1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains support for writing Microsoft CodeView debug info.
11 //===----------------------------------------------------------------------===//
13 #include "CodeViewDebug.h"
14 #include "DwarfExpression.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/TinyPtrVector.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/BinaryFormat/COFF.h"
30 #include "llvm/BinaryFormat/Dwarf.h"
31 #include "llvm/CodeGen/AsmPrinter.h"
32 #include "llvm/CodeGen/LexicalScopes.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/TargetFrameLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
43 #include "llvm/DebugInfo/CodeView/CodeView.h"
44 #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h"
45 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h"
46 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
47 #include "llvm/DebugInfo/CodeView/EnumTables.h"
48 #include "llvm/DebugInfo/CodeView/Line.h"
49 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
50 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
51 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
52 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
53 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
54 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DebugInfoMetadata.h"
58 #include "llvm/IR/DebugLoc.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/GlobalValue.h"
61 #include "llvm/IR/GlobalVariable.h"
62 #include "llvm/IR/Metadata.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/MC/MCAsmInfo.h"
65 #include "llvm/MC/MCContext.h"
66 #include "llvm/MC/MCSectionCOFF.h"
67 #include "llvm/MC/MCStreamer.h"
68 #include "llvm/MC/MCSymbol.h"
69 #include "llvm/Support/BinaryByteStream.h"
70 #include "llvm/Support/BinaryStreamReader.h"
71 #include "llvm/Support/BinaryStreamWriter.h"
72 #include "llvm/Support/Casting.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Compiler.h"
75 #include "llvm/Support/Endian.h"
76 #include "llvm/Support/Error.h"
77 #include "llvm/Support/ErrorHandling.h"
78 #include "llvm/Support/FormatVariadic.h"
79 #include "llvm/Support/Path.h"
80 #include "llvm/Support/SMLoc.h"
81 #include "llvm/Support/ScopedPrinter.h"
82 #include "llvm/Target/TargetLoweringObjectFile.h"
83 #include "llvm/Target/TargetMachine.h"
96 using namespace llvm::codeview
;
99 class CVMCAdapter
: public CodeViewRecordStreamer
{
101 CVMCAdapter(MCStreamer
&OS
, TypeCollection
&TypeTable
)
102 : OS(&OS
), TypeTable(TypeTable
) {}
104 void EmitBytes(StringRef Data
) { OS
->EmitBytes(Data
); }
106 void EmitIntValue(uint64_t Value
, unsigned Size
) {
107 OS
->EmitIntValueInHex(Value
, Size
);
110 void EmitBinaryData(StringRef Data
) { OS
->EmitBinaryData(Data
); }
112 void AddComment(const Twine
&T
) { OS
->AddComment(T
); }
114 void AddRawComment(const Twine
&T
) { OS
->emitRawComment(T
); }
116 bool isVerboseAsm() { return OS
->isVerboseAsm(); }
118 std::string
getTypeName(TypeIndex TI
) {
119 std::string TypeName
;
120 if (!TI
.isNoneType()) {
122 TypeName
= TypeIndex::simpleTypeName(TI
);
124 TypeName
= TypeTable
.getTypeName(TI
);
130 MCStreamer
*OS
= nullptr;
131 TypeCollection
&TypeTable
;
135 static CPUType
mapArchToCVCPUType(Triple::ArchType Type
) {
137 case Triple::ArchType::x86
:
138 return CPUType::Pentium3
;
139 case Triple::ArchType::x86_64
:
141 case Triple::ArchType::thumb
:
142 return CPUType::Thumb
;
143 case Triple::ArchType::aarch64
:
144 return CPUType::ARM64
;
146 report_fatal_error("target architecture doesn't map to a CodeView CPUType");
150 CodeViewDebug::CodeViewDebug(AsmPrinter
*AP
)
151 : DebugHandlerBase(AP
), OS(*Asm
->OutStreamer
), TypeTable(Allocator
) {
152 // If module doesn't have named metadata anchors or COFF debug section
153 // is not available, skip any debug info related stuff.
154 if (!MMI
->getModule()->getNamedMetadata("llvm.dbg.cu") ||
155 !AP
->getObjFileLowering().getCOFFDebugSymbolsSection()) {
157 MMI
->setDebugInfoAvailability(false);
160 // Tell MMI that we have debug info.
161 MMI
->setDebugInfoAvailability(true);
164 mapArchToCVCPUType(Triple(MMI
->getModule()->getTargetTriple()).getArch());
166 collectGlobalVariableInfo();
168 // Check if we should emit type record hashes.
169 ConstantInt
*GH
= mdconst::extract_or_null
<ConstantInt
>(
170 MMI
->getModule()->getModuleFlag("CodeViewGHash"));
171 EmitDebugGlobalHashes
= GH
&& !GH
->isZero();
174 StringRef
CodeViewDebug::getFullFilepath(const DIFile
*File
) {
175 std::string
&Filepath
= FileToFilepathMap
[File
];
176 if (!Filepath
.empty())
179 StringRef Dir
= File
->getDirectory(), Filename
= File
->getFilename();
181 // If this is a Unix-style path, just use it as is. Don't try to canonicalize
182 // it textually because one of the path components could be a symlink.
183 if (Dir
.startswith("/") || Filename
.startswith("/")) {
184 if (llvm::sys::path::is_absolute(Filename
, llvm::sys::path::Style::posix
))
187 if (Dir
.back() != '/')
189 Filepath
+= Filename
;
193 // Clang emits directory and relative filename info into the IR, but CodeView
194 // operates on full paths. We could change Clang to emit full paths too, but
195 // that would increase the IR size and probably not needed for other users.
196 // For now, just concatenate and canonicalize the path here.
197 if (Filename
.find(':') == 1)
200 Filepath
= (Dir
+ "\\" + Filename
).str();
202 // Canonicalize the path. We have to do it textually because we may no longer
203 // have access the file in the filesystem.
204 // First, replace all slashes with backslashes.
205 std::replace(Filepath
.begin(), Filepath
.end(), '/', '\\');
207 // Remove all "\.\" with "\".
209 while ((Cursor
= Filepath
.find("\\.\\", Cursor
)) != std::string::npos
)
210 Filepath
.erase(Cursor
, 2);
212 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original
213 // path should be well-formatted, e.g. start with a drive letter, etc.
215 while ((Cursor
= Filepath
.find("\\..\\", Cursor
)) != std::string::npos
) {
216 // Something's wrong if the path starts with "\..\", abort.
220 size_t PrevSlash
= Filepath
.rfind('\\', Cursor
- 1);
221 if (PrevSlash
== std::string::npos
)
222 // Something's wrong, abort.
225 Filepath
.erase(PrevSlash
, Cursor
+ 3 - PrevSlash
);
226 // The next ".." might be following the one we've just erased.
230 // Remove all duplicate backslashes.
232 while ((Cursor
= Filepath
.find("\\\\", Cursor
)) != std::string::npos
)
233 Filepath
.erase(Cursor
, 1);
238 unsigned CodeViewDebug::maybeRecordFile(const DIFile
*F
) {
239 StringRef FullPath
= getFullFilepath(F
);
240 unsigned NextId
= FileIdMap
.size() + 1;
241 auto Insertion
= FileIdMap
.insert(std::make_pair(FullPath
, NextId
));
242 if (Insertion
.second
) {
243 // We have to compute the full filepath and emit a .cv_file directive.
244 ArrayRef
<uint8_t> ChecksumAsBytes
;
245 FileChecksumKind CSKind
= FileChecksumKind::None
;
246 if (F
->getChecksum()) {
247 std::string Checksum
= fromHex(F
->getChecksum()->Value
);
248 void *CKMem
= OS
.getContext().allocate(Checksum
.size(), 1);
249 memcpy(CKMem
, Checksum
.data(), Checksum
.size());
250 ChecksumAsBytes
= ArrayRef
<uint8_t>(
251 reinterpret_cast<const uint8_t *>(CKMem
), Checksum
.size());
252 switch (F
->getChecksum()->Kind
) {
253 case DIFile::CSK_MD5
: CSKind
= FileChecksumKind::MD5
; break;
254 case DIFile::CSK_SHA1
: CSKind
= FileChecksumKind::SHA1
; break;
257 bool Success
= OS
.EmitCVFileDirective(NextId
, FullPath
, ChecksumAsBytes
,
258 static_cast<unsigned>(CSKind
));
260 assert(Success
&& ".cv_file directive failed");
262 return Insertion
.first
->second
;
265 CodeViewDebug::InlineSite
&
266 CodeViewDebug::getInlineSite(const DILocation
*InlinedAt
,
267 const DISubprogram
*Inlinee
) {
268 auto SiteInsertion
= CurFn
->InlineSites
.insert({InlinedAt
, InlineSite()});
269 InlineSite
*Site
= &SiteInsertion
.first
->second
;
270 if (SiteInsertion
.second
) {
271 unsigned ParentFuncId
= CurFn
->FuncId
;
272 if (const DILocation
*OuterIA
= InlinedAt
->getInlinedAt())
274 getInlineSite(OuterIA
, InlinedAt
->getScope()->getSubprogram())
277 Site
->SiteFuncId
= NextFuncId
++;
278 OS
.EmitCVInlineSiteIdDirective(
279 Site
->SiteFuncId
, ParentFuncId
, maybeRecordFile(InlinedAt
->getFile()),
280 InlinedAt
->getLine(), InlinedAt
->getColumn(), SMLoc());
281 Site
->Inlinee
= Inlinee
;
282 InlinedSubprograms
.insert(Inlinee
);
283 getFuncIdForSubprogram(Inlinee
);
288 static StringRef
getPrettyScopeName(const DIScope
*Scope
) {
289 StringRef ScopeName
= Scope
->getName();
290 if (!ScopeName
.empty())
293 switch (Scope
->getTag()) {
294 case dwarf::DW_TAG_enumeration_type
:
295 case dwarf::DW_TAG_class_type
:
296 case dwarf::DW_TAG_structure_type
:
297 case dwarf::DW_TAG_union_type
:
298 return "<unnamed-tag>";
299 case dwarf::DW_TAG_namespace
:
300 return "`anonymous namespace'";
306 static const DISubprogram
*getQualifiedNameComponents(
307 const DIScope
*Scope
, SmallVectorImpl
<StringRef
> &QualifiedNameComponents
) {
308 const DISubprogram
*ClosestSubprogram
= nullptr;
309 while (Scope
!= nullptr) {
310 if (ClosestSubprogram
== nullptr)
311 ClosestSubprogram
= dyn_cast
<DISubprogram
>(Scope
);
312 StringRef ScopeName
= getPrettyScopeName(Scope
);
313 if (!ScopeName
.empty())
314 QualifiedNameComponents
.push_back(ScopeName
);
315 Scope
= Scope
->getScope();
317 return ClosestSubprogram
;
320 static std::string
getQualifiedName(ArrayRef
<StringRef
> QualifiedNameComponents
,
321 StringRef TypeName
) {
322 std::string FullyQualifiedName
;
323 for (StringRef QualifiedNameComponent
:
324 llvm::reverse(QualifiedNameComponents
)) {
325 FullyQualifiedName
.append(QualifiedNameComponent
);
326 FullyQualifiedName
.append("::");
328 FullyQualifiedName
.append(TypeName
);
329 return FullyQualifiedName
;
332 static std::string
getFullyQualifiedName(const DIScope
*Scope
, StringRef Name
) {
333 SmallVector
<StringRef
, 5> QualifiedNameComponents
;
334 getQualifiedNameComponents(Scope
, QualifiedNameComponents
);
335 return getQualifiedName(QualifiedNameComponents
, Name
);
338 struct CodeViewDebug::TypeLoweringScope
{
339 TypeLoweringScope(CodeViewDebug
&CVD
) : CVD(CVD
) { ++CVD
.TypeEmissionLevel
; }
340 ~TypeLoweringScope() {
341 // Don't decrement TypeEmissionLevel until after emitting deferred types, so
342 // inner TypeLoweringScopes don't attempt to emit deferred types.
343 if (CVD
.TypeEmissionLevel
== 1)
344 CVD
.emitDeferredCompleteTypes();
345 --CVD
.TypeEmissionLevel
;
350 static std::string
getFullyQualifiedName(const DIScope
*Ty
) {
351 const DIScope
*Scope
= Ty
->getScope();
352 return getFullyQualifiedName(Scope
, getPrettyScopeName(Ty
));
355 TypeIndex
CodeViewDebug::getScopeIndex(const DIScope
*Scope
) {
356 // No scope means global scope and that uses the zero index.
357 if (!Scope
|| isa
<DIFile
>(Scope
))
360 assert(!isa
<DIType
>(Scope
) && "shouldn't make a namespace scope for a type");
362 // Check if we've already translated this scope.
363 auto I
= TypeIndices
.find({Scope
, nullptr});
364 if (I
!= TypeIndices
.end())
367 // Build the fully qualified name of the scope.
368 std::string ScopeName
= getFullyQualifiedName(Scope
);
369 StringIdRecord
SID(TypeIndex(), ScopeName
);
370 auto TI
= TypeTable
.writeLeafType(SID
);
371 return recordTypeIndexForDINode(Scope
, TI
);
374 TypeIndex
CodeViewDebug::getFuncIdForSubprogram(const DISubprogram
*SP
) {
377 // Check if we've already translated this subprogram.
378 auto I
= TypeIndices
.find({SP
, nullptr});
379 if (I
!= TypeIndices
.end())
382 // The display name includes function template arguments. Drop them to match
384 StringRef DisplayName
= SP
->getName().split('<').first
;
386 const DIScope
*Scope
= SP
->getScope();
388 if (const auto *Class
= dyn_cast_or_null
<DICompositeType
>(Scope
)) {
389 // If the scope is a DICompositeType, then this must be a method. Member
390 // function types take some special handling, and require access to the
392 TypeIndex ClassType
= getTypeIndex(Class
);
393 MemberFuncIdRecord
MFuncId(ClassType
, getMemberFunctionType(SP
, Class
),
395 TI
= TypeTable
.writeLeafType(MFuncId
);
397 // Otherwise, this must be a free function.
398 TypeIndex ParentScope
= getScopeIndex(Scope
);
399 FuncIdRecord
FuncId(ParentScope
, getTypeIndex(SP
->getType()), DisplayName
);
400 TI
= TypeTable
.writeLeafType(FuncId
);
403 return recordTypeIndexForDINode(SP
, TI
);
406 static bool isNonTrivial(const DICompositeType
*DCTy
) {
407 return ((DCTy
->getFlags() & DINode::FlagNonTrivial
) == DINode::FlagNonTrivial
);
410 static FunctionOptions
411 getFunctionOptions(const DISubroutineType
*Ty
,
412 const DICompositeType
*ClassTy
= nullptr,
413 StringRef SPName
= StringRef("")) {
414 FunctionOptions FO
= FunctionOptions::None
;
415 const DIType
*ReturnTy
= nullptr;
416 if (auto TypeArray
= Ty
->getTypeArray()) {
417 if (TypeArray
.size())
418 ReturnTy
= TypeArray
[0];
421 if (auto *ReturnDCTy
= dyn_cast_or_null
<DICompositeType
>(ReturnTy
)) {
422 if (isNonTrivial(ReturnDCTy
))
423 FO
|= FunctionOptions::CxxReturnUdt
;
426 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison.
427 if (ClassTy
&& isNonTrivial(ClassTy
) && SPName
== ClassTy
->getName()) {
428 FO
|= FunctionOptions::Constructor
;
430 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag.
436 TypeIndex
CodeViewDebug::getMemberFunctionType(const DISubprogram
*SP
,
437 const DICompositeType
*Class
) {
438 // Always use the method declaration as the key for the function type. The
439 // method declaration contains the this adjustment.
440 if (SP
->getDeclaration())
441 SP
= SP
->getDeclaration();
442 assert(!SP
->getDeclaration() && "should use declaration as key");
444 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
445 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
446 auto I
= TypeIndices
.find({SP
, Class
});
447 if (I
!= TypeIndices
.end())
450 // Make sure complete type info for the class is emitted *after* the member
451 // function type, as the complete class type is likely to reference this
452 // member function type.
453 TypeLoweringScope
S(*this);
454 const bool IsStaticMethod
= (SP
->getFlags() & DINode::FlagStaticMember
) != 0;
456 FunctionOptions FO
= getFunctionOptions(SP
->getType(), Class
, SP
->getName());
457 TypeIndex TI
= lowerTypeMemberFunction(
458 SP
->getType(), Class
, SP
->getThisAdjustment(), IsStaticMethod
, FO
);
459 return recordTypeIndexForDINode(SP
, TI
, Class
);
462 TypeIndex
CodeViewDebug::recordTypeIndexForDINode(const DINode
*Node
,
464 const DIType
*ClassTy
) {
465 auto InsertResult
= TypeIndices
.insert({{Node
, ClassTy
}, TI
});
467 assert(InsertResult
.second
&& "DINode was already assigned a type index");
471 unsigned CodeViewDebug::getPointerSizeInBytes() {
472 return MMI
->getModule()->getDataLayout().getPointerSizeInBits() / 8;
475 void CodeViewDebug::recordLocalVariable(LocalVariable
&&Var
,
476 const LexicalScope
*LS
) {
477 if (const DILocation
*InlinedAt
= LS
->getInlinedAt()) {
478 // This variable was inlined. Associate it with the InlineSite.
479 const DISubprogram
*Inlinee
= Var
.DIVar
->getScope()->getSubprogram();
480 InlineSite
&Site
= getInlineSite(InlinedAt
, Inlinee
);
481 Site
.InlinedLocals
.emplace_back(Var
);
483 // This variable goes into the corresponding lexical scope.
484 ScopeVariables
[LS
].emplace_back(Var
);
488 static void addLocIfNotPresent(SmallVectorImpl
<const DILocation
*> &Locs
,
489 const DILocation
*Loc
) {
490 auto B
= Locs
.begin(), E
= Locs
.end();
491 if (std::find(B
, E
, Loc
) == E
)
495 void CodeViewDebug::maybeRecordLocation(const DebugLoc
&DL
,
496 const MachineFunction
*MF
) {
497 // Skip this instruction if it has the same location as the previous one.
498 if (!DL
|| DL
== PrevInstLoc
)
501 const DIScope
*Scope
= DL
.get()->getScope();
505 // Skip this line if it is longer than the maximum we can record.
506 LineInfo
LI(DL
.getLine(), DL
.getLine(), /*IsStatement=*/true);
507 if (LI
.getStartLine() != DL
.getLine() || LI
.isAlwaysStepInto() ||
508 LI
.isNeverStepInto())
511 ColumnInfo
CI(DL
.getCol(), /*EndColumn=*/0);
512 if (CI
.getStartColumn() != DL
.getCol())
515 if (!CurFn
->HaveLineInfo
)
516 CurFn
->HaveLineInfo
= true;
518 if (PrevInstLoc
.get() && PrevInstLoc
->getFile() == DL
->getFile())
519 FileId
= CurFn
->LastFileId
;
521 FileId
= CurFn
->LastFileId
= maybeRecordFile(DL
->getFile());
524 unsigned FuncId
= CurFn
->FuncId
;
525 if (const DILocation
*SiteLoc
= DL
->getInlinedAt()) {
526 const DILocation
*Loc
= DL
.get();
528 // If this location was actually inlined from somewhere else, give it the ID
529 // of the inline call site.
531 getInlineSite(SiteLoc
, Loc
->getScope()->getSubprogram()).SiteFuncId
;
533 // Ensure we have links in the tree of inline call sites.
534 bool FirstLoc
= true;
535 while ((SiteLoc
= Loc
->getInlinedAt())) {
537 getInlineSite(SiteLoc
, Loc
->getScope()->getSubprogram());
539 addLocIfNotPresent(Site
.ChildSites
, Loc
);
543 addLocIfNotPresent(CurFn
->ChildSites
, Loc
);
546 OS
.EmitCVLocDirective(FuncId
, FileId
, DL
.getLine(), DL
.getCol(),
547 /*PrologueEnd=*/false, /*IsStmt=*/false,
548 DL
->getFilename(), SMLoc());
551 void CodeViewDebug::emitCodeViewMagicVersion() {
552 OS
.EmitValueToAlignment(4);
553 OS
.AddComment("Debug section magic");
554 OS
.EmitIntValue(COFF::DEBUG_SECTION_MAGIC
, 4);
557 void CodeViewDebug::endModule() {
558 if (!Asm
|| !MMI
->hasDebugInfo())
561 assert(Asm
!= nullptr);
563 // The COFF .debug$S section consists of several subsections, each starting
564 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
565 // of the payload followed by the payload itself. The subsections are 4-byte
568 // Use the generic .debug$S section, and make a subsection for all the inlined
570 switchToDebugSectionForSymbol(nullptr);
572 MCSymbol
*CompilerInfo
= beginCVSubsection(DebugSubsectionKind::Symbols
);
573 emitCompilerInformation();
574 endCVSubsection(CompilerInfo
);
576 emitInlineeLinesSubsection();
578 // Emit per-function debug information.
579 for (auto &P
: FnDebugInfo
)
580 if (!P
.first
->isDeclarationForLinker())
581 emitDebugInfoForFunction(P
.first
, *P
.second
);
583 // Emit global variable debug information.
584 setCurrentSubprogram(nullptr);
585 emitDebugInfoForGlobals();
587 // Emit retained types.
588 emitDebugInfoForRetainedTypes();
590 // Switch back to the generic .debug$S section after potentially processing
591 // comdat symbol sections.
592 switchToDebugSectionForSymbol(nullptr);
594 // Emit UDT records for any types used by global variables.
595 if (!GlobalUDTs
.empty()) {
596 MCSymbol
*SymbolsEnd
= beginCVSubsection(DebugSubsectionKind::Symbols
);
597 emitDebugInfoForUDTs(GlobalUDTs
);
598 endCVSubsection(SymbolsEnd
);
601 // This subsection holds a file index to offset in string table table.
602 OS
.AddComment("File index to string table offset subsection");
603 OS
.EmitCVFileChecksumsDirective();
605 // This subsection holds the string table.
606 OS
.AddComment("String table");
607 OS
.EmitCVStringTableDirective();
609 // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol
610 // subsection in the generic .debug$S section at the end. There is no
611 // particular reason for this ordering other than to match MSVC.
614 // Emit type information and hashes last, so that any types we translate while
615 // emitting function info are included.
616 emitTypeInformation();
618 if (EmitDebugGlobalHashes
)
619 emitTypeGlobalHashes();
625 emitNullTerminatedSymbolName(MCStreamer
&OS
, StringRef S
,
626 unsigned MaxFixedRecordLength
= 0xF00) {
627 // The maximum CV record length is 0xFF00. Most of the strings we emit appear
628 // after a fixed length portion of the record. The fixed length portion should
629 // always be less than 0xF00 (3840) bytes, so truncate the string so that the
630 // overall record size is less than the maximum allowed.
631 SmallString
<32> NullTerminatedString(
632 S
.take_front(MaxRecordLength
- MaxFixedRecordLength
- 1));
633 NullTerminatedString
.push_back('\0');
634 OS
.EmitBytes(NullTerminatedString
);
637 void CodeViewDebug::emitTypeInformation() {
638 if (TypeTable
.empty())
641 // Start the .debug$T or .debug$P section with 0x4.
642 OS
.SwitchSection(Asm
->getObjFileLowering().getCOFFDebugTypesSection());
643 emitCodeViewMagicVersion();
645 TypeTableCollection
Table(TypeTable
.records());
646 TypeVisitorCallbackPipeline Pipeline
;
648 // To emit type record using Codeview MCStreamer adapter
649 CVMCAdapter
CVMCOS(OS
, Table
);
650 TypeRecordMapping
typeMapping(CVMCOS
);
651 Pipeline
.addCallbackToPipeline(typeMapping
);
653 Optional
<TypeIndex
> B
= Table
.getFirst();
655 // This will fail if the record data is invalid.
656 CVType Record
= Table
.getType(*B
);
658 Error E
= codeview::visitTypeRecord(Record
, *B
, Pipeline
);
661 logAllUnhandledErrors(std::move(E
), errs(), "error: ");
662 llvm_unreachable("produced malformed type record");
665 B
= Table
.getNext(*B
);
669 void CodeViewDebug::emitTypeGlobalHashes() {
670 if (TypeTable
.empty())
673 // Start the .debug$H section with the version and hash algorithm, currently
674 // hardcoded to version 0, SHA1.
675 OS
.SwitchSection(Asm
->getObjFileLowering().getCOFFGlobalTypeHashesSection());
677 OS
.EmitValueToAlignment(4);
678 OS
.AddComment("Magic");
679 OS
.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC
, 4);
680 OS
.AddComment("Section Version");
681 OS
.EmitIntValue(0, 2);
682 OS
.AddComment("Hash Algorithm");
683 OS
.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1_8
), 2);
685 TypeIndex
TI(TypeIndex::FirstNonSimpleIndex
);
686 for (const auto &GHR
: TypeTable
.hashes()) {
687 if (OS
.isVerboseAsm()) {
688 // Emit an EOL-comment describing which TypeIndex this hash corresponds
689 // to, as well as the stringified SHA1 hash.
690 SmallString
<32> Comment
;
691 raw_svector_ostream
CommentOS(Comment
);
692 CommentOS
<< formatv("{0:X+} [{1}]", TI
.getIndex(), GHR
);
693 OS
.AddComment(Comment
);
696 assert(GHR
.Hash
.size() == 8);
697 StringRef
S(reinterpret_cast<const char *>(GHR
.Hash
.data()),
699 OS
.EmitBinaryData(S
);
703 static SourceLanguage
MapDWLangToCVLang(unsigned DWLang
) {
705 case dwarf::DW_LANG_C
:
706 case dwarf::DW_LANG_C89
:
707 case dwarf::DW_LANG_C99
:
708 case dwarf::DW_LANG_C11
:
709 case dwarf::DW_LANG_ObjC
:
710 return SourceLanguage::C
;
711 case dwarf::DW_LANG_C_plus_plus
:
712 case dwarf::DW_LANG_C_plus_plus_03
:
713 case dwarf::DW_LANG_C_plus_plus_11
:
714 case dwarf::DW_LANG_C_plus_plus_14
:
715 return SourceLanguage::Cpp
;
716 case dwarf::DW_LANG_Fortran77
:
717 case dwarf::DW_LANG_Fortran90
:
718 case dwarf::DW_LANG_Fortran03
:
719 case dwarf::DW_LANG_Fortran08
:
720 return SourceLanguage::Fortran
;
721 case dwarf::DW_LANG_Pascal83
:
722 return SourceLanguage::Pascal
;
723 case dwarf::DW_LANG_Cobol74
:
724 case dwarf::DW_LANG_Cobol85
:
725 return SourceLanguage::Cobol
;
726 case dwarf::DW_LANG_Java
:
727 return SourceLanguage::Java
;
728 case dwarf::DW_LANG_D
:
729 return SourceLanguage::D
;
730 case dwarf::DW_LANG_Swift
:
731 return SourceLanguage::Swift
;
733 // There's no CodeView representation for this language, and CV doesn't
734 // have an "unknown" option for the language field, so we'll use MASM,
735 // as it's very low level.
736 return SourceLanguage::Masm
;
744 } // end anonymous namespace
746 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
747 // the version number.
748 static Version
parseVersion(StringRef Name
) {
751 for (const char C
: Name
) {
754 V
.Part
[N
] += C
- '0';
755 } else if (C
== '.') {
765 void CodeViewDebug::emitCompilerInformation() {
766 MCSymbol
*CompilerEnd
= beginSymbolRecord(SymbolKind::S_COMPILE3
);
769 NamedMDNode
*CUs
= MMI
->getModule()->getNamedMetadata("llvm.dbg.cu");
770 const MDNode
*Node
= *CUs
->operands().begin();
771 const auto *CU
= cast
<DICompileUnit
>(Node
);
773 // The low byte of the flags indicates the source language.
774 Flags
= MapDWLangToCVLang(CU
->getSourceLanguage());
775 // TODO: Figure out which other flags need to be set.
777 OS
.AddComment("Flags and language");
778 OS
.EmitIntValue(Flags
, 4);
780 OS
.AddComment("CPUType");
781 OS
.EmitIntValue(static_cast<uint64_t>(TheCPU
), 2);
783 StringRef CompilerVersion
= CU
->getProducer();
784 Version FrontVer
= parseVersion(CompilerVersion
);
785 OS
.AddComment("Frontend version");
786 for (int N
= 0; N
< 4; ++N
)
787 OS
.EmitIntValue(FrontVer
.Part
[N
], 2);
789 // Some Microsoft tools, like Binscope, expect a backend version number of at
790 // least 8.something, so we'll coerce the LLVM version into a form that
791 // guarantees it'll be big enough without really lying about the version.
792 int Major
= 1000 * LLVM_VERSION_MAJOR
+
793 10 * LLVM_VERSION_MINOR
+
795 // Clamp it for builds that use unusually large version numbers.
796 Major
= std::min
<int>(Major
, std::numeric_limits
<uint16_t>::max());
797 Version BackVer
= {{ Major
, 0, 0, 0 }};
798 OS
.AddComment("Backend version");
799 for (int N
= 0; N
< 4; ++N
)
800 OS
.EmitIntValue(BackVer
.Part
[N
], 2);
802 OS
.AddComment("Null-terminated compiler version string");
803 emitNullTerminatedSymbolName(OS
, CompilerVersion
);
805 endSymbolRecord(CompilerEnd
);
808 static TypeIndex
getStringIdTypeIdx(GlobalTypeTableBuilder
&TypeTable
,
810 StringIdRecord
SIR(TypeIndex(0x0), S
);
811 return TypeTable
.writeLeafType(SIR
);
814 void CodeViewDebug::emitBuildInfo() {
815 // First, make LF_BUILDINFO. It's a sequence of strings with various bits of
816 // build info. The known prefix is:
817 // - Absolute path of current directory
819 // - Main source file path, relative to CWD or absolute
820 // - Type server PDB file
821 // - Canonical compiler command line
822 // If frontend and backend compilation are separated (think llc or LTO), it's
823 // not clear if the compiler path should refer to the executable for the
824 // frontend or the backend. Leave it blank for now.
825 TypeIndex BuildInfoArgs
[BuildInfoRecord::MaxArgs
] = {};
826 NamedMDNode
*CUs
= MMI
->getModule()->getNamedMetadata("llvm.dbg.cu");
827 const MDNode
*Node
= *CUs
->operands().begin(); // FIXME: Multiple CUs.
828 const auto *CU
= cast
<DICompileUnit
>(Node
);
829 const DIFile
*MainSourceFile
= CU
->getFile();
830 BuildInfoArgs
[BuildInfoRecord::CurrentDirectory
] =
831 getStringIdTypeIdx(TypeTable
, MainSourceFile
->getDirectory());
832 BuildInfoArgs
[BuildInfoRecord::SourceFile
] =
833 getStringIdTypeIdx(TypeTable
, MainSourceFile
->getFilename());
834 // FIXME: Path to compiler and command line. PDB is intentionally blank unless
835 // we implement /Zi type servers.
836 BuildInfoRecord
BIR(BuildInfoArgs
);
837 TypeIndex BuildInfoIndex
= TypeTable
.writeLeafType(BIR
);
839 // Make a new .debug$S subsection for the S_BUILDINFO record, which points
840 // from the module symbols into the type stream.
841 MCSymbol
*BISubsecEnd
= beginCVSubsection(DebugSubsectionKind::Symbols
);
842 MCSymbol
*BIEnd
= beginSymbolRecord(SymbolKind::S_BUILDINFO
);
843 OS
.AddComment("LF_BUILDINFO index");
844 OS
.EmitIntValue(BuildInfoIndex
.getIndex(), 4);
845 endSymbolRecord(BIEnd
);
846 endCVSubsection(BISubsecEnd
);
849 void CodeViewDebug::emitInlineeLinesSubsection() {
850 if (InlinedSubprograms
.empty())
853 OS
.AddComment("Inlinee lines subsection");
854 MCSymbol
*InlineEnd
= beginCVSubsection(DebugSubsectionKind::InlineeLines
);
856 // We emit the checksum info for files. This is used by debuggers to
857 // determine if a pdb matches the source before loading it. Visual Studio,
858 // for instance, will display a warning that the breakpoints are not valid if
859 // the pdb does not match the source.
860 OS
.AddComment("Inlinee lines signature");
861 OS
.EmitIntValue(unsigned(InlineeLinesSignature::Normal
), 4);
863 for (const DISubprogram
*SP
: InlinedSubprograms
) {
864 assert(TypeIndices
.count({SP
, nullptr}));
865 TypeIndex InlineeIdx
= TypeIndices
[{SP
, nullptr}];
868 unsigned FileId
= maybeRecordFile(SP
->getFile());
869 OS
.AddComment("Inlined function " + SP
->getName() + " starts at " +
870 SP
->getFilename() + Twine(':') + Twine(SP
->getLine()));
872 OS
.AddComment("Type index of inlined function");
873 OS
.EmitIntValue(InlineeIdx
.getIndex(), 4);
874 OS
.AddComment("Offset into filechecksum table");
875 OS
.EmitCVFileChecksumOffsetDirective(FileId
);
876 OS
.AddComment("Starting line number");
877 OS
.EmitIntValue(SP
->getLine(), 4);
880 endCVSubsection(InlineEnd
);
883 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo
&FI
,
884 const DILocation
*InlinedAt
,
885 const InlineSite
&Site
) {
886 assert(TypeIndices
.count({Site
.Inlinee
, nullptr}));
887 TypeIndex InlineeIdx
= TypeIndices
[{Site
.Inlinee
, nullptr}];
890 MCSymbol
*InlineEnd
= beginSymbolRecord(SymbolKind::S_INLINESITE
);
892 OS
.AddComment("PtrParent");
893 OS
.EmitIntValue(0, 4);
894 OS
.AddComment("PtrEnd");
895 OS
.EmitIntValue(0, 4);
896 OS
.AddComment("Inlinee type index");
897 OS
.EmitIntValue(InlineeIdx
.getIndex(), 4);
899 unsigned FileId
= maybeRecordFile(Site
.Inlinee
->getFile());
900 unsigned StartLineNum
= Site
.Inlinee
->getLine();
902 OS
.EmitCVInlineLinetableDirective(Site
.SiteFuncId
, FileId
, StartLineNum
,
905 endSymbolRecord(InlineEnd
);
907 emitLocalVariableList(FI
, Site
.InlinedLocals
);
909 // Recurse on child inlined call sites before closing the scope.
910 for (const DILocation
*ChildSite
: Site
.ChildSites
) {
911 auto I
= FI
.InlineSites
.find(ChildSite
);
912 assert(I
!= FI
.InlineSites
.end() &&
913 "child site not in function inline site map");
914 emitInlinedCallSite(FI
, ChildSite
, I
->second
);
918 emitEndSymbolRecord(SymbolKind::S_INLINESITE_END
);
921 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol
*GVSym
) {
922 // If we have a symbol, it may be in a section that is COMDAT. If so, find the
923 // comdat key. A section may be comdat because of -ffunction-sections or
924 // because it is comdat in the IR.
925 MCSectionCOFF
*GVSec
=
926 GVSym
? dyn_cast
<MCSectionCOFF
>(&GVSym
->getSection()) : nullptr;
927 const MCSymbol
*KeySym
= GVSec
? GVSec
->getCOMDATSymbol() : nullptr;
929 MCSectionCOFF
*DebugSec
= cast
<MCSectionCOFF
>(
930 Asm
->getObjFileLowering().getCOFFDebugSymbolsSection());
931 DebugSec
= OS
.getContext().getAssociativeCOFFSection(DebugSec
, KeySym
);
933 OS
.SwitchSection(DebugSec
);
935 // Emit the magic version number if this is the first time we've switched to
937 if (ComdatDebugSections
.insert(DebugSec
).second
)
938 emitCodeViewMagicVersion();
941 // Emit an S_THUNK32/S_END symbol pair for a thunk routine.
942 // The only supported thunk ordinal is currently the standard type.
943 void CodeViewDebug::emitDebugInfoForThunk(const Function
*GV
,
945 const MCSymbol
*Fn
) {
946 std::string FuncName
= GlobalValue::dropLLVMManglingEscape(GV
->getName());
947 const ThunkOrdinal ordinal
= ThunkOrdinal::Standard
; // Only supported kind.
949 OS
.AddComment("Symbol subsection for " + Twine(FuncName
));
950 MCSymbol
*SymbolsEnd
= beginCVSubsection(DebugSubsectionKind::Symbols
);
953 MCSymbol
*ThunkRecordEnd
= beginSymbolRecord(SymbolKind::S_THUNK32
);
954 OS
.AddComment("PtrParent");
955 OS
.EmitIntValue(0, 4);
956 OS
.AddComment("PtrEnd");
957 OS
.EmitIntValue(0, 4);
958 OS
.AddComment("PtrNext");
959 OS
.EmitIntValue(0, 4);
960 OS
.AddComment("Thunk section relative address");
961 OS
.EmitCOFFSecRel32(Fn
, /*Offset=*/0);
962 OS
.AddComment("Thunk section index");
963 OS
.EmitCOFFSectionIndex(Fn
);
964 OS
.AddComment("Code size");
965 OS
.emitAbsoluteSymbolDiff(FI
.End
, Fn
, 2);
966 OS
.AddComment("Ordinal");
967 OS
.EmitIntValue(unsigned(ordinal
), 1);
968 OS
.AddComment("Function name");
969 emitNullTerminatedSymbolName(OS
, FuncName
);
970 // Additional fields specific to the thunk ordinal would go here.
971 endSymbolRecord(ThunkRecordEnd
);
973 // Local variables/inlined routines are purposely omitted here. The point of
974 // marking this as a thunk is so Visual Studio will NOT stop in this routine.
976 // Emit S_PROC_ID_END
977 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END
);
979 endCVSubsection(SymbolsEnd
);
982 void CodeViewDebug::emitDebugInfoForFunction(const Function
*GV
,
984 // For each function there is a separate subsection which holds the PC to
986 const MCSymbol
*Fn
= Asm
->getSymbol(GV
);
989 // Switch to the to a comdat section, if appropriate.
990 switchToDebugSectionForSymbol(Fn
);
992 std::string FuncName
;
993 auto *SP
= GV
->getSubprogram();
995 setCurrentSubprogram(SP
);
998 emitDebugInfoForThunk(GV
, FI
, Fn
);
1002 // If we have a display name, build the fully qualified name by walking the
1004 if (!SP
->getName().empty())
1005 FuncName
= getFullyQualifiedName(SP
->getScope(), SP
->getName());
1007 // If our DISubprogram name is empty, use the mangled name.
1008 if (FuncName
.empty())
1009 FuncName
= GlobalValue::dropLLVMManglingEscape(GV
->getName());
1011 // Emit FPO data, but only on 32-bit x86. No other platforms use it.
1012 if (Triple(MMI
->getModule()->getTargetTriple()).getArch() == Triple::x86
)
1013 OS
.EmitCVFPOData(Fn
);
1015 // Emit a symbol subsection, required by VS2012+ to find function boundaries.
1016 OS
.AddComment("Symbol subsection for " + Twine(FuncName
));
1017 MCSymbol
*SymbolsEnd
= beginCVSubsection(DebugSubsectionKind::Symbols
);
1019 SymbolKind ProcKind
= GV
->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID
1020 : SymbolKind::S_GPROC32_ID
;
1021 MCSymbol
*ProcRecordEnd
= beginSymbolRecord(ProcKind
);
1023 // These fields are filled in by tools like CVPACK which run after the fact.
1024 OS
.AddComment("PtrParent");
1025 OS
.EmitIntValue(0, 4);
1026 OS
.AddComment("PtrEnd");
1027 OS
.EmitIntValue(0, 4);
1028 OS
.AddComment("PtrNext");
1029 OS
.EmitIntValue(0, 4);
1030 // This is the important bit that tells the debugger where the function
1031 // code is located and what's its size:
1032 OS
.AddComment("Code size");
1033 OS
.emitAbsoluteSymbolDiff(FI
.End
, Fn
, 4);
1034 OS
.AddComment("Offset after prologue");
1035 OS
.EmitIntValue(0, 4);
1036 OS
.AddComment("Offset before epilogue");
1037 OS
.EmitIntValue(0, 4);
1038 OS
.AddComment("Function type index");
1039 OS
.EmitIntValue(getFuncIdForSubprogram(GV
->getSubprogram()).getIndex(), 4);
1040 OS
.AddComment("Function section relative address");
1041 OS
.EmitCOFFSecRel32(Fn
, /*Offset=*/0);
1042 OS
.AddComment("Function section index");
1043 OS
.EmitCOFFSectionIndex(Fn
);
1044 OS
.AddComment("Flags");
1045 OS
.EmitIntValue(0, 1);
1046 // Emit the function display name as a null-terminated string.
1047 OS
.AddComment("Function name");
1048 // Truncate the name so we won't overflow the record length field.
1049 emitNullTerminatedSymbolName(OS
, FuncName
);
1050 endSymbolRecord(ProcRecordEnd
);
1052 MCSymbol
*FrameProcEnd
= beginSymbolRecord(SymbolKind::S_FRAMEPROC
);
1053 // Subtract out the CSR size since MSVC excludes that and we include it.
1054 OS
.AddComment("FrameSize");
1055 OS
.EmitIntValue(FI
.FrameSize
- FI
.CSRSize
, 4);
1056 OS
.AddComment("Padding");
1057 OS
.EmitIntValue(0, 4);
1058 OS
.AddComment("Offset of padding");
1059 OS
.EmitIntValue(0, 4);
1060 OS
.AddComment("Bytes of callee saved registers");
1061 OS
.EmitIntValue(FI
.CSRSize
, 4);
1062 OS
.AddComment("Exception handler offset");
1063 OS
.EmitIntValue(0, 4);
1064 OS
.AddComment("Exception handler section");
1065 OS
.EmitIntValue(0, 2);
1066 OS
.AddComment("Flags (defines frame register)");
1067 OS
.EmitIntValue(uint32_t(FI
.FrameProcOpts
), 4);
1068 endSymbolRecord(FrameProcEnd
);
1070 emitLocalVariableList(FI
, FI
.Locals
);
1071 emitGlobalVariableList(FI
.Globals
);
1072 emitLexicalBlockList(FI
.ChildBlocks
, FI
);
1074 // Emit inlined call site information. Only emit functions inlined directly
1075 // into the parent function. We'll emit the other sites recursively as part
1076 // of their parent inline site.
1077 for (const DILocation
*InlinedAt
: FI
.ChildSites
) {
1078 auto I
= FI
.InlineSites
.find(InlinedAt
);
1079 assert(I
!= FI
.InlineSites
.end() &&
1080 "child site not in function inline site map");
1081 emitInlinedCallSite(FI
, InlinedAt
, I
->second
);
1084 for (auto Annot
: FI
.Annotations
) {
1085 MCSymbol
*Label
= Annot
.first
;
1086 MDTuple
*Strs
= cast
<MDTuple
>(Annot
.second
);
1087 MCSymbol
*AnnotEnd
= beginSymbolRecord(SymbolKind::S_ANNOTATION
);
1088 OS
.EmitCOFFSecRel32(Label
, /*Offset=*/0);
1089 // FIXME: Make sure we don't overflow the max record size.
1090 OS
.EmitCOFFSectionIndex(Label
);
1091 OS
.EmitIntValue(Strs
->getNumOperands(), 2);
1092 for (Metadata
*MD
: Strs
->operands()) {
1093 // MDStrings are null terminated, so we can do EmitBytes and get the
1094 // nice .asciz directive.
1095 StringRef Str
= cast
<MDString
>(MD
)->getString();
1096 assert(Str
.data()[Str
.size()] == '\0' && "non-nullterminated MDString");
1097 OS
.EmitBytes(StringRef(Str
.data(), Str
.size() + 1));
1099 endSymbolRecord(AnnotEnd
);
1102 for (auto HeapAllocSite
: FI
.HeapAllocSites
) {
1103 MCSymbol
*BeginLabel
= std::get
<0>(HeapAllocSite
);
1104 MCSymbol
*EndLabel
= std::get
<1>(HeapAllocSite
);
1106 // The labels might not be defined if the instruction was replaced
1107 // somewhere in the codegen pipeline.
1108 if (!BeginLabel
->isDefined() || !EndLabel
->isDefined())
1111 const DIType
*DITy
= std::get
<2>(HeapAllocSite
);
1112 MCSymbol
*HeapAllocEnd
= beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE
);
1113 OS
.AddComment("Call site offset");
1114 OS
.EmitCOFFSecRel32(BeginLabel
, /*Offset=*/0);
1115 OS
.AddComment("Call site section index");
1116 OS
.EmitCOFFSectionIndex(BeginLabel
);
1117 OS
.AddComment("Call instruction length");
1118 OS
.emitAbsoluteSymbolDiff(EndLabel
, BeginLabel
, 2);
1119 OS
.AddComment("Type index");
1120 OS
.EmitIntValue(getCompleteTypeIndex(DITy
).getIndex(), 4);
1121 endSymbolRecord(HeapAllocEnd
);
1125 emitDebugInfoForUDTs(LocalUDTs
);
1127 // We're done with this function.
1128 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END
);
1130 endCVSubsection(SymbolsEnd
);
1132 // We have an assembler directive that takes care of the whole line table.
1133 OS
.EmitCVLinetableDirective(FI
.FuncId
, Fn
, FI
.End
);
1136 CodeViewDebug::LocalVarDefRange
1137 CodeViewDebug::createDefRangeMem(uint16_t CVRegister
, int Offset
) {
1138 LocalVarDefRange DR
;
1140 DR
.DataOffset
= Offset
;
1141 assert(DR
.DataOffset
== Offset
&& "truncation");
1143 DR
.StructOffset
= 0;
1144 DR
.CVRegister
= CVRegister
;
1148 void CodeViewDebug::collectVariableInfoFromMFTable(
1149 DenseSet
<InlinedEntity
> &Processed
) {
1150 const MachineFunction
&MF
= *Asm
->MF
;
1151 const TargetSubtargetInfo
&TSI
= MF
.getSubtarget();
1152 const TargetFrameLowering
*TFI
= TSI
.getFrameLowering();
1153 const TargetRegisterInfo
*TRI
= TSI
.getRegisterInfo();
1155 for (const MachineFunction::VariableDbgInfo
&VI
: MF
.getVariableDbgInfo()) {
1158 assert(VI
.Var
->isValidLocationForIntrinsic(VI
.Loc
) &&
1159 "Expected inlined-at fields to agree");
1161 Processed
.insert(InlinedEntity(VI
.Var
, VI
.Loc
->getInlinedAt()));
1162 LexicalScope
*Scope
= LScopes
.findLexicalScope(VI
.Loc
);
1164 // If variable scope is not found then skip this variable.
1168 // If the variable has an attached offset expression, extract it.
1169 // FIXME: Try to handle DW_OP_deref as well.
1170 int64_t ExprOffset
= 0;
1173 // If there is one DW_OP_deref element, use offset of 0 and keep going.
1174 if (VI
.Expr
->getNumElements() == 1 &&
1175 VI
.Expr
->getElement(0) == llvm::dwarf::DW_OP_deref
)
1177 else if (!VI
.Expr
->extractIfOffset(ExprOffset
))
1181 // Get the frame register used and the offset.
1182 unsigned FrameReg
= 0;
1183 int FrameOffset
= TFI
->getFrameIndexReference(*Asm
->MF
, VI
.Slot
, FrameReg
);
1184 uint16_t CVReg
= TRI
->getCodeViewRegNum(FrameReg
);
1186 // Calculate the label ranges.
1187 LocalVarDefRange DefRange
=
1188 createDefRangeMem(CVReg
, FrameOffset
+ ExprOffset
);
1190 for (const InsnRange
&Range
: Scope
->getRanges()) {
1191 const MCSymbol
*Begin
= getLabelBeforeInsn(Range
.first
);
1192 const MCSymbol
*End
= getLabelAfterInsn(Range
.second
);
1193 End
= End
? End
: Asm
->getFunctionEnd();
1194 DefRange
.Ranges
.emplace_back(Begin
, End
);
1199 Var
.DefRanges
.emplace_back(std::move(DefRange
));
1201 Var
.UseReferenceType
= true;
1203 recordLocalVariable(std::move(Var
), Scope
);
1207 static bool canUseReferenceType(const DbgVariableLocation
&Loc
) {
1208 return !Loc
.LoadChain
.empty() && Loc
.LoadChain
.back() == 0;
1211 static bool needsReferenceType(const DbgVariableLocation
&Loc
) {
1212 return Loc
.LoadChain
.size() == 2 && Loc
.LoadChain
.back() == 0;
1215 void CodeViewDebug::calculateRanges(
1216 LocalVariable
&Var
, const DbgValueHistoryMap::Entries
&Entries
) {
1217 const TargetRegisterInfo
*TRI
= Asm
->MF
->getSubtarget().getRegisterInfo();
1219 // Calculate the definition ranges.
1220 for (auto I
= Entries
.begin(), E
= Entries
.end(); I
!= E
; ++I
) {
1221 const auto &Entry
= *I
;
1222 if (!Entry
.isDbgValue())
1224 const MachineInstr
*DVInst
= Entry
.getInstr();
1225 assert(DVInst
->isDebugValue() && "Invalid History entry");
1226 // FIXME: Find a way to represent constant variables, since they are
1227 // relatively common.
1228 Optional
<DbgVariableLocation
> Location
=
1229 DbgVariableLocation::extractFromMachineInstruction(*DVInst
);
1233 // CodeView can only express variables in register and variables in memory
1234 // at a constant offset from a register. However, for variables passed
1235 // indirectly by pointer, it is common for that pointer to be spilled to a
1236 // stack location. For the special case of one offseted load followed by a
1237 // zero offset load (a pointer spilled to the stack), we change the type of
1238 // the local variable from a value type to a reference type. This tricks the
1239 // debugger into doing the load for us.
1240 if (Var
.UseReferenceType
) {
1241 // We're using a reference type. Drop the last zero offset load.
1242 if (canUseReferenceType(*Location
))
1243 Location
->LoadChain
.pop_back();
1246 } else if (needsReferenceType(*Location
)) {
1247 // This location can't be expressed without switching to a reference type.
1248 // Start over using that.
1249 Var
.UseReferenceType
= true;
1250 Var
.DefRanges
.clear();
1251 calculateRanges(Var
, Entries
);
1255 // We can only handle a register or an offseted load of a register.
1256 if (Location
->Register
== 0 || Location
->LoadChain
.size() > 1)
1259 LocalVarDefRange DR
;
1260 DR
.CVRegister
= TRI
->getCodeViewRegNum(Location
->Register
);
1261 DR
.InMemory
= !Location
->LoadChain
.empty();
1263 !Location
->LoadChain
.empty() ? Location
->LoadChain
.back() : 0;
1264 if (Location
->FragmentInfo
) {
1265 DR
.IsSubfield
= true;
1266 DR
.StructOffset
= Location
->FragmentInfo
->OffsetInBits
/ 8;
1268 DR
.IsSubfield
= false;
1269 DR
.StructOffset
= 0;
1272 if (Var
.DefRanges
.empty() ||
1273 Var
.DefRanges
.back().isDifferentLocation(DR
)) {
1274 Var
.DefRanges
.emplace_back(std::move(DR
));
1278 // Compute the label range.
1279 const MCSymbol
*Begin
= getLabelBeforeInsn(Entry
.getInstr());
1280 const MCSymbol
*End
;
1281 if (Entry
.getEndIndex() != DbgValueHistoryMap::NoEntry
) {
1282 auto &EndingEntry
= Entries
[Entry
.getEndIndex()];
1283 End
= EndingEntry
.isDbgValue()
1284 ? getLabelBeforeInsn(EndingEntry
.getInstr())
1285 : getLabelAfterInsn(EndingEntry
.getInstr());
1287 End
= Asm
->getFunctionEnd();
1289 // If the last range end is our begin, just extend the last range.
1290 // Otherwise make a new range.
1291 SmallVectorImpl
<std::pair
<const MCSymbol
*, const MCSymbol
*>> &R
=
1292 Var
.DefRanges
.back().Ranges
;
1293 if (!R
.empty() && R
.back().second
== Begin
)
1294 R
.back().second
= End
;
1296 R
.emplace_back(Begin
, End
);
1298 // FIXME: Do more range combining.
1302 void CodeViewDebug::collectVariableInfo(const DISubprogram
*SP
) {
1303 DenseSet
<InlinedEntity
> Processed
;
1304 // Grab the variable info that was squirreled away in the MMI side-table.
1305 collectVariableInfoFromMFTable(Processed
);
1307 for (const auto &I
: DbgValues
) {
1308 InlinedEntity IV
= I
.first
;
1309 if (Processed
.count(IV
))
1311 const DILocalVariable
*DIVar
= cast
<DILocalVariable
>(IV
.first
);
1312 const DILocation
*InlinedAt
= IV
.second
;
1314 // Instruction ranges, specifying where IV is accessible.
1315 const auto &Entries
= I
.second
;
1317 LexicalScope
*Scope
= nullptr;
1319 Scope
= LScopes
.findInlinedScope(DIVar
->getScope(), InlinedAt
);
1321 Scope
= LScopes
.findLexicalScope(DIVar
->getScope());
1322 // If variable scope is not found then skip this variable.
1329 calculateRanges(Var
, Entries
);
1330 recordLocalVariable(std::move(Var
), Scope
);
1334 void CodeViewDebug::beginFunctionImpl(const MachineFunction
*MF
) {
1335 const TargetSubtargetInfo
&TSI
= MF
->getSubtarget();
1336 const TargetRegisterInfo
*TRI
= TSI
.getRegisterInfo();
1337 const MachineFrameInfo
&MFI
= MF
->getFrameInfo();
1338 const Function
&GV
= MF
->getFunction();
1339 auto Insertion
= FnDebugInfo
.insert({&GV
, std::make_unique
<FunctionInfo
>()});
1340 assert(Insertion
.second
&& "function already has info");
1341 CurFn
= Insertion
.first
->second
.get();
1342 CurFn
->FuncId
= NextFuncId
++;
1343 CurFn
->Begin
= Asm
->getFunctionBegin();
1345 // The S_FRAMEPROC record reports the stack size, and how many bytes of
1346 // callee-saved registers were used. For targets that don't use a PUSH
1347 // instruction (AArch64), this will be zero.
1348 CurFn
->CSRSize
= MFI
.getCVBytesOfCalleeSavedRegisters();
1349 CurFn
->FrameSize
= MFI
.getStackSize();
1350 CurFn
->OffsetAdjustment
= MFI
.getOffsetAdjustment();
1351 CurFn
->HasStackRealignment
= TRI
->needsStackRealignment(*MF
);
1353 // For this function S_FRAMEPROC record, figure out which codeview register
1354 // will be the frame pointer.
1355 CurFn
->EncodedParamFramePtrReg
= EncodedFramePtrReg::None
; // None.
1356 CurFn
->EncodedLocalFramePtrReg
= EncodedFramePtrReg::None
; // None.
1357 if (CurFn
->FrameSize
> 0) {
1358 if (!TSI
.getFrameLowering()->hasFP(*MF
)) {
1359 CurFn
->EncodedLocalFramePtrReg
= EncodedFramePtrReg::StackPtr
;
1360 CurFn
->EncodedParamFramePtrReg
= EncodedFramePtrReg::StackPtr
;
1362 // If there is an FP, parameters are always relative to it.
1363 CurFn
->EncodedParamFramePtrReg
= EncodedFramePtrReg::FramePtr
;
1364 if (CurFn
->HasStackRealignment
) {
1365 // If the stack needs realignment, locals are relative to SP or VFRAME.
1366 CurFn
->EncodedLocalFramePtrReg
= EncodedFramePtrReg::StackPtr
;
1368 // Otherwise, locals are relative to EBP, and we probably have VLAs or
1369 // other stack adjustments.
1370 CurFn
->EncodedLocalFramePtrReg
= EncodedFramePtrReg::FramePtr
;
1375 // Compute other frame procedure options.
1376 FrameProcedureOptions FPO
= FrameProcedureOptions::None
;
1377 if (MFI
.hasVarSizedObjects())
1378 FPO
|= FrameProcedureOptions::HasAlloca
;
1379 if (MF
->exposesReturnsTwice())
1380 FPO
|= FrameProcedureOptions::HasSetJmp
;
1381 // FIXME: Set HasLongJmp if we ever track that info.
1382 if (MF
->hasInlineAsm())
1383 FPO
|= FrameProcedureOptions::HasInlineAssembly
;
1384 if (GV
.hasPersonalityFn()) {
1385 if (isAsynchronousEHPersonality(
1386 classifyEHPersonality(GV
.getPersonalityFn())))
1387 FPO
|= FrameProcedureOptions::HasStructuredExceptionHandling
;
1389 FPO
|= FrameProcedureOptions::HasExceptionHandling
;
1391 if (GV
.hasFnAttribute(Attribute::InlineHint
))
1392 FPO
|= FrameProcedureOptions::MarkedInline
;
1393 if (GV
.hasFnAttribute(Attribute::Naked
))
1394 FPO
|= FrameProcedureOptions::Naked
;
1395 if (MFI
.hasStackProtectorIndex())
1396 FPO
|= FrameProcedureOptions::SecurityChecks
;
1397 FPO
|= FrameProcedureOptions(uint32_t(CurFn
->EncodedLocalFramePtrReg
) << 14U);
1398 FPO
|= FrameProcedureOptions(uint32_t(CurFn
->EncodedParamFramePtrReg
) << 16U);
1399 if (Asm
->TM
.getOptLevel() != CodeGenOpt::None
&&
1400 !GV
.hasOptSize() && !GV
.hasOptNone())
1401 FPO
|= FrameProcedureOptions::OptimizedForSpeed
;
1402 // FIXME: Set GuardCfg when it is implemented.
1403 CurFn
->FrameProcOpts
= FPO
;
1405 OS
.EmitCVFuncIdDirective(CurFn
->FuncId
);
1407 // Find the end of the function prolog. First known non-DBG_VALUE and
1408 // non-frame setup location marks the beginning of the function body.
1409 // FIXME: is there a simpler a way to do this? Can we just search
1410 // for the first instruction of the function, not the last of the prolog?
1411 DebugLoc PrologEndLoc
;
1412 bool EmptyPrologue
= true;
1413 for (const auto &MBB
: *MF
) {
1414 for (const auto &MI
: MBB
) {
1415 if (!MI
.isMetaInstruction() && !MI
.getFlag(MachineInstr::FrameSetup
) &&
1417 PrologEndLoc
= MI
.getDebugLoc();
1419 } else if (!MI
.isMetaInstruction()) {
1420 EmptyPrologue
= false;
1425 // Record beginning of function if we have a non-empty prologue.
1426 if (PrologEndLoc
&& !EmptyPrologue
) {
1427 DebugLoc FnStartDL
= PrologEndLoc
.getFnDebugLoc();
1428 maybeRecordLocation(FnStartDL
, MF
);
1432 static bool shouldEmitUdt(const DIType
*T
) {
1436 // MSVC does not emit UDTs for typedefs that are scoped to classes.
1437 if (T
->getTag() == dwarf::DW_TAG_typedef
) {
1438 if (DIScope
*Scope
= T
->getScope()) {
1439 switch (Scope
->getTag()) {
1440 case dwarf::DW_TAG_structure_type
:
1441 case dwarf::DW_TAG_class_type
:
1442 case dwarf::DW_TAG_union_type
:
1449 if (!T
|| T
->isForwardDecl())
1452 const DIDerivedType
*DT
= dyn_cast
<DIDerivedType
>(T
);
1455 T
= DT
->getBaseType();
1460 void CodeViewDebug::addToUDTs(const DIType
*Ty
) {
1461 // Don't record empty UDTs.
1462 if (Ty
->getName().empty())
1464 if (!shouldEmitUdt(Ty
))
1467 SmallVector
<StringRef
, 5> QualifiedNameComponents
;
1468 const DISubprogram
*ClosestSubprogram
=
1469 getQualifiedNameComponents(Ty
->getScope(), QualifiedNameComponents
);
1471 std::string FullyQualifiedName
=
1472 getQualifiedName(QualifiedNameComponents
, getPrettyScopeName(Ty
));
1474 if (ClosestSubprogram
== nullptr) {
1475 GlobalUDTs
.emplace_back(std::move(FullyQualifiedName
), Ty
);
1476 } else if (ClosestSubprogram
== CurrentSubprogram
) {
1477 LocalUDTs
.emplace_back(std::move(FullyQualifiedName
), Ty
);
1480 // TODO: What if the ClosestSubprogram is neither null or the current
1481 // subprogram? Currently, the UDT just gets dropped on the floor.
1483 // The current behavior is not desirable. To get maximal fidelity, we would
1484 // need to perform all type translation before beginning emission of .debug$S
1485 // and then make LocalUDTs a member of FunctionInfo
1488 TypeIndex
CodeViewDebug::lowerType(const DIType
*Ty
, const DIType
*ClassTy
) {
1489 // Generic dispatch for lowering an unknown type.
1490 switch (Ty
->getTag()) {
1491 case dwarf::DW_TAG_array_type
:
1492 return lowerTypeArray(cast
<DICompositeType
>(Ty
));
1493 case dwarf::DW_TAG_typedef
:
1494 return lowerTypeAlias(cast
<DIDerivedType
>(Ty
));
1495 case dwarf::DW_TAG_base_type
:
1496 return lowerTypeBasic(cast
<DIBasicType
>(Ty
));
1497 case dwarf::DW_TAG_pointer_type
:
1498 if (cast
<DIDerivedType
>(Ty
)->getName() == "__vtbl_ptr_type")
1499 return lowerTypeVFTableShape(cast
<DIDerivedType
>(Ty
));
1501 case dwarf::DW_TAG_reference_type
:
1502 case dwarf::DW_TAG_rvalue_reference_type
:
1503 return lowerTypePointer(cast
<DIDerivedType
>(Ty
));
1504 case dwarf::DW_TAG_ptr_to_member_type
:
1505 return lowerTypeMemberPointer(cast
<DIDerivedType
>(Ty
));
1506 case dwarf::DW_TAG_restrict_type
:
1507 case dwarf::DW_TAG_const_type
:
1508 case dwarf::DW_TAG_volatile_type
:
1509 // TODO: add support for DW_TAG_atomic_type here
1510 return lowerTypeModifier(cast
<DIDerivedType
>(Ty
));
1511 case dwarf::DW_TAG_subroutine_type
:
1513 // The member function type of a member function pointer has no
1515 return lowerTypeMemberFunction(cast
<DISubroutineType
>(Ty
), ClassTy
,
1516 /*ThisAdjustment=*/0,
1517 /*IsStaticMethod=*/false);
1519 return lowerTypeFunction(cast
<DISubroutineType
>(Ty
));
1520 case dwarf::DW_TAG_enumeration_type
:
1521 return lowerTypeEnum(cast
<DICompositeType
>(Ty
));
1522 case dwarf::DW_TAG_class_type
:
1523 case dwarf::DW_TAG_structure_type
:
1524 return lowerTypeClass(cast
<DICompositeType
>(Ty
));
1525 case dwarf::DW_TAG_union_type
:
1526 return lowerTypeUnion(cast
<DICompositeType
>(Ty
));
1527 case dwarf::DW_TAG_unspecified_type
:
1528 if (Ty
->getName() == "decltype(nullptr)")
1529 return TypeIndex::NullptrT();
1530 return TypeIndex::None();
1532 // Use the null type index.
1537 TypeIndex
CodeViewDebug::lowerTypeAlias(const DIDerivedType
*Ty
) {
1538 TypeIndex UnderlyingTypeIndex
= getTypeIndex(Ty
->getBaseType());
1539 StringRef TypeName
= Ty
->getName();
1543 if (UnderlyingTypeIndex
== TypeIndex(SimpleTypeKind::Int32Long
) &&
1544 TypeName
== "HRESULT")
1545 return TypeIndex(SimpleTypeKind::HResult
);
1546 if (UnderlyingTypeIndex
== TypeIndex(SimpleTypeKind::UInt16Short
) &&
1547 TypeName
== "wchar_t")
1548 return TypeIndex(SimpleTypeKind::WideCharacter
);
1550 return UnderlyingTypeIndex
;
1553 TypeIndex
CodeViewDebug::lowerTypeArray(const DICompositeType
*Ty
) {
1554 const DIType
*ElementType
= Ty
->getBaseType();
1555 TypeIndex ElementTypeIndex
= getTypeIndex(ElementType
);
1556 // IndexType is size_t, which depends on the bitness of the target.
1557 TypeIndex IndexType
= getPointerSizeInBytes() == 8
1558 ? TypeIndex(SimpleTypeKind::UInt64Quad
)
1559 : TypeIndex(SimpleTypeKind::UInt32Long
);
1561 uint64_t ElementSize
= getBaseTypeSize(ElementType
) / 8;
1563 // Add subranges to array type.
1564 DINodeArray Elements
= Ty
->getElements();
1565 for (int i
= Elements
.size() - 1; i
>= 0; --i
) {
1566 const DINode
*Element
= Elements
[i
];
1567 assert(Element
->getTag() == dwarf::DW_TAG_subrange_type
);
1569 const DISubrange
*Subrange
= cast
<DISubrange
>(Element
);
1570 assert(Subrange
->getLowerBound() == 0 &&
1571 "codeview doesn't support subranges with lower bounds");
1573 if (auto *CI
= Subrange
->getCount().dyn_cast
<ConstantInt
*>())
1574 Count
= CI
->getSExtValue();
1576 // Forward declarations of arrays without a size and VLAs use a count of -1.
1577 // Emit a count of zero in these cases to match what MSVC does for arrays
1578 // without a size. MSVC doesn't support VLAs, so it's not clear what we
1579 // should do for them even if we could distinguish them.
1583 // Update the element size and element type index for subsequent subranges.
1584 ElementSize
*= Count
;
1586 // If this is the outermost array, use the size from the array. It will be
1587 // more accurate if we had a VLA or an incomplete element type size.
1588 uint64_t ArraySize
=
1589 (i
== 0 && ElementSize
== 0) ? Ty
->getSizeInBits() / 8 : ElementSize
;
1591 StringRef Name
= (i
== 0) ? Ty
->getName() : "";
1592 ArrayRecord
AR(ElementTypeIndex
, IndexType
, ArraySize
, Name
);
1593 ElementTypeIndex
= TypeTable
.writeLeafType(AR
);
1596 return ElementTypeIndex
;
1599 TypeIndex
CodeViewDebug::lowerTypeBasic(const DIBasicType
*Ty
) {
1601 dwarf::TypeKind Kind
;
1604 Kind
= static_cast<dwarf::TypeKind
>(Ty
->getEncoding());
1605 ByteSize
= Ty
->getSizeInBits() / 8;
1607 SimpleTypeKind STK
= SimpleTypeKind::None
;
1609 case dwarf::DW_ATE_address
:
1612 case dwarf::DW_ATE_boolean
:
1614 case 1: STK
= SimpleTypeKind::Boolean8
; break;
1615 case 2: STK
= SimpleTypeKind::Boolean16
; break;
1616 case 4: STK
= SimpleTypeKind::Boolean32
; break;
1617 case 8: STK
= SimpleTypeKind::Boolean64
; break;
1618 case 16: STK
= SimpleTypeKind::Boolean128
; break;
1621 case dwarf::DW_ATE_complex_float
:
1623 case 2: STK
= SimpleTypeKind::Complex16
; break;
1624 case 4: STK
= SimpleTypeKind::Complex32
; break;
1625 case 8: STK
= SimpleTypeKind::Complex64
; break;
1626 case 10: STK
= SimpleTypeKind::Complex80
; break;
1627 case 16: STK
= SimpleTypeKind::Complex128
; break;
1630 case dwarf::DW_ATE_float
:
1632 case 2: STK
= SimpleTypeKind::Float16
; break;
1633 case 4: STK
= SimpleTypeKind::Float32
; break;
1634 case 6: STK
= SimpleTypeKind::Float48
; break;
1635 case 8: STK
= SimpleTypeKind::Float64
; break;
1636 case 10: STK
= SimpleTypeKind::Float80
; break;
1637 case 16: STK
= SimpleTypeKind::Float128
; break;
1640 case dwarf::DW_ATE_signed
:
1642 case 1: STK
= SimpleTypeKind::SignedCharacter
; break;
1643 case 2: STK
= SimpleTypeKind::Int16Short
; break;
1644 case 4: STK
= SimpleTypeKind::Int32
; break;
1645 case 8: STK
= SimpleTypeKind::Int64Quad
; break;
1646 case 16: STK
= SimpleTypeKind::Int128Oct
; break;
1649 case dwarf::DW_ATE_unsigned
:
1651 case 1: STK
= SimpleTypeKind::UnsignedCharacter
; break;
1652 case 2: STK
= SimpleTypeKind::UInt16Short
; break;
1653 case 4: STK
= SimpleTypeKind::UInt32
; break;
1654 case 8: STK
= SimpleTypeKind::UInt64Quad
; break;
1655 case 16: STK
= SimpleTypeKind::UInt128Oct
; break;
1658 case dwarf::DW_ATE_UTF
:
1660 case 2: STK
= SimpleTypeKind::Character16
; break;
1661 case 4: STK
= SimpleTypeKind::Character32
; break;
1664 case dwarf::DW_ATE_signed_char
:
1666 STK
= SimpleTypeKind::SignedCharacter
;
1668 case dwarf::DW_ATE_unsigned_char
:
1670 STK
= SimpleTypeKind::UnsignedCharacter
;
1676 // Apply some fixups based on the source-level type name.
1677 if (STK
== SimpleTypeKind::Int32
&& Ty
->getName() == "long int")
1678 STK
= SimpleTypeKind::Int32Long
;
1679 if (STK
== SimpleTypeKind::UInt32
&& Ty
->getName() == "long unsigned int")
1680 STK
= SimpleTypeKind::UInt32Long
;
1681 if (STK
== SimpleTypeKind::UInt16Short
&&
1682 (Ty
->getName() == "wchar_t" || Ty
->getName() == "__wchar_t"))
1683 STK
= SimpleTypeKind::WideCharacter
;
1684 if ((STK
== SimpleTypeKind::SignedCharacter
||
1685 STK
== SimpleTypeKind::UnsignedCharacter
) &&
1686 Ty
->getName() == "char")
1687 STK
= SimpleTypeKind::NarrowCharacter
;
1689 return TypeIndex(STK
);
1692 TypeIndex
CodeViewDebug::lowerTypePointer(const DIDerivedType
*Ty
,
1693 PointerOptions PO
) {
1694 TypeIndex PointeeTI
= getTypeIndex(Ty
->getBaseType());
1696 // Pointers to simple types without any options can use SimpleTypeMode, rather
1697 // than having a dedicated pointer type record.
1698 if (PointeeTI
.isSimple() && PO
== PointerOptions::None
&&
1699 PointeeTI
.getSimpleMode() == SimpleTypeMode::Direct
&&
1700 Ty
->getTag() == dwarf::DW_TAG_pointer_type
) {
1701 SimpleTypeMode Mode
= Ty
->getSizeInBits() == 64
1702 ? SimpleTypeMode::NearPointer64
1703 : SimpleTypeMode::NearPointer32
;
1704 return TypeIndex(PointeeTI
.getSimpleKind(), Mode
);
1708 Ty
->getSizeInBits() == 64 ? PointerKind::Near64
: PointerKind::Near32
;
1709 PointerMode PM
= PointerMode::Pointer
;
1710 switch (Ty
->getTag()) {
1711 default: llvm_unreachable("not a pointer tag type");
1712 case dwarf::DW_TAG_pointer_type
:
1713 PM
= PointerMode::Pointer
;
1715 case dwarf::DW_TAG_reference_type
:
1716 PM
= PointerMode::LValueReference
;
1718 case dwarf::DW_TAG_rvalue_reference_type
:
1719 PM
= PointerMode::RValueReference
;
1723 if (Ty
->isObjectPointer())
1724 PO
|= PointerOptions::Const
;
1726 PointerRecord
PR(PointeeTI
, PK
, PM
, PO
, Ty
->getSizeInBits() / 8);
1727 return TypeTable
.writeLeafType(PR
);
1730 static PointerToMemberRepresentation
1731 translatePtrToMemberRep(unsigned SizeInBytes
, bool IsPMF
, unsigned Flags
) {
1732 // SizeInBytes being zero generally implies that the member pointer type was
1733 // incomplete, which can happen if it is part of a function prototype. In this
1734 // case, use the unknown model instead of the general model.
1736 switch (Flags
& DINode::FlagPtrToMemberRep
) {
1738 return SizeInBytes
== 0 ? PointerToMemberRepresentation::Unknown
1739 : PointerToMemberRepresentation::GeneralFunction
;
1740 case DINode::FlagSingleInheritance
:
1741 return PointerToMemberRepresentation::SingleInheritanceFunction
;
1742 case DINode::FlagMultipleInheritance
:
1743 return PointerToMemberRepresentation::MultipleInheritanceFunction
;
1744 case DINode::FlagVirtualInheritance
:
1745 return PointerToMemberRepresentation::VirtualInheritanceFunction
;
1748 switch (Flags
& DINode::FlagPtrToMemberRep
) {
1750 return SizeInBytes
== 0 ? PointerToMemberRepresentation::Unknown
1751 : PointerToMemberRepresentation::GeneralData
;
1752 case DINode::FlagSingleInheritance
:
1753 return PointerToMemberRepresentation::SingleInheritanceData
;
1754 case DINode::FlagMultipleInheritance
:
1755 return PointerToMemberRepresentation::MultipleInheritanceData
;
1756 case DINode::FlagVirtualInheritance
:
1757 return PointerToMemberRepresentation::VirtualInheritanceData
;
1760 llvm_unreachable("invalid ptr to member representation");
1763 TypeIndex
CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType
*Ty
,
1764 PointerOptions PO
) {
1765 assert(Ty
->getTag() == dwarf::DW_TAG_ptr_to_member_type
);
1766 TypeIndex ClassTI
= getTypeIndex(Ty
->getClassType());
1767 TypeIndex PointeeTI
= getTypeIndex(Ty
->getBaseType(), Ty
->getClassType());
1768 PointerKind PK
= getPointerSizeInBytes() == 8 ? PointerKind::Near64
1769 : PointerKind::Near32
;
1770 bool IsPMF
= isa
<DISubroutineType
>(Ty
->getBaseType());
1771 PointerMode PM
= IsPMF
? PointerMode::PointerToMemberFunction
1772 : PointerMode::PointerToDataMember
;
1774 assert(Ty
->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1775 uint8_t SizeInBytes
= Ty
->getSizeInBits() / 8;
1776 MemberPointerInfo
MPI(
1777 ClassTI
, translatePtrToMemberRep(SizeInBytes
, IsPMF
, Ty
->getFlags()));
1778 PointerRecord
PR(PointeeTI
, PK
, PM
, PO
, SizeInBytes
, MPI
);
1779 return TypeTable
.writeLeafType(PR
);
1782 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1783 /// have a translation, use the NearC convention.
1784 static CallingConvention
dwarfCCToCodeView(unsigned DwarfCC
) {
1786 case dwarf::DW_CC_normal
: return CallingConvention::NearC
;
1787 case dwarf::DW_CC_BORLAND_msfastcall
: return CallingConvention::NearFast
;
1788 case dwarf::DW_CC_BORLAND_thiscall
: return CallingConvention::ThisCall
;
1789 case dwarf::DW_CC_BORLAND_stdcall
: return CallingConvention::NearStdCall
;
1790 case dwarf::DW_CC_BORLAND_pascal
: return CallingConvention::NearPascal
;
1791 case dwarf::DW_CC_LLVM_vectorcall
: return CallingConvention::NearVector
;
1793 return CallingConvention::NearC
;
1796 TypeIndex
CodeViewDebug::lowerTypeModifier(const DIDerivedType
*Ty
) {
1797 ModifierOptions Mods
= ModifierOptions::None
;
1798 PointerOptions PO
= PointerOptions::None
;
1799 bool IsModifier
= true;
1800 const DIType
*BaseTy
= Ty
;
1801 while (IsModifier
&& BaseTy
) {
1802 // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1803 switch (BaseTy
->getTag()) {
1804 case dwarf::DW_TAG_const_type
:
1805 Mods
|= ModifierOptions::Const
;
1806 PO
|= PointerOptions::Const
;
1808 case dwarf::DW_TAG_volatile_type
:
1809 Mods
|= ModifierOptions::Volatile
;
1810 PO
|= PointerOptions::Volatile
;
1812 case dwarf::DW_TAG_restrict_type
:
1813 // Only pointer types be marked with __restrict. There is no known flag
1814 // for __restrict in LF_MODIFIER records.
1815 PO
|= PointerOptions::Restrict
;
1822 BaseTy
= cast
<DIDerivedType
>(BaseTy
)->getBaseType();
1825 // Check if the inner type will use an LF_POINTER record. If so, the
1826 // qualifiers will go in the LF_POINTER record. This comes up for types like
1827 // 'int *const' and 'int *__restrict', not the more common cases like 'const
1830 switch (BaseTy
->getTag()) {
1831 case dwarf::DW_TAG_pointer_type
:
1832 case dwarf::DW_TAG_reference_type
:
1833 case dwarf::DW_TAG_rvalue_reference_type
:
1834 return lowerTypePointer(cast
<DIDerivedType
>(BaseTy
), PO
);
1835 case dwarf::DW_TAG_ptr_to_member_type
:
1836 return lowerTypeMemberPointer(cast
<DIDerivedType
>(BaseTy
), PO
);
1842 TypeIndex ModifiedTI
= getTypeIndex(BaseTy
);
1844 // Return the base type index if there aren't any modifiers. For example, the
1845 // metadata could contain restrict wrappers around non-pointer types.
1846 if (Mods
== ModifierOptions::None
)
1849 ModifierRecord
MR(ModifiedTI
, Mods
);
1850 return TypeTable
.writeLeafType(MR
);
1853 TypeIndex
CodeViewDebug::lowerTypeFunction(const DISubroutineType
*Ty
) {
1854 SmallVector
<TypeIndex
, 8> ReturnAndArgTypeIndices
;
1855 for (const DIType
*ArgType
: Ty
->getTypeArray())
1856 ReturnAndArgTypeIndices
.push_back(getTypeIndex(ArgType
));
1858 // MSVC uses type none for variadic argument.
1859 if (ReturnAndArgTypeIndices
.size() > 1 &&
1860 ReturnAndArgTypeIndices
.back() == TypeIndex::Void()) {
1861 ReturnAndArgTypeIndices
.back() = TypeIndex::None();
1863 TypeIndex ReturnTypeIndex
= TypeIndex::Void();
1864 ArrayRef
<TypeIndex
> ArgTypeIndices
= None
;
1865 if (!ReturnAndArgTypeIndices
.empty()) {
1866 auto ReturnAndArgTypesRef
= makeArrayRef(ReturnAndArgTypeIndices
);
1867 ReturnTypeIndex
= ReturnAndArgTypesRef
.front();
1868 ArgTypeIndices
= ReturnAndArgTypesRef
.drop_front();
1871 ArgListRecord
ArgListRec(TypeRecordKind::ArgList
, ArgTypeIndices
);
1872 TypeIndex ArgListIndex
= TypeTable
.writeLeafType(ArgListRec
);
1874 CallingConvention CC
= dwarfCCToCodeView(Ty
->getCC());
1876 FunctionOptions FO
= getFunctionOptions(Ty
);
1877 ProcedureRecord
Procedure(ReturnTypeIndex
, CC
, FO
, ArgTypeIndices
.size(),
1879 return TypeTable
.writeLeafType(Procedure
);
1882 TypeIndex
CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType
*Ty
,
1883 const DIType
*ClassTy
,
1885 bool IsStaticMethod
,
1886 FunctionOptions FO
) {
1887 // Lower the containing class type.
1888 TypeIndex ClassType
= getTypeIndex(ClassTy
);
1890 DITypeRefArray ReturnAndArgs
= Ty
->getTypeArray();
1893 SmallVector
<TypeIndex
, 8> ArgTypeIndices
;
1894 TypeIndex ReturnTypeIndex
= TypeIndex::Void();
1895 if (ReturnAndArgs
.size() > Index
) {
1896 ReturnTypeIndex
= getTypeIndex(ReturnAndArgs
[Index
++]);
1899 // If the first argument is a pointer type and this isn't a static method,
1900 // treat it as the special 'this' parameter, which is encoded separately from
1902 TypeIndex ThisTypeIndex
;
1903 if (!IsStaticMethod
&& ReturnAndArgs
.size() > Index
) {
1904 if (const DIDerivedType
*PtrTy
=
1905 dyn_cast_or_null
<DIDerivedType
>(ReturnAndArgs
[Index
])) {
1906 if (PtrTy
->getTag() == dwarf::DW_TAG_pointer_type
) {
1907 ThisTypeIndex
= getTypeIndexForThisPtr(PtrTy
, Ty
);
1913 while (Index
< ReturnAndArgs
.size())
1914 ArgTypeIndices
.push_back(getTypeIndex(ReturnAndArgs
[Index
++]));
1916 // MSVC uses type none for variadic argument.
1917 if (!ArgTypeIndices
.empty() && ArgTypeIndices
.back() == TypeIndex::Void())
1918 ArgTypeIndices
.back() = TypeIndex::None();
1920 ArgListRecord
ArgListRec(TypeRecordKind::ArgList
, ArgTypeIndices
);
1921 TypeIndex ArgListIndex
= TypeTable
.writeLeafType(ArgListRec
);
1923 CallingConvention CC
= dwarfCCToCodeView(Ty
->getCC());
1925 MemberFunctionRecord
MFR(ReturnTypeIndex
, ClassType
, ThisTypeIndex
, CC
, FO
,
1926 ArgTypeIndices
.size(), ArgListIndex
, ThisAdjustment
);
1927 return TypeTable
.writeLeafType(MFR
);
1930 TypeIndex
CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType
*Ty
) {
1931 unsigned VSlotCount
=
1932 Ty
->getSizeInBits() / (8 * Asm
->MAI
->getCodePointerSize());
1933 SmallVector
<VFTableSlotKind
, 4> Slots(VSlotCount
, VFTableSlotKind::Near
);
1935 VFTableShapeRecord
VFTSR(Slots
);
1936 return TypeTable
.writeLeafType(VFTSR
);
1939 static MemberAccess
translateAccessFlags(unsigned RecordTag
, unsigned Flags
) {
1940 switch (Flags
& DINode::FlagAccessibility
) {
1941 case DINode::FlagPrivate
: return MemberAccess::Private
;
1942 case DINode::FlagPublic
: return MemberAccess::Public
;
1943 case DINode::FlagProtected
: return MemberAccess::Protected
;
1945 // If there was no explicit access control, provide the default for the tag.
1946 return RecordTag
== dwarf::DW_TAG_class_type
? MemberAccess::Private
1947 : MemberAccess::Public
;
1949 llvm_unreachable("access flags are exclusive");
1952 static MethodOptions
translateMethodOptionFlags(const DISubprogram
*SP
) {
1953 if (SP
->isArtificial())
1954 return MethodOptions::CompilerGenerated
;
1956 // FIXME: Handle other MethodOptions.
1958 return MethodOptions::None
;
1961 static MethodKind
translateMethodKindFlags(const DISubprogram
*SP
,
1963 if (SP
->getFlags() & DINode::FlagStaticMember
)
1964 return MethodKind::Static
;
1966 switch (SP
->getVirtuality()) {
1967 case dwarf::DW_VIRTUALITY_none
:
1969 case dwarf::DW_VIRTUALITY_virtual
:
1970 return Introduced
? MethodKind::IntroducingVirtual
: MethodKind::Virtual
;
1971 case dwarf::DW_VIRTUALITY_pure_virtual
:
1972 return Introduced
? MethodKind::PureIntroducingVirtual
1973 : MethodKind::PureVirtual
;
1975 llvm_unreachable("unhandled virtuality case");
1978 return MethodKind::Vanilla
;
1981 static TypeRecordKind
getRecordKind(const DICompositeType
*Ty
) {
1982 switch (Ty
->getTag()) {
1983 case dwarf::DW_TAG_class_type
: return TypeRecordKind::Class
;
1984 case dwarf::DW_TAG_structure_type
: return TypeRecordKind::Struct
;
1986 llvm_unreachable("unexpected tag");
1989 /// Return ClassOptions that should be present on both the forward declaration
1990 /// and the defintion of a tag type.
1991 static ClassOptions
getCommonClassOptions(const DICompositeType
*Ty
) {
1992 ClassOptions CO
= ClassOptions::None
;
1994 // MSVC always sets this flag, even for local types. Clang doesn't always
1995 // appear to give every type a linkage name, which may be problematic for us.
1996 // FIXME: Investigate the consequences of not following them here.
1997 if (!Ty
->getIdentifier().empty())
1998 CO
|= ClassOptions::HasUniqueName
;
2000 // Put the Nested flag on a type if it appears immediately inside a tag type.
2001 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
2002 // here. That flag is only set on definitions, and not forward declarations.
2003 const DIScope
*ImmediateScope
= Ty
->getScope();
2004 if (ImmediateScope
&& isa
<DICompositeType
>(ImmediateScope
))
2005 CO
|= ClassOptions::Nested
;
2007 // Put the Scoped flag on function-local types. MSVC puts this flag for enum
2008 // type only when it has an immediate function scope. Clang never puts enums
2009 // inside DILexicalBlock scopes. Enum types, as generated by clang, are
2010 // always in function, class, or file scopes.
2011 if (Ty
->getTag() == dwarf::DW_TAG_enumeration_type
) {
2012 if (ImmediateScope
&& isa
<DISubprogram
>(ImmediateScope
))
2013 CO
|= ClassOptions::Scoped
;
2015 for (const DIScope
*Scope
= ImmediateScope
; Scope
!= nullptr;
2016 Scope
= Scope
->getScope()) {
2017 if (isa
<DISubprogram
>(Scope
)) {
2018 CO
|= ClassOptions::Scoped
;
2027 void CodeViewDebug::addUDTSrcLine(const DIType
*Ty
, TypeIndex TI
) {
2028 switch (Ty
->getTag()) {
2029 case dwarf::DW_TAG_class_type
:
2030 case dwarf::DW_TAG_structure_type
:
2031 case dwarf::DW_TAG_union_type
:
2032 case dwarf::DW_TAG_enumeration_type
:
2038 if (const auto *File
= Ty
->getFile()) {
2039 StringIdRecord
SIDR(TypeIndex(0x0), getFullFilepath(File
));
2040 TypeIndex SIDI
= TypeTable
.writeLeafType(SIDR
);
2042 UdtSourceLineRecord
USLR(TI
, SIDI
, Ty
->getLine());
2043 TypeTable
.writeLeafType(USLR
);
2047 TypeIndex
CodeViewDebug::lowerTypeEnum(const DICompositeType
*Ty
) {
2048 ClassOptions CO
= getCommonClassOptions(Ty
);
2050 unsigned EnumeratorCount
= 0;
2052 if (Ty
->isForwardDecl()) {
2053 CO
|= ClassOptions::ForwardReference
;
2055 ContinuationRecordBuilder ContinuationBuilder
;
2056 ContinuationBuilder
.begin(ContinuationRecordKind::FieldList
);
2057 for (const DINode
*Element
: Ty
->getElements()) {
2058 // We assume that the frontend provides all members in source declaration
2059 // order, which is what MSVC does.
2060 if (auto *Enumerator
= dyn_cast_or_null
<DIEnumerator
>(Element
)) {
2061 EnumeratorRecord
ER(MemberAccess::Public
,
2062 APSInt::getUnsigned(Enumerator
->getValue()),
2063 Enumerator
->getName());
2064 ContinuationBuilder
.writeMemberType(ER
);
2068 FTI
= TypeTable
.insertRecord(ContinuationBuilder
);
2071 std::string FullName
= getFullyQualifiedName(Ty
);
2073 EnumRecord
ER(EnumeratorCount
, CO
, FTI
, FullName
, Ty
->getIdentifier(),
2074 getTypeIndex(Ty
->getBaseType()));
2075 TypeIndex EnumTI
= TypeTable
.writeLeafType(ER
);
2077 addUDTSrcLine(Ty
, EnumTI
);
2082 //===----------------------------------------------------------------------===//
2084 //===----------------------------------------------------------------------===//
2086 struct llvm::ClassInfo
{
2088 const DIDerivedType
*MemberTypeNode
;
2089 uint64_t BaseOffset
;
2092 using MemberList
= std::vector
<MemberInfo
>;
2094 using MethodsList
= TinyPtrVector
<const DISubprogram
*>;
2095 // MethodName -> MethodsList
2096 using MethodsMap
= MapVector
<MDString
*, MethodsList
>;
2099 std::vector
<const DIDerivedType
*> Inheritance
;
2103 // Direct overloaded methods gathered by name.
2108 std::vector
<const DIType
*> NestedTypes
;
2111 void CodeViewDebug::clear() {
2112 assert(CurFn
== nullptr);
2114 FnDebugInfo
.clear();
2115 FileToFilepathMap
.clear();
2118 TypeIndices
.clear();
2119 CompleteTypeIndices
.clear();
2120 ScopeGlobals
.clear();
2123 void CodeViewDebug::collectMemberInfo(ClassInfo
&Info
,
2124 const DIDerivedType
*DDTy
) {
2125 if (!DDTy
->getName().empty()) {
2126 Info
.Members
.push_back({DDTy
, 0});
2130 // An unnamed member may represent a nested struct or union. Attempt to
2131 // interpret the unnamed member as a DICompositeType possibly wrapped in
2132 // qualifier types. Add all the indirect fields to the current record if that
2133 // succeeds, and drop the member if that fails.
2134 assert((DDTy
->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
2135 uint64_t Offset
= DDTy
->getOffsetInBits();
2136 const DIType
*Ty
= DDTy
->getBaseType();
2137 bool FullyResolved
= false;
2138 while (!FullyResolved
) {
2139 switch (Ty
->getTag()) {
2140 case dwarf::DW_TAG_const_type
:
2141 case dwarf::DW_TAG_volatile_type
:
2142 // FIXME: we should apply the qualifier types to the indirect fields
2143 // rather than dropping them.
2144 Ty
= cast
<DIDerivedType
>(Ty
)->getBaseType();
2147 FullyResolved
= true;
2152 const DICompositeType
*DCTy
= dyn_cast
<DICompositeType
>(Ty
);
2156 ClassInfo NestedInfo
= collectClassInfo(DCTy
);
2157 for (const ClassInfo::MemberInfo
&IndirectField
: NestedInfo
.Members
)
2158 Info
.Members
.push_back(
2159 {IndirectField
.MemberTypeNode
, IndirectField
.BaseOffset
+ Offset
});
2162 ClassInfo
CodeViewDebug::collectClassInfo(const DICompositeType
*Ty
) {
2164 // Add elements to structure type.
2165 DINodeArray Elements
= Ty
->getElements();
2166 for (auto *Element
: Elements
) {
2167 // We assume that the frontend provides all members in source declaration
2168 // order, which is what MSVC does.
2171 if (auto *SP
= dyn_cast
<DISubprogram
>(Element
)) {
2172 Info
.Methods
[SP
->getRawName()].push_back(SP
);
2173 } else if (auto *DDTy
= dyn_cast
<DIDerivedType
>(Element
)) {
2174 if (DDTy
->getTag() == dwarf::DW_TAG_member
) {
2175 collectMemberInfo(Info
, DDTy
);
2176 } else if (DDTy
->getTag() == dwarf::DW_TAG_inheritance
) {
2177 Info
.Inheritance
.push_back(DDTy
);
2178 } else if (DDTy
->getTag() == dwarf::DW_TAG_pointer_type
&&
2179 DDTy
->getName() == "__vtbl_ptr_type") {
2180 Info
.VShapeTI
= getTypeIndex(DDTy
);
2181 } else if (DDTy
->getTag() == dwarf::DW_TAG_typedef
) {
2182 Info
.NestedTypes
.push_back(DDTy
);
2183 } else if (DDTy
->getTag() == dwarf::DW_TAG_friend
) {
2184 // Ignore friend members. It appears that MSVC emitted info about
2185 // friends in the past, but modern versions do not.
2187 } else if (auto *Composite
= dyn_cast
<DICompositeType
>(Element
)) {
2188 Info
.NestedTypes
.push_back(Composite
);
2190 // Skip other unrecognized kinds of elements.
2195 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType
*Ty
) {
2196 // This routine is used by lowerTypeClass and lowerTypeUnion to determine
2197 // if a complete type should be emitted instead of a forward reference.
2198 return Ty
->getName().empty() && Ty
->getIdentifier().empty() &&
2199 !Ty
->isForwardDecl();
2202 TypeIndex
CodeViewDebug::lowerTypeClass(const DICompositeType
*Ty
) {
2203 // Emit the complete type for unnamed structs. C++ classes with methods
2204 // which have a circular reference back to the class type are expected to
2205 // be named by the front-end and should not be "unnamed". C unnamed
2206 // structs should not have circular references.
2207 if (shouldAlwaysEmitCompleteClassType(Ty
)) {
2208 // If this unnamed complete type is already in the process of being defined
2209 // then the description of the type is malformed and cannot be emitted
2210 // into CodeView correctly so report a fatal error.
2211 auto I
= CompleteTypeIndices
.find(Ty
);
2212 if (I
!= CompleteTypeIndices
.end() && I
->second
== TypeIndex())
2213 report_fatal_error("cannot debug circular reference to unnamed type");
2214 return getCompleteTypeIndex(Ty
);
2217 // First, construct the forward decl. Don't look into Ty to compute the
2218 // forward decl options, since it might not be available in all TUs.
2219 TypeRecordKind Kind
= getRecordKind(Ty
);
2221 ClassOptions::ForwardReference
| getCommonClassOptions(Ty
);
2222 std::string FullName
= getFullyQualifiedName(Ty
);
2223 ClassRecord
CR(Kind
, 0, CO
, TypeIndex(), TypeIndex(), TypeIndex(), 0,
2224 FullName
, Ty
->getIdentifier());
2225 TypeIndex FwdDeclTI
= TypeTable
.writeLeafType(CR
);
2226 if (!Ty
->isForwardDecl())
2227 DeferredCompleteTypes
.push_back(Ty
);
2231 TypeIndex
CodeViewDebug::lowerCompleteTypeClass(const DICompositeType
*Ty
) {
2232 // Construct the field list and complete type record.
2233 TypeRecordKind Kind
= getRecordKind(Ty
);
2234 ClassOptions CO
= getCommonClassOptions(Ty
);
2237 unsigned FieldCount
;
2238 bool ContainsNestedClass
;
2239 std::tie(FieldTI
, VShapeTI
, FieldCount
, ContainsNestedClass
) =
2240 lowerRecordFieldList(Ty
);
2242 if (ContainsNestedClass
)
2243 CO
|= ClassOptions::ContainsNestedClass
;
2245 // MSVC appears to set this flag by searching any destructor or method with
2246 // FunctionOptions::Constructor among the emitted members. Clang AST has all
2247 // the members, however special member functions are not yet emitted into
2248 // debug information. For now checking a class's non-triviality seems enough.
2249 // FIXME: not true for a nested unnamed struct.
2250 if (isNonTrivial(Ty
))
2251 CO
|= ClassOptions::HasConstructorOrDestructor
;
2253 std::string FullName
= getFullyQualifiedName(Ty
);
2255 uint64_t SizeInBytes
= Ty
->getSizeInBits() / 8;
2257 ClassRecord
CR(Kind
, FieldCount
, CO
, FieldTI
, TypeIndex(), VShapeTI
,
2258 SizeInBytes
, FullName
, Ty
->getIdentifier());
2259 TypeIndex ClassTI
= TypeTable
.writeLeafType(CR
);
2261 addUDTSrcLine(Ty
, ClassTI
);
2268 TypeIndex
CodeViewDebug::lowerTypeUnion(const DICompositeType
*Ty
) {
2269 // Emit the complete type for unnamed unions.
2270 if (shouldAlwaysEmitCompleteClassType(Ty
))
2271 return getCompleteTypeIndex(Ty
);
2274 ClassOptions::ForwardReference
| getCommonClassOptions(Ty
);
2275 std::string FullName
= getFullyQualifiedName(Ty
);
2276 UnionRecord
UR(0, CO
, TypeIndex(), 0, FullName
, Ty
->getIdentifier());
2277 TypeIndex FwdDeclTI
= TypeTable
.writeLeafType(UR
);
2278 if (!Ty
->isForwardDecl())
2279 DeferredCompleteTypes
.push_back(Ty
);
2283 TypeIndex
CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType
*Ty
) {
2284 ClassOptions CO
= ClassOptions::Sealed
| getCommonClassOptions(Ty
);
2286 unsigned FieldCount
;
2287 bool ContainsNestedClass
;
2288 std::tie(FieldTI
, std::ignore
, FieldCount
, ContainsNestedClass
) =
2289 lowerRecordFieldList(Ty
);
2291 if (ContainsNestedClass
)
2292 CO
|= ClassOptions::ContainsNestedClass
;
2294 uint64_t SizeInBytes
= Ty
->getSizeInBits() / 8;
2295 std::string FullName
= getFullyQualifiedName(Ty
);
2297 UnionRecord
UR(FieldCount
, CO
, FieldTI
, SizeInBytes
, FullName
,
2298 Ty
->getIdentifier());
2299 TypeIndex UnionTI
= TypeTable
.writeLeafType(UR
);
2301 addUDTSrcLine(Ty
, UnionTI
);
2308 std::tuple
<TypeIndex
, TypeIndex
, unsigned, bool>
2309 CodeViewDebug::lowerRecordFieldList(const DICompositeType
*Ty
) {
2310 // Manually count members. MSVC appears to count everything that generates a
2311 // field list record. Each individual overload in a method overload group
2312 // contributes to this count, even though the overload group is a single field
2314 unsigned MemberCount
= 0;
2315 ClassInfo Info
= collectClassInfo(Ty
);
2316 ContinuationRecordBuilder ContinuationBuilder
;
2317 ContinuationBuilder
.begin(ContinuationRecordKind::FieldList
);
2319 // Create base classes.
2320 for (const DIDerivedType
*I
: Info
.Inheritance
) {
2321 if (I
->getFlags() & DINode::FlagVirtual
) {
2323 unsigned VBPtrOffset
= I
->getVBPtrOffset();
2324 // FIXME: Despite the accessor name, the offset is really in bytes.
2325 unsigned VBTableIndex
= I
->getOffsetInBits() / 4;
2326 auto RecordKind
= (I
->getFlags() & DINode::FlagIndirectVirtualBase
) == DINode::FlagIndirectVirtualBase
2327 ? TypeRecordKind::IndirectVirtualBaseClass
2328 : TypeRecordKind::VirtualBaseClass
;
2329 VirtualBaseClassRecord
VBCR(
2330 RecordKind
, translateAccessFlags(Ty
->getTag(), I
->getFlags()),
2331 getTypeIndex(I
->getBaseType()), getVBPTypeIndex(), VBPtrOffset
,
2334 ContinuationBuilder
.writeMemberType(VBCR
);
2337 assert(I
->getOffsetInBits() % 8 == 0 &&
2338 "bases must be on byte boundaries");
2339 BaseClassRecord
BCR(translateAccessFlags(Ty
->getTag(), I
->getFlags()),
2340 getTypeIndex(I
->getBaseType()),
2341 I
->getOffsetInBits() / 8);
2342 ContinuationBuilder
.writeMemberType(BCR
);
2348 for (ClassInfo::MemberInfo
&MemberInfo
: Info
.Members
) {
2349 const DIDerivedType
*Member
= MemberInfo
.MemberTypeNode
;
2350 TypeIndex MemberBaseType
= getTypeIndex(Member
->getBaseType());
2351 StringRef MemberName
= Member
->getName();
2352 MemberAccess Access
=
2353 translateAccessFlags(Ty
->getTag(), Member
->getFlags());
2355 if (Member
->isStaticMember()) {
2356 StaticDataMemberRecord
SDMR(Access
, MemberBaseType
, MemberName
);
2357 ContinuationBuilder
.writeMemberType(SDMR
);
2362 // Virtual function pointer member.
2363 if ((Member
->getFlags() & DINode::FlagArtificial
) &&
2364 Member
->getName().startswith("_vptr$")) {
2365 VFPtrRecord
VFPR(getTypeIndex(Member
->getBaseType()));
2366 ContinuationBuilder
.writeMemberType(VFPR
);
2372 uint64_t MemberOffsetInBits
=
2373 Member
->getOffsetInBits() + MemberInfo
.BaseOffset
;
2374 if (Member
->isBitField()) {
2375 uint64_t StartBitOffset
= MemberOffsetInBits
;
2376 if (const auto *CI
=
2377 dyn_cast_or_null
<ConstantInt
>(Member
->getStorageOffsetInBits())) {
2378 MemberOffsetInBits
= CI
->getZExtValue() + MemberInfo
.BaseOffset
;
2380 StartBitOffset
-= MemberOffsetInBits
;
2381 BitFieldRecord
BFR(MemberBaseType
, Member
->getSizeInBits(),
2383 MemberBaseType
= TypeTable
.writeLeafType(BFR
);
2385 uint64_t MemberOffsetInBytes
= MemberOffsetInBits
/ 8;
2386 DataMemberRecord
DMR(Access
, MemberBaseType
, MemberOffsetInBytes
,
2388 ContinuationBuilder
.writeMemberType(DMR
);
2393 for (auto &MethodItr
: Info
.Methods
) {
2394 StringRef Name
= MethodItr
.first
->getString();
2396 std::vector
<OneMethodRecord
> Methods
;
2397 for (const DISubprogram
*SP
: MethodItr
.second
) {
2398 TypeIndex MethodType
= getMemberFunctionType(SP
, Ty
);
2399 bool Introduced
= SP
->getFlags() & DINode::FlagIntroducedVirtual
;
2401 unsigned VFTableOffset
= -1;
2403 VFTableOffset
= SP
->getVirtualIndex() * getPointerSizeInBytes();
2405 Methods
.push_back(OneMethodRecord(
2406 MethodType
, translateAccessFlags(Ty
->getTag(), SP
->getFlags()),
2407 translateMethodKindFlags(SP
, Introduced
),
2408 translateMethodOptionFlags(SP
), VFTableOffset
, Name
));
2411 assert(!Methods
.empty() && "Empty methods map entry");
2412 if (Methods
.size() == 1)
2413 ContinuationBuilder
.writeMemberType(Methods
[0]);
2415 // FIXME: Make this use its own ContinuationBuilder so that
2416 // MethodOverloadList can be split correctly.
2417 MethodOverloadListRecord
MOLR(Methods
);
2418 TypeIndex MethodList
= TypeTable
.writeLeafType(MOLR
);
2420 OverloadedMethodRecord
OMR(Methods
.size(), MethodList
, Name
);
2421 ContinuationBuilder
.writeMemberType(OMR
);
2425 // Create nested classes.
2426 for (const DIType
*Nested
: Info
.NestedTypes
) {
2427 NestedTypeRecord
R(getTypeIndex(Nested
), Nested
->getName());
2428 ContinuationBuilder
.writeMemberType(R
);
2432 TypeIndex FieldTI
= TypeTable
.insertRecord(ContinuationBuilder
);
2433 return std::make_tuple(FieldTI
, Info
.VShapeTI
, MemberCount
,
2434 !Info
.NestedTypes
.empty());
2437 TypeIndex
CodeViewDebug::getVBPTypeIndex() {
2438 if (!VBPType
.getIndex()) {
2439 // Make a 'const int *' type.
2440 ModifierRecord
MR(TypeIndex::Int32(), ModifierOptions::Const
);
2441 TypeIndex ModifiedTI
= TypeTable
.writeLeafType(MR
);
2443 PointerKind PK
= getPointerSizeInBytes() == 8 ? PointerKind::Near64
2444 : PointerKind::Near32
;
2445 PointerMode PM
= PointerMode::Pointer
;
2446 PointerOptions PO
= PointerOptions::None
;
2447 PointerRecord
PR(ModifiedTI
, PK
, PM
, PO
, getPointerSizeInBytes());
2448 VBPType
= TypeTable
.writeLeafType(PR
);
2454 TypeIndex
CodeViewDebug::getTypeIndex(const DIType
*Ty
, const DIType
*ClassTy
) {
2455 // The null DIType is the void type. Don't try to hash it.
2457 return TypeIndex::Void();
2459 // Check if we've already translated this type. Don't try to do a
2460 // get-or-create style insertion that caches the hash lookup across the
2461 // lowerType call. It will update the TypeIndices map.
2462 auto I
= TypeIndices
.find({Ty
, ClassTy
});
2463 if (I
!= TypeIndices
.end())
2466 TypeLoweringScope
S(*this);
2467 TypeIndex TI
= lowerType(Ty
, ClassTy
);
2468 return recordTypeIndexForDINode(Ty
, TI
, ClassTy
);
2472 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType
*PtrTy
,
2473 const DISubroutineType
*SubroutineTy
) {
2474 assert(PtrTy
->getTag() == dwarf::DW_TAG_pointer_type
&&
2475 "this type must be a pointer type");
2477 PointerOptions Options
= PointerOptions::None
;
2478 if (SubroutineTy
->getFlags() & DINode::DIFlags::FlagLValueReference
)
2479 Options
= PointerOptions::LValueRefThisPointer
;
2480 else if (SubroutineTy
->getFlags() & DINode::DIFlags::FlagRValueReference
)
2481 Options
= PointerOptions::RValueRefThisPointer
;
2483 // Check if we've already translated this type. If there is no ref qualifier
2484 // on the function then we look up this pointer type with no associated class
2485 // so that the TypeIndex for the this pointer can be shared with the type
2486 // index for other pointers to this class type. If there is a ref qualifier
2487 // then we lookup the pointer using the subroutine as the parent type.
2488 auto I
= TypeIndices
.find({PtrTy
, SubroutineTy
});
2489 if (I
!= TypeIndices
.end())
2492 TypeLoweringScope
S(*this);
2493 TypeIndex TI
= lowerTypePointer(PtrTy
, Options
);
2494 return recordTypeIndexForDINode(PtrTy
, TI
, SubroutineTy
);
2497 TypeIndex
CodeViewDebug::getTypeIndexForReferenceTo(const DIType
*Ty
) {
2498 PointerRecord
PR(getTypeIndex(Ty
),
2499 getPointerSizeInBytes() == 8 ? PointerKind::Near64
2500 : PointerKind::Near32
,
2501 PointerMode::LValueReference
, PointerOptions::None
,
2502 Ty
->getSizeInBits() / 8);
2503 return TypeTable
.writeLeafType(PR
);
2506 TypeIndex
CodeViewDebug::getCompleteTypeIndex(const DIType
*Ty
) {
2507 // The null DIType is the void type. Don't try to hash it.
2509 return TypeIndex::Void();
2511 // Look through typedefs when getting the complete type index. Call
2512 // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are
2513 // emitted only once.
2514 if (Ty
->getTag() == dwarf::DW_TAG_typedef
)
2515 (void)getTypeIndex(Ty
);
2516 while (Ty
->getTag() == dwarf::DW_TAG_typedef
)
2517 Ty
= cast
<DIDerivedType
>(Ty
)->getBaseType();
2519 // If this is a non-record type, the complete type index is the same as the
2520 // normal type index. Just call getTypeIndex.
2521 switch (Ty
->getTag()) {
2522 case dwarf::DW_TAG_class_type
:
2523 case dwarf::DW_TAG_structure_type
:
2524 case dwarf::DW_TAG_union_type
:
2527 return getTypeIndex(Ty
);
2530 const auto *CTy
= cast
<DICompositeType
>(Ty
);
2532 TypeLoweringScope
S(*this);
2534 // Make sure the forward declaration is emitted first. It's unclear if this
2535 // is necessary, but MSVC does it, and we should follow suit until we can show
2537 // We only emit a forward declaration for named types.
2538 if (!CTy
->getName().empty() || !CTy
->getIdentifier().empty()) {
2539 TypeIndex FwdDeclTI
= getTypeIndex(CTy
);
2541 // Just use the forward decl if we don't have complete type info. This
2542 // might happen if the frontend is using modules and expects the complete
2543 // definition to be emitted elsewhere.
2544 if (CTy
->isForwardDecl())
2548 // Check if we've already translated the complete record type.
2549 // Insert the type with a null TypeIndex to signify that the type is currently
2551 auto InsertResult
= CompleteTypeIndices
.insert({CTy
, TypeIndex()});
2552 if (!InsertResult
.second
)
2553 return InsertResult
.first
->second
;
2556 switch (CTy
->getTag()) {
2557 case dwarf::DW_TAG_class_type
:
2558 case dwarf::DW_TAG_structure_type
:
2559 TI
= lowerCompleteTypeClass(CTy
);
2561 case dwarf::DW_TAG_union_type
:
2562 TI
= lowerCompleteTypeUnion(CTy
);
2565 llvm_unreachable("not a record");
2568 // Update the type index associated with this CompositeType. This cannot
2569 // use the 'InsertResult' iterator above because it is potentially
2570 // invalidated by map insertions which can occur while lowering the class
2572 CompleteTypeIndices
[CTy
] = TI
;
2576 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2577 /// and do this until fixpoint, as each complete record type typically
2579 /// many other record types.
2580 void CodeViewDebug::emitDeferredCompleteTypes() {
2581 SmallVector
<const DICompositeType
*, 4> TypesToEmit
;
2582 while (!DeferredCompleteTypes
.empty()) {
2583 std::swap(DeferredCompleteTypes
, TypesToEmit
);
2584 for (const DICompositeType
*RecordTy
: TypesToEmit
)
2585 getCompleteTypeIndex(RecordTy
);
2586 TypesToEmit
.clear();
2590 void CodeViewDebug::emitLocalVariableList(const FunctionInfo
&FI
,
2591 ArrayRef
<LocalVariable
> Locals
) {
2592 // Get the sorted list of parameters and emit them first.
2593 SmallVector
<const LocalVariable
*, 6> Params
;
2594 for (const LocalVariable
&L
: Locals
)
2595 if (L
.DIVar
->isParameter())
2596 Params
.push_back(&L
);
2597 llvm::sort(Params
, [](const LocalVariable
*L
, const LocalVariable
*R
) {
2598 return L
->DIVar
->getArg() < R
->DIVar
->getArg();
2600 for (const LocalVariable
*L
: Params
)
2601 emitLocalVariable(FI
, *L
);
2603 // Next emit all non-parameters in the order that we found them.
2604 for (const LocalVariable
&L
: Locals
)
2605 if (!L
.DIVar
->isParameter())
2606 emitLocalVariable(FI
, L
);
2609 void CodeViewDebug::emitLocalVariable(const FunctionInfo
&FI
,
2610 const LocalVariable
&Var
) {
2611 // LocalSym record, see SymbolRecord.h for more info.
2612 MCSymbol
*LocalEnd
= beginSymbolRecord(SymbolKind::S_LOCAL
);
2614 LocalSymFlags Flags
= LocalSymFlags::None
;
2615 if (Var
.DIVar
->isParameter())
2616 Flags
|= LocalSymFlags::IsParameter
;
2617 if (Var
.DefRanges
.empty())
2618 Flags
|= LocalSymFlags::IsOptimizedOut
;
2620 OS
.AddComment("TypeIndex");
2621 TypeIndex TI
= Var
.UseReferenceType
2622 ? getTypeIndexForReferenceTo(Var
.DIVar
->getType())
2623 : getCompleteTypeIndex(Var
.DIVar
->getType());
2624 OS
.EmitIntValue(TI
.getIndex(), 4);
2625 OS
.AddComment("Flags");
2626 OS
.EmitIntValue(static_cast<uint16_t>(Flags
), 2);
2627 // Truncate the name so we won't overflow the record length field.
2628 emitNullTerminatedSymbolName(OS
, Var
.DIVar
->getName());
2629 endSymbolRecord(LocalEnd
);
2631 // Calculate the on disk prefix of the appropriate def range record. The
2632 // records and on disk formats are described in SymbolRecords.h. BytePrefix
2633 // should be big enough to hold all forms without memory allocation.
2634 SmallString
<20> BytePrefix
;
2635 for (const LocalVarDefRange
&DefRange
: Var
.DefRanges
) {
2637 if (DefRange
.InMemory
) {
2638 int Offset
= DefRange
.DataOffset
;
2639 unsigned Reg
= DefRange
.CVRegister
;
2641 // 32-bit x86 call sequences often use PUSH instructions, which disrupt
2642 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0,
2643 // instead. In frames without stack realignment, $T0 will be the CFA.
2644 if (RegisterId(Reg
) == RegisterId::ESP
) {
2645 Reg
= unsigned(RegisterId::VFRAME
);
2646 Offset
+= FI
.OffsetAdjustment
;
2649 // If we can use the chosen frame pointer for the frame and this isn't a
2650 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record.
2651 // Otherwise, use S_DEFRANGE_REGISTER_REL.
2652 EncodedFramePtrReg EncFP
= encodeFramePtrReg(RegisterId(Reg
), TheCPU
);
2653 if (!DefRange
.IsSubfield
&& EncFP
!= EncodedFramePtrReg::None
&&
2654 (bool(Flags
& LocalSymFlags::IsParameter
)
2655 ? (EncFP
== FI
.EncodedParamFramePtrReg
)
2656 : (EncFP
== FI
.EncodedLocalFramePtrReg
))) {
2657 DefRangeFramePointerRelHeader DRHdr
;
2658 DRHdr
.Offset
= Offset
;
2659 OS
.EmitCVDefRangeDirective(DefRange
.Ranges
, DRHdr
);
2661 uint16_t RegRelFlags
= 0;
2662 if (DefRange
.IsSubfield
) {
2663 RegRelFlags
= DefRangeRegisterRelSym::IsSubfieldFlag
|
2664 (DefRange
.StructOffset
2665 << DefRangeRegisterRelSym::OffsetInParentShift
);
2667 DefRangeRegisterRelHeader DRHdr
;
2668 DRHdr
.Register
= Reg
;
2669 DRHdr
.Flags
= RegRelFlags
;
2670 DRHdr
.BasePointerOffset
= Offset
;
2671 OS
.EmitCVDefRangeDirective(DefRange
.Ranges
, DRHdr
);
2674 assert(DefRange
.DataOffset
== 0 && "unexpected offset into register");
2675 if (DefRange
.IsSubfield
) {
2676 DefRangeSubfieldRegisterHeader DRHdr
;
2677 DRHdr
.Register
= DefRange
.CVRegister
;
2678 DRHdr
.MayHaveNoName
= 0;
2679 DRHdr
.OffsetInParent
= DefRange
.StructOffset
;
2680 OS
.EmitCVDefRangeDirective(DefRange
.Ranges
, DRHdr
);
2682 DefRangeRegisterHeader DRHdr
;
2683 DRHdr
.Register
= DefRange
.CVRegister
;
2684 DRHdr
.MayHaveNoName
= 0;
2685 OS
.EmitCVDefRangeDirective(DefRange
.Ranges
, DRHdr
);
2691 void CodeViewDebug::emitLexicalBlockList(ArrayRef
<LexicalBlock
*> Blocks
,
2692 const FunctionInfo
& FI
) {
2693 for (LexicalBlock
*Block
: Blocks
)
2694 emitLexicalBlock(*Block
, FI
);
2697 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a
2698 /// lexical block scope.
2699 void CodeViewDebug::emitLexicalBlock(const LexicalBlock
&Block
,
2700 const FunctionInfo
& FI
) {
2701 MCSymbol
*RecordEnd
= beginSymbolRecord(SymbolKind::S_BLOCK32
);
2702 OS
.AddComment("PtrParent");
2703 OS
.EmitIntValue(0, 4); // PtrParent
2704 OS
.AddComment("PtrEnd");
2705 OS
.EmitIntValue(0, 4); // PtrEnd
2706 OS
.AddComment("Code size");
2707 OS
.emitAbsoluteSymbolDiff(Block
.End
, Block
.Begin
, 4); // Code Size
2708 OS
.AddComment("Function section relative address");
2709 OS
.EmitCOFFSecRel32(Block
.Begin
, /*Offset=*/0); // Func Offset
2710 OS
.AddComment("Function section index");
2711 OS
.EmitCOFFSectionIndex(FI
.Begin
); // Func Symbol
2712 OS
.AddComment("Lexical block name");
2713 emitNullTerminatedSymbolName(OS
, Block
.Name
); // Name
2714 endSymbolRecord(RecordEnd
);
2716 // Emit variables local to this lexical block.
2717 emitLocalVariableList(FI
, Block
.Locals
);
2718 emitGlobalVariableList(Block
.Globals
);
2720 // Emit lexical blocks contained within this block.
2721 emitLexicalBlockList(Block
.Children
, FI
);
2723 // Close the lexical block scope.
2724 emitEndSymbolRecord(SymbolKind::S_END
);
2727 /// Convenience routine for collecting lexical block information for a list
2728 /// of lexical scopes.
2729 void CodeViewDebug::collectLexicalBlockInfo(
2730 SmallVectorImpl
<LexicalScope
*> &Scopes
,
2731 SmallVectorImpl
<LexicalBlock
*> &Blocks
,
2732 SmallVectorImpl
<LocalVariable
> &Locals
,
2733 SmallVectorImpl
<CVGlobalVariable
> &Globals
) {
2734 for (LexicalScope
*Scope
: Scopes
)
2735 collectLexicalBlockInfo(*Scope
, Blocks
, Locals
, Globals
);
2738 /// Populate the lexical blocks and local variable lists of the parent with
2739 /// information about the specified lexical scope.
2740 void CodeViewDebug::collectLexicalBlockInfo(
2741 LexicalScope
&Scope
,
2742 SmallVectorImpl
<LexicalBlock
*> &ParentBlocks
,
2743 SmallVectorImpl
<LocalVariable
> &ParentLocals
,
2744 SmallVectorImpl
<CVGlobalVariable
> &ParentGlobals
) {
2745 if (Scope
.isAbstractScope())
2748 // Gather information about the lexical scope including local variables,
2749 // global variables, and address ranges.
2750 bool IgnoreScope
= false;
2751 auto LI
= ScopeVariables
.find(&Scope
);
2752 SmallVectorImpl
<LocalVariable
> *Locals
=
2753 LI
!= ScopeVariables
.end() ? &LI
->second
: nullptr;
2754 auto GI
= ScopeGlobals
.find(Scope
.getScopeNode());
2755 SmallVectorImpl
<CVGlobalVariable
> *Globals
=
2756 GI
!= ScopeGlobals
.end() ? GI
->second
.get() : nullptr;
2757 const DILexicalBlock
*DILB
= dyn_cast
<DILexicalBlock
>(Scope
.getScopeNode());
2758 const SmallVectorImpl
<InsnRange
> &Ranges
= Scope
.getRanges();
2760 // Ignore lexical scopes which do not contain variables.
2761 if (!Locals
&& !Globals
)
2764 // Ignore lexical scopes which are not lexical blocks.
2768 // Ignore scopes which have too many address ranges to represent in the
2769 // current CodeView format or do not have a valid address range.
2771 // For lexical scopes with multiple address ranges you may be tempted to
2772 // construct a single range covering every instruction where the block is
2773 // live and everything in between. Unfortunately, Visual Studio only
2774 // displays variables from the first matching lexical block scope. If the
2775 // first lexical block contains exception handling code or cold code which
2776 // is moved to the bottom of the routine creating a single range covering
2777 // nearly the entire routine, then it will hide all other lexical blocks
2778 // and the variables they contain.
2779 if (Ranges
.size() != 1 || !getLabelAfterInsn(Ranges
.front().second
))
2783 // This scope can be safely ignored and eliminating it will reduce the
2784 // size of the debug information. Be sure to collect any variable and scope
2785 // information from the this scope or any of its children and collapse them
2786 // into the parent scope.
2788 ParentLocals
.append(Locals
->begin(), Locals
->end());
2790 ParentGlobals
.append(Globals
->begin(), Globals
->end());
2791 collectLexicalBlockInfo(Scope
.getChildren(),
2798 // Create a new CodeView lexical block for this lexical scope. If we've
2799 // seen this DILexicalBlock before then the scope tree is malformed and
2800 // we can handle this gracefully by not processing it a second time.
2801 auto BlockInsertion
= CurFn
->LexicalBlocks
.insert({DILB
, LexicalBlock()});
2802 if (!BlockInsertion
.second
)
2805 // Create a lexical block containing the variables and collect the the
2806 // lexical block information for the children.
2807 const InsnRange
&Range
= Ranges
.front();
2808 assert(Range
.first
&& Range
.second
);
2809 LexicalBlock
&Block
= BlockInsertion
.first
->second
;
2810 Block
.Begin
= getLabelBeforeInsn(Range
.first
);
2811 Block
.End
= getLabelAfterInsn(Range
.second
);
2812 assert(Block
.Begin
&& "missing label for scope begin");
2813 assert(Block
.End
&& "missing label for scope end");
2814 Block
.Name
= DILB
->getName();
2816 Block
.Locals
= std::move(*Locals
);
2818 Block
.Globals
= std::move(*Globals
);
2819 ParentBlocks
.push_back(&Block
);
2820 collectLexicalBlockInfo(Scope
.getChildren(),
2826 void CodeViewDebug::endFunctionImpl(const MachineFunction
*MF
) {
2827 const Function
&GV
= MF
->getFunction();
2828 assert(FnDebugInfo
.count(&GV
));
2829 assert(CurFn
== FnDebugInfo
[&GV
].get());
2831 collectVariableInfo(GV
.getSubprogram());
2833 // Build the lexical block structure to emit for this routine.
2834 if (LexicalScope
*CFS
= LScopes
.getCurrentFunctionScope())
2835 collectLexicalBlockInfo(*CFS
,
2840 // Clear the scope and variable information from the map which will not be
2841 // valid after we have finished processing this routine. This also prepares
2842 // the map for the subsequent routine.
2843 ScopeVariables
.clear();
2845 // Don't emit anything if we don't have any line tables.
2846 // Thunks are compiler-generated and probably won't have source correlation.
2847 if (!CurFn
->HaveLineInfo
&& !GV
.getSubprogram()->isThunk()) {
2848 FnDebugInfo
.erase(&GV
);
2853 CurFn
->Annotations
= MF
->getCodeViewAnnotations();
2854 CurFn
->HeapAllocSites
= MF
->getCodeViewHeapAllocSites();
2856 CurFn
->End
= Asm
->getFunctionEnd();
2861 // Usable locations are valid with non-zero line numbers. A line number of zero
2862 // corresponds to optimized code that doesn't have a distinct source location.
2863 // In this case, we try to use the previous or next source location depending on
2865 static bool isUsableDebugLoc(DebugLoc DL
) {
2866 return DL
&& DL
.getLine() != 0;
2869 void CodeViewDebug::beginInstruction(const MachineInstr
*MI
) {
2870 DebugHandlerBase::beginInstruction(MI
);
2872 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue.
2873 if (!Asm
|| !CurFn
|| MI
->isDebugInstr() ||
2874 MI
->getFlag(MachineInstr::FrameSetup
))
2877 // If the first instruction of a new MBB has no location, find the first
2878 // instruction with a location and use that.
2879 DebugLoc DL
= MI
->getDebugLoc();
2880 if (!isUsableDebugLoc(DL
) && MI
->getParent() != PrevInstBB
) {
2881 for (const auto &NextMI
: *MI
->getParent()) {
2882 if (NextMI
.isDebugInstr())
2884 DL
= NextMI
.getDebugLoc();
2885 if (isUsableDebugLoc(DL
))
2888 // FIXME: Handle the case where the BB has no valid locations. This would
2889 // probably require doing a real dataflow analysis.
2891 PrevInstBB
= MI
->getParent();
2893 // If we still don't have a debug location, don't record a location.
2894 if (!isUsableDebugLoc(DL
))
2897 maybeRecordLocation(DL
, Asm
->MF
);
2900 MCSymbol
*CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind
) {
2901 MCSymbol
*BeginLabel
= MMI
->getContext().createTempSymbol(),
2902 *EndLabel
= MMI
->getContext().createTempSymbol();
2903 OS
.EmitIntValue(unsigned(Kind
), 4);
2904 OS
.AddComment("Subsection size");
2905 OS
.emitAbsoluteSymbolDiff(EndLabel
, BeginLabel
, 4);
2906 OS
.EmitLabel(BeginLabel
);
2910 void CodeViewDebug::endCVSubsection(MCSymbol
*EndLabel
) {
2911 OS
.EmitLabel(EndLabel
);
2912 // Every subsection must be aligned to a 4-byte boundary.
2913 OS
.EmitValueToAlignment(4);
2916 static StringRef
getSymbolName(SymbolKind SymKind
) {
2917 for (const EnumEntry
<SymbolKind
> &EE
: getSymbolTypeNames())
2918 if (EE
.Value
== SymKind
)
2923 MCSymbol
*CodeViewDebug::beginSymbolRecord(SymbolKind SymKind
) {
2924 MCSymbol
*BeginLabel
= MMI
->getContext().createTempSymbol(),
2925 *EndLabel
= MMI
->getContext().createTempSymbol();
2926 OS
.AddComment("Record length");
2927 OS
.emitAbsoluteSymbolDiff(EndLabel
, BeginLabel
, 2);
2928 OS
.EmitLabel(BeginLabel
);
2929 if (OS
.isVerboseAsm())
2930 OS
.AddComment("Record kind: " + getSymbolName(SymKind
));
2931 OS
.EmitIntValue(unsigned(SymKind
), 2);
2935 void CodeViewDebug::endSymbolRecord(MCSymbol
*SymEnd
) {
2936 // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid
2937 // an extra copy of every symbol record in LLD. This increases object file
2938 // size by less than 1% in the clang build, and is compatible with the Visual
2940 OS
.EmitValueToAlignment(4);
2941 OS
.EmitLabel(SymEnd
);
2944 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind
) {
2945 OS
.AddComment("Record length");
2946 OS
.EmitIntValue(2, 2);
2947 if (OS
.isVerboseAsm())
2948 OS
.AddComment("Record kind: " + getSymbolName(EndKind
));
2949 OS
.EmitIntValue(unsigned(EndKind
), 2); // Record Kind
2952 void CodeViewDebug::emitDebugInfoForUDTs(
2953 ArrayRef
<std::pair
<std::string
, const DIType
*>> UDTs
) {
2954 for (const auto &UDT
: UDTs
) {
2955 const DIType
*T
= UDT
.second
;
2956 assert(shouldEmitUdt(T
));
2958 MCSymbol
*UDTRecordEnd
= beginSymbolRecord(SymbolKind::S_UDT
);
2959 OS
.AddComment("Type");
2960 OS
.EmitIntValue(getCompleteTypeIndex(T
).getIndex(), 4);
2961 emitNullTerminatedSymbolName(OS
, UDT
.first
);
2962 endSymbolRecord(UDTRecordEnd
);
2966 void CodeViewDebug::collectGlobalVariableInfo() {
2967 DenseMap
<const DIGlobalVariableExpression
*, const GlobalVariable
*>
2969 for (const GlobalVariable
&GV
: MMI
->getModule()->globals()) {
2970 SmallVector
<DIGlobalVariableExpression
*, 1> GVEs
;
2971 GV
.getDebugInfo(GVEs
);
2972 for (const auto *GVE
: GVEs
)
2973 GlobalMap
[GVE
] = &GV
;
2976 NamedMDNode
*CUs
= MMI
->getModule()->getNamedMetadata("llvm.dbg.cu");
2977 for (const MDNode
*Node
: CUs
->operands()) {
2978 const auto *CU
= cast
<DICompileUnit
>(Node
);
2979 for (const auto *GVE
: CU
->getGlobalVariables()) {
2980 const DIGlobalVariable
*DIGV
= GVE
->getVariable();
2981 const DIExpression
*DIE
= GVE
->getExpression();
2983 // Emit constant global variables in a global symbol section.
2984 if (GlobalMap
.count(GVE
) == 0 && DIE
->isConstant()) {
2985 CVGlobalVariable CVGV
= {DIGV
, DIE
};
2986 GlobalVariables
.emplace_back(std::move(CVGV
));
2989 const auto *GV
= GlobalMap
.lookup(GVE
);
2990 if (!GV
|| GV
->isDeclarationForLinker())
2993 DIScope
*Scope
= DIGV
->getScope();
2994 SmallVector
<CVGlobalVariable
, 1> *VariableList
;
2995 if (Scope
&& isa
<DILocalScope
>(Scope
)) {
2996 // Locate a global variable list for this scope, creating one if
2998 auto Insertion
= ScopeGlobals
.insert(
2999 {Scope
, std::unique_ptr
<GlobalVariableList
>()});
3000 if (Insertion
.second
)
3001 Insertion
.first
->second
= std::make_unique
<GlobalVariableList
>();
3002 VariableList
= Insertion
.first
->second
.get();
3003 } else if (GV
->hasComdat())
3004 // Emit this global variable into a COMDAT section.
3005 VariableList
= &ComdatVariables
;
3007 // Emit this global variable in a single global symbol section.
3008 VariableList
= &GlobalVariables
;
3009 CVGlobalVariable CVGV
= {DIGV
, GV
};
3010 VariableList
->emplace_back(std::move(CVGV
));
3015 void CodeViewDebug::emitDebugInfoForGlobals() {
3016 // First, emit all globals that are not in a comdat in a single symbol
3017 // substream. MSVC doesn't like it if the substream is empty, so only open
3018 // it if we have at least one global to emit.
3019 switchToDebugSectionForSymbol(nullptr);
3020 if (!GlobalVariables
.empty()) {
3021 OS
.AddComment("Symbol subsection for globals");
3022 MCSymbol
*EndLabel
= beginCVSubsection(DebugSubsectionKind::Symbols
);
3023 emitGlobalVariableList(GlobalVariables
);
3024 endCVSubsection(EndLabel
);
3027 // Second, emit each global that is in a comdat into its own .debug$S
3028 // section along with its own symbol substream.
3029 for (const CVGlobalVariable
&CVGV
: ComdatVariables
) {
3030 const GlobalVariable
*GV
= CVGV
.GVInfo
.get
<const GlobalVariable
*>();
3031 MCSymbol
*GVSym
= Asm
->getSymbol(GV
);
3032 OS
.AddComment("Symbol subsection for " +
3033 Twine(GlobalValue::dropLLVMManglingEscape(GV
->getName())));
3034 switchToDebugSectionForSymbol(GVSym
);
3035 MCSymbol
*EndLabel
= beginCVSubsection(DebugSubsectionKind::Symbols
);
3036 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3037 emitDebugInfoForGlobal(CVGV
);
3038 endCVSubsection(EndLabel
);
3042 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
3043 NamedMDNode
*CUs
= MMI
->getModule()->getNamedMetadata("llvm.dbg.cu");
3044 for (const MDNode
*Node
: CUs
->operands()) {
3045 for (auto *Ty
: cast
<DICompileUnit
>(Node
)->getRetainedTypes()) {
3046 if (DIType
*RT
= dyn_cast
<DIType
>(Ty
)) {
3048 // FIXME: Add to global/local DTU list.
3054 // Emit each global variable in the specified array.
3055 void CodeViewDebug::emitGlobalVariableList(ArrayRef
<CVGlobalVariable
> Globals
) {
3056 for (const CVGlobalVariable
&CVGV
: Globals
) {
3057 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3058 emitDebugInfoForGlobal(CVGV
);
3062 void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable
&CVGV
) {
3063 const DIGlobalVariable
*DIGV
= CVGV
.DIGV
;
3064 if (const GlobalVariable
*GV
=
3065 CVGV
.GVInfo
.dyn_cast
<const GlobalVariable
*>()) {
3066 // DataSym record, see SymbolRecord.h for more info. Thread local data
3067 // happens to have the same format as global data.
3068 MCSymbol
*GVSym
= Asm
->getSymbol(GV
);
3069 SymbolKind DataSym
= GV
->isThreadLocal()
3070 ? (DIGV
->isLocalToUnit() ? SymbolKind::S_LTHREAD32
3071 : SymbolKind::S_GTHREAD32
)
3072 : (DIGV
->isLocalToUnit() ? SymbolKind::S_LDATA32
3073 : SymbolKind::S_GDATA32
);
3074 MCSymbol
*DataEnd
= beginSymbolRecord(DataSym
);
3075 OS
.AddComment("Type");
3076 OS
.EmitIntValue(getCompleteTypeIndex(DIGV
->getType()).getIndex(), 4);
3077 OS
.AddComment("DataOffset");
3078 OS
.EmitCOFFSecRel32(GVSym
, /*Offset=*/0);
3079 OS
.AddComment("Segment");
3080 OS
.EmitCOFFSectionIndex(GVSym
);
3081 OS
.AddComment("Name");
3082 const unsigned LengthOfDataRecord
= 12;
3083 emitNullTerminatedSymbolName(OS
, DIGV
->getName(), LengthOfDataRecord
);
3084 endSymbolRecord(DataEnd
);
3086 // FIXME: Currently this only emits the global variables in the IR metadata.
3087 // This should also emit enums and static data members.
3088 const DIExpression
*DIE
= CVGV
.GVInfo
.get
<const DIExpression
*>();
3089 assert(DIE
->isConstant() &&
3090 "Global constant variables must contain a constant expression.");
3091 uint64_t Val
= DIE
->getElement(1);
3093 MCSymbol
*SConstantEnd
= beginSymbolRecord(SymbolKind::S_CONSTANT
);
3094 OS
.AddComment("Type");
3095 OS
.EmitIntValue(getTypeIndex(DIGV
->getType()).getIndex(), 4);
3096 OS
.AddComment("Value");
3098 // Encoded integers shouldn't need more than 10 bytes.
3100 BinaryStreamWriter
Writer(data
, llvm::support::endianness::little
);
3101 CodeViewRecordIO
IO(Writer
);
3102 cantFail(IO
.mapEncodedInteger(Val
));
3103 StringRef
SRef((char *)data
, Writer
.getOffset());
3104 OS
.EmitBinaryData(SRef
);
3106 OS
.AddComment("Name");
3107 const DIScope
*Scope
= DIGV
->getScope();
3108 // For static data members, get the scope from the declaration.
3109 if (const auto *MemberDecl
= dyn_cast_or_null
<DIDerivedType
>(
3110 DIGV
->getRawStaticDataMemberDeclaration()))
3111 Scope
= MemberDecl
->getScope();
3112 emitNullTerminatedSymbolName(OS
,
3113 getFullyQualifiedName(Scope
, DIGV
->getName()));
3114 endSymbolRecord(SConstantEnd
);