
.back());
458 Handles
.front().I
= Handles
.begin();
459 AllocRelatedValues
.pop_back();
461 IndirectGlobals
.insert(GV
);
462 Handles
.emplace_front(*this, GV
);
463 Handles
.front().I
= Handles
.begin();
467 void GlobalsAAResult::CollectSCCMembership(CallGraph
&CG
) {
468 // We do a bottom-up SCC traversal of the call graph. In other words, we
469 // visit all callees before callers (leaf-first).
471 for (scc_iterator
<CallGraph
*> I
= scc_begin(&CG
); !I
.isAtEnd(); ++I
) {
472 const std::vector
<CallGraphNode
*> &SCC
= *I
;
473 assert(!SCC
.empty() && "SCC with no functions?");
475 for (auto *CGN
: SCC
)
476 if (Function
*F
= CGN
->getFunction())
477 FunctionToSCCMap
[F
] = SCCID
;
482 /// AnalyzeCallGraph - At this point, we know the functions where globals are
483 /// immediately stored to and read from. Propagate this information up the call
484 /// graph to all callers and compute the mod/ref info for all memory for each
486 void GlobalsAAResult::AnalyzeCallGraph(CallGraph
&CG
, Module
&M
) {
487 // We do a bottom-up SCC traversal of the call graph. In other words, we
488 // visit all callees before callers (leaf-first).
489 for (scc_iterator
<CallGraph
*> I
= scc_begin(&CG
); !I
.isAtEnd(); ++I
) {
490 const std::vector
<CallGraphNode
*> &SCC
= *I
;
491 assert(!SCC
.empty() && "SCC with no functions?");
493 Function
*F
= SCC
[0]->getFunction();
495 if (!F
|| !F
->isDefinitionExact()) {
496 // Calls externally or not exact - can't say anything useful. Remove any
497 // existing function records (may have been created when scanning
499 for (auto *Node
: SCC
)
500 FunctionInfos
.erase(Node
->getFunction());
504 FunctionInfo
&FI
= FunctionInfos
[F
];
505 Handles
.emplace_front(*this, F
);
506 Handles
.front().I
= Handles
.begin();
507 bool KnowNothing
= false;
509 // Collect the mod/ref properties due to called functions. We only compute
511 for (unsigned i
= 0, e
= SCC
.size(); i
!= e
&& !KnowNothing
; ++i
) {
517 if (F
->isDeclaration() || F
->hasOptNone()) {
518 // Try to get mod/ref behaviour from function attributes.
519 if (F
->doesNotAccessMemory()) {
520 // Can't do better than that!
521 } else if (F
->onlyReadsMemory()) {
522 FI
.addModRefInfo(ModRefInfo::Ref
);
523 if (!F
->isIntrinsic() && !F
->onlyAccessesArgMemory())
524 // This function might call back into the module and read a global -
525 // consider every global as possibly being read by this function.
526 FI
.setMayReadAnyGlobal();
528 FI
.addModRefInfo(ModRefInfo::ModRef
);
529 // Can't say anything useful unless it's an intrinsic - they don't
530 // read or write global variables of the kind considered here.
531 KnowNothing
= !F
->isIntrinsic();
536 for (CallGraphNode::iterator CI
= SCC
[i
]->begin(), E
= SCC
[i
]->end();
537 CI
!= E
&& !KnowNothing
; ++CI
)
538 if (Function
*Callee
= CI
->second
->getFunction()) {
539 if (FunctionInfo
*CalleeFI
= getFunctionInfo(Callee
)) {
540 // Propagate function effect up.
541 FI
.addFunctionInfo(*CalleeFI
);
543 // Can't say anything about it. However, if it is inside our SCC,
544 // then nothing needs to be done.
545 CallGraphNode
*CalleeNode
= CG
[Callee
];
546 if (!is_contained(SCC
, CalleeNode
))
554 // If we can't say anything useful about this SCC, remove all SCC functions
555 // from the FunctionInfos map.
557 for (auto *Node
: SCC
)
558 FunctionInfos
.erase(Node
->getFunction());
562 // Scan the function bodies for explicit loads or stores.
563 for (auto *Node
: SCC
) {
564 if (isModAndRefSet(FI
.getModRefInfo()))
565 break; // The mod/ref lattice saturates here.
567 // Don't prove any properties based on the implementation of an optnone
568 // function. Function attributes were already used as a best approximation
570 if (Node
->getFunction()->hasOptNone())
573 for (Instruction
&I
: instructions(Node
->getFunction())) {
574 if (isModAndRefSet(FI
.getModRefInfo()))
575 break; // The mod/ref lattice saturates here.
577 // We handle calls specially because the graph-relevant aspects are
579 if (auto *Call
= dyn_cast
<CallBase
>(&I
)) {
580 auto &TLI
= GetTLI(*Node
->getFunction());
581 if (isAllocationFn(Call
, &TLI
) || isFreeCall(Call
, &TLI
)) {
582 // FIXME: It is completely unclear why this is necessary and not
583 // handled by the above graph code.
584 FI
.addModRefInfo(ModRefInfo::ModRef
);
585 } else if (Function
*Callee
= Call
->getCalledFunction()) {
586 // The callgraph doesn't include intrinsic calls.
587 if (Callee
->isIntrinsic()) {
588 if (isa
<DbgInfoIntrinsic
>(Call
))
589 // Don't let dbg intrinsics affect alias info.
592 FunctionModRefBehavior Behaviour
=
593 AAResultBase::getModRefBehavior(Callee
);
594 FI
.addModRefInfo(createModRefInfo(Behaviour
));
600 // All non-call instructions we use the primary predicates for whether
601 // they read or write memory.
602 if (I
.mayReadFromMemory())
603 FI
.addModRefInfo(ModRefInfo::Ref
);
604 if (I
.mayWriteToMemory())
605 FI
.addModRefInfo(ModRefInfo::Mod
);
609 if (!isModSet(FI
.getModRefInfo()))
610 ++NumReadMemFunctions
;
611 if (!isModOrRefSet(FI
.getModRefInfo()))
614 // Finally, now that we know the full effect on this SCC, clone the
615 // information to each function in the SCC.
616 // FI is a reference into FunctionInfos, so copy it now so that it doesn't
617 // get invalidated if DenseMap decides to re-hash.
618 FunctionInfo CachedFI
= FI
;
619 for (unsigned i
= 1, e
= SCC
.size(); i
!= e
; ++i
)
620 FunctionInfos
[SCC
[i
]->getFunction()] = CachedFI
;
624 // GV is a non-escaping global. V is a pointer address that has been loaded from.
625 // If we can prove that V must escape, we can conclude that a load from V cannot
627 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue
*GV
,
630 const DataLayout
&DL
) {
631 SmallPtrSet
<const Value
*, 8> Visited
;
632 SmallVector
<const Value
*, 8> Inputs
;
636 const Value
*Input
= Inputs
.pop_back_val();
638 if (isa
<GlobalValue
>(Input
) || isa
<Argument
>(Input
) || isa
<CallInst
>(Input
) ||
639 isa
<InvokeInst
>(Input
))
640 // Arguments to functions or returns from functions are inherently
641 // escaping, so we can immediately classify those as not aliasing any
642 // non-addr-taken globals.
644 // (Transitive) loads from a global are also safe - if this aliased
645 // another global, its address would escape, so no alias.
648 // Recurse through a limited number of selects, loads and PHIs. This is an
649 // arbitrary depth of 4, lower numbers could be used to fix compile time
650 // issues if needed, but this is generally expected to be only be important
655 if (auto *LI
= dyn_cast
<LoadInst
>(Input
)) {
656 Inputs
.push_back(GetUnderlyingObject(LI
->getPointerOperand(), DL
));
659 if (auto *SI
= dyn_cast
<SelectInst
>(Input
)) {
660 const Value
*LHS
= GetUnderlyingObject(SI
->getTrueValue(), DL
);
661 const Value
*RHS
= GetUnderlyingObject(SI
->getFalseValue(), DL
);
662 if (Visited
.insert(LHS
).second
)
663 Inputs
.push_back(LHS
);
664 if (Visited
.insert(RHS
).second
)
665 Inputs
.push_back(RHS
);
668 if (auto *PN
= dyn_cast
<PHINode
>(Input
)) {
669 for (const Value
*Op
: PN
->incoming_values()) {
670 Op
= GetUnderlyingObject(Op
, DL
);
671 if (Visited
.insert(Op
).second
)
672 Inputs
.push_back(Op
);
678 } while (!Inputs
.empty());
680 // All inputs were known to be no-alias.
684 // There are particular cases where we can conclude no-alias between
685 // a non-addr-taken global and some other underlying object. Specifically,
686 // a non-addr-taken global is known to not be escaped from any function. It is
687 // also incorrect for a transformation to introduce an escape of a global in
688 // a way that is observable when it was not there previously. One function
689 // being transformed to introduce an escape which could possibly be observed
690 // (via loading from a global or the return value for example) within another
691 // function is never safe. If the observation is made through non-atomic
692 // operations on different threads, it is a data-race and UB. If the
693 // observation is well defined, by being observed the transformation would have
694 // changed program behavior by introducing the observed escape, making it an
695 // invalid transform.
697 // This property does require that transformations which *temporarily* escape
698 // a global that was not previously escaped, prior to restoring it, cannot rely
699 // on the results of GMR::alias. This seems a reasonable restriction, although
700 // currently there is no way to enforce it. There is also no realistic
701 // optimization pass that would make this mistake. The closest example is
702 // a transformation pass which does reg2mem of SSA values but stores them into
703 // global variables temporarily before restoring the global variable's value.
704 // This could be useful to expose "benign" races for example. However, it seems
705 // reasonable to require that a pass which introduces escapes of global
706 // variables in this way to either not trust AA results while the escape is
707 // active, or to be forced to operate as a module pass that cannot co-exist
708 // with an alias analysis such as GMR.
709 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue
*GV
,
711 // In order to know that the underlying object cannot alias the
712 // non-addr-taken global, we must know that it would have to be an escape.
713 // Thus if the underlying object is a function argument, a load from
714 // a global, or the return of a function, it cannot alias. We can also
715 // recurse through PHI nodes and select nodes provided all of their inputs
716 // resolve to one of these known-escaping roots.
717 SmallPtrSet
<const Value
*, 8> Visited
;
718 SmallVector
<const Value
*, 8> Inputs
;
723 const Value
*Input
= Inputs
.pop_back_val();
725 if (auto *InputGV
= dyn_cast
<GlobalValue
>(Input
)) {
726 // If one input is the very global we're querying against, then we can't
727 // conclude no-alias.
731 // Distinct GlobalVariables never alias, unless overriden or zero-sized.
732 // FIXME: The condition can be refined, but be conservative for now.
733 auto *GVar
= dyn_cast
<GlobalVariable
>(GV
);
734 auto *InputGVar
= dyn_cast
<GlobalVariable
>(InputGV
);
735 if (GVar
&& InputGVar
&&
736 !GVar
->isDeclaration() && !InputGVar
->isDeclaration() &&
737 !GVar
->isInterposable() && !InputGVar
->isInterposable()) {
738 Type
*GVType
= GVar
->getInitializer()->getType();
739 Type
*InputGVType
= InputGVar
->getInitializer()->getType();
740 if (GVType
->isSized() && InputGVType
->isSized() &&
741 (DL
.getTypeAllocSize(GVType
) > 0) &&
742 (DL
.getTypeAllocSize(InputGVType
) > 0))
746 // Conservatively return false, even though we could be smarter
747 // (e.g. look through GlobalAliases).
751 if (isa
<Argument
>(Input
) || isa
<CallInst
>(Input
) ||
752 isa
<InvokeInst
>(Input
)) {
753 // Arguments to functions or returns from functions are inherently
754 // escaping, so we can immediately classify those as not aliasing any
755 // non-addr-taken globals.
759 // Recurse through a limited number of selects, loads and PHIs. This is an
760 // arbitrary depth of 4, lower numbers could be used to fix compile time
761 // issues if needed, but this is generally expected to be only be important
766 if (auto *LI
= dyn_cast
<LoadInst
>(Input
)) {
767 // A pointer loaded from a global would have been captured, and we know
768 // that the global is non-escaping, so no alias.
769 const Value
*Ptr
= GetUnderlyingObject(LI
->getPointerOperand(), DL
);
770 if (isNonEscapingGlobalNoAliasWithLoad(GV
, Ptr
, Depth
, DL
))
771 // The load does not alias with GV.
773 // Otherwise, a load could come from anywhere, so bail.
776 if (auto *SI
= dyn_cast
<SelectInst
>(Input
)) {
777 const Value
*LHS
= GetUnderlyingObject(SI
->getTrueValue(), DL
);
778 const Value
*RHS
= GetUnderlyingObject(SI
->getFalseValue(), DL
);
779 if (Visited
.insert(LHS
).second
)
780 Inputs
.push_back(LHS
);
781 if (Visited
.insert(RHS
).second
)
782 Inputs
.push_back(RHS
);
785 if (auto *PN
= dyn_cast
<PHINode
>(Input
)) {
786 for (const Value
*Op
: PN
->incoming_values()) {
787 Op
= GetUnderlyingObject(Op
, DL
);
788 if (Visited
.insert(Op
).second
)
789 Inputs
.push_back(Op
);
794 // FIXME: It would be good to handle other obvious no-alias cases here, but
795 // it isn't clear how to do so reasonably without building a small version
796 // of BasicAA into this code. We could recurse into AAResultBase::alias
797 // here but that seems likely to go poorly as we're inside the
798 // implementation of such a query. Until then, just conservatively return
801 } while (!Inputs
.empty());
803 // If all the inputs to V were definitively no-alias, then V is no-alias.
807 /// alias - If one of the pointers is to a global that we are tracking, and the
808 /// other is some random pointer, we know there cannot be an alias, because the
809 /// address of the global isn't taken.
810 AliasResult
GlobalsAAResult::alias(const MemoryLocation
&LocA
,
811 const MemoryLocation
&LocB
,
813 // Get the base object these pointers point to.
814 const Value
*UV1
= GetUnderlyingObject(LocA
.Ptr
, DL
);
815 const Value
*UV2
= GetUnderlyingObject(LocB
.Ptr
, DL
);
817 // If either of the underlying values is a global, they may be non-addr-taken
818 // globals, which we can answer queries about.
819 const GlobalValue
*GV1
= dyn_cast
<GlobalValue
>(UV1
);
820 const GlobalValue
*GV2
= dyn_cast
<GlobalValue
>(UV2
);
822 // If the global's address is taken, pretend we don't know it's a pointer to
824 if (GV1
&& !NonAddressTakenGlobals
.count(GV1
))
826 if (GV2
&& !NonAddressTakenGlobals
.count(GV2
))
829 // If the two pointers are derived from two different non-addr-taken
830 // globals we know these can't alias.
831 if (GV1
&& GV2
&& GV1
!= GV2
)
834 // If one is and the other isn't, it isn't strictly safe but we can fake
835 // this result if necessary for performance. This does not appear to be
836 // a common problem in practice.
837 if (EnableUnsafeGlobalsModRefAliasResults
)
838 if ((GV1
|| GV2
) && GV1
!= GV2
)
841 // Check for a special case where a non-escaping global can be used to
842 // conclude no-alias.
843 if ((GV1
|| GV2
) && GV1
!= GV2
) {
844 const GlobalValue
*GV
= GV1
? GV1
: GV2
;
845 const Value
*UV
= GV1
? UV2
: UV1
;
846 if (isNonEscapingGlobalNoAlias(GV
, UV
))
850 // Otherwise if they are both derived from the same addr-taken global, we
851 // can't know the two accesses don't overlap.
854 // These pointers may be based on the memory owned by an indirect global. If
855 // so, we may be able to handle this. First check to see if the base pointer
856 // is a direct load from an indirect global.
858 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(UV1
))
859 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(LI
->getOperand(0)))
860 if (IndirectGlobals
.count(GV
))
862 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(UV2
))
863 if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(LI
->getOperand(0)))
864 if (IndirectGlobals
.count(GV
))
867 // These pointers may also be from an allocation for the indirect global. If
868 // so, also handle them.
870 GV1
= AllocsForIndirectGlobals
.lookup(UV1
);
872 GV2
= AllocsForIndirectGlobals
.lookup(UV2
);
874 // Now that we know whether the two pointers are related to indirect globals,
875 // use this to disambiguate the pointers. If the pointers are based on
876 // different indirect globals they cannot alias.
877 if (GV1
&& GV2
&& GV1
!= GV2
)
880 // If one is based on an indirect global and the other isn't, it isn't
881 // strictly safe but we can fake this result if necessary for performance.
882 // This does not appear to be a common problem in practice.
883 if (EnableUnsafeGlobalsModRefAliasResults
)
884 if ((GV1
|| GV2
) && GV1
!= GV2
)
887 return AAResultBase::alias(LocA
, LocB
, AAQI
);
890 ModRefInfo
GlobalsAAResult::getModRefInfoForArgument(const CallBase
*Call
,
891 const GlobalValue
*GV
,
893 if (Call
->doesNotAccessMemory())
894 return ModRefInfo::NoModRef
;
895 ModRefInfo ConservativeResult
=
896 Call
->onlyReadsMemory() ? ModRefInfo::Ref
: ModRefInfo::ModRef
;
898 // Iterate through all the arguments to the called function. If any argument
899 // is based on GV, return the conservative result.
900 for (auto &A
: Call
->args()) {
901 SmallVector
<const Value
*, 4> Objects
;
902 GetUnderlyingObjects(A
, Objects
, DL
);
904 // All objects must be identified.
905 if (!all_of(Objects
, isIdentifiedObject
) &&
906 // Try ::alias to see if all objects are known not to alias GV.
907 !all_of(Objects
, [&](const Value
*V
) {
908 return this->alias(MemoryLocation(V
), MemoryLocation(GV
), AAQI
) ==
911 return ConservativeResult
;
913 if (is_contained(Objects
, GV
))
914 return ConservativeResult
;
917 // We identified all objects in the argument list, and none of them were GV.
918 return ModRefInfo::NoModRef
;
921 ModRefInfo
GlobalsAAResult::getModRefInfo(const CallBase
*Call
,
922 const MemoryLocation
&Loc
,
924 ModRefInfo Known
= ModRefInfo::ModRef
;
926 // If we are asking for mod/ref info of a direct call with a pointer to a
927 // global we are tracking, return information if we have it.
928 if (const GlobalValue
*GV
=
929 dyn_cast
<GlobalValue
>(GetUnderlyingObject(Loc
.Ptr
, DL
)))
930 if (GV
->hasLocalLinkage())
931 if (const Function
*F
= Call
->getCalledFunction())
932 if (NonAddressTakenGlobals
.count(GV
))
933 if (const FunctionInfo
*FI
= getFunctionInfo(F
))
934 Known
= unionModRef(FI
->getModRefInfoForGlobal(*GV
),
935 getModRefInfoForArgument(Call
, GV
, AAQI
));
937 if (!isModOrRefSet(Known
))
938 return ModRefInfo::NoModRef
; // No need to query other mod/ref analyses
939 return intersectModRef(Known
, AAResultBase::getModRefInfo(Call
, Loc
, AAQI
));
942 GlobalsAAResult::GlobalsAAResult(
943 const DataLayout
&DL
,
944 std::function
<const TargetLibraryInfo
&(Function
&F
)> GetTLI
)
945 : AAResultBase(), DL(DL
), GetTLI(std::move(GetTLI
)) {}
947 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult
&&Arg
)
948 : AAResultBase(std::move(Arg
)), DL(Arg
.DL
), GetTLI(std::move(Arg
.GetTLI
)),
949 NonAddressTakenGlobals(std::move(Arg
.NonAddressTakenGlobals
)),
950 IndirectGlobals(std::move(Arg
.IndirectGlobals
)),
951 AllocsForIndirectGlobals(std::move(Arg
.AllocsForIndirectGlobals
)),
952 FunctionInfos(std::move(Arg
.FunctionInfos
)),
953 Handles(std::move(Arg
.Handles
)) {
954 // Update the parent for each DeletionCallbackHandle.
955 for (auto &H
: Handles
) {
956 assert(H
.GAR
== &Arg
);
961 GlobalsAAResult::~GlobalsAAResult() {}
963 /*static*/ GlobalsAAResult
GlobalsAAResult::analyzeModule(
964 Module
&M
, std::function
<const TargetLibraryInfo
&(Function
&F
)> GetTLI
,
966 GlobalsAAResult
Result(M
.getDataLayout(), GetTLI
);
968 // Discover which functions aren't recursive, to feed into AnalyzeGlobals.
969 Result
.CollectSCCMembership(CG
);
971 // Find non-addr taken globals.
972 Result
.AnalyzeGlobals(M
);
975 Result
.AnalyzeCallGraph(CG
, M
);
980 AnalysisKey
GlobalsAA::Key
;
982 GlobalsAAResult
GlobalsAA::run(Module
&M
, ModuleAnalysisManager
&AM
) {
983 FunctionAnalysisManager
&FAM
=
984 AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
985 auto GetTLI
= [&FAM
](Function
&F
) -> TargetLibraryInfo
& {
986 return FAM
.getResult
<TargetLibraryAnalysis
>(F
);
988 return GlobalsAAResult::analyzeModule(M
, GetTLI
,
989 AM
.getResult
<CallGraphAnalysis
>(M
));
992 char GlobalsAAWrapperPass::ID
= 0;
993 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass
, "globals-aa",
994 "Globals Alias Analysis", false, true)
995 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass
)
996 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
997 INITIALIZE_PASS_END(GlobalsAAWrapperPass
, "globals-aa",
998 "Globals Alias Analysis", false, true)
1000 ModulePass
*llvm::createGlobalsAAWrapperPass() {
1001 return new GlobalsAAWrapperPass();
1004 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID
) {
1005 initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry());
1008 bool GlobalsAAWrapperPass::runOnModule(Module
&M
) {
1009 auto GetTLI
= [this](Function
&F
) -> TargetLibraryInfo
& {
1010 return this->getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
);
1012 Result
.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule(
1013 M
, GetTLI
, getAnalysis
<CallGraphWrapperPass
>().getCallGraph())));
1017 bool GlobalsAAWrapperPass::doFinalization(Module
&M
) {
1022 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
1023 AU
.setPreservesAll();
1024 AU
.addRequired
<CallGraphWrapperPass
>();
1025 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();