[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / CodeGen / SelectionDAG / DAGCombiner.cpp
blobe8950b58d42df1d08308b8f0b639d37c5bdb32b6
1 //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
10 // both before and after the DAG is legalized.
12 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is
13 // primarily intended to handle simplification opportunities that are implicit
14 // in the LLVM IR and exposed by the various codegen lowering phases.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/IntervalMap.h"
23 #include "llvm/ADT/None.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/CodeGen/DAGCombine.h"
34 #include "llvm/CodeGen/ISDOpcodes.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAG.h"
40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
41 #include "llvm/CodeGen/SelectionDAGNodes.h"
42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Attributes.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/KnownBits.h"
61 #include "llvm/Support/MachineValueType.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Target/TargetOptions.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <functional>
70 #include <iterator>
71 #include <string>
72 #include <tuple>
73 #include <utility>
75 using namespace llvm;
77 #define DEBUG_TYPE "dagcombine"
79 STATISTIC(NodesCombined , "Number of dag nodes combined");
80 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
81 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
82 STATISTIC(OpsNarrowed , "Number of load/op/store narrowed");
83 STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int");
84 STATISTIC(SlicedLoads, "Number of load sliced");
85 STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops");
87 static cl::opt<bool>
88 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
89 cl::desc("Enable DAG combiner's use of IR alias analysis"));
91 static cl::opt<bool>
92 UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true),
93 cl::desc("Enable DAG combiner's use of TBAA"));
95 #ifndef NDEBUG
96 static cl::opt<std::string>
97 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden,
98 cl::desc("Only use DAG-combiner alias analysis in this"
99 " function"));
100 #endif
102 /// Hidden option to stress test load slicing, i.e., when this option
103 /// is enabled, load slicing bypasses most of its profitability guards.
104 static cl::opt<bool>
105 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
106 cl::desc("Bypass the profitability model of load slicing"),
107 cl::init(false));
109 static cl::opt<bool>
110 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true),
111 cl::desc("DAG combiner may split indexing from loads"));
113 static cl::opt<bool>
114 EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true),
115 cl::desc("DAG combiner enable merging multiple stores "
116 "into a wider store"));
118 static cl::opt<unsigned> TokenFactorInlineLimit(
119 "combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048),
120 cl::desc("Limit the number of operands to inline for Token Factors"));
122 static cl::opt<unsigned> StoreMergeDependenceLimit(
123 "combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10),
124 cl::desc("Limit the number of times for the same StoreNode and RootNode "
125 "to bail out in store merging dependence check"));
127 namespace {
129 class DAGCombiner {
130 SelectionDAG &DAG;
131 const TargetLowering &TLI;
132 CombineLevel Level;
133 CodeGenOpt::Level OptLevel;
134 bool LegalOperations = false;
135 bool LegalTypes = false;
136 bool ForCodeSize;
138 /// Worklist of all of the nodes that need to be simplified.
140 /// This must behave as a stack -- new nodes to process are pushed onto the
141 /// back and when processing we pop off of the back.
143 /// The worklist will not contain duplicates but may contain null entries
144 /// due to nodes being deleted from the underlying DAG.
145 SmallVector<SDNode *, 64> Worklist;
147 /// Mapping from an SDNode to its position on the worklist.
149 /// This is used to find and remove nodes from the worklist (by nulling
150 /// them) when they are deleted from the underlying DAG. It relies on
151 /// stable indices of nodes within the worklist.
152 DenseMap<SDNode *, unsigned> WorklistMap;
153 /// This records all nodes attempted to add to the worklist since we
154 /// considered a new worklist entry. As we keep do not add duplicate nodes
155 /// in the worklist, this is different from the tail of the worklist.
156 SmallSetVector<SDNode *, 32> PruningList;
158 /// Set of nodes which have been combined (at least once).
160 /// This is used to allow us to reliably add any operands of a DAG node
161 /// which have not yet been combined to the worklist.
162 SmallPtrSet<SDNode *, 32> CombinedNodes;
164 /// Map from candidate StoreNode to the pair of RootNode and count.
165 /// The count is used to track how many times we have seen the StoreNode
166 /// with the same RootNode bail out in dependence check. If we have seen
167 /// the bail out for the same pair many times over a limit, we won't
168 /// consider the StoreNode with the same RootNode as store merging
169 /// candidate again.
170 DenseMap<SDNode *, std::pair<SDNode *, unsigned>> StoreRootCountMap;
172 // AA - Used for DAG load/store alias analysis.
173 AliasAnalysis *AA;
175 /// When an instruction is simplified, add all users of the instruction to
176 /// the work lists because they might get more simplified now.
177 void AddUsersToWorklist(SDNode *N) {
178 for (SDNode *Node : N->uses())
179 AddToWorklist(Node);
182 // Prune potentially dangling nodes. This is called after
183 // any visit to a node, but should also be called during a visit after any
184 // failed combine which may have created a DAG node.
185 void clearAddedDanglingWorklistEntries() {
186 // Check any nodes added to the worklist to see if they are prunable.
187 while (!PruningList.empty()) {
188 auto *N = PruningList.pop_back_val();
189 if (N->use_empty())
190 recursivelyDeleteUnusedNodes(N);
194 SDNode *getNextWorklistEntry() {
195 // Before we do any work, remove nodes that are not in use.
196 clearAddedDanglingWorklistEntries();
197 SDNode *N = nullptr;
198 // The Worklist holds the SDNodes in order, but it may contain null
199 // entries.
200 while (!N && !Worklist.empty()) {
201 N = Worklist.pop_back_val();
204 if (N) {
205 bool GoodWorklistEntry = WorklistMap.erase(N);
206 (void)GoodWorklistEntry;
207 assert(GoodWorklistEntry &&
208 "Found a worklist entry without a corresponding map entry!");
210 return N;
213 /// Call the node-specific routine that folds each particular type of node.
214 SDValue visit(SDNode *N);
216 public:
217 DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL)
218 : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
219 OptLevel(OL), AA(AA) {
220 ForCodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
222 MaximumLegalStoreInBits = 0;
223 for (MVT VT : MVT::all_valuetypes())
224 if (EVT(VT).isSimple() && VT != MVT::Other &&
225 TLI.isTypeLegal(EVT(VT)) &&
226 VT.getSizeInBits() >= MaximumLegalStoreInBits)
227 MaximumLegalStoreInBits = VT.getSizeInBits();
230 void ConsiderForPruning(SDNode *N) {
231 // Mark this for potential pruning.
232 PruningList.insert(N);
235 /// Add to the worklist making sure its instance is at the back (next to be
236 /// processed.)
237 void AddToWorklist(SDNode *N) {
238 assert(N->getOpcode() != ISD::DELETED_NODE &&
239 "Deleted Node added to Worklist");
241 // Skip handle nodes as they can't usefully be combined and confuse the
242 // zero-use deletion strategy.
243 if (N->getOpcode() == ISD::HANDLENODE)
244 return;
246 ConsiderForPruning(N);
248 if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second)
249 Worklist.push_back(N);
252 /// Remove all instances of N from the worklist.
253 void removeFromWorklist(SDNode *N) {
254 CombinedNodes.erase(N);
255 PruningList.remove(N);
256 StoreRootCountMap.erase(N);
258 auto It = WorklistMap.find(N);
259 if (It == WorklistMap.end())
260 return; // Not in the worklist.
262 // Null out the entry rather than erasing it to avoid a linear operation.
263 Worklist[It->second] = nullptr;
264 WorklistMap.erase(It);
267 void deleteAndRecombine(SDNode *N);
268 bool recursivelyDeleteUnusedNodes(SDNode *N);
270 /// Replaces all uses of the results of one DAG node with new values.
271 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
272 bool AddTo = true);
274 /// Replaces all uses of the results of one DAG node with new values.
275 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
276 return CombineTo(N, &Res, 1, AddTo);
279 /// Replaces all uses of the results of one DAG node with new values.
280 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
281 bool AddTo = true) {
282 SDValue To[] = { Res0, Res1 };
283 return CombineTo(N, To, 2, AddTo);
286 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
288 private:
289 unsigned MaximumLegalStoreInBits;
291 /// Check the specified integer node value to see if it can be simplified or
292 /// if things it uses can be simplified by bit propagation.
293 /// If so, return true.
294 bool SimplifyDemandedBits(SDValue Op) {
295 unsigned BitWidth = Op.getScalarValueSizeInBits();
296 APInt DemandedBits = APInt::getAllOnesValue(BitWidth);
297 return SimplifyDemandedBits(Op, DemandedBits);
300 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) {
301 EVT VT = Op.getValueType();
302 unsigned NumElts = VT.isVector() ? VT.getVectorNumElements() : 1;
303 APInt DemandedElts = APInt::getAllOnesValue(NumElts);
304 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts);
307 /// Check the specified vector node value to see if it can be simplified or
308 /// if things it uses can be simplified as it only uses some of the
309 /// elements. If so, return true.
310 bool SimplifyDemandedVectorElts(SDValue Op) {
311 unsigned NumElts = Op.getValueType().getVectorNumElements();
312 APInt DemandedElts = APInt::getAllOnesValue(NumElts);
313 return SimplifyDemandedVectorElts(Op, DemandedElts);
316 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
317 const APInt &DemandedElts);
318 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
319 bool AssumeSingleUse = false);
321 bool CombineToPreIndexedLoadStore(SDNode *N);
322 bool CombineToPostIndexedLoadStore(SDNode *N);
323 SDValue SplitIndexingFromLoad(LoadSDNode *LD);
324 bool SliceUpLoad(SDNode *N);
326 // Scalars have size 0 to distinguish from singleton vectors.
327 SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD);
328 bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val);
329 bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val);
331 /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed
332 /// load.
334 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced.
335 /// \param InVecVT type of the input vector to EVE with bitcasts resolved.
336 /// \param EltNo index of the vector element to load.
337 /// \param OriginalLoad load that EVE came from to be replaced.
338 /// \returns EVE on success SDValue() on failure.
339 SDValue scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT,
340 SDValue EltNo,
341 LoadSDNode *OriginalLoad);
342 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
343 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
344 SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
345 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
346 SDValue PromoteIntBinOp(SDValue Op);
347 SDValue PromoteIntShiftOp(SDValue Op);
348 SDValue PromoteExtend(SDValue Op);
349 bool PromoteLoad(SDValue Op);
351 /// Call the node-specific routine that knows how to fold each
352 /// particular type of node. If that doesn't do anything, try the
353 /// target-specific DAG combines.
354 SDValue combine(SDNode *N);
356 // Visitation implementation - Implement dag node combining for different
357 // node types. The semantics are as follows:
358 // Return Value:
359 // SDValue.getNode() == 0 - No change was made
360 // SDValue.getNode() == N - N was replaced, is dead and has been handled.
361 // otherwise - N should be replaced by the returned Operand.
363 SDValue visitTokenFactor(SDNode *N);
364 SDValue visitMERGE_VALUES(SDNode *N);
365 SDValue visitADD(SDNode *N);
366 SDValue visitADDLike(SDNode *N);
367 SDValue visitADDLikeCommutative(SDValue N0, SDValue N1, SDNode *LocReference);
368 SDValue visitSUB(SDNode *N);
369 SDValue visitADDSAT(SDNode *N);
370 SDValue visitSUBSAT(SDNode *N);
371 SDValue visitADDC(SDNode *N);
372 SDValue visitADDO(SDNode *N);
373 SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N);
374 SDValue visitSUBC(SDNode *N);
375 SDValue visitSUBO(SDNode *N);
376 SDValue visitADDE(SDNode *N);
377 SDValue visitADDCARRY(SDNode *N);
378 SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N);
379 SDValue visitSUBE(SDNode *N);
380 SDValue visitSUBCARRY(SDNode *N);
381 SDValue visitMUL(SDNode *N);
382 SDValue visitMULFIX(SDNode *N);
383 SDValue useDivRem(SDNode *N);
384 SDValue visitSDIV(SDNode *N);
385 SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N);
386 SDValue visitUDIV(SDNode *N);
387 SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N);
388 SDValue visitREM(SDNode *N);
389 SDValue visitMULHU(SDNode *N);
390 SDValue visitMULHS(SDNode *N);
391 SDValue visitSMUL_LOHI(SDNode *N);
392 SDValue visitUMUL_LOHI(SDNode *N);
393 SDValue visitMULO(SDNode *N);
394 SDValue visitIMINMAX(SDNode *N);
395 SDValue visitAND(SDNode *N);
396 SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N);
397 SDValue visitOR(SDNode *N);
398 SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N);
399 SDValue visitXOR(SDNode *N);
400 SDValue SimplifyVBinOp(SDNode *N);
401 SDValue visitSHL(SDNode *N);
402 SDValue visitSRA(SDNode *N);
403 SDValue visitSRL(SDNode *N);
404 SDValue visitFunnelShift(SDNode *N);
405 SDValue visitRotate(SDNode *N);
406 SDValue visitABS(SDNode *N);
407 SDValue visitBSWAP(SDNode *N);
408 SDValue visitBITREVERSE(SDNode *N);
409 SDValue visitCTLZ(SDNode *N);
410 SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
411 SDValue visitCTTZ(SDNode *N);
412 SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
413 SDValue visitCTPOP(SDNode *N);
414 SDValue visitSELECT(SDNode *N);
415 SDValue visitVSELECT(SDNode *N);
416 SDValue visitSELECT_CC(SDNode *N);
417 SDValue visitSETCC(SDNode *N);
418 SDValue visitSETCCCARRY(SDNode *N);
419 SDValue visitSIGN_EXTEND(SDNode *N);
420 SDValue visitZERO_EXTEND(SDNode *N);
421 SDValue visitANY_EXTEND(SDNode *N);
422 SDValue visitAssertExt(SDNode *N);
423 SDValue visitSIGN_EXTEND_INREG(SDNode *N);
424 SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N);
425 SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N);
426 SDValue visitTRUNCATE(SDNode *N);
427 SDValue visitBITCAST(SDNode *N);
428 SDValue visitBUILD_PAIR(SDNode *N);
429 SDValue visitFADD(SDNode *N);
430 SDValue visitFSUB(SDNode *N);
431 SDValue visitFMUL(SDNode *N);
432 SDValue visitFMA(SDNode *N);
433 SDValue visitFDIV(SDNode *N);
434 SDValue visitFREM(SDNode *N);
435 SDValue visitFSQRT(SDNode *N);
436 SDValue visitFCOPYSIGN(SDNode *N);
437 SDValue visitFPOW(SDNode *N);
438 SDValue visitSINT_TO_FP(SDNode *N);
439 SDValue visitUINT_TO_FP(SDNode *N);
440 SDValue visitFP_TO_SINT(SDNode *N);
441 SDValue visitFP_TO_UINT(SDNode *N);
442 SDValue visitFP_ROUND(SDNode *N);
443 SDValue visitFP_EXTEND(SDNode *N);
444 SDValue visitFNEG(SDNode *N);
445 SDValue visitFABS(SDNode *N);
446 SDValue visitFCEIL(SDNode *N);
447 SDValue visitFTRUNC(SDNode *N);
448 SDValue visitFFLOOR(SDNode *N);
449 SDValue visitFMINNUM(SDNode *N);
450 SDValue visitFMAXNUM(SDNode *N);
451 SDValue visitFMINIMUM(SDNode *N);
452 SDValue visitFMAXIMUM(SDNode *N);
453 SDValue visitBRCOND(SDNode *N);
454 SDValue visitBR_CC(SDNode *N);
455 SDValue visitLOAD(SDNode *N);
457 SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain);
458 SDValue replaceStoreOfFPConstant(StoreSDNode *ST);
460 SDValue visitSTORE(SDNode *N);
461 SDValue visitLIFETIME_END(SDNode *N);
462 SDValue visitINSERT_VECTOR_ELT(SDNode *N);
463 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
464 SDValue visitBUILD_VECTOR(SDNode *N);
465 SDValue visitCONCAT_VECTORS(SDNode *N);
466 SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
467 SDValue visitVECTOR_SHUFFLE(SDNode *N);
468 SDValue visitSCALAR_TO_VECTOR(SDNode *N);
469 SDValue visitINSERT_SUBVECTOR(SDNode *N);
470 SDValue visitMLOAD(SDNode *N);
471 SDValue visitMSTORE(SDNode *N);
472 SDValue visitMGATHER(SDNode *N);
473 SDValue visitMSCATTER(SDNode *N);
474 SDValue visitFP_TO_FP16(SDNode *N);
475 SDValue visitFP16_TO_FP(SDNode *N);
476 SDValue visitVECREDUCE(SDNode *N);
478 SDValue visitFADDForFMACombine(SDNode *N);
479 SDValue visitFSUBForFMACombine(SDNode *N);
480 SDValue visitFMULForFMADistributiveCombine(SDNode *N);
482 SDValue XformToShuffleWithZero(SDNode *N);
483 bool reassociationCanBreakAddressingModePattern(unsigned Opc,
484 const SDLoc &DL, SDValue N0,
485 SDValue N1);
486 SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0,
487 SDValue N1);
488 SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
489 SDValue N1, SDNodeFlags Flags);
491 SDValue visitShiftByConstant(SDNode *N);
493 SDValue foldSelectOfConstants(SDNode *N);
494 SDValue foldVSelectOfConstants(SDNode *N);
495 SDValue foldBinOpIntoSelect(SDNode *BO);
496 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
497 SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N);
498 SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2);
499 SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
500 SDValue N2, SDValue N3, ISD::CondCode CC,
501 bool NotExtCompare = false);
502 SDValue convertSelectOfFPConstantsToLoadOffset(
503 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3,
504 ISD::CondCode CC);
505 SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1,
506 SDValue N2, SDValue N3, ISD::CondCode CC);
507 SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
508 const SDLoc &DL);
509 SDValue unfoldMaskedMerge(SDNode *N);
510 SDValue unfoldExtremeBitClearingToShifts(SDNode *N);
511 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
512 const SDLoc &DL, bool foldBooleans);
513 SDValue rebuildSetCC(SDValue N);
515 bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
516 SDValue &CC) const;
517 bool isOneUseSetCC(SDValue N) const;
518 bool isCheaperToUseNegatedFPOps(SDValue X, SDValue Y);
520 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
521 unsigned HiOp);
522 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
523 SDValue CombineExtLoad(SDNode *N);
524 SDValue CombineZExtLogicopShiftLoad(SDNode *N);
525 SDValue combineRepeatedFPDivisors(SDNode *N);
526 SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex);
527 SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
528 SDValue BuildSDIV(SDNode *N);
529 SDValue BuildSDIVPow2(SDNode *N);
530 SDValue BuildUDIV(SDNode *N);
531 SDValue BuildLogBase2(SDValue V, const SDLoc &DL);
532 SDValue BuildDivEstimate(SDValue N, SDValue Op, SDNodeFlags Flags);
533 SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags);
534 SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags);
535 SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip);
536 SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations,
537 SDNodeFlags Flags, bool Reciprocal);
538 SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations,
539 SDNodeFlags Flags, bool Reciprocal);
540 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
541 bool DemandHighBits = true);
542 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
543 SDValue MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg,
544 SDValue InnerPos, SDValue InnerNeg,
545 unsigned PosOpcode, unsigned NegOpcode,
546 const SDLoc &DL);
547 SDValue MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL);
548 SDValue MatchLoadCombine(SDNode *N);
549 SDValue MatchStoreCombine(StoreSDNode *N);
550 SDValue ReduceLoadWidth(SDNode *N);
551 SDValue ReduceLoadOpStoreWidth(SDNode *N);
552 SDValue splitMergedValStore(StoreSDNode *ST);
553 SDValue TransformFPLoadStorePair(SDNode *N);
554 SDValue convertBuildVecZextToZext(SDNode *N);
555 SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
556 SDValue reduceBuildVecToShuffle(SDNode *N);
557 SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N,
558 ArrayRef<int> VectorMask, SDValue VecIn1,
559 SDValue VecIn2, unsigned LeftIdx,
560 bool DidSplitVec);
561 SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast);
563 /// Walk up chain skipping non-aliasing memory nodes,
564 /// looking for aliasing nodes and adding them to the Aliases vector.
565 void GatherAllAliases(SDNode *N, SDValue OriginalChain,
566 SmallVectorImpl<SDValue> &Aliases);
568 /// Return true if there is any possibility that the two addresses overlap.
569 bool isAlias(SDNode *Op0, SDNode *Op1) const;
571 /// Walk up chain skipping non-aliasing memory nodes, looking for a better
572 /// chain (aliasing node.)
573 SDValue FindBetterChain(SDNode *N, SDValue Chain);
575 /// Try to replace a store and any possibly adjacent stores on
576 /// consecutive chains with better chains. Return true only if St is
577 /// replaced.
579 /// Notice that other chains may still be replaced even if the function
580 /// returns false.
581 bool findBetterNeighborChains(StoreSDNode *St);
583 // Helper for findBetterNeighborChains. Walk up store chain add additional
584 // chained stores that do not overlap and can be parallelized.
585 bool parallelizeChainedStores(StoreSDNode *St);
587 /// Holds a pointer to an LSBaseSDNode as well as information on where it
588 /// is located in a sequence of memory operations connected by a chain.
589 struct MemOpLink {
590 // Ptr to the mem node.
591 LSBaseSDNode *MemNode;
593 // Offset from the base ptr.
594 int64_t OffsetFromBase;
596 MemOpLink(LSBaseSDNode *N, int64_t Offset)
597 : MemNode(N), OffsetFromBase(Offset) {}
600 /// This is a helper function for visitMUL to check the profitability
601 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
602 /// MulNode is the original multiply, AddNode is (add x, c1),
603 /// and ConstNode is c2.
604 bool isMulAddWithConstProfitable(SDNode *MulNode,
605 SDValue &AddNode,
606 SDValue &ConstNode);
608 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns
609 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns
610 /// the type of the loaded value to be extended.
611 bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
612 EVT LoadResultTy, EVT &ExtVT);
614 /// Helper function to calculate whether the given Load/Store can have its
615 /// width reduced to ExtVT.
616 bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType,
617 EVT &MemVT, unsigned ShAmt = 0);
619 /// Used by BackwardsPropagateMask to find suitable loads.
620 bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads,
621 SmallPtrSetImpl<SDNode*> &NodesWithConsts,
622 ConstantSDNode *Mask, SDNode *&NodeToMask);
623 /// Attempt to propagate a given AND node back to load leaves so that they
624 /// can be combined into narrow loads.
625 bool BackwardsPropagateMask(SDNode *N, SelectionDAG &DAG);
627 /// Helper function for MergeConsecutiveStores which merges the
628 /// component store chains.
629 SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
630 unsigned NumStores);
632 /// This is a helper function for MergeConsecutiveStores. When the
633 /// source elements of the consecutive stores are all constants or
634 /// all extracted vector elements, try to merge them into one
635 /// larger store introducing bitcasts if necessary. \return True
636 /// if a merged store was created.
637 bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes,
638 EVT MemVT, unsigned NumStores,
639 bool IsConstantSrc, bool UseVector,
640 bool UseTrunc);
642 /// This is a helper function for MergeConsecutiveStores. Stores
643 /// that potentially may be merged with St are placed in
644 /// StoreNodes. RootNode is a chain predecessor to all store
645 /// candidates.
646 void getStoreMergeCandidates(StoreSDNode *St,
647 SmallVectorImpl<MemOpLink> &StoreNodes,
648 SDNode *&Root);
650 /// Helper function for MergeConsecutiveStores. Checks if
651 /// candidate stores have indirect dependency through their
652 /// operands. RootNode is the predecessor to all stores calculated
653 /// by getStoreMergeCandidates and is used to prune the dependency check.
654 /// \return True if safe to merge.
655 bool checkMergeStoreCandidatesForDependencies(
656 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
657 SDNode *RootNode);
659 /// Merge consecutive store operations into a wide store.
660 /// This optimization uses wide integers or vectors when possible.
661 /// \return number of stores that were merged into a merged store (the
662 /// affected nodes are stored as a prefix in \p StoreNodes).
663 bool MergeConsecutiveStores(StoreSDNode *St);
665 /// Try to transform a truncation where C is a constant:
666 /// (trunc (and X, C)) -> (and (trunc X), (trunc C))
668 /// \p N needs to be a truncation and its first operand an AND. Other
669 /// requirements are checked by the function (e.g. that trunc is
670 /// single-use) and if missed an empty SDValue is returned.
671 SDValue distributeTruncateThroughAnd(SDNode *N);
673 /// Helper function to determine whether the target supports operation
674 /// given by \p Opcode for type \p VT, that is, whether the operation
675 /// is legal or custom before legalizing operations, and whether is
676 /// legal (but not custom) after legalization.
677 bool hasOperation(unsigned Opcode, EVT VT) {
678 if (LegalOperations)
679 return TLI.isOperationLegal(Opcode, VT);
680 return TLI.isOperationLegalOrCustom(Opcode, VT);
683 public:
684 /// Runs the dag combiner on all nodes in the work list
685 void Run(CombineLevel AtLevel);
687 SelectionDAG &getDAG() const { return DAG; }
689 /// Returns a type large enough to hold any valid shift amount - before type
690 /// legalization these can be huge.
691 EVT getShiftAmountTy(EVT LHSTy) {
692 assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
693 return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes);
696 /// This method returns true if we are running before type legalization or
697 /// if the specified VT is legal.
698 bool isTypeLegal(const EVT &VT) {
699 if (!LegalTypes) return true;
700 return TLI.isTypeLegal(VT);
703 /// Convenience wrapper around TargetLowering::getSetCCResultType
704 EVT getSetCCResultType(EVT VT) const {
705 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
708 void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
709 SDValue OrigLoad, SDValue ExtLoad,
710 ISD::NodeType ExtType);
713 /// This class is a DAGUpdateListener that removes any deleted
714 /// nodes from the worklist.
715 class WorklistRemover : public SelectionDAG::DAGUpdateListener {
716 DAGCombiner &DC;
718 public:
719 explicit WorklistRemover(DAGCombiner &dc)
720 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
722 void NodeDeleted(SDNode *N, SDNode *E) override {
723 DC.removeFromWorklist(N);
727 class WorklistInserter : public SelectionDAG::DAGUpdateListener {
728 DAGCombiner &DC;
730 public:
731 explicit WorklistInserter(DAGCombiner &dc)
732 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
734 // FIXME: Ideally we could add N to the worklist, but this causes exponential
735 // compile time costs in large DAGs, e.g. Halide.
736 void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); }
739 } // end anonymous namespace
741 //===----------------------------------------------------------------------===//
742 // TargetLowering::DAGCombinerInfo implementation
743 //===----------------------------------------------------------------------===//
745 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
746 ((DAGCombiner*)DC)->AddToWorklist(N);
749 SDValue TargetLowering::DAGCombinerInfo::
750 CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) {
751 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
754 SDValue TargetLowering::DAGCombinerInfo::
755 CombineTo(SDNode *N, SDValue Res, bool AddTo) {
756 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
759 SDValue TargetLowering::DAGCombinerInfo::
760 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
761 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
764 bool TargetLowering::DAGCombinerInfo::
765 recursivelyDeleteUnusedNodes(SDNode *N) {
766 return ((DAGCombiner*)DC)->recursivelyDeleteUnusedNodes(N);
769 void TargetLowering::DAGCombinerInfo::
770 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
771 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
774 //===----------------------------------------------------------------------===//
775 // Helper Functions
776 //===----------------------------------------------------------------------===//
778 void DAGCombiner::deleteAndRecombine(SDNode *N) {
779 removeFromWorklist(N);
781 // If the operands of this node are only used by the node, they will now be
782 // dead. Make sure to re-visit them and recursively delete dead nodes.
783 for (const SDValue &Op : N->ops())
784 // For an operand generating multiple values, one of the values may
785 // become dead allowing further simplification (e.g. split index
786 // arithmetic from an indexed load).
787 if (Op->hasOneUse() || Op->getNumValues() > 1)
788 AddToWorklist(Op.getNode());
790 DAG.DeleteNode(N);
793 // APInts must be the same size for most operations, this helper
794 // function zero extends the shorter of the pair so that they match.
795 // We provide an Offset so that we can create bitwidths that won't overflow.
796 static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) {
797 unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth());
798 LHS = LHS.zextOrSelf(Bits);
799 RHS = RHS.zextOrSelf(Bits);
802 // Return true if this node is a setcc, or is a select_cc
803 // that selects between the target values used for true and false, making it
804 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
805 // the appropriate nodes based on the type of node we are checking. This
806 // simplifies life a bit for the callers.
807 bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
808 SDValue &CC) const {
809 if (N.getOpcode() == ISD::SETCC) {
810 LHS = N.getOperand(0);
811 RHS = N.getOperand(1);
812 CC = N.getOperand(2);
813 return true;
816 if (N.getOpcode() != ISD::SELECT_CC ||
817 !TLI.isConstTrueVal(N.getOperand(2).getNode()) ||
818 !TLI.isConstFalseVal(N.getOperand(3).getNode()))
819 return false;
821 if (TLI.getBooleanContents(N.getValueType()) ==
822 TargetLowering::UndefinedBooleanContent)
823 return false;
825 LHS = N.getOperand(0);
826 RHS = N.getOperand(1);
827 CC = N.getOperand(4);
828 return true;
831 /// Return true if this is a SetCC-equivalent operation with only one use.
832 /// If this is true, it allows the users to invert the operation for free when
833 /// it is profitable to do so.
834 bool DAGCombiner::isOneUseSetCC(SDValue N) const {
835 SDValue N0, N1, N2;
836 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
837 return true;
838 return false;
841 // Returns the SDNode if it is a constant float BuildVector
842 // or constant float.
843 static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) {
844 if (isa<ConstantFPSDNode>(N))
845 return N.getNode();
846 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
847 return N.getNode();
848 return nullptr;
851 // Determines if it is a constant integer or a build vector of constant
852 // integers (and undefs).
853 // Do not permit build vector implicit truncation.
854 static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) {
855 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N))
856 return !(Const->isOpaque() && NoOpaques);
857 if (N.getOpcode() != ISD::BUILD_VECTOR)
858 return false;
859 unsigned BitWidth = N.getScalarValueSizeInBits();
860 for (const SDValue &Op : N->op_values()) {
861 if (Op.isUndef())
862 continue;
863 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op);
864 if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth ||
865 (Const->isOpaque() && NoOpaques))
866 return false;
868 return true;
871 // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with
872 // undef's.
873 static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) {
874 if (V.getOpcode() != ISD::BUILD_VECTOR)
875 return false;
876 return isConstantOrConstantVector(V, NoOpaques) ||
877 ISD::isBuildVectorOfConstantFPSDNodes(V.getNode());
880 bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc,
881 const SDLoc &DL,
882 SDValue N0,
883 SDValue N1) {
884 // Currently this only tries to ensure we don't undo the GEP splits done by
885 // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this,
886 // we check if the following transformation would be problematic:
887 // (load/store (add, (add, x, offset1), offset2)) ->
888 // (load/store (add, x, offset1+offset2)).
890 if (Opc != ISD::ADD || N0.getOpcode() != ISD::ADD)
891 return false;
893 if (N0.hasOneUse())
894 return false;
896 auto *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
897 auto *C2 = dyn_cast<ConstantSDNode>(N1);
898 if (!C1 || !C2)
899 return false;
901 const APInt &C1APIntVal = C1->getAPIntValue();
902 const APInt &C2APIntVal = C2->getAPIntValue();
903 if (C1APIntVal.getBitWidth() > 64 || C2APIntVal.getBitWidth() > 64)
904 return false;
906 const APInt CombinedValueIntVal = C1APIntVal + C2APIntVal;
907 if (CombinedValueIntVal.getBitWidth() > 64)
908 return false;
909 const int64_t CombinedValue = CombinedValueIntVal.getSExtValue();
911 for (SDNode *Node : N0->uses()) {
912 auto LoadStore = dyn_cast<MemSDNode>(Node);
913 if (LoadStore) {
914 // Is x[offset2] already not a legal addressing mode? If so then
915 // reassociating the constants breaks nothing (we test offset2 because
916 // that's the one we hope to fold into the load or store).
917 TargetLoweringBase::AddrMode AM;
918 AM.HasBaseReg = true;
919 AM.BaseOffs = C2APIntVal.getSExtValue();
920 EVT VT = LoadStore->getMemoryVT();
921 unsigned AS = LoadStore->getAddressSpace();
922 Type *AccessTy = VT.getTypeForEVT(*DAG.getContext());
923 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
924 continue;
926 // Would x[offset1+offset2] still be a legal addressing mode?
927 AM.BaseOffs = CombinedValue;
928 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
929 return true;
933 return false;
936 // Helper for DAGCombiner::reassociateOps. Try to reassociate an expression
937 // such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc.
938 SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL,
939 SDValue N0, SDValue N1) {
940 EVT VT = N0.getValueType();
942 if (N0.getOpcode() != Opc)
943 return SDValue();
945 // Don't reassociate reductions.
946 if (N0->getFlags().hasVectorReduction())
947 return SDValue();
949 if (SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) {
950 if (SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
951 // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2))
952 if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, C1, C2))
953 return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
954 return SDValue();
956 if (N0.hasOneUse()) {
957 // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1)
958 // iff (op x, c1) has one use
959 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1);
960 if (!OpNode.getNode())
961 return SDValue();
962 return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
965 return SDValue();
968 // Try to reassociate commutative binops.
969 SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
970 SDValue N1, SDNodeFlags Flags) {
971 assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative.");
972 // Don't reassociate reductions.
973 if (Flags.hasVectorReduction())
974 return SDValue();
976 // Floating-point reassociation is not allowed without loose FP math.
977 if (N0.getValueType().isFloatingPoint() ||
978 N1.getValueType().isFloatingPoint())
979 if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros())
980 return SDValue();
982 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1))
983 return Combined;
984 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0))
985 return Combined;
986 return SDValue();
989 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
990 bool AddTo) {
991 assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
992 ++NodesCombined;
993 LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: ";
994 To[0].getNode()->dump(&DAG);
995 dbgs() << " and " << NumTo - 1 << " other values\n");
996 for (unsigned i = 0, e = NumTo; i != e; ++i)
997 assert((!To[i].getNode() ||
998 N->getValueType(i) == To[i].getValueType()) &&
999 "Cannot combine value to value of different type!");
1001 WorklistRemover DeadNodes(*this);
1002 DAG.ReplaceAllUsesWith(N, To);
1003 if (AddTo) {
1004 // Push the new nodes and any users onto the worklist
1005 for (unsigned i = 0, e = NumTo; i != e; ++i) {
1006 if (To[i].getNode()) {
1007 AddToWorklist(To[i].getNode());
1008 AddUsersToWorklist(To[i].getNode());
1013 // Finally, if the node is now dead, remove it from the graph. The node
1014 // may not be dead if the replacement process recursively simplified to
1015 // something else needing this node.
1016 if (N->use_empty())
1017 deleteAndRecombine(N);
1018 return SDValue(N, 0);
1021 void DAGCombiner::
1022 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
1023 // Replace all uses. If any nodes become isomorphic to other nodes and
1024 // are deleted, make sure to remove them from our worklist.
1025 WorklistRemover DeadNodes(*this);
1026 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
1028 // Push the new node and any (possibly new) users onto the worklist.
1029 AddToWorklist(TLO.New.getNode());
1030 AddUsersToWorklist(TLO.New.getNode());
1032 // Finally, if the node is now dead, remove it from the graph. The node
1033 // may not be dead if the replacement process recursively simplified to
1034 // something else needing this node.
1035 if (TLO.Old.getNode()->use_empty())
1036 deleteAndRecombine(TLO.Old.getNode());
1039 /// Check the specified integer node value to see if it can be simplified or if
1040 /// things it uses can be simplified by bit propagation. If so, return true.
1041 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
1042 const APInt &DemandedElts) {
1043 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
1044 KnownBits Known;
1045 if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO))
1046 return false;
1048 // Revisit the node.
1049 AddToWorklist(Op.getNode());
1051 // Replace the old value with the new one.
1052 ++NodesCombined;
1053 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG);
1054 dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG);
1055 dbgs() << '\n');
1057 CommitTargetLoweringOpt(TLO);
1058 return true;
1061 /// Check the specified vector node value to see if it can be simplified or
1062 /// if things it uses can be simplified as it only uses some of the elements.
1063 /// If so, return true.
1064 bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op,
1065 const APInt &DemandedElts,
1066 bool AssumeSingleUse) {
1067 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
1068 APInt KnownUndef, KnownZero;
1069 if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero,
1070 TLO, 0, AssumeSingleUse))
1071 return false;
1073 // Revisit the node.
1074 AddToWorklist(Op.getNode());
1076 // Replace the old value with the new one.
1077 ++NodesCombined;
1078 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG);
1079 dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG);
1080 dbgs() << '\n');
1082 CommitTargetLoweringOpt(TLO);
1083 return true;
1086 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
1087 SDLoc DL(Load);
1088 EVT VT = Load->getValueType(0);
1089 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0));
1091 LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: ";
1092 Trunc.getNode()->dump(&DAG); dbgs() << '\n');
1093 WorklistRemover DeadNodes(*this);
1094 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
1095 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
1096 deleteAndRecombine(Load);
1097 AddToWorklist(Trunc.getNode());
1100 SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
1101 Replace = false;
1102 SDLoc DL(Op);
1103 if (ISD::isUNINDEXEDLoad(Op.getNode())) {
1104 LoadSDNode *LD = cast<LoadSDNode>(Op);
1105 EVT MemVT = LD->getMemoryVT();
1106 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD
1107 : LD->getExtensionType();
1108 Replace = true;
1109 return DAG.getExtLoad(ExtType, DL, PVT,
1110 LD->getChain(), LD->getBasePtr(),
1111 MemVT, LD->getMemOperand());
1114 unsigned Opc = Op.getOpcode();
1115 switch (Opc) {
1116 default: break;
1117 case ISD::AssertSext:
1118 if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT))
1119 return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1));
1120 break;
1121 case ISD::AssertZext:
1122 if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT))
1123 return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1));
1124 break;
1125 case ISD::Constant: {
1126 unsigned ExtOpc =
1127 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1128 return DAG.getNode(ExtOpc, DL, PVT, Op);
1132 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
1133 return SDValue();
1134 return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op);
1137 SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
1138 if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
1139 return SDValue();
1140 EVT OldVT = Op.getValueType();
1141 SDLoc DL(Op);
1142 bool Replace = false;
1143 SDValue NewOp = PromoteOperand(Op, PVT, Replace);
1144 if (!NewOp.getNode())
1145 return SDValue();
1146 AddToWorklist(NewOp.getNode());
1148 if (Replace)
1149 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
1150 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp,
1151 DAG.getValueType(OldVT));
1154 SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
1155 EVT OldVT = Op.getValueType();
1156 SDLoc DL(Op);
1157 bool Replace = false;
1158 SDValue NewOp = PromoteOperand(Op, PVT, Replace);
1159 if (!NewOp.getNode())
1160 return SDValue();
1161 AddToWorklist(NewOp.getNode());
1163 if (Replace)
1164 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
1165 return DAG.getZeroExtendInReg(NewOp, DL, OldVT);
1168 /// Promote the specified integer binary operation if the target indicates it is
1169 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1170 /// i32 since i16 instructions are longer.
1171 SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
1172 if (!LegalOperations)
1173 return SDValue();
1175 EVT VT = Op.getValueType();
1176 if (VT.isVector() || !VT.isInteger())
1177 return SDValue();
1179 // If operation type is 'undesirable', e.g. i16 on x86, consider
1180 // promoting it.
1181 unsigned Opc = Op.getOpcode();
1182 if (TLI.isTypeDesirableForOp(Opc, VT))
1183 return SDValue();
1185 EVT PVT = VT;
1186 // Consult target whether it is a good idea to promote this operation and
1187 // what's the right type to promote it to.
1188 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1189 assert(PVT != VT && "Don't know what type to promote to!");
1191 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
1193 bool Replace0 = false;
1194 SDValue N0 = Op.getOperand(0);
1195 SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
1197 bool Replace1 = false;
1198 SDValue N1 = Op.getOperand(1);
1199 SDValue NN1 = PromoteOperand(N1, PVT, Replace1);
1200 SDLoc DL(Op);
1202 SDValue RV =
1203 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1));
1205 // We are always replacing N0/N1's use in N and only need
1206 // additional replacements if there are additional uses.
1207 Replace0 &= !N0->hasOneUse();
1208 Replace1 &= (N0 != N1) && !N1->hasOneUse();
1210 // Combine Op here so it is preserved past replacements.
1211 CombineTo(Op.getNode(), RV);
1213 // If operands have a use ordering, make sure we deal with
1214 // predecessor first.
1215 if (Replace0 && Replace1 && N0.getNode()->isPredecessorOf(N1.getNode())) {
1216 std::swap(N0, N1);
1217 std::swap(NN0, NN1);
1220 if (Replace0) {
1221 AddToWorklist(NN0.getNode());
1222 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
1224 if (Replace1) {
1225 AddToWorklist(NN1.getNode());
1226 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
1228 return Op;
1230 return SDValue();
1233 /// Promote the specified integer shift operation if the target indicates it is
1234 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1235 /// i32 since i16 instructions are longer.
1236 SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
1237 if (!LegalOperations)
1238 return SDValue();
1240 EVT VT = Op.getValueType();
1241 if (VT.isVector() || !VT.isInteger())
1242 return SDValue();
1244 // If operation type is 'undesirable', e.g. i16 on x86, consider
1245 // promoting it.
1246 unsigned Opc = Op.getOpcode();
1247 if (TLI.isTypeDesirableForOp(Opc, VT))
1248 return SDValue();
1250 EVT PVT = VT;
1251 // Consult target whether it is a good idea to promote this operation and
1252 // what's the right type to promote it to.
1253 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1254 assert(PVT != VT && "Don't know what type to promote to!");
1256 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
1258 bool Replace = false;
1259 SDValue N0 = Op.getOperand(0);
1260 SDValue N1 = Op.getOperand(1);
1261 if (Opc == ISD::SRA)
1262 N0 = SExtPromoteOperand(N0, PVT);
1263 else if (Opc == ISD::SRL)
1264 N0 = ZExtPromoteOperand(N0, PVT);
1265 else
1266 N0 = PromoteOperand(N0, PVT, Replace);
1268 if (!N0.getNode())
1269 return SDValue();
1271 SDLoc DL(Op);
1272 SDValue RV =
1273 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1));
1275 if (Replace)
1276 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
1278 // Deal with Op being deleted.
1279 if (Op && Op.getOpcode() != ISD::DELETED_NODE)
1280 return RV;
1282 return SDValue();
1285 SDValue DAGCombiner::PromoteExtend(SDValue Op) {
1286 if (!LegalOperations)
1287 return SDValue();
1289 EVT VT = Op.getValueType();
1290 if (VT.isVector() || !VT.isInteger())
1291 return SDValue();
1293 // If operation type is 'undesirable', e.g. i16 on x86, consider
1294 // promoting it.
1295 unsigned Opc = Op.getOpcode();
1296 if (TLI.isTypeDesirableForOp(Opc, VT))
1297 return SDValue();
1299 EVT PVT = VT;
1300 // Consult target whether it is a good idea to promote this operation and
1301 // what's the right type to promote it to.
1302 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1303 assert(PVT != VT && "Don't know what type to promote to!");
1304 // fold (aext (aext x)) -> (aext x)
1305 // fold (aext (zext x)) -> (zext x)
1306 // fold (aext (sext x)) -> (sext x)
1307 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
1308 return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
1310 return SDValue();
1313 bool DAGCombiner::PromoteLoad(SDValue Op) {
1314 if (!LegalOperations)
1315 return false;
1317 if (!ISD::isUNINDEXEDLoad(Op.getNode()))
1318 return false;
1320 EVT VT = Op.getValueType();
1321 if (VT.isVector() || !VT.isInteger())
1322 return false;
1324 // If operation type is 'undesirable', e.g. i16 on x86, consider
1325 // promoting it.
1326 unsigned Opc = Op.getOpcode();
1327 if (TLI.isTypeDesirableForOp(Opc, VT))
1328 return false;
1330 EVT PVT = VT;
1331 // Consult target whether it is a good idea to promote this operation and
1332 // what's the right type to promote it to.
1333 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1334 assert(PVT != VT && "Don't know what type to promote to!");
1336 SDLoc DL(Op);
1337 SDNode *N = Op.getNode();
1338 LoadSDNode *LD = cast<LoadSDNode>(N);
1339 EVT MemVT = LD->getMemoryVT();
1340 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD
1341 : LD->getExtensionType();
1342 SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT,
1343 LD->getChain(), LD->getBasePtr(),
1344 MemVT, LD->getMemOperand());
1345 SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD);
1347 LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: ";
1348 Result.getNode()->dump(&DAG); dbgs() << '\n');
1349 WorklistRemover DeadNodes(*this);
1350 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
1351 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
1352 deleteAndRecombine(N);
1353 AddToWorklist(Result.getNode());
1354 return true;
1356 return false;
1359 /// Recursively delete a node which has no uses and any operands for
1360 /// which it is the only use.
1362 /// Note that this both deletes the nodes and removes them from the worklist.
1363 /// It also adds any nodes who have had a user deleted to the worklist as they
1364 /// may now have only one use and subject to other combines.
1365 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) {
1366 if (!N->use_empty())
1367 return false;
1369 SmallSetVector<SDNode *, 16> Nodes;
1370 Nodes.insert(N);
1371 do {
1372 N = Nodes.pop_back_val();
1373 if (!N)
1374 continue;
1376 if (N->use_empty()) {
1377 for (const SDValue &ChildN : N->op_values())
1378 Nodes.insert(ChildN.getNode());
1380 removeFromWorklist(N);
1381 DAG.DeleteNode(N);
1382 } else {
1383 AddToWorklist(N);
1385 } while (!Nodes.empty());
1386 return true;
1389 //===----------------------------------------------------------------------===//
1390 // Main DAG Combiner implementation
1391 //===----------------------------------------------------------------------===//
1393 void DAGCombiner::Run(CombineLevel AtLevel) {
1394 // set the instance variables, so that the various visit routines may use it.
1395 Level = AtLevel;
1396 LegalOperations = Level >= AfterLegalizeVectorOps;
1397 LegalTypes = Level >= AfterLegalizeTypes;
1399 WorklistInserter AddNodes(*this);
1401 // Add all the dag nodes to the worklist.
1402 for (SDNode &Node : DAG.allnodes())
1403 AddToWorklist(&Node);
1405 // Create a dummy node (which is not added to allnodes), that adds a reference
1406 // to the root node, preventing it from being deleted, and tracking any
1407 // changes of the root.
1408 HandleSDNode Dummy(DAG.getRoot());
1410 // While we have a valid worklist entry node, try to combine it.
1411 while (SDNode *N = getNextWorklistEntry()) {
1412 // If N has no uses, it is dead. Make sure to revisit all N's operands once
1413 // N is deleted from the DAG, since they too may now be dead or may have a
1414 // reduced number of uses, allowing other xforms.
1415 if (recursivelyDeleteUnusedNodes(N))
1416 continue;
1418 WorklistRemover DeadNodes(*this);
1420 // If this combine is running after legalizing the DAG, re-legalize any
1421 // nodes pulled off the worklist.
1422 if (Level == AfterLegalizeDAG) {
1423 SmallSetVector<SDNode *, 16> UpdatedNodes;
1424 bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes);
1426 for (SDNode *LN : UpdatedNodes) {
1427 AddUsersToWorklist(LN);
1428 AddToWorklist(LN);
1430 if (!NIsValid)
1431 continue;
1434 LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG));
1436 // Add any operands of the new node which have not yet been combined to the
1437 // worklist as well. Because the worklist uniques things already, this
1438 // won't repeatedly process the same operand.
1439 CombinedNodes.insert(N);
1440 for (const SDValue &ChildN : N->op_values())
1441 if (!CombinedNodes.count(ChildN.getNode()))
1442 AddToWorklist(ChildN.getNode());
1444 SDValue RV = combine(N);
1446 if (!RV.getNode())
1447 continue;
1449 ++NodesCombined;
1451 // If we get back the same node we passed in, rather than a new node or
1452 // zero, we know that the node must have defined multiple values and
1453 // CombineTo was used. Since CombineTo takes care of the worklist
1454 // mechanics for us, we have no work to do in this case.
1455 if (RV.getNode() == N)
1456 continue;
1458 assert(N->getOpcode() != ISD::DELETED_NODE &&
1459 RV.getOpcode() != ISD::DELETED_NODE &&
1460 "Node was deleted but visit returned new node!");
1462 LLVM_DEBUG(dbgs() << " ... into: "; RV.getNode()->dump(&DAG));
1464 if (N->getNumValues() == RV.getNode()->getNumValues())
1465 DAG.ReplaceAllUsesWith(N, RV.getNode());
1466 else {
1467 assert(N->getValueType(0) == RV.getValueType() &&
1468 N->getNumValues() == 1 && "Type mismatch");
1469 DAG.ReplaceAllUsesWith(N, &RV);
1472 // Push the new node and any users onto the worklist
1473 AddToWorklist(RV.getNode());
1474 AddUsersToWorklist(RV.getNode());
1476 // Finally, if the node is now dead, remove it from the graph. The node
1477 // may not be dead if the replacement process recursively simplified to
1478 // something else needing this node. This will also take care of adding any
1479 // operands which have lost a user to the worklist.
1480 recursivelyDeleteUnusedNodes(N);
1483 // If the root changed (e.g. it was a dead load, update the root).
1484 DAG.setRoot(Dummy.getValue());
1485 DAG.RemoveDeadNodes();
1488 SDValue DAGCombiner::visit(SDNode *N) {
1489 switch (N->getOpcode()) {
1490 default: break;
1491 case ISD::TokenFactor: return visitTokenFactor(N);
1492 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N);
1493 case ISD::ADD: return visitADD(N);
1494 case ISD::SUB: return visitSUB(N);
1495 case ISD::SADDSAT:
1496 case ISD::UADDSAT: return visitADDSAT(N);
1497 case ISD::SSUBSAT:
1498 case ISD::USUBSAT: return visitSUBSAT(N);
1499 case ISD::ADDC: return visitADDC(N);
1500 case ISD::SADDO:
1501 case ISD::UADDO: return visitADDO(N);
1502 case ISD::SUBC: return visitSUBC(N);
1503 case ISD::SSUBO:
1504 case ISD::USUBO: return visitSUBO(N);
1505 case ISD::ADDE: return visitADDE(N);
1506 case ISD::ADDCARRY: return visitADDCARRY(N);
1507 case ISD::SUBE: return visitSUBE(N);
1508 case ISD::SUBCARRY: return visitSUBCARRY(N);
1509 case ISD::SMULFIX:
1510 case ISD::SMULFIXSAT:
1511 case ISD::UMULFIX:
1512 case ISD::UMULFIXSAT: return visitMULFIX(N);
1513 case ISD::MUL: return visitMUL(N);
1514 case ISD::SDIV: return visitSDIV(N);
1515 case ISD::UDIV: return visitUDIV(N);
1516 case ISD::SREM:
1517 case ISD::UREM: return visitREM(N);
1518 case ISD::MULHU: return visitMULHU(N);
1519 case ISD::MULHS: return visitMULHS(N);
1520 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N);
1521 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N);
1522 case ISD::SMULO:
1523 case ISD::UMULO: return visitMULO(N);
1524 case ISD::SMIN:
1525 case ISD::SMAX:
1526 case ISD::UMIN:
1527 case ISD::UMAX: return visitIMINMAX(N);
1528 case ISD::AND: return visitAND(N);
1529 case ISD::OR: return visitOR(N);
1530 case ISD::XOR: return visitXOR(N);
1531 case ISD::SHL: return visitSHL(N);
1532 case ISD::SRA: return visitSRA(N);
1533 case ISD::SRL: return visitSRL(N);
1534 case ISD::ROTR:
1535 case ISD::ROTL: return visitRotate(N);
1536 case ISD::FSHL:
1537 case ISD::FSHR: return visitFunnelShift(N);
1538 case ISD::ABS: return visitABS(N);
1539 case ISD::BSWAP: return visitBSWAP(N);
1540 case ISD::BITREVERSE: return visitBITREVERSE(N);
1541 case ISD::CTLZ: return visitCTLZ(N);
1542 case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N);
1543 case ISD::CTTZ: return visitCTTZ(N);
1544 case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N);
1545 case ISD::CTPOP: return visitCTPOP(N);
1546 case ISD::SELECT: return visitSELECT(N);
1547 case ISD::VSELECT: return visitVSELECT(N);
1548 case ISD::SELECT_CC: return visitSELECT_CC(N);
1549 case ISD::SETCC: return visitSETCC(N);
1550 case ISD::SETCCCARRY: return visitSETCCCARRY(N);
1551 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N);
1552 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N);
1553 case ISD::ANY_EXTEND: return visitANY_EXTEND(N);
1554 case ISD::AssertSext:
1555 case ISD::AssertZext: return visitAssertExt(N);
1556 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N);
1557 case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N);
1558 case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N);
1559 case ISD::TRUNCATE: return visitTRUNCATE(N);
1560 case ISD::BITCAST: return visitBITCAST(N);
1561 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N);
1562 case ISD::FADD: return visitFADD(N);
1563 case ISD::FSUB: return visitFSUB(N);
1564 case ISD::FMUL: return visitFMUL(N);
1565 case ISD::FMA: return visitFMA(N);
1566 case ISD::FDIV: return visitFDIV(N);
1567 case ISD::FREM: return visitFREM(N);
1568 case ISD::FSQRT: return visitFSQRT(N);
1569 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N);
1570 case ISD::FPOW: return visitFPOW(N);
1571 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N);
1572 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N);
1573 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N);
1574 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N);
1575 case ISD::FP_ROUND: return visitFP_ROUND(N);
1576 case ISD::FP_EXTEND: return visitFP_EXTEND(N);
1577 case ISD::FNEG: return visitFNEG(N);
1578 case ISD::FABS: return visitFABS(N);
1579 case ISD::FFLOOR: return visitFFLOOR(N);
1580 case ISD::FMINNUM: return visitFMINNUM(N);
1581 case ISD::FMAXNUM: return visitFMAXNUM(N);
1582 case ISD::FMINIMUM: return visitFMINIMUM(N);
1583 case ISD::FMAXIMUM: return visitFMAXIMUM(N);
1584 case ISD::FCEIL: return visitFCEIL(N);
1585 case ISD::FTRUNC: return visitFTRUNC(N);
1586 case ISD::BRCOND: return visitBRCOND(N);
1587 case ISD::BR_CC: return visitBR_CC(N);
1588 case ISD::LOAD: return visitLOAD(N);
1589 case ISD::STORE: return visitSTORE(N);
1590 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N);
1591 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1592 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N);
1593 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N);
1594 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N);
1595 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N);
1596 case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N);
1597 case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N);
1598 case ISD::MGATHER: return visitMGATHER(N);
1599 case ISD::MLOAD: return visitMLOAD(N);
1600 case ISD::MSCATTER: return visitMSCATTER(N);
1601 case ISD::MSTORE: return visitMSTORE(N);
1602 case ISD::LIFETIME_END: return visitLIFETIME_END(N);
1603 case ISD::FP_TO_FP16: return visitFP_TO_FP16(N);
1604 case ISD::FP16_TO_FP: return visitFP16_TO_FP(N);
1605 case ISD::VECREDUCE_FADD:
1606 case ISD::VECREDUCE_FMUL:
1607 case ISD::VECREDUCE_ADD:
1608 case ISD::VECREDUCE_MUL:
1609 case ISD::VECREDUCE_AND:
1610 case ISD::VECREDUCE_OR:
1611 case ISD::VECREDUCE_XOR:
1612 case ISD::VECREDUCE_SMAX:
1613 case ISD::VECREDUCE_SMIN:
1614 case ISD::VECREDUCE_UMAX:
1615 case ISD::VECREDUCE_UMIN:
1616 case ISD::VECREDUCE_FMAX:
1617 case ISD::VECREDUCE_FMIN: return visitVECREDUCE(N);
1619 return SDValue();
1622 SDValue DAGCombiner::combine(SDNode *N) {
1623 SDValue RV = visit(N);
1625 // If nothing happened, try a target-specific DAG combine.
1626 if (!RV.getNode()) {
1627 assert(N->getOpcode() != ISD::DELETED_NODE &&
1628 "Node was deleted but visit returned NULL!");
1630 if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1631 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1633 // Expose the DAG combiner to the target combiner impls.
1634 TargetLowering::DAGCombinerInfo
1635 DagCombineInfo(DAG, Level, false, this);
1637 RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1641 // If nothing happened still, try promoting the operation.
1642 if (!RV.getNode()) {
1643 switch (N->getOpcode()) {
1644 default: break;
1645 case ISD::ADD:
1646 case ISD::SUB:
1647 case ISD::MUL:
1648 case ISD::AND:
1649 case ISD::OR:
1650 case ISD::XOR:
1651 RV = PromoteIntBinOp(SDValue(N, 0));
1652 break;
1653 case ISD::SHL:
1654 case ISD::SRA:
1655 case ISD::SRL:
1656 RV = PromoteIntShiftOp(SDValue(N, 0));
1657 break;
1658 case ISD::SIGN_EXTEND:
1659 case ISD::ZERO_EXTEND:
1660 case ISD::ANY_EXTEND:
1661 RV = PromoteExtend(SDValue(N, 0));
1662 break;
1663 case ISD::LOAD:
1664 if (PromoteLoad(SDValue(N, 0)))
1665 RV = SDValue(N, 0);
1666 break;
1670 // If N is a commutative binary node, try to eliminate it if the commuted
1671 // version is already present in the DAG.
1672 if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode()) &&
1673 N->getNumValues() == 1) {
1674 SDValue N0 = N->getOperand(0);
1675 SDValue N1 = N->getOperand(1);
1677 // Constant operands are canonicalized to RHS.
1678 if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) {
1679 SDValue Ops[] = {N1, N0};
1680 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops,
1681 N->getFlags());
1682 if (CSENode)
1683 return SDValue(CSENode, 0);
1687 return RV;
1690 /// Given a node, return its input chain if it has one, otherwise return a null
1691 /// sd operand.
1692 static SDValue getInputChainForNode(SDNode *N) {
1693 if (unsigned NumOps = N->getNumOperands()) {
1694 if (N->getOperand(0).getValueType() == MVT::Other)
1695 return N->getOperand(0);
1696 if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1697 return N->getOperand(NumOps-1);
1698 for (unsigned i = 1; i < NumOps-1; ++i)
1699 if (N->getOperand(i).getValueType() == MVT::Other)
1700 return N->getOperand(i);
1702 return SDValue();
1705 SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1706 // If N has two operands, where one has an input chain equal to the other,
1707 // the 'other' chain is redundant.
1708 if (N->getNumOperands() == 2) {
1709 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1710 return N->getOperand(0);
1711 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1712 return N->getOperand(1);
1715 // Don't simplify token factors if optnone.
1716 if (OptLevel == CodeGenOpt::None)
1717 return SDValue();
1719 // If the sole user is a token factor, we should make sure we have a
1720 // chance to merge them together. This prevents TF chains from inhibiting
1721 // optimizations.
1722 if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::TokenFactor)
1723 AddToWorklist(*(N->use_begin()));
1725 SmallVector<SDNode *, 8> TFs; // List of token factors to visit.
1726 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor.
1727 SmallPtrSet<SDNode*, 16> SeenOps;
1728 bool Changed = false; // If we should replace this token factor.
1730 // Start out with this token factor.
1731 TFs.push_back(N);
1733 // Iterate through token factors. The TFs grows when new token factors are
1734 // encountered.
1735 for (unsigned i = 0; i < TFs.size(); ++i) {
1736 // Limit number of nodes to inline, to avoid quadratic compile times.
1737 // We have to add the outstanding Token Factors to Ops, otherwise we might
1738 // drop Ops from the resulting Token Factors.
1739 if (Ops.size() > TokenFactorInlineLimit) {
1740 for (unsigned j = i; j < TFs.size(); j++)
1741 Ops.emplace_back(TFs[j], 0);
1742 // Drop unprocessed Token Factors from TFs, so we do not add them to the
1743 // combiner worklist later.
1744 TFs.resize(i);
1745 break;
1748 SDNode *TF = TFs[i];
1749 // Check each of the operands.
1750 for (const SDValue &Op : TF->op_values()) {
1751 switch (Op.getOpcode()) {
1752 case ISD::EntryToken:
1753 // Entry tokens don't need to be added to the list. They are
1754 // redundant.
1755 Changed = true;
1756 break;
1758 case ISD::TokenFactor:
1759 if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) {
1760 // Queue up for processing.
1761 TFs.push_back(Op.getNode());
1762 Changed = true;
1763 break;
1765 LLVM_FALLTHROUGH;
1767 default:
1768 // Only add if it isn't already in the list.
1769 if (SeenOps.insert(Op.getNode()).second)
1770 Ops.push_back(Op);
1771 else
1772 Changed = true;
1773 break;
1778 // Re-visit inlined Token Factors, to clean them up in case they have been
1779 // removed. Skip the first Token Factor, as this is the current node.
1780 for (unsigned i = 1, e = TFs.size(); i < e; i++)
1781 AddToWorklist(TFs[i]);
1783 // Remove Nodes that are chained to another node in the list. Do so
1784 // by walking up chains breath-first stopping when we've seen
1785 // another operand. In general we must climb to the EntryNode, but we can exit
1786 // early if we find all remaining work is associated with just one operand as
1787 // no further pruning is possible.
1789 // List of nodes to search through and original Ops from which they originate.
1790 SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist;
1791 SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op.
1792 SmallPtrSet<SDNode *, 16> SeenChains;
1793 bool DidPruneOps = false;
1795 unsigned NumLeftToConsider = 0;
1796 for (const SDValue &Op : Ops) {
1797 Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++));
1798 OpWorkCount.push_back(1);
1801 auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) {
1802 // If this is an Op, we can remove the op from the list. Remark any
1803 // search associated with it as from the current OpNumber.
1804 if (SeenOps.count(Op) != 0) {
1805 Changed = true;
1806 DidPruneOps = true;
1807 unsigned OrigOpNumber = 0;
1808 while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op)
1809 OrigOpNumber++;
1810 assert((OrigOpNumber != Ops.size()) &&
1811 "expected to find TokenFactor Operand");
1812 // Re-mark worklist from OrigOpNumber to OpNumber
1813 for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) {
1814 if (Worklist[i].second == OrigOpNumber) {
1815 Worklist[i].second = OpNumber;
1818 OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber];
1819 OpWorkCount[OrigOpNumber] = 0;
1820 NumLeftToConsider--;
1822 // Add if it's a new chain
1823 if (SeenChains.insert(Op).second) {
1824 OpWorkCount[OpNumber]++;
1825 Worklist.push_back(std::make_pair(Op, OpNumber));
1829 for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) {
1830 // We need at least be consider at least 2 Ops to prune.
1831 if (NumLeftToConsider <= 1)
1832 break;
1833 auto CurNode = Worklist[i].first;
1834 auto CurOpNumber = Worklist[i].second;
1835 assert((OpWorkCount[CurOpNumber] > 0) &&
1836 "Node should not appear in worklist");
1837 switch (CurNode->getOpcode()) {
1838 case ISD::EntryToken:
1839 // Hitting EntryToken is the only way for the search to terminate without
1840 // hitting
1841 // another operand's search. Prevent us from marking this operand
1842 // considered.
1843 NumLeftToConsider++;
1844 break;
1845 case ISD::TokenFactor:
1846 for (const SDValue &Op : CurNode->op_values())
1847 AddToWorklist(i, Op.getNode(), CurOpNumber);
1848 break;
1849 case ISD::LIFETIME_START:
1850 case ISD::LIFETIME_END:
1851 case ISD::CopyFromReg:
1852 case ISD::CopyToReg:
1853 AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber);
1854 break;
1855 default:
1856 if (auto *MemNode = dyn_cast<MemSDNode>(CurNode))
1857 AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber);
1858 break;
1860 OpWorkCount[CurOpNumber]--;
1861 if (OpWorkCount[CurOpNumber] == 0)
1862 NumLeftToConsider--;
1865 // If we've changed things around then replace token factor.
1866 if (Changed) {
1867 SDValue Result;
1868 if (Ops.empty()) {
1869 // The entry token is the only possible outcome.
1870 Result = DAG.getEntryNode();
1871 } else {
1872 if (DidPruneOps) {
1873 SmallVector<SDValue, 8> PrunedOps;
1875 for (const SDValue &Op : Ops) {
1876 if (SeenChains.count(Op.getNode()) == 0)
1877 PrunedOps.push_back(Op);
1879 Result = DAG.getTokenFactor(SDLoc(N), PrunedOps);
1880 } else {
1881 Result = DAG.getTokenFactor(SDLoc(N), Ops);
1884 return Result;
1886 return SDValue();
1889 /// MERGE_VALUES can always be eliminated.
1890 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
1891 WorklistRemover DeadNodes(*this);
1892 // Replacing results may cause a different MERGE_VALUES to suddenly
1893 // be CSE'd with N, and carry its uses with it. Iterate until no
1894 // uses remain, to ensure that the node can be safely deleted.
1895 // First add the users of this node to the work list so that they
1896 // can be tried again once they have new operands.
1897 AddUsersToWorklist(N);
1898 do {
1899 // Do as a single replacement to avoid rewalking use lists.
1900 SmallVector<SDValue, 8> Ops;
1901 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1902 Ops.push_back(N->getOperand(i));
1903 DAG.ReplaceAllUsesWith(N, Ops.data());
1904 } while (!N->use_empty());
1905 deleteAndRecombine(N);
1906 return SDValue(N, 0); // Return N so it doesn't get rechecked!
1909 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a
1910 /// ConstantSDNode pointer else nullptr.
1911 static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) {
1912 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N);
1913 return Const != nullptr && !Const->isOpaque() ? Const : nullptr;
1916 SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) {
1917 assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 &&
1918 "Unexpected binary operator");
1920 // Don't do this unless the old select is going away. We want to eliminate the
1921 // binary operator, not replace a binop with a select.
1922 // TODO: Handle ISD::SELECT_CC.
1923 unsigned SelOpNo = 0;
1924 SDValue Sel = BO->getOperand(0);
1925 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) {
1926 SelOpNo = 1;
1927 Sel = BO->getOperand(1);
1930 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse())
1931 return SDValue();
1933 SDValue CT = Sel.getOperand(1);
1934 if (!isConstantOrConstantVector(CT, true) &&
1935 !isConstantFPBuildVectorOrConstantFP(CT))
1936 return SDValue();
1938 SDValue CF = Sel.getOperand(2);
1939 if (!isConstantOrConstantVector(CF, true) &&
1940 !isConstantFPBuildVectorOrConstantFP(CF))
1941 return SDValue();
1943 // Bail out if any constants are opaque because we can't constant fold those.
1944 // The exception is "and" and "or" with either 0 or -1 in which case we can
1945 // propagate non constant operands into select. I.e.:
1946 // and (select Cond, 0, -1), X --> select Cond, 0, X
1947 // or X, (select Cond, -1, 0) --> select Cond, -1, X
1948 auto BinOpcode = BO->getOpcode();
1949 bool CanFoldNonConst =
1950 (BinOpcode == ISD::AND || BinOpcode == ISD::OR) &&
1951 (isNullOrNullSplat(CT) || isAllOnesOrAllOnesSplat(CT)) &&
1952 (isNullOrNullSplat(CF) || isAllOnesOrAllOnesSplat(CF));
1954 SDValue CBO = BO->getOperand(SelOpNo ^ 1);
1955 if (!CanFoldNonConst &&
1956 !isConstantOrConstantVector(CBO, true) &&
1957 !isConstantFPBuildVectorOrConstantFP(CBO))
1958 return SDValue();
1960 EVT VT = Sel.getValueType();
1962 // In case of shift value and shift amount may have different VT. For instance
1963 // on x86 shift amount is i8 regardles of LHS type. Bail out if we have
1964 // swapped operands and value types do not match. NB: x86 is fine if operands
1965 // are not swapped with shift amount VT being not bigger than shifted value.
1966 // TODO: that is possible to check for a shift operation, correct VTs and
1967 // still perform optimization on x86 if needed.
1968 if (SelOpNo && VT != CBO.getValueType())
1969 return SDValue();
1971 // We have a select-of-constants followed by a binary operator with a
1972 // constant. Eliminate the binop by pulling the constant math into the select.
1973 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO
1974 SDLoc DL(Sel);
1975 SDValue NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT)
1976 : DAG.getNode(BinOpcode, DL, VT, CT, CBO);
1977 if (!CanFoldNonConst && !NewCT.isUndef() &&
1978 !isConstantOrConstantVector(NewCT, true) &&
1979 !isConstantFPBuildVectorOrConstantFP(NewCT))
1980 return SDValue();
1982 SDValue NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF)
1983 : DAG.getNode(BinOpcode, DL, VT, CF, CBO);
1984 if (!CanFoldNonConst && !NewCF.isUndef() &&
1985 !isConstantOrConstantVector(NewCF, true) &&
1986 !isConstantFPBuildVectorOrConstantFP(NewCF))
1987 return SDValue();
1989 SDValue SelectOp = DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF);
1990 SelectOp->setFlags(BO->getFlags());
1991 return SelectOp;
1994 static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) {
1995 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
1996 "Expecting add or sub");
1998 // Match a constant operand and a zext operand for the math instruction:
1999 // add Z, C
2000 // sub C, Z
2001 bool IsAdd = N->getOpcode() == ISD::ADD;
2002 SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0);
2003 SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1);
2004 auto *CN = dyn_cast<ConstantSDNode>(C);
2005 if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND)
2006 return SDValue();
2008 // Match the zext operand as a setcc of a boolean.
2009 if (Z.getOperand(0).getOpcode() != ISD::SETCC ||
2010 Z.getOperand(0).getValueType() != MVT::i1)
2011 return SDValue();
2013 // Match the compare as: setcc (X & 1), 0, eq.
2014 SDValue SetCC = Z.getOperand(0);
2015 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
2016 if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) ||
2017 SetCC.getOperand(0).getOpcode() != ISD::AND ||
2018 !isOneConstant(SetCC.getOperand(0).getOperand(1)))
2019 return SDValue();
2021 // We are adding/subtracting a constant and an inverted low bit. Turn that
2022 // into a subtract/add of the low bit with incremented/decremented constant:
2023 // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1))
2024 // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1))
2025 EVT VT = C.getValueType();
2026 SDLoc DL(N);
2027 SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT);
2028 SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) :
2029 DAG.getConstant(CN->getAPIntValue() - 1, DL, VT);
2030 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit);
2033 /// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into
2034 /// a shift and add with a different constant.
2035 static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) {
2036 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
2037 "Expecting add or sub");
2039 // We need a constant operand for the add/sub, and the other operand is a
2040 // logical shift right: add (srl), C or sub C, (srl).
2041 // TODO - support non-uniform vector amounts.
2042 bool IsAdd = N->getOpcode() == ISD::ADD;
2043 SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0);
2044 SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1);
2045 ConstantSDNode *C = isConstOrConstSplat(ConstantOp);
2046 if (!C || ShiftOp.getOpcode() != ISD::SRL)
2047 return SDValue();
2049 // The shift must be of a 'not' value.
2050 SDValue Not = ShiftOp.getOperand(0);
2051 if (!Not.hasOneUse() || !isBitwiseNot(Not))
2052 return SDValue();
2054 // The shift must be moving the sign bit to the least-significant-bit.
2055 EVT VT = ShiftOp.getValueType();
2056 SDValue ShAmt = ShiftOp.getOperand(1);
2057 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
2058 if (!ShAmtC || ShAmtC->getAPIntValue() != (VT.getScalarSizeInBits() - 1))
2059 return SDValue();
2061 // Eliminate the 'not' by adjusting the shift and add/sub constant:
2062 // add (srl (not X), 31), C --> add (sra X, 31), (C + 1)
2063 // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1)
2064 SDLoc DL(N);
2065 auto ShOpcode = IsAdd ? ISD::SRA : ISD::SRL;
2066 SDValue NewShift = DAG.getNode(ShOpcode, DL, VT, Not.getOperand(0), ShAmt);
2067 APInt NewC = IsAdd ? C->getAPIntValue() + 1 : C->getAPIntValue() - 1;
2068 return DAG.getNode(ISD::ADD, DL, VT, NewShift, DAG.getConstant(NewC, DL, VT));
2071 /// Try to fold a node that behaves like an ADD (note that N isn't necessarily
2072 /// an ISD::ADD here, it could for example be an ISD::OR if we know that there
2073 /// are no common bits set in the operands).
2074 SDValue DAGCombiner::visitADDLike(SDNode *N) {
2075 SDValue N0 = N->getOperand(0);
2076 SDValue N1 = N->getOperand(1);
2077 EVT VT = N0.getValueType();
2078 SDLoc DL(N);
2080 // fold vector ops
2081 if (VT.isVector()) {
2082 if (SDValue FoldedVOp = SimplifyVBinOp(N))
2083 return FoldedVOp;
2085 // fold (add x, 0) -> x, vector edition
2086 if (ISD::isBuildVectorAllZeros(N1.getNode()))
2087 return N0;
2088 if (ISD::isBuildVectorAllZeros(N0.getNode()))
2089 return N1;
2092 // fold (add x, undef) -> undef
2093 if (N0.isUndef())
2094 return N0;
2096 if (N1.isUndef())
2097 return N1;
2099 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
2100 // canonicalize constant to RHS
2101 if (!DAG.isConstantIntBuildVectorOrConstantInt(N1))
2102 return DAG.getNode(ISD::ADD, DL, VT, N1, N0);
2103 // fold (add c1, c2) -> c1+c2
2104 return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, N0.getNode(),
2105 N1.getNode());
2108 // fold (add x, 0) -> x
2109 if (isNullConstant(N1))
2110 return N0;
2112 if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) {
2113 // fold ((A-c1)+c2) -> (A+(c2-c1))
2114 if (N0.getOpcode() == ISD::SUB &&
2115 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) {
2116 SDValue Sub = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N1.getNode(),
2117 N0.getOperand(1).getNode());
2118 assert(Sub && "Constant folding failed");
2119 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub);
2122 // fold ((c1-A)+c2) -> (c1+c2)-A
2123 if (N0.getOpcode() == ISD::SUB &&
2124 isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) {
2125 SDValue Add = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, N1.getNode(),
2126 N0.getOperand(0).getNode());
2127 assert(Add && "Constant folding failed");
2128 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1));
2131 // add (sext i1 X), 1 -> zext (not i1 X)
2132 // We don't transform this pattern:
2133 // add (zext i1 X), -1 -> sext (not i1 X)
2134 // because most (?) targets generate better code for the zext form.
2135 if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() &&
2136 isOneOrOneSplat(N1)) {
2137 SDValue X = N0.getOperand(0);
2138 if ((!LegalOperations ||
2139 (TLI.isOperationLegal(ISD::XOR, X.getValueType()) &&
2140 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) &&
2141 X.getScalarValueSizeInBits() == 1) {
2142 SDValue Not = DAG.getNOT(DL, X, X.getValueType());
2143 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not);
2147 // Undo the add -> or combine to merge constant offsets from a frame index.
2148 if (N0.getOpcode() == ISD::OR &&
2149 isa<FrameIndexSDNode>(N0.getOperand(0)) &&
2150 isa<ConstantSDNode>(N0.getOperand(1)) &&
2151 DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) {
2152 SDValue Add0 = DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(1));
2153 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add0);
2157 if (SDValue NewSel = foldBinOpIntoSelect(N))
2158 return NewSel;
2160 // reassociate add
2161 if (!reassociationCanBreakAddressingModePattern(ISD::ADD, DL, N0, N1)) {
2162 if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags()))
2163 return RADD;
2165 // fold ((0-A) + B) -> B-A
2166 if (N0.getOpcode() == ISD::SUB && isNullOrNullSplat(N0.getOperand(0)))
2167 return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1));
2169 // fold (A + (0-B)) -> A-B
2170 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0)))
2171 return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1));
2173 // fold (A+(B-A)) -> B
2174 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
2175 return N1.getOperand(0);
2177 // fold ((B-A)+A) -> B
2178 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
2179 return N0.getOperand(0);
2181 // fold ((A-B)+(C-A)) -> (C-B)
2182 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB &&
2183 N0.getOperand(0) == N1.getOperand(1))
2184 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
2185 N0.getOperand(1));
2187 // fold ((A-B)+(B-C)) -> (A-C)
2188 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB &&
2189 N0.getOperand(1) == N1.getOperand(0))
2190 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0),
2191 N1.getOperand(1));
2193 // fold (A+(B-(A+C))) to (B-C)
2194 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
2195 N0 == N1.getOperand(1).getOperand(0))
2196 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
2197 N1.getOperand(1).getOperand(1));
2199 // fold (A+(B-(C+A))) to (B-C)
2200 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
2201 N0 == N1.getOperand(1).getOperand(1))
2202 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
2203 N1.getOperand(1).getOperand(0));
2205 // fold (A+((B-A)+or-C)) to (B+or-C)
2206 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
2207 N1.getOperand(0).getOpcode() == ISD::SUB &&
2208 N0 == N1.getOperand(0).getOperand(1))
2209 return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0),
2210 N1.getOperand(1));
2212 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
2213 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
2214 SDValue N00 = N0.getOperand(0);
2215 SDValue N01 = N0.getOperand(1);
2216 SDValue N10 = N1.getOperand(0);
2217 SDValue N11 = N1.getOperand(1);
2219 if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10))
2220 return DAG.getNode(ISD::SUB, DL, VT,
2221 DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
2222 DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
2225 // fold (add (umax X, C), -C) --> (usubsat X, C)
2226 if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) {
2227 auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) {
2228 return (!Max && !Op) ||
2229 (Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue()));
2231 if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT,
2232 /*AllowUndefs*/ true))
2233 return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0),
2234 N0.getOperand(1));
2237 if (SimplifyDemandedBits(SDValue(N, 0)))
2238 return SDValue(N, 0);
2240 if (isOneOrOneSplat(N1)) {
2241 // fold (add (xor a, -1), 1) -> (sub 0, a)
2242 if (isBitwiseNot(N0))
2243 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
2244 N0.getOperand(0));
2246 // fold (add (add (xor a, -1), b), 1) -> (sub b, a)
2247 if (N0.getOpcode() == ISD::ADD ||
2248 N0.getOpcode() == ISD::UADDO ||
2249 N0.getOpcode() == ISD::SADDO) {
2250 SDValue A, Xor;
2252 if (isBitwiseNot(N0.getOperand(0))) {
2253 A = N0.getOperand(1);
2254 Xor = N0.getOperand(0);
2255 } else if (isBitwiseNot(N0.getOperand(1))) {
2256 A = N0.getOperand(0);
2257 Xor = N0.getOperand(1);
2260 if (Xor)
2261 return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0));
2264 // Look for:
2265 // add (add x, y), 1
2266 // And if the target does not like this form then turn into:
2267 // sub y, (xor x, -1)
2268 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() &&
2269 N0.getOpcode() == ISD::ADD) {
2270 SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0),
2271 DAG.getAllOnesConstant(DL, VT));
2272 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(1), Not);
2276 // (x - y) + -1 -> add (xor y, -1), x
2277 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
2278 isAllOnesOrAllOnesSplat(N1)) {
2279 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), N1);
2280 return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0));
2283 if (SDValue Combined = visitADDLikeCommutative(N0, N1, N))
2284 return Combined;
2286 if (SDValue Combined = visitADDLikeCommutative(N1, N0, N))
2287 return Combined;
2289 return SDValue();
2292 SDValue DAGCombiner::visitADD(SDNode *N) {
2293 SDValue N0 = N->getOperand(0);
2294 SDValue N1 = N->getOperand(1);
2295 EVT VT = N0.getValueType();
2296 SDLoc DL(N);
2298 if (SDValue Combined = visitADDLike(N))
2299 return Combined;
2301 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG))
2302 return V;
2304 if (SDValue V = foldAddSubOfSignBit(N, DAG))
2305 return V;
2307 // fold (a+b) -> (a|b) iff a and b share no bits.
2308 if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) &&
2309 DAG.haveNoCommonBitsSet(N0, N1))
2310 return DAG.getNode(ISD::OR, DL, VT, N0, N1);
2312 return SDValue();
2315 SDValue DAGCombiner::visitADDSAT(SDNode *N) {
2316 unsigned Opcode = N->getOpcode();
2317 SDValue N0 = N->getOperand(0);
2318 SDValue N1 = N->getOperand(1);
2319 EVT VT = N0.getValueType();
2320 SDLoc DL(N);
2322 // fold vector ops
2323 if (VT.isVector()) {
2324 // TODO SimplifyVBinOp
2326 // fold (add_sat x, 0) -> x, vector edition
2327 if (ISD::isBuildVectorAllZeros(N1.getNode()))
2328 return N0;
2329 if (ISD::isBuildVectorAllZeros(N0.getNode()))
2330 return N1;
2333 // fold (add_sat x, undef) -> -1
2334 if (N0.isUndef() || N1.isUndef())
2335 return DAG.getAllOnesConstant(DL, VT);
2337 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
2338 // canonicalize constant to RHS
2339 if (!DAG.isConstantIntBuildVectorOrConstantInt(N1))
2340 return DAG.getNode(Opcode, DL, VT, N1, N0);
2341 // fold (add_sat c1, c2) -> c3
2342 return DAG.FoldConstantArithmetic(Opcode, DL, VT, N0.getNode(),
2343 N1.getNode());
2346 // fold (add_sat x, 0) -> x
2347 if (isNullConstant(N1))
2348 return N0;
2350 // If it cannot overflow, transform into an add.
2351 if (Opcode == ISD::UADDSAT)
2352 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
2353 return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
2355 return SDValue();
2358 static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) {
2359 bool Masked = false;
2361 // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization.
2362 while (true) {
2363 if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) {
2364 V = V.getOperand(0);
2365 continue;
2368 if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) {
2369 Masked = true;
2370 V = V.getOperand(0);
2371 continue;
2374 break;
2377 // If this is not a carry, return.
2378 if (V.getResNo() != 1)
2379 return SDValue();
2381 if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY &&
2382 V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO)
2383 return SDValue();
2385 EVT VT = V.getNode()->getValueType(0);
2386 if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT))
2387 return SDValue();
2389 // If the result is masked, then no matter what kind of bool it is we can
2390 // return. If it isn't, then we need to make sure the bool type is either 0 or
2391 // 1 and not other values.
2392 if (Masked ||
2393 TLI.getBooleanContents(V.getValueType()) ==
2394 TargetLoweringBase::ZeroOrOneBooleanContent)
2395 return V;
2397 return SDValue();
2400 /// Given the operands of an add/sub operation, see if the 2nd operand is a
2401 /// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert
2402 /// the opcode and bypass the mask operation.
2403 static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1,
2404 SelectionDAG &DAG, const SDLoc &DL) {
2405 if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1)))
2406 return SDValue();
2408 EVT VT = N0.getValueType();
2409 if (DAG.ComputeNumSignBits(N1.getOperand(0)) != VT.getScalarSizeInBits())
2410 return SDValue();
2412 // add N0, (and (AssertSext X, i1), 1) --> sub N0, X
2413 // sub N0, (and (AssertSext X, i1), 1) --> add N0, X
2414 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N1.getOperand(0));
2417 /// Helper for doing combines based on N0 and N1 being added to each other.
2418 SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1,
2419 SDNode *LocReference) {
2420 EVT VT = N0.getValueType();
2421 SDLoc DL(LocReference);
2423 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
2424 if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB &&
2425 isNullOrNullSplat(N1.getOperand(0).getOperand(0)))
2426 return DAG.getNode(ISD::SUB, DL, VT, N0,
2427 DAG.getNode(ISD::SHL, DL, VT,
2428 N1.getOperand(0).getOperand(1),
2429 N1.getOperand(1)));
2431 if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL))
2432 return V;
2434 // Look for:
2435 // add (add x, 1), y
2436 // And if the target does not like this form then turn into:
2437 // sub y, (xor x, -1)
2438 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() &&
2439 N0.getOpcode() == ISD::ADD && isOneOrOneSplat(N0.getOperand(1))) {
2440 SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0),
2441 DAG.getAllOnesConstant(DL, VT));
2442 return DAG.getNode(ISD::SUB, DL, VT, N1, Not);
2445 // Hoist one-use subtraction by non-opaque constant:
2446 // (x - C) + y -> (x + y) - C
2447 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
2448 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
2449 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
2450 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1);
2451 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1));
2453 // Hoist one-use subtraction from non-opaque constant:
2454 // (C - x) + y -> (y - x) + C
2455 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
2456 isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) {
2457 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1));
2458 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(0));
2461 // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1'
2462 // rather than 'add 0/-1' (the zext should get folded).
2463 // add (sext i1 Y), X --> sub X, (zext i1 Y)
2464 if (N0.getOpcode() == ISD::SIGN_EXTEND &&
2465 N0.getOperand(0).getScalarValueSizeInBits() == 1 &&
2466 TLI.getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent) {
2467 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
2468 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
2471 // add X, (sextinreg Y i1) -> sub X, (and Y 1)
2472 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
2473 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
2474 if (TN->getVT() == MVT::i1) {
2475 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
2476 DAG.getConstant(1, DL, VT));
2477 return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt);
2481 // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
2482 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) &&
2483 N1.getResNo() == 0)
2484 return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(),
2485 N0, N1.getOperand(0), N1.getOperand(2));
2487 // (add X, Carry) -> (addcarry X, 0, Carry)
2488 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT))
2489 if (SDValue Carry = getAsCarry(TLI, N1))
2490 return DAG.getNode(ISD::ADDCARRY, DL,
2491 DAG.getVTList(VT, Carry.getValueType()), N0,
2492 DAG.getConstant(0, DL, VT), Carry);
2494 return SDValue();
2497 SDValue DAGCombiner::visitADDC(SDNode *N) {
2498 SDValue N0 = N->getOperand(0);
2499 SDValue N1 = N->getOperand(1);
2500 EVT VT = N0.getValueType();
2501 SDLoc DL(N);
2503 // If the flag result is dead, turn this into an ADD.
2504 if (!N->hasAnyUseOfValue(1))
2505 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
2506 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
2508 // canonicalize constant to RHS.
2509 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2510 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2511 if (N0C && !N1C)
2512 return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0);
2514 // fold (addc x, 0) -> x + no carry out
2515 if (isNullConstant(N1))
2516 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
2517 DL, MVT::Glue));
2519 // If it cannot overflow, transform into an add.
2520 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
2521 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
2522 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
2524 return SDValue();
2527 static SDValue flipBoolean(SDValue V, const SDLoc &DL,
2528 SelectionDAG &DAG, const TargetLowering &TLI) {
2529 EVT VT = V.getValueType();
2531 SDValue Cst;
2532 switch (TLI.getBooleanContents(VT)) {
2533 case TargetLowering::ZeroOrOneBooleanContent:
2534 case TargetLowering::UndefinedBooleanContent:
2535 Cst = DAG.getConstant(1, DL, VT);
2536 break;
2537 case TargetLowering::ZeroOrNegativeOneBooleanContent:
2538 Cst = DAG.getAllOnesConstant(DL, VT);
2539 break;
2542 return DAG.getNode(ISD::XOR, DL, VT, V, Cst);
2546 * Flips a boolean if it is cheaper to compute. If the Force parameters is set,
2547 * then the flip also occurs if computing the inverse is the same cost.
2548 * This function returns an empty SDValue in case it cannot flip the boolean
2549 * without increasing the cost of the computation. If you want to flip a boolean
2550 * no matter what, use flipBoolean.
2552 static SDValue extractBooleanFlip(SDValue V, SelectionDAG &DAG,
2553 const TargetLowering &TLI,
2554 bool Force) {
2555 if (Force && isa<ConstantSDNode>(V))
2556 return flipBoolean(V, SDLoc(V), DAG, TLI);
2558 if (V.getOpcode() != ISD::XOR)
2559 return SDValue();
2561 ConstantSDNode *Const = isConstOrConstSplat(V.getOperand(1), false);
2562 if (!Const)
2563 return SDValue();
2565 EVT VT = V.getValueType();
2567 bool IsFlip = false;
2568 switch(TLI.getBooleanContents(VT)) {
2569 case TargetLowering::ZeroOrOneBooleanContent:
2570 IsFlip = Const->isOne();
2571 break;
2572 case TargetLowering::ZeroOrNegativeOneBooleanContent:
2573 IsFlip = Const->isAllOnesValue();
2574 break;
2575 case TargetLowering::UndefinedBooleanContent:
2576 IsFlip = (Const->getAPIntValue() & 0x01) == 1;
2577 break;
2580 if (IsFlip)
2581 return V.getOperand(0);
2582 if (Force)
2583 return flipBoolean(V, SDLoc(V), DAG, TLI);
2584 return SDValue();
2587 SDValue DAGCombiner::visitADDO(SDNode *N) {
2588 SDValue N0 = N->getOperand(0);
2589 SDValue N1 = N->getOperand(1);
2590 EVT VT = N0.getValueType();
2591 bool IsSigned = (ISD::SADDO == N->getOpcode());
2593 EVT CarryVT = N->getValueType(1);
2594 SDLoc DL(N);
2596 // If the flag result is dead, turn this into an ADD.
2597 if (!N->hasAnyUseOfValue(1))
2598 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
2599 DAG.getUNDEF(CarryVT));
2601 // canonicalize constant to RHS.
2602 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
2603 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
2604 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0);
2606 // fold (addo x, 0) -> x + no carry out
2607 if (isNullOrNullSplat(N1))
2608 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
2610 if (!IsSigned) {
2611 // If it cannot overflow, transform into an add.
2612 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
2613 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
2614 DAG.getConstant(0, DL, CarryVT));
2616 // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry.
2617 if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) {
2618 SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(),
2619 DAG.getConstant(0, DL, VT), N0.getOperand(0));
2620 return CombineTo(N, Sub,
2621 flipBoolean(Sub.getValue(1), DL, DAG, TLI));
2624 if (SDValue Combined = visitUADDOLike(N0, N1, N))
2625 return Combined;
2627 if (SDValue Combined = visitUADDOLike(N1, N0, N))
2628 return Combined;
2631 return SDValue();
2634 SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) {
2635 EVT VT = N0.getValueType();
2636 if (VT.isVector())
2637 return SDValue();
2639 // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
2640 // If Y + 1 cannot overflow.
2641 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) {
2642 SDValue Y = N1.getOperand(0);
2643 SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType());
2644 if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never)
2645 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y,
2646 N1.getOperand(2));
2649 // (uaddo X, Carry) -> (addcarry X, 0, Carry)
2650 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT))
2651 if (SDValue Carry = getAsCarry(TLI, N1))
2652 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0,
2653 DAG.getConstant(0, SDLoc(N), VT), Carry);
2655 return SDValue();
2658 SDValue DAGCombiner::visitADDE(SDNode *N) {
2659 SDValue N0 = N->getOperand(0);
2660 SDValue N1 = N->getOperand(1);
2661 SDValue CarryIn = N->getOperand(2);
2663 // canonicalize constant to RHS
2664 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2665 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2666 if (N0C && !N1C)
2667 return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
2668 N1, N0, CarryIn);
2670 // fold (adde x, y, false) -> (addc x, y)
2671 if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
2672 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
2674 return SDValue();
2677 SDValue DAGCombiner::visitADDCARRY(SDNode *N) {
2678 SDValue N0 = N->getOperand(0);
2679 SDValue N1 = N->getOperand(1);
2680 SDValue CarryIn = N->getOperand(2);
2681 SDLoc DL(N);
2683 // canonicalize constant to RHS
2684 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2685 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2686 if (N0C && !N1C)
2687 return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn);
2689 // fold (addcarry x, y, false) -> (uaddo x, y)
2690 if (isNullConstant(CarryIn)) {
2691 if (!LegalOperations ||
2692 TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0)))
2693 return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1);
2696 // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry.
2697 if (isNullConstant(N0) && isNullConstant(N1)) {
2698 EVT VT = N0.getValueType();
2699 EVT CarryVT = CarryIn.getValueType();
2700 SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT);
2701 AddToWorklist(CarryExt.getNode());
2702 return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt,
2703 DAG.getConstant(1, DL, VT)),
2704 DAG.getConstant(0, DL, CarryVT));
2707 if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N))
2708 return Combined;
2710 if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N))
2711 return Combined;
2713 return SDValue();
2717 * If we are facing some sort of diamond carry propapagtion pattern try to
2718 * break it up to generate something like:
2719 * (addcarry X, 0, (addcarry A, B, Z):Carry)
2721 * The end result is usually an increase in operation required, but because the
2722 * carry is now linearized, other tranforms can kick in and optimize the DAG.
2724 * Patterns typically look something like
2725 * (uaddo A, B)
2726 * / \
2727 * Carry Sum
2728 * | \
2729 * | (addcarry *, 0, Z)
2730 * | /
2731 * \ Carry
2732 * | /
2733 * (addcarry X, *, *)
2735 * But numerous variation exist. Our goal is to identify A, B, X and Z and
2736 * produce a combine with a single path for carry propagation.
2738 static SDValue combineADDCARRYDiamond(DAGCombiner &Combiner, SelectionDAG &DAG,
2739 SDValue X, SDValue Carry0, SDValue Carry1,
2740 SDNode *N) {
2741 if (Carry1.getResNo() != 1 || Carry0.getResNo() != 1)
2742 return SDValue();
2743 if (Carry1.getOpcode() != ISD::UADDO)
2744 return SDValue();
2746 SDValue Z;
2749 * First look for a suitable Z. It will present itself in the form of
2750 * (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true
2752 if (Carry0.getOpcode() == ISD::ADDCARRY &&
2753 isNullConstant(Carry0.getOperand(1))) {
2754 Z = Carry0.getOperand(2);
2755 } else if (Carry0.getOpcode() == ISD::UADDO &&
2756 isOneConstant(Carry0.getOperand(1))) {
2757 EVT VT = Combiner.getSetCCResultType(Carry0.getValueType());
2758 Z = DAG.getConstant(1, SDLoc(Carry0.getOperand(1)), VT);
2759 } else {
2760 // We couldn't find a suitable Z.
2761 return SDValue();
2765 auto cancelDiamond = [&](SDValue A,SDValue B) {
2766 SDLoc DL(N);
2767 SDValue NewY = DAG.getNode(ISD::ADDCARRY, DL, Carry0->getVTList(), A, B, Z);
2768 Combiner.AddToWorklist(NewY.getNode());
2769 return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), X,
2770 DAG.getConstant(0, DL, X.getValueType()),
2771 NewY.getValue(1));
2775 * (uaddo A, B)
2777 * Sum
2779 * (addcarry *, 0, Z)
2781 if (Carry0.getOperand(0) == Carry1.getValue(0)) {
2782 return cancelDiamond(Carry1.getOperand(0), Carry1.getOperand(1));
2786 * (addcarry A, 0, Z)
2788 * Sum
2790 * (uaddo *, B)
2792 if (Carry1.getOperand(0) == Carry0.getValue(0)) {
2793 return cancelDiamond(Carry0.getOperand(0), Carry1.getOperand(1));
2796 if (Carry1.getOperand(1) == Carry0.getValue(0)) {
2797 return cancelDiamond(Carry1.getOperand(0), Carry0.getOperand(0));
2800 return SDValue();
2803 SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn,
2804 SDNode *N) {
2805 // fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry.
2806 if (isBitwiseNot(N0))
2807 if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true)) {
2808 SDLoc DL(N);
2809 SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(), N1,
2810 N0.getOperand(0), NotC);
2811 return CombineTo(N, Sub,
2812 flipBoolean(Sub.getValue(1), DL, DAG, TLI));
2815 // Iff the flag result is dead:
2816 // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry)
2817 // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo
2818 // or the dependency between the instructions.
2819 if ((N0.getOpcode() == ISD::ADD ||
2820 (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0 &&
2821 N0.getValue(1) != CarryIn)) &&
2822 isNullConstant(N1) && !N->hasAnyUseOfValue(1))
2823 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(),
2824 N0.getOperand(0), N0.getOperand(1), CarryIn);
2827 * When one of the addcarry argument is itself a carry, we may be facing
2828 * a diamond carry propagation. In which case we try to transform the DAG
2829 * to ensure linear carry propagation if that is possible.
2831 if (auto Y = getAsCarry(TLI, N1)) {
2832 // Because both are carries, Y and Z can be swapped.
2833 if (auto R = combineADDCARRYDiamond(*this, DAG, N0, Y, CarryIn, N))
2834 return R;
2835 if (auto R = combineADDCARRYDiamond(*this, DAG, N0, CarryIn, Y, N))
2836 return R;
2839 return SDValue();
2842 // Since it may not be valid to emit a fold to zero for vector initializers
2843 // check if we can before folding.
2844 static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT,
2845 SelectionDAG &DAG, bool LegalOperations) {
2846 if (!VT.isVector())
2847 return DAG.getConstant(0, DL, VT);
2848 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
2849 return DAG.getConstant(0, DL, VT);
2850 return SDValue();
2853 SDValue DAGCombiner::visitSUB(SDNode *N) {
2854 SDValue N0 = N->getOperand(0);
2855 SDValue N1 = N->getOperand(1);
2856 EVT VT = N0.getValueType();
2857 SDLoc DL(N);
2859 // fold vector ops
2860 if (VT.isVector()) {
2861 if (SDValue FoldedVOp = SimplifyVBinOp(N))
2862 return FoldedVOp;
2864 // fold (sub x, 0) -> x, vector edition
2865 if (ISD::isBuildVectorAllZeros(N1.getNode()))
2866 return N0;
2869 // fold (sub x, x) -> 0
2870 // FIXME: Refactor this and xor and other similar operations together.
2871 if (N0 == N1)
2872 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
2873 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
2874 DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
2875 // fold (sub c1, c2) -> c1-c2
2876 return DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N0.getNode(),
2877 N1.getNode());
2880 if (SDValue NewSel = foldBinOpIntoSelect(N))
2881 return NewSel;
2883 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
2885 // fold (sub x, c) -> (add x, -c)
2886 if (N1C) {
2887 return DAG.getNode(ISD::ADD, DL, VT, N0,
2888 DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
2891 if (isNullOrNullSplat(N0)) {
2892 unsigned BitWidth = VT.getScalarSizeInBits();
2893 // Right-shifting everything out but the sign bit followed by negation is
2894 // the same as flipping arithmetic/logical shift type without the negation:
2895 // -(X >>u 31) -> (X >>s 31)
2896 // -(X >>s 31) -> (X >>u 31)
2897 if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) {
2898 ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1));
2899 if (ShiftAmt && ShiftAmt->getAPIntValue() == (BitWidth - 1)) {
2900 auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA;
2901 if (!LegalOperations || TLI.isOperationLegal(NewSh, VT))
2902 return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1));
2906 // 0 - X --> 0 if the sub is NUW.
2907 if (N->getFlags().hasNoUnsignedWrap())
2908 return N0;
2910 if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) {
2911 // N1 is either 0 or the minimum signed value. If the sub is NSW, then
2912 // N1 must be 0 because negating the minimum signed value is undefined.
2913 if (N->getFlags().hasNoSignedWrap())
2914 return N0;
2916 // 0 - X --> X if X is 0 or the minimum signed value.
2917 return N1;
2921 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
2922 if (isAllOnesOrAllOnesSplat(N0))
2923 return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
2925 // fold (A - (0-B)) -> A+B
2926 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0)))
2927 return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1));
2929 // fold A-(A-B) -> B
2930 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
2931 return N1.getOperand(1);
2933 // fold (A+B)-A -> B
2934 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
2935 return N0.getOperand(1);
2937 // fold (A+B)-B -> A
2938 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
2939 return N0.getOperand(0);
2941 // fold (A+C1)-C2 -> A+(C1-C2)
2942 if (N0.getOpcode() == ISD::ADD &&
2943 isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
2944 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
2945 SDValue NewC = DAG.FoldConstantArithmetic(
2946 ISD::SUB, DL, VT, N0.getOperand(1).getNode(), N1.getNode());
2947 assert(NewC && "Constant folding failed");
2948 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC);
2951 // fold C2-(A+C1) -> (C2-C1)-A
2952 if (N1.getOpcode() == ISD::ADD) {
2953 SDValue N11 = N1.getOperand(1);
2954 if (isConstantOrConstantVector(N0, /* NoOpaques */ true) &&
2955 isConstantOrConstantVector(N11, /* NoOpaques */ true)) {
2956 SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N0.getNode(),
2957 N11.getNode());
2958 assert(NewC && "Constant folding failed");
2959 return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0));
2963 // fold (A-C1)-C2 -> A-(C1+C2)
2964 if (N0.getOpcode() == ISD::SUB &&
2965 isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
2966 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
2967 SDValue NewC = DAG.FoldConstantArithmetic(
2968 ISD::ADD, DL, VT, N0.getOperand(1).getNode(), N1.getNode());
2969 assert(NewC && "Constant folding failed");
2970 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC);
2973 // fold (c1-A)-c2 -> (c1-c2)-A
2974 if (N0.getOpcode() == ISD::SUB &&
2975 isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
2976 isConstantOrConstantVector(N0.getOperand(0), /* NoOpaques */ true)) {
2977 SDValue NewC = DAG.FoldConstantArithmetic(
2978 ISD::SUB, DL, VT, N0.getOperand(0).getNode(), N1.getNode());
2979 assert(NewC && "Constant folding failed");
2980 return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1));
2983 // fold ((A+(B+or-C))-B) -> A+or-C
2984 if (N0.getOpcode() == ISD::ADD &&
2985 (N0.getOperand(1).getOpcode() == ISD::SUB ||
2986 N0.getOperand(1).getOpcode() == ISD::ADD) &&
2987 N0.getOperand(1).getOperand(0) == N1)
2988 return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0),
2989 N0.getOperand(1).getOperand(1));
2991 // fold ((A+(C+B))-B) -> A+C
2992 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD &&
2993 N0.getOperand(1).getOperand(1) == N1)
2994 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0),
2995 N0.getOperand(1).getOperand(0));
2997 // fold ((A-(B-C))-C) -> A-B
2998 if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB &&
2999 N0.getOperand(1).getOperand(1) == N1)
3000 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0),
3001 N0.getOperand(1).getOperand(0));
3003 // fold (A-(B-C)) -> A+(C-B)
3004 if (N1.getOpcode() == ISD::SUB && N1.hasOneUse())
3005 return DAG.getNode(ISD::ADD, DL, VT, N0,
3006 DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1),
3007 N1.getOperand(0)));
3009 // fold (X - (-Y * Z)) -> (X + (Y * Z))
3010 if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) {
3011 if (N1.getOperand(0).getOpcode() == ISD::SUB &&
3012 isNullOrNullSplat(N1.getOperand(0).getOperand(0))) {
3013 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT,
3014 N1.getOperand(0).getOperand(1),
3015 N1.getOperand(1));
3016 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul);
3018 if (N1.getOperand(1).getOpcode() == ISD::SUB &&
3019 isNullOrNullSplat(N1.getOperand(1).getOperand(0))) {
3020 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT,
3021 N1.getOperand(0),
3022 N1.getOperand(1).getOperand(1));
3023 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul);
3027 // If either operand of a sub is undef, the result is undef
3028 if (N0.isUndef())
3029 return N0;
3030 if (N1.isUndef())
3031 return N1;
3033 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG))
3034 return V;
3036 if (SDValue V = foldAddSubOfSignBit(N, DAG))
3037 return V;
3039 if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, SDLoc(N)))
3040 return V;
3042 // (x - y) - 1 -> add (xor y, -1), x
3043 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && isOneOrOneSplat(N1)) {
3044 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1),
3045 DAG.getAllOnesConstant(DL, VT));
3046 return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0));
3049 // Look for:
3050 // sub y, (xor x, -1)
3051 // And if the target does not like this form then turn into:
3052 // add (add x, y), 1
3053 if (TLI.preferIncOfAddToSubOfNot(VT) && N1.hasOneUse() && isBitwiseNot(N1)) {
3054 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(0));
3055 return DAG.getNode(ISD::ADD, DL, VT, Add, DAG.getConstant(1, DL, VT));
3058 // Hoist one-use addition by non-opaque constant:
3059 // (x + C) - y -> (x - y) + C
3060 if (N0.hasOneUse() && N0.getOpcode() == ISD::ADD &&
3061 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
3062 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1);
3063 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1));
3065 // y - (x + C) -> (y - x) - C
3066 if (N1.hasOneUse() && N1.getOpcode() == ISD::ADD &&
3067 isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) {
3068 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0));
3069 return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1));
3071 // (x - C) - y -> (x - y) - C
3072 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
3073 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
3074 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
3075 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1);
3076 return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1));
3078 // (C - x) - y -> C - (x + y)
3079 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
3080 isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) {
3081 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), N1);
3082 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), Add);
3085 // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1'
3086 // rather than 'sub 0/1' (the sext should get folded).
3087 // sub X, (zext i1 Y) --> add X, (sext i1 Y)
3088 if (N1.getOpcode() == ISD::ZERO_EXTEND &&
3089 N1.getOperand(0).getScalarValueSizeInBits() == 1 &&
3090 TLI.getBooleanContents(VT) ==
3091 TargetLowering::ZeroOrNegativeOneBooleanContent) {
3092 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0));
3093 return DAG.getNode(ISD::ADD, DL, VT, N0, SExt);
3096 // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X)
3097 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) {
3098 if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) {
3099 SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1);
3100 SDValue S0 = N1.getOperand(0);
3101 if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0)) {
3102 unsigned OpSizeInBits = VT.getScalarSizeInBits();
3103 if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1)))
3104 if (C->getAPIntValue() == (OpSizeInBits - 1))
3105 return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0);
3110 // If the relocation model supports it, consider symbol offsets.
3111 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
3112 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
3113 // fold (sub Sym, c) -> Sym-c
3114 if (N1C && GA->getOpcode() == ISD::GlobalAddress)
3115 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
3116 GA->getOffset() -
3117 (uint64_t)N1C->getSExtValue());
3118 // fold (sub Sym+c1, Sym+c2) -> c1-c2
3119 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
3120 if (GA->getGlobal() == GB->getGlobal())
3121 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
3122 DL, VT);
3125 // sub X, (sextinreg Y i1) -> add X, (and Y 1)
3126 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
3127 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
3128 if (TN->getVT() == MVT::i1) {
3129 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
3130 DAG.getConstant(1, DL, VT));
3131 return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt);
3135 // Prefer an add for more folding potential and possibly better codegen:
3136 // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1)
3137 if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) {
3138 SDValue ShAmt = N1.getOperand(1);
3139 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
3140 if (ShAmtC &&
3141 ShAmtC->getAPIntValue() == (N1.getScalarValueSizeInBits() - 1)) {
3142 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt);
3143 return DAG.getNode(ISD::ADD, DL, VT, N0, SRA);
3147 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) {
3148 // (sub Carry, X) -> (addcarry (sub 0, X), 0, Carry)
3149 if (SDValue Carry = getAsCarry(TLI, N0)) {
3150 SDValue X = N1;
3151 SDValue Zero = DAG.getConstant(0, DL, VT);
3152 SDValue NegX = DAG.getNode(ISD::SUB, DL, VT, Zero, X);
3153 return DAG.getNode(ISD::ADDCARRY, DL,
3154 DAG.getVTList(VT, Carry.getValueType()), NegX, Zero,
3155 Carry);
3159 return SDValue();
3162 SDValue DAGCombiner::visitSUBSAT(SDNode *N) {
3163 SDValue N0 = N->getOperand(0);
3164 SDValue N1 = N->getOperand(1);
3165 EVT VT = N0.getValueType();
3166 SDLoc DL(N);
3168 // fold vector ops
3169 if (VT.isVector()) {
3170 // TODO SimplifyVBinOp
3172 // fold (sub_sat x, 0) -> x, vector edition
3173 if (ISD::isBuildVectorAllZeros(N1.getNode()))
3174 return N0;
3177 // fold (sub_sat x, undef) -> 0
3178 if (N0.isUndef() || N1.isUndef())
3179 return DAG.getConstant(0, DL, VT);
3181 // fold (sub_sat x, x) -> 0
3182 if (N0 == N1)
3183 return DAG.getConstant(0, DL, VT);
3185 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
3186 DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
3187 // fold (sub_sat c1, c2) -> c3
3188 return DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, N0.getNode(),
3189 N1.getNode());
3192 // fold (sub_sat x, 0) -> x
3193 if (isNullConstant(N1))
3194 return N0;
3196 return SDValue();
3199 SDValue DAGCombiner::visitSUBC(SDNode *N) {
3200 SDValue N0 = N->getOperand(0);
3201 SDValue N1 = N->getOperand(1);
3202 EVT VT = N0.getValueType();
3203 SDLoc DL(N);
3205 // If the flag result is dead, turn this into an SUB.
3206 if (!N->hasAnyUseOfValue(1))
3207 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
3208 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
3210 // fold (subc x, x) -> 0 + no borrow
3211 if (N0 == N1)
3212 return CombineTo(N, DAG.getConstant(0, DL, VT),
3213 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
3215 // fold (subc x, 0) -> x + no borrow
3216 if (isNullConstant(N1))
3217 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
3219 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
3220 if (isAllOnesConstant(N0))
3221 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
3222 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
3224 return SDValue();
3227 SDValue DAGCombiner::visitSUBO(SDNode *N) {
3228 SDValue N0 = N->getOperand(0);
3229 SDValue N1 = N->getOperand(1);
3230 EVT VT = N0.getValueType();
3231 bool IsSigned = (ISD::SSUBO == N->getOpcode());
3233 EVT CarryVT = N->getValueType(1);
3234 SDLoc DL(N);
3236 // If the flag result is dead, turn this into an SUB.
3237 if (!N->hasAnyUseOfValue(1))
3238 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
3239 DAG.getUNDEF(CarryVT));
3241 // fold (subo x, x) -> 0 + no borrow
3242 if (N0 == N1)
3243 return CombineTo(N, DAG.getConstant(0, DL, VT),
3244 DAG.getConstant(0, DL, CarryVT));
3246 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
3248 // fold (subox, c) -> (addo x, -c)
3249 if (IsSigned && N1C && !N1C->getAPIntValue().isMinSignedValue()) {
3250 return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0,
3251 DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
3254 // fold (subo x, 0) -> x + no borrow
3255 if (isNullOrNullSplat(N1))
3256 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
3258 // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow
3259 if (!IsSigned && isAllOnesOrAllOnesSplat(N0))
3260 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
3261 DAG.getConstant(0, DL, CarryVT));
3263 return SDValue();
3266 SDValue DAGCombiner::visitSUBE(SDNode *N) {
3267 SDValue N0 = N->getOperand(0);
3268 SDValue N1 = N->getOperand(1);
3269 SDValue CarryIn = N->getOperand(2);
3271 // fold (sube x, y, false) -> (subc x, y)
3272 if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
3273 return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
3275 return SDValue();
3278 SDValue DAGCombiner::visitSUBCARRY(SDNode *N) {
3279 SDValue N0 = N->getOperand(0);
3280 SDValue N1 = N->getOperand(1);
3281 SDValue CarryIn = N->getOperand(2);
3283 // fold (subcarry x, y, false) -> (usubo x, y)
3284 if (isNullConstant(CarryIn)) {
3285 if (!LegalOperations ||
3286 TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0)))
3287 return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1);
3290 return SDValue();
3293 // Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and
3294 // UMULFIXSAT here.
3295 SDValue DAGCombiner::visitMULFIX(SDNode *N) {
3296 SDValue N0 = N->getOperand(0);
3297 SDValue N1 = N->getOperand(1);
3298 SDValue Scale = N->getOperand(2);
3299 EVT VT = N0.getValueType();
3301 // fold (mulfix x, undef, scale) -> 0
3302 if (N0.isUndef() || N1.isUndef())
3303 return DAG.getConstant(0, SDLoc(N), VT);
3305 // Canonicalize constant to RHS (vector doesn't have to splat)
3306 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
3307 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
3308 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0, Scale);
3310 // fold (mulfix x, 0, scale) -> 0
3311 if (isNullConstant(N1))
3312 return DAG.getConstant(0, SDLoc(N), VT);
3314 return SDValue();
3317 SDValue DAGCombiner::visitMUL(SDNode *N) {
3318 SDValue N0 = N->getOperand(0);
3319 SDValue N1 = N->getOperand(1);
3320 EVT VT = N0.getValueType();
3322 // fold (mul x, undef) -> 0
3323 if (N0.isUndef() || N1.isUndef())
3324 return DAG.getConstant(0, SDLoc(N), VT);
3326 bool N0IsConst = false;
3327 bool N1IsConst = false;
3328 bool N1IsOpaqueConst = false;
3329 bool N0IsOpaqueConst = false;
3330 APInt ConstValue0, ConstValue1;
3331 // fold vector ops
3332 if (VT.isVector()) {
3333 if (SDValue FoldedVOp = SimplifyVBinOp(N))
3334 return FoldedVOp;
3336 N0IsConst = ISD::isConstantSplatVector(N0.getNode(), ConstValue0);
3337 N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1);
3338 assert((!N0IsConst ||
3339 ConstValue0.getBitWidth() == VT.getScalarSizeInBits()) &&
3340 "Splat APInt should be element width");
3341 assert((!N1IsConst ||
3342 ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) &&
3343 "Splat APInt should be element width");
3344 } else {
3345 N0IsConst = isa<ConstantSDNode>(N0);
3346 if (N0IsConst) {
3347 ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue();
3348 N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque();
3350 N1IsConst = isa<ConstantSDNode>(N1);
3351 if (N1IsConst) {
3352 ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue();
3353 N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque();
3357 // fold (mul c1, c2) -> c1*c2
3358 if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst)
3359 return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT,
3360 N0.getNode(), N1.getNode());
3362 // canonicalize constant to RHS (vector doesn't have to splat)
3363 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
3364 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
3365 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);
3366 // fold (mul x, 0) -> 0
3367 if (N1IsConst && ConstValue1.isNullValue())
3368 return N1;
3369 // fold (mul x, 1) -> x
3370 if (N1IsConst && ConstValue1.isOneValue())
3371 return N0;
3373 if (SDValue NewSel = foldBinOpIntoSelect(N))
3374 return NewSel;
3376 // fold (mul x, -1) -> 0-x
3377 if (N1IsConst && ConstValue1.isAllOnesValue()) {
3378 SDLoc DL(N);
3379 return DAG.getNode(ISD::SUB, DL, VT,
3380 DAG.getConstant(0, DL, VT), N0);
3382 // fold (mul x, (1 << c)) -> x << c
3383 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
3384 DAG.isKnownToBeAPowerOfTwo(N1) &&
3385 (!VT.isVector() || Level <= AfterLegalizeVectorOps)) {
3386 SDLoc DL(N);
3387 SDValue LogBase2 = BuildLogBase2(N1, DL);
3388 EVT ShiftVT = getShiftAmountTy(N0.getValueType());
3389 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
3390 return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc);
3392 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
3393 if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2()) {
3394 unsigned Log2Val = (-ConstValue1).logBase2();
3395 SDLoc DL(N);
3396 // FIXME: If the input is something that is easily negated (e.g. a
3397 // single-use add), we should put the negate there.
3398 return DAG.getNode(ISD::SUB, DL, VT,
3399 DAG.getConstant(0, DL, VT),
3400 DAG.getNode(ISD::SHL, DL, VT, N0,
3401 DAG.getConstant(Log2Val, DL,
3402 getShiftAmountTy(N0.getValueType()))));
3405 // Try to transform multiply-by-(power-of-2 +/- 1) into shift and add/sub.
3406 // mul x, (2^N + 1) --> add (shl x, N), x
3407 // mul x, (2^N - 1) --> sub (shl x, N), x
3408 // Examples: x * 33 --> (x << 5) + x
3409 // x * 15 --> (x << 4) - x
3410 // x * -33 --> -((x << 5) + x)
3411 // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4)
3412 if (N1IsConst && TLI.decomposeMulByConstant(*DAG.getContext(), VT, N1)) {
3413 // TODO: We could handle more general decomposition of any constant by
3414 // having the target set a limit on number of ops and making a
3415 // callback to determine that sequence (similar to sqrt expansion).
3416 unsigned MathOp = ISD::DELETED_NODE;
3417 APInt MulC = ConstValue1.abs();
3418 if ((MulC - 1).isPowerOf2())
3419 MathOp = ISD::ADD;
3420 else if ((MulC + 1).isPowerOf2())
3421 MathOp = ISD::SUB;
3423 if (MathOp != ISD::DELETED_NODE) {
3424 unsigned ShAmt =
3425 MathOp == ISD::ADD ? (MulC - 1).logBase2() : (MulC + 1).logBase2();
3426 assert(ShAmt < VT.getScalarSizeInBits() &&
3427 "multiply-by-constant generated out of bounds shift");
3428 SDLoc DL(N);
3429 SDValue Shl =
3430 DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShAmt, DL, VT));
3431 SDValue R = DAG.getNode(MathOp, DL, VT, Shl, N0);
3432 if (ConstValue1.isNegative())
3433 R = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), R);
3434 return R;
3438 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
3439 if (N0.getOpcode() == ISD::SHL &&
3440 isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
3441 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
3442 SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1));
3443 if (isConstantOrConstantVector(C3))
3444 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3);
3447 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
3448 // use.
3450 SDValue Sh(nullptr, 0), Y(nullptr, 0);
3452 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
3453 if (N0.getOpcode() == ISD::SHL &&
3454 isConstantOrConstantVector(N0.getOperand(1)) &&
3455 N0.getNode()->hasOneUse()) {
3456 Sh = N0; Y = N1;
3457 } else if (N1.getOpcode() == ISD::SHL &&
3458 isConstantOrConstantVector(N1.getOperand(1)) &&
3459 N1.getNode()->hasOneUse()) {
3460 Sh = N1; Y = N0;
3463 if (Sh.getNode()) {
3464 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y);
3465 return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1));
3469 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
3470 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) &&
3471 N0.getOpcode() == ISD::ADD &&
3472 DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) &&
3473 isMulAddWithConstProfitable(N, N0, N1))
3474 return DAG.getNode(ISD::ADD, SDLoc(N), VT,
3475 DAG.getNode(ISD::MUL, SDLoc(N0), VT,
3476 N0.getOperand(0), N1),
3477 DAG.getNode(ISD::MUL, SDLoc(N1), VT,
3478 N0.getOperand(1), N1));
3480 // reassociate mul
3481 if (SDValue RMUL = reassociateOps(ISD::MUL, SDLoc(N), N0, N1, N->getFlags()))
3482 return RMUL;
3484 return SDValue();
3487 /// Return true if divmod libcall is available.
3488 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
3489 const TargetLowering &TLI) {
3490 RTLIB::Libcall LC;
3491 EVT NodeType = Node->getValueType(0);
3492 if (!NodeType.isSimple())
3493 return false;
3494 switch (NodeType.getSimpleVT().SimpleTy) {
3495 default: return false; // No libcall for vector types.
3496 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
3497 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
3498 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
3499 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
3500 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
3503 return TLI.getLibcallName(LC) != nullptr;
3506 /// Issue divrem if both quotient and remainder are needed.
3507 SDValue DAGCombiner::useDivRem(SDNode *Node) {
3508 if (Node->use_empty())
3509 return SDValue(); // This is a dead node, leave it alone.
3511 unsigned Opcode = Node->getOpcode();
3512 bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM);
3513 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3515 // DivMod lib calls can still work on non-legal types if using lib-calls.
3516 EVT VT = Node->getValueType(0);
3517 if (VT.isVector() || !VT.isInteger())
3518 return SDValue();
3520 if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT))
3521 return SDValue();
3523 // If DIVREM is going to get expanded into a libcall,
3524 // but there is no libcall available, then don't combine.
3525 if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) &&
3526 !isDivRemLibcallAvailable(Node, isSigned, TLI))
3527 return SDValue();
3529 // If div is legal, it's better to do the normal expansion
3530 unsigned OtherOpcode = 0;
3531 if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) {
3532 OtherOpcode = isSigned ? ISD::SREM : ISD::UREM;
3533 if (TLI.isOperationLegalOrCustom(Opcode, VT))
3534 return SDValue();
3535 } else {
3536 OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
3537 if (TLI.isOperationLegalOrCustom(OtherOpcode, VT))
3538 return SDValue();
3541 SDValue Op0 = Node->getOperand(0);
3542 SDValue Op1 = Node->getOperand(1);
3543 SDValue combined;
3544 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
3545 UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
3546 SDNode *User = *UI;
3547 if (User == Node || User->getOpcode() == ISD::DELETED_NODE ||
3548 User->use_empty())
3549 continue;
3550 // Convert the other matching node(s), too;
3551 // otherwise, the DIVREM may get target-legalized into something
3552 // target-specific that we won't be able to recognize.
3553 unsigned UserOpc = User->getOpcode();
3554 if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) &&
3555 User->getOperand(0) == Op0 &&
3556 User->getOperand(1) == Op1) {
3557 if (!combined) {
3558 if (UserOpc == OtherOpcode) {
3559 SDVTList VTs = DAG.getVTList(VT, VT);
3560 combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1);
3561 } else if (UserOpc == DivRemOpc) {
3562 combined = SDValue(User, 0);
3563 } else {
3564 assert(UserOpc == Opcode);
3565 continue;
3568 if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV)
3569 CombineTo(User, combined);
3570 else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM)
3571 CombineTo(User, combined.getValue(1));
3574 return combined;
3577 static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) {
3578 SDValue N0 = N->getOperand(0);
3579 SDValue N1 = N->getOperand(1);
3580 EVT VT = N->getValueType(0);
3581 SDLoc DL(N);
3583 unsigned Opc = N->getOpcode();
3584 bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc);
3585 ConstantSDNode *N1C = isConstOrConstSplat(N1);
3587 // X / undef -> undef
3588 // X % undef -> undef
3589 // X / 0 -> undef
3590 // X % 0 -> undef
3591 // NOTE: This includes vectors where any divisor element is zero/undef.
3592 if (DAG.isUndef(Opc, {N0, N1}))
3593 return DAG.getUNDEF(VT);
3595 // undef / X -> 0
3596 // undef % X -> 0
3597 if (N0.isUndef())
3598 return DAG.getConstant(0, DL, VT);
3600 // 0 / X -> 0
3601 // 0 % X -> 0
3602 ConstantSDNode *N0C = isConstOrConstSplat(N0);
3603 if (N0C && N0C->isNullValue())
3604 return N0;
3606 // X / X -> 1
3607 // X % X -> 0
3608 if (N0 == N1)
3609 return DAG.getConstant(IsDiv ? 1 : 0, DL, VT);
3611 // X / 1 -> X
3612 // X % 1 -> 0
3613 // If this is a boolean op (single-bit element type), we can't have
3614 // division-by-zero or remainder-by-zero, so assume the divisor is 1.
3615 // TODO: Similarly, if we're zero-extending a boolean divisor, then assume
3616 // it's a 1.
3617 if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1))
3618 return IsDiv ? N0 : DAG.getConstant(0, DL, VT);
3620 return SDValue();
3623 SDValue DAGCombiner::visitSDIV(SDNode *N) {
3624 SDValue N0 = N->getOperand(0);
3625 SDValue N1 = N->getOperand(1);
3626 EVT VT = N->getValueType(0);
3627 EVT CCVT = getSetCCResultType(VT);
3629 // fold vector ops
3630 if (VT.isVector())
3631 if (SDValue FoldedVOp = SimplifyVBinOp(N))
3632 return FoldedVOp;
3634 SDLoc DL(N);
3636 // fold (sdiv c1, c2) -> c1/c2
3637 ConstantSDNode *N0C = isConstOrConstSplat(N0);
3638 ConstantSDNode *N1C = isConstOrConstSplat(N1);
3639 if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque())
3640 return DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, N0C, N1C);
3641 // fold (sdiv X, -1) -> 0-X
3642 if (N1C && N1C->isAllOnesValue())
3643 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0);
3644 // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0)
3645 if (N1C && N1C->getAPIntValue().isMinSignedValue())
3646 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
3647 DAG.getConstant(1, DL, VT),
3648 DAG.getConstant(0, DL, VT));
3650 if (SDValue V = simplifyDivRem(N, DAG))
3651 return V;
3653 if (SDValue NewSel = foldBinOpIntoSelect(N))
3654 return NewSel;
3656 // If we know the sign bits of both operands are zero, strength reduce to a
3657 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
3658 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
3659 return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1);
3661 if (SDValue V = visitSDIVLike(N0, N1, N)) {
3662 // If the corresponding remainder node exists, update its users with
3663 // (Dividend - (Quotient * Divisor).
3664 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(),
3665 { N0, N1 })) {
3666 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
3667 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
3668 AddToWorklist(Mul.getNode());
3669 AddToWorklist(Sub.getNode());
3670 CombineTo(RemNode, Sub);
3672 return V;
3675 // sdiv, srem -> sdivrem
3676 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
3677 // true. Otherwise, we break the simplification logic in visitREM().
3678 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3679 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
3680 if (SDValue DivRem = useDivRem(N))
3681 return DivRem;
3683 return SDValue();
3686 SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) {
3687 SDLoc DL(N);
3688 EVT VT = N->getValueType(0);
3689 EVT CCVT = getSetCCResultType(VT);
3690 unsigned BitWidth = VT.getScalarSizeInBits();
3692 // Helper for determining whether a value is a power-2 constant scalar or a
3693 // vector of such elements.
3694 auto IsPowerOfTwo = [](ConstantSDNode *C) {
3695 if (C->isNullValue() || C->isOpaque())
3696 return false;
3697 if (C->getAPIntValue().isPowerOf2())
3698 return true;
3699 if ((-C->getAPIntValue()).isPowerOf2())
3700 return true;
3701 return false;
3704 // fold (sdiv X, pow2) -> simple ops after legalize
3705 // FIXME: We check for the exact bit here because the generic lowering gives
3706 // better results in that case. The target-specific lowering should learn how
3707 // to handle exact sdivs efficiently.
3708 if (!N->getFlags().hasExact() && ISD::matchUnaryPredicate(N1, IsPowerOfTwo)) {
3709 // Target-specific implementation of sdiv x, pow2.
3710 if (SDValue Res = BuildSDIVPow2(N))
3711 return Res;
3713 // Create constants that are functions of the shift amount value.
3714 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
3715 SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy);
3716 SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1);
3717 C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy);
3718 SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1);
3719 if (!isConstantOrConstantVector(Inexact))
3720 return SDValue();
3722 // Splat the sign bit into the register
3723 SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0,
3724 DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy));
3725 AddToWorklist(Sign.getNode());
3727 // Add (N0 < 0) ? abs2 - 1 : 0;
3728 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact);
3729 AddToWorklist(Srl.getNode());
3730 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl);
3731 AddToWorklist(Add.getNode());
3732 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1);
3733 AddToWorklist(Sra.getNode());
3735 // Special case: (sdiv X, 1) -> X
3736 // Special Case: (sdiv X, -1) -> 0-X
3737 SDValue One = DAG.getConstant(1, DL, VT);
3738 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT);
3739 SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ);
3740 SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ);
3741 SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes);
3742 Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra);
3744 // If dividing by a positive value, we're done. Otherwise, the result must
3745 // be negated.
3746 SDValue Zero = DAG.getConstant(0, DL, VT);
3747 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra);
3749 // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding.
3750 SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT);
3751 SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra);
3752 return Res;
3755 // If integer divide is expensive and we satisfy the requirements, emit an
3756 // alternate sequence. Targets may check function attributes for size/speed
3757 // trade-offs.
3758 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3759 if (isConstantOrConstantVector(N1) &&
3760 !TLI.isIntDivCheap(N->getValueType(0), Attr))
3761 if (SDValue Op = BuildSDIV(N))
3762 return Op;
3764 return SDValue();
3767 SDValue DAGCombiner::visitUDIV(SDNode *N) {
3768 SDValue N0 = N->getOperand(0);
3769 SDValue N1 = N->getOperand(1);
3770 EVT VT = N->getValueType(0);
3771 EVT CCVT = getSetCCResultType(VT);
3773 // fold vector ops
3774 if (VT.isVector())
3775 if (SDValue FoldedVOp = SimplifyVBinOp(N))
3776 return FoldedVOp;
3778 SDLoc DL(N);
3780 // fold (udiv c1, c2) -> c1/c2
3781 ConstantSDNode *N0C = isConstOrConstSplat(N0);
3782 ConstantSDNode *N1C = isConstOrConstSplat(N1);
3783 if (N0C && N1C)
3784 if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT,
3785 N0C, N1C))
3786 return Folded;
3787 // fold (udiv X, -1) -> select(X == -1, 1, 0)
3788 if (N1C && N1C->getAPIntValue().isAllOnesValue())
3789 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
3790 DAG.getConstant(1, DL, VT),
3791 DAG.getConstant(0, DL, VT));
3793 if (SDValue V = simplifyDivRem(N, DAG))
3794 return V;
3796 if (SDValue NewSel = foldBinOpIntoSelect(N))
3797 return NewSel;
3799 if (SDValue V = visitUDIVLike(N0, N1, N)) {
3800 // If the corresponding remainder node exists, update its users with
3801 // (Dividend - (Quotient * Divisor).
3802 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(),
3803 { N0, N1 })) {
3804 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
3805 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
3806 AddToWorklist(Mul.getNode());
3807 AddToWorklist(Sub.getNode());
3808 CombineTo(RemNode, Sub);
3810 return V;
3813 // sdiv, srem -> sdivrem
3814 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
3815 // true. Otherwise, we break the simplification logic in visitREM().
3816 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3817 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
3818 if (SDValue DivRem = useDivRem(N))
3819 return DivRem;
3821 return SDValue();
3824 SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) {
3825 SDLoc DL(N);
3826 EVT VT = N->getValueType(0);
3828 // fold (udiv x, (1 << c)) -> x >>u c
3829 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
3830 DAG.isKnownToBeAPowerOfTwo(N1)) {
3831 SDValue LogBase2 = BuildLogBase2(N1, DL);
3832 AddToWorklist(LogBase2.getNode());
3834 EVT ShiftVT = getShiftAmountTy(N0.getValueType());
3835 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
3836 AddToWorklist(Trunc.getNode());
3837 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
3840 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
3841 if (N1.getOpcode() == ISD::SHL) {
3842 SDValue N10 = N1.getOperand(0);
3843 if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) &&
3844 DAG.isKnownToBeAPowerOfTwo(N10)) {
3845 SDValue LogBase2 = BuildLogBase2(N10, DL);
3846 AddToWorklist(LogBase2.getNode());
3848 EVT ADDVT = N1.getOperand(1).getValueType();
3849 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT);
3850 AddToWorklist(Trunc.getNode());
3851 SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc);
3852 AddToWorklist(Add.getNode());
3853 return DAG.getNode(ISD::SRL, DL, VT, N0, Add);
3857 // fold (udiv x, c) -> alternate
3858 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3859 if (isConstantOrConstantVector(N1) &&
3860 !TLI.isIntDivCheap(N->getValueType(0), Attr))
3861 if (SDValue Op = BuildUDIV(N))
3862 return Op;
3864 return SDValue();
3867 // handles ISD::SREM and ISD::UREM
3868 SDValue DAGCombiner::visitREM(SDNode *N) {
3869 unsigned Opcode = N->getOpcode();
3870 SDValue N0 = N->getOperand(0);
3871 SDValue N1 = N->getOperand(1);
3872 EVT VT = N->getValueType(0);
3873 EVT CCVT = getSetCCResultType(VT);
3875 bool isSigned = (Opcode == ISD::SREM);
3876 SDLoc DL(N);
3878 // fold (rem c1, c2) -> c1%c2
3879 ConstantSDNode *N0C = isConstOrConstSplat(N0);
3880 ConstantSDNode *N1C = isConstOrConstSplat(N1);
3881 if (N0C && N1C)
3882 if (SDValue Folded = DAG.FoldConstantArithmetic(Opcode, DL, VT, N0C, N1C))
3883 return Folded;
3884 // fold (urem X, -1) -> select(X == -1, 0, x)
3885 if (!isSigned && N1C && N1C->getAPIntValue().isAllOnesValue())
3886 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
3887 DAG.getConstant(0, DL, VT), N0);
3889 if (SDValue V = simplifyDivRem(N, DAG))
3890 return V;
3892 if (SDValue NewSel = foldBinOpIntoSelect(N))
3893 return NewSel;
3895 if (isSigned) {
3896 // If we know the sign bits of both operands are zero, strength reduce to a
3897 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
3898 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
3899 return DAG.getNode(ISD::UREM, DL, VT, N0, N1);
3900 } else {
3901 SDValue NegOne = DAG.getAllOnesConstant(DL, VT);
3902 if (DAG.isKnownToBeAPowerOfTwo(N1)) {
3903 // fold (urem x, pow2) -> (and x, pow2-1)
3904 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
3905 AddToWorklist(Add.getNode());
3906 return DAG.getNode(ISD::AND, DL, VT, N0, Add);
3908 if (N1.getOpcode() == ISD::SHL &&
3909 DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) {
3910 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
3911 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
3912 AddToWorklist(Add.getNode());
3913 return DAG.getNode(ISD::AND, DL, VT, N0, Add);
3917 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3919 // If X/C can be simplified by the division-by-constant logic, lower
3920 // X%C to the equivalent of X-X/C*C.
3921 // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the
3922 // speculative DIV must not cause a DIVREM conversion. We guard against this
3923 // by skipping the simplification if isIntDivCheap(). When div is not cheap,
3924 // combine will not return a DIVREM. Regardless, checking cheapness here
3925 // makes sense since the simplification results in fatter code.
3926 if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) {
3927 SDValue OptimizedDiv =
3928 isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N);
3929 if (OptimizedDiv.getNode()) {
3930 // If the equivalent Div node also exists, update its users.
3931 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
3932 if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(),
3933 { N0, N1 }))
3934 CombineTo(DivNode, OptimizedDiv);
3935 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1);
3936 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
3937 AddToWorklist(OptimizedDiv.getNode());
3938 AddToWorklist(Mul.getNode());
3939 return Sub;
3943 // sdiv, srem -> sdivrem
3944 if (SDValue DivRem = useDivRem(N))
3945 return DivRem.getValue(1);
3947 return SDValue();
3950 SDValue DAGCombiner::visitMULHS(SDNode *N) {
3951 SDValue N0 = N->getOperand(0);
3952 SDValue N1 = N->getOperand(1);
3953 EVT VT = N->getValueType(0);
3954 SDLoc DL(N);
3956 if (VT.isVector()) {
3957 // fold (mulhs x, 0) -> 0
3958 // do not return N0/N1, because undef node may exist.
3959 if (ISD::isBuildVectorAllZeros(N0.getNode()) ||
3960 ISD::isBuildVectorAllZeros(N1.getNode()))
3961 return DAG.getConstant(0, DL, VT);
3964 // fold (mulhs x, 0) -> 0
3965 if (isNullConstant(N1))
3966 return N1;
3967 // fold (mulhs x, 1) -> (sra x, size(x)-1)
3968 if (isOneConstant(N1))
3969 return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0,
3970 DAG.getConstant(N0.getScalarValueSizeInBits() - 1, DL,
3971 getShiftAmountTy(N0.getValueType())));
3973 // fold (mulhs x, undef) -> 0
3974 if (N0.isUndef() || N1.isUndef())
3975 return DAG.getConstant(0, DL, VT);
3977 // If the type twice as wide is legal, transform the mulhs to a wider multiply
3978 // plus a shift.
3979 if (VT.isSimple() && !VT.isVector()) {
3980 MVT Simple = VT.getSimpleVT();
3981 unsigned SimpleSize = Simple.getSizeInBits();
3982 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
3983 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
3984 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
3985 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
3986 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
3987 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
3988 DAG.getConstant(SimpleSize, DL,
3989 getShiftAmountTy(N1.getValueType())));
3990 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
3994 return SDValue();
3997 SDValue DAGCombiner::visitMULHU(SDNode *N) {
3998 SDValue N0 = N->getOperand(0);
3999 SDValue N1 = N->getOperand(1);
4000 EVT VT = N->getValueType(0);
4001 SDLoc DL(N);
4003 if (VT.isVector()) {
4004 // fold (mulhu x, 0) -> 0
4005 // do not return N0/N1, because undef node may exist.
4006 if (ISD::isBuildVectorAllZeros(N0.getNode()) ||
4007 ISD::isBuildVectorAllZeros(N1.getNode()))
4008 return DAG.getConstant(0, DL, VT);
4011 // fold (mulhu x, 0) -> 0
4012 if (isNullConstant(N1))
4013 return N1;
4014 // fold (mulhu x, 1) -> 0
4015 if (isOneConstant(N1))
4016 return DAG.getConstant(0, DL, N0.getValueType());
4017 // fold (mulhu x, undef) -> 0
4018 if (N0.isUndef() || N1.isUndef())
4019 return DAG.getConstant(0, DL, VT);
4021 // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c)
4022 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
4023 DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) {
4024 unsigned NumEltBits = VT.getScalarSizeInBits();
4025 SDValue LogBase2 = BuildLogBase2(N1, DL);
4026 SDValue SRLAmt = DAG.getNode(
4027 ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2);
4028 EVT ShiftVT = getShiftAmountTy(N0.getValueType());
4029 SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT);
4030 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
4033 // If the type twice as wide is legal, transform the mulhu to a wider multiply
4034 // plus a shift.
4035 if (VT.isSimple() && !VT.isVector()) {
4036 MVT Simple = VT.getSimpleVT();
4037 unsigned SimpleSize = Simple.getSizeInBits();
4038 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
4039 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
4040 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
4041 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
4042 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
4043 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
4044 DAG.getConstant(SimpleSize, DL,
4045 getShiftAmountTy(N1.getValueType())));
4046 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
4050 return SDValue();
4053 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp
4054 /// give the opcodes for the two computations that are being performed. Return
4055 /// true if a simplification was made.
4056 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
4057 unsigned HiOp) {
4058 // If the high half is not needed, just compute the low half.
4059 bool HiExists = N->hasAnyUseOfValue(1);
4060 if (!HiExists && (!LegalOperations ||
4061 TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) {
4062 SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
4063 return CombineTo(N, Res, Res);
4066 // If the low half is not needed, just compute the high half.
4067 bool LoExists = N->hasAnyUseOfValue(0);
4068 if (!LoExists && (!LegalOperations ||
4069 TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) {
4070 SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
4071 return CombineTo(N, Res, Res);
4074 // If both halves are used, return as it is.
4075 if (LoExists && HiExists)
4076 return SDValue();
4078 // If the two computed results can be simplified separately, separate them.
4079 if (LoExists) {
4080 SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
4081 AddToWorklist(Lo.getNode());
4082 SDValue LoOpt = combine(Lo.getNode());
4083 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
4084 (!LegalOperations ||
4085 TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType())))
4086 return CombineTo(N, LoOpt, LoOpt);
4089 if (HiExists) {
4090 SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
4091 AddToWorklist(Hi.getNode());
4092 SDValue HiOpt = combine(Hi.getNode());
4093 if (HiOpt.getNode() && HiOpt != Hi &&
4094 (!LegalOperations ||
4095 TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType())))
4096 return CombineTo(N, HiOpt, HiOpt);
4099 return SDValue();
4102 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
4103 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS))
4104 return Res;
4106 EVT VT = N->getValueType(0);
4107 SDLoc DL(N);
4109 // If the type is twice as wide is legal, transform the mulhu to a wider
4110 // multiply plus a shift.
4111 if (VT.isSimple() && !VT.isVector()) {
4112 MVT Simple = VT.getSimpleVT();
4113 unsigned SimpleSize = Simple.getSizeInBits();
4114 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
4115 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
4116 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
4117 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
4118 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
4119 // Compute the high part as N1.
4120 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
4121 DAG.getConstant(SimpleSize, DL,
4122 getShiftAmountTy(Lo.getValueType())));
4123 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
4124 // Compute the low part as N0.
4125 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
4126 return CombineTo(N, Lo, Hi);
4130 return SDValue();
4133 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
4134 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU))
4135 return Res;
4137 EVT VT = N->getValueType(0);
4138 SDLoc DL(N);
4140 // (umul_lohi N0, 0) -> (0, 0)
4141 if (isNullConstant(N->getOperand(1))) {
4142 SDValue Zero = DAG.getConstant(0, DL, VT);
4143 return CombineTo(N, Zero, Zero);
4146 // (umul_lohi N0, 1) -> (N0, 0)
4147 if (isOneConstant(N->getOperand(1))) {
4148 SDValue Zero = DAG.getConstant(0, DL, VT);
4149 return CombineTo(N, N->getOperand(0), Zero);
4152 // If the type is twice as wide is legal, transform the mulhu to a wider
4153 // multiply plus a shift.
4154 if (VT.isSimple() && !VT.isVector()) {
4155 MVT Simple = VT.getSimpleVT();
4156 unsigned SimpleSize = Simple.getSizeInBits();
4157 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
4158 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
4159 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
4160 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
4161 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
4162 // Compute the high part as N1.
4163 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
4164 DAG.getConstant(SimpleSize, DL,
4165 getShiftAmountTy(Lo.getValueType())));
4166 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
4167 // Compute the low part as N0.
4168 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
4169 return CombineTo(N, Lo, Hi);
4173 return SDValue();
4176 SDValue DAGCombiner::visitMULO(SDNode *N) {
4177 SDValue N0 = N->getOperand(0);
4178 SDValue N1 = N->getOperand(1);
4179 EVT VT = N0.getValueType();
4180 bool IsSigned = (ISD::SMULO == N->getOpcode());
4182 EVT CarryVT = N->getValueType(1);
4183 SDLoc DL(N);
4185 // canonicalize constant to RHS.
4186 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
4187 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
4188 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0);
4190 // fold (mulo x, 0) -> 0 + no carry out
4191 if (isNullOrNullSplat(N1))
4192 return CombineTo(N, DAG.getConstant(0, DL, VT),
4193 DAG.getConstant(0, DL, CarryVT));
4195 // (mulo x, 2) -> (addo x, x)
4196 if (ConstantSDNode *C2 = isConstOrConstSplat(N1))
4197 if (C2->getAPIntValue() == 2)
4198 return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, DL,
4199 N->getVTList(), N0, N0);
4201 return SDValue();
4204 SDValue DAGCombiner::visitIMINMAX(SDNode *N) {
4205 SDValue N0 = N->getOperand(0);
4206 SDValue N1 = N->getOperand(1);
4207 EVT VT = N0.getValueType();
4209 // fold vector ops
4210 if (VT.isVector())
4211 if (SDValue FoldedVOp = SimplifyVBinOp(N))
4212 return FoldedVOp;
4214 // fold operation with constant operands.
4215 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
4216 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
4217 if (N0C && N1C)
4218 return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C);
4220 // canonicalize constant to RHS
4221 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
4222 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
4223 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);
4225 // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX.
4226 // Only do this if the current op isn't legal and the flipped is.
4227 unsigned Opcode = N->getOpcode();
4228 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4229 if (!TLI.isOperationLegal(Opcode, VT) &&
4230 (N0.isUndef() || DAG.SignBitIsZero(N0)) &&
4231 (N1.isUndef() || DAG.SignBitIsZero(N1))) {
4232 unsigned AltOpcode;
4233 switch (Opcode) {
4234 case ISD::SMIN: AltOpcode = ISD::UMIN; break;
4235 case ISD::SMAX: AltOpcode = ISD::UMAX; break;
4236 case ISD::UMIN: AltOpcode = ISD::SMIN; break;
4237 case ISD::UMAX: AltOpcode = ISD::SMAX; break;
4238 default: llvm_unreachable("Unknown MINMAX opcode");
4240 if (TLI.isOperationLegal(AltOpcode, VT))
4241 return DAG.getNode(AltOpcode, SDLoc(N), VT, N0, N1);
4244 return SDValue();
4247 /// If this is a bitwise logic instruction and both operands have the same
4248 /// opcode, try to sink the other opcode after the logic instruction.
4249 SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) {
4250 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
4251 EVT VT = N0.getValueType();
4252 unsigned LogicOpcode = N->getOpcode();
4253 unsigned HandOpcode = N0.getOpcode();
4254 assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR ||
4255 LogicOpcode == ISD::XOR) && "Expected logic opcode");
4256 assert(HandOpcode == N1.getOpcode() && "Bad input!");
4258 // Bail early if none of these transforms apply.
4259 if (N0.getNumOperands() == 0)
4260 return SDValue();
4262 // FIXME: We should check number of uses of the operands to not increase
4263 // the instruction count for all transforms.
4265 // Handle size-changing casts.
4266 SDValue X = N0.getOperand(0);
4267 SDValue Y = N1.getOperand(0);
4268 EVT XVT = X.getValueType();
4269 SDLoc DL(N);
4270 if (HandOpcode == ISD::ANY_EXTEND || HandOpcode == ISD::ZERO_EXTEND ||
4271 HandOpcode == ISD::SIGN_EXTEND) {
4272 // If both operands have other uses, this transform would create extra
4273 // instructions without eliminating anything.
4274 if (!N0.hasOneUse() && !N1.hasOneUse())
4275 return SDValue();
4276 // We need matching integer source types.
4277 if (XVT != Y.getValueType())
4278 return SDValue();
4279 // Don't create an illegal op during or after legalization. Don't ever
4280 // create an unsupported vector op.
4281 if ((VT.isVector() || LegalOperations) &&
4282 !TLI.isOperationLegalOrCustom(LogicOpcode, XVT))
4283 return SDValue();
4284 // Avoid infinite looping with PromoteIntBinOp.
4285 // TODO: Should we apply desirable/legal constraints to all opcodes?
4286 if (HandOpcode == ISD::ANY_EXTEND && LegalTypes &&
4287 !TLI.isTypeDesirableForOp(LogicOpcode, XVT))
4288 return SDValue();
4289 // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y)
4290 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
4291 return DAG.getNode(HandOpcode, DL, VT, Logic);
4294 // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y)
4295 if (HandOpcode == ISD::TRUNCATE) {
4296 // If both operands have other uses, this transform would create extra
4297 // instructions without eliminating anything.
4298 if (!N0.hasOneUse() && !N1.hasOneUse())
4299 return SDValue();
4300 // We need matching source types.
4301 if (XVT != Y.getValueType())
4302 return SDValue();
4303 // Don't create an illegal op during or after legalization.
4304 if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT))
4305 return SDValue();
4306 // Be extra careful sinking truncate. If it's free, there's no benefit in
4307 // widening a binop. Also, don't create a logic op on an illegal type.
4308 if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT))
4309 return SDValue();
4310 if (!TLI.isTypeLegal(XVT))
4311 return SDValue();
4312 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
4313 return DAG.getNode(HandOpcode, DL, VT, Logic);
4316 // For binops SHL/SRL/SRA/AND:
4317 // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z
4318 if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL ||
4319 HandOpcode == ISD::SRA || HandOpcode == ISD::AND) &&
4320 N0.getOperand(1) == N1.getOperand(1)) {
4321 // If either operand has other uses, this transform is not an improvement.
4322 if (!N0.hasOneUse() || !N1.hasOneUse())
4323 return SDValue();
4324 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
4325 return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1));
4328 // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y)
4329 if (HandOpcode == ISD::BSWAP) {
4330 // If either operand has other uses, this transform is not an improvement.
4331 if (!N0.hasOneUse() || !N1.hasOneUse())
4332 return SDValue();
4333 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
4334 return DAG.getNode(HandOpcode, DL, VT, Logic);
4337 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
4338 // Only perform this optimization up until type legalization, before
4339 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
4340 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
4341 // we don't want to undo this promotion.
4342 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
4343 // on scalars.
4344 if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) &&
4345 Level <= AfterLegalizeTypes) {
4346 // Input types must be integer and the same.
4347 if (XVT.isInteger() && XVT == Y.getValueType() &&
4348 !(VT.isVector() && TLI.isTypeLegal(VT) &&
4349 !XVT.isVector() && !TLI.isTypeLegal(XVT))) {
4350 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
4351 return DAG.getNode(HandOpcode, DL, VT, Logic);
4355 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
4356 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
4357 // If both shuffles use the same mask, and both shuffle within a single
4358 // vector, then it is worthwhile to move the swizzle after the operation.
4359 // The type-legalizer generates this pattern when loading illegal
4360 // vector types from memory. In many cases this allows additional shuffle
4361 // optimizations.
4362 // There are other cases where moving the shuffle after the xor/and/or
4363 // is profitable even if shuffles don't perform a swizzle.
4364 // If both shuffles use the same mask, and both shuffles have the same first
4365 // or second operand, then it might still be profitable to move the shuffle
4366 // after the xor/and/or operation.
4367 if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) {
4368 auto *SVN0 = cast<ShuffleVectorSDNode>(N0);
4369 auto *SVN1 = cast<ShuffleVectorSDNode>(N1);
4370 assert(X.getValueType() == Y.getValueType() &&
4371 "Inputs to shuffles are not the same type");
4373 // Check that both shuffles use the same mask. The masks are known to be of
4374 // the same length because the result vector type is the same.
4375 // Check also that shuffles have only one use to avoid introducing extra
4376 // instructions.
4377 if (!SVN0->hasOneUse() || !SVN1->hasOneUse() ||
4378 !SVN0->getMask().equals(SVN1->getMask()))
4379 return SDValue();
4381 // Don't try to fold this node if it requires introducing a
4382 // build vector of all zeros that might be illegal at this stage.
4383 SDValue ShOp = N0.getOperand(1);
4384 if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
4385 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
4387 // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C)
4388 if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) {
4389 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT,
4390 N0.getOperand(0), N1.getOperand(0));
4391 return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask());
4394 // Don't try to fold this node if it requires introducing a
4395 // build vector of all zeros that might be illegal at this stage.
4396 ShOp = N0.getOperand(0);
4397 if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
4398 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
4400 // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B))
4401 if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) {
4402 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1),
4403 N1.getOperand(1));
4404 return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask());
4408 return SDValue();
4411 /// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient.
4412 SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
4413 const SDLoc &DL) {
4414 SDValue LL, LR, RL, RR, N0CC, N1CC;
4415 if (!isSetCCEquivalent(N0, LL, LR, N0CC) ||
4416 !isSetCCEquivalent(N1, RL, RR, N1CC))
4417 return SDValue();
4419 assert(N0.getValueType() == N1.getValueType() &&
4420 "Unexpected operand types for bitwise logic op");
4421 assert(LL.getValueType() == LR.getValueType() &&
4422 RL.getValueType() == RR.getValueType() &&
4423 "Unexpected operand types for setcc");
4425 // If we're here post-legalization or the logic op type is not i1, the logic
4426 // op type must match a setcc result type. Also, all folds require new
4427 // operations on the left and right operands, so those types must match.
4428 EVT VT = N0.getValueType();
4429 EVT OpVT = LL.getValueType();
4430 if (LegalOperations || VT.getScalarType() != MVT::i1)
4431 if (VT != getSetCCResultType(OpVT))
4432 return SDValue();
4433 if (OpVT != RL.getValueType())
4434 return SDValue();
4436 ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get();
4437 ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get();
4438 bool IsInteger = OpVT.isInteger();
4439 if (LR == RR && CC0 == CC1 && IsInteger) {
4440 bool IsZero = isNullOrNullSplat(LR);
4441 bool IsNeg1 = isAllOnesOrAllOnesSplat(LR);
4443 // All bits clear?
4444 bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero;
4445 // All sign bits clear?
4446 bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1;
4447 // Any bits set?
4448 bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero;
4449 // Any sign bits set?
4450 bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero;
4452 // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0)
4453 // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1)
4454 // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0)
4455 // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0)
4456 if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) {
4457 SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL);
4458 AddToWorklist(Or.getNode());
4459 return DAG.getSetCC(DL, VT, Or, LR, CC1);
4462 // All bits set?
4463 bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1;
4464 // All sign bits set?
4465 bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero;
4466 // Any bits clear?
4467 bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1;
4468 // Any sign bits clear?
4469 bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1;
4471 // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1)
4472 // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0)
4473 // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1)
4474 // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1)
4475 if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) {
4476 SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL);
4477 AddToWorklist(And.getNode());
4478 return DAG.getSetCC(DL, VT, And, LR, CC1);
4482 // TODO: What is the 'or' equivalent of this fold?
4483 // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2)
4484 if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 &&
4485 IsInteger && CC0 == ISD::SETNE &&
4486 ((isNullConstant(LR) && isAllOnesConstant(RR)) ||
4487 (isAllOnesConstant(LR) && isNullConstant(RR)))) {
4488 SDValue One = DAG.getConstant(1, DL, OpVT);
4489 SDValue Two = DAG.getConstant(2, DL, OpVT);
4490 SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One);
4491 AddToWorklist(Add.getNode());
4492 return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE);
4495 // Try more general transforms if the predicates match and the only user of
4496 // the compares is the 'and' or 'or'.
4497 if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 &&
4498 N0.hasOneUse() && N1.hasOneUse()) {
4499 // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
4500 // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0
4501 if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) {
4502 SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR);
4503 SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR);
4504 SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR);
4505 SDValue Zero = DAG.getConstant(0, DL, OpVT);
4506 return DAG.getSetCC(DL, VT, Or, Zero, CC1);
4509 // Turn compare of constants whose difference is 1 bit into add+and+setcc.
4510 // TODO - support non-uniform vector amounts.
4511 if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) {
4512 // Match a shared variable operand and 2 non-opaque constant operands.
4513 ConstantSDNode *C0 = isConstOrConstSplat(LR);
4514 ConstantSDNode *C1 = isConstOrConstSplat(RR);
4515 if (LL == RL && C0 && C1 && !C0->isOpaque() && !C1->isOpaque()) {
4516 // Canonicalize larger constant as C0.
4517 if (C1->getAPIntValue().ugt(C0->getAPIntValue()))
4518 std::swap(C0, C1);
4520 // The difference of the constants must be a single bit.
4521 const APInt &C0Val = C0->getAPIntValue();
4522 const APInt &C1Val = C1->getAPIntValue();
4523 if ((C0Val - C1Val).isPowerOf2()) {
4524 // and/or (setcc X, C0, ne), (setcc X, C1, ne/eq) -->
4525 // setcc ((add X, -C1), ~(C0 - C1)), 0, ne/eq
4526 SDValue OffsetC = DAG.getConstant(-C1Val, DL, OpVT);
4527 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LL, OffsetC);
4528 SDValue MaskC = DAG.getConstant(~(C0Val - C1Val), DL, OpVT);
4529 SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Add, MaskC);
4530 SDValue Zero = DAG.getConstant(0, DL, OpVT);
4531 return DAG.getSetCC(DL, VT, And, Zero, CC0);
4537 // Canonicalize equivalent operands to LL == RL.
4538 if (LL == RR && LR == RL) {
4539 CC1 = ISD::getSetCCSwappedOperands(CC1);
4540 std::swap(RL, RR);
4543 // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
4544 // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
4545 if (LL == RL && LR == RR) {
4546 ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, IsInteger)
4547 : ISD::getSetCCOrOperation(CC0, CC1, IsInteger);
4548 if (NewCC != ISD::SETCC_INVALID &&
4549 (!LegalOperations ||
4550 (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) &&
4551 TLI.isOperationLegal(ISD::SETCC, OpVT))))
4552 return DAG.getSetCC(DL, VT, LL, LR, NewCC);
4555 return SDValue();
4558 /// This contains all DAGCombine rules which reduce two values combined by
4559 /// an And operation to a single value. This makes them reusable in the context
4560 /// of visitSELECT(). Rules involving constants are not included as
4561 /// visitSELECT() already handles those cases.
4562 SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) {
4563 EVT VT = N1.getValueType();
4564 SDLoc DL(N);
4566 // fold (and x, undef) -> 0
4567 if (N0.isUndef() || N1.isUndef())
4568 return DAG.getConstant(0, DL, VT);
4570 if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL))
4571 return V;
4573 if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
4574 VT.getSizeInBits() <= 64) {
4575 if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4576 if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
4577 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
4578 // immediate for an add, but it is legal if its top c2 bits are set,
4579 // transform the ADD so the immediate doesn't need to be materialized
4580 // in a register.
4581 APInt ADDC = ADDI->getAPIntValue();
4582 APInt SRLC = SRLI->getAPIntValue();
4583 if (ADDC.getMinSignedBits() <= 64 &&
4584 SRLC.ult(VT.getSizeInBits()) &&
4585 !TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
4586 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
4587 SRLC.getZExtValue());
4588 if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
4589 ADDC |= Mask;
4590 if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
4591 SDLoc DL0(N0);
4592 SDValue NewAdd =
4593 DAG.getNode(ISD::ADD, DL0, VT,
4594 N0.getOperand(0), DAG.getConstant(ADDC, DL, VT));
4595 CombineTo(N0.getNode(), NewAdd);
4596 // Return N so it doesn't get rechecked!
4597 return SDValue(N, 0);
4605 // Reduce bit extract of low half of an integer to the narrower type.
4606 // (and (srl i64:x, K), KMask) ->
4607 // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask)
4608 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
4609 if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) {
4610 if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4611 unsigned Size = VT.getSizeInBits();
4612 const APInt &AndMask = CAnd->getAPIntValue();
4613 unsigned ShiftBits = CShift->getZExtValue();
4615 // Bail out, this node will probably disappear anyway.
4616 if (ShiftBits == 0)
4617 return SDValue();
4619 unsigned MaskBits = AndMask.countTrailingOnes();
4620 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2);
4622 if (AndMask.isMask() &&
4623 // Required bits must not span the two halves of the integer and
4624 // must fit in the half size type.
4625 (ShiftBits + MaskBits <= Size / 2) &&
4626 TLI.isNarrowingProfitable(VT, HalfVT) &&
4627 TLI.isTypeDesirableForOp(ISD::AND, HalfVT) &&
4628 TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) &&
4629 TLI.isTruncateFree(VT, HalfVT) &&
4630 TLI.isZExtFree(HalfVT, VT)) {
4631 // The isNarrowingProfitable is to avoid regressions on PPC and
4632 // AArch64 which match a few 64-bit bit insert / bit extract patterns
4633 // on downstream users of this. Those patterns could probably be
4634 // extended to handle extensions mixed in.
4636 SDValue SL(N0);
4637 assert(MaskBits <= Size);
4639 // Extracting the highest bit of the low half.
4640 EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout());
4641 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT,
4642 N0.getOperand(0));
4644 SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT);
4645 SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT);
4646 SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK);
4647 SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask);
4648 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And);
4654 return SDValue();
4657 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
4658 EVT LoadResultTy, EVT &ExtVT) {
4659 if (!AndC->getAPIntValue().isMask())
4660 return false;
4662 unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes();
4664 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
4665 EVT LoadedVT = LoadN->getMemoryVT();
4667 if (ExtVT == LoadedVT &&
4668 (!LegalOperations ||
4669 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) {
4670 // ZEXTLOAD will match without needing to change the size of the value being
4671 // loaded.
4672 return true;
4675 // Do not change the width of a volatile or atomic loads.
4676 if (!LoadN->isSimple())
4677 return false;
4679 // Do not generate loads of non-round integer types since these can
4680 // be expensive (and would be wrong if the type is not byte sized).
4681 if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound())
4682 return false;
4684 if (LegalOperations &&
4685 !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))
4686 return false;
4688 if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT))
4689 return false;
4691 return true;
4694 bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST,
4695 ISD::LoadExtType ExtType, EVT &MemVT,
4696 unsigned ShAmt) {
4697 if (!LDST)
4698 return false;
4699 // Only allow byte offsets.
4700 if (ShAmt % 8)
4701 return false;
4703 // Do not generate loads of non-round integer types since these can
4704 // be expensive (and would be wrong if the type is not byte sized).
4705 if (!MemVT.isRound())
4706 return false;
4708 // Don't change the width of a volatile or atomic loads.
4709 if (!LDST->isSimple())
4710 return false;
4712 // Verify that we are actually reducing a load width here.
4713 if (LDST->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits())
4714 return false;
4716 // Ensure that this isn't going to produce an unsupported memory access.
4717 if (ShAmt &&
4718 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
4719 LDST->getAddressSpace(), ShAmt / 8,
4720 LDST->getMemOperand()->getFlags()))
4721 return false;
4723 // It's not possible to generate a constant of extended or untyped type.
4724 EVT PtrType = LDST->getBasePtr().getValueType();
4725 if (PtrType == MVT::Untyped || PtrType.isExtended())
4726 return false;
4728 if (isa<LoadSDNode>(LDST)) {
4729 LoadSDNode *Load = cast<LoadSDNode>(LDST);
4730 // Don't transform one with multiple uses, this would require adding a new
4731 // load.
4732 if (!SDValue(Load, 0).hasOneUse())
4733 return false;
4735 if (LegalOperations &&
4736 !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT))
4737 return false;
4739 // For the transform to be legal, the load must produce only two values
4740 // (the value loaded and the chain). Don't transform a pre-increment
4741 // load, for example, which produces an extra value. Otherwise the
4742 // transformation is not equivalent, and the downstream logic to replace
4743 // uses gets things wrong.
4744 if (Load->getNumValues() > 2)
4745 return false;
4747 // If the load that we're shrinking is an extload and we're not just
4748 // discarding the extension we can't simply shrink the load. Bail.
4749 // TODO: It would be possible to merge the extensions in some cases.
4750 if (Load->getExtensionType() != ISD::NON_EXTLOAD &&
4751 Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
4752 return false;
4754 if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT))
4755 return false;
4756 } else {
4757 assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode");
4758 StoreSDNode *Store = cast<StoreSDNode>(LDST);
4759 // Can't write outside the original store
4760 if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
4761 return false;
4763 if (LegalOperations &&
4764 !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT))
4765 return false;
4767 return true;
4770 bool DAGCombiner::SearchForAndLoads(SDNode *N,
4771 SmallVectorImpl<LoadSDNode*> &Loads,
4772 SmallPtrSetImpl<SDNode*> &NodesWithConsts,
4773 ConstantSDNode *Mask,
4774 SDNode *&NodeToMask) {
4775 // Recursively search for the operands, looking for loads which can be
4776 // narrowed.
4777 for (SDValue Op : N->op_values()) {
4778 if (Op.getValueType().isVector())
4779 return false;
4781 // Some constants may need fixing up later if they are too large.
4782 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
4783 if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) &&
4784 (Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue())
4785 NodesWithConsts.insert(N);
4786 continue;
4789 if (!Op.hasOneUse())
4790 return false;
4792 switch(Op.getOpcode()) {
4793 case ISD::LOAD: {
4794 auto *Load = cast<LoadSDNode>(Op);
4795 EVT ExtVT;
4796 if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) &&
4797 isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) {
4799 // ZEXTLOAD is already small enough.
4800 if (Load->getExtensionType() == ISD::ZEXTLOAD &&
4801 ExtVT.bitsGE(Load->getMemoryVT()))
4802 continue;
4804 // Use LE to convert equal sized loads to zext.
4805 if (ExtVT.bitsLE(Load->getMemoryVT()))
4806 Loads.push_back(Load);
4808 continue;
4810 return false;
4812 case ISD::ZERO_EXTEND:
4813 case ISD::AssertZext: {
4814 unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes();
4815 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
4816 EVT VT = Op.getOpcode() == ISD::AssertZext ?
4817 cast<VTSDNode>(Op.getOperand(1))->getVT() :
4818 Op.getOperand(0).getValueType();
4820 // We can accept extending nodes if the mask is wider or an equal
4821 // width to the original type.
4822 if (ExtVT.bitsGE(VT))
4823 continue;
4824 break;
4826 case ISD::OR:
4827 case ISD::XOR:
4828 case ISD::AND:
4829 if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask,
4830 NodeToMask))
4831 return false;
4832 continue;
4835 // Allow one node which will masked along with any loads found.
4836 if (NodeToMask)
4837 return false;
4839 // Also ensure that the node to be masked only produces one data result.
4840 NodeToMask = Op.getNode();
4841 if (NodeToMask->getNumValues() > 1) {
4842 bool HasValue = false;
4843 for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) {
4844 MVT VT = SDValue(NodeToMask, i).getSimpleValueType();
4845 if (VT != MVT::Glue && VT != MVT::Other) {
4846 if (HasValue) {
4847 NodeToMask = nullptr;
4848 return false;
4850 HasValue = true;
4853 assert(HasValue && "Node to be masked has no data result?");
4856 return true;
4859 bool DAGCombiner::BackwardsPropagateMask(SDNode *N, SelectionDAG &DAG) {
4860 auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
4861 if (!Mask)
4862 return false;
4864 if (!Mask->getAPIntValue().isMask())
4865 return false;
4867 // No need to do anything if the and directly uses a load.
4868 if (isa<LoadSDNode>(N->getOperand(0)))
4869 return false;
4871 SmallVector<LoadSDNode*, 8> Loads;
4872 SmallPtrSet<SDNode*, 2> NodesWithConsts;
4873 SDNode *FixupNode = nullptr;
4874 if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) {
4875 if (Loads.size() == 0)
4876 return false;
4878 LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump());
4879 SDValue MaskOp = N->getOperand(1);
4881 // If it exists, fixup the single node we allow in the tree that needs
4882 // masking.
4883 if (FixupNode) {
4884 LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump());
4885 SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode),
4886 FixupNode->getValueType(0),
4887 SDValue(FixupNode, 0), MaskOp);
4888 DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And);
4889 if (And.getOpcode() == ISD ::AND)
4890 DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp);
4893 // Narrow any constants that need it.
4894 for (auto *LogicN : NodesWithConsts) {
4895 SDValue Op0 = LogicN->getOperand(0);
4896 SDValue Op1 = LogicN->getOperand(1);
4898 if (isa<ConstantSDNode>(Op0))
4899 std::swap(Op0, Op1);
4901 SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(),
4902 Op1, MaskOp);
4904 DAG.UpdateNodeOperands(LogicN, Op0, And);
4907 // Create narrow loads.
4908 for (auto *Load : Loads) {
4909 LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump());
4910 SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0),
4911 SDValue(Load, 0), MaskOp);
4912 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And);
4913 if (And.getOpcode() == ISD ::AND)
4914 And = SDValue(
4915 DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0);
4916 SDValue NewLoad = ReduceLoadWidth(And.getNode());
4917 assert(NewLoad &&
4918 "Shouldn't be masking the load if it can't be narrowed");
4919 CombineTo(Load, NewLoad, NewLoad.getValue(1));
4921 DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode());
4922 return true;
4924 return false;
4927 // Unfold
4928 // x & (-1 'logical shift' y)
4929 // To
4930 // (x 'opposite logical shift' y) 'logical shift' y
4931 // if it is better for performance.
4932 SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) {
4933 assert(N->getOpcode() == ISD::AND);
4935 SDValue N0 = N->getOperand(0);
4936 SDValue N1 = N->getOperand(1);
4938 // Do we actually prefer shifts over mask?
4939 if (!TLI.shouldFoldMaskToVariableShiftPair(N0))
4940 return SDValue();
4942 // Try to match (-1 '[outer] logical shift' y)
4943 unsigned OuterShift;
4944 unsigned InnerShift; // The opposite direction to the OuterShift.
4945 SDValue Y; // Shift amount.
4946 auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool {
4947 if (!M.hasOneUse())
4948 return false;
4949 OuterShift = M->getOpcode();
4950 if (OuterShift == ISD::SHL)
4951 InnerShift = ISD::SRL;
4952 else if (OuterShift == ISD::SRL)
4953 InnerShift = ISD::SHL;
4954 else
4955 return false;
4956 if (!isAllOnesConstant(M->getOperand(0)))
4957 return false;
4958 Y = M->getOperand(1);
4959 return true;
4962 SDValue X;
4963 if (matchMask(N1))
4964 X = N0;
4965 else if (matchMask(N0))
4966 X = N1;
4967 else
4968 return SDValue();
4970 SDLoc DL(N);
4971 EVT VT = N->getValueType(0);
4973 // tmp = x 'opposite logical shift' y
4974 SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y);
4975 // ret = tmp 'logical shift' y
4976 SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y);
4978 return T1;
4981 /// Try to replace shift/logic that tests if a bit is clear with mask + setcc.
4982 /// For a target with a bit test, this is expected to become test + set and save
4983 /// at least 1 instruction.
4984 static SDValue combineShiftAnd1ToBitTest(SDNode *And, SelectionDAG &DAG) {
4985 assert(And->getOpcode() == ISD::AND && "Expected an 'and' op");
4987 // This is probably not worthwhile without a supported type.
4988 EVT VT = And->getValueType(0);
4989 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4990 if (!TLI.isTypeLegal(VT))
4991 return SDValue();
4993 // Look through an optional extension and find a 'not'.
4994 // TODO: Should we favor test+set even without the 'not' op?
4995 SDValue Not = And->getOperand(0), And1 = And->getOperand(1);
4996 if (Not.getOpcode() == ISD::ANY_EXTEND)
4997 Not = Not.getOperand(0);
4998 if (!isBitwiseNot(Not) || !Not.hasOneUse() || !isOneConstant(And1))
4999 return SDValue();
5001 // Look though an optional truncation. The source operand may not be the same
5002 // type as the original 'and', but that is ok because we are masking off
5003 // everything but the low bit.
5004 SDValue Srl = Not.getOperand(0);
5005 if (Srl.getOpcode() == ISD::TRUNCATE)
5006 Srl = Srl.getOperand(0);
5008 // Match a shift-right by constant.
5009 if (Srl.getOpcode() != ISD::SRL || !Srl.hasOneUse() ||
5010 !isa<ConstantSDNode>(Srl.getOperand(1)))
5011 return SDValue();
5013 // We might have looked through casts that make this transform invalid.
5014 // TODO: If the source type is wider than the result type, do the mask and
5015 // compare in the source type.
5016 const APInt &ShiftAmt = Srl.getConstantOperandAPInt(1);
5017 unsigned VTBitWidth = VT.getSizeInBits();
5018 if (ShiftAmt.uge(VTBitWidth))
5019 return SDValue();
5021 // Turn this into a bit-test pattern using mask op + setcc:
5022 // and (not (srl X, C)), 1 --> (and X, 1<<C) == 0
5023 SDLoc DL(And);
5024 SDValue X = DAG.getZExtOrTrunc(Srl.getOperand(0), DL, VT);
5025 EVT CCVT = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5026 SDValue Mask = DAG.getConstant(
5027 APInt::getOneBitSet(VTBitWidth, ShiftAmt.getZExtValue()), DL, VT);
5028 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, Mask);
5029 SDValue Zero = DAG.getConstant(0, DL, VT);
5030 SDValue Setcc = DAG.getSetCC(DL, CCVT, NewAnd, Zero, ISD::SETEQ);
5031 return DAG.getZExtOrTrunc(Setcc, DL, VT);
5034 SDValue DAGCombiner::visitAND(SDNode *N) {
5035 SDValue N0 = N->getOperand(0);
5036 SDValue N1 = N->getOperand(1);
5037 EVT VT = N1.getValueType();
5039 // x & x --> x
5040 if (N0 == N1)
5041 return N0;
5043 // fold vector ops
5044 if (VT.isVector()) {
5045 if (SDValue FoldedVOp = SimplifyVBinOp(N))
5046 return FoldedVOp;
5048 // fold (and x, 0) -> 0, vector edition
5049 if (ISD::isBuildVectorAllZeros(N0.getNode()))
5050 // do not return N0, because undef node may exist in N0
5051 return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()),
5052 SDLoc(N), N0.getValueType());
5053 if (ISD::isBuildVectorAllZeros(N1.getNode()))
5054 // do not return N1, because undef node may exist in N1
5055 return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()),
5056 SDLoc(N), N1.getValueType());
5058 // fold (and x, -1) -> x, vector edition
5059 if (ISD::isBuildVectorAllOnes(N0.getNode()))
5060 return N1;
5061 if (ISD::isBuildVectorAllOnes(N1.getNode()))
5062 return N0;
5065 // fold (and c1, c2) -> c1&c2
5066 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
5067 ConstantSDNode *N1C = isConstOrConstSplat(N1);
5068 if (N0C && N1C && !N1C->isOpaque())
5069 return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C);
5070 // canonicalize constant to RHS
5071 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
5072 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
5073 return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
5074 // fold (and x, -1) -> x
5075 if (isAllOnesConstant(N1))
5076 return N0;
5077 // if (and x, c) is known to be zero, return 0
5078 unsigned BitWidth = VT.getScalarSizeInBits();
5079 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
5080 APInt::getAllOnesValue(BitWidth)))
5081 return DAG.getConstant(0, SDLoc(N), VT);
5083 if (SDValue NewSel = foldBinOpIntoSelect(N))
5084 return NewSel;
5086 // reassociate and
5087 if (SDValue RAND = reassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags()))
5088 return RAND;
5090 // Try to convert a constant mask AND into a shuffle clear mask.
5091 if (VT.isVector())
5092 if (SDValue Shuffle = XformToShuffleWithZero(N))
5093 return Shuffle;
5095 // fold (and (or x, C), D) -> D if (C & D) == D
5096 auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) {
5097 return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue());
5099 if (N0.getOpcode() == ISD::OR &&
5100 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset))
5101 return N1;
5102 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
5103 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
5104 SDValue N0Op0 = N0.getOperand(0);
5105 APInt Mask = ~N1C->getAPIntValue();
5106 Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits());
5107 if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
5108 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
5109 N0.getValueType(), N0Op0);
5111 // Replace uses of the AND with uses of the Zero extend node.
5112 CombineTo(N, Zext);
5114 // We actually want to replace all uses of the any_extend with the
5115 // zero_extend, to avoid duplicating things. This will later cause this
5116 // AND to be folded.
5117 CombineTo(N0.getNode(), Zext);
5118 return SDValue(N, 0); // Return N so it doesn't get rechecked!
5122 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
5123 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
5124 // already be zero by virtue of the width of the base type of the load.
5126 // the 'X' node here can either be nothing or an extract_vector_elt to catch
5127 // more cases.
5128 if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5129 N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() &&
5130 N0.getOperand(0).getOpcode() == ISD::LOAD &&
5131 N0.getOperand(0).getResNo() == 0) ||
5132 (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) {
5133 LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
5134 N0 : N0.getOperand(0) );
5136 // Get the constant (if applicable) the zero'th operand is being ANDed with.
5137 // This can be a pure constant or a vector splat, in which case we treat the
5138 // vector as a scalar and use the splat value.
5139 APInt Constant = APInt::getNullValue(1);
5140 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
5141 Constant = C->getAPIntValue();
5142 } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
5143 APInt SplatValue, SplatUndef;
5144 unsigned SplatBitSize;
5145 bool HasAnyUndefs;
5146 bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
5147 SplatBitSize, HasAnyUndefs);
5148 if (IsSplat) {
5149 // Undef bits can contribute to a possible optimisation if set, so
5150 // set them.
5151 SplatValue |= SplatUndef;
5153 // The splat value may be something like "0x00FFFFFF", which means 0 for
5154 // the first vector value and FF for the rest, repeating. We need a mask
5155 // that will apply equally to all members of the vector, so AND all the
5156 // lanes of the constant together.
5157 unsigned EltBitWidth = Vector->getValueType(0).getScalarSizeInBits();
5159 // If the splat value has been compressed to a bitlength lower
5160 // than the size of the vector lane, we need to re-expand it to
5161 // the lane size.
5162 if (EltBitWidth > SplatBitSize)
5163 for (SplatValue = SplatValue.zextOrTrunc(EltBitWidth);
5164 SplatBitSize < EltBitWidth; SplatBitSize = SplatBitSize * 2)
5165 SplatValue |= SplatValue.shl(SplatBitSize);
5167 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a
5168 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value.
5169 if ((SplatBitSize % EltBitWidth) == 0) {
5170 Constant = APInt::getAllOnesValue(EltBitWidth);
5171 for (unsigned i = 0, n = (SplatBitSize / EltBitWidth); i < n; ++i)
5172 Constant &= SplatValue.extractBits(EltBitWidth, i * EltBitWidth);
5177 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
5178 // actually legal and isn't going to get expanded, else this is a false
5179 // optimisation.
5180 bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
5181 Load->getValueType(0),
5182 Load->getMemoryVT());
5184 // Resize the constant to the same size as the original memory access before
5185 // extension. If it is still the AllOnesValue then this AND is completely
5186 // unneeded.
5187 Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits());
5189 bool B;
5190 switch (Load->getExtensionType()) {
5191 default: B = false; break;
5192 case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
5193 case ISD::ZEXTLOAD:
5194 case ISD::NON_EXTLOAD: B = true; break;
5197 if (B && Constant.isAllOnesValue()) {
5198 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
5199 // preserve semantics once we get rid of the AND.
5200 SDValue NewLoad(Load, 0);
5202 // Fold the AND away. NewLoad may get replaced immediately.
5203 CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
5205 if (Load->getExtensionType() == ISD::EXTLOAD) {
5206 NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
5207 Load->getValueType(0), SDLoc(Load),
5208 Load->getChain(), Load->getBasePtr(),
5209 Load->getOffset(), Load->getMemoryVT(),
5210 Load->getMemOperand());
5211 // Replace uses of the EXTLOAD with the new ZEXTLOAD.
5212 if (Load->getNumValues() == 3) {
5213 // PRE/POST_INC loads have 3 values.
5214 SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
5215 NewLoad.getValue(2) };
5216 CombineTo(Load, To, 3, true);
5217 } else {
5218 CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
5222 return SDValue(N, 0); // Return N so it doesn't get rechecked!
5226 // fold (and (load x), 255) -> (zextload x, i8)
5227 // fold (and (extload x, i16), 255) -> (zextload x, i8)
5228 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
5229 if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD ||
5230 (N0.getOpcode() == ISD::ANY_EXTEND &&
5231 N0.getOperand(0).getOpcode() == ISD::LOAD))) {
5232 if (SDValue Res = ReduceLoadWidth(N)) {
5233 LoadSDNode *LN0 = N0->getOpcode() == ISD::ANY_EXTEND
5234 ? cast<LoadSDNode>(N0.getOperand(0)) : cast<LoadSDNode>(N0);
5235 AddToWorklist(N);
5236 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 0), Res);
5237 return SDValue(N, 0);
5241 if (Level >= AfterLegalizeTypes) {
5242 // Attempt to propagate the AND back up to the leaves which, if they're
5243 // loads, can be combined to narrow loads and the AND node can be removed.
5244 // Perform after legalization so that extend nodes will already be
5245 // combined into the loads.
5246 if (BackwardsPropagateMask(N, DAG)) {
5247 return SDValue(N, 0);
5251 if (SDValue Combined = visitANDLike(N0, N1, N))
5252 return Combined;
5254 // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
5255 if (N0.getOpcode() == N1.getOpcode())
5256 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
5257 return V;
5259 // Masking the negated extension of a boolean is just the zero-extended
5260 // boolean:
5261 // and (sub 0, zext(bool X)), 1 --> zext(bool X)
5262 // and (sub 0, sext(bool X)), 1 --> zext(bool X)
5264 // Note: the SimplifyDemandedBits fold below can make an information-losing
5265 // transform, and then we have no way to find this better fold.
5266 if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) {
5267 if (isNullOrNullSplat(N0.getOperand(0))) {
5268 SDValue SubRHS = N0.getOperand(1);
5269 if (SubRHS.getOpcode() == ISD::ZERO_EXTEND &&
5270 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
5271 return SubRHS;
5272 if (SubRHS.getOpcode() == ISD::SIGN_EXTEND &&
5273 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
5274 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0));
5278 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
5279 // fold (and (sra)) -> (and (srl)) when possible.
5280 if (SimplifyDemandedBits(SDValue(N, 0)))
5281 return SDValue(N, 0);
5283 // fold (zext_inreg (extload x)) -> (zextload x)
5284 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
5285 if (ISD::isUNINDEXEDLoad(N0.getNode()) &&
5286 (ISD::isEXTLoad(N0.getNode()) ||
5287 (ISD::isSEXTLoad(N0.getNode()) && N0.hasOneUse()))) {
5288 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5289 EVT MemVT = LN0->getMemoryVT();
5290 // If we zero all the possible extended bits, then we can turn this into
5291 // a zextload if we are running before legalize or the operation is legal.
5292 unsigned ExtBitSize = N1.getScalarValueSizeInBits();
5293 unsigned MemBitSize = MemVT.getScalarSizeInBits();
5294 APInt ExtBits = APInt::getHighBitsSet(ExtBitSize, ExtBitSize - MemBitSize);
5295 if (DAG.MaskedValueIsZero(N1, ExtBits) &&
5296 ((!LegalOperations && LN0->isSimple()) ||
5297 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
5298 SDValue ExtLoad =
5299 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(),
5300 LN0->getBasePtr(), MemVT, LN0->getMemOperand());
5301 AddToWorklist(N);
5302 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5303 return SDValue(N, 0); // Return N so it doesn't get rechecked!
5307 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
5308 if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
5309 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
5310 N0.getOperand(1), false))
5311 return BSwap;
5314 if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N))
5315 return Shifts;
5317 if (TLI.hasBitTest(N0, N1))
5318 if (SDValue V = combineShiftAnd1ToBitTest(N, DAG))
5319 return V;
5321 return SDValue();
5324 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
5325 SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
5326 bool DemandHighBits) {
5327 if (!LegalOperations)
5328 return SDValue();
5330 EVT VT = N->getValueType(0);
5331 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
5332 return SDValue();
5333 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT))
5334 return SDValue();
5336 // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff)
5337 bool LookPassAnd0 = false;
5338 bool LookPassAnd1 = false;
5339 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
5340 std::swap(N0, N1);
5341 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
5342 std::swap(N0, N1);
5343 if (N0.getOpcode() == ISD::AND) {
5344 if (!N0.getNode()->hasOneUse())
5345 return SDValue();
5346 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5347 // Also handle 0xffff since the LHS is guaranteed to have zeros there.
5348 // This is needed for X86.
5349 if (!N01C || (N01C->getZExtValue() != 0xFF00 &&
5350 N01C->getZExtValue() != 0xFFFF))
5351 return SDValue();
5352 N0 = N0.getOperand(0);
5353 LookPassAnd0 = true;
5356 if (N1.getOpcode() == ISD::AND) {
5357 if (!N1.getNode()->hasOneUse())
5358 return SDValue();
5359 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
5360 if (!N11C || N11C->getZExtValue() != 0xFF)
5361 return SDValue();
5362 N1 = N1.getOperand(0);
5363 LookPassAnd1 = true;
5366 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
5367 std::swap(N0, N1);
5368 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
5369 return SDValue();
5370 if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse())
5371 return SDValue();
5373 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5374 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
5375 if (!N01C || !N11C)
5376 return SDValue();
5377 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
5378 return SDValue();
5380 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
5381 SDValue N00 = N0->getOperand(0);
5382 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
5383 if (!N00.getNode()->hasOneUse())
5384 return SDValue();
5385 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
5386 if (!N001C || N001C->getZExtValue() != 0xFF)
5387 return SDValue();
5388 N00 = N00.getOperand(0);
5389 LookPassAnd0 = true;
5392 SDValue N10 = N1->getOperand(0);
5393 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
5394 if (!N10.getNode()->hasOneUse())
5395 return SDValue();
5396 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
5397 // Also allow 0xFFFF since the bits will be shifted out. This is needed
5398 // for X86.
5399 if (!N101C || (N101C->getZExtValue() != 0xFF00 &&
5400 N101C->getZExtValue() != 0xFFFF))
5401 return SDValue();
5402 N10 = N10.getOperand(0);
5403 LookPassAnd1 = true;
5406 if (N00 != N10)
5407 return SDValue();
5409 // Make sure everything beyond the low halfword gets set to zero since the SRL
5410 // 16 will clear the top bits.
5411 unsigned OpSizeInBits = VT.getSizeInBits();
5412 if (DemandHighBits && OpSizeInBits > 16) {
5413 // If the left-shift isn't masked out then the only way this is a bswap is
5414 // if all bits beyond the low 8 are 0. In that case the entire pattern
5415 // reduces to a left shift anyway: leave it for other parts of the combiner.
5416 if (!LookPassAnd0)
5417 return SDValue();
5419 // However, if the right shift isn't masked out then it might be because
5420 // it's not needed. See if we can spot that too.
5421 if (!LookPassAnd1 &&
5422 !DAG.MaskedValueIsZero(
5423 N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16)))
5424 return SDValue();
5427 SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
5428 if (OpSizeInBits > 16) {
5429 SDLoc DL(N);
5430 Res = DAG.getNode(ISD::SRL, DL, VT, Res,
5431 DAG.getConstant(OpSizeInBits - 16, DL,
5432 getShiftAmountTy(VT)));
5434 return Res;
5437 /// Return true if the specified node is an element that makes up a 32-bit
5438 /// packed halfword byteswap.
5439 /// ((x & 0x000000ff) << 8) |
5440 /// ((x & 0x0000ff00) >> 8) |
5441 /// ((x & 0x00ff0000) << 8) |
5442 /// ((x & 0xff000000) >> 8)
5443 static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) {
5444 if (!N.getNode()->hasOneUse())
5445 return false;
5447 unsigned Opc = N.getOpcode();
5448 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
5449 return false;
5451 SDValue N0 = N.getOperand(0);
5452 unsigned Opc0 = N0.getOpcode();
5453 if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL)
5454 return false;
5456 ConstantSDNode *N1C = nullptr;
5457 // SHL or SRL: look upstream for AND mask operand
5458 if (Opc == ISD::AND)
5459 N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
5460 else if (Opc0 == ISD::AND)
5461 N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5462 if (!N1C)
5463 return false;
5465 unsigned MaskByteOffset;
5466 switch (N1C->getZExtValue()) {
5467 default:
5468 return false;
5469 case 0xFF: MaskByteOffset = 0; break;
5470 case 0xFF00: MaskByteOffset = 1; break;
5471 case 0xFFFF:
5472 // In case demanded bits didn't clear the bits that will be shifted out.
5473 // This is needed for X86.
5474 if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) {
5475 MaskByteOffset = 1;
5476 break;
5478 return false;
5479 case 0xFF0000: MaskByteOffset = 2; break;
5480 case 0xFF000000: MaskByteOffset = 3; break;
5483 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
5484 if (Opc == ISD::AND) {
5485 if (MaskByteOffset == 0 || MaskByteOffset == 2) {
5486 // (x >> 8) & 0xff
5487 // (x >> 8) & 0xff0000
5488 if (Opc0 != ISD::SRL)
5489 return false;
5490 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5491 if (!C || C->getZExtValue() != 8)
5492 return false;
5493 } else {
5494 // (x << 8) & 0xff00
5495 // (x << 8) & 0xff000000
5496 if (Opc0 != ISD::SHL)
5497 return false;
5498 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5499 if (!C || C->getZExtValue() != 8)
5500 return false;
5502 } else if (Opc == ISD::SHL) {
5503 // (x & 0xff) << 8
5504 // (x & 0xff0000) << 8
5505 if (MaskByteOffset != 0 && MaskByteOffset != 2)
5506 return false;
5507 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
5508 if (!C || C->getZExtValue() != 8)
5509 return false;
5510 } else { // Opc == ISD::SRL
5511 // (x & 0xff00) >> 8
5512 // (x & 0xff000000) >> 8
5513 if (MaskByteOffset != 1 && MaskByteOffset != 3)
5514 return false;
5515 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
5516 if (!C || C->getZExtValue() != 8)
5517 return false;
5520 if (Parts[MaskByteOffset])
5521 return false;
5523 Parts[MaskByteOffset] = N0.getOperand(0).getNode();
5524 return true;
5527 // Match 2 elements of a packed halfword bswap.
5528 static bool isBSwapHWordPair(SDValue N, MutableArrayRef<SDNode *> Parts) {
5529 if (N.getOpcode() == ISD::OR)
5530 return isBSwapHWordElement(N.getOperand(0), Parts) &&
5531 isBSwapHWordElement(N.getOperand(1), Parts);
5533 if (N.getOpcode() == ISD::SRL && N.getOperand(0).getOpcode() == ISD::BSWAP) {
5534 ConstantSDNode *C = isConstOrConstSplat(N.getOperand(1));
5535 if (!C || C->getAPIntValue() != 16)
5536 return false;
5537 Parts[0] = Parts[1] = N.getOperand(0).getOperand(0).getNode();
5538 return true;
5541 return false;
5544 /// Match a 32-bit packed halfword bswap. That is
5545 /// ((x & 0x000000ff) << 8) |
5546 /// ((x & 0x0000ff00) >> 8) |
5547 /// ((x & 0x00ff0000) << 8) |
5548 /// ((x & 0xff000000) >> 8)
5549 /// => (rotl (bswap x), 16)
5550 SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
5551 if (!LegalOperations)
5552 return SDValue();
5554 EVT VT = N->getValueType(0);
5555 if (VT != MVT::i32)
5556 return SDValue();
5557 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT))
5558 return SDValue();
5560 // Look for either
5561 // (or (bswaphpair), (bswaphpair))
5562 // (or (or (bswaphpair), (and)), (and))
5563 // (or (or (and), (bswaphpair)), (and))
5564 SDNode *Parts[4] = {};
5566 if (isBSwapHWordPair(N0, Parts)) {
5567 // (or (or (and), (and)), (or (and), (and)))
5568 if (!isBSwapHWordPair(N1, Parts))
5569 return SDValue();
5570 } else if (N0.getOpcode() == ISD::OR) {
5571 // (or (or (or (and), (and)), (and)), (and))
5572 if (!isBSwapHWordElement(N1, Parts))
5573 return SDValue();
5574 SDValue N00 = N0.getOperand(0);
5575 SDValue N01 = N0.getOperand(1);
5576 if (!(isBSwapHWordElement(N01, Parts) && isBSwapHWordPair(N00, Parts)) &&
5577 !(isBSwapHWordElement(N00, Parts) && isBSwapHWordPair(N01, Parts)))
5578 return SDValue();
5579 } else
5580 return SDValue();
5582 // Make sure the parts are all coming from the same node.
5583 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
5584 return SDValue();
5586 SDLoc DL(N);
5587 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT,
5588 SDValue(Parts[0], 0));
5590 // Result of the bswap should be rotated by 16. If it's not legal, then
5591 // do (x << 16) | (x >> 16).
5592 SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT));
5593 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
5594 return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt);
5595 if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
5596 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
5597 return DAG.getNode(ISD::OR, DL, VT,
5598 DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt),
5599 DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt));
5602 /// This contains all DAGCombine rules which reduce two values combined by
5603 /// an Or operation to a single value \see visitANDLike().
5604 SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) {
5605 EVT VT = N1.getValueType();
5606 SDLoc DL(N);
5608 // fold (or x, undef) -> -1
5609 if (!LegalOperations && (N0.isUndef() || N1.isUndef()))
5610 return DAG.getAllOnesConstant(DL, VT);
5612 if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL))
5613 return V;
5615 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
5616 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND &&
5617 // Don't increase # computations.
5618 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
5619 // We can only do this xform if we know that bits from X that are set in C2
5620 // but not in C1 are already zero. Likewise for Y.
5621 if (const ConstantSDNode *N0O1C =
5622 getAsNonOpaqueConstant(N0.getOperand(1))) {
5623 if (const ConstantSDNode *N1O1C =
5624 getAsNonOpaqueConstant(N1.getOperand(1))) {
5625 // We can only do this xform if we know that bits from X that are set in
5626 // C2 but not in C1 are already zero. Likewise for Y.
5627 const APInt &LHSMask = N0O1C->getAPIntValue();
5628 const APInt &RHSMask = N1O1C->getAPIntValue();
5630 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
5631 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
5632 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
5633 N0.getOperand(0), N1.getOperand(0));
5634 return DAG.getNode(ISD::AND, DL, VT, X,
5635 DAG.getConstant(LHSMask | RHSMask, DL, VT));
5641 // (or (and X, M), (and X, N)) -> (and X, (or M, N))
5642 if (N0.getOpcode() == ISD::AND &&
5643 N1.getOpcode() == ISD::AND &&
5644 N0.getOperand(0) == N1.getOperand(0) &&
5645 // Don't increase # computations.
5646 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
5647 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
5648 N0.getOperand(1), N1.getOperand(1));
5649 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X);
5652 return SDValue();
5655 /// OR combines for which the commuted variant will be tried as well.
5656 static SDValue visitORCommutative(
5657 SelectionDAG &DAG, SDValue N0, SDValue N1, SDNode *N) {
5658 EVT VT = N0.getValueType();
5659 if (N0.getOpcode() == ISD::AND) {
5660 // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y)
5661 if (isBitwiseNot(N0.getOperand(1)) && N0.getOperand(1).getOperand(0) == N1)
5662 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(0), N1);
5664 // fold (or (and (xor Y, -1), X), Y) -> (or X, Y)
5665 if (isBitwiseNot(N0.getOperand(0)) && N0.getOperand(0).getOperand(0) == N1)
5666 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(1), N1);
5669 return SDValue();
5672 SDValue DAGCombiner::visitOR(SDNode *N) {
5673 SDValue N0 = N->getOperand(0);
5674 SDValue N1 = N->getOperand(1);
5675 EVT VT = N1.getValueType();
5677 // x | x --> x
5678 if (N0 == N1)
5679 return N0;
5681 // fold vector ops
5682 if (VT.isVector()) {
5683 if (SDValue FoldedVOp = SimplifyVBinOp(N))
5684 return FoldedVOp;
5686 // fold (or x, 0) -> x, vector edition
5687 if (ISD::isBuildVectorAllZeros(N0.getNode()))
5688 return N1;
5689 if (ISD::isBuildVectorAllZeros(N1.getNode()))
5690 return N0;
5692 // fold (or x, -1) -> -1, vector edition
5693 if (ISD::isBuildVectorAllOnes(N0.getNode()))
5694 // do not return N0, because undef node may exist in N0
5695 return DAG.getAllOnesConstant(SDLoc(N), N0.getValueType());
5696 if (ISD::isBuildVectorAllOnes(N1.getNode()))
5697 // do not return N1, because undef node may exist in N1
5698 return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType());
5700 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask)
5701 // Do this only if the resulting shuffle is legal.
5702 if (isa<ShuffleVectorSDNode>(N0) &&
5703 isa<ShuffleVectorSDNode>(N1) &&
5704 // Avoid folding a node with illegal type.
5705 TLI.isTypeLegal(VT)) {
5706 bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode());
5707 bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode());
5708 bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
5709 bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode());
5710 // Ensure both shuffles have a zero input.
5711 if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) {
5712 assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!");
5713 assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!");
5714 const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0);
5715 const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1);
5716 bool CanFold = true;
5717 int NumElts = VT.getVectorNumElements();
5718 SmallVector<int, 4> Mask(NumElts);
5720 for (int i = 0; i != NumElts; ++i) {
5721 int M0 = SV0->getMaskElt(i);
5722 int M1 = SV1->getMaskElt(i);
5724 // Determine if either index is pointing to a zero vector.
5725 bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts));
5726 bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts));
5728 // If one element is zero and the otherside is undef, keep undef.
5729 // This also handles the case that both are undef.
5730 if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) {
5731 Mask[i] = -1;
5732 continue;
5735 // Make sure only one of the elements is zero.
5736 if (M0Zero == M1Zero) {
5737 CanFold = false;
5738 break;
5741 assert((M0 >= 0 || M1 >= 0) && "Undef index!");
5743 // We have a zero and non-zero element. If the non-zero came from
5744 // SV0 make the index a LHS index. If it came from SV1, make it
5745 // a RHS index. We need to mod by NumElts because we don't care
5746 // which operand it came from in the original shuffles.
5747 Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts;
5750 if (CanFold) {
5751 SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0);
5752 SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0);
5754 SDValue LegalShuffle =
5755 TLI.buildLegalVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS,
5756 Mask, DAG);
5757 if (LegalShuffle)
5758 return LegalShuffle;
5764 // fold (or c1, c2) -> c1|c2
5765 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
5766 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5767 if (N0C && N1C && !N1C->isOpaque())
5768 return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C);
5769 // canonicalize constant to RHS
5770 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
5771 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
5772 return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
5773 // fold (or x, 0) -> x
5774 if (isNullConstant(N1))
5775 return N0;
5776 // fold (or x, -1) -> -1
5777 if (isAllOnesConstant(N1))
5778 return N1;
5780 if (SDValue NewSel = foldBinOpIntoSelect(N))
5781 return NewSel;
5783 // fold (or x, c) -> c iff (x & ~c) == 0
5784 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
5785 return N1;
5787 if (SDValue Combined = visitORLike(N0, N1, N))
5788 return Combined;
5790 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
5791 if (SDValue BSwap = MatchBSwapHWord(N, N0, N1))
5792 return BSwap;
5793 if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1))
5794 return BSwap;
5796 // reassociate or
5797 if (SDValue ROR = reassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags()))
5798 return ROR;
5800 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
5801 // iff (c1 & c2) != 0 or c1/c2 are undef.
5802 auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) {
5803 return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue());
5805 if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
5806 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) {
5807 if (SDValue COR = DAG.FoldConstantArithmetic(
5808 ISD::OR, SDLoc(N1), VT, N1.getNode(), N0.getOperand(1).getNode())) {
5809 SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1);
5810 AddToWorklist(IOR.getNode());
5811 return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR);
5815 if (SDValue Combined = visitORCommutative(DAG, N0, N1, N))
5816 return Combined;
5817 if (SDValue Combined = visitORCommutative(DAG, N1, N0, N))
5818 return Combined;
5820 // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
5821 if (N0.getOpcode() == N1.getOpcode())
5822 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
5823 return V;
5825 // See if this is some rotate idiom.
5826 if (SDValue Rot = MatchRotate(N0, N1, SDLoc(N)))
5827 return Rot;
5829 if (SDValue Load = MatchLoadCombine(N))
5830 return Load;
5832 // Simplify the operands using demanded-bits information.
5833 if (SimplifyDemandedBits(SDValue(N, 0)))
5834 return SDValue(N, 0);
5836 // If OR can be rewritten into ADD, try combines based on ADD.
5837 if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) &&
5838 DAG.haveNoCommonBitsSet(N0, N1))
5839 if (SDValue Combined = visitADDLike(N))
5840 return Combined;
5842 return SDValue();
5845 static SDValue stripConstantMask(SelectionDAG &DAG, SDValue Op, SDValue &Mask) {
5846 if (Op.getOpcode() == ISD::AND &&
5847 DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) {
5848 Mask = Op.getOperand(1);
5849 return Op.getOperand(0);
5851 return Op;
5854 /// Match "(X shl/srl V1) & V2" where V2 may not be present.
5855 static bool matchRotateHalf(SelectionDAG &DAG, SDValue Op, SDValue &Shift,
5856 SDValue &Mask) {
5857 Op = stripConstantMask(DAG, Op, Mask);
5858 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
5859 Shift = Op;
5860 return true;
5862 return false;
5865 /// Helper function for visitOR to extract the needed side of a rotate idiom
5866 /// from a shl/srl/mul/udiv. This is meant to handle cases where
5867 /// InstCombine merged some outside op with one of the shifts from
5868 /// the rotate pattern.
5869 /// \returns An empty \c SDValue if the needed shift couldn't be extracted.
5870 /// Otherwise, returns an expansion of \p ExtractFrom based on the following
5871 /// patterns:
5873 /// (or (add v v) (shrl v bitwidth-1)):
5874 /// expands (add v v) -> (shl v 1)
5876 /// (or (mul v c0) (shrl (mul v c1) c2)):
5877 /// expands (mul v c0) -> (shl (mul v c1) c3)
5879 /// (or (udiv v c0) (shl (udiv v c1) c2)):
5880 /// expands (udiv v c0) -> (shrl (udiv v c1) c3)
5882 /// (or (shl v c0) (shrl (shl v c1) c2)):
5883 /// expands (shl v c0) -> (shl (shl v c1) c3)
5885 /// (or (shrl v c0) (shl (shrl v c1) c2)):
5886 /// expands (shrl v c0) -> (shrl (shrl v c1) c3)
5888 /// Such that in all cases, c3+c2==bitwidth(op v c1).
5889 static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift,
5890 SDValue ExtractFrom, SDValue &Mask,
5891 const SDLoc &DL) {
5892 assert(OppShift && ExtractFrom && "Empty SDValue");
5893 assert(
5894 (OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) &&
5895 "Existing shift must be valid as a rotate half");
5897 ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask);
5899 // Value and Type of the shift.
5900 SDValue OppShiftLHS = OppShift.getOperand(0);
5901 EVT ShiftedVT = OppShiftLHS.getValueType();
5903 // Amount of the existing shift.
5904 ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1));
5906 // (add v v) -> (shl v 1)
5907 if (OppShift.getOpcode() == ISD::SRL && OppShiftCst &&
5908 ExtractFrom.getOpcode() == ISD::ADD &&
5909 ExtractFrom.getOperand(0) == ExtractFrom.getOperand(1) &&
5910 ExtractFrom.getOperand(0) == OppShiftLHS &&
5911 OppShiftCst->getAPIntValue() == ShiftedVT.getScalarSizeInBits() - 1)
5912 return DAG.getNode(ISD::SHL, DL, ShiftedVT, OppShiftLHS,
5913 DAG.getShiftAmountConstant(1, ShiftedVT, DL));
5915 // Preconditions:
5916 // (or (op0 v c0) (shiftl/r (op0 v c1) c2))
5918 // Find opcode of the needed shift to be extracted from (op0 v c0).
5919 unsigned Opcode = ISD::DELETED_NODE;
5920 bool IsMulOrDiv = false;
5921 // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift
5922 // opcode or its arithmetic (mul or udiv) variant.
5923 auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) {
5924 IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant;
5925 if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift)
5926 return false;
5927 Opcode = NeededShift;
5928 return true;
5930 // op0 must be either the needed shift opcode or the mul/udiv equivalent
5931 // that the needed shift can be extracted from.
5932 if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) &&
5933 (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV)))
5934 return SDValue();
5936 // op0 must be the same opcode on both sides, have the same LHS argument,
5937 // and produce the same value type.
5938 if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() ||
5939 OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) ||
5940 ShiftedVT != ExtractFrom.getValueType())
5941 return SDValue();
5943 // Constant mul/udiv/shift amount from the RHS of the shift's LHS op.
5944 ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1));
5945 // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op.
5946 ConstantSDNode *ExtractFromCst =
5947 isConstOrConstSplat(ExtractFrom.getOperand(1));
5948 // TODO: We should be able to handle non-uniform constant vectors for these values
5949 // Check that we have constant values.
5950 if (!OppShiftCst || !OppShiftCst->getAPIntValue() ||
5951 !OppLHSCst || !OppLHSCst->getAPIntValue() ||
5952 !ExtractFromCst || !ExtractFromCst->getAPIntValue())
5953 return SDValue();
5955 // Compute the shift amount we need to extract to complete the rotate.
5956 const unsigned VTWidth = ShiftedVT.getScalarSizeInBits();
5957 if (OppShiftCst->getAPIntValue().ugt(VTWidth))
5958 return SDValue();
5959 APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue();
5960 // Normalize the bitwidth of the two mul/udiv/shift constant operands.
5961 APInt ExtractFromAmt = ExtractFromCst->getAPIntValue();
5962 APInt OppLHSAmt = OppLHSCst->getAPIntValue();
5963 zeroExtendToMatch(ExtractFromAmt, OppLHSAmt);
5965 // Now try extract the needed shift from the ExtractFrom op and see if the
5966 // result matches up with the existing shift's LHS op.
5967 if (IsMulOrDiv) {
5968 // Op to extract from is a mul or udiv by a constant.
5969 // Check:
5970 // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0
5971 // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0
5972 const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(),
5973 NeededShiftAmt.getZExtValue());
5974 APInt ResultAmt;
5975 APInt Rem;
5976 APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem);
5977 if (Rem != 0 || ResultAmt != OppLHSAmt)
5978 return SDValue();
5979 } else {
5980 // Op to extract from is a shift by a constant.
5981 // Check:
5982 // c2 - (bitwidth(op0 v c0) - c1) == c0
5983 if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc(
5984 ExtractFromAmt.getBitWidth()))
5985 return SDValue();
5988 // Return the expanded shift op that should allow a rotate to be formed.
5989 EVT ShiftVT = OppShift.getOperand(1).getValueType();
5990 EVT ResVT = ExtractFrom.getValueType();
5991 SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT);
5992 return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode);
5995 // Return true if we can prove that, whenever Neg and Pos are both in the
5996 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that
5997 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
5999 // (or (shift1 X, Neg), (shift2 X, Pos))
6001 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
6002 // in direction shift1 by Neg. The range [0, EltSize) means that we only need
6003 // to consider shift amounts with defined behavior.
6004 static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize,
6005 SelectionDAG &DAG) {
6006 // If EltSize is a power of 2 then:
6008 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1)
6009 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize).
6011 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check
6012 // for the stronger condition:
6014 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A]
6016 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1)
6017 // we can just replace Neg with Neg' for the rest of the function.
6019 // In other cases we check for the even stronger condition:
6021 // Neg == EltSize - Pos [B]
6023 // for all Neg and Pos. Note that the (or ...) then invokes undefined
6024 // behavior if Pos == 0 (and consequently Neg == EltSize).
6026 // We could actually use [A] whenever EltSize is a power of 2, but the
6027 // only extra cases that it would match are those uninteresting ones
6028 // where Neg and Pos are never in range at the same time. E.g. for
6029 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
6030 // as well as (sub 32, Pos), but:
6032 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
6034 // always invokes undefined behavior for 32-bit X.
6036 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise.
6037 unsigned MaskLoBits = 0;
6038 if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) {
6039 if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) {
6040 KnownBits Known = DAG.computeKnownBits(Neg.getOperand(0));
6041 unsigned Bits = Log2_64(EltSize);
6042 if (NegC->getAPIntValue().getActiveBits() <= Bits &&
6043 ((NegC->getAPIntValue() | Known.Zero).countTrailingOnes() >= Bits)) {
6044 Neg = Neg.getOperand(0);
6045 MaskLoBits = Bits;
6050 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
6051 if (Neg.getOpcode() != ISD::SUB)
6052 return false;
6053 ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0));
6054 if (!NegC)
6055 return false;
6056 SDValue NegOp1 = Neg.getOperand(1);
6058 // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with
6059 // Pos'. The truncation is redundant for the purpose of the equality.
6060 if (MaskLoBits && Pos.getOpcode() == ISD::AND) {
6061 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) {
6062 KnownBits Known = DAG.computeKnownBits(Pos.getOperand(0));
6063 if (PosC->getAPIntValue().getActiveBits() <= MaskLoBits &&
6064 ((PosC->getAPIntValue() | Known.Zero).countTrailingOnes() >=
6065 MaskLoBits))
6066 Pos = Pos.getOperand(0);
6070 // The condition we need is now:
6072 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask
6074 // If NegOp1 == Pos then we need:
6076 // EltSize & Mask == NegC & Mask
6078 // (because "x & Mask" is a truncation and distributes through subtraction).
6079 APInt Width;
6080 if (Pos == NegOp1)
6081 Width = NegC->getAPIntValue();
6083 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
6084 // Then the condition we want to prove becomes:
6086 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask
6088 // which, again because "x & Mask" is a truncation, becomes:
6090 // NegC & Mask == (EltSize - PosC) & Mask
6091 // EltSize & Mask == (NegC + PosC) & Mask
6092 else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) {
6093 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1)))
6094 Width = PosC->getAPIntValue() + NegC->getAPIntValue();
6095 else
6096 return false;
6097 } else
6098 return false;
6100 // Now we just need to check that EltSize & Mask == Width & Mask.
6101 if (MaskLoBits)
6102 // EltSize & Mask is 0 since Mask is EltSize - 1.
6103 return Width.getLoBits(MaskLoBits) == 0;
6104 return Width == EltSize;
6107 // A subroutine of MatchRotate used once we have found an OR of two opposite
6108 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces
6109 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
6110 // former being preferred if supported. InnerPos and InnerNeg are Pos and
6111 // Neg with outer conversions stripped away.
6112 SDValue DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos,
6113 SDValue Neg, SDValue InnerPos,
6114 SDValue InnerNeg, unsigned PosOpcode,
6115 unsigned NegOpcode, const SDLoc &DL) {
6116 // fold (or (shl x, (*ext y)),
6117 // (srl x, (*ext (sub 32, y)))) ->
6118 // (rotl x, y) or (rotr x, (sub 32, y))
6120 // fold (or (shl x, (*ext (sub 32, y))),
6121 // (srl x, (*ext y))) ->
6122 // (rotr x, y) or (rotl x, (sub 32, y))
6123 EVT VT = Shifted.getValueType();
6124 if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG)) {
6125 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT);
6126 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted,
6127 HasPos ? Pos : Neg);
6130 return SDValue();
6133 // MatchRotate - Handle an 'or' of two operands. If this is one of the many
6134 // idioms for rotate, and if the target supports rotation instructions, generate
6135 // a rot[lr].
6136 SDValue DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) {
6137 // Must be a legal type. Expanded 'n promoted things won't work with rotates.
6138 EVT VT = LHS.getValueType();
6139 if (!TLI.isTypeLegal(VT))
6140 return SDValue();
6142 // The target must have at least one rotate flavor.
6143 bool HasROTL = hasOperation(ISD::ROTL, VT);
6144 bool HasROTR = hasOperation(ISD::ROTR, VT);
6145 if (!HasROTL && !HasROTR)
6146 return SDValue();
6148 // Check for truncated rotate.
6149 if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE &&
6150 LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) {
6151 assert(LHS.getValueType() == RHS.getValueType());
6152 if (SDValue Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) {
6153 return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), Rot);
6157 // Match "(X shl/srl V1) & V2" where V2 may not be present.
6158 SDValue LHSShift; // The shift.
6159 SDValue LHSMask; // AND value if any.
6160 matchRotateHalf(DAG, LHS, LHSShift, LHSMask);
6162 SDValue RHSShift; // The shift.
6163 SDValue RHSMask; // AND value if any.
6164 matchRotateHalf(DAG, RHS, RHSShift, RHSMask);
6166 // If neither side matched a rotate half, bail
6167 if (!LHSShift && !RHSShift)
6168 return SDValue();
6170 // InstCombine may have combined a constant shl, srl, mul, or udiv with one
6171 // side of the rotate, so try to handle that here. In all cases we need to
6172 // pass the matched shift from the opposite side to compute the opcode and
6173 // needed shift amount to extract. We still want to do this if both sides
6174 // matched a rotate half because one half may be a potential overshift that
6175 // can be broken down (ie if InstCombine merged two shl or srl ops into a
6176 // single one).
6178 // Have LHS side of the rotate, try to extract the needed shift from the RHS.
6179 if (LHSShift)
6180 if (SDValue NewRHSShift =
6181 extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL))
6182 RHSShift = NewRHSShift;
6183 // Have RHS side of the rotate, try to extract the needed shift from the LHS.
6184 if (RHSShift)
6185 if (SDValue NewLHSShift =
6186 extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL))
6187 LHSShift = NewLHSShift;
6189 // If a side is still missing, nothing else we can do.
6190 if (!RHSShift || !LHSShift)
6191 return SDValue();
6193 // At this point we've matched or extracted a shift op on each side.
6195 if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
6196 return SDValue(); // Not shifting the same value.
6198 if (LHSShift.getOpcode() == RHSShift.getOpcode())
6199 return SDValue(); // Shifts must disagree.
6201 // Canonicalize shl to left side in a shl/srl pair.
6202 if (RHSShift.getOpcode() == ISD::SHL) {
6203 std::swap(LHS, RHS);
6204 std::swap(LHSShift, RHSShift);
6205 std::swap(LHSMask, RHSMask);
6208 unsigned EltSizeInBits = VT.getScalarSizeInBits();
6209 SDValue LHSShiftArg = LHSShift.getOperand(0);
6210 SDValue LHSShiftAmt = LHSShift.getOperand(1);
6211 SDValue RHSShiftArg = RHSShift.getOperand(0);
6212 SDValue RHSShiftAmt = RHSShift.getOperand(1);
6214 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
6215 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
6216 auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS,
6217 ConstantSDNode *RHS) {
6218 return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits;
6220 if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) {
6221 SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
6222 LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
6224 // If there is an AND of either shifted operand, apply it to the result.
6225 if (LHSMask.getNode() || RHSMask.getNode()) {
6226 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT);
6227 SDValue Mask = AllOnes;
6229 if (LHSMask.getNode()) {
6230 SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt);
6231 Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
6232 DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits));
6234 if (RHSMask.getNode()) {
6235 SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt);
6236 Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
6237 DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits));
6240 Rot = DAG.getNode(ISD::AND, DL, VT, Rot, Mask);
6243 return Rot;
6246 // If there is a mask here, and we have a variable shift, we can't be sure
6247 // that we're masking out the right stuff.
6248 if (LHSMask.getNode() || RHSMask.getNode())
6249 return SDValue();
6251 // If the shift amount is sign/zext/any-extended just peel it off.
6252 SDValue LExtOp0 = LHSShiftAmt;
6253 SDValue RExtOp0 = RHSShiftAmt;
6254 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
6255 LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
6256 LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
6257 LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
6258 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
6259 RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
6260 RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
6261 RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
6262 LExtOp0 = LHSShiftAmt.getOperand(0);
6263 RExtOp0 = RHSShiftAmt.getOperand(0);
6266 SDValue TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt,
6267 LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL);
6268 if (TryL)
6269 return TryL;
6271 SDValue TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt,
6272 RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL);
6273 if (TryR)
6274 return TryR;
6276 return SDValue();
6279 namespace {
6281 /// Represents known origin of an individual byte in load combine pattern. The
6282 /// value of the byte is either constant zero or comes from memory.
6283 struct ByteProvider {
6284 // For constant zero providers Load is set to nullptr. For memory providers
6285 // Load represents the node which loads the byte from memory.
6286 // ByteOffset is the offset of the byte in the value produced by the load.
6287 LoadSDNode *Load = nullptr;
6288 unsigned ByteOffset = 0;
6290 ByteProvider() = default;
6292 static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) {
6293 return ByteProvider(Load, ByteOffset);
6296 static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); }
6298 bool isConstantZero() const { return !Load; }
6299 bool isMemory() const { return Load; }
6301 bool operator==(const ByteProvider &Other) const {
6302 return Other.Load == Load && Other.ByteOffset == ByteOffset;
6305 private:
6306 ByteProvider(LoadSDNode *Load, unsigned ByteOffset)
6307 : Load(Load), ByteOffset(ByteOffset) {}
6310 } // end anonymous namespace
6312 /// Recursively traverses the expression calculating the origin of the requested
6313 /// byte of the given value. Returns None if the provider can't be calculated.
6315 /// For all the values except the root of the expression verifies that the value
6316 /// has exactly one use and if it's not true return None. This way if the origin
6317 /// of the byte is returned it's guaranteed that the values which contribute to
6318 /// the byte are not used outside of this expression.
6320 /// Because the parts of the expression are not allowed to have more than one
6321 /// use this function iterates over trees, not DAGs. So it never visits the same
6322 /// node more than once.
6323 static const Optional<ByteProvider>
6324 calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth,
6325 bool Root = false) {
6326 // Typical i64 by i8 pattern requires recursion up to 8 calls depth
6327 if (Depth == 10)
6328 return None;
6330 if (!Root && !Op.hasOneUse())
6331 return None;
6333 assert(Op.getValueType().isScalarInteger() && "can't handle other types");
6334 unsigned BitWidth = Op.getValueSizeInBits();
6335 if (BitWidth % 8 != 0)
6336 return None;
6337 unsigned ByteWidth = BitWidth / 8;
6338 assert(Index < ByteWidth && "invalid index requested");
6339 (void) ByteWidth;
6341 switch (Op.getOpcode()) {
6342 case ISD::OR: {
6343 auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1);
6344 if (!LHS)
6345 return None;
6346 auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1);
6347 if (!RHS)
6348 return None;
6350 if (LHS->isConstantZero())
6351 return RHS;
6352 if (RHS->isConstantZero())
6353 return LHS;
6354 return None;
6356 case ISD::SHL: {
6357 auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
6358 if (!ShiftOp)
6359 return None;
6361 uint64_t BitShift = ShiftOp->getZExtValue();
6362 if (BitShift % 8 != 0)
6363 return None;
6364 uint64_t ByteShift = BitShift / 8;
6366 return Index < ByteShift
6367 ? ByteProvider::getConstantZero()
6368 : calculateByteProvider(Op->getOperand(0), Index - ByteShift,
6369 Depth + 1);
6371 case ISD::ANY_EXTEND:
6372 case ISD::SIGN_EXTEND:
6373 case ISD::ZERO_EXTEND: {
6374 SDValue NarrowOp = Op->getOperand(0);
6375 unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits();
6376 if (NarrowBitWidth % 8 != 0)
6377 return None;
6378 uint64_t NarrowByteWidth = NarrowBitWidth / 8;
6380 if (Index >= NarrowByteWidth)
6381 return Op.getOpcode() == ISD::ZERO_EXTEND
6382 ? Optional<ByteProvider>(ByteProvider::getConstantZero())
6383 : None;
6384 return calculateByteProvider(NarrowOp, Index, Depth + 1);
6386 case ISD::BSWAP:
6387 return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1,
6388 Depth + 1);
6389 case ISD::LOAD: {
6390 auto L = cast<LoadSDNode>(Op.getNode());
6391 if (!L->isSimple() || L->isIndexed())
6392 return None;
6394 unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits();
6395 if (NarrowBitWidth % 8 != 0)
6396 return None;
6397 uint64_t NarrowByteWidth = NarrowBitWidth / 8;
6399 if (Index >= NarrowByteWidth)
6400 return L->getExtensionType() == ISD::ZEXTLOAD
6401 ? Optional<ByteProvider>(ByteProvider::getConstantZero())
6402 : None;
6403 return ByteProvider::getMemory(L, Index);
6407 return None;
6410 static unsigned LittleEndianByteAt(unsigned BW, unsigned i) {
6411 return i;
6414 static unsigned BigEndianByteAt(unsigned BW, unsigned i) {
6415 return BW - i - 1;
6418 // Check if the bytes offsets we are looking at match with either big or
6419 // little endian value loaded. Return true for big endian, false for little
6420 // endian, and None if match failed.
6421 static Optional<bool> isBigEndian(const SmallVector<int64_t, 4> &ByteOffsets,
6422 int64_t FirstOffset) {
6423 // The endian can be decided only when it is 2 bytes at least.
6424 unsigned Width = ByteOffsets.size();
6425 if (Width < 2)
6426 return None;
6428 bool BigEndian = true, LittleEndian = true;
6429 for (unsigned i = 0; i < Width; i++) {
6430 int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset;
6431 LittleEndian &= CurrentByteOffset == LittleEndianByteAt(Width, i);
6432 BigEndian &= CurrentByteOffset == BigEndianByteAt(Width, i);
6433 if (!BigEndian && !LittleEndian)
6434 return None;
6437 assert((BigEndian != LittleEndian) && "It should be either big endian or"
6438 "little endian");
6439 return BigEndian;
6442 static SDValue stripTruncAndExt(SDValue Value) {
6443 switch (Value.getOpcode()) {
6444 case ISD::TRUNCATE:
6445 case ISD::ZERO_EXTEND:
6446 case ISD::SIGN_EXTEND:
6447 case ISD::ANY_EXTEND:
6448 return stripTruncAndExt(Value.getOperand(0));
6450 return Value;
6453 /// Match a pattern where a wide type scalar value is stored by several narrow
6454 /// stores. Fold it into a single store or a BSWAP and a store if the targets
6455 /// supports it.
6457 /// Assuming little endian target:
6458 /// i8 *p = ...
6459 /// i32 val = ...
6460 /// p[0] = (val >> 0) & 0xFF;
6461 /// p[1] = (val >> 8) & 0xFF;
6462 /// p[2] = (val >> 16) & 0xFF;
6463 /// p[3] = (val >> 24) & 0xFF;
6464 /// =>
6465 /// *((i32)p) = val;
6467 /// i8 *p = ...
6468 /// i32 val = ...
6469 /// p[0] = (val >> 24) & 0xFF;
6470 /// p[1] = (val >> 16) & 0xFF;
6471 /// p[2] = (val >> 8) & 0xFF;
6472 /// p[3] = (val >> 0) & 0xFF;
6473 /// =>
6474 /// *((i32)p) = BSWAP(val);
6475 SDValue DAGCombiner::MatchStoreCombine(StoreSDNode *N) {
6476 // Collect all the stores in the chain.
6477 SDValue Chain;
6478 SmallVector<StoreSDNode *, 8> Stores;
6479 for (StoreSDNode *Store = N; Store; Store = dyn_cast<StoreSDNode>(Chain)) {
6480 // TODO: Allow unordered atomics when wider type is legal (see D66309)
6481 if (Store->getMemoryVT() != MVT::i8 ||
6482 !Store->isSimple() || Store->isIndexed())
6483 return SDValue();
6484 Stores.push_back(Store);
6485 Chain = Store->getChain();
6487 // Handle the simple type only.
6488 unsigned Width = Stores.size();
6489 EVT VT = EVT::getIntegerVT(
6490 *DAG.getContext(), Width * N->getMemoryVT().getSizeInBits());
6491 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
6492 return SDValue();
6494 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6495 if (LegalOperations && !TLI.isOperationLegal(ISD::STORE, VT))
6496 return SDValue();
6498 // Check if all the bytes of the combined value we are looking at are stored
6499 // to the same base address. Collect bytes offsets from Base address into
6500 // ByteOffsets.
6501 SDValue CombinedValue;
6502 SmallVector<int64_t, 4> ByteOffsets(Width, INT64_MAX);
6503 int64_t FirstOffset = INT64_MAX;
6504 StoreSDNode *FirstStore = nullptr;
6505 Optional<BaseIndexOffset> Base;
6506 for (auto Store : Stores) {
6507 // All the stores store different byte of the CombinedValue. A truncate is
6508 // required to get that byte value.
6509 SDValue Trunc = Store->getValue();
6510 if (Trunc.getOpcode() != ISD::TRUNCATE)
6511 return SDValue();
6512 // A shift operation is required to get the right byte offset, except the
6513 // first byte.
6514 int64_t Offset = 0;
6515 SDValue Value = Trunc.getOperand(0);
6516 if (Value.getOpcode() == ISD::SRL ||
6517 Value.getOpcode() == ISD::SRA) {
6518 ConstantSDNode *ShiftOffset =
6519 dyn_cast<ConstantSDNode>(Value.getOperand(1));
6520 // Trying to match the following pattern. The shift offset must be
6521 // a constant and a multiple of 8. It is the byte offset in "y".
6523 // x = srl y, offset
6524 // i8 z = trunc x
6525 // store z, ...
6526 if (!ShiftOffset || (ShiftOffset->getSExtValue() % 8))
6527 return SDValue();
6529 Offset = ShiftOffset->getSExtValue()/8;
6530 Value = Value.getOperand(0);
6533 // Stores must share the same combined value with different offsets.
6534 if (!CombinedValue)
6535 CombinedValue = Value;
6536 else if (stripTruncAndExt(CombinedValue) != stripTruncAndExt(Value))
6537 return SDValue();
6539 // The trunc and all the extend operation should be stripped to get the
6540 // real value we are stored.
6541 else if (CombinedValue.getValueType() != VT) {
6542 if (Value.getValueType() == VT ||
6543 Value.getValueSizeInBits() > CombinedValue.getValueSizeInBits())
6544 CombinedValue = Value;
6545 // Give up if the combined value type is smaller than the store size.
6546 if (CombinedValue.getValueSizeInBits() < VT.getSizeInBits())
6547 return SDValue();
6550 // Stores must share the same base address
6551 BaseIndexOffset Ptr = BaseIndexOffset::match(Store, DAG);
6552 int64_t ByteOffsetFromBase = 0;
6553 if (!Base)
6554 Base = Ptr;
6555 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase))
6556 return SDValue();
6558 // Remember the first byte store
6559 if (ByteOffsetFromBase < FirstOffset) {
6560 FirstStore = Store;
6561 FirstOffset = ByteOffsetFromBase;
6563 // Map the offset in the store and the offset in the combined value, and
6564 // early return if it has been set before.
6565 if (Offset < 0 || Offset >= Width || ByteOffsets[Offset] != INT64_MAX)
6566 return SDValue();
6567 ByteOffsets[Offset] = ByteOffsetFromBase;
6570 assert(FirstOffset != INT64_MAX && "First byte offset must be set");
6571 assert(FirstStore && "First store must be set");
6573 // Check if the bytes of the combined value we are looking at match with
6574 // either big or little endian value store.
6575 Optional<bool> IsBigEndian = isBigEndian(ByteOffsets, FirstOffset);
6576 if (!IsBigEndian.hasValue())
6577 return SDValue();
6579 // The node we are looking at matches with the pattern, check if we can
6580 // replace it with a single bswap if needed and store.
6582 // If the store needs byte swap check if the target supports it
6583 bool NeedsBswap = DAG.getDataLayout().isBigEndian() != *IsBigEndian;
6585 // Before legalize we can introduce illegal bswaps which will be later
6586 // converted to an explicit bswap sequence. This way we end up with a single
6587 // store and byte shuffling instead of several stores and byte shuffling.
6588 if (NeedsBswap && LegalOperations && !TLI.isOperationLegal(ISD::BSWAP, VT))
6589 return SDValue();
6591 // Check that a store of the wide type is both allowed and fast on the target
6592 bool Fast = false;
6593 bool Allowed =
6594 TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
6595 *FirstStore->getMemOperand(), &Fast);
6596 if (!Allowed || !Fast)
6597 return SDValue();
6599 if (VT != CombinedValue.getValueType()) {
6600 assert(CombinedValue.getValueType().getSizeInBits() > VT.getSizeInBits() &&
6601 "Get unexpected store value to combine");
6602 CombinedValue = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT,
6603 CombinedValue);
6606 if (NeedsBswap)
6607 CombinedValue = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, CombinedValue);
6609 SDValue NewStore =
6610 DAG.getStore(Chain, SDLoc(N), CombinedValue, FirstStore->getBasePtr(),
6611 FirstStore->getPointerInfo(), FirstStore->getAlignment());
6613 // Rely on other DAG combine rules to remove the other individual stores.
6614 DAG.ReplaceAllUsesWith(N, NewStore.getNode());
6615 return NewStore;
6618 /// Match a pattern where a wide type scalar value is loaded by several narrow
6619 /// loads and combined by shifts and ors. Fold it into a single load or a load
6620 /// and a BSWAP if the targets supports it.
6622 /// Assuming little endian target:
6623 /// i8 *a = ...
6624 /// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
6625 /// =>
6626 /// i32 val = *((i32)a)
6628 /// i8 *a = ...
6629 /// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
6630 /// =>
6631 /// i32 val = BSWAP(*((i32)a))
6633 /// TODO: This rule matches complex patterns with OR node roots and doesn't
6634 /// interact well with the worklist mechanism. When a part of the pattern is
6635 /// updated (e.g. one of the loads) its direct users are put into the worklist,
6636 /// but the root node of the pattern which triggers the load combine is not
6637 /// necessarily a direct user of the changed node. For example, once the address
6638 /// of t28 load is reassociated load combine won't be triggered:
6639 /// t25: i32 = add t4, Constant:i32<2>
6640 /// t26: i64 = sign_extend t25
6641 /// t27: i64 = add t2, t26
6642 /// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64
6643 /// t29: i32 = zero_extend t28
6644 /// t32: i32 = shl t29, Constant:i8<8>
6645 /// t33: i32 = or t23, t32
6646 /// As a possible fix visitLoad can check if the load can be a part of a load
6647 /// combine pattern and add corresponding OR roots to the worklist.
6648 SDValue DAGCombiner::MatchLoadCombine(SDNode *N) {
6649 assert(N->getOpcode() == ISD::OR &&
6650 "Can only match load combining against OR nodes");
6652 // Handles simple types only
6653 EVT VT = N->getValueType(0);
6654 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
6655 return SDValue();
6656 unsigned ByteWidth = VT.getSizeInBits() / 8;
6658 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6659 // Before legalize we can introduce too wide illegal loads which will be later
6660 // split into legal sized loads. This enables us to combine i64 load by i8
6661 // patterns to a couple of i32 loads on 32 bit targets.
6662 if (LegalOperations && !TLI.isOperationLegal(ISD::LOAD, VT))
6663 return SDValue();
6665 bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian();
6666 auto MemoryByteOffset = [&] (ByteProvider P) {
6667 assert(P.isMemory() && "Must be a memory byte provider");
6668 unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits();
6669 assert(LoadBitWidth % 8 == 0 &&
6670 "can only analyze providers for individual bytes not bit");
6671 unsigned LoadByteWidth = LoadBitWidth / 8;
6672 return IsBigEndianTarget
6673 ? BigEndianByteAt(LoadByteWidth, P.ByteOffset)
6674 : LittleEndianByteAt(LoadByteWidth, P.ByteOffset);
6677 Optional<BaseIndexOffset> Base;
6678 SDValue Chain;
6680 SmallPtrSet<LoadSDNode *, 8> Loads;
6681 Optional<ByteProvider> FirstByteProvider;
6682 int64_t FirstOffset = INT64_MAX;
6684 // Check if all the bytes of the OR we are looking at are loaded from the same
6685 // base address. Collect bytes offsets from Base address in ByteOffsets.
6686 SmallVector<int64_t, 4> ByteOffsets(ByteWidth);
6687 for (unsigned i = 0; i < ByteWidth; i++) {
6688 auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true);
6689 if (!P || !P->isMemory()) // All the bytes must be loaded from memory
6690 return SDValue();
6692 LoadSDNode *L = P->Load;
6693 assert(L->hasNUsesOfValue(1, 0) && L->isSimple() &&
6694 !L->isIndexed() &&
6695 "Must be enforced by calculateByteProvider");
6696 assert(L->getOffset().isUndef() && "Unindexed load must have undef offset");
6698 // All loads must share the same chain
6699 SDValue LChain = L->getChain();
6700 if (!Chain)
6701 Chain = LChain;
6702 else if (Chain != LChain)
6703 return SDValue();
6705 // Loads must share the same base address
6706 BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG);
6707 int64_t ByteOffsetFromBase = 0;
6708 if (!Base)
6709 Base = Ptr;
6710 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase))
6711 return SDValue();
6713 // Calculate the offset of the current byte from the base address
6714 ByteOffsetFromBase += MemoryByteOffset(*P);
6715 ByteOffsets[i] = ByteOffsetFromBase;
6717 // Remember the first byte load
6718 if (ByteOffsetFromBase < FirstOffset) {
6719 FirstByteProvider = P;
6720 FirstOffset = ByteOffsetFromBase;
6723 Loads.insert(L);
6725 assert(!Loads.empty() && "All the bytes of the value must be loaded from "
6726 "memory, so there must be at least one load which produces the value");
6727 assert(Base && "Base address of the accessed memory location must be set");
6728 assert(FirstOffset != INT64_MAX && "First byte offset must be set");
6730 // Check if the bytes of the OR we are looking at match with either big or
6731 // little endian value load
6732 Optional<bool> IsBigEndian = isBigEndian(ByteOffsets, FirstOffset);
6733 if (!IsBigEndian.hasValue())
6734 return SDValue();
6736 assert(FirstByteProvider && "must be set");
6738 // Ensure that the first byte is loaded from zero offset of the first load.
6739 // So the combined value can be loaded from the first load address.
6740 if (MemoryByteOffset(*FirstByteProvider) != 0)
6741 return SDValue();
6742 LoadSDNode *FirstLoad = FirstByteProvider->Load;
6744 // The node we are looking at matches with the pattern, check if we can
6745 // replace it with a single load and bswap if needed.
6747 // If the load needs byte swap check if the target supports it
6748 bool NeedsBswap = IsBigEndianTarget != *IsBigEndian;
6750 // Before legalize we can introduce illegal bswaps which will be later
6751 // converted to an explicit bswap sequence. This way we end up with a single
6752 // load and byte shuffling instead of several loads and byte shuffling.
6753 if (NeedsBswap && LegalOperations && !TLI.isOperationLegal(ISD::BSWAP, VT))
6754 return SDValue();
6756 // Check that a load of the wide type is both allowed and fast on the target
6757 bool Fast = false;
6758 bool Allowed = TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(),
6759 VT, *FirstLoad->getMemOperand(), &Fast);
6760 if (!Allowed || !Fast)
6761 return SDValue();
6763 SDValue NewLoad =
6764 DAG.getLoad(VT, SDLoc(N), Chain, FirstLoad->getBasePtr(),
6765 FirstLoad->getPointerInfo(), FirstLoad->getAlignment());
6767 // Transfer chain users from old loads to the new load.
6768 for (LoadSDNode *L : Loads)
6769 DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1));
6771 return NeedsBswap ? DAG.getNode(ISD::BSWAP, SDLoc(N), VT, NewLoad) : NewLoad;
6774 // If the target has andn, bsl, or a similar bit-select instruction,
6775 // we want to unfold masked merge, with canonical pattern of:
6776 // | A | |B|
6777 // ((x ^ y) & m) ^ y
6778 // | D |
6779 // Into:
6780 // (x & m) | (y & ~m)
6781 // If y is a constant, and the 'andn' does not work with immediates,
6782 // we unfold into a different pattern:
6783 // ~(~x & m) & (m | y)
6784 // NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at
6785 // the very least that breaks andnpd / andnps patterns, and because those
6786 // patterns are simplified in IR and shouldn't be created in the DAG
6787 SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) {
6788 assert(N->getOpcode() == ISD::XOR);
6790 // Don't touch 'not' (i.e. where y = -1).
6791 if (isAllOnesOrAllOnesSplat(N->getOperand(1)))
6792 return SDValue();
6794 EVT VT = N->getValueType(0);
6796 // There are 3 commutable operators in the pattern,
6797 // so we have to deal with 8 possible variants of the basic pattern.
6798 SDValue X, Y, M;
6799 auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) {
6800 if (And.getOpcode() != ISD::AND || !And.hasOneUse())
6801 return false;
6802 SDValue Xor = And.getOperand(XorIdx);
6803 if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse())
6804 return false;
6805 SDValue Xor0 = Xor.getOperand(0);
6806 SDValue Xor1 = Xor.getOperand(1);
6807 // Don't touch 'not' (i.e. where y = -1).
6808 if (isAllOnesOrAllOnesSplat(Xor1))
6809 return false;
6810 if (Other == Xor0)
6811 std::swap(Xor0, Xor1);
6812 if (Other != Xor1)
6813 return false;
6814 X = Xor0;
6815 Y = Xor1;
6816 M = And.getOperand(XorIdx ? 0 : 1);
6817 return true;
6820 SDValue N0 = N->getOperand(0);
6821 SDValue N1 = N->getOperand(1);
6822 if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) &&
6823 !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0))
6824 return SDValue();
6826 // Don't do anything if the mask is constant. This should not be reachable.
6827 // InstCombine should have already unfolded this pattern, and DAGCombiner
6828 // probably shouldn't produce it, too.
6829 if (isa<ConstantSDNode>(M.getNode()))
6830 return SDValue();
6832 // We can transform if the target has AndNot
6833 if (!TLI.hasAndNot(M))
6834 return SDValue();
6836 SDLoc DL(N);
6838 // If Y is a constant, check that 'andn' works with immediates.
6839 if (!TLI.hasAndNot(Y)) {
6840 assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable.");
6841 // If not, we need to do a bit more work to make sure andn is still used.
6842 SDValue NotX = DAG.getNOT(DL, X, VT);
6843 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M);
6844 SDValue NotLHS = DAG.getNOT(DL, LHS, VT);
6845 SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y);
6846 return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS);
6849 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M);
6850 SDValue NotM = DAG.getNOT(DL, M, VT);
6851 SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM);
6853 return DAG.getNode(ISD::OR, DL, VT, LHS, RHS);
6856 SDValue DAGCombiner::visitXOR(SDNode *N) {
6857 SDValue N0 = N->getOperand(0);
6858 SDValue N1 = N->getOperand(1);
6859 EVT VT = N0.getValueType();
6861 // fold vector ops
6862 if (VT.isVector()) {
6863 if (SDValue FoldedVOp = SimplifyVBinOp(N))
6864 return FoldedVOp;
6866 // fold (xor x, 0) -> x, vector edition
6867 if (ISD::isBuildVectorAllZeros(N0.getNode()))
6868 return N1;
6869 if (ISD::isBuildVectorAllZeros(N1.getNode()))
6870 return N0;
6873 // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
6874 SDLoc DL(N);
6875 if (N0.isUndef() && N1.isUndef())
6876 return DAG.getConstant(0, DL, VT);
6877 // fold (xor x, undef) -> undef
6878 if (N0.isUndef())
6879 return N0;
6880 if (N1.isUndef())
6881 return N1;
6882 // fold (xor c1, c2) -> c1^c2
6883 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
6884 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
6885 if (N0C && N1C)
6886 return DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, N0C, N1C);
6887 // canonicalize constant to RHS
6888 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
6889 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
6890 return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
6891 // fold (xor x, 0) -> x
6892 if (isNullConstant(N1))
6893 return N0;
6895 if (SDValue NewSel = foldBinOpIntoSelect(N))
6896 return NewSel;
6898 // reassociate xor
6899 if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags()))
6900 return RXOR;
6902 // fold !(x cc y) -> (x !cc y)
6903 unsigned N0Opcode = N0.getOpcode();
6904 SDValue LHS, RHS, CC;
6905 if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) {
6906 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
6907 LHS.getValueType().isInteger());
6908 if (!LegalOperations ||
6909 TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
6910 switch (N0Opcode) {
6911 default:
6912 llvm_unreachable("Unhandled SetCC Equivalent!");
6913 case ISD::SETCC:
6914 return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC);
6915 case ISD::SELECT_CC:
6916 return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2),
6917 N0.getOperand(3), NotCC);
6922 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
6923 if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() &&
6924 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
6925 SDValue V = N0.getOperand(0);
6926 SDLoc DL0(N0);
6927 V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V,
6928 DAG.getConstant(1, DL0, V.getValueType()));
6929 AddToWorklist(V.getNode());
6930 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V);
6933 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
6934 if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() &&
6935 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
6936 SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1);
6937 if (isOneUseSetCC(N01) || isOneUseSetCC(N00)) {
6938 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
6939 N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00
6940 N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01
6941 AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode());
6942 return DAG.getNode(NewOpcode, DL, VT, N00, N01);
6945 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
6946 if (isAllOnesConstant(N1) && N0.hasOneUse() &&
6947 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
6948 SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1);
6949 if (isa<ConstantSDNode>(N01) || isa<ConstantSDNode>(N00)) {
6950 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
6951 N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00
6952 N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01
6953 AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode());
6954 return DAG.getNode(NewOpcode, DL, VT, N00, N01);
6958 // fold (not (neg x)) -> (add X, -1)
6959 // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if
6960 // Y is a constant or the subtract has a single use.
6961 if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::SUB &&
6962 isNullConstant(N0.getOperand(0))) {
6963 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1),
6964 DAG.getAllOnesConstant(DL, VT));
6967 // fold (xor (and x, y), y) -> (and (not x), y)
6968 if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) {
6969 SDValue X = N0.getOperand(0);
6970 SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
6971 AddToWorklist(NotX.getNode());
6972 return DAG.getNode(ISD::AND, DL, VT, NotX, N1);
6975 if ((N0Opcode == ISD::SRL || N0Opcode == ISD::SHL) && N0.hasOneUse()) {
6976 ConstantSDNode *XorC = isConstOrConstSplat(N1);
6977 ConstantSDNode *ShiftC = isConstOrConstSplat(N0.getOperand(1));
6978 unsigned BitWidth = VT.getScalarSizeInBits();
6979 if (XorC && ShiftC) {
6980 // Don't crash on an oversized shift. We can not guarantee that a bogus
6981 // shift has been simplified to undef.
6982 uint64_t ShiftAmt = ShiftC->getLimitedValue();
6983 if (ShiftAmt < BitWidth) {
6984 APInt Ones = APInt::getAllOnesValue(BitWidth);
6985 Ones = N0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) : Ones.lshr(ShiftAmt);
6986 if (XorC->getAPIntValue() == Ones) {
6987 // If the xor constant is a shifted -1, do a 'not' before the shift:
6988 // xor (X << ShiftC), XorC --> (not X) << ShiftC
6989 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
6990 SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT);
6991 return DAG.getNode(N0Opcode, DL, VT, Not, N0.getOperand(1));
6997 // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X)
6998 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) {
6999 SDValue A = N0Opcode == ISD::ADD ? N0 : N1;
7000 SDValue S = N0Opcode == ISD::SRA ? N0 : N1;
7001 if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) {
7002 SDValue A0 = A.getOperand(0), A1 = A.getOperand(1);
7003 SDValue S0 = S.getOperand(0);
7004 if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0)) {
7005 unsigned OpSizeInBits = VT.getScalarSizeInBits();
7006 if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1)))
7007 if (C->getAPIntValue() == (OpSizeInBits - 1))
7008 return DAG.getNode(ISD::ABS, DL, VT, S0);
7013 // fold (xor x, x) -> 0
7014 if (N0 == N1)
7015 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
7017 // fold (xor (shl 1, x), -1) -> (rotl ~1, x)
7018 // Here is a concrete example of this equivalence:
7019 // i16 x == 14
7020 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000
7021 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111
7023 // =>
7025 // i16 ~1 == 0b1111111111111110
7026 // i16 rol(~1, 14) == 0b1011111111111111
7028 // Some additional tips to help conceptualize this transform:
7029 // - Try to see the operation as placing a single zero in a value of all ones.
7030 // - There exists no value for x which would allow the result to contain zero.
7031 // - Values of x larger than the bitwidth are undefined and do not require a
7032 // consistent result.
7033 // - Pushing the zero left requires shifting one bits in from the right.
7034 // A rotate left of ~1 is a nice way of achieving the desired result.
7035 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL &&
7036 isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) {
7037 return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT),
7038 N0.getOperand(1));
7041 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
7042 if (N0Opcode == N1.getOpcode())
7043 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
7044 return V;
7046 // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable
7047 if (SDValue MM = unfoldMaskedMerge(N))
7048 return MM;
7050 // Simplify the expression using non-local knowledge.
7051 if (SimplifyDemandedBits(SDValue(N, 0)))
7052 return SDValue(N, 0);
7054 return SDValue();
7057 /// If we have a shift-by-constant of a bitwise logic op that itself has a
7058 /// shift-by-constant operand with identical opcode, we may be able to convert
7059 /// that into 2 independent shifts followed by the logic op. This is a
7060 /// throughput improvement.
7061 static SDValue combineShiftOfShiftedLogic(SDNode *Shift, SelectionDAG &DAG) {
7062 // Match a one-use bitwise logic op.
7063 SDValue LogicOp = Shift->getOperand(0);
7064 if (!LogicOp.hasOneUse())
7065 return SDValue();
7067 unsigned LogicOpcode = LogicOp.getOpcode();
7068 if (LogicOpcode != ISD::AND && LogicOpcode != ISD::OR &&
7069 LogicOpcode != ISD::XOR)
7070 return SDValue();
7072 // Find a matching one-use shift by constant.
7073 unsigned ShiftOpcode = Shift->getOpcode();
7074 SDValue C1 = Shift->getOperand(1);
7075 ConstantSDNode *C1Node = isConstOrConstSplat(C1);
7076 assert(C1Node && "Expected a shift with constant operand");
7077 const APInt &C1Val = C1Node->getAPIntValue();
7078 auto matchFirstShift = [&](SDValue V, SDValue &ShiftOp,
7079 const APInt *&ShiftAmtVal) {
7080 if (V.getOpcode() != ShiftOpcode || !V.hasOneUse())
7081 return false;
7083 ConstantSDNode *ShiftCNode = isConstOrConstSplat(V.getOperand(1));
7084 if (!ShiftCNode)
7085 return false;
7087 // Capture the shifted operand and shift amount value.
7088 ShiftOp = V.getOperand(0);
7089 ShiftAmtVal = &ShiftCNode->getAPIntValue();
7091 // Shift amount types do not have to match their operand type, so check that
7092 // the constants are the same width.
7093 if (ShiftAmtVal->getBitWidth() != C1Val.getBitWidth())
7094 return false;
7096 // The fold is not valid if the sum of the shift values exceeds bitwidth.
7097 if ((*ShiftAmtVal + C1Val).uge(V.getScalarValueSizeInBits()))
7098 return false;
7100 return true;
7103 // Logic ops are commutative, so check each operand for a match.
7104 SDValue X, Y;
7105 const APInt *C0Val;
7106 if (matchFirstShift(LogicOp.getOperand(0), X, C0Val))
7107 Y = LogicOp.getOperand(1);
7108 else if (matchFirstShift(LogicOp.getOperand(1), X, C0Val))
7109 Y = LogicOp.getOperand(0);
7110 else
7111 return SDValue();
7113 // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
7114 SDLoc DL(Shift);
7115 EVT VT = Shift->getValueType(0);
7116 EVT ShiftAmtVT = Shift->getOperand(1).getValueType();
7117 SDValue ShiftSumC = DAG.getConstant(*C0Val + C1Val, DL, ShiftAmtVT);
7118 SDValue NewShift1 = DAG.getNode(ShiftOpcode, DL, VT, X, ShiftSumC);
7119 SDValue NewShift2 = DAG.getNode(ShiftOpcode, DL, VT, Y, C1);
7120 return DAG.getNode(LogicOpcode, DL, VT, NewShift1, NewShift2);
7123 /// Handle transforms common to the three shifts, when the shift amount is a
7124 /// constant.
7125 /// We are looking for: (shift being one of shl/sra/srl)
7126 /// shift (binop X, C0), C1
7127 /// And want to transform into:
7128 /// binop (shift X, C1), (shift C0, C1)
7129 SDValue DAGCombiner::visitShiftByConstant(SDNode *N) {
7130 assert(isConstOrConstSplat(N->getOperand(1)) && "Expected constant operand");
7132 // Do not turn a 'not' into a regular xor.
7133 if (isBitwiseNot(N->getOperand(0)))
7134 return SDValue();
7136 // The inner binop must be one-use, since we want to replace it.
7137 SDValue LHS = N->getOperand(0);
7138 if (!LHS.hasOneUse() || !TLI.isDesirableToCommuteWithShift(N, Level))
7139 return SDValue();
7141 // TODO: This is limited to early combining because it may reveal regressions
7142 // otherwise. But since we just checked a target hook to see if this is
7143 // desirable, that should have filtered out cases where this interferes
7144 // with some other pattern matching.
7145 if (!LegalTypes)
7146 if (SDValue R = combineShiftOfShiftedLogic(N, DAG))
7147 return R;
7149 // We want to pull some binops through shifts, so that we have (and (shift))
7150 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
7151 // thing happens with address calculations, so it's important to canonicalize
7152 // it.
7153 switch (LHS.getOpcode()) {
7154 default:
7155 return SDValue();
7156 case ISD::OR:
7157 case ISD::XOR:
7158 case ISD::AND:
7159 break;
7160 case ISD::ADD:
7161 if (N->getOpcode() != ISD::SHL)
7162 return SDValue(); // only shl(add) not sr[al](add).
7163 break;
7166 // We require the RHS of the binop to be a constant and not opaque as well.
7167 ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS.getOperand(1));
7168 if (!BinOpCst)
7169 return SDValue();
7171 // FIXME: disable this unless the input to the binop is a shift by a constant
7172 // or is copy/select. Enable this in other cases when figure out it's exactly
7173 // profitable.
7174 SDValue BinOpLHSVal = LHS.getOperand(0);
7175 bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL ||
7176 BinOpLHSVal.getOpcode() == ISD::SRA ||
7177 BinOpLHSVal.getOpcode() == ISD::SRL) &&
7178 isa<ConstantSDNode>(BinOpLHSVal.getOperand(1));
7179 bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg ||
7180 BinOpLHSVal.getOpcode() == ISD::SELECT;
7182 if (!IsShiftByConstant && !IsCopyOrSelect)
7183 return SDValue();
7185 if (IsCopyOrSelect && N->hasOneUse())
7186 return SDValue();
7188 // Fold the constants, shifting the binop RHS by the shift amount.
7189 SDLoc DL(N);
7190 EVT VT = N->getValueType(0);
7191 SDValue NewRHS = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(1),
7192 N->getOperand(1));
7193 assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!");
7195 SDValue NewShift = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(0),
7196 N->getOperand(1));
7197 return DAG.getNode(LHS.getOpcode(), DL, VT, NewShift, NewRHS);
7200 SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) {
7201 assert(N->getOpcode() == ISD::TRUNCATE);
7202 assert(N->getOperand(0).getOpcode() == ISD::AND);
7204 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
7205 EVT TruncVT = N->getValueType(0);
7206 if (N->hasOneUse() && N->getOperand(0).hasOneUse() &&
7207 TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) {
7208 SDValue N01 = N->getOperand(0).getOperand(1);
7209 if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) {
7210 SDLoc DL(N);
7211 SDValue N00 = N->getOperand(0).getOperand(0);
7212 SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00);
7213 SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01);
7214 AddToWorklist(Trunc00.getNode());
7215 AddToWorklist(Trunc01.getNode());
7216 return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01);
7220 return SDValue();
7223 SDValue DAGCombiner::visitRotate(SDNode *N) {
7224 SDLoc dl(N);
7225 SDValue N0 = N->getOperand(0);
7226 SDValue N1 = N->getOperand(1);
7227 EVT VT = N->getValueType(0);
7228 unsigned Bitsize = VT.getScalarSizeInBits();
7230 // fold (rot x, 0) -> x
7231 if (isNullOrNullSplat(N1))
7232 return N0;
7234 // fold (rot x, c) -> x iff (c % BitSize) == 0
7235 if (isPowerOf2_32(Bitsize) && Bitsize > 1) {
7236 APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1);
7237 if (DAG.MaskedValueIsZero(N1, ModuloMask))
7238 return N0;
7241 // fold (rot x, c) -> (rot x, c % BitSize)
7242 // TODO - support non-uniform vector amounts.
7243 if (ConstantSDNode *Cst = isConstOrConstSplat(N1)) {
7244 if (Cst->getAPIntValue().uge(Bitsize)) {
7245 uint64_t RotAmt = Cst->getAPIntValue().urem(Bitsize);
7246 return DAG.getNode(N->getOpcode(), dl, VT, N0,
7247 DAG.getConstant(RotAmt, dl, N1.getValueType()));
7251 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
7252 if (N1.getOpcode() == ISD::TRUNCATE &&
7253 N1.getOperand(0).getOpcode() == ISD::AND) {
7254 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
7255 return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1);
7258 unsigned NextOp = N0.getOpcode();
7259 // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize)
7260 if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) {
7261 SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1);
7262 SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1));
7263 if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) {
7264 EVT ShiftVT = C1->getValueType(0);
7265 bool SameSide = (N->getOpcode() == NextOp);
7266 unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB;
7267 if (SDValue CombinedShift =
7268 DAG.FoldConstantArithmetic(CombineOp, dl, ShiftVT, C1, C2)) {
7269 SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT);
7270 SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic(
7271 ISD::SREM, dl, ShiftVT, CombinedShift.getNode(),
7272 BitsizeC.getNode());
7273 return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0),
7274 CombinedShiftNorm);
7278 return SDValue();
7281 SDValue DAGCombiner::visitSHL(SDNode *N) {
7282 SDValue N0 = N->getOperand(0);
7283 SDValue N1 = N->getOperand(1);
7284 if (SDValue V = DAG.simplifyShift(N0, N1))
7285 return V;
7287 EVT VT = N0.getValueType();
7288 EVT ShiftVT = N1.getValueType();
7289 unsigned OpSizeInBits = VT.getScalarSizeInBits();
7291 // fold vector ops
7292 if (VT.isVector()) {
7293 if (SDValue FoldedVOp = SimplifyVBinOp(N))
7294 return FoldedVOp;
7296 BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1);
7297 // If setcc produces all-one true value then:
7298 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
7299 if (N1CV && N1CV->isConstant()) {
7300 if (N0.getOpcode() == ISD::AND) {
7301 SDValue N00 = N0->getOperand(0);
7302 SDValue N01 = N0->getOperand(1);
7303 BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01);
7305 if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC &&
7306 TLI.getBooleanContents(N00.getOperand(0).getValueType()) ==
7307 TargetLowering::ZeroOrNegativeOneBooleanContent) {
7308 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT,
7309 N01CV, N1CV))
7310 return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C);
7316 ConstantSDNode *N1C = isConstOrConstSplat(N1);
7318 // fold (shl c1, c2) -> c1<<c2
7319 // TODO - support non-uniform vector shift amounts.
7320 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
7321 if (N0C && N1C && !N1C->isOpaque())
7322 return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C);
7324 if (SDValue NewSel = foldBinOpIntoSelect(N))
7325 return NewSel;
7327 // if (shl x, c) is known to be zero, return 0
7328 if (DAG.MaskedValueIsZero(SDValue(N, 0),
7329 APInt::getAllOnesValue(OpSizeInBits)))
7330 return DAG.getConstant(0, SDLoc(N), VT);
7332 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
7333 if (N1.getOpcode() == ISD::TRUNCATE &&
7334 N1.getOperand(0).getOpcode() == ISD::AND) {
7335 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
7336 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1);
7339 // TODO - support non-uniform vector shift amounts.
7340 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
7341 return SDValue(N, 0);
7343 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
7344 if (N0.getOpcode() == ISD::SHL) {
7345 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
7346 ConstantSDNode *RHS) {
7347 APInt c1 = LHS->getAPIntValue();
7348 APInt c2 = RHS->getAPIntValue();
7349 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
7350 return (c1 + c2).uge(OpSizeInBits);
7352 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
7353 return DAG.getConstant(0, SDLoc(N), VT);
7355 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
7356 ConstantSDNode *RHS) {
7357 APInt c1 = LHS->getAPIntValue();
7358 APInt c2 = RHS->getAPIntValue();
7359 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
7360 return (c1 + c2).ult(OpSizeInBits);
7362 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
7363 SDLoc DL(N);
7364 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
7365 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum);
7369 // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2))
7370 // For this to be valid, the second form must not preserve any of the bits
7371 // that are shifted out by the inner shift in the first form. This means
7372 // the outer shift size must be >= the number of bits added by the ext.
7373 // As a corollary, we don't care what kind of ext it is.
7374 if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
7375 N0.getOpcode() == ISD::ANY_EXTEND ||
7376 N0.getOpcode() == ISD::SIGN_EXTEND) &&
7377 N0.getOperand(0).getOpcode() == ISD::SHL) {
7378 SDValue N0Op0 = N0.getOperand(0);
7379 SDValue InnerShiftAmt = N0Op0.getOperand(1);
7380 EVT InnerVT = N0Op0.getValueType();
7381 uint64_t InnerBitwidth = InnerVT.getScalarSizeInBits();
7383 auto MatchOutOfRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS,
7384 ConstantSDNode *RHS) {
7385 APInt c1 = LHS->getAPIntValue();
7386 APInt c2 = RHS->getAPIntValue();
7387 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
7388 return c2.uge(OpSizeInBits - InnerBitwidth) &&
7389 (c1 + c2).uge(OpSizeInBits);
7391 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchOutOfRange,
7392 /*AllowUndefs*/ false,
7393 /*AllowTypeMismatch*/ true))
7394 return DAG.getConstant(0, SDLoc(N), VT);
7396 auto MatchInRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS,
7397 ConstantSDNode *RHS) {
7398 APInt c1 = LHS->getAPIntValue();
7399 APInt c2 = RHS->getAPIntValue();
7400 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
7401 return c2.uge(OpSizeInBits - InnerBitwidth) &&
7402 (c1 + c2).ult(OpSizeInBits);
7404 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchInRange,
7405 /*AllowUndefs*/ false,
7406 /*AllowTypeMismatch*/ true)) {
7407 SDLoc DL(N);
7408 SDValue Ext = DAG.getNode(N0.getOpcode(), DL, VT, N0Op0.getOperand(0));
7409 SDValue Sum = DAG.getZExtOrTrunc(InnerShiftAmt, DL, ShiftVT);
7410 Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, Sum, N1);
7411 return DAG.getNode(ISD::SHL, DL, VT, Ext, Sum);
7415 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
7416 // Only fold this if the inner zext has no other uses to avoid increasing
7417 // the total number of instructions.
7418 if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
7419 N0.getOperand(0).getOpcode() == ISD::SRL) {
7420 SDValue N0Op0 = N0.getOperand(0);
7421 SDValue InnerShiftAmt = N0Op0.getOperand(1);
7423 auto MatchEqual = [VT](ConstantSDNode *LHS, ConstantSDNode *RHS) {
7424 APInt c1 = LHS->getAPIntValue();
7425 APInt c2 = RHS->getAPIntValue();
7426 zeroExtendToMatch(c1, c2);
7427 return c1.ult(VT.getScalarSizeInBits()) && (c1 == c2);
7429 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchEqual,
7430 /*AllowUndefs*/ false,
7431 /*AllowTypeMismatch*/ true)) {
7432 SDLoc DL(N);
7433 EVT InnerShiftAmtVT = N0Op0.getOperand(1).getValueType();
7434 SDValue NewSHL = DAG.getZExtOrTrunc(N1, DL, InnerShiftAmtVT);
7435 NewSHL = DAG.getNode(ISD::SHL, DL, N0Op0.getValueType(), N0Op0, NewSHL);
7436 AddToWorklist(NewSHL.getNode());
7437 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
7441 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2
7442 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2
7443 // TODO - support non-uniform vector shift amounts.
7444 if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) &&
7445 N0->getFlags().hasExact()) {
7446 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
7447 uint64_t C1 = N0C1->getZExtValue();
7448 uint64_t C2 = N1C->getZExtValue();
7449 SDLoc DL(N);
7450 if (C1 <= C2)
7451 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
7452 DAG.getConstant(C2 - C1, DL, ShiftVT));
7453 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0),
7454 DAG.getConstant(C1 - C2, DL, ShiftVT));
7458 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
7459 // (and (srl x, (sub c1, c2), MASK)
7460 // Only fold this if the inner shift has no other uses -- if it does, folding
7461 // this will increase the total number of instructions.
7462 // TODO - drop hasOneUse requirement if c1 == c2?
7463 // TODO - support non-uniform vector shift amounts.
7464 if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
7465 TLI.shouldFoldConstantShiftPairToMask(N, Level)) {
7466 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
7467 if (N0C1->getAPIntValue().ult(OpSizeInBits)) {
7468 uint64_t c1 = N0C1->getZExtValue();
7469 uint64_t c2 = N1C->getZExtValue();
7470 APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1);
7471 SDValue Shift;
7472 if (c2 > c1) {
7473 Mask <<= c2 - c1;
7474 SDLoc DL(N);
7475 Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
7476 DAG.getConstant(c2 - c1, DL, ShiftVT));
7477 } else {
7478 Mask.lshrInPlace(c1 - c2);
7479 SDLoc DL(N);
7480 Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
7481 DAG.getConstant(c1 - c2, DL, ShiftVT));
7483 SDLoc DL(N0);
7484 return DAG.getNode(ISD::AND, DL, VT, Shift,
7485 DAG.getConstant(Mask, DL, VT));
7490 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
7491 if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) &&
7492 isConstantOrConstantVector(N1, /* No Opaques */ true)) {
7493 SDLoc DL(N);
7494 SDValue AllBits = DAG.getAllOnesConstant(DL, VT);
7495 SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1);
7496 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask);
7499 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
7500 // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
7501 // Variant of version done on multiply, except mul by a power of 2 is turned
7502 // into a shift.
7503 if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) &&
7504 N0.getNode()->hasOneUse() &&
7505 isConstantOrConstantVector(N1, /* No Opaques */ true) &&
7506 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) &&
7507 TLI.isDesirableToCommuteWithShift(N, Level)) {
7508 SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1);
7509 SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
7510 AddToWorklist(Shl0.getNode());
7511 AddToWorklist(Shl1.getNode());
7512 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1);
7515 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2)
7516 if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() &&
7517 isConstantOrConstantVector(N1, /* No Opaques */ true) &&
7518 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) {
7519 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
7520 if (isConstantOrConstantVector(Shl))
7521 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl);
7524 if (N1C && !N1C->isOpaque())
7525 if (SDValue NewSHL = visitShiftByConstant(N))
7526 return NewSHL;
7528 return SDValue();
7531 SDValue DAGCombiner::visitSRA(SDNode *N) {
7532 SDValue N0 = N->getOperand(0);
7533 SDValue N1 = N->getOperand(1);
7534 if (SDValue V = DAG.simplifyShift(N0, N1))
7535 return V;
7537 EVT VT = N0.getValueType();
7538 unsigned OpSizeInBits = VT.getScalarSizeInBits();
7540 // Arithmetic shifting an all-sign-bit value is a no-op.
7541 // fold (sra 0, x) -> 0
7542 // fold (sra -1, x) -> -1
7543 if (DAG.ComputeNumSignBits(N0) == OpSizeInBits)
7544 return N0;
7546 // fold vector ops
7547 if (VT.isVector())
7548 if (SDValue FoldedVOp = SimplifyVBinOp(N))
7549 return FoldedVOp;
7551 ConstantSDNode *N1C = isConstOrConstSplat(N1);
7553 // fold (sra c1, c2) -> (sra c1, c2)
7554 // TODO - support non-uniform vector shift amounts.
7555 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
7556 if (N0C && N1C && !N1C->isOpaque())
7557 return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C);
7559 if (SDValue NewSel = foldBinOpIntoSelect(N))
7560 return NewSel;
7562 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
7563 // sext_inreg.
7564 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
7565 unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
7566 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
7567 if (VT.isVector())
7568 ExtVT = EVT::getVectorVT(*DAG.getContext(),
7569 ExtVT, VT.getVectorNumElements());
7570 if ((!LegalOperations ||
7571 TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
7572 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
7573 N0.getOperand(0), DAG.getValueType(ExtVT));
7576 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
7577 // clamp (add c1, c2) to max shift.
7578 if (N0.getOpcode() == ISD::SRA) {
7579 SDLoc DL(N);
7580 EVT ShiftVT = N1.getValueType();
7581 EVT ShiftSVT = ShiftVT.getScalarType();
7582 SmallVector<SDValue, 16> ShiftValues;
7584 auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) {
7585 APInt c1 = LHS->getAPIntValue();
7586 APInt c2 = RHS->getAPIntValue();
7587 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
7588 APInt Sum = c1 + c2;
7589 unsigned ShiftSum =
7590 Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue();
7591 ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT));
7592 return true;
7594 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) {
7595 SDValue ShiftValue;
7596 if (VT.isVector())
7597 ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues);
7598 else
7599 ShiftValue = ShiftValues[0];
7600 return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue);
7604 // fold (sra (shl X, m), (sub result_size, n))
7605 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
7606 // result_size - n != m.
7607 // If truncate is free for the target sext(shl) is likely to result in better
7608 // code.
7609 if (N0.getOpcode() == ISD::SHL && N1C) {
7610 // Get the two constanst of the shifts, CN0 = m, CN = n.
7611 const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1));
7612 if (N01C) {
7613 LLVMContext &Ctx = *DAG.getContext();
7614 // Determine what the truncate's result bitsize and type would be.
7615 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue());
7617 if (VT.isVector())
7618 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements());
7620 // Determine the residual right-shift amount.
7621 int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
7623 // If the shift is not a no-op (in which case this should be just a sign
7624 // extend already), the truncated to type is legal, sign_extend is legal
7625 // on that type, and the truncate to that type is both legal and free,
7626 // perform the transform.
7627 if ((ShiftAmt > 0) &&
7628 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
7629 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
7630 TLI.isTruncateFree(VT, TruncVT)) {
7631 SDLoc DL(N);
7632 SDValue Amt = DAG.getConstant(ShiftAmt, DL,
7633 getShiftAmountTy(N0.getOperand(0).getValueType()));
7634 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT,
7635 N0.getOperand(0), Amt);
7636 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT,
7637 Shift);
7638 return DAG.getNode(ISD::SIGN_EXTEND, DL,
7639 N->getValueType(0), Trunc);
7644 // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper.
7645 // sra (add (shl X, N1C), AddC), N1C -->
7646 // sext (add (trunc X to (width - N1C)), AddC')
7647 if (!LegalTypes && N0.getOpcode() == ISD::ADD && N0.hasOneUse() && N1C &&
7648 N0.getOperand(0).getOpcode() == ISD::SHL &&
7649 N0.getOperand(0).getOperand(1) == N1 && N0.getOperand(0).hasOneUse()) {
7650 if (ConstantSDNode *AddC = isConstOrConstSplat(N0.getOperand(1))) {
7651 SDValue Shl = N0.getOperand(0);
7652 // Determine what the truncate's type would be and ask the target if that
7653 // is a free operation.
7654 LLVMContext &Ctx = *DAG.getContext();
7655 unsigned ShiftAmt = N1C->getZExtValue();
7656 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - ShiftAmt);
7657 if (VT.isVector())
7658 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements());
7660 // TODO: The simple type check probably belongs in the default hook
7661 // implementation and/or target-specific overrides (because
7662 // non-simple types likely require masking when legalized), but that
7663 // restriction may conflict with other transforms.
7664 if (TruncVT.isSimple() && TLI.isTruncateFree(VT, TruncVT)) {
7665 SDLoc DL(N);
7666 SDValue Trunc = DAG.getZExtOrTrunc(Shl.getOperand(0), DL, TruncVT);
7667 SDValue ShiftC = DAG.getConstant(AddC->getAPIntValue().lshr(ShiftAmt).
7668 trunc(TruncVT.getScalarSizeInBits()), DL, TruncVT);
7669 SDValue Add = DAG.getNode(ISD::ADD, DL, TruncVT, Trunc, ShiftC);
7670 return DAG.getSExtOrTrunc(Add, DL, VT);
7675 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
7676 if (N1.getOpcode() == ISD::TRUNCATE &&
7677 N1.getOperand(0).getOpcode() == ISD::AND) {
7678 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
7679 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1);
7682 // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2))
7683 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
7684 // if c1 is equal to the number of bits the trunc removes
7685 // TODO - support non-uniform vector shift amounts.
7686 if (N0.getOpcode() == ISD::TRUNCATE &&
7687 (N0.getOperand(0).getOpcode() == ISD::SRL ||
7688 N0.getOperand(0).getOpcode() == ISD::SRA) &&
7689 N0.getOperand(0).hasOneUse() &&
7690 N0.getOperand(0).getOperand(1).hasOneUse() && N1C) {
7691 SDValue N0Op0 = N0.getOperand(0);
7692 if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) {
7693 EVT LargeVT = N0Op0.getValueType();
7694 unsigned TruncBits = LargeVT.getScalarSizeInBits() - OpSizeInBits;
7695 if (LargeShift->getAPIntValue() == TruncBits) {
7696 SDLoc DL(N);
7697 SDValue Amt = DAG.getConstant(N1C->getZExtValue() + TruncBits, DL,
7698 getShiftAmountTy(LargeVT));
7699 SDValue SRA =
7700 DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt);
7701 return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA);
7706 // Simplify, based on bits shifted out of the LHS.
7707 // TODO - support non-uniform vector shift amounts.
7708 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
7709 return SDValue(N, 0);
7711 // If the sign bit is known to be zero, switch this to a SRL.
7712 if (DAG.SignBitIsZero(N0))
7713 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
7715 if (N1C && !N1C->isOpaque())
7716 if (SDValue NewSRA = visitShiftByConstant(N))
7717 return NewSRA;
7719 return SDValue();
7722 SDValue DAGCombiner::visitSRL(SDNode *N) {
7723 SDValue N0 = N->getOperand(0);
7724 SDValue N1 = N->getOperand(1);
7725 if (SDValue V = DAG.simplifyShift(N0, N1))
7726 return V;
7728 EVT VT = N0.getValueType();
7729 unsigned OpSizeInBits = VT.getScalarSizeInBits();
7731 // fold vector ops
7732 if (VT.isVector())
7733 if (SDValue FoldedVOp = SimplifyVBinOp(N))
7734 return FoldedVOp;
7736 ConstantSDNode *N1C = isConstOrConstSplat(N1);
7738 // fold (srl c1, c2) -> c1 >>u c2
7739 // TODO - support non-uniform vector shift amounts.
7740 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
7741 if (N0C && N1C && !N1C->isOpaque())
7742 return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C);
7744 if (SDValue NewSel = foldBinOpIntoSelect(N))
7745 return NewSel;
7747 // if (srl x, c) is known to be zero, return 0
7748 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
7749 APInt::getAllOnesValue(OpSizeInBits)))
7750 return DAG.getConstant(0, SDLoc(N), VT);
7752 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
7753 if (N0.getOpcode() == ISD::SRL) {
7754 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
7755 ConstantSDNode *RHS) {
7756 APInt c1 = LHS->getAPIntValue();
7757 APInt c2 = RHS->getAPIntValue();
7758 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
7759 return (c1 + c2).uge(OpSizeInBits);
7761 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
7762 return DAG.getConstant(0, SDLoc(N), VT);
7764 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
7765 ConstantSDNode *RHS) {
7766 APInt c1 = LHS->getAPIntValue();
7767 APInt c2 = RHS->getAPIntValue();
7768 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
7769 return (c1 + c2).ult(OpSizeInBits);
7771 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
7772 SDLoc DL(N);
7773 EVT ShiftVT = N1.getValueType();
7774 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
7775 return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum);
7779 // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
7780 // TODO - support non-uniform vector shift amounts.
7781 if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
7782 N0.getOperand(0).getOpcode() == ISD::SRL) {
7783 if (auto N001C = isConstOrConstSplat(N0.getOperand(0).getOperand(1))) {
7784 uint64_t c1 = N001C->getZExtValue();
7785 uint64_t c2 = N1C->getZExtValue();
7786 EVT InnerShiftVT = N0.getOperand(0).getValueType();
7787 EVT ShiftCountVT = N0.getOperand(0).getOperand(1).getValueType();
7788 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits();
7789 // This is only valid if the OpSizeInBits + c1 = size of inner shift.
7790 if (c1 + OpSizeInBits == InnerShiftSize) {
7791 SDLoc DL(N0);
7792 if (c1 + c2 >= InnerShiftSize)
7793 return DAG.getConstant(0, DL, VT);
7794 return DAG.getNode(ISD::TRUNCATE, DL, VT,
7795 DAG.getNode(ISD::SRL, DL, InnerShiftVT,
7796 N0.getOperand(0).getOperand(0),
7797 DAG.getConstant(c1 + c2, DL,
7798 ShiftCountVT)));
7803 // fold (srl (shl x, c), c) -> (and x, cst2)
7804 // TODO - (srl (shl x, c1), c2).
7805 if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
7806 isConstantOrConstantVector(N1, /* NoOpaques */ true)) {
7807 SDLoc DL(N);
7808 SDValue Mask =
7809 DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1);
7810 AddToWorklist(Mask.getNode());
7811 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask);
7814 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
7815 // TODO - support non-uniform vector shift amounts.
7816 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
7817 // Shifting in all undef bits?
7818 EVT SmallVT = N0.getOperand(0).getValueType();
7819 unsigned BitSize = SmallVT.getScalarSizeInBits();
7820 if (N1C->getAPIntValue().uge(BitSize))
7821 return DAG.getUNDEF(VT);
7823 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
7824 uint64_t ShiftAmt = N1C->getZExtValue();
7825 SDLoc DL0(N0);
7826 SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT,
7827 N0.getOperand(0),
7828 DAG.getConstant(ShiftAmt, DL0,
7829 getShiftAmountTy(SmallVT)));
7830 AddToWorklist(SmallShift.getNode());
7831 APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt);
7832 SDLoc DL(N);
7833 return DAG.getNode(ISD::AND, DL, VT,
7834 DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift),
7835 DAG.getConstant(Mask, DL, VT));
7839 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
7840 // bit, which is unmodified by sra.
7841 if (N1C && N1C->getAPIntValue() == (OpSizeInBits - 1)) {
7842 if (N0.getOpcode() == ISD::SRA)
7843 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
7846 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
7847 if (N1C && N0.getOpcode() == ISD::CTLZ &&
7848 N1C->getAPIntValue() == Log2_32(OpSizeInBits)) {
7849 KnownBits Known = DAG.computeKnownBits(N0.getOperand(0));
7851 // If any of the input bits are KnownOne, then the input couldn't be all
7852 // zeros, thus the result of the srl will always be zero.
7853 if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT);
7855 // If all of the bits input the to ctlz node are known to be zero, then
7856 // the result of the ctlz is "32" and the result of the shift is one.
7857 APInt UnknownBits = ~Known.Zero;
7858 if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT);
7860 // Otherwise, check to see if there is exactly one bit input to the ctlz.
7861 if (UnknownBits.isPowerOf2()) {
7862 // Okay, we know that only that the single bit specified by UnknownBits
7863 // could be set on input to the CTLZ node. If this bit is set, the SRL
7864 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
7865 // to an SRL/XOR pair, which is likely to simplify more.
7866 unsigned ShAmt = UnknownBits.countTrailingZeros();
7867 SDValue Op = N0.getOperand(0);
7869 if (ShAmt) {
7870 SDLoc DL(N0);
7871 Op = DAG.getNode(ISD::SRL, DL, VT, Op,
7872 DAG.getConstant(ShAmt, DL,
7873 getShiftAmountTy(Op.getValueType())));
7874 AddToWorklist(Op.getNode());
7877 SDLoc DL(N);
7878 return DAG.getNode(ISD::XOR, DL, VT,
7879 Op, DAG.getConstant(1, DL, VT));
7883 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
7884 if (N1.getOpcode() == ISD::TRUNCATE &&
7885 N1.getOperand(0).getOpcode() == ISD::AND) {
7886 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
7887 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1);
7890 // fold operands of srl based on knowledge that the low bits are not
7891 // demanded.
7892 // TODO - support non-uniform vector shift amounts.
7893 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
7894 return SDValue(N, 0);
7896 if (N1C && !N1C->isOpaque())
7897 if (SDValue NewSRL = visitShiftByConstant(N))
7898 return NewSRL;
7900 // Attempt to convert a srl of a load into a narrower zero-extending load.
7901 if (SDValue NarrowLoad = ReduceLoadWidth(N))
7902 return NarrowLoad;
7904 // Here is a common situation. We want to optimize:
7906 // %a = ...
7907 // %b = and i32 %a, 2
7908 // %c = srl i32 %b, 1
7909 // brcond i32 %c ...
7911 // into
7913 // %a = ...
7914 // %b = and %a, 2
7915 // %c = setcc eq %b, 0
7916 // brcond %c ...
7918 // However when after the source operand of SRL is optimized into AND, the SRL
7919 // itself may not be optimized further. Look for it and add the BRCOND into
7920 // the worklist.
7921 if (N->hasOneUse()) {
7922 SDNode *Use = *N->use_begin();
7923 if (Use->getOpcode() == ISD::BRCOND)
7924 AddToWorklist(Use);
7925 else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
7926 // Also look pass the truncate.
7927 Use = *Use->use_begin();
7928 if (Use->getOpcode() == ISD::BRCOND)
7929 AddToWorklist(Use);
7933 return SDValue();
7936 SDValue DAGCombiner::visitFunnelShift(SDNode *N) {
7937 EVT VT = N->getValueType(0);
7938 SDValue N0 = N->getOperand(0);
7939 SDValue N1 = N->getOperand(1);
7940 SDValue N2 = N->getOperand(2);
7941 bool IsFSHL = N->getOpcode() == ISD::FSHL;
7942 unsigned BitWidth = VT.getScalarSizeInBits();
7944 // fold (fshl N0, N1, 0) -> N0
7945 // fold (fshr N0, N1, 0) -> N1
7946 if (isPowerOf2_32(BitWidth))
7947 if (DAG.MaskedValueIsZero(
7948 N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1)))
7949 return IsFSHL ? N0 : N1;
7951 auto IsUndefOrZero = [](SDValue V) {
7952 return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true);
7955 // TODO - support non-uniform vector shift amounts.
7956 if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) {
7957 EVT ShAmtTy = N2.getValueType();
7959 // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth)
7960 if (Cst->getAPIntValue().uge(BitWidth)) {
7961 uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth);
7962 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0, N1,
7963 DAG.getConstant(RotAmt, SDLoc(N), ShAmtTy));
7966 unsigned ShAmt = Cst->getZExtValue();
7967 if (ShAmt == 0)
7968 return IsFSHL ? N0 : N1;
7970 // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C)
7971 // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C)
7972 // fold fshl(N0, undef_or_zero, C) -> shl(N0, C)
7973 // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C)
7974 if (IsUndefOrZero(N0))
7975 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1,
7976 DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt,
7977 SDLoc(N), ShAmtTy));
7978 if (IsUndefOrZero(N1))
7979 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
7980 DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt,
7981 SDLoc(N), ShAmtTy));
7984 // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2)
7985 // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2)
7986 // iff We know the shift amount is in range.
7987 // TODO: when is it worth doing SUB(BW, N2) as well?
7988 if (isPowerOf2_32(BitWidth)) {
7989 APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1);
7990 if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits))
7991 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, N2);
7992 if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits))
7993 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N2);
7996 // fold (fshl N0, N0, N2) -> (rotl N0, N2)
7997 // fold (fshr N0, N0, N2) -> (rotr N0, N2)
7998 // TODO: Investigate flipping this rotate if only one is legal, if funnel shift
7999 // is legal as well we might be better off avoiding non-constant (BW - N2).
8000 unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR;
8001 if (N0 == N1 && hasOperation(RotOpc, VT))
8002 return DAG.getNode(RotOpc, SDLoc(N), VT, N0, N2);
8004 // Simplify, based on bits shifted out of N0/N1.
8005 if (SimplifyDemandedBits(SDValue(N, 0)))
8006 return SDValue(N, 0);
8008 return SDValue();
8011 SDValue DAGCombiner::visitABS(SDNode *N) {
8012 SDValue N0 = N->getOperand(0);
8013 EVT VT = N->getValueType(0);
8015 // fold (abs c1) -> c2
8016 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
8017 return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0);
8018 // fold (abs (abs x)) -> (abs x)
8019 if (N0.getOpcode() == ISD::ABS)
8020 return N0;
8021 // fold (abs x) -> x iff not-negative
8022 if (DAG.SignBitIsZero(N0))
8023 return N0;
8024 return SDValue();
8027 SDValue DAGCombiner::visitBSWAP(SDNode *N) {
8028 SDValue N0 = N->getOperand(0);
8029 EVT VT = N->getValueType(0);
8031 // fold (bswap c1) -> c2
8032 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
8033 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0);
8034 // fold (bswap (bswap x)) -> x
8035 if (N0.getOpcode() == ISD::BSWAP)
8036 return N0->getOperand(0);
8037 return SDValue();
8040 SDValue DAGCombiner::visitBITREVERSE(SDNode *N) {
8041 SDValue N0 = N->getOperand(0);
8042 EVT VT = N->getValueType(0);
8044 // fold (bitreverse c1) -> c2
8045 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
8046 return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0);
8047 // fold (bitreverse (bitreverse x)) -> x
8048 if (N0.getOpcode() == ISD::BITREVERSE)
8049 return N0.getOperand(0);
8050 return SDValue();
8053 SDValue DAGCombiner::visitCTLZ(SDNode *N) {
8054 SDValue N0 = N->getOperand(0);
8055 EVT VT = N->getValueType(0);
8057 // fold (ctlz c1) -> c2
8058 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
8059 return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
8061 // If the value is known never to be zero, switch to the undef version.
8062 if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) {
8063 if (DAG.isKnownNeverZero(N0))
8064 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
8067 return SDValue();
8070 SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
8071 SDValue N0 = N->getOperand(0);
8072 EVT VT = N->getValueType(0);
8074 // fold (ctlz_zero_undef c1) -> c2
8075 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
8076 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
8077 return SDValue();
8080 SDValue DAGCombiner::visitCTTZ(SDNode *N) {
8081 SDValue N0 = N->getOperand(0);
8082 EVT VT = N->getValueType(0);
8084 // fold (cttz c1) -> c2
8085 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
8086 return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
8088 // If the value is known never to be zero, switch to the undef version.
8089 if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) {
8090 if (DAG.isKnownNeverZero(N0))
8091 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
8094 return SDValue();
8097 SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
8098 SDValue N0 = N->getOperand(0);
8099 EVT VT = N->getValueType(0);
8101 // fold (cttz_zero_undef c1) -> c2
8102 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
8103 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
8104 return SDValue();
8107 SDValue DAGCombiner::visitCTPOP(SDNode *N) {
8108 SDValue N0 = N->getOperand(0);
8109 EVT VT = N->getValueType(0);
8111 // fold (ctpop c1) -> c2
8112 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
8113 return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
8114 return SDValue();
8117 // FIXME: This should be checking for no signed zeros on individual operands, as
8118 // well as no nans.
8119 static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS,
8120 SDValue RHS,
8121 const TargetLowering &TLI) {
8122 const TargetOptions &Options = DAG.getTarget().Options;
8123 EVT VT = LHS.getValueType();
8125 return Options.NoSignedZerosFPMath && VT.isFloatingPoint() &&
8126 TLI.isProfitableToCombineMinNumMaxNum(VT) &&
8127 DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS);
8130 /// Generate Min/Max node
8131 static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS,
8132 SDValue RHS, SDValue True, SDValue False,
8133 ISD::CondCode CC, const TargetLowering &TLI,
8134 SelectionDAG &DAG) {
8135 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
8136 return SDValue();
8138 EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
8139 switch (CC) {
8140 case ISD::SETOLT:
8141 case ISD::SETOLE:
8142 case ISD::SETLT:
8143 case ISD::SETLE:
8144 case ISD::SETULT:
8145 case ISD::SETULE: {
8146 // Since it's known never nan to get here already, either fminnum or
8147 // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is
8148 // expanded in terms of it.
8149 unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
8150 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
8151 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);
8153 unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM;
8154 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
8155 return DAG.getNode(Opcode, DL, VT, LHS, RHS);
8156 return SDValue();
8158 case ISD::SETOGT:
8159 case ISD::SETOGE:
8160 case ISD::SETGT:
8161 case ISD::SETGE:
8162 case ISD::SETUGT:
8163 case ISD::SETUGE: {
8164 unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
8165 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
8166 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);
8168 unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM;
8169 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
8170 return DAG.getNode(Opcode, DL, VT, LHS, RHS);
8171 return SDValue();
8173 default:
8174 return SDValue();
8178 /// If a (v)select has a condition value that is a sign-bit test, try to smear
8179 /// the condition operand sign-bit across the value width and use it as a mask.
8180 static SDValue foldSelectOfConstantsUsingSra(SDNode *N, SelectionDAG &DAG) {
8181 SDValue Cond = N->getOperand(0);
8182 SDValue C1 = N->getOperand(1);
8183 SDValue C2 = N->getOperand(2);
8184 assert(isConstantOrConstantVector(C1) && isConstantOrConstantVector(C2) &&
8185 "Expected select-of-constants");
8187 EVT VT = N->getValueType(0);
8188 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse() ||
8189 VT != Cond.getOperand(0).getValueType())
8190 return SDValue();
8192 // The inverted-condition + commuted-select variants of these patterns are
8193 // canonicalized to these forms in IR.
8194 SDValue X = Cond.getOperand(0);
8195 SDValue CondC = Cond.getOperand(1);
8196 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
8197 if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CondC) &&
8198 isAllOnesOrAllOnesSplat(C2)) {
8199 // i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1
8200 SDLoc DL(N);
8201 SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT);
8202 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC);
8203 return DAG.getNode(ISD::OR, DL, VT, Sra, C1);
8205 if (CC == ISD::SETLT && isNullOrNullSplat(CondC) && isNullOrNullSplat(C2)) {
8206 // i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1
8207 SDLoc DL(N);
8208 SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT);
8209 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC);
8210 return DAG.getNode(ISD::AND, DL, VT, Sra, C1);
8212 return SDValue();
8215 SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) {
8216 SDValue Cond = N->getOperand(0);
8217 SDValue N1 = N->getOperand(1);
8218 SDValue N2 = N->getOperand(2);
8219 EVT VT = N->getValueType(0);
8220 EVT CondVT = Cond.getValueType();
8221 SDLoc DL(N);
8223 if (!VT.isInteger())
8224 return SDValue();
8226 auto *C1 = dyn_cast<ConstantSDNode>(N1);
8227 auto *C2 = dyn_cast<ConstantSDNode>(N2);
8228 if (!C1 || !C2)
8229 return SDValue();
8231 // Only do this before legalization to avoid conflicting with target-specific
8232 // transforms in the other direction (create a select from a zext/sext). There
8233 // is also a target-independent combine here in DAGCombiner in the other
8234 // direction for (select Cond, -1, 0) when the condition is not i1.
8235 if (CondVT == MVT::i1 && !LegalOperations) {
8236 if (C1->isNullValue() && C2->isOne()) {
8237 // select Cond, 0, 1 --> zext (!Cond)
8238 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
8239 if (VT != MVT::i1)
8240 NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond);
8241 return NotCond;
8243 if (C1->isNullValue() && C2->isAllOnesValue()) {
8244 // select Cond, 0, -1 --> sext (!Cond)
8245 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
8246 if (VT != MVT::i1)
8247 NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond);
8248 return NotCond;
8250 if (C1->isOne() && C2->isNullValue()) {
8251 // select Cond, 1, 0 --> zext (Cond)
8252 if (VT != MVT::i1)
8253 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
8254 return Cond;
8256 if (C1->isAllOnesValue() && C2->isNullValue()) {
8257 // select Cond, -1, 0 --> sext (Cond)
8258 if (VT != MVT::i1)
8259 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond);
8260 return Cond;
8263 // Use a target hook because some targets may prefer to transform in the
8264 // other direction.
8265 if (TLI.convertSelectOfConstantsToMath(VT)) {
8266 // For any constants that differ by 1, we can transform the select into an
8267 // extend and add.
8268 const APInt &C1Val = C1->getAPIntValue();
8269 const APInt &C2Val = C2->getAPIntValue();
8270 if (C1Val - 1 == C2Val) {
8271 // select Cond, C1, C1-1 --> add (zext Cond), C1-1
8272 if (VT != MVT::i1)
8273 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
8274 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
8276 if (C1Val + 1 == C2Val) {
8277 // select Cond, C1, C1+1 --> add (sext Cond), C1+1
8278 if (VT != MVT::i1)
8279 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond);
8280 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
8283 // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2)
8284 if (C1Val.isPowerOf2() && C2Val.isNullValue()) {
8285 if (VT != MVT::i1)
8286 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
8287 SDValue ShAmtC = DAG.getConstant(C1Val.exactLogBase2(), DL, VT);
8288 return DAG.getNode(ISD::SHL, DL, VT, Cond, ShAmtC);
8291 if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG))
8292 return V;
8295 return SDValue();
8298 // fold (select Cond, 0, 1) -> (xor Cond, 1)
8299 // We can't do this reliably if integer based booleans have different contents
8300 // to floating point based booleans. This is because we can't tell whether we
8301 // have an integer-based boolean or a floating-point-based boolean unless we
8302 // can find the SETCC that produced it and inspect its operands. This is
8303 // fairly easy if C is the SETCC node, but it can potentially be
8304 // undiscoverable (or not reasonably discoverable). For example, it could be
8305 // in another basic block or it could require searching a complicated
8306 // expression.
8307 if (CondVT.isInteger() &&
8308 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) ==
8309 TargetLowering::ZeroOrOneBooleanContent &&
8310 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) ==
8311 TargetLowering::ZeroOrOneBooleanContent &&
8312 C1->isNullValue() && C2->isOne()) {
8313 SDValue NotCond =
8314 DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT));
8315 if (VT.bitsEq(CondVT))
8316 return NotCond;
8317 return DAG.getZExtOrTrunc(NotCond, DL, VT);
8320 return SDValue();
8323 SDValue DAGCombiner::visitSELECT(SDNode *N) {
8324 SDValue N0 = N->getOperand(0);
8325 SDValue N1 = N->getOperand(1);
8326 SDValue N2 = N->getOperand(2);
8327 EVT VT = N->getValueType(0);
8328 EVT VT0 = N0.getValueType();
8329 SDLoc DL(N);
8330 SDNodeFlags Flags = N->getFlags();
8332 if (SDValue V = DAG.simplifySelect(N0, N1, N2))
8333 return V;
8335 // fold (select X, X, Y) -> (or X, Y)
8336 // fold (select X, 1, Y) -> (or C, Y)
8337 if (VT == VT0 && VT == MVT::i1 && (N0 == N1 || isOneConstant(N1)))
8338 return DAG.getNode(ISD::OR, DL, VT, N0, N2);
8340 if (SDValue V = foldSelectOfConstants(N))
8341 return V;
8343 // fold (select C, 0, X) -> (and (not C), X)
8344 if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) {
8345 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
8346 AddToWorklist(NOTNode.getNode());
8347 return DAG.getNode(ISD::AND, DL, VT, NOTNode, N2);
8349 // fold (select C, X, 1) -> (or (not C), X)
8350 if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) {
8351 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
8352 AddToWorklist(NOTNode.getNode());
8353 return DAG.getNode(ISD::OR, DL, VT, NOTNode, N1);
8355 // fold (select X, Y, X) -> (and X, Y)
8356 // fold (select X, Y, 0) -> (and X, Y)
8357 if (VT == VT0 && VT == MVT::i1 && (N0 == N2 || isNullConstant(N2)))
8358 return DAG.getNode(ISD::AND, DL, VT, N0, N1);
8360 // If we can fold this based on the true/false value, do so.
8361 if (SimplifySelectOps(N, N1, N2))
8362 return SDValue(N, 0); // Don't revisit N.
8364 if (VT0 == MVT::i1) {
8365 // The code in this block deals with the following 2 equivalences:
8366 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
8367 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
8368 // The target can specify its preferred form with the
8369 // shouldNormalizeToSelectSequence() callback. However we always transform
8370 // to the right anyway if we find the inner select exists in the DAG anyway
8371 // and we always transform to the left side if we know that we can further
8372 // optimize the combination of the conditions.
8373 bool normalizeToSequence =
8374 TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT);
8375 // select (and Cond0, Cond1), X, Y
8376 // -> select Cond0, (select Cond1, X, Y), Y
8377 if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) {
8378 SDValue Cond0 = N0->getOperand(0);
8379 SDValue Cond1 = N0->getOperand(1);
8380 SDValue InnerSelect =
8381 DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2, Flags);
8382 if (normalizeToSequence || !InnerSelect.use_empty())
8383 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0,
8384 InnerSelect, N2, Flags);
8385 // Cleanup on failure.
8386 if (InnerSelect.use_empty())
8387 recursivelyDeleteUnusedNodes(InnerSelect.getNode());
8389 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y)
8390 if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) {
8391 SDValue Cond0 = N0->getOperand(0);
8392 SDValue Cond1 = N0->getOperand(1);
8393 SDValue InnerSelect = DAG.getNode(ISD::SELECT, DL, N1.getValueType(),
8394 Cond1, N1, N2, Flags);
8395 if (normalizeToSequence || !InnerSelect.use_empty())
8396 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1,
8397 InnerSelect, Flags);
8398 // Cleanup on failure.
8399 if (InnerSelect.use_empty())
8400 recursivelyDeleteUnusedNodes(InnerSelect.getNode());
8403 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y
8404 if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) {
8405 SDValue N1_0 = N1->getOperand(0);
8406 SDValue N1_1 = N1->getOperand(1);
8407 SDValue N1_2 = N1->getOperand(2);
8408 if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) {
8409 // Create the actual and node if we can generate good code for it.
8410 if (!normalizeToSequence) {
8411 SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0);
8412 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1,
8413 N2, Flags);
8415 // Otherwise see if we can optimize the "and" to a better pattern.
8416 if (SDValue Combined = visitANDLike(N0, N1_0, N)) {
8417 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1,
8418 N2, Flags);
8422 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y
8423 if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) {
8424 SDValue N2_0 = N2->getOperand(0);
8425 SDValue N2_1 = N2->getOperand(1);
8426 SDValue N2_2 = N2->getOperand(2);
8427 if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) {
8428 // Create the actual or node if we can generate good code for it.
8429 if (!normalizeToSequence) {
8430 SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0);
8431 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1,
8432 N2_2, Flags);
8434 // Otherwise see if we can optimize to a better pattern.
8435 if (SDValue Combined = visitORLike(N0, N2_0, N))
8436 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1,
8437 N2_2, Flags);
8442 // select (not Cond), N1, N2 -> select Cond, N2, N1
8443 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) {
8444 SDValue SelectOp = DAG.getSelect(DL, VT, F, N2, N1);
8445 SelectOp->setFlags(Flags);
8446 return SelectOp;
8449 // Fold selects based on a setcc into other things, such as min/max/abs.
8450 if (N0.getOpcode() == ISD::SETCC) {
8451 SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1);
8452 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
8454 // select (fcmp lt x, y), x, y -> fminnum x, y
8455 // select (fcmp gt x, y), x, y -> fmaxnum x, y
8457 // This is OK if we don't care what happens if either operand is a NaN.
8458 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, TLI))
8459 if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2,
8460 CC, TLI, DAG))
8461 return FMinMax;
8463 // Use 'unsigned add with overflow' to optimize an unsigned saturating add.
8464 // This is conservatively limited to pre-legal-operations to give targets
8465 // a chance to reverse the transform if they want to do that. Also, it is
8466 // unlikely that the pattern would be formed late, so it's probably not
8467 // worth going through the other checks.
8468 if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) &&
8469 CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) &&
8470 N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) {
8471 auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1));
8472 auto *NotC = dyn_cast<ConstantSDNode>(Cond1);
8473 if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) {
8474 // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) -->
8475 // uaddo Cond0, C; select uaddo.1, -1, uaddo.0
8477 // The IR equivalent of this transform would have this form:
8478 // %a = add %x, C
8479 // %c = icmp ugt %x, ~C
8480 // %r = select %c, -1, %a
8481 // =>
8482 // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C)
8483 // %u0 = extractvalue %u, 0
8484 // %u1 = extractvalue %u, 1
8485 // %r = select %u1, -1, %u0
8486 SDVTList VTs = DAG.getVTList(VT, VT0);
8487 SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1));
8488 return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0));
8492 if (TLI.isOperationLegal(ISD::SELECT_CC, VT) ||
8493 (!LegalOperations &&
8494 TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))) {
8495 // Any flags available in a select/setcc fold will be on the setcc as they
8496 // migrated from fcmp
8497 Flags = N0.getNode()->getFlags();
8498 SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1,
8499 N2, N0.getOperand(2));
8500 SelectNode->setFlags(Flags);
8501 return SelectNode;
8504 return SimplifySelect(DL, N0, N1, N2);
8507 return SDValue();
8510 // This function assumes all the vselect's arguments are CONCAT_VECTOR
8511 // nodes and that the condition is a BV of ConstantSDNodes (or undefs).
8512 static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) {
8513 SDLoc DL(N);
8514 SDValue Cond = N->getOperand(0);
8515 SDValue LHS = N->getOperand(1);
8516 SDValue RHS = N->getOperand(2);
8517 EVT VT = N->getValueType(0);
8518 int NumElems = VT.getVectorNumElements();
8519 assert(LHS.getOpcode() == ISD::CONCAT_VECTORS &&
8520 RHS.getOpcode() == ISD::CONCAT_VECTORS &&
8521 Cond.getOpcode() == ISD::BUILD_VECTOR);
8523 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
8524 // binary ones here.
8525 if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2)
8526 return SDValue();
8528 // We're sure we have an even number of elements due to the
8529 // concat_vectors we have as arguments to vselect.
8530 // Skip BV elements until we find one that's not an UNDEF
8531 // After we find an UNDEF element, keep looping until we get to half the
8532 // length of the BV and see if all the non-undef nodes are the same.
8533 ConstantSDNode *BottomHalf = nullptr;
8534 for (int i = 0; i < NumElems / 2; ++i) {
8535 if (Cond->getOperand(i)->isUndef())
8536 continue;
8538 if (BottomHalf == nullptr)
8539 BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i));
8540 else if (Cond->getOperand(i).getNode() != BottomHalf)
8541 return SDValue();
8544 // Do the same for the second half of the BuildVector
8545 ConstantSDNode *TopHalf = nullptr;
8546 for (int i = NumElems / 2; i < NumElems; ++i) {
8547 if (Cond->getOperand(i)->isUndef())
8548 continue;
8550 if (TopHalf == nullptr)
8551 TopHalf = cast<ConstantSDNode>(Cond.getOperand(i));
8552 else if (Cond->getOperand(i).getNode() != TopHalf)
8553 return SDValue();
8556 assert(TopHalf && BottomHalf &&
8557 "One half of the selector was all UNDEFs and the other was all the "
8558 "same value. This should have been addressed before this function.");
8559 return DAG.getNode(
8560 ISD::CONCAT_VECTORS, DL, VT,
8561 BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0),
8562 TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1));
8565 SDValue DAGCombiner::visitMSCATTER(SDNode *N) {
8566 MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N);
8567 SDValue Mask = MSC->getMask();
8568 SDValue Chain = MSC->getChain();
8569 SDLoc DL(N);
8571 // Zap scatters with a zero mask.
8572 if (ISD::isBuildVectorAllZeros(Mask.getNode()))
8573 return Chain;
8575 return SDValue();
8578 SDValue DAGCombiner::visitMSTORE(SDNode *N) {
8579 MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
8580 SDValue Mask = MST->getMask();
8581 SDValue Chain = MST->getChain();
8582 SDLoc DL(N);
8584 // Zap masked stores with a zero mask.
8585 if (ISD::isBuildVectorAllZeros(Mask.getNode()))
8586 return Chain;
8588 return SDValue();
8591 SDValue DAGCombiner::visitMGATHER(SDNode *N) {
8592 MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N);
8593 SDValue Mask = MGT->getMask();
8594 SDLoc DL(N);
8596 // Zap gathers with a zero mask.
8597 if (ISD::isBuildVectorAllZeros(Mask.getNode()))
8598 return CombineTo(N, MGT->getPassThru(), MGT->getChain());
8600 return SDValue();
8603 SDValue DAGCombiner::visitMLOAD(SDNode *N) {
8604 MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
8605 SDValue Mask = MLD->getMask();
8606 SDLoc DL(N);
8608 // Zap masked loads with a zero mask.
8609 if (ISD::isBuildVectorAllZeros(Mask.getNode()))
8610 return CombineTo(N, MLD->getPassThru(), MLD->getChain());
8612 return SDValue();
8615 /// A vector select of 2 constant vectors can be simplified to math/logic to
8616 /// avoid a variable select instruction and possibly avoid constant loads.
8617 SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) {
8618 SDValue Cond = N->getOperand(0);
8619 SDValue N1 = N->getOperand(1);
8620 SDValue N2 = N->getOperand(2);
8621 EVT VT = N->getValueType(0);
8622 if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 ||
8623 !TLI.convertSelectOfConstantsToMath(VT) ||
8624 !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) ||
8625 !ISD::isBuildVectorOfConstantSDNodes(N2.getNode()))
8626 return SDValue();
8628 // Check if we can use the condition value to increment/decrement a single
8629 // constant value. This simplifies a select to an add and removes a constant
8630 // load/materialization from the general case.
8631 bool AllAddOne = true;
8632 bool AllSubOne = true;
8633 unsigned Elts = VT.getVectorNumElements();
8634 for (unsigned i = 0; i != Elts; ++i) {
8635 SDValue N1Elt = N1.getOperand(i);
8636 SDValue N2Elt = N2.getOperand(i);
8637 if (N1Elt.isUndef() || N2Elt.isUndef())
8638 continue;
8640 const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue();
8641 const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue();
8642 if (C1 != C2 + 1)
8643 AllAddOne = false;
8644 if (C1 != C2 - 1)
8645 AllSubOne = false;
8648 // Further simplifications for the extra-special cases where the constants are
8649 // all 0 or all -1 should be implemented as folds of these patterns.
8650 SDLoc DL(N);
8651 if (AllAddOne || AllSubOne) {
8652 // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C
8653 // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C
8654 auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
8655 SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond);
8656 return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2);
8659 // select Cond, Pow2C, 0 --> (zext Cond) << log2(Pow2C)
8660 APInt Pow2C;
8661 if (ISD::isConstantSplatVector(N1.getNode(), Pow2C) && Pow2C.isPowerOf2() &&
8662 isNullOrNullSplat(N2)) {
8663 SDValue ZextCond = DAG.getZExtOrTrunc(Cond, DL, VT);
8664 SDValue ShAmtC = DAG.getConstant(Pow2C.exactLogBase2(), DL, VT);
8665 return DAG.getNode(ISD::SHL, DL, VT, ZextCond, ShAmtC);
8668 if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG))
8669 return V;
8671 // The general case for select-of-constants:
8672 // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2
8673 // ...but that only makes sense if a vselect is slower than 2 logic ops, so
8674 // leave that to a machine-specific pass.
8675 return SDValue();
8678 SDValue DAGCombiner::visitVSELECT(SDNode *N) {
8679 SDValue N0 = N->getOperand(0);
8680 SDValue N1 = N->getOperand(1);
8681 SDValue N2 = N->getOperand(2);
8682 EVT VT = N->getValueType(0);
8683 SDLoc DL(N);
8685 if (SDValue V = DAG.simplifySelect(N0, N1, N2))
8686 return V;
8688 // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1
8689 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false))
8690 return DAG.getSelect(DL, VT, F, N2, N1);
8692 // Canonicalize integer abs.
8693 // vselect (setg[te] X, 0), X, -X ->
8694 // vselect (setgt X, -1), X, -X ->
8695 // vselect (setl[te] X, 0), -X, X ->
8696 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
8697 if (N0.getOpcode() == ISD::SETCC) {
8698 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
8699 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
8700 bool isAbs = false;
8701 bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
8703 if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
8704 (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
8705 N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
8706 isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
8707 else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
8708 N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
8709 isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
8711 if (isAbs) {
8712 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT))
8713 return DAG.getNode(ISD::ABS, DL, VT, LHS);
8715 SDValue Shift = DAG.getNode(ISD::SRA, DL, VT, LHS,
8716 DAG.getConstant(VT.getScalarSizeInBits() - 1,
8717 DL, getShiftAmountTy(VT)));
8718 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
8719 AddToWorklist(Shift.getNode());
8720 AddToWorklist(Add.getNode());
8721 return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
8724 // vselect x, y (fcmp lt x, y) -> fminnum x, y
8725 // vselect x, y (fcmp gt x, y) -> fmaxnum x, y
8727 // This is OK if we don't care about what happens if either operand is a
8728 // NaN.
8730 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, LHS, RHS, TLI)) {
8731 if (SDValue FMinMax =
8732 combineMinNumMaxNum(DL, VT, LHS, RHS, N1, N2, CC, TLI, DAG))
8733 return FMinMax;
8736 // If this select has a condition (setcc) with narrower operands than the
8737 // select, try to widen the compare to match the select width.
8738 // TODO: This should be extended to handle any constant.
8739 // TODO: This could be extended to handle non-loading patterns, but that
8740 // requires thorough testing to avoid regressions.
8741 if (isNullOrNullSplat(RHS)) {
8742 EVT NarrowVT = LHS.getValueType();
8743 EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger();
8744 EVT SetCCVT = getSetCCResultType(LHS.getValueType());
8745 unsigned SetCCWidth = SetCCVT.getScalarSizeInBits();
8746 unsigned WideWidth = WideVT.getScalarSizeInBits();
8747 bool IsSigned = isSignedIntSetCC(CC);
8748 auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
8749 if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() &&
8750 SetCCWidth != 1 && SetCCWidth < WideWidth &&
8751 TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) &&
8752 TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) {
8753 // Both compare operands can be widened for free. The LHS can use an
8754 // extended load, and the RHS is a constant:
8755 // vselect (ext (setcc load(X), C)), N1, N2 -->
8756 // vselect (setcc extload(X), C'), N1, N2
8757 auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
8758 SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS);
8759 SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS);
8760 EVT WideSetCCVT = getSetCCResultType(WideVT);
8761 SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC);
8762 return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2);
8767 if (SimplifySelectOps(N, N1, N2))
8768 return SDValue(N, 0); // Don't revisit N.
8770 // Fold (vselect (build_vector all_ones), N1, N2) -> N1
8771 if (ISD::isBuildVectorAllOnes(N0.getNode()))
8772 return N1;
8773 // Fold (vselect (build_vector all_zeros), N1, N2) -> N2
8774 if (ISD::isBuildVectorAllZeros(N0.getNode()))
8775 return N2;
8777 // The ConvertSelectToConcatVector function is assuming both the above
8778 // checks for (vselect (build_vector all{ones,zeros) ...) have been made
8779 // and addressed.
8780 if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
8781 N2.getOpcode() == ISD::CONCAT_VECTORS &&
8782 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) {
8783 if (SDValue CV = ConvertSelectToConcatVector(N, DAG))
8784 return CV;
8787 if (SDValue V = foldVSelectOfConstants(N))
8788 return V;
8790 return SDValue();
8793 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
8794 SDValue N0 = N->getOperand(0);
8795 SDValue N1 = N->getOperand(1);
8796 SDValue N2 = N->getOperand(2);
8797 SDValue N3 = N->getOperand(3);
8798 SDValue N4 = N->getOperand(4);
8799 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
8801 // fold select_cc lhs, rhs, x, x, cc -> x
8802 if (N2 == N3)
8803 return N2;
8805 // Determine if the condition we're dealing with is constant
8806 if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1,
8807 CC, SDLoc(N), false)) {
8808 AddToWorklist(SCC.getNode());
8810 if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) {
8811 if (!SCCC->isNullValue())
8812 return N2; // cond always true -> true val
8813 else
8814 return N3; // cond always false -> false val
8815 } else if (SCC->isUndef()) {
8816 // When the condition is UNDEF, just return the first operand. This is
8817 // coherent the DAG creation, no setcc node is created in this case
8818 return N2;
8819 } else if (SCC.getOpcode() == ISD::SETCC) {
8820 // Fold to a simpler select_cc
8821 SDValue SelectOp = DAG.getNode(
8822 ISD::SELECT_CC, SDLoc(N), N2.getValueType(), SCC.getOperand(0),
8823 SCC.getOperand(1), N2, N3, SCC.getOperand(2));
8824 SelectOp->setFlags(SCC->getFlags());
8825 return SelectOp;
8829 // If we can fold this based on the true/false value, do so.
8830 if (SimplifySelectOps(N, N2, N3))
8831 return SDValue(N, 0); // Don't revisit N.
8833 // fold select_cc into other things, such as min/max/abs
8834 return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
8837 SDValue DAGCombiner::visitSETCC(SDNode *N) {
8838 // setcc is very commonly used as an argument to brcond. This pattern
8839 // also lend itself to numerous combines and, as a result, it is desired
8840 // we keep the argument to a brcond as a setcc as much as possible.
8841 bool PreferSetCC =
8842 N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND;
8844 SDValue Combined = SimplifySetCC(
8845 N->getValueType(0), N->getOperand(0), N->getOperand(1),
8846 cast<CondCodeSDNode>(N->getOperand(2))->get(), SDLoc(N), !PreferSetCC);
8848 if (!Combined)
8849 return SDValue();
8851 // If we prefer to have a setcc, and we don't, we'll try our best to
8852 // recreate one using rebuildSetCC.
8853 if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) {
8854 SDValue NewSetCC = rebuildSetCC(Combined);
8856 // We don't have anything interesting to combine to.
8857 if (NewSetCC.getNode() == N)
8858 return SDValue();
8860 if (NewSetCC)
8861 return NewSetCC;
8864 return Combined;
8867 SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) {
8868 SDValue LHS = N->getOperand(0);
8869 SDValue RHS = N->getOperand(1);
8870 SDValue Carry = N->getOperand(2);
8871 SDValue Cond = N->getOperand(3);
8873 // If Carry is false, fold to a regular SETCC.
8874 if (isNullConstant(Carry))
8875 return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond);
8877 return SDValue();
8880 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or
8881 /// a build_vector of constants.
8882 /// This function is called by the DAGCombiner when visiting sext/zext/aext
8883 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
8884 /// Vector extends are not folded if operations are legal; this is to
8885 /// avoid introducing illegal build_vector dag nodes.
8886 static SDValue tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI,
8887 SelectionDAG &DAG, bool LegalTypes) {
8888 unsigned Opcode = N->getOpcode();
8889 SDValue N0 = N->getOperand(0);
8890 EVT VT = N->getValueType(0);
8891 SDLoc DL(N);
8893 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
8894 Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
8895 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG)
8896 && "Expected EXTEND dag node in input!");
8898 // fold (sext c1) -> c1
8899 // fold (zext c1) -> c1
8900 // fold (aext c1) -> c1
8901 if (isa<ConstantSDNode>(N0))
8902 return DAG.getNode(Opcode, DL, VT, N0);
8904 // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
8905 // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2)
8906 // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
8907 if (N0->getOpcode() == ISD::SELECT) {
8908 SDValue Op1 = N0->getOperand(1);
8909 SDValue Op2 = N0->getOperand(2);
8910 if (isa<ConstantSDNode>(Op1) && isa<ConstantSDNode>(Op2) &&
8911 (Opcode != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0.getValueType(), VT))) {
8912 // For any_extend, choose sign extension of the constants to allow a
8913 // possible further transform to sign_extend_inreg.i.e.
8915 // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0>
8916 // t2: i64 = any_extend t1
8917 // -->
8918 // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0>
8919 // -->
8920 // t4: i64 = sign_extend_inreg t3
8921 unsigned FoldOpc = Opcode;
8922 if (FoldOpc == ISD::ANY_EXTEND)
8923 FoldOpc = ISD::SIGN_EXTEND;
8924 return DAG.getSelect(DL, VT, N0->getOperand(0),
8925 DAG.getNode(FoldOpc, DL, VT, Op1),
8926 DAG.getNode(FoldOpc, DL, VT, Op2));
8930 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants)
8931 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants)
8932 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants)
8933 EVT SVT = VT.getScalarType();
8934 if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) &&
8935 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())))
8936 return SDValue();
8938 // We can fold this node into a build_vector.
8939 unsigned VTBits = SVT.getSizeInBits();
8940 unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits();
8941 SmallVector<SDValue, 8> Elts;
8942 unsigned NumElts = VT.getVectorNumElements();
8944 // For zero-extensions, UNDEF elements still guarantee to have the upper
8945 // bits set to zero.
8946 bool IsZext =
8947 Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG;
8949 for (unsigned i = 0; i != NumElts; ++i) {
8950 SDValue Op = N0.getOperand(i);
8951 if (Op.isUndef()) {
8952 Elts.push_back(IsZext ? DAG.getConstant(0, DL, SVT) : DAG.getUNDEF(SVT));
8953 continue;
8956 SDLoc DL(Op);
8957 // Get the constant value and if needed trunc it to the size of the type.
8958 // Nodes like build_vector might have constants wider than the scalar type.
8959 APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits);
8960 if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG)
8961 Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT));
8962 else
8963 Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT));
8966 return DAG.getBuildVector(VT, DL, Elts);
8969 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
8970 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
8971 // transformation. Returns true if extension are possible and the above
8972 // mentioned transformation is profitable.
8973 static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0,
8974 unsigned ExtOpc,
8975 SmallVectorImpl<SDNode *> &ExtendNodes,
8976 const TargetLowering &TLI) {
8977 bool HasCopyToRegUses = false;
8978 bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType());
8979 for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
8980 UE = N0.getNode()->use_end();
8981 UI != UE; ++UI) {
8982 SDNode *User = *UI;
8983 if (User == N)
8984 continue;
8985 if (UI.getUse().getResNo() != N0.getResNo())
8986 continue;
8987 // FIXME: Only extend SETCC N, N and SETCC N, c for now.
8988 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
8989 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
8990 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
8991 // Sign bits will be lost after a zext.
8992 return false;
8993 bool Add = false;
8994 for (unsigned i = 0; i != 2; ++i) {
8995 SDValue UseOp = User->getOperand(i);
8996 if (UseOp == N0)
8997 continue;
8998 if (!isa<ConstantSDNode>(UseOp))
8999 return false;
9000 Add = true;
9002 if (Add)
9003 ExtendNodes.push_back(User);
9004 continue;
9006 // If truncates aren't free and there are users we can't
9007 // extend, it isn't worthwhile.
9008 if (!isTruncFree)
9009 return false;
9010 // Remember if this value is live-out.
9011 if (User->getOpcode() == ISD::CopyToReg)
9012 HasCopyToRegUses = true;
9015 if (HasCopyToRegUses) {
9016 bool BothLiveOut = false;
9017 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
9018 UI != UE; ++UI) {
9019 SDUse &Use = UI.getUse();
9020 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
9021 BothLiveOut = true;
9022 break;
9025 if (BothLiveOut)
9026 // Both unextended and extended values are live out. There had better be
9027 // a good reason for the transformation.
9028 return ExtendNodes.size();
9030 return true;
9033 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
9034 SDValue OrigLoad, SDValue ExtLoad,
9035 ISD::NodeType ExtType) {
9036 // Extend SetCC uses if necessary.
9037 SDLoc DL(ExtLoad);
9038 for (SDNode *SetCC : SetCCs) {
9039 SmallVector<SDValue, 4> Ops;
9041 for (unsigned j = 0; j != 2; ++j) {
9042 SDValue SOp = SetCC->getOperand(j);
9043 if (SOp == OrigLoad)
9044 Ops.push_back(ExtLoad);
9045 else
9046 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
9049 Ops.push_back(SetCC->getOperand(2));
9050 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
9054 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?).
9055 SDValue DAGCombiner::CombineExtLoad(SDNode *N) {
9056 SDValue N0 = N->getOperand(0);
9057 EVT DstVT = N->getValueType(0);
9058 EVT SrcVT = N0.getValueType();
9060 assert((N->getOpcode() == ISD::SIGN_EXTEND ||
9061 N->getOpcode() == ISD::ZERO_EXTEND) &&
9062 "Unexpected node type (not an extend)!");
9064 // fold (sext (load x)) to multiple smaller sextloads; same for zext.
9065 // For example, on a target with legal v4i32, but illegal v8i32, turn:
9066 // (v8i32 (sext (v8i16 (load x))))
9067 // into:
9068 // (v8i32 (concat_vectors (v4i32 (sextload x)),
9069 // (v4i32 (sextload (x + 16)))))
9070 // Where uses of the original load, i.e.:
9071 // (v8i16 (load x))
9072 // are replaced with:
9073 // (v8i16 (truncate
9074 // (v8i32 (concat_vectors (v4i32 (sextload x)),
9075 // (v4i32 (sextload (x + 16)))))))
9077 // This combine is only applicable to illegal, but splittable, vectors.
9078 // All legal types, and illegal non-vector types, are handled elsewhere.
9079 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable.
9081 if (N0->getOpcode() != ISD::LOAD)
9082 return SDValue();
9084 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
9086 if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) ||
9087 !N0.hasOneUse() || !LN0->isSimple() ||
9088 !DstVT.isVector() || !DstVT.isPow2VectorType() ||
9089 !TLI.isVectorLoadExtDesirable(SDValue(N, 0)))
9090 return SDValue();
9092 SmallVector<SDNode *, 4> SetCCs;
9093 if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI))
9094 return SDValue();
9096 ISD::LoadExtType ExtType =
9097 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
9099 // Try to split the vector types to get down to legal types.
9100 EVT SplitSrcVT = SrcVT;
9101 EVT SplitDstVT = DstVT;
9102 while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) &&
9103 SplitSrcVT.getVectorNumElements() > 1) {
9104 SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first;
9105 SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first;
9108 if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT))
9109 return SDValue();
9111 SDLoc DL(N);
9112 const unsigned NumSplits =
9113 DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements();
9114 const unsigned Stride = SplitSrcVT.getStoreSize();
9115 SmallVector<SDValue, 4> Loads;
9116 SmallVector<SDValue, 4> Chains;
9118 SDValue BasePtr = LN0->getBasePtr();
9119 for (unsigned Idx = 0; Idx < NumSplits; Idx++) {
9120 const unsigned Offset = Idx * Stride;
9121 const unsigned Align = MinAlign(LN0->getAlignment(), Offset);
9123 SDValue SplitLoad = DAG.getExtLoad(
9124 ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr,
9125 LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align,
9126 LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
9128 BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
9129 DAG.getConstant(Stride, DL, BasePtr.getValueType()));
9131 Loads.push_back(SplitLoad.getValue(0));
9132 Chains.push_back(SplitLoad.getValue(1));
9135 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
9136 SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads);
9138 // Simplify TF.
9139 AddToWorklist(NewChain.getNode());
9141 CombineTo(N, NewValue);
9143 // Replace uses of the original load (before extension)
9144 // with a truncate of the concatenated sextloaded vectors.
9145 SDValue Trunc =
9146 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue);
9147 ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode());
9148 CombineTo(N0.getNode(), Trunc, NewChain);
9149 return SDValue(N, 0); // Return N so it doesn't get rechecked!
9152 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
9153 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
9154 SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) {
9155 assert(N->getOpcode() == ISD::ZERO_EXTEND);
9156 EVT VT = N->getValueType(0);
9157 EVT OrigVT = N->getOperand(0).getValueType();
9158 if (TLI.isZExtFree(OrigVT, VT))
9159 return SDValue();
9161 // and/or/xor
9162 SDValue N0 = N->getOperand(0);
9163 if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
9164 N0.getOpcode() == ISD::XOR) ||
9165 N0.getOperand(1).getOpcode() != ISD::Constant ||
9166 (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT)))
9167 return SDValue();
9169 // shl/shr
9170 SDValue N1 = N0->getOperand(0);
9171 if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) ||
9172 N1.getOperand(1).getOpcode() != ISD::Constant ||
9173 (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT)))
9174 return SDValue();
9176 // load
9177 if (!isa<LoadSDNode>(N1.getOperand(0)))
9178 return SDValue();
9179 LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0));
9180 EVT MemVT = Load->getMemoryVT();
9181 if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) ||
9182 Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed())
9183 return SDValue();
9186 // If the shift op is SHL, the logic op must be AND, otherwise the result
9187 // will be wrong.
9188 if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND)
9189 return SDValue();
9191 if (!N0.hasOneUse() || !N1.hasOneUse())
9192 return SDValue();
9194 SmallVector<SDNode*, 4> SetCCs;
9195 if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0),
9196 ISD::ZERO_EXTEND, SetCCs, TLI))
9197 return SDValue();
9199 // Actually do the transformation.
9200 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT,
9201 Load->getChain(), Load->getBasePtr(),
9202 Load->getMemoryVT(), Load->getMemOperand());
9204 SDLoc DL1(N1);
9205 SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad,
9206 N1.getOperand(1));
9208 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9209 Mask = Mask.zext(VT.getSizeInBits());
9210 SDLoc DL0(N0);
9211 SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift,
9212 DAG.getConstant(Mask, DL0, VT));
9214 ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
9215 CombineTo(N, And);
9216 if (SDValue(Load, 0).hasOneUse()) {
9217 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1));
9218 } else {
9219 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load),
9220 Load->getValueType(0), ExtLoad);
9221 CombineTo(Load, Trunc, ExtLoad.getValue(1));
9224 // N0 is dead at this point.
9225 recursivelyDeleteUnusedNodes(N0.getNode());
9227 return SDValue(N,0); // Return N so it doesn't get rechecked!
9230 /// If we're narrowing or widening the result of a vector select and the final
9231 /// size is the same size as a setcc (compare) feeding the select, then try to
9232 /// apply the cast operation to the select's operands because matching vector
9233 /// sizes for a select condition and other operands should be more efficient.
9234 SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) {
9235 unsigned CastOpcode = Cast->getOpcode();
9236 assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND ||
9237 CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND ||
9238 CastOpcode == ISD::FP_ROUND) &&
9239 "Unexpected opcode for vector select narrowing/widening");
9241 // We only do this transform before legal ops because the pattern may be
9242 // obfuscated by target-specific operations after legalization. Do not create
9243 // an illegal select op, however, because that may be difficult to lower.
9244 EVT VT = Cast->getValueType(0);
9245 if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
9246 return SDValue();
9248 SDValue VSel = Cast->getOperand(0);
9249 if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() ||
9250 VSel.getOperand(0).getOpcode() != ISD::SETCC)
9251 return SDValue();
9253 // Does the setcc have the same vector size as the casted select?
9254 SDValue SetCC = VSel.getOperand(0);
9255 EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType());
9256 if (SetCCVT.getSizeInBits() != VT.getSizeInBits())
9257 return SDValue();
9259 // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B)
9260 SDValue A = VSel.getOperand(1);
9261 SDValue B = VSel.getOperand(2);
9262 SDValue CastA, CastB;
9263 SDLoc DL(Cast);
9264 if (CastOpcode == ISD::FP_ROUND) {
9265 // FP_ROUND (fptrunc) has an extra flag operand to pass along.
9266 CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1));
9267 CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1));
9268 } else {
9269 CastA = DAG.getNode(CastOpcode, DL, VT, A);
9270 CastB = DAG.getNode(CastOpcode, DL, VT, B);
9272 return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB);
9275 // fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
9276 // fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
9277 static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner,
9278 const TargetLowering &TLI, EVT VT,
9279 bool LegalOperations, SDNode *N,
9280 SDValue N0, ISD::LoadExtType ExtLoadType) {
9281 SDNode *N0Node = N0.getNode();
9282 bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node)
9283 : ISD::isZEXTLoad(N0Node);
9284 if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) ||
9285 !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse())
9286 return SDValue();
9288 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
9289 EVT MemVT = LN0->getMemoryVT();
9290 if ((LegalOperations || !LN0->isSimple() ||
9291 VT.isVector()) &&
9292 !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT))
9293 return SDValue();
9295 SDValue ExtLoad =
9296 DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
9297 LN0->getBasePtr(), MemVT, LN0->getMemOperand());
9298 Combiner.CombineTo(N, ExtLoad);
9299 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
9300 if (LN0->use_empty())
9301 Combiner.recursivelyDeleteUnusedNodes(LN0);
9302 return SDValue(N, 0); // Return N so it doesn't get rechecked!
9305 // fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x)))
9306 // Only generate vector extloads when 1) they're legal, and 2) they are
9307 // deemed desirable by the target.
9308 static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner,
9309 const TargetLowering &TLI, EVT VT,
9310 bool LegalOperations, SDNode *N, SDValue N0,
9311 ISD::LoadExtType ExtLoadType,
9312 ISD::NodeType ExtOpc) {
9313 if (!ISD::isNON_EXTLoad(N0.getNode()) ||
9314 !ISD::isUNINDEXEDLoad(N0.getNode()) ||
9315 ((LegalOperations || VT.isVector() ||
9316 !cast<LoadSDNode>(N0)->isSimple()) &&
9317 !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType())))
9318 return {};
9320 bool DoXform = true;
9321 SmallVector<SDNode *, 4> SetCCs;
9322 if (!N0.hasOneUse())
9323 DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI);
9324 if (VT.isVector())
9325 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0));
9326 if (!DoXform)
9327 return {};
9329 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
9330 SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
9331 LN0->getBasePtr(), N0.getValueType(),
9332 LN0->getMemOperand());
9333 Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc);
9334 // If the load value is used only by N, replace it via CombineTo N.
9335 bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse();
9336 Combiner.CombineTo(N, ExtLoad);
9337 if (NoReplaceTrunc) {
9338 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
9339 Combiner.recursivelyDeleteUnusedNodes(LN0);
9340 } else {
9341 SDValue Trunc =
9342 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad);
9343 Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1));
9345 return SDValue(N, 0); // Return N so it doesn't get rechecked!
9348 static SDValue tryToFoldExtOfMaskedLoad(SelectionDAG &DAG,
9349 const TargetLowering &TLI, EVT VT,
9350 SDNode *N, SDValue N0,
9351 ISD::LoadExtType ExtLoadType,
9352 ISD::NodeType ExtOpc) {
9353 if (!N0.hasOneUse())
9354 return SDValue();
9356 MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0);
9357 if (!Ld || Ld->getExtensionType() != ISD::NON_EXTLOAD)
9358 return SDValue();
9360 if (!TLI.isLoadExtLegal(ExtLoadType, VT, Ld->getValueType(0)))
9361 return SDValue();
9363 if (!TLI.isVectorLoadExtDesirable(SDValue(N, 0)))
9364 return SDValue();
9366 SDLoc dl(Ld);
9367 SDValue PassThru = DAG.getNode(ExtOpc, dl, VT, Ld->getPassThru());
9368 SDValue NewLoad = DAG.getMaskedLoad(VT, dl, Ld->getChain(),
9369 Ld->getBasePtr(), Ld->getMask(),
9370 PassThru, Ld->getMemoryVT(),
9371 Ld->getMemOperand(), ExtLoadType,
9372 Ld->isExpandingLoad());
9373 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), SDValue(NewLoad.getNode(), 1));
9374 return NewLoad;
9377 static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG,
9378 bool LegalOperations) {
9379 assert((N->getOpcode() == ISD::SIGN_EXTEND ||
9380 N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext");
9382 SDValue SetCC = N->getOperand(0);
9383 if (LegalOperations || SetCC.getOpcode() != ISD::SETCC ||
9384 !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1)
9385 return SDValue();
9387 SDValue X = SetCC.getOperand(0);
9388 SDValue Ones = SetCC.getOperand(1);
9389 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
9390 EVT VT = N->getValueType(0);
9391 EVT XVT = X.getValueType();
9392 // setge X, C is canonicalized to setgt, so we do not need to match that
9393 // pattern. The setlt sibling is folded in SimplifySelectCC() because it does
9394 // not require the 'not' op.
9395 if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) {
9396 // Invert and smear/shift the sign bit:
9397 // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1)
9398 // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1)
9399 SDLoc DL(N);
9400 SDValue NotX = DAG.getNOT(DL, X, VT);
9401 SDValue ShiftAmount = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
9402 auto ShiftOpcode = N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL;
9403 return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount);
9405 return SDValue();
9408 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
9409 SDValue N0 = N->getOperand(0);
9410 EVT VT = N->getValueType(0);
9411 SDLoc DL(N);
9413 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
9414 return Res;
9416 // fold (sext (sext x)) -> (sext x)
9417 // fold (sext (aext x)) -> (sext x)
9418 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
9419 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0));
9421 if (N0.getOpcode() == ISD::TRUNCATE) {
9422 // fold (sext (truncate (load x))) -> (sext (smaller load x))
9423 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
9424 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
9425 SDNode *oye = N0.getOperand(0).getNode();
9426 if (NarrowLoad.getNode() != N0.getNode()) {
9427 CombineTo(N0.getNode(), NarrowLoad);
9428 // CombineTo deleted the truncate, if needed, but not what's under it.
9429 AddToWorklist(oye);
9431 return SDValue(N, 0); // Return N so it doesn't get rechecked!
9434 // See if the value being truncated is already sign extended. If so, just
9435 // eliminate the trunc/sext pair.
9436 SDValue Op = N0.getOperand(0);
9437 unsigned OpBits = Op.getScalarValueSizeInBits();
9438 unsigned MidBits = N0.getScalarValueSizeInBits();
9439 unsigned DestBits = VT.getScalarSizeInBits();
9440 unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
9442 if (OpBits == DestBits) {
9443 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
9444 // bits, it is already ready.
9445 if (NumSignBits > DestBits-MidBits)
9446 return Op;
9447 } else if (OpBits < DestBits) {
9448 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
9449 // bits, just sext from i32.
9450 if (NumSignBits > OpBits-MidBits)
9451 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op);
9452 } else {
9453 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
9454 // bits, just truncate to i32.
9455 if (NumSignBits > OpBits-MidBits)
9456 return DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
9459 // fold (sext (truncate x)) -> (sextinreg x).
9460 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
9461 N0.getValueType())) {
9462 if (OpBits < DestBits)
9463 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
9464 else if (OpBits > DestBits)
9465 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
9466 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op,
9467 DAG.getValueType(N0.getValueType()));
9471 // Try to simplify (sext (load x)).
9472 if (SDValue foldedExt =
9473 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
9474 ISD::SEXTLOAD, ISD::SIGN_EXTEND))
9475 return foldedExt;
9477 if (SDValue foldedExt =
9478 tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::SEXTLOAD,
9479 ISD::SIGN_EXTEND))
9480 return foldedExt;
9482 // fold (sext (load x)) to multiple smaller sextloads.
9483 // Only on illegal but splittable vectors.
9484 if (SDValue ExtLoad = CombineExtLoad(N))
9485 return ExtLoad;
9487 // Try to simplify (sext (sextload x)).
9488 if (SDValue foldedExt = tryToFoldExtOfExtload(
9489 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD))
9490 return foldedExt;
9492 // fold (sext (and/or/xor (load x), cst)) ->
9493 // (and/or/xor (sextload x), (sext cst))
9494 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
9495 N0.getOpcode() == ISD::XOR) &&
9496 isa<LoadSDNode>(N0.getOperand(0)) &&
9497 N0.getOperand(1).getOpcode() == ISD::Constant &&
9498 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
9499 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
9500 EVT MemVT = LN00->getMemoryVT();
9501 if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) &&
9502 LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) {
9503 SmallVector<SDNode*, 4> SetCCs;
9504 bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
9505 ISD::SIGN_EXTEND, SetCCs, TLI);
9506 if (DoXform) {
9507 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT,
9508 LN00->getChain(), LN00->getBasePtr(),
9509 LN00->getMemoryVT(),
9510 LN00->getMemOperand());
9511 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9512 Mask = Mask.sext(VT.getSizeInBits());
9513 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
9514 ExtLoad, DAG.getConstant(Mask, DL, VT));
9515 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND);
9516 bool NoReplaceTruncAnd = !N0.hasOneUse();
9517 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
9518 CombineTo(N, And);
9519 // If N0 has multiple uses, change other uses as well.
9520 if (NoReplaceTruncAnd) {
9521 SDValue TruncAnd =
9522 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And);
9523 CombineTo(N0.getNode(), TruncAnd);
9525 if (NoReplaceTrunc) {
9526 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
9527 } else {
9528 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
9529 LN00->getValueType(0), ExtLoad);
9530 CombineTo(LN00, Trunc, ExtLoad.getValue(1));
9532 return SDValue(N,0); // Return N so it doesn't get rechecked!
9537 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
9538 return V;
9540 if (N0.getOpcode() == ISD::SETCC) {
9541 SDValue N00 = N0.getOperand(0);
9542 SDValue N01 = N0.getOperand(1);
9543 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
9544 EVT N00VT = N0.getOperand(0).getValueType();
9546 // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
9547 // Only do this before legalize for now.
9548 if (VT.isVector() && !LegalOperations &&
9549 TLI.getBooleanContents(N00VT) ==
9550 TargetLowering::ZeroOrNegativeOneBooleanContent) {
9551 // On some architectures (such as SSE/NEON/etc) the SETCC result type is
9552 // of the same size as the compared operands. Only optimize sext(setcc())
9553 // if this is the case.
9554 EVT SVT = getSetCCResultType(N00VT);
9556 // If we already have the desired type, don't change it.
9557 if (SVT != N0.getValueType()) {
9558 // We know that the # elements of the results is the same as the
9559 // # elements of the compare (and the # elements of the compare result
9560 // for that matter). Check to see that they are the same size. If so,
9561 // we know that the element size of the sext'd result matches the
9562 // element size of the compare operands.
9563 if (VT.getSizeInBits() == SVT.getSizeInBits())
9564 return DAG.getSetCC(DL, VT, N00, N01, CC);
9566 // If the desired elements are smaller or larger than the source
9567 // elements, we can use a matching integer vector type and then
9568 // truncate/sign extend.
9569 EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger();
9570 if (SVT == MatchingVecType) {
9571 SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC);
9572 return DAG.getSExtOrTrunc(VsetCC, DL, VT);
9577 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0)
9578 // Here, T can be 1 or -1, depending on the type of the setcc and
9579 // getBooleanContents().
9580 unsigned SetCCWidth = N0.getScalarValueSizeInBits();
9582 // To determine the "true" side of the select, we need to know the high bit
9583 // of the value returned by the setcc if it evaluates to true.
9584 // If the type of the setcc is i1, then the true case of the select is just
9585 // sext(i1 1), that is, -1.
9586 // If the type of the setcc is larger (say, i8) then the value of the high
9587 // bit depends on getBooleanContents(), so ask TLI for a real "true" value
9588 // of the appropriate width.
9589 SDValue ExtTrueVal = (SetCCWidth == 1)
9590 ? DAG.getAllOnesConstant(DL, VT)
9591 : DAG.getBoolConstant(true, DL, VT, N00VT);
9592 SDValue Zero = DAG.getConstant(0, DL, VT);
9593 if (SDValue SCC =
9594 SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true))
9595 return SCC;
9597 if (!VT.isVector() && !TLI.convertSelectOfConstantsToMath(VT)) {
9598 EVT SetCCVT = getSetCCResultType(N00VT);
9599 // Don't do this transform for i1 because there's a select transform
9600 // that would reverse it.
9601 // TODO: We should not do this transform at all without a target hook
9602 // because a sext is likely cheaper than a select?
9603 if (SetCCVT.getScalarSizeInBits() != 1 &&
9604 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) {
9605 SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC);
9606 return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero);
9611 // fold (sext x) -> (zext x) if the sign bit is known zero.
9612 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
9613 DAG.SignBitIsZero(N0))
9614 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0);
9616 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
9617 return NewVSel;
9619 // Eliminate this sign extend by doing a negation in the destination type:
9620 // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64)
9621 if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() &&
9622 isNullOrNullSplat(N0.getOperand(0)) &&
9623 N0.getOperand(1).getOpcode() == ISD::ZERO_EXTEND &&
9624 TLI.isOperationLegalOrCustom(ISD::SUB, VT)) {
9625 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(1).getOperand(0), DL, VT);
9626 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Zext);
9628 // Eliminate this sign extend by doing a decrement in the destination type:
9629 // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1)
9630 if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() &&
9631 isAllOnesOrAllOnesSplat(N0.getOperand(1)) &&
9632 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
9633 TLI.isOperationLegalOrCustom(ISD::ADD, VT)) {
9634 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT);
9635 return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT));
9638 return SDValue();
9641 // isTruncateOf - If N is a truncate of some other value, return true, record
9642 // the value being truncated in Op and which of Op's bits are zero/one in Known.
9643 // This function computes KnownBits to avoid a duplicated call to
9644 // computeKnownBits in the caller.
9645 static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
9646 KnownBits &Known) {
9647 if (N->getOpcode() == ISD::TRUNCATE) {
9648 Op = N->getOperand(0);
9649 Known = DAG.computeKnownBits(Op);
9650 return true;
9653 if (N.getOpcode() != ISD::SETCC ||
9654 N.getValueType().getScalarType() != MVT::i1 ||
9655 cast<CondCodeSDNode>(N.getOperand(2))->get() != ISD::SETNE)
9656 return false;
9658 SDValue Op0 = N->getOperand(0);
9659 SDValue Op1 = N->getOperand(1);
9660 assert(Op0.getValueType() == Op1.getValueType());
9662 if (isNullOrNullSplat(Op0))
9663 Op = Op1;
9664 else if (isNullOrNullSplat(Op1))
9665 Op = Op0;
9666 else
9667 return false;
9669 Known = DAG.computeKnownBits(Op);
9671 return (Known.Zero | 1).isAllOnesValue();
9674 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
9675 SDValue N0 = N->getOperand(0);
9676 EVT VT = N->getValueType(0);
9678 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
9679 return Res;
9681 // fold (zext (zext x)) -> (zext x)
9682 // fold (zext (aext x)) -> (zext x)
9683 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
9684 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
9685 N0.getOperand(0));
9687 // fold (zext (truncate x)) -> (zext x) or
9688 // (zext (truncate x)) -> (truncate x)
9689 // This is valid when the truncated bits of x are already zero.
9690 SDValue Op;
9691 KnownBits Known;
9692 if (isTruncateOf(DAG, N0, Op, Known)) {
9693 APInt TruncatedBits =
9694 (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ?
9695 APInt(Op.getScalarValueSizeInBits(), 0) :
9696 APInt::getBitsSet(Op.getScalarValueSizeInBits(),
9697 N0.getScalarValueSizeInBits(),
9698 std::min(Op.getScalarValueSizeInBits(),
9699 VT.getScalarSizeInBits()));
9700 if (TruncatedBits.isSubsetOf(Known.Zero))
9701 return DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
9704 // fold (zext (truncate x)) -> (and x, mask)
9705 if (N0.getOpcode() == ISD::TRUNCATE) {
9706 // fold (zext (truncate (load x))) -> (zext (smaller load x))
9707 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
9708 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
9709 SDNode *oye = N0.getOperand(0).getNode();
9710 if (NarrowLoad.getNode() != N0.getNode()) {
9711 CombineTo(N0.getNode(), NarrowLoad);
9712 // CombineTo deleted the truncate, if needed, but not what's under it.
9713 AddToWorklist(oye);
9715 return SDValue(N, 0); // Return N so it doesn't get rechecked!
9718 EVT SrcVT = N0.getOperand(0).getValueType();
9719 EVT MinVT = N0.getValueType();
9721 // Try to mask before the extension to avoid having to generate a larger mask,
9722 // possibly over several sub-vectors.
9723 if (SrcVT.bitsLT(VT) && VT.isVector()) {
9724 if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) &&
9725 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) {
9726 SDValue Op = N0.getOperand(0);
9727 Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType());
9728 AddToWorklist(Op.getNode());
9729 SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
9730 // Transfer the debug info; the new node is equivalent to N0.
9731 DAG.transferDbgValues(N0, ZExtOrTrunc);
9732 return ZExtOrTrunc;
9736 if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) {
9737 SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT);
9738 AddToWorklist(Op.getNode());
9739 SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType());
9740 // We may safely transfer the debug info describing the truncate node over
9741 // to the equivalent and operation.
9742 DAG.transferDbgValues(N0, And);
9743 return And;
9747 // Fold (zext (and (trunc x), cst)) -> (and x, cst),
9748 // if either of the casts is not free.
9749 if (N0.getOpcode() == ISD::AND &&
9750 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
9751 N0.getOperand(1).getOpcode() == ISD::Constant &&
9752 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
9753 N0.getValueType()) ||
9754 !TLI.isZExtFree(N0.getValueType(), VT))) {
9755 SDValue X = N0.getOperand(0).getOperand(0);
9756 X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT);
9757 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9758 Mask = Mask.zext(VT.getSizeInBits());
9759 SDLoc DL(N);
9760 return DAG.getNode(ISD::AND, DL, VT,
9761 X, DAG.getConstant(Mask, DL, VT));
9764 // Try to simplify (zext (load x)).
9765 if (SDValue foldedExt =
9766 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
9767 ISD::ZEXTLOAD, ISD::ZERO_EXTEND))
9768 return foldedExt;
9770 if (SDValue foldedExt =
9771 tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::ZEXTLOAD,
9772 ISD::ZERO_EXTEND))
9773 return foldedExt;
9775 // fold (zext (load x)) to multiple smaller zextloads.
9776 // Only on illegal but splittable vectors.
9777 if (SDValue ExtLoad = CombineExtLoad(N))
9778 return ExtLoad;
9780 // fold (zext (and/or/xor (load x), cst)) ->
9781 // (and/or/xor (zextload x), (zext cst))
9782 // Unless (and (load x) cst) will match as a zextload already and has
9783 // additional users.
9784 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
9785 N0.getOpcode() == ISD::XOR) &&
9786 isa<LoadSDNode>(N0.getOperand(0)) &&
9787 N0.getOperand(1).getOpcode() == ISD::Constant &&
9788 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
9789 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
9790 EVT MemVT = LN00->getMemoryVT();
9791 if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) &&
9792 LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) {
9793 bool DoXform = true;
9794 SmallVector<SDNode*, 4> SetCCs;
9795 if (!N0.hasOneUse()) {
9796 if (N0.getOpcode() == ISD::AND) {
9797 auto *AndC = cast<ConstantSDNode>(N0.getOperand(1));
9798 EVT LoadResultTy = AndC->getValueType(0);
9799 EVT ExtVT;
9800 if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT))
9801 DoXform = false;
9804 if (DoXform)
9805 DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
9806 ISD::ZERO_EXTEND, SetCCs, TLI);
9807 if (DoXform) {
9808 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT,
9809 LN00->getChain(), LN00->getBasePtr(),
9810 LN00->getMemoryVT(),
9811 LN00->getMemOperand());
9812 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9813 Mask = Mask.zext(VT.getSizeInBits());
9814 SDLoc DL(N);
9815 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
9816 ExtLoad, DAG.getConstant(Mask, DL, VT));
9817 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
9818 bool NoReplaceTruncAnd = !N0.hasOneUse();
9819 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
9820 CombineTo(N, And);
9821 // If N0 has multiple uses, change other uses as well.
9822 if (NoReplaceTruncAnd) {
9823 SDValue TruncAnd =
9824 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And);
9825 CombineTo(N0.getNode(), TruncAnd);
9827 if (NoReplaceTrunc) {
9828 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
9829 } else {
9830 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
9831 LN00->getValueType(0), ExtLoad);
9832 CombineTo(LN00, Trunc, ExtLoad.getValue(1));
9834 return SDValue(N,0); // Return N so it doesn't get rechecked!
9839 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
9840 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
9841 if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N))
9842 return ZExtLoad;
9844 // Try to simplify (zext (zextload x)).
9845 if (SDValue foldedExt = tryToFoldExtOfExtload(
9846 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD))
9847 return foldedExt;
9849 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
9850 return V;
9852 if (N0.getOpcode() == ISD::SETCC) {
9853 // Only do this before legalize for now.
9854 if (!LegalOperations && VT.isVector() &&
9855 N0.getValueType().getVectorElementType() == MVT::i1) {
9856 EVT N00VT = N0.getOperand(0).getValueType();
9857 if (getSetCCResultType(N00VT) == N0.getValueType())
9858 return SDValue();
9860 // We know that the # elements of the results is the same as the #
9861 // elements of the compare (and the # elements of the compare result for
9862 // that matter). Check to see that they are the same size. If so, we know
9863 // that the element size of the sext'd result matches the element size of
9864 // the compare operands.
9865 SDLoc DL(N);
9866 SDValue VecOnes = DAG.getConstant(1, DL, VT);
9867 if (VT.getSizeInBits() == N00VT.getSizeInBits()) {
9868 // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
9869 SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0),
9870 N0.getOperand(1), N0.getOperand(2));
9871 return DAG.getNode(ISD::AND, DL, VT, VSetCC, VecOnes);
9874 // If the desired elements are smaller or larger than the source
9875 // elements we can use a matching integer vector type and then
9876 // truncate/sign extend.
9877 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
9878 SDValue VsetCC =
9879 DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0),
9880 N0.getOperand(1), N0.getOperand(2));
9881 return DAG.getNode(ISD::AND, DL, VT, DAG.getSExtOrTrunc(VsetCC, DL, VT),
9882 VecOnes);
9885 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
9886 SDLoc DL(N);
9887 if (SDValue SCC = SimplifySelectCC(
9888 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT),
9889 DAG.getConstant(0, DL, VT),
9890 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
9891 return SCC;
9894 // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
9895 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
9896 isa<ConstantSDNode>(N0.getOperand(1)) &&
9897 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
9898 N0.hasOneUse()) {
9899 SDValue ShAmt = N0.getOperand(1);
9900 if (N0.getOpcode() == ISD::SHL) {
9901 SDValue InnerZExt = N0.getOperand(0);
9902 // If the original shl may be shifting out bits, do not perform this
9903 // transformation.
9904 unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() -
9905 InnerZExt.getOperand(0).getValueSizeInBits();
9906 if (cast<ConstantSDNode>(ShAmt)->getAPIntValue().ugt(KnownZeroBits))
9907 return SDValue();
9910 SDLoc DL(N);
9912 // Ensure that the shift amount is wide enough for the shifted value.
9913 if (VT.getSizeInBits() >= 256)
9914 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
9916 return DAG.getNode(N0.getOpcode(), DL, VT,
9917 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
9918 ShAmt);
9921 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
9922 return NewVSel;
9924 return SDValue();
9927 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
9928 SDValue N0 = N->getOperand(0);
9929 EVT VT = N->getValueType(0);
9931 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
9932 return Res;
9934 // fold (aext (aext x)) -> (aext x)
9935 // fold (aext (zext x)) -> (zext x)
9936 // fold (aext (sext x)) -> (sext x)
9937 if (N0.getOpcode() == ISD::ANY_EXTEND ||
9938 N0.getOpcode() == ISD::ZERO_EXTEND ||
9939 N0.getOpcode() == ISD::SIGN_EXTEND)
9940 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
9942 // fold (aext (truncate (load x))) -> (aext (smaller load x))
9943 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
9944 if (N0.getOpcode() == ISD::TRUNCATE) {
9945 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
9946 SDNode *oye = N0.getOperand(0).getNode();
9947 if (NarrowLoad.getNode() != N0.getNode()) {
9948 CombineTo(N0.getNode(), NarrowLoad);
9949 // CombineTo deleted the truncate, if needed, but not what's under it.
9950 AddToWorklist(oye);
9952 return SDValue(N, 0); // Return N so it doesn't get rechecked!
9956 // fold (aext (truncate x))
9957 if (N0.getOpcode() == ISD::TRUNCATE)
9958 return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT);
9960 // Fold (aext (and (trunc x), cst)) -> (and x, cst)
9961 // if the trunc is not free.
9962 if (N0.getOpcode() == ISD::AND &&
9963 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
9964 N0.getOperand(1).getOpcode() == ISD::Constant &&
9965 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
9966 N0.getValueType())) {
9967 SDLoc DL(N);
9968 SDValue X = N0.getOperand(0).getOperand(0);
9969 X = DAG.getAnyExtOrTrunc(X, DL, VT);
9970 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9971 Mask = Mask.zext(VT.getSizeInBits());
9972 return DAG.getNode(ISD::AND, DL, VT,
9973 X, DAG.getConstant(Mask, DL, VT));
9976 // fold (aext (load x)) -> (aext (truncate (extload x)))
9977 // None of the supported targets knows how to perform load and any_ext
9978 // on vectors in one instruction. We only perform this transformation on
9979 // scalars.
9980 if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
9981 ISD::isUNINDEXEDLoad(N0.getNode()) &&
9982 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
9983 bool DoXform = true;
9984 SmallVector<SDNode*, 4> SetCCs;
9985 if (!N0.hasOneUse())
9986 DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs,
9987 TLI);
9988 if (DoXform) {
9989 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
9990 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
9991 LN0->getChain(),
9992 LN0->getBasePtr(), N0.getValueType(),
9993 LN0->getMemOperand());
9994 ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND);
9995 // If the load value is used only by N, replace it via CombineTo N.
9996 bool NoReplaceTrunc = N0.hasOneUse();
9997 CombineTo(N, ExtLoad);
9998 if (NoReplaceTrunc) {
9999 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
10000 recursivelyDeleteUnusedNodes(LN0);
10001 } else {
10002 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
10003 N0.getValueType(), ExtLoad);
10004 CombineTo(LN0, Trunc, ExtLoad.getValue(1));
10006 return SDValue(N, 0); // Return N so it doesn't get rechecked!
10010 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
10011 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
10012 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
10013 if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) &&
10014 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
10015 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
10016 ISD::LoadExtType ExtType = LN0->getExtensionType();
10017 EVT MemVT = LN0->getMemoryVT();
10018 if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) {
10019 SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N),
10020 VT, LN0->getChain(), LN0->getBasePtr(),
10021 MemVT, LN0->getMemOperand());
10022 CombineTo(N, ExtLoad);
10023 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
10024 recursivelyDeleteUnusedNodes(LN0);
10025 return SDValue(N, 0); // Return N so it doesn't get rechecked!
10029 if (N0.getOpcode() == ISD::SETCC) {
10030 // For vectors:
10031 // aext(setcc) -> vsetcc
10032 // aext(setcc) -> truncate(vsetcc)
10033 // aext(setcc) -> aext(vsetcc)
10034 // Only do this before legalize for now.
10035 if (VT.isVector() && !LegalOperations) {
10036 EVT N00VT = N0.getOperand(0).getValueType();
10037 if (getSetCCResultType(N00VT) == N0.getValueType())
10038 return SDValue();
10040 // We know that the # elements of the results is the same as the
10041 // # elements of the compare (and the # elements of the compare result
10042 // for that matter). Check to see that they are the same size. If so,
10043 // we know that the element size of the sext'd result matches the
10044 // element size of the compare operands.
10045 if (VT.getSizeInBits() == N00VT.getSizeInBits())
10046 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
10047 N0.getOperand(1),
10048 cast<CondCodeSDNode>(N0.getOperand(2))->get());
10050 // If the desired elements are smaller or larger than the source
10051 // elements we can use a matching integer vector type and then
10052 // truncate/any extend
10053 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
10054 SDValue VsetCC =
10055 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
10056 N0.getOperand(1),
10057 cast<CondCodeSDNode>(N0.getOperand(2))->get());
10058 return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT);
10061 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
10062 SDLoc DL(N);
10063 if (SDValue SCC = SimplifySelectCC(
10064 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT),
10065 DAG.getConstant(0, DL, VT),
10066 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
10067 return SCC;
10070 return SDValue();
10073 SDValue DAGCombiner::visitAssertExt(SDNode *N) {
10074 unsigned Opcode = N->getOpcode();
10075 SDValue N0 = N->getOperand(0);
10076 SDValue N1 = N->getOperand(1);
10077 EVT AssertVT = cast<VTSDNode>(N1)->getVT();
10079 // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt)
10080 if (N0.getOpcode() == Opcode &&
10081 AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT())
10082 return N0;
10084 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
10085 N0.getOperand(0).getOpcode() == Opcode) {
10086 // We have an assert, truncate, assert sandwich. Make one stronger assert
10087 // by asserting on the smallest asserted type to the larger source type.
10088 // This eliminates the later assert:
10089 // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN
10090 // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN
10091 SDValue BigA = N0.getOperand(0);
10092 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
10093 assert(BigA_AssertVT.bitsLE(N0.getValueType()) &&
10094 "Asserting zero/sign-extended bits to a type larger than the "
10095 "truncated destination does not provide information");
10097 SDLoc DL(N);
10098 EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT;
10099 SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT);
10100 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(),
10101 BigA.getOperand(0), MinAssertVTVal);
10102 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert);
10105 // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller
10106 // than X. Just move the AssertZext in front of the truncate and drop the
10107 // AssertSExt.
10108 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
10109 N0.getOperand(0).getOpcode() == ISD::AssertSext &&
10110 Opcode == ISD::AssertZext) {
10111 SDValue BigA = N0.getOperand(0);
10112 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
10113 assert(BigA_AssertVT.bitsLE(N0.getValueType()) &&
10114 "Asserting zero/sign-extended bits to a type larger than the "
10115 "truncated destination does not provide information");
10117 if (AssertVT.bitsLT(BigA_AssertVT)) {
10118 SDLoc DL(N);
10119 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(),
10120 BigA.getOperand(0), N1);
10121 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert);
10125 return SDValue();
10128 /// If the result of a wider load is shifted to right of N bits and then
10129 /// truncated to a narrower type and where N is a multiple of number of bits of
10130 /// the narrower type, transform it to a narrower load from address + N / num of
10131 /// bits of new type. Also narrow the load if the result is masked with an AND
10132 /// to effectively produce a smaller type. If the result is to be extended, also
10133 /// fold the extension to form a extending load.
10134 SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
10135 unsigned Opc = N->getOpcode();
10137 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
10138 SDValue N0 = N->getOperand(0);
10139 EVT VT = N->getValueType(0);
10140 EVT ExtVT = VT;
10142 // This transformation isn't valid for vector loads.
10143 if (VT.isVector())
10144 return SDValue();
10146 unsigned ShAmt = 0;
10147 bool HasShiftedOffset = false;
10148 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
10149 // extended to VT.
10150 if (Opc == ISD::SIGN_EXTEND_INREG) {
10151 ExtType = ISD::SEXTLOAD;
10152 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
10153 } else if (Opc == ISD::SRL) {
10154 // Another special-case: SRL is basically zero-extending a narrower value,
10155 // or it maybe shifting a higher subword, half or byte into the lowest
10156 // bits.
10157 ExtType = ISD::ZEXTLOAD;
10158 N0 = SDValue(N, 0);
10160 auto *LN0 = dyn_cast<LoadSDNode>(N0.getOperand(0));
10161 auto *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
10162 if (!N01 || !LN0)
10163 return SDValue();
10165 uint64_t ShiftAmt = N01->getZExtValue();
10166 uint64_t MemoryWidth = LN0->getMemoryVT().getSizeInBits();
10167 if (LN0->getExtensionType() != ISD::SEXTLOAD && MemoryWidth > ShiftAmt)
10168 ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShiftAmt);
10169 else
10170 ExtVT = EVT::getIntegerVT(*DAG.getContext(),
10171 VT.getSizeInBits() - ShiftAmt);
10172 } else if (Opc == ISD::AND) {
10173 // An AND with a constant mask is the same as a truncate + zero-extend.
10174 auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1));
10175 if (!AndC)
10176 return SDValue();
10178 const APInt &Mask = AndC->getAPIntValue();
10179 unsigned ActiveBits = 0;
10180 if (Mask.isMask()) {
10181 ActiveBits = Mask.countTrailingOnes();
10182 } else if (Mask.isShiftedMask()) {
10183 ShAmt = Mask.countTrailingZeros();
10184 APInt ShiftedMask = Mask.lshr(ShAmt);
10185 ActiveBits = ShiftedMask.countTrailingOnes();
10186 HasShiftedOffset = true;
10187 } else
10188 return SDValue();
10190 ExtType = ISD::ZEXTLOAD;
10191 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
10194 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
10195 SDValue SRL = N0;
10196 if (auto *ConstShift = dyn_cast<ConstantSDNode>(SRL.getOperand(1))) {
10197 ShAmt = ConstShift->getZExtValue();
10198 unsigned EVTBits = ExtVT.getSizeInBits();
10199 // Is the shift amount a multiple of size of VT?
10200 if ((ShAmt & (EVTBits-1)) == 0) {
10201 N0 = N0.getOperand(0);
10202 // Is the load width a multiple of size of VT?
10203 if ((N0.getValueSizeInBits() & (EVTBits-1)) != 0)
10204 return SDValue();
10207 // At this point, we must have a load or else we can't do the transform.
10208 if (!isa<LoadSDNode>(N0)) return SDValue();
10210 auto *LN0 = cast<LoadSDNode>(N0);
10212 // Because a SRL must be assumed to *need* to zero-extend the high bits
10213 // (as opposed to anyext the high bits), we can't combine the zextload
10214 // lowering of SRL and an sextload.
10215 if (LN0->getExtensionType() == ISD::SEXTLOAD)
10216 return SDValue();
10218 // If the shift amount is larger than the input type then we're not
10219 // accessing any of the loaded bytes. If the load was a zextload/extload
10220 // then the result of the shift+trunc is zero/undef (handled elsewhere).
10221 if (ShAmt >= LN0->getMemoryVT().getSizeInBits())
10222 return SDValue();
10224 // If the SRL is only used by a masking AND, we may be able to adjust
10225 // the ExtVT to make the AND redundant.
10226 SDNode *Mask = *(SRL->use_begin());
10227 if (Mask->getOpcode() == ISD::AND &&
10228 isa<ConstantSDNode>(Mask->getOperand(1))) {
10229 const APInt &ShiftMask =
10230 cast<ConstantSDNode>(Mask->getOperand(1))->getAPIntValue();
10231 if (ShiftMask.isMask()) {
10232 EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(),
10233 ShiftMask.countTrailingOnes());
10234 // If the mask is smaller, recompute the type.
10235 if ((ExtVT.getSizeInBits() > MaskedVT.getSizeInBits()) &&
10236 TLI.isLoadExtLegal(ExtType, N0.getValueType(), MaskedVT))
10237 ExtVT = MaskedVT;
10243 // If the load is shifted left (and the result isn't shifted back right),
10244 // we can fold the truncate through the shift.
10245 unsigned ShLeftAmt = 0;
10246 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
10247 ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
10248 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
10249 ShLeftAmt = N01->getZExtValue();
10250 N0 = N0.getOperand(0);
10254 // If we haven't found a load, we can't narrow it.
10255 if (!isa<LoadSDNode>(N0))
10256 return SDValue();
10258 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
10259 // Reducing the width of a volatile load is illegal. For atomics, we may be
10260 // able to reduce the width provided we never widen again. (see D66309)
10261 if (!LN0->isSimple() ||
10262 !isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt))
10263 return SDValue();
10265 auto AdjustBigEndianShift = [&](unsigned ShAmt) {
10266 unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
10267 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
10268 return LVTStoreBits - EVTStoreBits - ShAmt;
10271 // For big endian targets, we need to adjust the offset to the pointer to
10272 // load the correct bytes.
10273 if (DAG.getDataLayout().isBigEndian())
10274 ShAmt = AdjustBigEndianShift(ShAmt);
10276 EVT PtrType = N0.getOperand(1).getValueType();
10277 uint64_t PtrOff = ShAmt / 8;
10278 unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
10279 SDLoc DL(LN0);
10280 // The original load itself didn't wrap, so an offset within it doesn't.
10281 SDNodeFlags Flags;
10282 Flags.setNoUnsignedWrap(true);
10283 SDValue NewPtr = DAG.getNode(ISD::ADD, DL,
10284 PtrType, LN0->getBasePtr(),
10285 DAG.getConstant(PtrOff, DL, PtrType),
10286 Flags);
10287 AddToWorklist(NewPtr.getNode());
10289 SDValue Load;
10290 if (ExtType == ISD::NON_EXTLOAD)
10291 Load = DAG.getLoad(VT, DL, LN0->getChain(), NewPtr,
10292 LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign,
10293 LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
10294 else
10295 Load = DAG.getExtLoad(ExtType, DL, VT, LN0->getChain(), NewPtr,
10296 LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT,
10297 NewAlign, LN0->getMemOperand()->getFlags(),
10298 LN0->getAAInfo());
10300 // Replace the old load's chain with the new load's chain.
10301 WorklistRemover DeadNodes(*this);
10302 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
10304 // Shift the result left, if we've swallowed a left shift.
10305 SDValue Result = Load;
10306 if (ShLeftAmt != 0) {
10307 EVT ShImmTy = getShiftAmountTy(Result.getValueType());
10308 if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
10309 ShImmTy = VT;
10310 // If the shift amount is as large as the result size (but, presumably,
10311 // no larger than the source) then the useful bits of the result are
10312 // zero; we can't simply return the shortened shift, because the result
10313 // of that operation is undefined.
10314 if (ShLeftAmt >= VT.getSizeInBits())
10315 Result = DAG.getConstant(0, DL, VT);
10316 else
10317 Result = DAG.getNode(ISD::SHL, DL, VT,
10318 Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy));
10321 if (HasShiftedOffset) {
10322 // Recalculate the shift amount after it has been altered to calculate
10323 // the offset.
10324 if (DAG.getDataLayout().isBigEndian())
10325 ShAmt = AdjustBigEndianShift(ShAmt);
10327 // We're using a shifted mask, so the load now has an offset. This means
10328 // that data has been loaded into the lower bytes than it would have been
10329 // before, so we need to shl the loaded data into the correct position in the
10330 // register.
10331 SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT);
10332 Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC);
10333 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
10336 // Return the new loaded value.
10337 return Result;
10340 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
10341 SDValue N0 = N->getOperand(0);
10342 SDValue N1 = N->getOperand(1);
10343 EVT VT = N->getValueType(0);
10344 EVT EVT = cast<VTSDNode>(N1)->getVT();
10345 unsigned VTBits = VT.getScalarSizeInBits();
10346 unsigned EVTBits = EVT.getScalarSizeInBits();
10348 if (N0.isUndef())
10349 return DAG.getUNDEF(VT);
10351 // fold (sext_in_reg c1) -> c1
10352 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
10353 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
10355 // If the input is already sign extended, just drop the extension.
10356 if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
10357 return N0;
10359 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
10360 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
10361 EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
10362 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
10363 N0.getOperand(0), N1);
10365 // fold (sext_in_reg (sext x)) -> (sext x)
10366 // fold (sext_in_reg (aext x)) -> (sext x)
10367 // if x is small enough or if we know that x has more than 1 sign bit and the
10368 // sign_extend_inreg is extending from one of them.
10369 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
10370 SDValue N00 = N0.getOperand(0);
10371 unsigned N00Bits = N00.getScalarValueSizeInBits();
10372 if ((N00Bits <= EVTBits ||
10373 (N00Bits - DAG.ComputeNumSignBits(N00)) < EVTBits) &&
10374 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
10375 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00);
10378 // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x)
10379 if ((N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG ||
10380 N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG ||
10381 N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) &&
10382 N0.getOperand(0).getScalarValueSizeInBits() == EVTBits) {
10383 if (!LegalOperations ||
10384 TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT))
10385 return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT,
10386 N0.getOperand(0));
10389 // fold (sext_in_reg (zext x)) -> (sext x)
10390 // iff we are extending the source sign bit.
10391 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
10392 SDValue N00 = N0.getOperand(0);
10393 if (N00.getScalarValueSizeInBits() == EVTBits &&
10394 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
10395 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
10398 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
10399 if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, EVTBits - 1)))
10400 return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT.getScalarType());
10402 // fold operands of sext_in_reg based on knowledge that the top bits are not
10403 // demanded.
10404 if (SimplifyDemandedBits(SDValue(N, 0)))
10405 return SDValue(N, 0);
10407 // fold (sext_in_reg (load x)) -> (smaller sextload x)
10408 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
10409 if (SDValue NarrowLoad = ReduceLoadWidth(N))
10410 return NarrowLoad;
10412 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
10413 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
10414 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
10415 if (N0.getOpcode() == ISD::SRL) {
10416 if (auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
10417 if (ShAmt->getAPIntValue().ule(VTBits - EVTBits)) {
10418 // We can turn this into an SRA iff the input to the SRL is already sign
10419 // extended enough.
10420 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
10421 if (((VTBits - EVTBits) - ShAmt->getZExtValue()) < InSignBits)
10422 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0),
10423 N0.getOperand(1));
10427 // fold (sext_inreg (extload x)) -> (sextload x)
10428 // If sextload is not supported by target, we can only do the combine when
10429 // load has one use. Doing otherwise can block folding the extload with other
10430 // extends that the target does support.
10431 if (ISD::isEXTLoad(N0.getNode()) &&
10432 ISD::isUNINDEXEDLoad(N0.getNode()) &&
10433 EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
10434 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple() &&
10435 N0.hasOneUse()) ||
10436 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) {
10437 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
10438 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
10439 LN0->getChain(),
10440 LN0->getBasePtr(), EVT,
10441 LN0->getMemOperand());
10442 CombineTo(N, ExtLoad);
10443 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
10444 AddToWorklist(ExtLoad.getNode());
10445 return SDValue(N, 0); // Return N so it doesn't get rechecked!
10447 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
10448 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
10449 N0.hasOneUse() &&
10450 EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
10451 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) &&
10452 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) {
10453 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
10454 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
10455 LN0->getChain(),
10456 LN0->getBasePtr(), EVT,
10457 LN0->getMemOperand());
10458 CombineTo(N, ExtLoad);
10459 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
10460 return SDValue(N, 0); // Return N so it doesn't get rechecked!
10463 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
10464 if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
10465 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
10466 N0.getOperand(1), false))
10467 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
10468 BSwap, N1);
10471 return SDValue();
10474 SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) {
10475 SDValue N0 = N->getOperand(0);
10476 EVT VT = N->getValueType(0);
10478 if (N0.isUndef())
10479 return DAG.getUNDEF(VT);
10481 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
10482 return Res;
10484 if (SimplifyDemandedVectorElts(SDValue(N, 0)))
10485 return SDValue(N, 0);
10487 return SDValue();
10490 SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) {
10491 SDValue N0 = N->getOperand(0);
10492 EVT VT = N->getValueType(0);
10494 if (N0.isUndef())
10495 return DAG.getUNDEF(VT);
10497 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
10498 return Res;
10500 if (SimplifyDemandedVectorElts(SDValue(N, 0)))
10501 return SDValue(N, 0);
10503 return SDValue();
10506 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
10507 SDValue N0 = N->getOperand(0);
10508 EVT VT = N->getValueType(0);
10509 EVT SrcVT = N0.getValueType();
10510 bool isLE = DAG.getDataLayout().isLittleEndian();
10512 // noop truncate
10513 if (SrcVT == VT)
10514 return N0;
10516 // fold (truncate (truncate x)) -> (truncate x)
10517 if (N0.getOpcode() == ISD::TRUNCATE)
10518 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
10520 // fold (truncate c1) -> c1
10521 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
10522 SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
10523 if (C.getNode() != N)
10524 return C;
10527 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
10528 if (N0.getOpcode() == ISD::ZERO_EXTEND ||
10529 N0.getOpcode() == ISD::SIGN_EXTEND ||
10530 N0.getOpcode() == ISD::ANY_EXTEND) {
10531 // if the source is smaller than the dest, we still need an extend.
10532 if (N0.getOperand(0).getValueType().bitsLT(VT))
10533 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
10534 // if the source is larger than the dest, than we just need the truncate.
10535 if (N0.getOperand(0).getValueType().bitsGT(VT))
10536 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
10537 // if the source and dest are the same type, we can drop both the extend
10538 // and the truncate.
10539 return N0.getOperand(0);
10542 // If this is anyext(trunc), don't fold it, allow ourselves to be folded.
10543 if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND))
10544 return SDValue();
10546 // Fold extract-and-trunc into a narrow extract. For example:
10547 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
10548 // i32 y = TRUNCATE(i64 x)
10549 // -- becomes --
10550 // v16i8 b = BITCAST (v2i64 val)
10551 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
10553 // Note: We only run this optimization after type legalization (which often
10554 // creates this pattern) and before operation legalization after which
10555 // we need to be more careful about the vector instructions that we generate.
10556 if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
10557 LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) {
10558 EVT VecTy = N0.getOperand(0).getValueType();
10559 EVT ExTy = N0.getValueType();
10560 EVT TrTy = N->getValueType(0);
10562 unsigned NumElem = VecTy.getVectorNumElements();
10563 unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
10565 EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
10566 assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
10568 SDValue EltNo = N0->getOperand(1);
10569 if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
10570 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
10571 EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout());
10572 int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
10574 SDLoc DL(N);
10575 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy,
10576 DAG.getBitcast(NVT, N0.getOperand(0)),
10577 DAG.getConstant(Index, DL, IndexTy));
10581 // trunc (select c, a, b) -> select c, (trunc a), (trunc b)
10582 if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) {
10583 if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) &&
10584 TLI.isTruncateFree(SrcVT, VT)) {
10585 SDLoc SL(N0);
10586 SDValue Cond = N0.getOperand(0);
10587 SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
10588 SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2));
10589 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1);
10593 // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits()
10594 if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
10595 (!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) &&
10596 TLI.isTypeDesirableForOp(ISD::SHL, VT)) {
10597 SDValue Amt = N0.getOperand(1);
10598 KnownBits Known = DAG.computeKnownBits(Amt);
10599 unsigned Size = VT.getScalarSizeInBits();
10600 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) {
10601 SDLoc SL(N);
10602 EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
10604 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0));
10605 if (AmtVT != Amt.getValueType()) {
10606 Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT);
10607 AddToWorklist(Amt.getNode());
10609 return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt);
10613 // Attempt to pre-truncate BUILD_VECTOR sources.
10614 if (N0.getOpcode() == ISD::BUILD_VECTOR && !LegalOperations &&
10615 TLI.isTruncateFree(SrcVT.getScalarType(), VT.getScalarType())) {
10616 SDLoc DL(N);
10617 EVT SVT = VT.getScalarType();
10618 SmallVector<SDValue, 8> TruncOps;
10619 for (const SDValue &Op : N0->op_values()) {
10620 SDValue TruncOp = DAG.getNode(ISD::TRUNCATE, DL, SVT, Op);
10621 TruncOps.push_back(TruncOp);
10623 return DAG.getBuildVector(VT, DL, TruncOps);
10626 // Fold a series of buildvector, bitcast, and truncate if possible.
10627 // For example fold
10628 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
10629 // (2xi32 (buildvector x, y)).
10630 if (Level == AfterLegalizeVectorOps && VT.isVector() &&
10631 N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
10632 N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
10633 N0.getOperand(0).hasOneUse()) {
10634 SDValue BuildVect = N0.getOperand(0);
10635 EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
10636 EVT TruncVecEltTy = VT.getVectorElementType();
10638 // Check that the element types match.
10639 if (BuildVectEltTy == TruncVecEltTy) {
10640 // Now we only need to compute the offset of the truncated elements.
10641 unsigned BuildVecNumElts = BuildVect.getNumOperands();
10642 unsigned TruncVecNumElts = VT.getVectorNumElements();
10643 unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
10645 assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
10646 "Invalid number of elements");
10648 SmallVector<SDValue, 8> Opnds;
10649 for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
10650 Opnds.push_back(BuildVect.getOperand(i));
10652 return DAG.getBuildVector(VT, SDLoc(N), Opnds);
10656 // See if we can simplify the input to this truncate through knowledge that
10657 // only the low bits are being used.
10658 // For example "trunc (or (shl x, 8), y)" // -> trunc y
10659 // Currently we only perform this optimization on scalars because vectors
10660 // may have different active low bits.
10661 if (!VT.isVector()) {
10662 APInt Mask =
10663 APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits());
10664 if (SDValue Shorter = DAG.GetDemandedBits(N0, Mask))
10665 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
10668 // fold (truncate (load x)) -> (smaller load x)
10669 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
10670 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
10671 if (SDValue Reduced = ReduceLoadWidth(N))
10672 return Reduced;
10674 // Handle the case where the load remains an extending load even
10675 // after truncation.
10676 if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) {
10677 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
10678 if (LN0->isSimple() &&
10679 LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) {
10680 SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0),
10681 VT, LN0->getChain(), LN0->getBasePtr(),
10682 LN0->getMemoryVT(),
10683 LN0->getMemOperand());
10684 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1));
10685 return NewLoad;
10690 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
10691 // where ... are all 'undef'.
10692 if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
10693 SmallVector<EVT, 8> VTs;
10694 SDValue V;
10695 unsigned Idx = 0;
10696 unsigned NumDefs = 0;
10698 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
10699 SDValue X = N0.getOperand(i);
10700 if (!X.isUndef()) {
10701 V = X;
10702 Idx = i;
10703 NumDefs++;
10705 // Stop if more than one members are non-undef.
10706 if (NumDefs > 1)
10707 break;
10708 VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
10709 VT.getVectorElementType(),
10710 X.getValueType().getVectorNumElements()));
10713 if (NumDefs == 0)
10714 return DAG.getUNDEF(VT);
10716 if (NumDefs == 1) {
10717 assert(V.getNode() && "The single defined operand is empty!");
10718 SmallVector<SDValue, 8> Opnds;
10719 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
10720 if (i != Idx) {
10721 Opnds.push_back(DAG.getUNDEF(VTs[i]));
10722 continue;
10724 SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
10725 AddToWorklist(NV.getNode());
10726 Opnds.push_back(NV);
10728 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds);
10732 // Fold truncate of a bitcast of a vector to an extract of the low vector
10733 // element.
10735 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx
10736 if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) {
10737 SDValue VecSrc = N0.getOperand(0);
10738 EVT SrcVT = VecSrc.getValueType();
10739 if (SrcVT.isVector() && SrcVT.getScalarType() == VT &&
10740 (!LegalOperations ||
10741 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, SrcVT))) {
10742 SDLoc SL(N);
10744 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
10745 unsigned Idx = isLE ? 0 : SrcVT.getVectorNumElements() - 1;
10746 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT,
10747 VecSrc, DAG.getConstant(Idx, SL, IdxVT));
10751 // Simplify the operands using demanded-bits information.
10752 if (!VT.isVector() &&
10753 SimplifyDemandedBits(SDValue(N, 0)))
10754 return SDValue(N, 0);
10756 // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry)
10757 // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry)
10758 // When the adde's carry is not used.
10759 if ((N0.getOpcode() == ISD::ADDE || N0.getOpcode() == ISD::ADDCARRY) &&
10760 N0.hasOneUse() && !N0.getNode()->hasAnyUseOfValue(1) &&
10761 // We only do for addcarry before legalize operation
10762 ((!LegalOperations && N0.getOpcode() == ISD::ADDCARRY) ||
10763 TLI.isOperationLegal(N0.getOpcode(), VT))) {
10764 SDLoc SL(N);
10765 auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0));
10766 auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
10767 auto VTs = DAG.getVTList(VT, N0->getValueType(1));
10768 return DAG.getNode(N0.getOpcode(), SL, VTs, X, Y, N0.getOperand(2));
10771 // fold (truncate (extract_subvector(ext x))) ->
10772 // (extract_subvector x)
10773 // TODO: This can be generalized to cover cases where the truncate and extract
10774 // do not fully cancel each other out.
10775 if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
10776 SDValue N00 = N0.getOperand(0);
10777 if (N00.getOpcode() == ISD::SIGN_EXTEND ||
10778 N00.getOpcode() == ISD::ZERO_EXTEND ||
10779 N00.getOpcode() == ISD::ANY_EXTEND) {
10780 if (N00.getOperand(0)->getValueType(0).getVectorElementType() ==
10781 VT.getVectorElementType())
10782 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT,
10783 N00.getOperand(0), N0.getOperand(1));
10787 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
10788 return NewVSel;
10790 // Narrow a suitable binary operation with a non-opaque constant operand by
10791 // moving it ahead of the truncate. This is limited to pre-legalization
10792 // because targets may prefer a wider type during later combines and invert
10793 // this transform.
10794 switch (N0.getOpcode()) {
10795 case ISD::ADD:
10796 case ISD::SUB:
10797 case ISD::MUL:
10798 case ISD::AND:
10799 case ISD::OR:
10800 case ISD::XOR:
10801 if (!LegalOperations && N0.hasOneUse() &&
10802 (isConstantOrConstantVector(N0.getOperand(0), true) ||
10803 isConstantOrConstantVector(N0.getOperand(1), true))) {
10804 // TODO: We already restricted this to pre-legalization, but for vectors
10805 // we are extra cautious to not create an unsupported operation.
10806 // Target-specific changes are likely needed to avoid regressions here.
10807 if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) {
10808 SDLoc DL(N);
10809 SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0));
10810 SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1));
10811 return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR);
10816 return SDValue();
10819 static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
10820 SDValue Elt = N->getOperand(i);
10821 if (Elt.getOpcode() != ISD::MERGE_VALUES)
10822 return Elt.getNode();
10823 return Elt.getOperand(Elt.getResNo()).getNode();
10826 /// build_pair (load, load) -> load
10827 /// if load locations are consecutive.
10828 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
10829 assert(N->getOpcode() == ISD::BUILD_PAIR);
10831 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
10832 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
10834 // A BUILD_PAIR is always having the least significant part in elt 0 and the
10835 // most significant part in elt 1. So when combining into one large load, we
10836 // need to consider the endianness.
10837 if (DAG.getDataLayout().isBigEndian())
10838 std::swap(LD1, LD2);
10840 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
10841 LD1->getAddressSpace() != LD2->getAddressSpace())
10842 return SDValue();
10843 EVT LD1VT = LD1->getValueType(0);
10844 unsigned LD1Bytes = LD1VT.getStoreSize();
10845 if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() &&
10846 DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) {
10847 unsigned Align = LD1->getAlignment();
10848 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
10849 VT.getTypeForEVT(*DAG.getContext()));
10851 if (NewAlign <= Align &&
10852 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
10853 return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(),
10854 LD1->getPointerInfo(), Align);
10857 return SDValue();
10860 static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) {
10861 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi
10862 // and Lo parts; on big-endian machines it doesn't.
10863 return DAG.getDataLayout().isBigEndian() ? 1 : 0;
10866 static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG,
10867 const TargetLowering &TLI) {
10868 // If this is not a bitcast to an FP type or if the target doesn't have
10869 // IEEE754-compliant FP logic, we're done.
10870 EVT VT = N->getValueType(0);
10871 if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT))
10872 return SDValue();
10874 // TODO: Handle cases where the integer constant is a different scalar
10875 // bitwidth to the FP.
10876 SDValue N0 = N->getOperand(0);
10877 EVT SourceVT = N0.getValueType();
10878 if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits())
10879 return SDValue();
10881 unsigned FPOpcode;
10882 APInt SignMask;
10883 switch (N0.getOpcode()) {
10884 case ISD::AND:
10885 FPOpcode = ISD::FABS;
10886 SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits());
10887 break;
10888 case ISD::XOR:
10889 FPOpcode = ISD::FNEG;
10890 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
10891 break;
10892 case ISD::OR:
10893 FPOpcode = ISD::FABS;
10894 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
10895 break;
10896 default:
10897 return SDValue();
10900 // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X
10901 // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X
10902 // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) ->
10903 // fneg (fabs X)
10904 SDValue LogicOp0 = N0.getOperand(0);
10905 ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true);
10906 if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask &&
10907 LogicOp0.getOpcode() == ISD::BITCAST &&
10908 LogicOp0.getOperand(0).getValueType() == VT) {
10909 SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0));
10910 NumFPLogicOpsConv++;
10911 if (N0.getOpcode() == ISD::OR)
10912 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp);
10913 return FPOp;
10916 return SDValue();
10919 SDValue DAGCombiner::visitBITCAST(SDNode *N) {
10920 SDValue N0 = N->getOperand(0);
10921 EVT VT = N->getValueType(0);
10923 if (N0.isUndef())
10924 return DAG.getUNDEF(VT);
10926 // If the input is a BUILD_VECTOR with all constant elements, fold this now.
10927 // Only do this before legalize types, unless both types are integer and the
10928 // scalar type is legal. Only do this before legalize ops, since the target
10929 // maybe depending on the bitcast.
10930 // First check to see if this is all constant.
10931 // TODO: Support FP bitcasts after legalize types.
10932 if (VT.isVector() &&
10933 (!LegalTypes ||
10934 (!LegalOperations && VT.isInteger() && N0.getValueType().isInteger() &&
10935 TLI.isTypeLegal(VT.getVectorElementType()))) &&
10936 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
10937 cast<BuildVectorSDNode>(N0)->isConstant())
10938 return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(),
10939 VT.getVectorElementType());
10941 // If the input is a constant, let getNode fold it.
10942 if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
10943 // If we can't allow illegal operations, we need to check that this is just
10944 // a fp -> int or int -> conversion and that the resulting operation will
10945 // be legal.
10946 if (!LegalOperations ||
10947 (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() &&
10948 TLI.isOperationLegal(ISD::ConstantFP, VT)) ||
10949 (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() &&
10950 TLI.isOperationLegal(ISD::Constant, VT))) {
10951 SDValue C = DAG.getBitcast(VT, N0);
10952 if (C.getNode() != N)
10953 return C;
10957 // (conv (conv x, t1), t2) -> (conv x, t2)
10958 if (N0.getOpcode() == ISD::BITCAST)
10959 return DAG.getBitcast(VT, N0.getOperand(0));
10961 // fold (conv (load x)) -> (load (conv*)x)
10962 // If the resultant load doesn't need a higher alignment than the original!
10963 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
10964 // Do not remove the cast if the types differ in endian layout.
10965 TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) ==
10966 TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) &&
10967 // If the load is volatile, we only want to change the load type if the
10968 // resulting load is legal. Otherwise we might increase the number of
10969 // memory accesses. We don't care if the original type was legal or not
10970 // as we assume software couldn't rely on the number of accesses of an
10971 // illegal type.
10972 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) ||
10973 TLI.isOperationLegal(ISD::LOAD, VT))) {
10974 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
10976 if (TLI.isLoadBitCastBeneficial(N0.getValueType(), VT, DAG,
10977 *LN0->getMemOperand())) {
10978 SDValue Load =
10979 DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
10980 LN0->getPointerInfo(), LN0->getAlignment(),
10981 LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
10982 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
10983 return Load;
10987 if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI))
10988 return V;
10990 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
10991 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
10993 // For ppc_fp128:
10994 // fold (bitcast (fneg x)) ->
10995 // flipbit = signbit
10996 // (xor (bitcast x) (build_pair flipbit, flipbit))
10998 // fold (bitcast (fabs x)) ->
10999 // flipbit = (and (extract_element (bitcast x), 0), signbit)
11000 // (xor (bitcast x) (build_pair flipbit, flipbit))
11001 // This often reduces constant pool loads.
11002 if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
11003 (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
11004 N0.getNode()->hasOneUse() && VT.isInteger() &&
11005 !VT.isVector() && !N0.getValueType().isVector()) {
11006 SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0));
11007 AddToWorklist(NewConv.getNode());
11009 SDLoc DL(N);
11010 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
11011 assert(VT.getSizeInBits() == 128);
11012 SDValue SignBit = DAG.getConstant(
11013 APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64);
11014 SDValue FlipBit;
11015 if (N0.getOpcode() == ISD::FNEG) {
11016 FlipBit = SignBit;
11017 AddToWorklist(FlipBit.getNode());
11018 } else {
11019 assert(N0.getOpcode() == ISD::FABS);
11020 SDValue Hi =
11021 DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv,
11022 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
11023 SDLoc(NewConv)));
11024 AddToWorklist(Hi.getNode());
11025 FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit);
11026 AddToWorklist(FlipBit.getNode());
11028 SDValue FlipBits =
11029 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
11030 AddToWorklist(FlipBits.getNode());
11031 return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits);
11033 APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
11034 if (N0.getOpcode() == ISD::FNEG)
11035 return DAG.getNode(ISD::XOR, DL, VT,
11036 NewConv, DAG.getConstant(SignBit, DL, VT));
11037 assert(N0.getOpcode() == ISD::FABS);
11038 return DAG.getNode(ISD::AND, DL, VT,
11039 NewConv, DAG.getConstant(~SignBit, DL, VT));
11042 // fold (bitconvert (fcopysign cst, x)) ->
11043 // (or (and (bitconvert x), sign), (and cst, (not sign)))
11044 // Note that we don't handle (copysign x, cst) because this can always be
11045 // folded to an fneg or fabs.
11047 // For ppc_fp128:
11048 // fold (bitcast (fcopysign cst, x)) ->
11049 // flipbit = (and (extract_element
11050 // (xor (bitcast cst), (bitcast x)), 0),
11051 // signbit)
11052 // (xor (bitcast cst) (build_pair flipbit, flipbit))
11053 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
11054 isa<ConstantFPSDNode>(N0.getOperand(0)) &&
11055 VT.isInteger() && !VT.isVector()) {
11056 unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits();
11057 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
11058 if (isTypeLegal(IntXVT)) {
11059 SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1));
11060 AddToWorklist(X.getNode());
11062 // If X has a different width than the result/lhs, sext it or truncate it.
11063 unsigned VTWidth = VT.getSizeInBits();
11064 if (OrigXWidth < VTWidth) {
11065 X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
11066 AddToWorklist(X.getNode());
11067 } else if (OrigXWidth > VTWidth) {
11068 // To get the sign bit in the right place, we have to shift it right
11069 // before truncating.
11070 SDLoc DL(X);
11071 X = DAG.getNode(ISD::SRL, DL,
11072 X.getValueType(), X,
11073 DAG.getConstant(OrigXWidth-VTWidth, DL,
11074 X.getValueType()));
11075 AddToWorklist(X.getNode());
11076 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
11077 AddToWorklist(X.getNode());
11080 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
11081 APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2);
11082 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
11083 AddToWorklist(Cst.getNode());
11084 SDValue X = DAG.getBitcast(VT, N0.getOperand(1));
11085 AddToWorklist(X.getNode());
11086 SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X);
11087 AddToWorklist(XorResult.getNode());
11088 SDValue XorResult64 = DAG.getNode(
11089 ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult,
11090 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
11091 SDLoc(XorResult)));
11092 AddToWorklist(XorResult64.getNode());
11093 SDValue FlipBit =
11094 DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64,
11095 DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64));
11096 AddToWorklist(FlipBit.getNode());
11097 SDValue FlipBits =
11098 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
11099 AddToWorklist(FlipBits.getNode());
11100 return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits);
11102 APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
11103 X = DAG.getNode(ISD::AND, SDLoc(X), VT,
11104 X, DAG.getConstant(SignBit, SDLoc(X), VT));
11105 AddToWorklist(X.getNode());
11107 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
11108 Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
11109 Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT));
11110 AddToWorklist(Cst.getNode());
11112 return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
11116 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
11117 if (N0.getOpcode() == ISD::BUILD_PAIR)
11118 if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT))
11119 return CombineLD;
11121 // Remove double bitcasts from shuffles - this is often a legacy of
11122 // XformToShuffleWithZero being used to combine bitmaskings (of
11123 // float vectors bitcast to integer vectors) into shuffles.
11124 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
11125 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() &&
11126 N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() &&
11127 VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() &&
11128 !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) {
11129 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0);
11131 // If operands are a bitcast, peek through if it casts the original VT.
11132 // If operands are a constant, just bitcast back to original VT.
11133 auto PeekThroughBitcast = [&](SDValue Op) {
11134 if (Op.getOpcode() == ISD::BITCAST &&
11135 Op.getOperand(0).getValueType() == VT)
11136 return SDValue(Op.getOperand(0));
11137 if (Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) ||
11138 ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode()))
11139 return DAG.getBitcast(VT, Op);
11140 return SDValue();
11143 // FIXME: If either input vector is bitcast, try to convert the shuffle to
11144 // the result type of this bitcast. This would eliminate at least one
11145 // bitcast. See the transform in InstCombine.
11146 SDValue SV0 = PeekThroughBitcast(N0->getOperand(0));
11147 SDValue SV1 = PeekThroughBitcast(N0->getOperand(1));
11148 if (!(SV0 && SV1))
11149 return SDValue();
11151 int MaskScale =
11152 VT.getVectorNumElements() / N0.getValueType().getVectorNumElements();
11153 SmallVector<int, 8> NewMask;
11154 for (int M : SVN->getMask())
11155 for (int i = 0; i != MaskScale; ++i)
11156 NewMask.push_back(M < 0 ? -1 : M * MaskScale + i);
11158 SDValue LegalShuffle =
11159 TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask, DAG);
11160 if (LegalShuffle)
11161 return LegalShuffle;
11164 return SDValue();
11167 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
11168 EVT VT = N->getValueType(0);
11169 return CombineConsecutiveLoads(N, VT);
11172 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef
11173 /// operands. DstEltVT indicates the destination element value type.
11174 SDValue DAGCombiner::
11175 ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
11176 EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
11178 // If this is already the right type, we're done.
11179 if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
11181 unsigned SrcBitSize = SrcEltVT.getSizeInBits();
11182 unsigned DstBitSize = DstEltVT.getSizeInBits();
11184 // If this is a conversion of N elements of one type to N elements of another
11185 // type, convert each element. This handles FP<->INT cases.
11186 if (SrcBitSize == DstBitSize) {
11187 SmallVector<SDValue, 8> Ops;
11188 for (SDValue Op : BV->op_values()) {
11189 // If the vector element type is not legal, the BUILD_VECTOR operands
11190 // are promoted and implicitly truncated. Make that explicit here.
11191 if (Op.getValueType() != SrcEltVT)
11192 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
11193 Ops.push_back(DAG.getBitcast(DstEltVT, Op));
11194 AddToWorklist(Ops.back().getNode());
11196 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
11197 BV->getValueType(0).getVectorNumElements());
11198 return DAG.getBuildVector(VT, SDLoc(BV), Ops);
11201 // Otherwise, we're growing or shrinking the elements. To avoid having to
11202 // handle annoying details of growing/shrinking FP values, we convert them to
11203 // int first.
11204 if (SrcEltVT.isFloatingPoint()) {
11205 // Convert the input float vector to a int vector where the elements are the
11206 // same sizes.
11207 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
11208 BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
11209 SrcEltVT = IntVT;
11212 // Now we know the input is an integer vector. If the output is a FP type,
11213 // convert to integer first, then to FP of the right size.
11214 if (DstEltVT.isFloatingPoint()) {
11215 EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
11216 SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
11218 // Next, convert to FP elements of the same size.
11219 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
11222 SDLoc DL(BV);
11224 // Okay, we know the src/dst types are both integers of differing types.
11225 // Handling growing first.
11226 assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
11227 if (SrcBitSize < DstBitSize) {
11228 unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
11230 SmallVector<SDValue, 8> Ops;
11231 for (unsigned i = 0, e = BV->getNumOperands(); i != e;
11232 i += NumInputsPerOutput) {
11233 bool isLE = DAG.getDataLayout().isLittleEndian();
11234 APInt NewBits = APInt(DstBitSize, 0);
11235 bool EltIsUndef = true;
11236 for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
11237 // Shift the previously computed bits over.
11238 NewBits <<= SrcBitSize;
11239 SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
11240 if (Op.isUndef()) continue;
11241 EltIsUndef = false;
11243 NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
11244 zextOrTrunc(SrcBitSize).zext(DstBitSize);
11247 if (EltIsUndef)
11248 Ops.push_back(DAG.getUNDEF(DstEltVT));
11249 else
11250 Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT));
11253 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
11254 return DAG.getBuildVector(VT, DL, Ops);
11257 // Finally, this must be the case where we are shrinking elements: each input
11258 // turns into multiple outputs.
11259 unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
11260 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
11261 NumOutputsPerInput*BV->getNumOperands());
11262 SmallVector<SDValue, 8> Ops;
11264 for (const SDValue &Op : BV->op_values()) {
11265 if (Op.isUndef()) {
11266 Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT));
11267 continue;
11270 APInt OpVal = cast<ConstantSDNode>(Op)->
11271 getAPIntValue().zextOrTrunc(SrcBitSize);
11273 for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
11274 APInt ThisVal = OpVal.trunc(DstBitSize);
11275 Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT));
11276 OpVal.lshrInPlace(DstBitSize);
11279 // For big endian targets, swap the order of the pieces of each element.
11280 if (DAG.getDataLayout().isBigEndian())
11281 std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
11284 return DAG.getBuildVector(VT, DL, Ops);
11287 static bool isContractable(SDNode *N) {
11288 SDNodeFlags F = N->getFlags();
11289 return F.hasAllowContract() || F.hasAllowReassociation();
11292 /// Try to perform FMA combining on a given FADD node.
11293 SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) {
11294 SDValue N0 = N->getOperand(0);
11295 SDValue N1 = N->getOperand(1);
11296 EVT VT = N->getValueType(0);
11297 SDLoc SL(N);
11299 const TargetOptions &Options = DAG.getTarget().Options;
11301 // Floating-point multiply-add with intermediate rounding.
11302 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
11304 // Floating-point multiply-add without intermediate rounding.
11305 bool HasFMA =
11306 TLI.isFMAFasterThanFMulAndFAdd(VT) &&
11307 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
11309 // No valid opcode, do not combine.
11310 if (!HasFMAD && !HasFMA)
11311 return SDValue();
11313 SDNodeFlags Flags = N->getFlags();
11314 bool CanFuse = Options.UnsafeFPMath || isContractable(N);
11315 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast ||
11316 CanFuse || HasFMAD);
11317 // If the addition is not contractable, do not combine.
11318 if (!AllowFusionGlobally && !isContractable(N))
11319 return SDValue();
11321 const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo();
11322 if (STI && STI->generateFMAsInMachineCombiner(OptLevel))
11323 return SDValue();
11325 // Always prefer FMAD to FMA for precision.
11326 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
11327 bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
11329 // Is the node an FMUL and contractable either due to global flags or
11330 // SDNodeFlags.
11331 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) {
11332 if (N.getOpcode() != ISD::FMUL)
11333 return false;
11334 return AllowFusionGlobally || isContractable(N.getNode());
11336 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
11337 // prefer to fold the multiply with fewer uses.
11338 if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) {
11339 if (N0.getNode()->use_size() > N1.getNode()->use_size())
11340 std::swap(N0, N1);
11343 // fold (fadd (fmul x, y), z) -> (fma x, y, z)
11344 if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) {
11345 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11346 N0.getOperand(0), N0.getOperand(1), N1, Flags);
11349 // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
11350 // Note: Commutes FADD operands.
11351 if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) {
11352 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11353 N1.getOperand(0), N1.getOperand(1), N0, Flags);
11356 // Look through FP_EXTEND nodes to do more combining.
11358 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
11359 if (N0.getOpcode() == ISD::FP_EXTEND) {
11360 SDValue N00 = N0.getOperand(0);
11361 if (isContractableFMUL(N00) &&
11362 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
11363 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11364 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11365 N00.getOperand(0)),
11366 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11367 N00.getOperand(1)), N1, Flags);
11371 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x)
11372 // Note: Commutes FADD operands.
11373 if (N1.getOpcode() == ISD::FP_EXTEND) {
11374 SDValue N10 = N1.getOperand(0);
11375 if (isContractableFMUL(N10) &&
11376 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) {
11377 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11378 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11379 N10.getOperand(0)),
11380 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11381 N10.getOperand(1)), N0, Flags);
11385 // More folding opportunities when target permits.
11386 if (Aggressive) {
11387 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z))
11388 if (CanFuse &&
11389 N0.getOpcode() == PreferredFusedOpcode &&
11390 N0.getOperand(2).getOpcode() == ISD::FMUL &&
11391 N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) {
11392 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11393 N0.getOperand(0), N0.getOperand(1),
11394 DAG.getNode(PreferredFusedOpcode, SL, VT,
11395 N0.getOperand(2).getOperand(0),
11396 N0.getOperand(2).getOperand(1),
11397 N1, Flags), Flags);
11400 // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x))
11401 if (CanFuse &&
11402 N1->getOpcode() == PreferredFusedOpcode &&
11403 N1.getOperand(2).getOpcode() == ISD::FMUL &&
11404 N1->hasOneUse() && N1.getOperand(2)->hasOneUse()) {
11405 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11406 N1.getOperand(0), N1.getOperand(1),
11407 DAG.getNode(PreferredFusedOpcode, SL, VT,
11408 N1.getOperand(2).getOperand(0),
11409 N1.getOperand(2).getOperand(1),
11410 N0, Flags), Flags);
11414 // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
11415 // -> (fma x, y, (fma (fpext u), (fpext v), z))
11416 auto FoldFAddFMAFPExtFMul = [&] (
11417 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z,
11418 SDNodeFlags Flags) {
11419 return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y,
11420 DAG.getNode(PreferredFusedOpcode, SL, VT,
11421 DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
11422 DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
11423 Z, Flags), Flags);
11425 if (N0.getOpcode() == PreferredFusedOpcode) {
11426 SDValue N02 = N0.getOperand(2);
11427 if (N02.getOpcode() == ISD::FP_EXTEND) {
11428 SDValue N020 = N02.getOperand(0);
11429 if (isContractableFMUL(N020) &&
11430 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N020.getValueType())) {
11431 return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1),
11432 N020.getOperand(0), N020.getOperand(1),
11433 N1, Flags);
11438 // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
11439 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
11440 // FIXME: This turns two single-precision and one double-precision
11441 // operation into two double-precision operations, which might not be
11442 // interesting for all targets, especially GPUs.
11443 auto FoldFAddFPExtFMAFMul = [&] (
11444 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z,
11445 SDNodeFlags Flags) {
11446 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11447 DAG.getNode(ISD::FP_EXTEND, SL, VT, X),
11448 DAG.getNode(ISD::FP_EXTEND, SL, VT, Y),
11449 DAG.getNode(PreferredFusedOpcode, SL, VT,
11450 DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
11451 DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
11452 Z, Flags), Flags);
11454 if (N0.getOpcode() == ISD::FP_EXTEND) {
11455 SDValue N00 = N0.getOperand(0);
11456 if (N00.getOpcode() == PreferredFusedOpcode) {
11457 SDValue N002 = N00.getOperand(2);
11458 if (isContractableFMUL(N002) &&
11459 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
11460 return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1),
11461 N002.getOperand(0), N002.getOperand(1),
11462 N1, Flags);
11467 // fold (fadd x, (fma y, z, (fpext (fmul u, v)))
11468 // -> (fma y, z, (fma (fpext u), (fpext v), x))
11469 if (N1.getOpcode() == PreferredFusedOpcode) {
11470 SDValue N12 = N1.getOperand(2);
11471 if (N12.getOpcode() == ISD::FP_EXTEND) {
11472 SDValue N120 = N12.getOperand(0);
11473 if (isContractableFMUL(N120) &&
11474 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N120.getValueType())) {
11475 return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1),
11476 N120.getOperand(0), N120.getOperand(1),
11477 N0, Flags);
11482 // fold (fadd x, (fpext (fma y, z, (fmul u, v)))
11483 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x))
11484 // FIXME: This turns two single-precision and one double-precision
11485 // operation into two double-precision operations, which might not be
11486 // interesting for all targets, especially GPUs.
11487 if (N1.getOpcode() == ISD::FP_EXTEND) {
11488 SDValue N10 = N1.getOperand(0);
11489 if (N10.getOpcode() == PreferredFusedOpcode) {
11490 SDValue N102 = N10.getOperand(2);
11491 if (isContractableFMUL(N102) &&
11492 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) {
11493 return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1),
11494 N102.getOperand(0), N102.getOperand(1),
11495 N0, Flags);
11501 return SDValue();
11504 /// Try to perform FMA combining on a given FSUB node.
11505 SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) {
11506 SDValue N0 = N->getOperand(0);
11507 SDValue N1 = N->getOperand(1);
11508 EVT VT = N->getValueType(0);
11509 SDLoc SL(N);
11511 const TargetOptions &Options = DAG.getTarget().Options;
11512 // Floating-point multiply-add with intermediate rounding.
11513 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
11515 // Floating-point multiply-add without intermediate rounding.
11516 bool HasFMA =
11517 TLI.isFMAFasterThanFMulAndFAdd(VT) &&
11518 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
11520 // No valid opcode, do not combine.
11521 if (!HasFMAD && !HasFMA)
11522 return SDValue();
11524 const SDNodeFlags Flags = N->getFlags();
11525 bool CanFuse = Options.UnsafeFPMath || isContractable(N);
11526 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast ||
11527 CanFuse || HasFMAD);
11529 // If the subtraction is not contractable, do not combine.
11530 if (!AllowFusionGlobally && !isContractable(N))
11531 return SDValue();
11533 const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo();
11534 if (STI && STI->generateFMAsInMachineCombiner(OptLevel))
11535 return SDValue();
11537 // Always prefer FMAD to FMA for precision.
11538 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
11539 bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
11541 // Is the node an FMUL and contractable either due to global flags or
11542 // SDNodeFlags.
11543 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) {
11544 if (N.getOpcode() != ISD::FMUL)
11545 return false;
11546 return AllowFusionGlobally || isContractable(N.getNode());
11549 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
11550 if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) {
11551 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11552 N0.getOperand(0), N0.getOperand(1),
11553 DAG.getNode(ISD::FNEG, SL, VT, N1), Flags);
11556 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
11557 // Note: Commutes FSUB operands.
11558 if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) {
11559 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11560 DAG.getNode(ISD::FNEG, SL, VT,
11561 N1.getOperand(0)),
11562 N1.getOperand(1), N0, Flags);
11565 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
11566 if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) &&
11567 (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) {
11568 SDValue N00 = N0.getOperand(0).getOperand(0);
11569 SDValue N01 = N0.getOperand(0).getOperand(1);
11570 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11571 DAG.getNode(ISD::FNEG, SL, VT, N00), N01,
11572 DAG.getNode(ISD::FNEG, SL, VT, N1), Flags);
11575 // Look through FP_EXTEND nodes to do more combining.
11577 // fold (fsub (fpext (fmul x, y)), z)
11578 // -> (fma (fpext x), (fpext y), (fneg z))
11579 if (N0.getOpcode() == ISD::FP_EXTEND) {
11580 SDValue N00 = N0.getOperand(0);
11581 if (isContractableFMUL(N00) &&
11582 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
11583 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11584 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11585 N00.getOperand(0)),
11586 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11587 N00.getOperand(1)),
11588 DAG.getNode(ISD::FNEG, SL, VT, N1), Flags);
11592 // fold (fsub x, (fpext (fmul y, z)))
11593 // -> (fma (fneg (fpext y)), (fpext z), x)
11594 // Note: Commutes FSUB operands.
11595 if (N1.getOpcode() == ISD::FP_EXTEND) {
11596 SDValue N10 = N1.getOperand(0);
11597 if (isContractableFMUL(N10) &&
11598 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) {
11599 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11600 DAG.getNode(ISD::FNEG, SL, VT,
11601 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11602 N10.getOperand(0))),
11603 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11604 N10.getOperand(1)),
11605 N0, Flags);
11609 // fold (fsub (fpext (fneg (fmul, x, y))), z)
11610 // -> (fneg (fma (fpext x), (fpext y), z))
11611 // Note: This could be removed with appropriate canonicalization of the
11612 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
11613 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
11614 // from implementing the canonicalization in visitFSUB.
11615 if (N0.getOpcode() == ISD::FP_EXTEND) {
11616 SDValue N00 = N0.getOperand(0);
11617 if (N00.getOpcode() == ISD::FNEG) {
11618 SDValue N000 = N00.getOperand(0);
11619 if (isContractableFMUL(N000) &&
11620 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
11621 return DAG.getNode(ISD::FNEG, SL, VT,
11622 DAG.getNode(PreferredFusedOpcode, SL, VT,
11623 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11624 N000.getOperand(0)),
11625 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11626 N000.getOperand(1)),
11627 N1, Flags));
11632 // fold (fsub (fneg (fpext (fmul, x, y))), z)
11633 // -> (fneg (fma (fpext x)), (fpext y), z)
11634 // Note: This could be removed with appropriate canonicalization of the
11635 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
11636 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
11637 // from implementing the canonicalization in visitFSUB.
11638 if (N0.getOpcode() == ISD::FNEG) {
11639 SDValue N00 = N0.getOperand(0);
11640 if (N00.getOpcode() == ISD::FP_EXTEND) {
11641 SDValue N000 = N00.getOperand(0);
11642 if (isContractableFMUL(N000) &&
11643 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N000.getValueType())) {
11644 return DAG.getNode(ISD::FNEG, SL, VT,
11645 DAG.getNode(PreferredFusedOpcode, SL, VT,
11646 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11647 N000.getOperand(0)),
11648 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11649 N000.getOperand(1)),
11650 N1, Flags));
11655 // More folding opportunities when target permits.
11656 if (Aggressive) {
11657 // fold (fsub (fma x, y, (fmul u, v)), z)
11658 // -> (fma x, y (fma u, v, (fneg z)))
11659 if (CanFuse && N0.getOpcode() == PreferredFusedOpcode &&
11660 isContractableFMUL(N0.getOperand(2)) && N0->hasOneUse() &&
11661 N0.getOperand(2)->hasOneUse()) {
11662 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11663 N0.getOperand(0), N0.getOperand(1),
11664 DAG.getNode(PreferredFusedOpcode, SL, VT,
11665 N0.getOperand(2).getOperand(0),
11666 N0.getOperand(2).getOperand(1),
11667 DAG.getNode(ISD::FNEG, SL, VT,
11668 N1), Flags), Flags);
11671 // fold (fsub x, (fma y, z, (fmul u, v)))
11672 // -> (fma (fneg y), z, (fma (fneg u), v, x))
11673 if (CanFuse && N1.getOpcode() == PreferredFusedOpcode &&
11674 isContractableFMUL(N1.getOperand(2))) {
11675 SDValue N20 = N1.getOperand(2).getOperand(0);
11676 SDValue N21 = N1.getOperand(2).getOperand(1);
11677 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11678 DAG.getNode(ISD::FNEG, SL, VT,
11679 N1.getOperand(0)),
11680 N1.getOperand(1),
11681 DAG.getNode(PreferredFusedOpcode, SL, VT,
11682 DAG.getNode(ISD::FNEG, SL, VT, N20),
11683 N21, N0, Flags), Flags);
11687 // fold (fsub (fma x, y, (fpext (fmul u, v))), z)
11688 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z)))
11689 if (N0.getOpcode() == PreferredFusedOpcode) {
11690 SDValue N02 = N0.getOperand(2);
11691 if (N02.getOpcode() == ISD::FP_EXTEND) {
11692 SDValue N020 = N02.getOperand(0);
11693 if (isContractableFMUL(N020) &&
11694 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N020.getValueType())) {
11695 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11696 N0.getOperand(0), N0.getOperand(1),
11697 DAG.getNode(PreferredFusedOpcode, SL, VT,
11698 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11699 N020.getOperand(0)),
11700 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11701 N020.getOperand(1)),
11702 DAG.getNode(ISD::FNEG, SL, VT,
11703 N1), Flags), Flags);
11708 // fold (fsub (fpext (fma x, y, (fmul u, v))), z)
11709 // -> (fma (fpext x), (fpext y),
11710 // (fma (fpext u), (fpext v), (fneg z)))
11711 // FIXME: This turns two single-precision and one double-precision
11712 // operation into two double-precision operations, which might not be
11713 // interesting for all targets, especially GPUs.
11714 if (N0.getOpcode() == ISD::FP_EXTEND) {
11715 SDValue N00 = N0.getOperand(0);
11716 if (N00.getOpcode() == PreferredFusedOpcode) {
11717 SDValue N002 = N00.getOperand(2);
11718 if (isContractableFMUL(N002) &&
11719 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
11720 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11721 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11722 N00.getOperand(0)),
11723 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11724 N00.getOperand(1)),
11725 DAG.getNode(PreferredFusedOpcode, SL, VT,
11726 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11727 N002.getOperand(0)),
11728 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11729 N002.getOperand(1)),
11730 DAG.getNode(ISD::FNEG, SL, VT,
11731 N1), Flags), Flags);
11736 // fold (fsub x, (fma y, z, (fpext (fmul u, v))))
11737 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x))
11738 if (N1.getOpcode() == PreferredFusedOpcode &&
11739 N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) {
11740 SDValue N120 = N1.getOperand(2).getOperand(0);
11741 if (isContractableFMUL(N120) &&
11742 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N120.getValueType())) {
11743 SDValue N1200 = N120.getOperand(0);
11744 SDValue N1201 = N120.getOperand(1);
11745 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11746 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)),
11747 N1.getOperand(1),
11748 DAG.getNode(PreferredFusedOpcode, SL, VT,
11749 DAG.getNode(ISD::FNEG, SL, VT,
11750 DAG.getNode(ISD::FP_EXTEND, SL,
11751 VT, N1200)),
11752 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11753 N1201),
11754 N0, Flags), Flags);
11758 // fold (fsub x, (fpext (fma y, z, (fmul u, v))))
11759 // -> (fma (fneg (fpext y)), (fpext z),
11760 // (fma (fneg (fpext u)), (fpext v), x))
11761 // FIXME: This turns two single-precision and one double-precision
11762 // operation into two double-precision operations, which might not be
11763 // interesting for all targets, especially GPUs.
11764 if (N1.getOpcode() == ISD::FP_EXTEND &&
11765 N1.getOperand(0).getOpcode() == PreferredFusedOpcode) {
11766 SDValue CvtSrc = N1.getOperand(0);
11767 SDValue N100 = CvtSrc.getOperand(0);
11768 SDValue N101 = CvtSrc.getOperand(1);
11769 SDValue N102 = CvtSrc.getOperand(2);
11770 if (isContractableFMUL(N102) &&
11771 TLI.isFPExtFoldable(PreferredFusedOpcode, VT, CvtSrc.getValueType())) {
11772 SDValue N1020 = N102.getOperand(0);
11773 SDValue N1021 = N102.getOperand(1);
11774 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11775 DAG.getNode(ISD::FNEG, SL, VT,
11776 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11777 N100)),
11778 DAG.getNode(ISD::FP_EXTEND, SL, VT, N101),
11779 DAG.getNode(PreferredFusedOpcode, SL, VT,
11780 DAG.getNode(ISD::FNEG, SL, VT,
11781 DAG.getNode(ISD::FP_EXTEND, SL,
11782 VT, N1020)),
11783 DAG.getNode(ISD::FP_EXTEND, SL, VT,
11784 N1021),
11785 N0, Flags), Flags);
11790 return SDValue();
11793 /// Try to perform FMA combining on a given FMUL node based on the distributive
11794 /// law x * (y + 1) = x * y + x and variants thereof (commuted versions,
11795 /// subtraction instead of addition).
11796 SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) {
11797 SDValue N0 = N->getOperand(0);
11798 SDValue N1 = N->getOperand(1);
11799 EVT VT = N->getValueType(0);
11800 SDLoc SL(N);
11801 const SDNodeFlags Flags = N->getFlags();
11803 assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation");
11805 const TargetOptions &Options = DAG.getTarget().Options;
11807 // The transforms below are incorrect when x == 0 and y == inf, because the
11808 // intermediate multiplication produces a nan.
11809 if (!Options.NoInfsFPMath)
11810 return SDValue();
11812 // Floating-point multiply-add without intermediate rounding.
11813 bool HasFMA =
11814 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) &&
11815 TLI.isFMAFasterThanFMulAndFAdd(VT) &&
11816 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
11818 // Floating-point multiply-add with intermediate rounding. This can result
11819 // in a less precise result due to the changed rounding order.
11820 bool HasFMAD = Options.UnsafeFPMath &&
11821 (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
11823 // No valid opcode, do not combine.
11824 if (!HasFMAD && !HasFMA)
11825 return SDValue();
11827 // Always prefer FMAD to FMA for precision.
11828 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
11829 bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
11831 // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y)
11832 // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y))
11833 auto FuseFADD = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) {
11834 if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) {
11835 if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) {
11836 if (C->isExactlyValue(+1.0))
11837 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
11838 Y, Flags);
11839 if (C->isExactlyValue(-1.0))
11840 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
11841 DAG.getNode(ISD::FNEG, SL, VT, Y), Flags);
11844 return SDValue();
11847 if (SDValue FMA = FuseFADD(N0, N1, Flags))
11848 return FMA;
11849 if (SDValue FMA = FuseFADD(N1, N0, Flags))
11850 return FMA;
11852 // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y)
11853 // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y))
11854 // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y))
11855 // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y)
11856 auto FuseFSUB = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) {
11857 if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) {
11858 if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) {
11859 if (C0->isExactlyValue(+1.0))
11860 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11861 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
11862 Y, Flags);
11863 if (C0->isExactlyValue(-1.0))
11864 return DAG.getNode(PreferredFusedOpcode, SL, VT,
11865 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
11866 DAG.getNode(ISD::FNEG, SL, VT, Y), Flags);
11868 if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) {
11869 if (C1->isExactlyValue(+1.0))
11870 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
11871 DAG.getNode(ISD::FNEG, SL, VT, Y), Flags);
11872 if (C1->isExactlyValue(-1.0))
11873 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
11874 Y, Flags);
11877 return SDValue();
11880 if (SDValue FMA = FuseFSUB(N0, N1, Flags))
11881 return FMA;
11882 if (SDValue FMA = FuseFSUB(N1, N0, Flags))
11883 return FMA;
11885 return SDValue();
11888 SDValue DAGCombiner::visitFADD(SDNode *N) {
11889 SDValue N0 = N->getOperand(0);
11890 SDValue N1 = N->getOperand(1);
11891 bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0);
11892 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
11893 EVT VT = N->getValueType(0);
11894 SDLoc DL(N);
11895 const TargetOptions &Options = DAG.getTarget().Options;
11896 const SDNodeFlags Flags = N->getFlags();
11898 // fold vector ops
11899 if (VT.isVector())
11900 if (SDValue FoldedVOp = SimplifyVBinOp(N))
11901 return FoldedVOp;
11903 // fold (fadd c1, c2) -> c1 + c2
11904 if (N0CFP && N1CFP)
11905 return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags);
11907 // canonicalize constant to RHS
11908 if (N0CFP && !N1CFP)
11909 return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags);
11911 // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math)
11912 ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true);
11913 if (N1C && N1C->isZero())
11914 if (N1C->isNegative() || Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())
11915 return N0;
11917 if (SDValue NewSel = foldBinOpIntoSelect(N))
11918 return NewSel;
11920 // fold (fadd A, (fneg B)) -> (fsub A, B)
11921 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
11922 TLI.isNegatibleForFree(N1, DAG, LegalOperations, ForCodeSize) == 2)
11923 return DAG.getNode(
11924 ISD::FSUB, DL, VT, N0,
11925 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize), Flags);
11927 // fold (fadd (fneg A), B) -> (fsub B, A)
11928 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
11929 TLI.isNegatibleForFree(N0, DAG, LegalOperations, ForCodeSize) == 2)
11930 return DAG.getNode(
11931 ISD::FSUB, DL, VT, N1,
11932 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize), Flags);
11934 auto isFMulNegTwo = [](SDValue FMul) {
11935 if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL)
11936 return false;
11937 auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true);
11938 return C && C->isExactlyValue(-2.0);
11941 // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B)
11942 if (isFMulNegTwo(N0)) {
11943 SDValue B = N0.getOperand(0);
11944 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B, Flags);
11945 return DAG.getNode(ISD::FSUB, DL, VT, N1, Add, Flags);
11947 // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B)
11948 if (isFMulNegTwo(N1)) {
11949 SDValue B = N1.getOperand(0);
11950 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B, Flags);
11951 return DAG.getNode(ISD::FSUB, DL, VT, N0, Add, Flags);
11954 // No FP constant should be created after legalization as Instruction
11955 // Selection pass has a hard time dealing with FP constants.
11956 bool AllowNewConst = (Level < AfterLegalizeDAG);
11958 // If nnan is enabled, fold lots of things.
11959 if ((Options.NoNaNsFPMath || Flags.hasNoNaNs()) && AllowNewConst) {
11960 // If allowed, fold (fadd (fneg x), x) -> 0.0
11961 if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
11962 return DAG.getConstantFP(0.0, DL, VT);
11964 // If allowed, fold (fadd x, (fneg x)) -> 0.0
11965 if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
11966 return DAG.getConstantFP(0.0, DL, VT);
11969 // If 'unsafe math' or reassoc and nsz, fold lots of things.
11970 // TODO: break out portions of the transformations below for which Unsafe is
11971 // considered and which do not require both nsz and reassoc
11972 if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) ||
11973 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) &&
11974 AllowNewConst) {
11975 // fadd (fadd x, c1), c2 -> fadd x, c1 + c2
11976 if (N1CFP && N0.getOpcode() == ISD::FADD &&
11977 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
11978 SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1, Flags);
11979 return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC, Flags);
11982 // We can fold chains of FADD's of the same value into multiplications.
11983 // This transform is not safe in general because we are reducing the number
11984 // of rounding steps.
11985 if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) {
11986 if (N0.getOpcode() == ISD::FMUL) {
11987 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
11988 bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1));
11990 // (fadd (fmul x, c), x) -> (fmul x, c+1)
11991 if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
11992 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
11993 DAG.getConstantFP(1.0, DL, VT), Flags);
11994 return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags);
11997 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
11998 if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
11999 N1.getOperand(0) == N1.getOperand(1) &&
12000 N0.getOperand(0) == N1.getOperand(0)) {
12001 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
12002 DAG.getConstantFP(2.0, DL, VT), Flags);
12003 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags);
12007 if (N1.getOpcode() == ISD::FMUL) {
12008 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
12009 bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1));
12011 // (fadd x, (fmul x, c)) -> (fmul x, c+1)
12012 if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
12013 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
12014 DAG.getConstantFP(1.0, DL, VT), Flags);
12015 return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags);
12018 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
12019 if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
12020 N0.getOperand(0) == N0.getOperand(1) &&
12021 N1.getOperand(0) == N0.getOperand(0)) {
12022 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
12023 DAG.getConstantFP(2.0, DL, VT), Flags);
12024 return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags);
12028 if (N0.getOpcode() == ISD::FADD) {
12029 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
12030 // (fadd (fadd x, x), x) -> (fmul x, 3.0)
12031 if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) &&
12032 (N0.getOperand(0) == N1)) {
12033 return DAG.getNode(ISD::FMUL, DL, VT,
12034 N1, DAG.getConstantFP(3.0, DL, VT), Flags);
12038 if (N1.getOpcode() == ISD::FADD) {
12039 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
12040 // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
12041 if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
12042 N1.getOperand(0) == N0) {
12043 return DAG.getNode(ISD::FMUL, DL, VT,
12044 N0, DAG.getConstantFP(3.0, DL, VT), Flags);
12048 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
12049 if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
12050 N0.getOperand(0) == N0.getOperand(1) &&
12051 N1.getOperand(0) == N1.getOperand(1) &&
12052 N0.getOperand(0) == N1.getOperand(0)) {
12053 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0),
12054 DAG.getConstantFP(4.0, DL, VT), Flags);
12057 } // enable-unsafe-fp-math
12059 // FADD -> FMA combines:
12060 if (SDValue Fused = visitFADDForFMACombine(N)) {
12061 AddToWorklist(Fused.getNode());
12062 return Fused;
12064 return SDValue();
12067 SDValue DAGCombiner::visitFSUB(SDNode *N) {
12068 SDValue N0 = N->getOperand(0);
12069 SDValue N1 = N->getOperand(1);
12070 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true);
12071 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
12072 EVT VT = N->getValueType(0);
12073 SDLoc DL(N);
12074 const TargetOptions &Options = DAG.getTarget().Options;
12075 const SDNodeFlags Flags = N->getFlags();
12077 // fold vector ops
12078 if (VT.isVector())
12079 if (SDValue FoldedVOp = SimplifyVBinOp(N))
12080 return FoldedVOp;
12082 // fold (fsub c1, c2) -> c1-c2
12083 if (N0CFP && N1CFP)
12084 return DAG.getNode(ISD::FSUB, DL, VT, N0, N1, Flags);
12086 if (SDValue NewSel = foldBinOpIntoSelect(N))
12087 return NewSel;
12089 // (fsub A, 0) -> A
12090 if (N1CFP && N1CFP->isZero()) {
12091 if (!N1CFP->isNegative() || Options.NoSignedZerosFPMath ||
12092 Flags.hasNoSignedZeros()) {
12093 return N0;
12097 if (N0 == N1) {
12098 // (fsub x, x) -> 0.0
12099 if (Options.NoNaNsFPMath || Flags.hasNoNaNs())
12100 return DAG.getConstantFP(0.0f, DL, VT);
12103 // (fsub -0.0, N1) -> -N1
12104 // NOTE: It is safe to transform an FSUB(-0.0,X) into an FNEG(X), since the
12105 // FSUB does not specify the sign bit of a NaN. Also note that for
12106 // the same reason, the inverse transform is not safe, unless fast math
12107 // flags are in play.
12108 if (N0CFP && N0CFP->isZero()) {
12109 if (N0CFP->isNegative() ||
12110 (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) {
12111 if (TLI.isNegatibleForFree(N1, DAG, LegalOperations, ForCodeSize))
12112 return TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize);
12113 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
12114 return DAG.getNode(ISD::FNEG, DL, VT, N1, Flags);
12118 if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) ||
12119 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) &&
12120 N1.getOpcode() == ISD::FADD) {
12121 // X - (X + Y) -> -Y
12122 if (N0 == N1->getOperand(0))
12123 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1), Flags);
12124 // X - (Y + X) -> -Y
12125 if (N0 == N1->getOperand(1))
12126 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0), Flags);
12129 // fold (fsub A, (fneg B)) -> (fadd A, B)
12130 if (TLI.isNegatibleForFree(N1, DAG, LegalOperations, ForCodeSize))
12131 return DAG.getNode(
12132 ISD::FADD, DL, VT, N0,
12133 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize), Flags);
12135 // FSUB -> FMA combines:
12136 if (SDValue Fused = visitFSUBForFMACombine(N)) {
12137 AddToWorklist(Fused.getNode());
12138 return Fused;
12141 return SDValue();
12144 /// Return true if both inputs are at least as cheap in negated form and at
12145 /// least one input is strictly cheaper in negated form.
12146 bool DAGCombiner::isCheaperToUseNegatedFPOps(SDValue X, SDValue Y) {
12147 if (char LHSNeg =
12148 TLI.isNegatibleForFree(X, DAG, LegalOperations, ForCodeSize))
12149 if (char RHSNeg =
12150 TLI.isNegatibleForFree(Y, DAG, LegalOperations, ForCodeSize))
12151 // Both negated operands are at least as cheap as their counterparts.
12152 // Check to see if at least one is cheaper negated.
12153 if (LHSNeg == 2 || RHSNeg == 2)
12154 return true;
12156 return false;
12159 SDValue DAGCombiner::visitFMUL(SDNode *N) {
12160 SDValue N0 = N->getOperand(0);
12161 SDValue N1 = N->getOperand(1);
12162 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true);
12163 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
12164 EVT VT = N->getValueType(0);
12165 SDLoc DL(N);
12166 const TargetOptions &Options = DAG.getTarget().Options;
12167 const SDNodeFlags Flags = N->getFlags();
12169 // fold vector ops
12170 if (VT.isVector()) {
12171 // This just handles C1 * C2 for vectors. Other vector folds are below.
12172 if (SDValue FoldedVOp = SimplifyVBinOp(N))
12173 return FoldedVOp;
12176 // fold (fmul c1, c2) -> c1*c2
12177 if (N0CFP && N1CFP)
12178 return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags);
12180 // canonicalize constant to RHS
12181 if (isConstantFPBuildVectorOrConstantFP(N0) &&
12182 !isConstantFPBuildVectorOrConstantFP(N1))
12183 return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags);
12185 if (SDValue NewSel = foldBinOpIntoSelect(N))
12186 return NewSel;
12188 if ((Options.NoNaNsFPMath && Options.NoSignedZerosFPMath) ||
12189 (Flags.hasNoNaNs() && Flags.hasNoSignedZeros())) {
12190 // fold (fmul A, 0) -> 0
12191 if (N1CFP && N1CFP->isZero())
12192 return N1;
12195 if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) {
12196 // fmul (fmul X, C1), C2 -> fmul X, C1 * C2
12197 if (isConstantFPBuildVectorOrConstantFP(N1) &&
12198 N0.getOpcode() == ISD::FMUL) {
12199 SDValue N00 = N0.getOperand(0);
12200 SDValue N01 = N0.getOperand(1);
12201 // Avoid an infinite loop by making sure that N00 is not a constant
12202 // (the inner multiply has not been constant folded yet).
12203 if (isConstantFPBuildVectorOrConstantFP(N01) &&
12204 !isConstantFPBuildVectorOrConstantFP(N00)) {
12205 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags);
12206 return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags);
12210 // Match a special-case: we convert X * 2.0 into fadd.
12211 // fmul (fadd X, X), C -> fmul X, 2.0 * C
12212 if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() &&
12213 N0.getOperand(0) == N0.getOperand(1)) {
12214 const SDValue Two = DAG.getConstantFP(2.0, DL, VT);
12215 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags);
12216 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags);
12220 // fold (fmul X, 2.0) -> (fadd X, X)
12221 if (N1CFP && N1CFP->isExactlyValue(+2.0))
12222 return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags);
12224 // fold (fmul X, -1.0) -> (fneg X)
12225 if (N1CFP && N1CFP->isExactlyValue(-1.0))
12226 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
12227 return DAG.getNode(ISD::FNEG, DL, VT, N0);
12229 // -N0 * -N1 --> N0 * N1
12230 if (isCheaperToUseNegatedFPOps(N0, N1)) {
12231 SDValue NegN0 =
12232 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize);
12233 SDValue NegN1 =
12234 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize);
12235 return DAG.getNode(ISD::FMUL, DL, VT, NegN0, NegN1, Flags);
12238 // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X))
12239 // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X)
12240 if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() &&
12241 (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) &&
12242 TLI.isOperationLegal(ISD::FABS, VT)) {
12243 SDValue Select = N0, X = N1;
12244 if (Select.getOpcode() != ISD::SELECT)
12245 std::swap(Select, X);
12247 SDValue Cond = Select.getOperand(0);
12248 auto TrueOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(1));
12249 auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2));
12251 if (TrueOpnd && FalseOpnd &&
12252 Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X &&
12253 isa<ConstantFPSDNode>(Cond.getOperand(1)) &&
12254 cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) {
12255 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12256 switch (CC) {
12257 default: break;
12258 case ISD::SETOLT:
12259 case ISD::SETULT:
12260 case ISD::SETOLE:
12261 case ISD::SETULE:
12262 case ISD::SETLT:
12263 case ISD::SETLE:
12264 std::swap(TrueOpnd, FalseOpnd);
12265 LLVM_FALLTHROUGH;
12266 case ISD::SETOGT:
12267 case ISD::SETUGT:
12268 case ISD::SETOGE:
12269 case ISD::SETUGE:
12270 case ISD::SETGT:
12271 case ISD::SETGE:
12272 if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) &&
12273 TLI.isOperationLegal(ISD::FNEG, VT))
12274 return DAG.getNode(ISD::FNEG, DL, VT,
12275 DAG.getNode(ISD::FABS, DL, VT, X));
12276 if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0))
12277 return DAG.getNode(ISD::FABS, DL, VT, X);
12279 break;
12284 // FMUL -> FMA combines:
12285 if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) {
12286 AddToWorklist(Fused.getNode());
12287 return Fused;
12290 return SDValue();
12293 SDValue DAGCombiner::visitFMA(SDNode *N) {
12294 SDValue N0 = N->getOperand(0);
12295 SDValue N1 = N->getOperand(1);
12296 SDValue N2 = N->getOperand(2);
12297 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
12298 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
12299 EVT VT = N->getValueType(0);
12300 SDLoc DL(N);
12301 const TargetOptions &Options = DAG.getTarget().Options;
12303 // FMA nodes have flags that propagate to the created nodes.
12304 const SDNodeFlags Flags = N->getFlags();
12305 bool UnsafeFPMath = Options.UnsafeFPMath || isContractable(N);
12307 // Constant fold FMA.
12308 if (isa<ConstantFPSDNode>(N0) &&
12309 isa<ConstantFPSDNode>(N1) &&
12310 isa<ConstantFPSDNode>(N2)) {
12311 return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2);
12314 // (-N0 * -N1) + N2 --> (N0 * N1) + N2
12315 if (isCheaperToUseNegatedFPOps(N0, N1)) {
12316 SDValue NegN0 =
12317 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize);
12318 SDValue NegN1 =
12319 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize);
12320 return DAG.getNode(ISD::FMA, DL, VT, NegN0, NegN1, N2, Flags);
12323 if (UnsafeFPMath) {
12324 if (N0CFP && N0CFP->isZero())
12325 return N2;
12326 if (N1CFP && N1CFP->isZero())
12327 return N2;
12329 // TODO: The FMA node should have flags that propagate to these nodes.
12330 if (N0CFP && N0CFP->isExactlyValue(1.0))
12331 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
12332 if (N1CFP && N1CFP->isExactlyValue(1.0))
12333 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
12335 // Canonicalize (fma c, x, y) -> (fma x, c, y)
12336 if (isConstantFPBuildVectorOrConstantFP(N0) &&
12337 !isConstantFPBuildVectorOrConstantFP(N1))
12338 return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
12340 if (UnsafeFPMath) {
12341 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
12342 if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) &&
12343 isConstantFPBuildVectorOrConstantFP(N1) &&
12344 isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) {
12345 return DAG.getNode(ISD::FMUL, DL, VT, N0,
12346 DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1),
12347 Flags), Flags);
12350 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
12351 if (N0.getOpcode() == ISD::FMUL &&
12352 isConstantFPBuildVectorOrConstantFP(N1) &&
12353 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
12354 return DAG.getNode(ISD::FMA, DL, VT,
12355 N0.getOperand(0),
12356 DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1),
12357 Flags),
12358 N2);
12362 // (fma x, 1, y) -> (fadd x, y)
12363 // (fma x, -1, y) -> (fadd (fneg x), y)
12364 if (N1CFP) {
12365 if (N1CFP->isExactlyValue(1.0))
12366 // TODO: The FMA node should have flags that propagate to this node.
12367 return DAG.getNode(ISD::FADD, DL, VT, N0, N2);
12369 if (N1CFP->isExactlyValue(-1.0) &&
12370 (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
12371 SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0);
12372 AddToWorklist(RHSNeg.getNode());
12373 // TODO: The FMA node should have flags that propagate to this node.
12374 return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg);
12377 // fma (fneg x), K, y -> fma x -K, y
12378 if (N0.getOpcode() == ISD::FNEG &&
12379 (TLI.isOperationLegal(ISD::ConstantFP, VT) ||
12380 (N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT,
12381 ForCodeSize)))) {
12382 return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0),
12383 DAG.getNode(ISD::FNEG, DL, VT, N1, Flags), N2);
12387 if (UnsafeFPMath) {
12388 // (fma x, c, x) -> (fmul x, (c+1))
12389 if (N1CFP && N0 == N2) {
12390 return DAG.getNode(ISD::FMUL, DL, VT, N0,
12391 DAG.getNode(ISD::FADD, DL, VT, N1,
12392 DAG.getConstantFP(1.0, DL, VT), Flags),
12393 Flags);
12396 // (fma x, c, (fneg x)) -> (fmul x, (c-1))
12397 if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) {
12398 return DAG.getNode(ISD::FMUL, DL, VT, N0,
12399 DAG.getNode(ISD::FADD, DL, VT, N1,
12400 DAG.getConstantFP(-1.0, DL, VT), Flags),
12401 Flags);
12405 return SDValue();
12408 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12409 // reciprocal.
12410 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
12411 // Notice that this is not always beneficial. One reason is different targets
12412 // may have different costs for FDIV and FMUL, so sometimes the cost of two
12413 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
12414 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
12415 SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) {
12416 // TODO: Limit this transform based on optsize/minsize - it always creates at
12417 // least 1 extra instruction. But the perf win may be substantial enough
12418 // that only minsize should restrict this.
12419 bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath;
12420 const SDNodeFlags Flags = N->getFlags();
12421 if (!UnsafeMath && !Flags.hasAllowReciprocal())
12422 return SDValue();
12424 // Skip if current node is a reciprocal/fneg-reciprocal.
12425 SDValue N0 = N->getOperand(0);
12426 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, /* AllowUndefs */ true);
12427 if (N0CFP && (N0CFP->isExactlyValue(1.0) || N0CFP->isExactlyValue(-1.0)))
12428 return SDValue();
12430 // Exit early if the target does not want this transform or if there can't
12431 // possibly be enough uses of the divisor to make the transform worthwhile.
12432 SDValue N1 = N->getOperand(1);
12433 unsigned MinUses = TLI.combineRepeatedFPDivisors();
12435 // For splat vectors, scale the number of uses by the splat factor. If we can
12436 // convert the division into a scalar op, that will likely be much faster.
12437 unsigned NumElts = 1;
12438 EVT VT = N->getValueType(0);
12439 if (VT.isVector() && DAG.isSplatValue(N1))
12440 NumElts = VT.getVectorNumElements();
12442 if (!MinUses || (N1->use_size() * NumElts) < MinUses)
12443 return SDValue();
12445 // Find all FDIV users of the same divisor.
12446 // Use a set because duplicates may be present in the user list.
12447 SetVector<SDNode *> Users;
12448 for (auto *U : N1->uses()) {
12449 if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) {
12450 // This division is eligible for optimization only if global unsafe math
12451 // is enabled or if this division allows reciprocal formation.
12452 if (UnsafeMath || U->getFlags().hasAllowReciprocal())
12453 Users.insert(U);
12457 // Now that we have the actual number of divisor uses, make sure it meets
12458 // the minimum threshold specified by the target.
12459 if ((Users.size() * NumElts) < MinUses)
12460 return SDValue();
12462 SDLoc DL(N);
12463 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
12464 SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags);
12466 // Dividend / Divisor -> Dividend * Reciprocal
12467 for (auto *U : Users) {
12468 SDValue Dividend = U->getOperand(0);
12469 if (Dividend != FPOne) {
12470 SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend,
12471 Reciprocal, Flags);
12472 CombineTo(U, NewNode);
12473 } else if (U != Reciprocal.getNode()) {
12474 // In the absence of fast-math-flags, this user node is always the
12475 // same node as Reciprocal, but with FMF they may be different nodes.
12476 CombineTo(U, Reciprocal);
12479 return SDValue(N, 0); // N was replaced.
12482 SDValue DAGCombiner::visitFDIV(SDNode *N) {
12483 SDValue N0 = N->getOperand(0);
12484 SDValue N1 = N->getOperand(1);
12485 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
12486 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
12487 EVT VT = N->getValueType(0);
12488 SDLoc DL(N);
12489 const TargetOptions &Options = DAG.getTarget().Options;
12490 SDNodeFlags Flags = N->getFlags();
12492 // fold vector ops
12493 if (VT.isVector())
12494 if (SDValue FoldedVOp = SimplifyVBinOp(N))
12495 return FoldedVOp;
12497 // fold (fdiv c1, c2) -> c1/c2
12498 if (N0CFP && N1CFP)
12499 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags);
12501 if (SDValue NewSel = foldBinOpIntoSelect(N))
12502 return NewSel;
12504 if (SDValue V = combineRepeatedFPDivisors(N))
12505 return V;
12507 if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) {
12508 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
12509 if (N1CFP) {
12510 // Compute the reciprocal 1.0 / c2.
12511 const APFloat &N1APF = N1CFP->getValueAPF();
12512 APFloat Recip(N1APF.getSemantics(), 1); // 1.0
12513 APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
12514 // Only do the transform if the reciprocal is a legal fp immediate that
12515 // isn't too nasty (eg NaN, denormal, ...).
12516 if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
12517 (!LegalOperations ||
12518 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
12519 // backend)... we should handle this gracefully after Legalize.
12520 // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) ||
12521 TLI.isOperationLegal(ISD::ConstantFP, VT) ||
12522 TLI.isFPImmLegal(Recip, VT, ForCodeSize)))
12523 return DAG.getNode(ISD::FMUL, DL, VT, N0,
12524 DAG.getConstantFP(Recip, DL, VT), Flags);
12527 // If this FDIV is part of a reciprocal square root, it may be folded
12528 // into a target-specific square root estimate instruction.
12529 if (N1.getOpcode() == ISD::FSQRT) {
12530 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags))
12531 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
12532 } else if (N1.getOpcode() == ISD::FP_EXTEND &&
12533 N1.getOperand(0).getOpcode() == ISD::FSQRT) {
12534 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0),
12535 Flags)) {
12536 RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV);
12537 AddToWorklist(RV.getNode());
12538 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
12540 } else if (N1.getOpcode() == ISD::FP_ROUND &&
12541 N1.getOperand(0).getOpcode() == ISD::FSQRT) {
12542 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0),
12543 Flags)) {
12544 RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1));
12545 AddToWorklist(RV.getNode());
12546 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
12548 } else if (N1.getOpcode() == ISD::FMUL) {
12549 // Look through an FMUL. Even though this won't remove the FDIV directly,
12550 // it's still worthwhile to get rid of the FSQRT if possible.
12551 SDValue SqrtOp;
12552 SDValue OtherOp;
12553 if (N1.getOperand(0).getOpcode() == ISD::FSQRT) {
12554 SqrtOp = N1.getOperand(0);
12555 OtherOp = N1.getOperand(1);
12556 } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) {
12557 SqrtOp = N1.getOperand(1);
12558 OtherOp = N1.getOperand(0);
12560 if (SqrtOp.getNode()) {
12561 // We found a FSQRT, so try to make this fold:
12562 // x / (y * sqrt(z)) -> x * (rsqrt(z) / y)
12563 if (SDValue RV = buildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) {
12564 RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags);
12565 AddToWorklist(RV.getNode());
12566 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
12571 // Fold into a reciprocal estimate and multiply instead of a real divide.
12572 if (SDValue RV = BuildDivEstimate(N0, N1, Flags))
12573 return RV;
12576 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
12577 if (isCheaperToUseNegatedFPOps(N0, N1))
12578 return DAG.getNode(
12579 ISD::FDIV, SDLoc(N), VT,
12580 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize),
12581 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize), Flags);
12583 return SDValue();
12586 SDValue DAGCombiner::visitFREM(SDNode *N) {
12587 SDValue N0 = N->getOperand(0);
12588 SDValue N1 = N->getOperand(1);
12589 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
12590 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
12591 EVT VT = N->getValueType(0);
12593 // fold (frem c1, c2) -> fmod(c1,c2)
12594 if (N0CFP && N1CFP)
12595 return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1, N->getFlags());
12597 if (SDValue NewSel = foldBinOpIntoSelect(N))
12598 return NewSel;
12600 return SDValue();
12603 SDValue DAGCombiner::visitFSQRT(SDNode *N) {
12604 SDNodeFlags Flags = N->getFlags();
12605 if (!DAG.getTarget().Options.UnsafeFPMath &&
12606 !Flags.hasApproximateFuncs())
12607 return SDValue();
12609 SDValue N0 = N->getOperand(0);
12610 if (TLI.isFsqrtCheap(N0, DAG))
12611 return SDValue();
12613 // FSQRT nodes have flags that propagate to the created nodes.
12614 return buildSqrtEstimate(N0, Flags);
12617 /// copysign(x, fp_extend(y)) -> copysign(x, y)
12618 /// copysign(x, fp_round(y)) -> copysign(x, y)
12619 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) {
12620 SDValue N1 = N->getOperand(1);
12621 if ((N1.getOpcode() == ISD::FP_EXTEND ||
12622 N1.getOpcode() == ISD::FP_ROUND)) {
12623 // Do not optimize out type conversion of f128 type yet.
12624 // For some targets like x86_64, configuration is changed to keep one f128
12625 // value in one SSE register, but instruction selection cannot handle
12626 // FCOPYSIGN on SSE registers yet.
12627 EVT N1VT = N1->getValueType(0);
12628 EVT N1Op0VT = N1->getOperand(0).getValueType();
12629 return (N1VT == N1Op0VT || N1Op0VT != MVT::f128);
12631 return false;
12634 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
12635 SDValue N0 = N->getOperand(0);
12636 SDValue N1 = N->getOperand(1);
12637 bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0);
12638 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
12639 EVT VT = N->getValueType(0);
12641 if (N0CFP && N1CFP) // Constant fold
12642 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
12644 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N->getOperand(1))) {
12645 const APFloat &V = N1C->getValueAPF();
12646 // copysign(x, c1) -> fabs(x) iff ispos(c1)
12647 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
12648 if (!V.isNegative()) {
12649 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
12650 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
12651 } else {
12652 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
12653 return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
12654 DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
12658 // copysign(fabs(x), y) -> copysign(x, y)
12659 // copysign(fneg(x), y) -> copysign(x, y)
12660 // copysign(copysign(x,z), y) -> copysign(x, y)
12661 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
12662 N0.getOpcode() == ISD::FCOPYSIGN)
12663 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1);
12665 // copysign(x, abs(y)) -> abs(x)
12666 if (N1.getOpcode() == ISD::FABS)
12667 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
12669 // copysign(x, copysign(y,z)) -> copysign(x, z)
12670 if (N1.getOpcode() == ISD::FCOPYSIGN)
12671 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1));
12673 // copysign(x, fp_extend(y)) -> copysign(x, y)
12674 // copysign(x, fp_round(y)) -> copysign(x, y)
12675 if (CanCombineFCOPYSIGN_EXTEND_ROUND(N))
12676 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0));
12678 return SDValue();
12681 SDValue DAGCombiner::visitFPOW(SDNode *N) {
12682 ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1));
12683 if (!ExponentC)
12684 return SDValue();
12686 // Try to convert x ** (1/3) into cube root.
12687 // TODO: Handle the various flavors of long double.
12688 // TODO: Since we're approximating, we don't need an exact 1/3 exponent.
12689 // Some range near 1/3 should be fine.
12690 EVT VT = N->getValueType(0);
12691 if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) ||
12692 (VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) {
12693 // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0.
12694 // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf.
12695 // pow(-val, 1/3) = nan; cbrt(-val) = -num.
12696 // For regular numbers, rounding may cause the results to differ.
12697 // Therefore, we require { nsz ninf nnan afn } for this transform.
12698 // TODO: We could select out the special cases if we don't have nsz/ninf.
12699 SDNodeFlags Flags = N->getFlags();
12700 if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() ||
12701 !Flags.hasApproximateFuncs())
12702 return SDValue();
12704 // Do not create a cbrt() libcall if the target does not have it, and do not
12705 // turn a pow that has lowering support into a cbrt() libcall.
12706 if (!DAG.getLibInfo().has(LibFunc_cbrt) ||
12707 (!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) &&
12708 DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT)))
12709 return SDValue();
12711 return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0), Flags);
12714 // Try to convert x ** (1/4) and x ** (3/4) into square roots.
12715 // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case.
12716 // TODO: This could be extended (using a target hook) to handle smaller
12717 // power-of-2 fractional exponents.
12718 bool ExponentIs025 = ExponentC->getValueAPF().isExactlyValue(0.25);
12719 bool ExponentIs075 = ExponentC->getValueAPF().isExactlyValue(0.75);
12720 if (ExponentIs025 || ExponentIs075) {
12721 // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0.
12722 // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN.
12723 // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0.
12724 // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN.
12725 // For regular numbers, rounding may cause the results to differ.
12726 // Therefore, we require { nsz ninf afn } for this transform.
12727 // TODO: We could select out the special cases if we don't have nsz/ninf.
12728 SDNodeFlags Flags = N->getFlags();
12730 // We only need no signed zeros for the 0.25 case.
12731 if ((!Flags.hasNoSignedZeros() && ExponentIs025) || !Flags.hasNoInfs() ||
12732 !Flags.hasApproximateFuncs())
12733 return SDValue();
12735 // Don't double the number of libcalls. We are trying to inline fast code.
12736 if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT))
12737 return SDValue();
12739 // Assume that libcalls are the smallest code.
12740 // TODO: This restriction should probably be lifted for vectors.
12741 if (DAG.getMachineFunction().getFunction().hasOptSize())
12742 return SDValue();
12744 // pow(X, 0.25) --> sqrt(sqrt(X))
12745 SDLoc DL(N);
12746 SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0), Flags);
12747 SDValue SqrtSqrt = DAG.getNode(ISD::FSQRT, DL, VT, Sqrt, Flags);
12748 if (ExponentIs025)
12749 return SqrtSqrt;
12750 // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X))
12751 return DAG.getNode(ISD::FMUL, DL, VT, Sqrt, SqrtSqrt, Flags);
12754 return SDValue();
12757 static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG,
12758 const TargetLowering &TLI) {
12759 // This optimization is guarded by a function attribute because it may produce
12760 // unexpected results. Ie, programs may be relying on the platform-specific
12761 // undefined behavior when the float-to-int conversion overflows.
12762 const Function &F = DAG.getMachineFunction().getFunction();
12763 Attribute StrictOverflow = F.getFnAttribute("strict-float-cast-overflow");
12764 if (StrictOverflow.getValueAsString().equals("false"))
12765 return SDValue();
12767 // We only do this if the target has legal ftrunc. Otherwise, we'd likely be
12768 // replacing casts with a libcall. We also must be allowed to ignore -0.0
12769 // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer
12770 // conversions would return +0.0.
12771 // FIXME: We should be able to use node-level FMF here.
12772 // TODO: If strict math, should we use FABS (+ range check for signed cast)?
12773 EVT VT = N->getValueType(0);
12774 if (!TLI.isOperationLegal(ISD::FTRUNC, VT) ||
12775 !DAG.getTarget().Options.NoSignedZerosFPMath)
12776 return SDValue();
12778 // fptosi/fptoui round towards zero, so converting from FP to integer and
12779 // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X
12780 SDValue N0 = N->getOperand(0);
12781 if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT &&
12782 N0.getOperand(0).getValueType() == VT)
12783 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0));
12785 if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT &&
12786 N0.getOperand(0).getValueType() == VT)
12787 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0));
12789 return SDValue();
12792 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
12793 SDValue N0 = N->getOperand(0);
12794 EVT VT = N->getValueType(0);
12795 EVT OpVT = N0.getValueType();
12797 // [us]itofp(undef) = 0, because the result value is bounded.
12798 if (N0.isUndef())
12799 return DAG.getConstantFP(0.0, SDLoc(N), VT);
12801 // fold (sint_to_fp c1) -> c1fp
12802 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
12803 // ...but only if the target supports immediate floating-point values
12804 (!LegalOperations ||
12805 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
12806 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
12808 // If the input is a legal type, and SINT_TO_FP is not legal on this target,
12809 // but UINT_TO_FP is legal on this target, try to convert.
12810 if (!hasOperation(ISD::SINT_TO_FP, OpVT) &&
12811 hasOperation(ISD::UINT_TO_FP, OpVT)) {
12812 // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
12813 if (DAG.SignBitIsZero(N0))
12814 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
12817 // The next optimizations are desirable only if SELECT_CC can be lowered.
12818 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) {
12819 // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
12820 if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
12821 !VT.isVector() &&
12822 (!LegalOperations ||
12823 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
12824 SDLoc DL(N);
12825 SDValue Ops[] =
12826 { N0.getOperand(0), N0.getOperand(1),
12827 DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
12828 N0.getOperand(2) };
12829 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
12832 // fold (sint_to_fp (zext (setcc x, y, cc))) ->
12833 // (select_cc x, y, 1.0, 0.0,, cc)
12834 if (N0.getOpcode() == ISD::ZERO_EXTEND &&
12835 N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
12836 (!LegalOperations ||
12837 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
12838 SDLoc DL(N);
12839 SDValue Ops[] =
12840 { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
12841 DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
12842 N0.getOperand(0).getOperand(2) };
12843 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
12847 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI))
12848 return FTrunc;
12850 return SDValue();
12853 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
12854 SDValue N0 = N->getOperand(0);
12855 EVT VT = N->getValueType(0);
12856 EVT OpVT = N0.getValueType();
12858 // [us]itofp(undef) = 0, because the result value is bounded.
12859 if (N0.isUndef())
12860 return DAG.getConstantFP(0.0, SDLoc(N), VT);
12862 // fold (uint_to_fp c1) -> c1fp
12863 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
12864 // ...but only if the target supports immediate floating-point values
12865 (!LegalOperations ||
12866 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
12867 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
12869 // If the input is a legal type, and UINT_TO_FP is not legal on this target,
12870 // but SINT_TO_FP is legal on this target, try to convert.
12871 if (!hasOperation(ISD::UINT_TO_FP, OpVT) &&
12872 hasOperation(ISD::SINT_TO_FP, OpVT)) {
12873 // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
12874 if (DAG.SignBitIsZero(N0))
12875 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
12878 // The next optimizations are desirable only if SELECT_CC can be lowered.
12879 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) {
12880 // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
12881 if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
12882 (!LegalOperations ||
12883 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
12884 SDLoc DL(N);
12885 SDValue Ops[] =
12886 { N0.getOperand(0), N0.getOperand(1),
12887 DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
12888 N0.getOperand(2) };
12889 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
12893 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI))
12894 return FTrunc;
12896 return SDValue();
12899 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x
12900 static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) {
12901 SDValue N0 = N->getOperand(0);
12902 EVT VT = N->getValueType(0);
12904 if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP)
12905 return SDValue();
12907 SDValue Src = N0.getOperand(0);
12908 EVT SrcVT = Src.getValueType();
12909 bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP;
12910 bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT;
12912 // We can safely assume the conversion won't overflow the output range,
12913 // because (for example) (uint8_t)18293.f is undefined behavior.
12915 // Since we can assume the conversion won't overflow, our decision as to
12916 // whether the input will fit in the float should depend on the minimum
12917 // of the input range and output range.
12919 // This means this is also safe for a signed input and unsigned output, since
12920 // a negative input would lead to undefined behavior.
12921 unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned;
12922 unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned;
12923 unsigned ActualSize = std::min(InputSize, OutputSize);
12924 const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType());
12926 // We can only fold away the float conversion if the input range can be
12927 // represented exactly in the float range.
12928 if (APFloat::semanticsPrecision(sem) >= ActualSize) {
12929 if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) {
12930 unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND
12931 : ISD::ZERO_EXTEND;
12932 return DAG.getNode(ExtOp, SDLoc(N), VT, Src);
12934 if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits())
12935 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src);
12936 return DAG.getBitcast(VT, Src);
12938 return SDValue();
12941 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
12942 SDValue N0 = N->getOperand(0);
12943 EVT VT = N->getValueType(0);
12945 // fold (fp_to_sint undef) -> undef
12946 if (N0.isUndef())
12947 return DAG.getUNDEF(VT);
12949 // fold (fp_to_sint c1fp) -> c1
12950 if (isConstantFPBuildVectorOrConstantFP(N0))
12951 return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
12953 return FoldIntToFPToInt(N, DAG);
12956 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
12957 SDValue N0 = N->getOperand(0);
12958 EVT VT = N->getValueType(0);
12960 // fold (fp_to_uint undef) -> undef
12961 if (N0.isUndef())
12962 return DAG.getUNDEF(VT);
12964 // fold (fp_to_uint c1fp) -> c1
12965 if (isConstantFPBuildVectorOrConstantFP(N0))
12966 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
12968 return FoldIntToFPToInt(N, DAG);
12971 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
12972 SDValue N0 = N->getOperand(0);
12973 SDValue N1 = N->getOperand(1);
12974 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
12975 EVT VT = N->getValueType(0);
12977 // fold (fp_round c1fp) -> c1fp
12978 if (N0CFP)
12979 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);
12981 // fold (fp_round (fp_extend x)) -> x
12982 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
12983 return N0.getOperand(0);
12985 // fold (fp_round (fp_round x)) -> (fp_round x)
12986 if (N0.getOpcode() == ISD::FP_ROUND) {
12987 const bool NIsTrunc = N->getConstantOperandVal(1) == 1;
12988 const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1;
12990 // Skip this folding if it results in an fp_round from f80 to f16.
12992 // f80 to f16 always generates an expensive (and as yet, unimplemented)
12993 // libcall to __truncxfhf2 instead of selecting native f16 conversion
12994 // instructions from f32 or f64. Moreover, the first (value-preserving)
12995 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like
12996 // x86.
12997 if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16)
12998 return SDValue();
13000 // If the first fp_round isn't a value preserving truncation, it might
13001 // introduce a tie in the second fp_round, that wouldn't occur in the
13002 // single-step fp_round we want to fold to.
13003 // In other words, double rounding isn't the same as rounding.
13004 // Also, this is a value preserving truncation iff both fp_round's are.
13005 if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) {
13006 SDLoc DL(N);
13007 return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0),
13008 DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL));
13012 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
13013 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
13014 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
13015 N0.getOperand(0), N1);
13016 AddToWorklist(Tmp.getNode());
13017 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
13018 Tmp, N0.getOperand(1));
13021 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
13022 return NewVSel;
13024 return SDValue();
13027 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
13028 SDValue N0 = N->getOperand(0);
13029 EVT VT = N->getValueType(0);
13031 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
13032 if (N->hasOneUse() &&
13033 N->use_begin()->getOpcode() == ISD::FP_ROUND)
13034 return SDValue();
13036 // fold (fp_extend c1fp) -> c1fp
13037 if (isConstantFPBuildVectorOrConstantFP(N0))
13038 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
13040 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op)
13041 if (N0.getOpcode() == ISD::FP16_TO_FP &&
13042 TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal)
13043 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0));
13045 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
13046 // value of X.
13047 if (N0.getOpcode() == ISD::FP_ROUND
13048 && N0.getConstantOperandVal(1) == 1) {
13049 SDValue In = N0.getOperand(0);
13050 if (In.getValueType() == VT) return In;
13051 if (VT.bitsLT(In.getValueType()))
13052 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
13053 In, N0.getOperand(1));
13054 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
13057 // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
13058 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
13059 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
13060 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
13061 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
13062 LN0->getChain(),
13063 LN0->getBasePtr(), N0.getValueType(),
13064 LN0->getMemOperand());
13065 CombineTo(N, ExtLoad);
13066 CombineTo(N0.getNode(),
13067 DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
13068 N0.getValueType(), ExtLoad,
13069 DAG.getIntPtrConstant(1, SDLoc(N0))),
13070 ExtLoad.getValue(1));
13071 return SDValue(N, 0); // Return N so it doesn't get rechecked!
13074 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
13075 return NewVSel;
13077 return SDValue();
13080 SDValue DAGCombiner::visitFCEIL(SDNode *N) {
13081 SDValue N0 = N->getOperand(0);
13082 EVT VT = N->getValueType(0);
13084 // fold (fceil c1) -> fceil(c1)
13085 if (isConstantFPBuildVectorOrConstantFP(N0))
13086 return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
13088 return SDValue();
13091 SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
13092 SDValue N0 = N->getOperand(0);
13093 EVT VT = N->getValueType(0);
13095 // fold (ftrunc c1) -> ftrunc(c1)
13096 if (isConstantFPBuildVectorOrConstantFP(N0))
13097 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
13099 // fold ftrunc (known rounded int x) -> x
13100 // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is
13101 // likely to be generated to extract integer from a rounded floating value.
13102 switch (N0.getOpcode()) {
13103 default: break;
13104 case ISD::FRINT:
13105 case ISD::FTRUNC:
13106 case ISD::FNEARBYINT:
13107 case ISD::FFLOOR:
13108 case ISD::FCEIL:
13109 return N0;
13112 return SDValue();
13115 SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
13116 SDValue N0 = N->getOperand(0);
13117 EVT VT = N->getValueType(0);
13119 // fold (ffloor c1) -> ffloor(c1)
13120 if (isConstantFPBuildVectorOrConstantFP(N0))
13121 return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
13123 return SDValue();
13126 // FIXME: FNEG and FABS have a lot in common; refactor.
13127 SDValue DAGCombiner::visitFNEG(SDNode *N) {
13128 SDValue N0 = N->getOperand(0);
13129 EVT VT = N->getValueType(0);
13131 // Constant fold FNEG.
13132 if (isConstantFPBuildVectorOrConstantFP(N0))
13133 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
13135 if (TLI.isNegatibleForFree(N0, DAG, LegalOperations, ForCodeSize))
13136 return TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize);
13138 // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading
13139 // constant pool values.
13140 if (!TLI.isFNegFree(VT) &&
13141 N0.getOpcode() == ISD::BITCAST &&
13142 N0.getNode()->hasOneUse()) {
13143 SDValue Int = N0.getOperand(0);
13144 EVT IntVT = Int.getValueType();
13145 if (IntVT.isInteger() && !IntVT.isVector()) {
13146 APInt SignMask;
13147 if (N0.getValueType().isVector()) {
13148 // For a vector, get a mask such as 0x80... per scalar element
13149 // and splat it.
13150 SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits());
13151 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
13152 } else {
13153 // For a scalar, just generate 0x80...
13154 SignMask = APInt::getSignMask(IntVT.getSizeInBits());
13156 SDLoc DL0(N0);
13157 Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int,
13158 DAG.getConstant(SignMask, DL0, IntVT));
13159 AddToWorklist(Int.getNode());
13160 return DAG.getBitcast(VT, Int);
13164 // (fneg (fmul c, x)) -> (fmul -c, x)
13165 if (N0.getOpcode() == ISD::FMUL &&
13166 (N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) {
13167 ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
13168 if (CFP1) {
13169 APFloat CVal = CFP1->getValueAPF();
13170 CVal.changeSign();
13171 if (Level >= AfterLegalizeDAG &&
13172 (TLI.isFPImmLegal(CVal, VT, ForCodeSize) ||
13173 TLI.isOperationLegal(ISD::ConstantFP, VT)))
13174 return DAG.getNode(
13175 ISD::FMUL, SDLoc(N), VT, N0.getOperand(0),
13176 DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0.getOperand(1)),
13177 N0->getFlags());
13181 return SDValue();
13184 static SDValue visitFMinMax(SelectionDAG &DAG, SDNode *N,
13185 APFloat (*Op)(const APFloat &, const APFloat &)) {
13186 SDValue N0 = N->getOperand(0);
13187 SDValue N1 = N->getOperand(1);
13188 EVT VT = N->getValueType(0);
13189 const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
13190 const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
13192 if (N0CFP && N1CFP) {
13193 const APFloat &C0 = N0CFP->getValueAPF();
13194 const APFloat &C1 = N1CFP->getValueAPF();
13195 return DAG.getConstantFP(Op(C0, C1), SDLoc(N), VT);
13198 // Canonicalize to constant on RHS.
13199 if (isConstantFPBuildVectorOrConstantFP(N0) &&
13200 !isConstantFPBuildVectorOrConstantFP(N1))
13201 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);
13203 return SDValue();
13206 SDValue DAGCombiner::visitFMINNUM(SDNode *N) {
13207 return visitFMinMax(DAG, N, minnum);
13210 SDValue DAGCombiner::visitFMAXNUM(SDNode *N) {
13211 return visitFMinMax(DAG, N, maxnum);
13214 SDValue DAGCombiner::visitFMINIMUM(SDNode *N) {
13215 return visitFMinMax(DAG, N, minimum);
13218 SDValue DAGCombiner::visitFMAXIMUM(SDNode *N) {
13219 return visitFMinMax(DAG, N, maximum);
13222 SDValue DAGCombiner::visitFABS(SDNode *N) {
13223 SDValue N0 = N->getOperand(0);
13224 EVT VT = N->getValueType(0);
13226 // fold (fabs c1) -> fabs(c1)
13227 if (isConstantFPBuildVectorOrConstantFP(N0))
13228 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
13230 // fold (fabs (fabs x)) -> (fabs x)
13231 if (N0.getOpcode() == ISD::FABS)
13232 return N->getOperand(0);
13234 // fold (fabs (fneg x)) -> (fabs x)
13235 // fold (fabs (fcopysign x, y)) -> (fabs x)
13236 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
13237 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
13239 // fabs(bitcast(x)) -> bitcast(x & ~sign) to avoid constant pool loads.
13240 if (!TLI.isFAbsFree(VT) && N0.getOpcode() == ISD::BITCAST && N0.hasOneUse()) {
13241 SDValue Int = N0.getOperand(0);
13242 EVT IntVT = Int.getValueType();
13243 if (IntVT.isInteger() && !IntVT.isVector()) {
13244 APInt SignMask;
13245 if (N0.getValueType().isVector()) {
13246 // For a vector, get a mask such as 0x7f... per scalar element
13247 // and splat it.
13248 SignMask = ~APInt::getSignMask(N0.getScalarValueSizeInBits());
13249 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
13250 } else {
13251 // For a scalar, just generate 0x7f...
13252 SignMask = ~APInt::getSignMask(IntVT.getSizeInBits());
13254 SDLoc DL(N0);
13255 Int = DAG.getNode(ISD::AND, DL, IntVT, Int,
13256 DAG.getConstant(SignMask, DL, IntVT));
13257 AddToWorklist(Int.getNode());
13258 return DAG.getBitcast(N->getValueType(0), Int);
13262 return SDValue();
13265 SDValue DAGCombiner::visitBRCOND(SDNode *N) {
13266 SDValue Chain = N->getOperand(0);
13267 SDValue N1 = N->getOperand(1);
13268 SDValue N2 = N->getOperand(2);
13270 // If N is a constant we could fold this into a fallthrough or unconditional
13271 // branch. However that doesn't happen very often in normal code, because
13272 // Instcombine/SimplifyCFG should have handled the available opportunities.
13273 // If we did this folding here, it would be necessary to update the
13274 // MachineBasicBlock CFG, which is awkward.
13276 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
13277 // on the target.
13278 if (N1.getOpcode() == ISD::SETCC &&
13279 TLI.isOperationLegalOrCustom(ISD::BR_CC,
13280 N1.getOperand(0).getValueType())) {
13281 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
13282 Chain, N1.getOperand(2),
13283 N1.getOperand(0), N1.getOperand(1), N2);
13286 if (N1.hasOneUse()) {
13287 if (SDValue NewN1 = rebuildSetCC(N1))
13288 return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain, NewN1, N2);
13291 return SDValue();
13294 SDValue DAGCombiner::rebuildSetCC(SDValue N) {
13295 if (N.getOpcode() == ISD::SRL ||
13296 (N.getOpcode() == ISD::TRUNCATE &&
13297 (N.getOperand(0).hasOneUse() &&
13298 N.getOperand(0).getOpcode() == ISD::SRL))) {
13299 // Look pass the truncate.
13300 if (N.getOpcode() == ISD::TRUNCATE)
13301 N = N.getOperand(0);
13303 // Match this pattern so that we can generate simpler code:
13305 // %a = ...
13306 // %b = and i32 %a, 2
13307 // %c = srl i32 %b, 1
13308 // brcond i32 %c ...
13310 // into
13312 // %a = ...
13313 // %b = and i32 %a, 2
13314 // %c = setcc eq %b, 0
13315 // brcond %c ...
13317 // This applies only when the AND constant value has one bit set and the
13318 // SRL constant is equal to the log2 of the AND constant. The back-end is
13319 // smart enough to convert the result into a TEST/JMP sequence.
13320 SDValue Op0 = N.getOperand(0);
13321 SDValue Op1 = N.getOperand(1);
13323 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) {
13324 SDValue AndOp1 = Op0.getOperand(1);
13326 if (AndOp1.getOpcode() == ISD::Constant) {
13327 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
13329 if (AndConst.isPowerOf2() &&
13330 cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) {
13331 SDLoc DL(N);
13332 return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()),
13333 Op0, DAG.getConstant(0, DL, Op0.getValueType()),
13334 ISD::SETNE);
13340 // Transform br(xor(x, y)) -> br(x != y)
13341 // Transform br(xor(xor(x,y), 1)) -> br (x == y)
13342 if (N.getOpcode() == ISD::XOR) {
13343 // Because we may call this on a speculatively constructed
13344 // SimplifiedSetCC Node, we need to simplify this node first.
13345 // Ideally this should be folded into SimplifySetCC and not
13346 // here. For now, grab a handle to N so we don't lose it from
13347 // replacements interal to the visit.
13348 HandleSDNode XORHandle(N);
13349 while (N.getOpcode() == ISD::XOR) {
13350 SDValue Tmp = visitXOR(N.getNode());
13351 // No simplification done.
13352 if (!Tmp.getNode())
13353 break;
13354 // Returning N is form in-visit replacement that may invalidated
13355 // N. Grab value from Handle.
13356 if (Tmp.getNode() == N.getNode())
13357 N = XORHandle.getValue();
13358 else // Node simplified. Try simplifying again.
13359 N = Tmp;
13362 if (N.getOpcode() != ISD::XOR)
13363 return N;
13365 SDNode *TheXor = N.getNode();
13367 SDValue Op0 = TheXor->getOperand(0);
13368 SDValue Op1 = TheXor->getOperand(1);
13370 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
13371 bool Equal = false;
13372 if (isOneConstant(Op0) && Op0.hasOneUse() &&
13373 Op0.getOpcode() == ISD::XOR) {
13374 TheXor = Op0.getNode();
13375 Equal = true;
13378 EVT SetCCVT = N.getValueType();
13379 if (LegalTypes)
13380 SetCCVT = getSetCCResultType(SetCCVT);
13381 // Replace the uses of XOR with SETCC
13382 return DAG.getSetCC(SDLoc(TheXor), SetCCVT, Op0, Op1,
13383 Equal ? ISD::SETEQ : ISD::SETNE);
13387 return SDValue();
13390 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
13392 SDValue DAGCombiner::visitBR_CC(SDNode *N) {
13393 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
13394 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
13396 // If N is a constant we could fold this into a fallthrough or unconditional
13397 // branch. However that doesn't happen very often in normal code, because
13398 // Instcombine/SimplifyCFG should have handled the available opportunities.
13399 // If we did this folding here, it would be necessary to update the
13400 // MachineBasicBlock CFG, which is awkward.
13402 // Use SimplifySetCC to simplify SETCC's.
13403 SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
13404 CondLHS, CondRHS, CC->get(), SDLoc(N),
13405 false);
13406 if (Simp.getNode()) AddToWorklist(Simp.getNode());
13408 // fold to a simpler setcc
13409 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
13410 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
13411 N->getOperand(0), Simp.getOperand(2),
13412 Simp.getOperand(0), Simp.getOperand(1),
13413 N->getOperand(4));
13415 return SDValue();
13418 /// Return true if 'Use' is a load or a store that uses N as its base pointer
13419 /// and that N may be folded in the load / store addressing mode.
13420 static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
13421 SelectionDAG &DAG,
13422 const TargetLowering &TLI) {
13423 EVT VT;
13424 unsigned AS;
13426 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) {
13427 if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
13428 return false;
13429 VT = LD->getMemoryVT();
13430 AS = LD->getAddressSpace();
13431 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) {
13432 if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
13433 return false;
13434 VT = ST->getMemoryVT();
13435 AS = ST->getAddressSpace();
13436 } else
13437 return false;
13439 TargetLowering::AddrMode AM;
13440 if (N->getOpcode() == ISD::ADD) {
13441 AM.HasBaseReg = true;
13442 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
13443 if (Offset)
13444 // [reg +/- imm]
13445 AM.BaseOffs = Offset->getSExtValue();
13446 else
13447 // [reg +/- reg]
13448 AM.Scale = 1;
13449 } else if (N->getOpcode() == ISD::SUB) {
13450 AM.HasBaseReg = true;
13451 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
13452 if (Offset)
13453 // [reg +/- imm]
13454 AM.BaseOffs = -Offset->getSExtValue();
13455 else
13456 // [reg +/- reg]
13457 AM.Scale = 1;
13458 } else
13459 return false;
13461 return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM,
13462 VT.getTypeForEVT(*DAG.getContext()), AS);
13465 /// Try turning a load/store into a pre-indexed load/store when the base
13466 /// pointer is an add or subtract and it has other uses besides the load/store.
13467 /// After the transformation, the new indexed load/store has effectively folded
13468 /// the add/subtract in and all of its other uses are redirected to the
13469 /// new load/store.
13470 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
13471 if (Level < AfterLegalizeDAG)
13472 return false;
13474 bool isLoad = true;
13475 SDValue Ptr;
13476 EVT VT;
13477 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
13478 if (LD->isIndexed())
13479 return false;
13480 VT = LD->getMemoryVT();
13481 if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
13482 !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
13483 return false;
13484 Ptr = LD->getBasePtr();
13485 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
13486 if (ST->isIndexed())
13487 return false;
13488 VT = ST->getMemoryVT();
13489 if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
13490 !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
13491 return false;
13492 Ptr = ST->getBasePtr();
13493 isLoad = false;
13494 } else {
13495 return false;
13498 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
13499 // out. There is no reason to make this a preinc/predec.
13500 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
13501 Ptr.getNode()->hasOneUse())
13502 return false;
13504 // Ask the target to do addressing mode selection.
13505 SDValue BasePtr;
13506 SDValue Offset;
13507 ISD::MemIndexedMode AM = ISD::UNINDEXED;
13508 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
13509 return false;
13511 // Backends without true r+i pre-indexed forms may need to pass a
13512 // constant base with a variable offset so that constant coercion
13513 // will work with the patterns in canonical form.
13514 bool Swapped = false;
13515 if (isa<ConstantSDNode>(BasePtr)) {
13516 std::swap(BasePtr, Offset);
13517 Swapped = true;
13520 // Don't create a indexed load / store with zero offset.
13521 if (isNullConstant(Offset))
13522 return false;
13524 // Try turning it into a pre-indexed load / store except when:
13525 // 1) The new base ptr is a frame index.
13526 // 2) If N is a store and the new base ptr is either the same as or is a
13527 // predecessor of the value being stored.
13528 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
13529 // that would create a cycle.
13530 // 4) All uses are load / store ops that use it as old base ptr.
13532 // Check #1. Preinc'ing a frame index would require copying the stack pointer
13533 // (plus the implicit offset) to a register to preinc anyway.
13534 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
13535 return false;
13537 // Check #2.
13538 if (!isLoad) {
13539 SDValue Val = cast<StoreSDNode>(N)->getValue();
13541 // Would require a copy.
13542 if (Val == BasePtr)
13543 return false;
13545 // Would create a cycle.
13546 if (Val == Ptr || Ptr->isPredecessorOf(Val.getNode()))
13547 return false;
13550 // Caches for hasPredecessorHelper.
13551 SmallPtrSet<const SDNode *, 32> Visited;
13552 SmallVector<const SDNode *, 16> Worklist;
13553 Worklist.push_back(N);
13555 // If the offset is a constant, there may be other adds of constants that
13556 // can be folded with this one. We should do this to avoid having to keep
13557 // a copy of the original base pointer.
13558 SmallVector<SDNode *, 16> OtherUses;
13559 if (isa<ConstantSDNode>(Offset))
13560 for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(),
13561 UE = BasePtr.getNode()->use_end();
13562 UI != UE; ++UI) {
13563 SDUse &Use = UI.getUse();
13564 // Skip the use that is Ptr and uses of other results from BasePtr's
13565 // node (important for nodes that return multiple results).
13566 if (Use.getUser() == Ptr.getNode() || Use != BasePtr)
13567 continue;
13569 if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist))
13570 continue;
13572 if (Use.getUser()->getOpcode() != ISD::ADD &&
13573 Use.getUser()->getOpcode() != ISD::SUB) {
13574 OtherUses.clear();
13575 break;
13578 SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1);
13579 if (!isa<ConstantSDNode>(Op1)) {
13580 OtherUses.clear();
13581 break;
13584 // FIXME: In some cases, we can be smarter about this.
13585 if (Op1.getValueType() != Offset.getValueType()) {
13586 OtherUses.clear();
13587 break;
13590 OtherUses.push_back(Use.getUser());
13593 if (Swapped)
13594 std::swap(BasePtr, Offset);
13596 // Now check for #3 and #4.
13597 bool RealUse = false;
13599 for (SDNode *Use : Ptr.getNode()->uses()) {
13600 if (Use == N)
13601 continue;
13602 if (SDNode::hasPredecessorHelper(Use, Visited, Worklist))
13603 return false;
13605 // If Ptr may be folded in addressing mode of other use, then it's
13606 // not profitable to do this transformation.
13607 if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
13608 RealUse = true;
13611 if (!RealUse)
13612 return false;
13614 SDValue Result;
13615 if (isLoad)
13616 Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
13617 BasePtr, Offset, AM);
13618 else
13619 Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
13620 BasePtr, Offset, AM);
13621 ++PreIndexedNodes;
13622 ++NodesCombined;
13623 LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: ";
13624 Result.getNode()->dump(&DAG); dbgs() << '\n');
13625 WorklistRemover DeadNodes(*this);
13626 if (isLoad) {
13627 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
13628 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
13629 } else {
13630 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
13633 // Finally, since the node is now dead, remove it from the graph.
13634 deleteAndRecombine(N);
13636 if (Swapped)
13637 std::swap(BasePtr, Offset);
13639 // Replace other uses of BasePtr that can be updated to use Ptr
13640 for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
13641 unsigned OffsetIdx = 1;
13642 if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
13643 OffsetIdx = 0;
13644 assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
13645 BasePtr.getNode() && "Expected BasePtr operand");
13647 // We need to replace ptr0 in the following expression:
13648 // x0 * offset0 + y0 * ptr0 = t0
13649 // knowing that
13650 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
13652 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
13653 // indexed load/store and the expression that needs to be re-written.
13655 // Therefore, we have:
13656 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
13658 ConstantSDNode *CN =
13659 cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
13660 int X0, X1, Y0, Y1;
13661 const APInt &Offset0 = CN->getAPIntValue();
13662 APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
13664 X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
13665 Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
13666 X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
13667 Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
13669 unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
13671 APInt CNV = Offset0;
13672 if (X0 < 0) CNV = -CNV;
13673 if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
13674 else CNV = CNV - Offset1;
13676 SDLoc DL(OtherUses[i]);
13678 // We can now generate the new expression.
13679 SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0));
13680 SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0);
13682 SDValue NewUse = DAG.getNode(Opcode,
13684 OtherUses[i]->getValueType(0), NewOp1, NewOp2);
13685 DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
13686 deleteAndRecombine(OtherUses[i]);
13689 // Replace the uses of Ptr with uses of the updated base value.
13690 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
13691 deleteAndRecombine(Ptr.getNode());
13692 AddToWorklist(Result.getNode());
13694 return true;
13697 /// Try to combine a load/store with a add/sub of the base pointer node into a
13698 /// post-indexed load/store. The transformation folded the add/subtract into the
13699 /// new indexed load/store effectively and all of its uses are redirected to the
13700 /// new load/store.
13701 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
13702 if (Level < AfterLegalizeDAG)
13703 return false;
13705 bool isLoad = true;
13706 SDValue Ptr;
13707 EVT VT;
13708 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
13709 if (LD->isIndexed())
13710 return false;
13711 VT = LD->getMemoryVT();
13712 if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
13713 !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
13714 return false;
13715 Ptr = LD->getBasePtr();
13716 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
13717 if (ST->isIndexed())
13718 return false;
13719 VT = ST->getMemoryVT();
13720 if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
13721 !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
13722 return false;
13723 Ptr = ST->getBasePtr();
13724 isLoad = false;
13725 } else {
13726 return false;
13729 if (Ptr.getNode()->hasOneUse())
13730 return false;
13732 for (SDNode *Op : Ptr.getNode()->uses()) {
13733 if (Op == N ||
13734 (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
13735 continue;
13737 SDValue BasePtr;
13738 SDValue Offset;
13739 ISD::MemIndexedMode AM = ISD::UNINDEXED;
13740 if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
13741 // Don't create a indexed load / store with zero offset.
13742 if (isNullConstant(Offset))
13743 continue;
13745 // Try turning it into a post-indexed load / store except when
13746 // 1) All uses are load / store ops that use it as base ptr (and
13747 // it may be folded as addressing mmode).
13748 // 2) Op must be independent of N, i.e. Op is neither a predecessor
13749 // nor a successor of N. Otherwise, if Op is folded that would
13750 // create a cycle.
13752 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
13753 continue;
13755 // Check for #1.
13756 bool TryNext = false;
13757 for (SDNode *Use : BasePtr.getNode()->uses()) {
13758 if (Use == Ptr.getNode())
13759 continue;
13761 // If all the uses are load / store addresses, then don't do the
13762 // transformation.
13763 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
13764 bool RealUse = false;
13765 for (SDNode *UseUse : Use->uses()) {
13766 if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
13767 RealUse = true;
13770 if (!RealUse) {
13771 TryNext = true;
13772 break;
13777 if (TryNext)
13778 continue;
13780 // Check for #2.
13781 SmallPtrSet<const SDNode *, 32> Visited;
13782 SmallVector<const SDNode *, 8> Worklist;
13783 // Ptr is predecessor to both N and Op.
13784 Visited.insert(Ptr.getNode());
13785 Worklist.push_back(N);
13786 Worklist.push_back(Op);
13787 if (!SDNode::hasPredecessorHelper(N, Visited, Worklist) &&
13788 !SDNode::hasPredecessorHelper(Op, Visited, Worklist)) {
13789 SDValue Result = isLoad
13790 ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
13791 BasePtr, Offset, AM)
13792 : DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
13793 BasePtr, Offset, AM);
13794 ++PostIndexedNodes;
13795 ++NodesCombined;
13796 LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG);
13797 dbgs() << "\nWith: "; Result.getNode()->dump(&DAG);
13798 dbgs() << '\n');
13799 WorklistRemover DeadNodes(*this);
13800 if (isLoad) {
13801 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
13802 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
13803 } else {
13804 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
13807 // Finally, since the node is now dead, remove it from the graph.
13808 deleteAndRecombine(N);
13810 // Replace the uses of Use with uses of the updated base value.
13811 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
13812 Result.getValue(isLoad ? 1 : 0));
13813 deleteAndRecombine(Op);
13814 return true;
13819 return false;
13822 /// Return the base-pointer arithmetic from an indexed \p LD.
13823 SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) {
13824 ISD::MemIndexedMode AM = LD->getAddressingMode();
13825 assert(AM != ISD::UNINDEXED);
13826 SDValue BP = LD->getOperand(1);
13827 SDValue Inc = LD->getOperand(2);
13829 // Some backends use TargetConstants for load offsets, but don't expect
13830 // TargetConstants in general ADD nodes. We can convert these constants into
13831 // regular Constants (if the constant is not opaque).
13832 assert((Inc.getOpcode() != ISD::TargetConstant ||
13833 !cast<ConstantSDNode>(Inc)->isOpaque()) &&
13834 "Cannot split out indexing using opaque target constants");
13835 if (Inc.getOpcode() == ISD::TargetConstant) {
13836 ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc);
13837 Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc),
13838 ConstInc->getValueType(0));
13841 unsigned Opc =
13842 (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB);
13843 return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc);
13846 static inline int numVectorEltsOrZero(EVT T) {
13847 return T.isVector() ? T.getVectorNumElements() : 0;
13850 bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) {
13851 Val = ST->getValue();
13852 EVT STType = Val.getValueType();
13853 EVT STMemType = ST->getMemoryVT();
13854 if (STType == STMemType)
13855 return true;
13856 if (isTypeLegal(STMemType))
13857 return false; // fail.
13858 if (STType.isFloatingPoint() && STMemType.isFloatingPoint() &&
13859 TLI.isOperationLegal(ISD::FTRUNC, STMemType)) {
13860 Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val);
13861 return true;
13863 if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) &&
13864 STType.isInteger() && STMemType.isInteger()) {
13865 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val);
13866 return true;
13868 if (STType.getSizeInBits() == STMemType.getSizeInBits()) {
13869 Val = DAG.getBitcast(STMemType, Val);
13870 return true;
13872 return false; // fail.
13875 bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) {
13876 EVT LDMemType = LD->getMemoryVT();
13877 EVT LDType = LD->getValueType(0);
13878 assert(Val.getValueType() == LDMemType &&
13879 "Attempting to extend value of non-matching type");
13880 if (LDType == LDMemType)
13881 return true;
13882 if (LDMemType.isInteger() && LDType.isInteger()) {
13883 switch (LD->getExtensionType()) {
13884 case ISD::NON_EXTLOAD:
13885 Val = DAG.getBitcast(LDType, Val);
13886 return true;
13887 case ISD::EXTLOAD:
13888 Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val);
13889 return true;
13890 case ISD::SEXTLOAD:
13891 Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val);
13892 return true;
13893 case ISD::ZEXTLOAD:
13894 Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val);
13895 return true;
13898 return false;
13901 SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) {
13902 if (OptLevel == CodeGenOpt::None || !LD->isSimple())
13903 return SDValue();
13904 SDValue Chain = LD->getOperand(0);
13905 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain.getNode());
13906 // TODO: Relax this restriction for unordered atomics (see D66309)
13907 if (!ST || !ST->isSimple())
13908 return SDValue();
13910 EVT LDType = LD->getValueType(0);
13911 EVT LDMemType = LD->getMemoryVT();
13912 EVT STMemType = ST->getMemoryVT();
13913 EVT STType = ST->getValue().getValueType();
13915 BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG);
13916 BaseIndexOffset BasePtrST = BaseIndexOffset::match(ST, DAG);
13917 int64_t Offset;
13918 if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset))
13919 return SDValue();
13921 // Normalize for Endianness. After this Offset=0 will denote that the least
13922 // significant bit in the loaded value maps to the least significant bit in
13923 // the stored value). With Offset=n (for n > 0) the loaded value starts at the
13924 // n:th least significant byte of the stored value.
13925 if (DAG.getDataLayout().isBigEndian())
13926 Offset = (STMemType.getStoreSizeInBits() -
13927 LDMemType.getStoreSizeInBits()) / 8 - Offset;
13929 // Check that the stored value cover all bits that are loaded.
13930 bool STCoversLD =
13931 (Offset >= 0) &&
13932 (Offset * 8 + LDMemType.getSizeInBits() <= STMemType.getSizeInBits());
13934 auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue {
13935 if (LD->isIndexed()) {
13936 bool IsSub = (LD->getAddressingMode() == ISD::PRE_DEC ||
13937 LD->getAddressingMode() == ISD::POST_DEC);
13938 unsigned Opc = IsSub ? ISD::SUB : ISD::ADD;
13939 SDValue Idx = DAG.getNode(Opc, SDLoc(LD), LD->getOperand(1).getValueType(),
13940 LD->getOperand(1), LD->getOperand(2));
13941 SDValue Ops[] = {Val, Idx, Chain};
13942 return CombineTo(LD, Ops, 3);
13944 return CombineTo(LD, Val, Chain);
13947 if (!STCoversLD)
13948 return SDValue();
13950 // Memory as copy space (potentially masked).
13951 if (Offset == 0 && LDType == STType && STMemType == LDMemType) {
13952 // Simple case: Direct non-truncating forwarding
13953 if (LDType.getSizeInBits() == LDMemType.getSizeInBits())
13954 return ReplaceLd(LD, ST->getValue(), Chain);
13955 // Can we model the truncate and extension with an and mask?
13956 if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() &&
13957 !LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) {
13958 // Mask to size of LDMemType
13959 auto Mask =
13960 DAG.getConstant(APInt::getLowBitsSet(STType.getSizeInBits(),
13961 STMemType.getSizeInBits()),
13962 SDLoc(ST), STType);
13963 auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask);
13964 return ReplaceLd(LD, Val, Chain);
13968 // TODO: Deal with nonzero offset.
13969 if (LD->getBasePtr().isUndef() || Offset != 0)
13970 return SDValue();
13971 // Model necessary truncations / extenstions.
13972 SDValue Val;
13973 // Truncate Value To Stored Memory Size.
13974 do {
13975 if (!getTruncatedStoreValue(ST, Val))
13976 continue;
13977 if (!isTypeLegal(LDMemType))
13978 continue;
13979 if (STMemType != LDMemType) {
13980 // TODO: Support vectors? This requires extract_subvector/bitcast.
13981 if (!STMemType.isVector() && !LDMemType.isVector() &&
13982 STMemType.isInteger() && LDMemType.isInteger())
13983 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val);
13984 else
13985 continue;
13987 if (!extendLoadedValueToExtension(LD, Val))
13988 continue;
13989 return ReplaceLd(LD, Val, Chain);
13990 } while (false);
13992 // On failure, cleanup dead nodes we may have created.
13993 if (Val->use_empty())
13994 deleteAndRecombine(Val.getNode());
13995 return SDValue();
13998 SDValue DAGCombiner::visitLOAD(SDNode *N) {
13999 LoadSDNode *LD = cast<LoadSDNode>(N);
14000 SDValue Chain = LD->getChain();
14001 SDValue Ptr = LD->getBasePtr();
14003 // If load is not volatile and there are no uses of the loaded value (and
14004 // the updated indexed value in case of indexed loads), change uses of the
14005 // chain value into uses of the chain input (i.e. delete the dead load).
14006 // TODO: Allow this for unordered atomics (see D66309)
14007 if (LD->isSimple()) {
14008 if (N->getValueType(1) == MVT::Other) {
14009 // Unindexed loads.
14010 if (!N->hasAnyUseOfValue(0)) {
14011 // It's not safe to use the two value CombineTo variant here. e.g.
14012 // v1, chain2 = load chain1, loc
14013 // v2, chain3 = load chain2, loc
14014 // v3 = add v2, c
14015 // Now we replace use of chain2 with chain1. This makes the second load
14016 // isomorphic to the one we are deleting, and thus makes this load live.
14017 LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG);
14018 dbgs() << "\nWith chain: "; Chain.getNode()->dump(&DAG);
14019 dbgs() << "\n");
14020 WorklistRemover DeadNodes(*this);
14021 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
14022 AddUsersToWorklist(Chain.getNode());
14023 if (N->use_empty())
14024 deleteAndRecombine(N);
14026 return SDValue(N, 0); // Return N so it doesn't get rechecked!
14028 } else {
14029 // Indexed loads.
14030 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
14032 // If this load has an opaque TargetConstant offset, then we cannot split
14033 // the indexing into an add/sub directly (that TargetConstant may not be
14034 // valid for a different type of node, and we cannot convert an opaque
14035 // target constant into a regular constant).
14036 bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant &&
14037 cast<ConstantSDNode>(LD->getOperand(2))->isOpaque();
14039 if (!N->hasAnyUseOfValue(0) &&
14040 ((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) {
14041 SDValue Undef = DAG.getUNDEF(N->getValueType(0));
14042 SDValue Index;
14043 if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) {
14044 Index = SplitIndexingFromLoad(LD);
14045 // Try to fold the base pointer arithmetic into subsequent loads and
14046 // stores.
14047 AddUsersToWorklist(N);
14048 } else
14049 Index = DAG.getUNDEF(N->getValueType(1));
14050 LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG);
14051 dbgs() << "\nWith: "; Undef.getNode()->dump(&DAG);
14052 dbgs() << " and 2 other values\n");
14053 WorklistRemover DeadNodes(*this);
14054 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
14055 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index);
14056 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
14057 deleteAndRecombine(N);
14058 return SDValue(N, 0); // Return N so it doesn't get rechecked!
14063 // If this load is directly stored, replace the load value with the stored
14064 // value.
14065 if (auto V = ForwardStoreValueToDirectLoad(LD))
14066 return V;
14068 // Try to infer better alignment information than the load already has.
14069 if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
14070 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
14071 if (Align > LD->getAlignment() && LD->getSrcValueOffset() % Align == 0) {
14072 SDValue NewLoad = DAG.getExtLoad(
14073 LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr,
14074 LD->getPointerInfo(), LD->getMemoryVT(), Align,
14075 LD->getMemOperand()->getFlags(), LD->getAAInfo());
14076 // NewLoad will always be N as we are only refining the alignment
14077 assert(NewLoad.getNode() == N);
14078 (void)NewLoad;
14083 if (LD->isUnindexed()) {
14084 // Walk up chain skipping non-aliasing memory nodes.
14085 SDValue BetterChain = FindBetterChain(LD, Chain);
14087 // If there is a better chain.
14088 if (Chain != BetterChain) {
14089 SDValue ReplLoad;
14091 // Replace the chain to void dependency.
14092 if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
14093 ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
14094 BetterChain, Ptr, LD->getMemOperand());
14095 } else {
14096 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
14097 LD->getValueType(0),
14098 BetterChain, Ptr, LD->getMemoryVT(),
14099 LD->getMemOperand());
14102 // Create token factor to keep old chain connected.
14103 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
14104 MVT::Other, Chain, ReplLoad.getValue(1));
14106 // Replace uses with load result and token factor
14107 return CombineTo(N, ReplLoad.getValue(0), Token);
14111 // Try transforming N to an indexed load.
14112 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
14113 return SDValue(N, 0);
14115 // Try to slice up N to more direct loads if the slices are mapped to
14116 // different register banks or pairing can take place.
14117 if (SliceUpLoad(N))
14118 return SDValue(N, 0);
14120 return SDValue();
14123 namespace {
14125 /// Helper structure used to slice a load in smaller loads.
14126 /// Basically a slice is obtained from the following sequence:
14127 /// Origin = load Ty1, Base
14128 /// Shift = srl Ty1 Origin, CstTy Amount
14129 /// Inst = trunc Shift to Ty2
14131 /// Then, it will be rewritten into:
14132 /// Slice = load SliceTy, Base + SliceOffset
14133 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
14135 /// SliceTy is deduced from the number of bits that are actually used to
14136 /// build Inst.
14137 struct LoadedSlice {
14138 /// Helper structure used to compute the cost of a slice.
14139 struct Cost {
14140 /// Are we optimizing for code size.
14141 bool ForCodeSize = false;
14143 /// Various cost.
14144 unsigned Loads = 0;
14145 unsigned Truncates = 0;
14146 unsigned CrossRegisterBanksCopies = 0;
14147 unsigned ZExts = 0;
14148 unsigned Shift = 0;
14150 explicit Cost(bool ForCodeSize) : ForCodeSize(ForCodeSize) {}
14152 /// Get the cost of one isolated slice.
14153 Cost(const LoadedSlice &LS, bool ForCodeSize)
14154 : ForCodeSize(ForCodeSize), Loads(1) {
14155 EVT TruncType = LS.Inst->getValueType(0);
14156 EVT LoadedType = LS.getLoadedType();
14157 if (TruncType != LoadedType &&
14158 !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
14159 ZExts = 1;
14162 /// Account for slicing gain in the current cost.
14163 /// Slicing provide a few gains like removing a shift or a
14164 /// truncate. This method allows to grow the cost of the original
14165 /// load with the gain from this slice.
14166 void addSliceGain(const LoadedSlice &LS) {
14167 // Each slice saves a truncate.
14168 const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
14169 if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(),
14170 LS.Inst->getValueType(0)))
14171 ++Truncates;
14172 // If there is a shift amount, this slice gets rid of it.
14173 if (LS.Shift)
14174 ++Shift;
14175 // If this slice can merge a cross register bank copy, account for it.
14176 if (LS.canMergeExpensiveCrossRegisterBankCopy())
14177 ++CrossRegisterBanksCopies;
14180 Cost &operator+=(const Cost &RHS) {
14181 Loads += RHS.Loads;
14182 Truncates += RHS.Truncates;
14183 CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
14184 ZExts += RHS.ZExts;
14185 Shift += RHS.Shift;
14186 return *this;
14189 bool operator==(const Cost &RHS) const {
14190 return Loads == RHS.Loads && Truncates == RHS.Truncates &&
14191 CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
14192 ZExts == RHS.ZExts && Shift == RHS.Shift;
14195 bool operator!=(const Cost &RHS) const { return !(*this == RHS); }
14197 bool operator<(const Cost &RHS) const {
14198 // Assume cross register banks copies are as expensive as loads.
14199 // FIXME: Do we want some more target hooks?
14200 unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
14201 unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
14202 // Unless we are optimizing for code size, consider the
14203 // expensive operation first.
14204 if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
14205 return ExpensiveOpsLHS < ExpensiveOpsRHS;
14206 return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
14207 (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
14210 bool operator>(const Cost &RHS) const { return RHS < *this; }
14212 bool operator<=(const Cost &RHS) const { return !(RHS < *this); }
14214 bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
14217 // The last instruction that represent the slice. This should be a
14218 // truncate instruction.
14219 SDNode *Inst;
14221 // The original load instruction.
14222 LoadSDNode *Origin;
14224 // The right shift amount in bits from the original load.
14225 unsigned Shift;
14227 // The DAG from which Origin came from.
14228 // This is used to get some contextual information about legal types, etc.
14229 SelectionDAG *DAG;
14231 LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr,
14232 unsigned Shift = 0, SelectionDAG *DAG = nullptr)
14233 : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}
14235 /// Get the bits used in a chunk of bits \p BitWidth large.
14236 /// \return Result is \p BitWidth and has used bits set to 1 and
14237 /// not used bits set to 0.
14238 APInt getUsedBits() const {
14239 // Reproduce the trunc(lshr) sequence:
14240 // - Start from the truncated value.
14241 // - Zero extend to the desired bit width.
14242 // - Shift left.
14243 assert(Origin && "No original load to compare against.");
14244 unsigned BitWidth = Origin->getValueSizeInBits(0);
14245 assert(Inst && "This slice is not bound to an instruction");
14246 assert(Inst->getValueSizeInBits(0) <= BitWidth &&
14247 "Extracted slice is bigger than the whole type!");
14248 APInt UsedBits(Inst->getValueSizeInBits(0), 0);
14249 UsedBits.setAllBits();
14250 UsedBits = UsedBits.zext(BitWidth);
14251 UsedBits <<= Shift;
14252 return UsedBits;
14255 /// Get the size of the slice to be loaded in bytes.
14256 unsigned getLoadedSize() const {
14257 unsigned SliceSize = getUsedBits().countPopulation();
14258 assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
14259 return SliceSize / 8;
14262 /// Get the type that will be loaded for this slice.
14263 /// Note: This may not be the final type for the slice.
14264 EVT getLoadedType() const {
14265 assert(DAG && "Missing context");
14266 LLVMContext &Ctxt = *DAG->getContext();
14267 return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
14270 /// Get the alignment of the load used for this slice.
14271 unsigned getAlignment() const {
14272 unsigned Alignment = Origin->getAlignment();
14273 uint64_t Offset = getOffsetFromBase();
14274 if (Offset != 0)
14275 Alignment = MinAlign(Alignment, Alignment + Offset);
14276 return Alignment;
14279 /// Check if this slice can be rewritten with legal operations.
14280 bool isLegal() const {
14281 // An invalid slice is not legal.
14282 if (!Origin || !Inst || !DAG)
14283 return false;
14285 // Offsets are for indexed load only, we do not handle that.
14286 if (!Origin->getOffset().isUndef())
14287 return false;
14289 const TargetLowering &TLI = DAG->getTargetLoweringInfo();
14291 // Check that the type is legal.
14292 EVT SliceType = getLoadedType();
14293 if (!TLI.isTypeLegal(SliceType))
14294 return false;
14296 // Check that the load is legal for this type.
14297 if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
14298 return false;
14300 // Check that the offset can be computed.
14301 // 1. Check its type.
14302 EVT PtrType = Origin->getBasePtr().getValueType();
14303 if (PtrType == MVT::Untyped || PtrType.isExtended())
14304 return false;
14306 // 2. Check that it fits in the immediate.
14307 if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
14308 return false;
14310 // 3. Check that the computation is legal.
14311 if (!TLI.isOperationLegal(ISD::ADD, PtrType))
14312 return false;
14314 // Check that the zext is legal if it needs one.
14315 EVT TruncateType = Inst->getValueType(0);
14316 if (TruncateType != SliceType &&
14317 !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
14318 return false;
14320 return true;
14323 /// Get the offset in bytes of this slice in the original chunk of
14324 /// bits.
14325 /// \pre DAG != nullptr.
14326 uint64_t getOffsetFromBase() const {
14327 assert(DAG && "Missing context.");
14328 bool IsBigEndian = DAG->getDataLayout().isBigEndian();
14329 assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.");
14330 uint64_t Offset = Shift / 8;
14331 unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
14332 assert(!(Origin->getValueSizeInBits(0) & 0x7) &&
14333 "The size of the original loaded type is not a multiple of a"
14334 " byte.");
14335 // If Offset is bigger than TySizeInBytes, it means we are loading all
14336 // zeros. This should have been optimized before in the process.
14337 assert(TySizeInBytes > Offset &&
14338 "Invalid shift amount for given loaded size");
14339 if (IsBigEndian)
14340 Offset = TySizeInBytes - Offset - getLoadedSize();
14341 return Offset;
14344 /// Generate the sequence of instructions to load the slice
14345 /// represented by this object and redirect the uses of this slice to
14346 /// this new sequence of instructions.
14347 /// \pre this->Inst && this->Origin are valid Instructions and this
14348 /// object passed the legal check: LoadedSlice::isLegal returned true.
14349 /// \return The last instruction of the sequence used to load the slice.
14350 SDValue loadSlice() const {
14351 assert(Inst && Origin && "Unable to replace a non-existing slice.");
14352 const SDValue &OldBaseAddr = Origin->getBasePtr();
14353 SDValue BaseAddr = OldBaseAddr;
14354 // Get the offset in that chunk of bytes w.r.t. the endianness.
14355 int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
14356 assert(Offset >= 0 && "Offset too big to fit in int64_t!");
14357 if (Offset) {
14358 // BaseAddr = BaseAddr + Offset.
14359 EVT ArithType = BaseAddr.getValueType();
14360 SDLoc DL(Origin);
14361 BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr,
14362 DAG->getConstant(Offset, DL, ArithType));
14365 // Create the type of the loaded slice according to its size.
14366 EVT SliceType = getLoadedType();
14368 // Create the load for the slice.
14369 SDValue LastInst =
14370 DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
14371 Origin->getPointerInfo().getWithOffset(Offset),
14372 getAlignment(), Origin->getMemOperand()->getFlags());
14373 // If the final type is not the same as the loaded type, this means that
14374 // we have to pad with zero. Create a zero extend for that.
14375 EVT FinalType = Inst->getValueType(0);
14376 if (SliceType != FinalType)
14377 LastInst =
14378 DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
14379 return LastInst;
14382 /// Check if this slice can be merged with an expensive cross register
14383 /// bank copy. E.g.,
14384 /// i = load i32
14385 /// f = bitcast i32 i to float
14386 bool canMergeExpensiveCrossRegisterBankCopy() const {
14387 if (!Inst || !Inst->hasOneUse())
14388 return false;
14389 SDNode *Use = *Inst->use_begin();
14390 if (Use->getOpcode() != ISD::BITCAST)
14391 return false;
14392 assert(DAG && "Missing context");
14393 const TargetLowering &TLI = DAG->getTargetLoweringInfo();
14394 EVT ResVT = Use->getValueType(0);
14395 const TargetRegisterClass *ResRC =
14396 TLI.getRegClassFor(ResVT.getSimpleVT(), Use->isDivergent());
14397 const TargetRegisterClass *ArgRC =
14398 TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT(),
14399 Use->getOperand(0)->isDivergent());
14400 if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
14401 return false;
14403 // At this point, we know that we perform a cross-register-bank copy.
14404 // Check if it is expensive.
14405 const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo();
14406 // Assume bitcasts are cheap, unless both register classes do not
14407 // explicitly share a common sub class.
14408 if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
14409 return false;
14411 // Check if it will be merged with the load.
14412 // 1. Check the alignment constraint.
14413 unsigned RequiredAlignment = DAG->getDataLayout().getABITypeAlignment(
14414 ResVT.getTypeForEVT(*DAG->getContext()));
14416 if (RequiredAlignment > getAlignment())
14417 return false;
14419 // 2. Check that the load is a legal operation for that type.
14420 if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
14421 return false;
14423 // 3. Check that we do not have a zext in the way.
14424 if (Inst->getValueType(0) != getLoadedType())
14425 return false;
14427 return true;
14431 } // end anonymous namespace
14433 /// Check that all bits set in \p UsedBits form a dense region, i.e.,
14434 /// \p UsedBits looks like 0..0 1..1 0..0.
14435 static bool areUsedBitsDense(const APInt &UsedBits) {
14436 // If all the bits are one, this is dense!
14437 if (UsedBits.isAllOnesValue())
14438 return true;
14440 // Get rid of the unused bits on the right.
14441 APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros());
14442 // Get rid of the unused bits on the left.
14443 if (NarrowedUsedBits.countLeadingZeros())
14444 NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
14445 // Check that the chunk of bits is completely used.
14446 return NarrowedUsedBits.isAllOnesValue();
14449 /// Check whether or not \p First and \p Second are next to each other
14450 /// in memory. This means that there is no hole between the bits loaded
14451 /// by \p First and the bits loaded by \p Second.
14452 static bool areSlicesNextToEachOther(const LoadedSlice &First,
14453 const LoadedSlice &Second) {
14454 assert(First.Origin == Second.Origin && First.Origin &&
14455 "Unable to match different memory origins.");
14456 APInt UsedBits = First.getUsedBits();
14457 assert((UsedBits & Second.getUsedBits()) == 0 &&
14458 "Slices are not supposed to overlap.");
14459 UsedBits |= Second.getUsedBits();
14460 return areUsedBitsDense(UsedBits);
14463 /// Adjust the \p GlobalLSCost according to the target
14464 /// paring capabilities and the layout of the slices.
14465 /// \pre \p GlobalLSCost should account for at least as many loads as
14466 /// there is in the slices in \p LoadedSlices.
14467 static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices,
14468 LoadedSlice::Cost &GlobalLSCost) {
14469 unsigned NumberOfSlices = LoadedSlices.size();
14470 // If there is less than 2 elements, no pairing is possible.
14471 if (NumberOfSlices < 2)
14472 return;
14474 // Sort the slices so that elements that are likely to be next to each
14475 // other in memory are next to each other in the list.
14476 llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) {
14477 assert(LHS.Origin == RHS.Origin && "Different bases not implemented.");
14478 return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
14480 const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
14481 // First (resp. Second) is the first (resp. Second) potentially candidate
14482 // to be placed in a paired load.
14483 const LoadedSlice *First = nullptr;
14484 const LoadedSlice *Second = nullptr;
14485 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
14486 // Set the beginning of the pair.
14487 First = Second) {
14488 Second = &LoadedSlices[CurrSlice];
14490 // If First is NULL, it means we start a new pair.
14491 // Get to the next slice.
14492 if (!First)
14493 continue;
14495 EVT LoadedType = First->getLoadedType();
14497 // If the types of the slices are different, we cannot pair them.
14498 if (LoadedType != Second->getLoadedType())
14499 continue;
14501 // Check if the target supplies paired loads for this type.
14502 unsigned RequiredAlignment = 0;
14503 if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
14504 // move to the next pair, this type is hopeless.
14505 Second = nullptr;
14506 continue;
14508 // Check if we meet the alignment requirement.
14509 if (RequiredAlignment > First->getAlignment())
14510 continue;
14512 // Check that both loads are next to each other in memory.
14513 if (!areSlicesNextToEachOther(*First, *Second))
14514 continue;
14516 assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!");
14517 --GlobalLSCost.Loads;
14518 // Move to the next pair.
14519 Second = nullptr;
14523 /// Check the profitability of all involved LoadedSlice.
14524 /// Currently, it is considered profitable if there is exactly two
14525 /// involved slices (1) which are (2) next to each other in memory, and
14526 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
14528 /// Note: The order of the elements in \p LoadedSlices may be modified, but not
14529 /// the elements themselves.
14531 /// FIXME: When the cost model will be mature enough, we can relax
14532 /// constraints (1) and (2).
14533 static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices,
14534 const APInt &UsedBits, bool ForCodeSize) {
14535 unsigned NumberOfSlices = LoadedSlices.size();
14536 if (StressLoadSlicing)
14537 return NumberOfSlices > 1;
14539 // Check (1).
14540 if (NumberOfSlices != 2)
14541 return false;
14543 // Check (2).
14544 if (!areUsedBitsDense(UsedBits))
14545 return false;
14547 // Check (3).
14548 LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
14549 // The original code has one big load.
14550 OrigCost.Loads = 1;
14551 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
14552 const LoadedSlice &LS = LoadedSlices[CurrSlice];
14553 // Accumulate the cost of all the slices.
14554 LoadedSlice::Cost SliceCost(LS, ForCodeSize);
14555 GlobalSlicingCost += SliceCost;
14557 // Account as cost in the original configuration the gain obtained
14558 // with the current slices.
14559 OrigCost.addSliceGain(LS);
14562 // If the target supports paired load, adjust the cost accordingly.
14563 adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
14564 return OrigCost > GlobalSlicingCost;
14567 /// If the given load, \p LI, is used only by trunc or trunc(lshr)
14568 /// operations, split it in the various pieces being extracted.
14570 /// This sort of thing is introduced by SROA.
14571 /// This slicing takes care not to insert overlapping loads.
14572 /// \pre LI is a simple load (i.e., not an atomic or volatile load).
14573 bool DAGCombiner::SliceUpLoad(SDNode *N) {
14574 if (Level < AfterLegalizeDAG)
14575 return false;
14577 LoadSDNode *LD = cast<LoadSDNode>(N);
14578 if (!LD->isSimple() || !ISD::isNormalLoad(LD) ||
14579 !LD->getValueType(0).isInteger())
14580 return false;
14582 // Keep track of already used bits to detect overlapping values.
14583 // In that case, we will just abort the transformation.
14584 APInt UsedBits(LD->getValueSizeInBits(0), 0);
14586 SmallVector<LoadedSlice, 4> LoadedSlices;
14588 // Check if this load is used as several smaller chunks of bits.
14589 // Basically, look for uses in trunc or trunc(lshr) and record a new chain
14590 // of computation for each trunc.
14591 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
14592 UI != UIEnd; ++UI) {
14593 // Skip the uses of the chain.
14594 if (UI.getUse().getResNo() != 0)
14595 continue;
14597 SDNode *User = *UI;
14598 unsigned Shift = 0;
14600 // Check if this is a trunc(lshr).
14601 if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
14602 isa<ConstantSDNode>(User->getOperand(1))) {
14603 Shift = User->getConstantOperandVal(1);
14604 User = *User->use_begin();
14607 // At this point, User is a Truncate, iff we encountered, trunc or
14608 // trunc(lshr).
14609 if (User->getOpcode() != ISD::TRUNCATE)
14610 return false;
14612 // The width of the type must be a power of 2 and greater than 8-bits.
14613 // Otherwise the load cannot be represented in LLVM IR.
14614 // Moreover, if we shifted with a non-8-bits multiple, the slice
14615 // will be across several bytes. We do not support that.
14616 unsigned Width = User->getValueSizeInBits(0);
14617 if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
14618 return false;
14620 // Build the slice for this chain of computations.
14621 LoadedSlice LS(User, LD, Shift, &DAG);
14622 APInt CurrentUsedBits = LS.getUsedBits();
14624 // Check if this slice overlaps with another.
14625 if ((CurrentUsedBits & UsedBits) != 0)
14626 return false;
14627 // Update the bits used globally.
14628 UsedBits |= CurrentUsedBits;
14630 // Check if the new slice would be legal.
14631 if (!LS.isLegal())
14632 return false;
14634 // Record the slice.
14635 LoadedSlices.push_back(LS);
14638 // Abort slicing if it does not seem to be profitable.
14639 if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
14640 return false;
14642 ++SlicedLoads;
14644 // Rewrite each chain to use an independent load.
14645 // By construction, each chain can be represented by a unique load.
14647 // Prepare the argument for the new token factor for all the slices.
14648 SmallVector<SDValue, 8> ArgChains;
14649 for (SmallVectorImpl<LoadedSlice>::const_iterator
14650 LSIt = LoadedSlices.begin(),
14651 LSItEnd = LoadedSlices.end();
14652 LSIt != LSItEnd; ++LSIt) {
14653 SDValue SliceInst = LSIt->loadSlice();
14654 CombineTo(LSIt->Inst, SliceInst, true);
14655 if (SliceInst.getOpcode() != ISD::LOAD)
14656 SliceInst = SliceInst.getOperand(0);
14657 assert(SliceInst->getOpcode() == ISD::LOAD &&
14658 "It takes more than a zext to get to the loaded slice!!");
14659 ArgChains.push_back(SliceInst.getValue(1));
14662 SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
14663 ArgChains);
14664 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
14665 AddToWorklist(Chain.getNode());
14666 return true;
14669 /// Check to see if V is (and load (ptr), imm), where the load is having
14670 /// specific bytes cleared out. If so, return the byte size being masked out
14671 /// and the shift amount.
14672 static std::pair<unsigned, unsigned>
14673 CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
14674 std::pair<unsigned, unsigned> Result(0, 0);
14676 // Check for the structure we're looking for.
14677 if (V->getOpcode() != ISD::AND ||
14678 !isa<ConstantSDNode>(V->getOperand(1)) ||
14679 !ISD::isNormalLoad(V->getOperand(0).getNode()))
14680 return Result;
14682 // Check the chain and pointer.
14683 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
14684 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer.
14686 // This only handles simple types.
14687 if (V.getValueType() != MVT::i16 &&
14688 V.getValueType() != MVT::i32 &&
14689 V.getValueType() != MVT::i64)
14690 return Result;
14692 // Check the constant mask. Invert it so that the bits being masked out are
14693 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits
14694 // follow the sign bit for uniformity.
14695 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
14696 unsigned NotMaskLZ = countLeadingZeros(NotMask);
14697 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte.
14698 unsigned NotMaskTZ = countTrailingZeros(NotMask);
14699 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte.
14700 if (NotMaskLZ == 64) return Result; // All zero mask.
14702 // See if we have a continuous run of bits. If so, we have 0*1+0*
14703 if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64)
14704 return Result;
14706 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
14707 if (V.getValueType() != MVT::i64 && NotMaskLZ)
14708 NotMaskLZ -= 64-V.getValueSizeInBits();
14710 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
14711 switch (MaskedBytes) {
14712 case 1:
14713 case 2:
14714 case 4: break;
14715 default: return Result; // All one mask, or 5-byte mask.
14718 // Verify that the first bit starts at a multiple of mask so that the access
14719 // is aligned the same as the access width.
14720 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
14722 // For narrowing to be valid, it must be the case that the load the
14723 // immediately preceding memory operation before the store.
14724 if (LD == Chain.getNode())
14725 ; // ok.
14726 else if (Chain->getOpcode() == ISD::TokenFactor &&
14727 SDValue(LD, 1).hasOneUse()) {
14728 // LD has only 1 chain use so they are no indirect dependencies.
14729 if (!LD->isOperandOf(Chain.getNode()))
14730 return Result;
14731 } else
14732 return Result; // Fail.
14734 Result.first = MaskedBytes;
14735 Result.second = NotMaskTZ/8;
14736 return Result;
14739 /// Check to see if IVal is something that provides a value as specified by
14740 /// MaskInfo. If so, replace the specified store with a narrower store of
14741 /// truncated IVal.
14742 static SDValue
14743 ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
14744 SDValue IVal, StoreSDNode *St,
14745 DAGCombiner *DC) {
14746 unsigned NumBytes = MaskInfo.first;
14747 unsigned ByteShift = MaskInfo.second;
14748 SelectionDAG &DAG = DC->getDAG();
14750 // Check to see if IVal is all zeros in the part being masked in by the 'or'
14751 // that uses this. If not, this is not a replacement.
14752 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
14753 ByteShift*8, (ByteShift+NumBytes)*8);
14754 if (!DAG.MaskedValueIsZero(IVal, Mask)) return SDValue();
14756 // Check that it is legal on the target to do this. It is legal if the new
14757 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
14758 // legalization (and the target doesn't explicitly think this is a bad idea).
14759 MVT VT = MVT::getIntegerVT(NumBytes * 8);
14760 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14761 if (!DC->isTypeLegal(VT))
14762 return SDValue();
14763 if (St->getMemOperand() &&
14764 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
14765 *St->getMemOperand()))
14766 return SDValue();
14768 // Okay, we can do this! Replace the 'St' store with a store of IVal that is
14769 // shifted by ByteShift and truncated down to NumBytes.
14770 if (ByteShift) {
14771 SDLoc DL(IVal);
14772 IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal,
14773 DAG.getConstant(ByteShift*8, DL,
14774 DC->getShiftAmountTy(IVal.getValueType())));
14777 // Figure out the offset for the store and the alignment of the access.
14778 unsigned StOffset;
14779 unsigned NewAlign = St->getAlignment();
14781 if (DAG.getDataLayout().isLittleEndian())
14782 StOffset = ByteShift;
14783 else
14784 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
14786 SDValue Ptr = St->getBasePtr();
14787 if (StOffset) {
14788 SDLoc DL(IVal);
14789 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(),
14790 Ptr, DAG.getConstant(StOffset, DL, Ptr.getValueType()));
14791 NewAlign = MinAlign(NewAlign, StOffset);
14794 // Truncate down to the new size.
14795 IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
14797 ++OpsNarrowed;
14798 return DAG
14799 .getStore(St->getChain(), SDLoc(St), IVal, Ptr,
14800 St->getPointerInfo().getWithOffset(StOffset), NewAlign);
14803 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and
14804 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try
14805 /// narrowing the load and store if it would end up being a win for performance
14806 /// or code size.
14807 SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
14808 StoreSDNode *ST = cast<StoreSDNode>(N);
14809 if (!ST->isSimple())
14810 return SDValue();
14812 SDValue Chain = ST->getChain();
14813 SDValue Value = ST->getValue();
14814 SDValue Ptr = ST->getBasePtr();
14815 EVT VT = Value.getValueType();
14817 if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
14818 return SDValue();
14820 unsigned Opc = Value.getOpcode();
14822 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
14823 // is a byte mask indicating a consecutive number of bytes, check to see if
14824 // Y is known to provide just those bytes. If so, we try to replace the
14825 // load + replace + store sequence with a single (narrower) store, which makes
14826 // the load dead.
14827 if (Opc == ISD::OR) {
14828 std::pair<unsigned, unsigned> MaskedLoad;
14829 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
14830 if (MaskedLoad.first)
14831 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
14832 Value.getOperand(1), ST,this))
14833 return NewST;
14835 // Or is commutative, so try swapping X and Y.
14836 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
14837 if (MaskedLoad.first)
14838 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
14839 Value.getOperand(0), ST,this))
14840 return NewST;
14843 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
14844 Value.getOperand(1).getOpcode() != ISD::Constant)
14845 return SDValue();
14847 SDValue N0 = Value.getOperand(0);
14848 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
14849 Chain == SDValue(N0.getNode(), 1)) {
14850 LoadSDNode *LD = cast<LoadSDNode>(N0);
14851 if (LD->getBasePtr() != Ptr ||
14852 LD->getPointerInfo().getAddrSpace() !=
14853 ST->getPointerInfo().getAddrSpace())
14854 return SDValue();
14856 // Find the type to narrow it the load / op / store to.
14857 SDValue N1 = Value.getOperand(1);
14858 unsigned BitWidth = N1.getValueSizeInBits();
14859 APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
14860 if (Opc == ISD::AND)
14861 Imm ^= APInt::getAllOnesValue(BitWidth);
14862 if (Imm == 0 || Imm.isAllOnesValue())
14863 return SDValue();
14864 unsigned ShAmt = Imm.countTrailingZeros();
14865 unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
14866 unsigned NewBW = NextPowerOf2(MSB - ShAmt);
14867 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
14868 // The narrowing should be profitable, the load/store operation should be
14869 // legal (or custom) and the store size should be equal to the NewVT width.
14870 while (NewBW < BitWidth &&
14871 (NewVT.getStoreSizeInBits() != NewBW ||
14872 !TLI.isOperationLegalOrCustom(Opc, NewVT) ||
14873 !TLI.isNarrowingProfitable(VT, NewVT))) {
14874 NewBW = NextPowerOf2(NewBW);
14875 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
14877 if (NewBW >= BitWidth)
14878 return SDValue();
14880 // If the lsb changed does not start at the type bitwidth boundary,
14881 // start at the previous one.
14882 if (ShAmt % NewBW)
14883 ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
14884 APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
14885 std::min(BitWidth, ShAmt + NewBW));
14886 if ((Imm & Mask) == Imm) {
14887 APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
14888 if (Opc == ISD::AND)
14889 NewImm ^= APInt::getAllOnesValue(NewBW);
14890 uint64_t PtrOff = ShAmt / 8;
14891 // For big endian targets, we need to adjust the offset to the pointer to
14892 // load the correct bytes.
14893 if (DAG.getDataLayout().isBigEndian())
14894 PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
14896 unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
14897 Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
14898 if (NewAlign < DAG.getDataLayout().getABITypeAlignment(NewVTTy))
14899 return SDValue();
14901 SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD),
14902 Ptr.getValueType(), Ptr,
14903 DAG.getConstant(PtrOff, SDLoc(LD),
14904 Ptr.getValueType()));
14905 SDValue NewLD =
14906 DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr,
14907 LD->getPointerInfo().getWithOffset(PtrOff), NewAlign,
14908 LD->getMemOperand()->getFlags(), LD->getAAInfo());
14909 SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
14910 DAG.getConstant(NewImm, SDLoc(Value),
14911 NewVT));
14912 SDValue NewST =
14913 DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr,
14914 ST->getPointerInfo().getWithOffset(PtrOff), NewAlign);
14916 AddToWorklist(NewPtr.getNode());
14917 AddToWorklist(NewLD.getNode());
14918 AddToWorklist(NewVal.getNode());
14919 WorklistRemover DeadNodes(*this);
14920 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
14921 ++OpsNarrowed;
14922 return NewST;
14926 return SDValue();
14929 /// For a given floating point load / store pair, if the load value isn't used
14930 /// by any other operations, then consider transforming the pair to integer
14931 /// load / store operations if the target deems the transformation profitable.
14932 SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
14933 StoreSDNode *ST = cast<StoreSDNode>(N);
14934 SDValue Value = ST->getValue();
14935 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
14936 Value.hasOneUse()) {
14937 LoadSDNode *LD = cast<LoadSDNode>(Value);
14938 EVT VT = LD->getMemoryVT();
14939 if (!VT.isFloatingPoint() ||
14940 VT != ST->getMemoryVT() ||
14941 LD->isNonTemporal() ||
14942 ST->isNonTemporal() ||
14943 LD->getPointerInfo().getAddrSpace() != 0 ||
14944 ST->getPointerInfo().getAddrSpace() != 0)
14945 return SDValue();
14947 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
14948 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
14949 !TLI.isOperationLegal(ISD::STORE, IntVT) ||
14950 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
14951 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
14952 return SDValue();
14954 unsigned LDAlign = LD->getAlignment();
14955 unsigned STAlign = ST->getAlignment();
14956 Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
14957 unsigned ABIAlign = DAG.getDataLayout().getABITypeAlignment(IntVTTy);
14958 if (LDAlign < ABIAlign || STAlign < ABIAlign)
14959 return SDValue();
14961 SDValue NewLD =
14962 DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(),
14963 LD->getPointerInfo(), LDAlign);
14965 SDValue NewST =
14966 DAG.getStore(ST->getChain(), SDLoc(N), NewLD, ST->getBasePtr(),
14967 ST->getPointerInfo(), STAlign);
14969 AddToWorklist(NewLD.getNode());
14970 AddToWorklist(NewST.getNode());
14971 WorklistRemover DeadNodes(*this);
14972 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
14973 ++LdStFP2Int;
14974 return NewST;
14977 return SDValue();
14980 // This is a helper function for visitMUL to check the profitability
14981 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
14982 // MulNode is the original multiply, AddNode is (add x, c1),
14983 // and ConstNode is c2.
14985 // If the (add x, c1) has multiple uses, we could increase
14986 // the number of adds if we make this transformation.
14987 // It would only be worth doing this if we can remove a
14988 // multiply in the process. Check for that here.
14989 // To illustrate:
14990 // (A + c1) * c3
14991 // (A + c2) * c3
14992 // We're checking for cases where we have common "c3 * A" expressions.
14993 bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode,
14994 SDValue &AddNode,
14995 SDValue &ConstNode) {
14996 APInt Val;
14998 // If the add only has one use, this would be OK to do.
14999 if (AddNode.getNode()->hasOneUse())
15000 return true;
15002 // Walk all the users of the constant with which we're multiplying.
15003 for (SDNode *Use : ConstNode->uses()) {
15004 if (Use == MulNode) // This use is the one we're on right now. Skip it.
15005 continue;
15007 if (Use->getOpcode() == ISD::MUL) { // We have another multiply use.
15008 SDNode *OtherOp;
15009 SDNode *MulVar = AddNode.getOperand(0).getNode();
15011 // OtherOp is what we're multiplying against the constant.
15012 if (Use->getOperand(0) == ConstNode)
15013 OtherOp = Use->getOperand(1).getNode();
15014 else
15015 OtherOp = Use->getOperand(0).getNode();
15017 // Check to see if multiply is with the same operand of our "add".
15019 // ConstNode = CONST
15020 // Use = ConstNode * A <-- visiting Use. OtherOp is A.
15021 // ...
15022 // AddNode = (A + c1) <-- MulVar is A.
15023 // = AddNode * ConstNode <-- current visiting instruction.
15025 // If we make this transformation, we will have a common
15026 // multiply (ConstNode * A) that we can save.
15027 if (OtherOp == MulVar)
15028 return true;
15030 // Now check to see if a future expansion will give us a common
15031 // multiply.
15033 // ConstNode = CONST
15034 // AddNode = (A + c1)
15035 // ... = AddNode * ConstNode <-- current visiting instruction.
15036 // ...
15037 // OtherOp = (A + c2)
15038 // Use = OtherOp * ConstNode <-- visiting Use.
15040 // If we make this transformation, we will have a common
15041 // multiply (CONST * A) after we also do the same transformation
15042 // to the "t2" instruction.
15043 if (OtherOp->getOpcode() == ISD::ADD &&
15044 DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) &&
15045 OtherOp->getOperand(0).getNode() == MulVar)
15046 return true;
15050 // Didn't find a case where this would be profitable.
15051 return false;
15054 SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
15055 unsigned NumStores) {
15056 SmallVector<SDValue, 8> Chains;
15057 SmallPtrSet<const SDNode *, 8> Visited;
15058 SDLoc StoreDL(StoreNodes[0].MemNode);
15060 for (unsigned i = 0; i < NumStores; ++i) {
15061 Visited.insert(StoreNodes[i].MemNode);
15064 // don't include nodes that are children or repeated nodes.
15065 for (unsigned i = 0; i < NumStores; ++i) {
15066 if (Visited.insert(StoreNodes[i].MemNode->getChain().getNode()).second)
15067 Chains.push_back(StoreNodes[i].MemNode->getChain());
15070 assert(Chains.size() > 0 && "Chain should have generated a chain");
15071 return DAG.getTokenFactor(StoreDL, Chains);
15074 bool DAGCombiner::MergeStoresOfConstantsOrVecElts(
15075 SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores,
15076 bool IsConstantSrc, bool UseVector, bool UseTrunc) {
15077 // Make sure we have something to merge.
15078 if (NumStores < 2)
15079 return false;
15081 // The latest Node in the DAG.
15082 SDLoc DL(StoreNodes[0].MemNode);
15084 int64_t ElementSizeBits = MemVT.getStoreSizeInBits();
15085 unsigned SizeInBits = NumStores * ElementSizeBits;
15086 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
15088 EVT StoreTy;
15089 if (UseVector) {
15090 unsigned Elts = NumStores * NumMemElts;
15091 // Get the type for the merged vector store.
15092 StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
15093 } else
15094 StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits);
15096 SDValue StoredVal;
15097 if (UseVector) {
15098 if (IsConstantSrc) {
15099 SmallVector<SDValue, 8> BuildVector;
15100 for (unsigned I = 0; I != NumStores; ++I) {
15101 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode);
15102 SDValue Val = St->getValue();
15103 // If constant is of the wrong type, convert it now.
15104 if (MemVT != Val.getValueType()) {
15105 Val = peekThroughBitcasts(Val);
15106 // Deal with constants of wrong size.
15107 if (ElementSizeBits != Val.getValueSizeInBits()) {
15108 EVT IntMemVT =
15109 EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
15110 if (isa<ConstantFPSDNode>(Val)) {
15111 // Not clear how to truncate FP values.
15112 return false;
15113 } else if (auto *C = dyn_cast<ConstantSDNode>(Val))
15114 Val = DAG.getConstant(C->getAPIntValue()
15115 .zextOrTrunc(Val.getValueSizeInBits())
15116 .zextOrTrunc(ElementSizeBits),
15117 SDLoc(C), IntMemVT);
15119 // Make sure correctly size type is the correct type.
15120 Val = DAG.getBitcast(MemVT, Val);
15122 BuildVector.push_back(Val);
15124 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
15125 : ISD::BUILD_VECTOR,
15126 DL, StoreTy, BuildVector);
15127 } else {
15128 SmallVector<SDValue, 8> Ops;
15129 for (unsigned i = 0; i < NumStores; ++i) {
15130 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
15131 SDValue Val = peekThroughBitcasts(St->getValue());
15132 // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of
15133 // type MemVT. If the underlying value is not the correct
15134 // type, but it is an extraction of an appropriate vector we
15135 // can recast Val to be of the correct type. This may require
15136 // converting between EXTRACT_VECTOR_ELT and
15137 // EXTRACT_SUBVECTOR.
15138 if ((MemVT != Val.getValueType()) &&
15139 (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
15140 Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) {
15141 EVT MemVTScalarTy = MemVT.getScalarType();
15142 // We may need to add a bitcast here to get types to line up.
15143 if (MemVTScalarTy != Val.getValueType().getScalarType()) {
15144 Val = DAG.getBitcast(MemVT, Val);
15145 } else {
15146 unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR
15147 : ISD::EXTRACT_VECTOR_ELT;
15148 SDValue Vec = Val.getOperand(0);
15149 SDValue Idx = Val.getOperand(1);
15150 Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx);
15153 Ops.push_back(Val);
15156 // Build the extracted vector elements back into a vector.
15157 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
15158 : ISD::BUILD_VECTOR,
15159 DL, StoreTy, Ops);
15161 } else {
15162 // We should always use a vector store when merging extracted vector
15163 // elements, so this path implies a store of constants.
15164 assert(IsConstantSrc && "Merged vector elements should use vector store");
15166 APInt StoreInt(SizeInBits, 0);
15168 // Construct a single integer constant which is made of the smaller
15169 // constant inputs.
15170 bool IsLE = DAG.getDataLayout().isLittleEndian();
15171 for (unsigned i = 0; i < NumStores; ++i) {
15172 unsigned Idx = IsLE ? (NumStores - 1 - i) : i;
15173 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
15175 SDValue Val = St->getValue();
15176 Val = peekThroughBitcasts(Val);
15177 StoreInt <<= ElementSizeBits;
15178 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
15179 StoreInt |= C->getAPIntValue()
15180 .zextOrTrunc(ElementSizeBits)
15181 .zextOrTrunc(SizeInBits);
15182 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
15183 StoreInt |= C->getValueAPF()
15184 .bitcastToAPInt()
15185 .zextOrTrunc(ElementSizeBits)
15186 .zextOrTrunc(SizeInBits);
15187 // If fp truncation is necessary give up for now.
15188 if (MemVT.getSizeInBits() != ElementSizeBits)
15189 return false;
15190 } else {
15191 llvm_unreachable("Invalid constant element type");
15195 // Create the new Load and Store operations.
15196 StoredVal = DAG.getConstant(StoreInt, DL, StoreTy);
15199 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
15200 SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores);
15202 // make sure we use trunc store if it's necessary to be legal.
15203 SDValue NewStore;
15204 if (!UseTrunc) {
15205 NewStore = DAG.getStore(NewChain, DL, StoredVal, FirstInChain->getBasePtr(),
15206 FirstInChain->getPointerInfo(),
15207 FirstInChain->getAlignment());
15208 } else { // Must be realized as a trunc store
15209 EVT LegalizedStoredValTy =
15210 TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
15211 unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits();
15212 ConstantSDNode *C = cast<ConstantSDNode>(StoredVal);
15213 SDValue ExtendedStoreVal =
15214 DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL,
15215 LegalizedStoredValTy);
15216 NewStore = DAG.getTruncStore(
15217 NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(),
15218 FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/,
15219 FirstInChain->getAlignment(),
15220 FirstInChain->getMemOperand()->getFlags());
15223 // Replace all merged stores with the new store.
15224 for (unsigned i = 0; i < NumStores; ++i)
15225 CombineTo(StoreNodes[i].MemNode, NewStore);
15227 AddToWorklist(NewChain.getNode());
15228 return true;
15231 void DAGCombiner::getStoreMergeCandidates(
15232 StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes,
15233 SDNode *&RootNode) {
15234 // This holds the base pointer, index, and the offset in bytes from the base
15235 // pointer.
15236 BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
15237 EVT MemVT = St->getMemoryVT();
15239 SDValue Val = peekThroughBitcasts(St->getValue());
15240 // We must have a base and an offset.
15241 if (!BasePtr.getBase().getNode())
15242 return;
15244 // Do not handle stores to undef base pointers.
15245 if (BasePtr.getBase().isUndef())
15246 return;
15248 bool IsConstantSrc = isa<ConstantSDNode>(Val) || isa<ConstantFPSDNode>(Val);
15249 bool IsExtractVecSrc = (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
15250 Val.getOpcode() == ISD::EXTRACT_SUBVECTOR);
15251 bool IsLoadSrc = isa<LoadSDNode>(Val);
15252 BaseIndexOffset LBasePtr;
15253 // Match on loadbaseptr if relevant.
15254 EVT LoadVT;
15255 if (IsLoadSrc) {
15256 auto *Ld = cast<LoadSDNode>(Val);
15257 LBasePtr = BaseIndexOffset::match(Ld, DAG);
15258 LoadVT = Ld->getMemoryVT();
15259 // Load and store should be the same type.
15260 if (MemVT != LoadVT)
15261 return;
15262 // Loads must only have one use.
15263 if (!Ld->hasNUsesOfValue(1, 0))
15264 return;
15265 // The memory operands must not be volatile/indexed/atomic.
15266 // TODO: May be able to relax for unordered atomics (see D66309)
15267 if (!Ld->isSimple() || Ld->isIndexed())
15268 return;
15270 auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr,
15271 int64_t &Offset) -> bool {
15272 // The memory operands must not be volatile/indexed/atomic.
15273 // TODO: May be able to relax for unordered atomics (see D66309)
15274 if (!Other->isSimple() || Other->isIndexed())
15275 return false;
15276 // Don't mix temporal stores with non-temporal stores.
15277 if (St->isNonTemporal() != Other->isNonTemporal())
15278 return false;
15279 SDValue OtherBC = peekThroughBitcasts(Other->getValue());
15280 // Allow merging constants of different types as integers.
15281 bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT())
15282 : Other->getMemoryVT() != MemVT;
15283 if (IsLoadSrc) {
15284 if (NoTypeMatch)
15285 return false;
15286 // The Load's Base Ptr must also match
15287 if (LoadSDNode *OtherLd = dyn_cast<LoadSDNode>(OtherBC)) {
15288 BaseIndexOffset LPtr = BaseIndexOffset::match(OtherLd, DAG);
15289 if (LoadVT != OtherLd->getMemoryVT())
15290 return false;
15291 // Loads must only have one use.
15292 if (!OtherLd->hasNUsesOfValue(1, 0))
15293 return false;
15294 // The memory operands must not be volatile/indexed/atomic.
15295 // TODO: May be able to relax for unordered atomics (see D66309)
15296 if (!OtherLd->isSimple() ||
15297 OtherLd->isIndexed())
15298 return false;
15299 // Don't mix temporal loads with non-temporal loads.
15300 if (cast<LoadSDNode>(Val)->isNonTemporal() != OtherLd->isNonTemporal())
15301 return false;
15302 if (!(LBasePtr.equalBaseIndex(LPtr, DAG)))
15303 return false;
15304 } else
15305 return false;
15307 if (IsConstantSrc) {
15308 if (NoTypeMatch)
15309 return false;
15310 if (!(isa<ConstantSDNode>(OtherBC) || isa<ConstantFPSDNode>(OtherBC)))
15311 return false;
15313 if (IsExtractVecSrc) {
15314 // Do not merge truncated stores here.
15315 if (Other->isTruncatingStore())
15316 return false;
15317 if (!MemVT.bitsEq(OtherBC.getValueType()))
15318 return false;
15319 if (OtherBC.getOpcode() != ISD::EXTRACT_VECTOR_ELT &&
15320 OtherBC.getOpcode() != ISD::EXTRACT_SUBVECTOR)
15321 return false;
15323 Ptr = BaseIndexOffset::match(Other, DAG);
15324 return (BasePtr.equalBaseIndex(Ptr, DAG, Offset));
15327 // Check if the pair of StoreNode and the RootNode already bail out many
15328 // times which is over the limit in dependence check.
15329 auto OverLimitInDependenceCheck = [&](SDNode *StoreNode,
15330 SDNode *RootNode) -> bool {
15331 auto RootCount = StoreRootCountMap.find(StoreNode);
15332 if (RootCount != StoreRootCountMap.end() &&
15333 RootCount->second.first == RootNode &&
15334 RootCount->second.second > StoreMergeDependenceLimit)
15335 return true;
15336 return false;
15339 // We looking for a root node which is an ancestor to all mergable
15340 // stores. We search up through a load, to our root and then down
15341 // through all children. For instance we will find Store{1,2,3} if
15342 // St is Store1, Store2. or Store3 where the root is not a load
15343 // which always true for nonvolatile ops. TODO: Expand
15344 // the search to find all valid candidates through multiple layers of loads.
15346 // Root
15347 // |-------|-------|
15348 // Load Load Store3
15349 // | |
15350 // Store1 Store2
15352 // FIXME: We should be able to climb and
15353 // descend TokenFactors to find candidates as well.
15355 RootNode = St->getChain().getNode();
15357 unsigned NumNodesExplored = 0;
15358 if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(RootNode)) {
15359 RootNode = Ldn->getChain().getNode();
15360 for (auto I = RootNode->use_begin(), E = RootNode->use_end();
15361 I != E && NumNodesExplored < 1024; ++I, ++NumNodesExplored)
15362 if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) // walk down chain
15363 for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2)
15364 if (I2.getOperandNo() == 0)
15365 if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I2)) {
15366 BaseIndexOffset Ptr;
15367 int64_t PtrDiff;
15368 if (CandidateMatch(OtherST, Ptr, PtrDiff) &&
15369 !OverLimitInDependenceCheck(OtherST, RootNode))
15370 StoreNodes.push_back(MemOpLink(OtherST, PtrDiff));
15372 } else
15373 for (auto I = RootNode->use_begin(), E = RootNode->use_end();
15374 I != E && NumNodesExplored < 1024; ++I, ++NumNodesExplored)
15375 if (I.getOperandNo() == 0)
15376 if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I)) {
15377 BaseIndexOffset Ptr;
15378 int64_t PtrDiff;
15379 if (CandidateMatch(OtherST, Ptr, PtrDiff) &&
15380 !OverLimitInDependenceCheck(OtherST, RootNode))
15381 StoreNodes.push_back(MemOpLink(OtherST, PtrDiff));
15385 // We need to check that merging these stores does not cause a loop in
15386 // the DAG. Any store candidate may depend on another candidate
15387 // indirectly through its operand (we already consider dependencies
15388 // through the chain). Check in parallel by searching up from
15389 // non-chain operands of candidates.
15390 bool DAGCombiner::checkMergeStoreCandidatesForDependencies(
15391 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
15392 SDNode *RootNode) {
15393 // FIXME: We should be able to truncate a full search of
15394 // predecessors by doing a BFS and keeping tabs the originating
15395 // stores from which worklist nodes come from in a similar way to
15396 // TokenFactor simplfication.
15398 SmallPtrSet<const SDNode *, 32> Visited;
15399 SmallVector<const SDNode *, 8> Worklist;
15401 // RootNode is a predecessor to all candidates so we need not search
15402 // past it. Add RootNode (peeking through TokenFactors). Do not count
15403 // these towards size check.
15405 Worklist.push_back(RootNode);
15406 while (!Worklist.empty()) {
15407 auto N = Worklist.pop_back_val();
15408 if (!Visited.insert(N).second)
15409 continue; // Already present in Visited.
15410 if (N->getOpcode() == ISD::TokenFactor) {
15411 for (SDValue Op : N->ops())
15412 Worklist.push_back(Op.getNode());
15416 // Don't count pruning nodes towards max.
15417 unsigned int Max = 1024 + Visited.size();
15418 // Search Ops of store candidates.
15419 for (unsigned i = 0; i < NumStores; ++i) {
15420 SDNode *N = StoreNodes[i].MemNode;
15421 // Of the 4 Store Operands:
15422 // * Chain (Op 0) -> We have already considered these
15423 // in candidate selection and can be
15424 // safely ignored
15425 // * Value (Op 1) -> Cycles may happen (e.g. through load chains)
15426 // * Address (Op 2) -> Merged addresses may only vary by a fixed constant,
15427 // but aren't necessarily fromt the same base node, so
15428 // cycles possible (e.g. via indexed store).
15429 // * (Op 3) -> Represents the pre or post-indexing offset (or undef for
15430 // non-indexed stores). Not constant on all targets (e.g. ARM)
15431 // and so can participate in a cycle.
15432 for (unsigned j = 1; j < N->getNumOperands(); ++j)
15433 Worklist.push_back(N->getOperand(j).getNode());
15435 // Search through DAG. We can stop early if we find a store node.
15436 for (unsigned i = 0; i < NumStores; ++i)
15437 if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist,
15438 Max)) {
15439 // If the searching bail out, record the StoreNode and RootNode in the
15440 // StoreRootCountMap. If we have seen the pair many times over a limit,
15441 // we won't add the StoreNode into StoreNodes set again.
15442 if (Visited.size() >= Max) {
15443 auto &RootCount = StoreRootCountMap[StoreNodes[i].MemNode];
15444 if (RootCount.first == RootNode)
15445 RootCount.second++;
15446 else
15447 RootCount = {RootNode, 1};
15449 return false;
15451 return true;
15454 bool DAGCombiner::MergeConsecutiveStores(StoreSDNode *St) {
15455 if (OptLevel == CodeGenOpt::None || !EnableStoreMerging)
15456 return false;
15458 EVT MemVT = St->getMemoryVT();
15459 int64_t ElementSizeBytes = MemVT.getStoreSize();
15460 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
15462 if (MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits)
15463 return false;
15465 bool NoVectors = DAG.getMachineFunction().getFunction().hasFnAttribute(
15466 Attribute::NoImplicitFloat);
15468 // This function cannot currently deal with non-byte-sized memory sizes.
15469 if (ElementSizeBytes * 8 != MemVT.getSizeInBits())
15470 return false;
15472 if (!MemVT.isSimple())
15473 return false;
15475 // Perform an early exit check. Do not bother looking at stored values that
15476 // are not constants, loads, or extracted vector elements.
15477 SDValue StoredVal = peekThroughBitcasts(St->getValue());
15478 bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
15479 bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) ||
15480 isa<ConstantFPSDNode>(StoredVal);
15481 bool IsExtractVecSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
15482 StoredVal.getOpcode() == ISD::EXTRACT_SUBVECTOR);
15483 bool IsNonTemporalStore = St->isNonTemporal();
15484 bool IsNonTemporalLoad =
15485 IsLoadSrc && cast<LoadSDNode>(StoredVal)->isNonTemporal();
15487 if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecSrc)
15488 return false;
15490 SmallVector<MemOpLink, 8> StoreNodes;
15491 SDNode *RootNode;
15492 // Find potential store merge candidates by searching through chain sub-DAG
15493 getStoreMergeCandidates(St, StoreNodes, RootNode);
15495 // Check if there is anything to merge.
15496 if (StoreNodes.size() < 2)
15497 return false;
15499 // Sort the memory operands according to their distance from the
15500 // base pointer.
15501 llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) {
15502 return LHS.OffsetFromBase < RHS.OffsetFromBase;
15505 // Store Merge attempts to merge the lowest stores. This generally
15506 // works out as if successful, as the remaining stores are checked
15507 // after the first collection of stores is merged. However, in the
15508 // case that a non-mergeable store is found first, e.g., {p[-2],
15509 // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent
15510 // mergeable cases. To prevent this, we prune such stores from the
15511 // front of StoreNodes here.
15513 bool RV = false;
15514 while (StoreNodes.size() > 1) {
15515 size_t StartIdx = 0;
15516 while ((StartIdx + 1 < StoreNodes.size()) &&
15517 StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes !=
15518 StoreNodes[StartIdx + 1].OffsetFromBase)
15519 ++StartIdx;
15521 // Bail if we don't have enough candidates to merge.
15522 if (StartIdx + 1 >= StoreNodes.size())
15523 return RV;
15525 if (StartIdx)
15526 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx);
15528 // Scan the memory operations on the chain and find the first
15529 // non-consecutive store memory address.
15530 unsigned NumConsecutiveStores = 1;
15531 int64_t StartAddress = StoreNodes[0].OffsetFromBase;
15532 // Check that the addresses are consecutive starting from the second
15533 // element in the list of stores.
15534 for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) {
15535 int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
15536 if (CurrAddress - StartAddress != (ElementSizeBytes * i))
15537 break;
15538 NumConsecutiveStores = i + 1;
15541 if (NumConsecutiveStores < 2) {
15542 StoreNodes.erase(StoreNodes.begin(),
15543 StoreNodes.begin() + NumConsecutiveStores);
15544 continue;
15547 // The node with the lowest store address.
15548 LLVMContext &Context = *DAG.getContext();
15549 const DataLayout &DL = DAG.getDataLayout();
15551 // Store the constants into memory as one consecutive store.
15552 if (IsConstantSrc) {
15553 while (NumConsecutiveStores >= 2) {
15554 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
15555 unsigned FirstStoreAS = FirstInChain->getAddressSpace();
15556 unsigned FirstStoreAlign = FirstInChain->getAlignment();
15557 unsigned LastLegalType = 1;
15558 unsigned LastLegalVectorType = 1;
15559 bool LastIntegerTrunc = false;
15560 bool NonZero = false;
15561 unsigned FirstZeroAfterNonZero = NumConsecutiveStores;
15562 for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
15563 StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode);
15564 SDValue StoredVal = ST->getValue();
15565 bool IsElementZero = false;
15566 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal))
15567 IsElementZero = C->isNullValue();
15568 else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal))
15569 IsElementZero = C->getConstantFPValue()->isNullValue();
15570 if (IsElementZero) {
15571 if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores)
15572 FirstZeroAfterNonZero = i;
15574 NonZero |= !IsElementZero;
15576 // Find a legal type for the constant store.
15577 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
15578 EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits);
15579 bool IsFast = false;
15581 // Break early when size is too large to be legal.
15582 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
15583 break;
15585 if (TLI.isTypeLegal(StoreTy) &&
15586 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
15587 TLI.allowsMemoryAccess(Context, DL, StoreTy,
15588 *FirstInChain->getMemOperand(), &IsFast) &&
15589 IsFast) {
15590 LastIntegerTrunc = false;
15591 LastLegalType = i + 1;
15592 // Or check whether a truncstore is legal.
15593 } else if (TLI.getTypeAction(Context, StoreTy) ==
15594 TargetLowering::TypePromoteInteger) {
15595 EVT LegalizedStoredValTy =
15596 TLI.getTypeToTransformTo(Context, StoredVal.getValueType());
15597 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
15598 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) &&
15599 TLI.allowsMemoryAccess(Context, DL, StoreTy,
15600 *FirstInChain->getMemOperand(),
15601 &IsFast) &&
15602 IsFast) {
15603 LastIntegerTrunc = true;
15604 LastLegalType = i + 1;
15608 // We only use vectors if the constant is known to be zero or the
15609 // target allows it and the function is not marked with the
15610 // noimplicitfloat attribute.
15611 if ((!NonZero ||
15612 TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) &&
15613 !NoVectors) {
15614 // Find a legal type for the vector store.
15615 unsigned Elts = (i + 1) * NumMemElts;
15616 EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
15617 if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) &&
15618 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) &&
15619 TLI.allowsMemoryAccess(
15620 Context, DL, Ty, *FirstInChain->getMemOperand(), &IsFast) &&
15621 IsFast)
15622 LastLegalVectorType = i + 1;
15626 bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors;
15627 unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType;
15629 // Check if we found a legal integer type that creates a meaningful
15630 // merge.
15631 if (NumElem < 2) {
15632 // We know that candidate stores are in order and of correct
15633 // shape. While there is no mergeable sequence from the
15634 // beginning one may start later in the sequence. The only
15635 // reason a merge of size N could have failed where another of
15636 // the same size would not have, is if the alignment has
15637 // improved or we've dropped a non-zero value. Drop as many
15638 // candidates as we can here.
15639 unsigned NumSkip = 1;
15640 while (
15641 (NumSkip < NumConsecutiveStores) &&
15642 (NumSkip < FirstZeroAfterNonZero) &&
15643 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
15644 NumSkip++;
15646 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
15647 NumConsecutiveStores -= NumSkip;
15648 continue;
15651 // Check that we can merge these candidates without causing a cycle.
15652 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
15653 RootNode)) {
15654 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
15655 NumConsecutiveStores -= NumElem;
15656 continue;
15659 RV |= MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, true,
15660 UseVector, LastIntegerTrunc);
15662 // Remove merged stores for next iteration.
15663 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
15664 NumConsecutiveStores -= NumElem;
15666 continue;
15669 // When extracting multiple vector elements, try to store them
15670 // in one vector store rather than a sequence of scalar stores.
15671 if (IsExtractVecSrc) {
15672 // Loop on Consecutive Stores on success.
15673 while (NumConsecutiveStores >= 2) {
15674 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
15675 unsigned FirstStoreAS = FirstInChain->getAddressSpace();
15676 unsigned FirstStoreAlign = FirstInChain->getAlignment();
15677 unsigned NumStoresToMerge = 1;
15678 for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
15679 // Find a legal type for the vector store.
15680 unsigned Elts = (i + 1) * NumMemElts;
15681 EVT Ty =
15682 EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
15683 bool IsFast;
15685 // Break early when size is too large to be legal.
15686 if (Ty.getSizeInBits() > MaximumLegalStoreInBits)
15687 break;
15689 if (TLI.isTypeLegal(Ty) &&
15690 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) &&
15691 TLI.allowsMemoryAccess(Context, DL, Ty,
15692 *FirstInChain->getMemOperand(), &IsFast) &&
15693 IsFast)
15694 NumStoresToMerge = i + 1;
15697 // Check if we found a legal integer type creating a meaningful
15698 // merge.
15699 if (NumStoresToMerge < 2) {
15700 // We know that candidate stores are in order and of correct
15701 // shape. While there is no mergeable sequence from the
15702 // beginning one may start later in the sequence. The only
15703 // reason a merge of size N could have failed where another of
15704 // the same size would not have, is if the alignment has
15705 // improved. Drop as many candidates as we can here.
15706 unsigned NumSkip = 1;
15707 while (
15708 (NumSkip < NumConsecutiveStores) &&
15709 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
15710 NumSkip++;
15712 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
15713 NumConsecutiveStores -= NumSkip;
15714 continue;
15717 // Check that we can merge these candidates without causing a cycle.
15718 if (!checkMergeStoreCandidatesForDependencies(
15719 StoreNodes, NumStoresToMerge, RootNode)) {
15720 StoreNodes.erase(StoreNodes.begin(),
15721 StoreNodes.begin() + NumStoresToMerge);
15722 NumConsecutiveStores -= NumStoresToMerge;
15723 continue;
15726 RV |= MergeStoresOfConstantsOrVecElts(
15727 StoreNodes, MemVT, NumStoresToMerge, false, true, false);
15729 StoreNodes.erase(StoreNodes.begin(),
15730 StoreNodes.begin() + NumStoresToMerge);
15731 NumConsecutiveStores -= NumStoresToMerge;
15733 continue;
15736 // Below we handle the case of multiple consecutive stores that
15737 // come from multiple consecutive loads. We merge them into a single
15738 // wide load and a single wide store.
15740 // Look for load nodes which are used by the stored values.
15741 SmallVector<MemOpLink, 8> LoadNodes;
15743 // Find acceptable loads. Loads need to have the same chain (token factor),
15744 // must not be zext, volatile, indexed, and they must be consecutive.
15745 BaseIndexOffset LdBasePtr;
15747 for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
15748 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
15749 SDValue Val = peekThroughBitcasts(St->getValue());
15750 LoadSDNode *Ld = cast<LoadSDNode>(Val);
15752 BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG);
15753 // If this is not the first ptr that we check.
15754 int64_t LdOffset = 0;
15755 if (LdBasePtr.getBase().getNode()) {
15756 // The base ptr must be the same.
15757 if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset))
15758 break;
15759 } else {
15760 // Check that all other base pointers are the same as this one.
15761 LdBasePtr = LdPtr;
15764 // We found a potential memory operand to merge.
15765 LoadNodes.push_back(MemOpLink(Ld, LdOffset));
15768 while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) {
15769 // If we have load/store pair instructions and we only have two values,
15770 // don't bother merging.
15771 unsigned RequiredAlignment;
15772 if (LoadNodes.size() == 2 &&
15773 TLI.hasPairedLoad(MemVT, RequiredAlignment) &&
15774 StoreNodes[0].MemNode->getAlignment() >= RequiredAlignment) {
15775 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2);
15776 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2);
15777 break;
15779 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
15780 unsigned FirstStoreAS = FirstInChain->getAddressSpace();
15781 unsigned FirstStoreAlign = FirstInChain->getAlignment();
15782 LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
15783 unsigned FirstLoadAlign = FirstLoad->getAlignment();
15785 // Scan the memory operations on the chain and find the first
15786 // non-consecutive load memory address. These variables hold the index in
15787 // the store node array.
15789 unsigned LastConsecutiveLoad = 1;
15791 // This variable refers to the size and not index in the array.
15792 unsigned LastLegalVectorType = 1;
15793 unsigned LastLegalIntegerType = 1;
15794 bool isDereferenceable = true;
15795 bool DoIntegerTruncate = false;
15796 StartAddress = LoadNodes[0].OffsetFromBase;
15797 SDValue FirstChain = FirstLoad->getChain();
15798 for (unsigned i = 1; i < LoadNodes.size(); ++i) {
15799 // All loads must share the same chain.
15800 if (LoadNodes[i].MemNode->getChain() != FirstChain)
15801 break;
15803 int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
15804 if (CurrAddress - StartAddress != (ElementSizeBytes * i))
15805 break;
15806 LastConsecutiveLoad = i;
15808 if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable())
15809 isDereferenceable = false;
15811 // Find a legal type for the vector store.
15812 unsigned Elts = (i + 1) * NumMemElts;
15813 EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
15815 // Break early when size is too large to be legal.
15816 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
15817 break;
15819 bool IsFastSt, IsFastLd;
15820 if (TLI.isTypeLegal(StoreTy) &&
15821 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
15822 TLI.allowsMemoryAccess(Context, DL, StoreTy,
15823 *FirstInChain->getMemOperand(), &IsFastSt) &&
15824 IsFastSt &&
15825 TLI.allowsMemoryAccess(Context, DL, StoreTy,
15826 *FirstLoad->getMemOperand(), &IsFastLd) &&
15827 IsFastLd) {
15828 LastLegalVectorType = i + 1;
15831 // Find a legal type for the integer store.
15832 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
15833 StoreTy = EVT::getIntegerVT(Context, SizeInBits);
15834 if (TLI.isTypeLegal(StoreTy) &&
15835 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
15836 TLI.allowsMemoryAccess(Context, DL, StoreTy,
15837 *FirstInChain->getMemOperand(), &IsFastSt) &&
15838 IsFastSt &&
15839 TLI.allowsMemoryAccess(Context, DL, StoreTy,
15840 *FirstLoad->getMemOperand(), &IsFastLd) &&
15841 IsFastLd) {
15842 LastLegalIntegerType = i + 1;
15843 DoIntegerTruncate = false;
15844 // Or check whether a truncstore and extload is legal.
15845 } else if (TLI.getTypeAction(Context, StoreTy) ==
15846 TargetLowering::TypePromoteInteger) {
15847 EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy);
15848 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
15849 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) &&
15850 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy,
15851 StoreTy) &&
15852 TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy,
15853 StoreTy) &&
15854 TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) &&
15855 TLI.allowsMemoryAccess(Context, DL, StoreTy,
15856 *FirstInChain->getMemOperand(),
15857 &IsFastSt) &&
15858 IsFastSt &&
15859 TLI.allowsMemoryAccess(Context, DL, StoreTy,
15860 *FirstLoad->getMemOperand(), &IsFastLd) &&
15861 IsFastLd) {
15862 LastLegalIntegerType = i + 1;
15863 DoIntegerTruncate = true;
15868 // Only use vector types if the vector type is larger than the integer
15869 // type. If they are the same, use integers.
15870 bool UseVectorTy =
15871 LastLegalVectorType > LastLegalIntegerType && !NoVectors;
15872 unsigned LastLegalType =
15873 std::max(LastLegalVectorType, LastLegalIntegerType);
15875 // We add +1 here because the LastXXX variables refer to location while
15876 // the NumElem refers to array/index size.
15877 unsigned NumElem =
15878 std::min(NumConsecutiveStores, LastConsecutiveLoad + 1);
15879 NumElem = std::min(LastLegalType, NumElem);
15881 if (NumElem < 2) {
15882 // We know that candidate stores are in order and of correct
15883 // shape. While there is no mergeable sequence from the
15884 // beginning one may start later in the sequence. The only
15885 // reason a merge of size N could have failed where another of
15886 // the same size would not have is if the alignment or either
15887 // the load or store has improved. Drop as many candidates as we
15888 // can here.
15889 unsigned NumSkip = 1;
15890 while ((NumSkip < LoadNodes.size()) &&
15891 (LoadNodes[NumSkip].MemNode->getAlignment() <= FirstLoadAlign) &&
15892 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
15893 NumSkip++;
15894 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
15895 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip);
15896 NumConsecutiveStores -= NumSkip;
15897 continue;
15900 // Check that we can merge these candidates without causing a cycle.
15901 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
15902 RootNode)) {
15903 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
15904 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
15905 NumConsecutiveStores -= NumElem;
15906 continue;
15909 // Find if it is better to use vectors or integers to load and store
15910 // to memory.
15911 EVT JointMemOpVT;
15912 if (UseVectorTy) {
15913 // Find a legal type for the vector store.
15914 unsigned Elts = NumElem * NumMemElts;
15915 JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
15916 } else {
15917 unsigned SizeInBits = NumElem * ElementSizeBytes * 8;
15918 JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits);
15921 SDLoc LoadDL(LoadNodes[0].MemNode);
15922 SDLoc StoreDL(StoreNodes[0].MemNode);
15924 // The merged loads are required to have the same incoming chain, so
15925 // using the first's chain is acceptable.
15927 SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem);
15928 AddToWorklist(NewStoreChain.getNode());
15930 MachineMemOperand::Flags LdMMOFlags =
15931 isDereferenceable ? MachineMemOperand::MODereferenceable
15932 : MachineMemOperand::MONone;
15933 if (IsNonTemporalLoad)
15934 LdMMOFlags |= MachineMemOperand::MONonTemporal;
15936 MachineMemOperand::Flags StMMOFlags =
15937 IsNonTemporalStore ? MachineMemOperand::MONonTemporal
15938 : MachineMemOperand::MONone;
15940 SDValue NewLoad, NewStore;
15941 if (UseVectorTy || !DoIntegerTruncate) {
15942 NewLoad =
15943 DAG.getLoad(JointMemOpVT, LoadDL, FirstLoad->getChain(),
15944 FirstLoad->getBasePtr(), FirstLoad->getPointerInfo(),
15945 FirstLoadAlign, LdMMOFlags);
15946 NewStore = DAG.getStore(
15947 NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(),
15948 FirstInChain->getPointerInfo(), FirstStoreAlign, StMMOFlags);
15949 } else { // This must be the truncstore/extload case
15950 EVT ExtendedTy =
15951 TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT);
15952 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy,
15953 FirstLoad->getChain(), FirstLoad->getBasePtr(),
15954 FirstLoad->getPointerInfo(), JointMemOpVT,
15955 FirstLoadAlign, LdMMOFlags);
15956 NewStore = DAG.getTruncStore(NewStoreChain, StoreDL, NewLoad,
15957 FirstInChain->getBasePtr(),
15958 FirstInChain->getPointerInfo(),
15959 JointMemOpVT, FirstInChain->getAlignment(),
15960 FirstInChain->getMemOperand()->getFlags());
15963 // Transfer chain users from old loads to the new load.
15964 for (unsigned i = 0; i < NumElem; ++i) {
15965 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
15966 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
15967 SDValue(NewLoad.getNode(), 1));
15970 // Replace the all stores with the new store. Recursively remove
15971 // corresponding value if its no longer used.
15972 for (unsigned i = 0; i < NumElem; ++i) {
15973 SDValue Val = StoreNodes[i].MemNode->getOperand(1);
15974 CombineTo(StoreNodes[i].MemNode, NewStore);
15975 if (Val.getNode()->use_empty())
15976 recursivelyDeleteUnusedNodes(Val.getNode());
15979 RV = true;
15980 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
15981 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
15982 NumConsecutiveStores -= NumElem;
15985 return RV;
15988 SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) {
15989 SDLoc SL(ST);
15990 SDValue ReplStore;
15992 // Replace the chain to avoid dependency.
15993 if (ST->isTruncatingStore()) {
15994 ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(),
15995 ST->getBasePtr(), ST->getMemoryVT(),
15996 ST->getMemOperand());
15997 } else {
15998 ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(),
15999 ST->getMemOperand());
16002 // Create token to keep both nodes around.
16003 SDValue Token = DAG.getNode(ISD::TokenFactor, SL,
16004 MVT::Other, ST->getChain(), ReplStore);
16006 // Make sure the new and old chains are cleaned up.
16007 AddToWorklist(Token.getNode());
16009 // Don't add users to work list.
16010 return CombineTo(ST, Token, false);
16013 SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) {
16014 SDValue Value = ST->getValue();
16015 if (Value.getOpcode() == ISD::TargetConstantFP)
16016 return SDValue();
16018 SDLoc DL(ST);
16020 SDValue Chain = ST->getChain();
16021 SDValue Ptr = ST->getBasePtr();
16023 const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value);
16025 // NOTE: If the original store is volatile, this transform must not increase
16026 // the number of stores. For example, on x86-32 an f64 can be stored in one
16027 // processor operation but an i64 (which is not legal) requires two. So the
16028 // transform should not be done in this case.
16030 SDValue Tmp;
16031 switch (CFP->getSimpleValueType(0).SimpleTy) {
16032 default:
16033 llvm_unreachable("Unknown FP type");
16034 case MVT::f16: // We don't do this for these yet.
16035 case MVT::f80:
16036 case MVT::f128:
16037 case MVT::ppcf128:
16038 return SDValue();
16039 case MVT::f32:
16040 if ((isTypeLegal(MVT::i32) && !LegalOperations && ST->isSimple()) ||
16041 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
16043 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
16044 bitcastToAPInt().getZExtValue(), SDLoc(CFP),
16045 MVT::i32);
16046 return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand());
16049 return SDValue();
16050 case MVT::f64:
16051 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
16052 ST->isSimple()) ||
16053 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
16055 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
16056 getZExtValue(), SDLoc(CFP), MVT::i64);
16057 return DAG.getStore(Chain, DL, Tmp,
16058 Ptr, ST->getMemOperand());
16061 if (ST->isSimple() &&
16062 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
16063 // Many FP stores are not made apparent until after legalize, e.g. for
16064 // argument passing. Since this is so common, custom legalize the
16065 // 64-bit integer store into two 32-bit stores.
16066 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
16067 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32);
16068 SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32);
16069 if (DAG.getDataLayout().isBigEndian())
16070 std::swap(Lo, Hi);
16072 unsigned Alignment = ST->getAlignment();
16073 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
16074 AAMDNodes AAInfo = ST->getAAInfo();
16076 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
16077 ST->getAlignment(), MMOFlags, AAInfo);
16078 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
16079 DAG.getConstant(4, DL, Ptr.getValueType()));
16080 Alignment = MinAlign(Alignment, 4U);
16081 SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr,
16082 ST->getPointerInfo().getWithOffset(4),
16083 Alignment, MMOFlags, AAInfo);
16084 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
16085 St0, St1);
16088 return SDValue();
16092 SDValue DAGCombiner::visitSTORE(SDNode *N) {
16093 StoreSDNode *ST = cast<StoreSDNode>(N);
16094 SDValue Chain = ST->getChain();
16095 SDValue Value = ST->getValue();
16096 SDValue Ptr = ST->getBasePtr();
16098 // If this is a store of a bit convert, store the input value if the
16099 // resultant store does not need a higher alignment than the original.
16100 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
16101 ST->isUnindexed()) {
16102 EVT SVT = Value.getOperand(0).getValueType();
16103 // If the store is volatile, we only want to change the store type if the
16104 // resulting store is legal. Otherwise we might increase the number of
16105 // memory accesses. We don't care if the original type was legal or not
16106 // as we assume software couldn't rely on the number of accesses of an
16107 // illegal type.
16108 // TODO: May be able to relax for unordered atomics (see D66309)
16109 if (((!LegalOperations && ST->isSimple()) ||
16110 TLI.isOperationLegal(ISD::STORE, SVT)) &&
16111 TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT,
16112 DAG, *ST->getMemOperand())) {
16113 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr,
16114 ST->getPointerInfo(), ST->getAlignment(),
16115 ST->getMemOperand()->getFlags(), ST->getAAInfo());
16119 // Turn 'store undef, Ptr' -> nothing.
16120 if (Value.isUndef() && ST->isUnindexed())
16121 return Chain;
16123 // Try to infer better alignment information than the store already has.
16124 if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
16125 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
16126 if (Align > ST->getAlignment() && ST->getSrcValueOffset() % Align == 0) {
16127 SDValue NewStore =
16128 DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(),
16129 ST->getMemoryVT(), Align,
16130 ST->getMemOperand()->getFlags(), ST->getAAInfo());
16131 // NewStore will always be N as we are only refining the alignment
16132 assert(NewStore.getNode() == N);
16133 (void)NewStore;
16138 // Try transforming a pair floating point load / store ops to integer
16139 // load / store ops.
16140 if (SDValue NewST = TransformFPLoadStorePair(N))
16141 return NewST;
16143 // Try transforming several stores into STORE (BSWAP).
16144 if (SDValue Store = MatchStoreCombine(ST))
16145 return Store;
16147 if (ST->isUnindexed()) {
16148 // Walk up chain skipping non-aliasing memory nodes, on this store and any
16149 // adjacent stores.
16150 if (findBetterNeighborChains(ST)) {
16151 // replaceStoreChain uses CombineTo, which handled all of the worklist
16152 // manipulation. Return the original node to not do anything else.
16153 return SDValue(ST, 0);
16155 Chain = ST->getChain();
16158 // FIXME: is there such a thing as a truncating indexed store?
16159 if (ST->isTruncatingStore() && ST->isUnindexed() &&
16160 Value.getValueType().isInteger() &&
16161 (!isa<ConstantSDNode>(Value) ||
16162 !cast<ConstantSDNode>(Value)->isOpaque())) {
16163 APInt TruncDemandedBits =
16164 APInt::getLowBitsSet(Value.getScalarValueSizeInBits(),
16165 ST->getMemoryVT().getScalarSizeInBits());
16167 // See if we can simplify the input to this truncstore with knowledge that
16168 // only the low bits are being used. For example:
16169 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
16170 AddToWorklist(Value.getNode());
16171 if (SDValue Shorter = DAG.GetDemandedBits(Value, TruncDemandedBits))
16172 return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, ST->getMemoryVT(),
16173 ST->getMemOperand());
16175 // Otherwise, see if we can simplify the operation with
16176 // SimplifyDemandedBits, which only works if the value has a single use.
16177 if (SimplifyDemandedBits(Value, TruncDemandedBits)) {
16178 // Re-visit the store if anything changed and the store hasn't been merged
16179 // with another node (N is deleted) SimplifyDemandedBits will add Value's
16180 // node back to the worklist if necessary, but we also need to re-visit
16181 // the Store node itself.
16182 if (N->getOpcode() != ISD::DELETED_NODE)
16183 AddToWorklist(N);
16184 return SDValue(N, 0);
16188 // If this is a load followed by a store to the same location, then the store
16189 // is dead/noop.
16190 // TODO: Can relax for unordered atomics (see D66309)
16191 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
16192 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
16193 ST->isUnindexed() && ST->isSimple() &&
16194 // There can't be any side effects between the load and store, such as
16195 // a call or store.
16196 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
16197 // The store is dead, remove it.
16198 return Chain;
16202 // TODO: Can relax for unordered atomics (see D66309)
16203 if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) {
16204 if (ST->isUnindexed() && ST->isSimple() &&
16205 ST1->isUnindexed() && ST1->isSimple()) {
16206 if (ST1->getBasePtr() == Ptr && ST1->getValue() == Value &&
16207 ST->getMemoryVT() == ST1->getMemoryVT()) {
16208 // If this is a store followed by a store with the same value to the
16209 // same location, then the store is dead/noop.
16210 return Chain;
16213 if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() &&
16214 !ST1->getBasePtr().isUndef()) {
16215 const BaseIndexOffset STBase = BaseIndexOffset::match(ST, DAG);
16216 const BaseIndexOffset ChainBase = BaseIndexOffset::match(ST1, DAG);
16217 unsigned STBitSize = ST->getMemoryVT().getSizeInBits();
16218 unsigned ChainBitSize = ST1->getMemoryVT().getSizeInBits();
16219 // If this is a store who's preceding store to a subset of the current
16220 // location and no one other node is chained to that store we can
16221 // effectively drop the store. Do not remove stores to undef as they may
16222 // be used as data sinks.
16223 if (STBase.contains(DAG, STBitSize, ChainBase, ChainBitSize)) {
16224 CombineTo(ST1, ST1->getChain());
16225 return SDValue();
16228 // If ST stores to a subset of preceding store's write set, we may be
16229 // able to fold ST's value into the preceding stored value. As we know
16230 // the other uses of ST1's chain are unconcerned with ST, this folding
16231 // will not affect those nodes.
16232 int64_t BitOffset;
16233 if (ChainBase.contains(DAG, ChainBitSize, STBase, STBitSize,
16234 BitOffset)) {
16235 SDValue ChainValue = ST1->getValue();
16236 if (auto *C1 = dyn_cast<ConstantSDNode>(ChainValue)) {
16237 if (auto *C = dyn_cast<ConstantSDNode>(Value)) {
16238 APInt Val = C1->getAPIntValue();
16239 APInt InsertVal = C->getAPIntValue().zextOrTrunc(STBitSize);
16240 // FIXME: Handle Big-endian mode.
16241 if (!DAG.getDataLayout().isBigEndian()) {
16242 Val.insertBits(InsertVal, BitOffset);
16243 SDValue NewSDVal =
16244 DAG.getConstant(Val, SDLoc(C), ChainValue.getValueType(),
16245 C1->isTargetOpcode(), C1->isOpaque());
16246 SDNode *NewST1 = DAG.UpdateNodeOperands(
16247 ST1, ST1->getChain(), NewSDVal, ST1->getOperand(2),
16248 ST1->getOperand(3));
16249 return CombineTo(ST, SDValue(NewST1, 0));
16253 } // End ST subset of ST1 case.
16258 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
16259 // truncating store. We can do this even if this is already a truncstore.
16260 if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
16261 && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
16262 TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
16263 ST->getMemoryVT())) {
16264 return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
16265 Ptr, ST->getMemoryVT(), ST->getMemOperand());
16268 // Always perform this optimization before types are legal. If the target
16269 // prefers, also try this after legalization to catch stores that were created
16270 // by intrinsics or other nodes.
16271 if (!LegalTypes || (TLI.mergeStoresAfterLegalization(ST->getMemoryVT()))) {
16272 while (true) {
16273 // There can be multiple store sequences on the same chain.
16274 // Keep trying to merge store sequences until we are unable to do so
16275 // or until we merge the last store on the chain.
16276 bool Changed = MergeConsecutiveStores(ST);
16277 if (!Changed) break;
16278 // Return N as merge only uses CombineTo and no worklist clean
16279 // up is necessary.
16280 if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N))
16281 return SDValue(N, 0);
16285 // Try transforming N to an indexed store.
16286 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
16287 return SDValue(N, 0);
16289 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
16291 // Make sure to do this only after attempting to merge stores in order to
16292 // avoid changing the types of some subset of stores due to visit order,
16293 // preventing their merging.
16294 if (isa<ConstantFPSDNode>(ST->getValue())) {
16295 if (SDValue NewSt = replaceStoreOfFPConstant(ST))
16296 return NewSt;
16299 if (SDValue NewSt = splitMergedValStore(ST))
16300 return NewSt;
16302 return ReduceLoadOpStoreWidth(N);
16305 SDValue DAGCombiner::visitLIFETIME_END(SDNode *N) {
16306 const auto *LifetimeEnd = cast<LifetimeSDNode>(N);
16307 if (!LifetimeEnd->hasOffset())
16308 return SDValue();
16310 const BaseIndexOffset LifetimeEndBase(N->getOperand(1), SDValue(),
16311 LifetimeEnd->getOffset(), false);
16313 // We walk up the chains to find stores.
16314 SmallVector<SDValue, 8> Chains = {N->getOperand(0)};
16315 while (!Chains.empty()) {
16316 SDValue Chain = Chains.back();
16317 Chains.pop_back();
16318 if (!Chain.hasOneUse())
16319 continue;
16320 switch (Chain.getOpcode()) {
16321 case ISD::TokenFactor:
16322 for (unsigned Nops = Chain.getNumOperands(); Nops;)
16323 Chains.push_back(Chain.getOperand(--Nops));
16324 break;
16325 case ISD::LIFETIME_START:
16326 case ISD::LIFETIME_END:
16327 // We can forward past any lifetime start/end that can be proven not to
16328 // alias the node.
16329 if (!isAlias(Chain.getNode(), N))
16330 Chains.push_back(Chain.getOperand(0));
16331 break;
16332 case ISD::STORE: {
16333 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain);
16334 // TODO: Can relax for unordered atomics (see D66309)
16335 if (!ST->isSimple() || ST->isIndexed())
16336 continue;
16337 const BaseIndexOffset StoreBase = BaseIndexOffset::match(ST, DAG);
16338 // If we store purely within object bounds just before its lifetime ends,
16339 // we can remove the store.
16340 if (LifetimeEndBase.contains(DAG, LifetimeEnd->getSize() * 8, StoreBase,
16341 ST->getMemoryVT().getStoreSizeInBits())) {
16342 LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase.dump();
16343 dbgs() << "\nwithin LIFETIME_END of : ";
16344 LifetimeEndBase.dump(); dbgs() << "\n");
16345 CombineTo(ST, ST->getChain());
16346 return SDValue(N, 0);
16351 return SDValue();
16354 /// For the instruction sequence of store below, F and I values
16355 /// are bundled together as an i64 value before being stored into memory.
16356 /// Sometimes it is more efficent to generate separate stores for F and I,
16357 /// which can remove the bitwise instructions or sink them to colder places.
16359 /// (store (or (zext (bitcast F to i32) to i64),
16360 /// (shl (zext I to i64), 32)), addr) -->
16361 /// (store F, addr) and (store I, addr+4)
16363 /// Similarly, splitting for other merged store can also be beneficial, like:
16364 /// For pair of {i32, i32}, i64 store --> two i32 stores.
16365 /// For pair of {i32, i16}, i64 store --> two i32 stores.
16366 /// For pair of {i16, i16}, i32 store --> two i16 stores.
16367 /// For pair of {i16, i8}, i32 store --> two i16 stores.
16368 /// For pair of {i8, i8}, i16 store --> two i8 stores.
16370 /// We allow each target to determine specifically which kind of splitting is
16371 /// supported.
16373 /// The store patterns are commonly seen from the simple code snippet below
16374 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
16375 /// void goo(const std::pair<int, float> &);
16376 /// hoo() {
16377 /// ...
16378 /// goo(std::make_pair(tmp, ftmp));
16379 /// ...
16380 /// }
16382 SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) {
16383 if (OptLevel == CodeGenOpt::None)
16384 return SDValue();
16386 // Can't change the number of memory accesses for a volatile store or break
16387 // atomicity for an atomic one.
16388 if (!ST->isSimple())
16389 return SDValue();
16391 SDValue Val = ST->getValue();
16392 SDLoc DL(ST);
16394 // Match OR operand.
16395 if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR)
16396 return SDValue();
16398 // Match SHL operand and get Lower and Higher parts of Val.
16399 SDValue Op1 = Val.getOperand(0);
16400 SDValue Op2 = Val.getOperand(1);
16401 SDValue Lo, Hi;
16402 if (Op1.getOpcode() != ISD::SHL) {
16403 std::swap(Op1, Op2);
16404 if (Op1.getOpcode() != ISD::SHL)
16405 return SDValue();
16407 Lo = Op2;
16408 Hi = Op1.getOperand(0);
16409 if (!Op1.hasOneUse())
16410 return SDValue();
16412 // Match shift amount to HalfValBitSize.
16413 unsigned HalfValBitSize = Val.getValueSizeInBits() / 2;
16414 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1));
16415 if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize)
16416 return SDValue();
16418 // Lo and Hi are zero-extended from int with size less equal than 32
16419 // to i64.
16420 if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() ||
16421 !Lo.getOperand(0).getValueType().isScalarInteger() ||
16422 Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize ||
16423 Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() ||
16424 !Hi.getOperand(0).getValueType().isScalarInteger() ||
16425 Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize)
16426 return SDValue();
16428 // Use the EVT of low and high parts before bitcast as the input
16429 // of target query.
16430 EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST)
16431 ? Lo.getOperand(0).getValueType()
16432 : Lo.getValueType();
16433 EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST)
16434 ? Hi.getOperand(0).getValueType()
16435 : Hi.getValueType();
16436 if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
16437 return SDValue();
16439 // Start to split store.
16440 unsigned Alignment = ST->getAlignment();
16441 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
16442 AAMDNodes AAInfo = ST->getAAInfo();
16444 // Change the sizes of Lo and Hi's value types to HalfValBitSize.
16445 EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize);
16446 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0));
16447 Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0));
16449 SDValue Chain = ST->getChain();
16450 SDValue Ptr = ST->getBasePtr();
16451 // Lower value store.
16452 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
16453 ST->getAlignment(), MMOFlags, AAInfo);
16454 Ptr =
16455 DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
16456 DAG.getConstant(HalfValBitSize / 8, DL, Ptr.getValueType()));
16457 // Higher value store.
16458 SDValue St1 =
16459 DAG.getStore(St0, DL, Hi, Ptr,
16460 ST->getPointerInfo().getWithOffset(HalfValBitSize / 8),
16461 Alignment / 2, MMOFlags, AAInfo);
16462 return St1;
16465 /// Convert a disguised subvector insertion into a shuffle:
16466 SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) {
16467 SDValue InsertVal = N->getOperand(1);
16468 SDValue Vec = N->getOperand(0);
16470 // (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N), InsIndex)
16471 // --> (vector_shuffle X, Y)
16472 if (Vec.getOpcode() == ISD::VECTOR_SHUFFLE && Vec.hasOneUse() &&
16473 InsertVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
16474 isa<ConstantSDNode>(InsertVal.getOperand(1))) {
16475 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Vec.getNode());
16476 ArrayRef<int> Mask = SVN->getMask();
16478 SDValue X = Vec.getOperand(0);
16479 SDValue Y = Vec.getOperand(1);
16481 // Vec's operand 0 is using indices from 0 to N-1 and
16482 // operand 1 from N to 2N - 1, where N is the number of
16483 // elements in the vectors.
16484 int XOffset = -1;
16485 if (InsertVal.getOperand(0) == X) {
16486 XOffset = 0;
16487 } else if (InsertVal.getOperand(0) == Y) {
16488 XOffset = X.getValueType().getVectorNumElements();
16491 if (XOffset != -1) {
16492 SmallVector<int, 16> NewMask(Mask.begin(), Mask.end());
16494 auto *ExtrIndex = cast<ConstantSDNode>(InsertVal.getOperand(1));
16495 NewMask[InsIndex] = XOffset + ExtrIndex->getZExtValue();
16496 assert(NewMask[InsIndex] <
16497 (int)(2 * Vec.getValueType().getVectorNumElements()) &&
16498 NewMask[InsIndex] >= 0 && "NewMask[InsIndex] is out of bound");
16500 SDValue LegalShuffle =
16501 TLI.buildLegalVectorShuffle(Vec.getValueType(), SDLoc(N), X,
16502 Y, NewMask, DAG);
16503 if (LegalShuffle)
16504 return LegalShuffle;
16508 // insert_vector_elt V, (bitcast X from vector type), IdxC -->
16509 // bitcast(shuffle (bitcast V), (extended X), Mask)
16510 // Note: We do not use an insert_subvector node because that requires a
16511 // legal subvector type.
16512 if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() ||
16513 !InsertVal.getOperand(0).getValueType().isVector())
16514 return SDValue();
16516 SDValue SubVec = InsertVal.getOperand(0);
16517 SDValue DestVec = N->getOperand(0);
16518 EVT SubVecVT = SubVec.getValueType();
16519 EVT VT = DestVec.getValueType();
16520 unsigned NumSrcElts = SubVecVT.getVectorNumElements();
16521 unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits();
16522 unsigned NumMaskVals = ExtendRatio * NumSrcElts;
16524 // Step 1: Create a shuffle mask that implements this insert operation. The
16525 // vector that we are inserting into will be operand 0 of the shuffle, so
16526 // those elements are just 'i'. The inserted subvector is in the first
16527 // positions of operand 1 of the shuffle. Example:
16528 // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7}
16529 SmallVector<int, 16> Mask(NumMaskVals);
16530 for (unsigned i = 0; i != NumMaskVals; ++i) {
16531 if (i / NumSrcElts == InsIndex)
16532 Mask[i] = (i % NumSrcElts) + NumMaskVals;
16533 else
16534 Mask[i] = i;
16537 // Bail out if the target can not handle the shuffle we want to create.
16538 EVT SubVecEltVT = SubVecVT.getVectorElementType();
16539 EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals);
16540 if (!TLI.isShuffleMaskLegal(Mask, ShufVT))
16541 return SDValue();
16543 // Step 2: Create a wide vector from the inserted source vector by appending
16544 // undefined elements. This is the same size as our destination vector.
16545 SDLoc DL(N);
16546 SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT));
16547 ConcatOps[0] = SubVec;
16548 SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps);
16550 // Step 3: Shuffle in the padded subvector.
16551 SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec);
16552 SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask);
16553 AddToWorklist(PaddedSubV.getNode());
16554 AddToWorklist(DestVecBC.getNode());
16555 AddToWorklist(Shuf.getNode());
16556 return DAG.getBitcast(VT, Shuf);
16559 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
16560 SDValue InVec = N->getOperand(0);
16561 SDValue InVal = N->getOperand(1);
16562 SDValue EltNo = N->getOperand(2);
16563 SDLoc DL(N);
16565 // If the inserted element is an UNDEF, just use the input vector.
16566 if (InVal.isUndef())
16567 return InVec;
16569 EVT VT = InVec.getValueType();
16570 unsigned NumElts = VT.getVectorNumElements();
16572 // Remove redundant insertions:
16573 // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x
16574 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
16575 InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1))
16576 return InVec;
16578 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
16579 if (!IndexC) {
16580 // If this is variable insert to undef vector, it might be better to splat:
16581 // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... >
16582 if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT)) {
16583 SmallVector<SDValue, 8> Ops(NumElts, InVal);
16584 return DAG.getBuildVector(VT, DL, Ops);
16586 return SDValue();
16589 // We must know which element is being inserted for folds below here.
16590 unsigned Elt = IndexC->getZExtValue();
16591 if (SDValue Shuf = combineInsertEltToShuffle(N, Elt))
16592 return Shuf;
16594 // Canonicalize insert_vector_elt dag nodes.
16595 // Example:
16596 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1)
16597 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0)
16599 // Do this only if the child insert_vector node has one use; also
16600 // do this only if indices are both constants and Idx1 < Idx0.
16601 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse()
16602 && isa<ConstantSDNode>(InVec.getOperand(2))) {
16603 unsigned OtherElt = InVec.getConstantOperandVal(2);
16604 if (Elt < OtherElt) {
16605 // Swap nodes.
16606 SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT,
16607 InVec.getOperand(0), InVal, EltNo);
16608 AddToWorklist(NewOp.getNode());
16609 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()),
16610 VT, NewOp, InVec.getOperand(1), InVec.getOperand(2));
16614 // If we can't generate a legal BUILD_VECTOR, exit
16615 if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
16616 return SDValue();
16618 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
16619 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the
16620 // vector elements.
16621 SmallVector<SDValue, 8> Ops;
16622 // Do not combine these two vectors if the output vector will not replace
16623 // the input vector.
16624 if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) {
16625 Ops.append(InVec.getNode()->op_begin(),
16626 InVec.getNode()->op_end());
16627 } else if (InVec.isUndef()) {
16628 Ops.append(NumElts, DAG.getUNDEF(InVal.getValueType()));
16629 } else {
16630 return SDValue();
16632 assert(Ops.size() == NumElts && "Unexpected vector size");
16634 // Insert the element
16635 if (Elt < Ops.size()) {
16636 // All the operands of BUILD_VECTOR must have the same type;
16637 // we enforce that here.
16638 EVT OpVT = Ops[0].getValueType();
16639 Ops[Elt] = OpVT.isInteger() ? DAG.getAnyExtOrTrunc(InVal, DL, OpVT) : InVal;
16642 // Return the new vector
16643 return DAG.getBuildVector(VT, DL, Ops);
16646 SDValue DAGCombiner::scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT,
16647 SDValue EltNo,
16648 LoadSDNode *OriginalLoad) {
16649 assert(OriginalLoad->isSimple());
16651 EVT ResultVT = EVE->getValueType(0);
16652 EVT VecEltVT = InVecVT.getVectorElementType();
16653 unsigned Align = OriginalLoad->getAlignment();
16654 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
16655 VecEltVT.getTypeForEVT(*DAG.getContext()));
16657 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT))
16658 return SDValue();
16660 ISD::LoadExtType ExtTy = ResultVT.bitsGT(VecEltVT) ?
16661 ISD::NON_EXTLOAD : ISD::EXTLOAD;
16662 if (!TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT))
16663 return SDValue();
16665 Align = NewAlign;
16667 SDValue NewPtr = OriginalLoad->getBasePtr();
16668 SDValue Offset;
16669 EVT PtrType = NewPtr.getValueType();
16670 MachinePointerInfo MPI;
16671 SDLoc DL(EVE);
16672 if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) {
16673 int Elt = ConstEltNo->getZExtValue();
16674 unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8;
16675 Offset = DAG.getConstant(PtrOff, DL, PtrType);
16676 MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff);
16677 } else {
16678 Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType);
16679 Offset = DAG.getNode(
16680 ISD::MUL, DL, PtrType, Offset,
16681 DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType));
16682 // Discard the pointer info except the address space because the memory
16683 // operand can't represent this new access since the offset is variable.
16684 MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace());
16686 NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, Offset);
16688 // The replacement we need to do here is a little tricky: we need to
16689 // replace an extractelement of a load with a load.
16690 // Use ReplaceAllUsesOfValuesWith to do the replacement.
16691 // Note that this replacement assumes that the extractvalue is the only
16692 // use of the load; that's okay because we don't want to perform this
16693 // transformation in other cases anyway.
16694 SDValue Load;
16695 SDValue Chain;
16696 if (ResultVT.bitsGT(VecEltVT)) {
16697 // If the result type of vextract is wider than the load, then issue an
16698 // extending load instead.
16699 ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT,
16700 VecEltVT)
16701 ? ISD::ZEXTLOAD
16702 : ISD::EXTLOAD;
16703 Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT,
16704 OriginalLoad->getChain(), NewPtr, MPI, VecEltVT,
16705 Align, OriginalLoad->getMemOperand()->getFlags(),
16706 OriginalLoad->getAAInfo());
16707 Chain = Load.getValue(1);
16708 } else {
16709 Load = DAG.getLoad(VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr,
16710 MPI, Align, OriginalLoad->getMemOperand()->getFlags(),
16711 OriginalLoad->getAAInfo());
16712 Chain = Load.getValue(1);
16713 if (ResultVT.bitsLT(VecEltVT))
16714 Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load);
16715 else
16716 Load = DAG.getBitcast(ResultVT, Load);
16718 WorklistRemover DeadNodes(*this);
16719 SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) };
16720 SDValue To[] = { Load, Chain };
16721 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
16722 // Make sure to revisit this node to clean it up; it will usually be dead.
16723 AddToWorklist(EVE);
16724 // Since we're explicitly calling ReplaceAllUses, add the new node to the
16725 // worklist explicitly as well.
16726 AddUsersToWorklist(Load.getNode()); // Add users too
16727 AddToWorklist(Load.getNode());
16728 ++OpsNarrowed;
16729 return SDValue(EVE, 0);
16732 /// Transform a vector binary operation into a scalar binary operation by moving
16733 /// the math/logic after an extract element of a vector.
16734 static SDValue scalarizeExtractedBinop(SDNode *ExtElt, SelectionDAG &DAG,
16735 bool LegalOperations) {
16736 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16737 SDValue Vec = ExtElt->getOperand(0);
16738 SDValue Index = ExtElt->getOperand(1);
16739 auto *IndexC = dyn_cast<ConstantSDNode>(Index);
16740 if (!IndexC || !TLI.isBinOp(Vec.getOpcode()) || !Vec.hasOneUse() ||
16741 Vec.getNode()->getNumValues() != 1)
16742 return SDValue();
16744 // Targets may want to avoid this to prevent an expensive register transfer.
16745 if (!TLI.shouldScalarizeBinop(Vec))
16746 return SDValue();
16748 // Extracting an element of a vector constant is constant-folded, so this
16749 // transform is just replacing a vector op with a scalar op while moving the
16750 // extract.
16751 SDValue Op0 = Vec.getOperand(0);
16752 SDValue Op1 = Vec.getOperand(1);
16753 if (isAnyConstantBuildVector(Op0, true) ||
16754 isAnyConstantBuildVector(Op1, true)) {
16755 // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C'
16756 // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC)
16757 SDLoc DL(ExtElt);
16758 EVT VT = ExtElt->getValueType(0);
16759 SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Index);
16760 SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op1, Index);
16761 return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1);
16764 return SDValue();
16767 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
16768 SDValue VecOp = N->getOperand(0);
16769 SDValue Index = N->getOperand(1);
16770 EVT ScalarVT = N->getValueType(0);
16771 EVT VecVT = VecOp.getValueType();
16772 if (VecOp.isUndef())
16773 return DAG.getUNDEF(ScalarVT);
16775 // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val
16777 // This only really matters if the index is non-constant since other combines
16778 // on the constant elements already work.
16779 SDLoc DL(N);
16780 if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT &&
16781 Index == VecOp.getOperand(2)) {
16782 SDValue Elt = VecOp.getOperand(1);
16783 return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt;
16786 // (vextract (scalar_to_vector val, 0) -> val
16787 if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) {
16788 // Check if the result type doesn't match the inserted element type. A
16789 // SCALAR_TO_VECTOR may truncate the inserted element and the
16790 // EXTRACT_VECTOR_ELT may widen the extracted vector.
16791 SDValue InOp = VecOp.getOperand(0);
16792 if (InOp.getValueType() != ScalarVT) {
16793 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger());
16794 return DAG.getSExtOrTrunc(InOp, DL, ScalarVT);
16796 return InOp;
16799 // extract_vector_elt of out-of-bounds element -> UNDEF
16800 auto *IndexC = dyn_cast<ConstantSDNode>(Index);
16801 unsigned NumElts = VecVT.getVectorNumElements();
16802 if (IndexC && IndexC->getAPIntValue().uge(NumElts))
16803 return DAG.getUNDEF(ScalarVT);
16805 // extract_vector_elt (build_vector x, y), 1 -> y
16806 if (IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR &&
16807 TLI.isTypeLegal(VecVT) &&
16808 (VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT))) {
16809 SDValue Elt = VecOp.getOperand(IndexC->getZExtValue());
16810 EVT InEltVT = Elt.getValueType();
16812 // Sometimes build_vector's scalar input types do not match result type.
16813 if (ScalarVT == InEltVT)
16814 return Elt;
16816 // TODO: It may be useful to truncate if free if the build_vector implicitly
16817 // converts.
16820 // TODO: These transforms should not require the 'hasOneUse' restriction, but
16821 // there are regressions on multiple targets without it. We can end up with a
16822 // mess of scalar and vector code if we reduce only part of the DAG to scalar.
16823 if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() &&
16824 VecOp.hasOneUse()) {
16825 // The vector index of the LSBs of the source depend on the endian-ness.
16826 bool IsLE = DAG.getDataLayout().isLittleEndian();
16827 unsigned ExtractIndex = IndexC->getZExtValue();
16828 // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x)
16829 unsigned BCTruncElt = IsLE ? 0 : NumElts - 1;
16830 SDValue BCSrc = VecOp.getOperand(0);
16831 if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger())
16832 return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, BCSrc);
16834 if (LegalTypes && BCSrc.getValueType().isInteger() &&
16835 BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR) {
16836 // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt -->
16837 // trunc i64 X to i32
16838 SDValue X = BCSrc.getOperand(0);
16839 assert(X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() &&
16840 "Extract element and scalar to vector can't change element type "
16841 "from FP to integer.");
16842 unsigned XBitWidth = X.getValueSizeInBits();
16843 unsigned VecEltBitWidth = VecVT.getScalarSizeInBits();
16844 BCTruncElt = IsLE ? 0 : XBitWidth / VecEltBitWidth - 1;
16846 // An extract element return value type can be wider than its vector
16847 // operand element type. In that case, the high bits are undefined, so
16848 // it's possible that we may need to extend rather than truncate.
16849 if (ExtractIndex == BCTruncElt && XBitWidth > VecEltBitWidth) {
16850 assert(XBitWidth % VecEltBitWidth == 0 &&
16851 "Scalar bitwidth must be a multiple of vector element bitwidth");
16852 return DAG.getAnyExtOrTrunc(X, DL, ScalarVT);
16857 if (SDValue BO = scalarizeExtractedBinop(N, DAG, LegalOperations))
16858 return BO;
16860 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
16861 // We only perform this optimization before the op legalization phase because
16862 // we may introduce new vector instructions which are not backed by TD
16863 // patterns. For example on AVX, extracting elements from a wide vector
16864 // without using extract_subvector. However, if we can find an underlying
16865 // scalar value, then we can always use that.
16866 if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) {
16867 auto *Shuf = cast<ShuffleVectorSDNode>(VecOp);
16868 // Find the new index to extract from.
16869 int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue());
16871 // Extracting an undef index is undef.
16872 if (OrigElt == -1)
16873 return DAG.getUNDEF(ScalarVT);
16875 // Select the right vector half to extract from.
16876 SDValue SVInVec;
16877 if (OrigElt < (int)NumElts) {
16878 SVInVec = VecOp.getOperand(0);
16879 } else {
16880 SVInVec = VecOp.getOperand(1);
16881 OrigElt -= NumElts;
16884 if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) {
16885 SDValue InOp = SVInVec.getOperand(OrigElt);
16886 if (InOp.getValueType() != ScalarVT) {
16887 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger());
16888 InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT);
16891 return InOp;
16894 // FIXME: We should handle recursing on other vector shuffles and
16895 // scalar_to_vector here as well.
16897 if (!LegalOperations ||
16898 // FIXME: Should really be just isOperationLegalOrCustom.
16899 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecVT) ||
16900 TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VecVT)) {
16901 EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout());
16902 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec,
16903 DAG.getConstant(OrigElt, DL, IndexTy));
16907 // If only EXTRACT_VECTOR_ELT nodes use the source vector we can
16908 // simplify it based on the (valid) extraction indices.
16909 if (llvm::all_of(VecOp->uses(), [&](SDNode *Use) {
16910 return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
16911 Use->getOperand(0) == VecOp &&
16912 isa<ConstantSDNode>(Use->getOperand(1));
16913 })) {
16914 APInt DemandedElts = APInt::getNullValue(NumElts);
16915 for (SDNode *Use : VecOp->uses()) {
16916 auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1));
16917 if (CstElt->getAPIntValue().ult(NumElts))
16918 DemandedElts.setBit(CstElt->getZExtValue());
16920 if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) {
16921 // We simplified the vector operand of this extract element. If this
16922 // extract is not dead, visit it again so it is folded properly.
16923 if (N->getOpcode() != ISD::DELETED_NODE)
16924 AddToWorklist(N);
16925 return SDValue(N, 0);
16929 // Everything under here is trying to match an extract of a loaded value.
16930 // If the result of load has to be truncated, then it's not necessarily
16931 // profitable.
16932 bool BCNumEltsChanged = false;
16933 EVT ExtVT = VecVT.getVectorElementType();
16934 EVT LVT = ExtVT;
16935 if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT))
16936 return SDValue();
16938 if (VecOp.getOpcode() == ISD::BITCAST) {
16939 // Don't duplicate a load with other uses.
16940 if (!VecOp.hasOneUse())
16941 return SDValue();
16943 EVT BCVT = VecOp.getOperand(0).getValueType();
16944 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
16945 return SDValue();
16946 if (NumElts != BCVT.getVectorNumElements())
16947 BCNumEltsChanged = true;
16948 VecOp = VecOp.getOperand(0);
16949 ExtVT = BCVT.getVectorElementType();
16952 // extract (vector load $addr), i --> load $addr + i * size
16953 if (!LegalOperations && !IndexC && VecOp.hasOneUse() &&
16954 ISD::isNormalLoad(VecOp.getNode()) &&
16955 !Index->hasPredecessor(VecOp.getNode())) {
16956 auto *VecLoad = dyn_cast<LoadSDNode>(VecOp);
16957 if (VecLoad && VecLoad->isSimple())
16958 return scalarizeExtractedVectorLoad(N, VecVT, Index, VecLoad);
16961 // Perform only after legalization to ensure build_vector / vector_shuffle
16962 // optimizations have already been done.
16963 if (!LegalOperations || !IndexC)
16964 return SDValue();
16966 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
16967 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
16968 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
16969 int Elt = IndexC->getZExtValue();
16970 LoadSDNode *LN0 = nullptr;
16971 if (ISD::isNormalLoad(VecOp.getNode())) {
16972 LN0 = cast<LoadSDNode>(VecOp);
16973 } else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
16974 VecOp.getOperand(0).getValueType() == ExtVT &&
16975 ISD::isNormalLoad(VecOp.getOperand(0).getNode())) {
16976 // Don't duplicate a load with other uses.
16977 if (!VecOp.hasOneUse())
16978 return SDValue();
16980 LN0 = cast<LoadSDNode>(VecOp.getOperand(0));
16982 if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) {
16983 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
16984 // =>
16985 // (load $addr+1*size)
16987 // Don't duplicate a load with other uses.
16988 if (!VecOp.hasOneUse())
16989 return SDValue();
16991 // If the bit convert changed the number of elements, it is unsafe
16992 // to examine the mask.
16993 if (BCNumEltsChanged)
16994 return SDValue();
16996 // Select the input vector, guarding against out of range extract vector.
16997 int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt);
16998 VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1);
17000 if (VecOp.getOpcode() == ISD::BITCAST) {
17001 // Don't duplicate a load with other uses.
17002 if (!VecOp.hasOneUse())
17003 return SDValue();
17005 VecOp = VecOp.getOperand(0);
17007 if (ISD::isNormalLoad(VecOp.getNode())) {
17008 LN0 = cast<LoadSDNode>(VecOp);
17009 Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts;
17010 Index = DAG.getConstant(Elt, DL, Index.getValueType());
17014 // Make sure we found a non-volatile load and the extractelement is
17015 // the only use.
17016 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || !LN0->isSimple())
17017 return SDValue();
17019 // If Idx was -1 above, Elt is going to be -1, so just return undef.
17020 if (Elt == -1)
17021 return DAG.getUNDEF(LVT);
17023 return scalarizeExtractedVectorLoad(N, VecVT, Index, LN0);
17026 // Simplify (build_vec (ext )) to (bitcast (build_vec ))
17027 SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
17028 // We perform this optimization post type-legalization because
17029 // the type-legalizer often scalarizes integer-promoted vectors.
17030 // Performing this optimization before may create bit-casts which
17031 // will be type-legalized to complex code sequences.
17032 // We perform this optimization only before the operation legalizer because we
17033 // may introduce illegal operations.
17034 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
17035 return SDValue();
17037 unsigned NumInScalars = N->getNumOperands();
17038 SDLoc DL(N);
17039 EVT VT = N->getValueType(0);
17041 // Check to see if this is a BUILD_VECTOR of a bunch of values
17042 // which come from any_extend or zero_extend nodes. If so, we can create
17043 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
17044 // optimizations. We do not handle sign-extend because we can't fill the sign
17045 // using shuffles.
17046 EVT SourceType = MVT::Other;
17047 bool AllAnyExt = true;
17049 for (unsigned i = 0; i != NumInScalars; ++i) {
17050 SDValue In = N->getOperand(i);
17051 // Ignore undef inputs.
17052 if (In.isUndef()) continue;
17054 bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND;
17055 bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
17057 // Abort if the element is not an extension.
17058 if (!ZeroExt && !AnyExt) {
17059 SourceType = MVT::Other;
17060 break;
17063 // The input is a ZeroExt or AnyExt. Check the original type.
17064 EVT InTy = In.getOperand(0).getValueType();
17066 // Check that all of the widened source types are the same.
17067 if (SourceType == MVT::Other)
17068 // First time.
17069 SourceType = InTy;
17070 else if (InTy != SourceType) {
17071 // Multiple income types. Abort.
17072 SourceType = MVT::Other;
17073 break;
17076 // Check if all of the extends are ANY_EXTENDs.
17077 AllAnyExt &= AnyExt;
17080 // In order to have valid types, all of the inputs must be extended from the
17081 // same source type and all of the inputs must be any or zero extend.
17082 // Scalar sizes must be a power of two.
17083 EVT OutScalarTy = VT.getScalarType();
17084 bool ValidTypes = SourceType != MVT::Other &&
17085 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
17086 isPowerOf2_32(SourceType.getSizeInBits());
17088 // Create a new simpler BUILD_VECTOR sequence which other optimizations can
17089 // turn into a single shuffle instruction.
17090 if (!ValidTypes)
17091 return SDValue();
17093 bool isLE = DAG.getDataLayout().isLittleEndian();
17094 unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
17095 assert(ElemRatio > 1 && "Invalid element size ratio");
17096 SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
17097 DAG.getConstant(0, DL, SourceType);
17099 unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
17100 SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
17102 // Populate the new build_vector
17103 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
17104 SDValue Cast = N->getOperand(i);
17105 assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
17106 Cast.getOpcode() == ISD::ZERO_EXTEND ||
17107 Cast.isUndef()) && "Invalid cast opcode");
17108 SDValue In;
17109 if (Cast.isUndef())
17110 In = DAG.getUNDEF(SourceType);
17111 else
17112 In = Cast->getOperand(0);
17113 unsigned Index = isLE ? (i * ElemRatio) :
17114 (i * ElemRatio + (ElemRatio - 1));
17116 assert(Index < Ops.size() && "Invalid index");
17117 Ops[Index] = In;
17120 // The type of the new BUILD_VECTOR node.
17121 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
17122 assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
17123 "Invalid vector size");
17124 // Check if the new vector type is legal.
17125 if (!isTypeLegal(VecVT) ||
17126 (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) &&
17127 TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)))
17128 return SDValue();
17130 // Make the new BUILD_VECTOR.
17131 SDValue BV = DAG.getBuildVector(VecVT, DL, Ops);
17133 // The new BUILD_VECTOR node has the potential to be further optimized.
17134 AddToWorklist(BV.getNode());
17135 // Bitcast to the desired type.
17136 return DAG.getBitcast(VT, BV);
17139 SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N,
17140 ArrayRef<int> VectorMask,
17141 SDValue VecIn1, SDValue VecIn2,
17142 unsigned LeftIdx, bool DidSplitVec) {
17143 MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
17144 SDValue ZeroIdx = DAG.getConstant(0, DL, IdxTy);
17146 EVT VT = N->getValueType(0);
17147 EVT InVT1 = VecIn1.getValueType();
17148 EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1;
17150 unsigned NumElems = VT.getVectorNumElements();
17151 unsigned ShuffleNumElems = NumElems;
17153 // If we artificially split a vector in two already, then the offsets in the
17154 // operands will all be based off of VecIn1, even those in VecIn2.
17155 unsigned Vec2Offset = DidSplitVec ? 0 : InVT1.getVectorNumElements();
17157 // We can't generate a shuffle node with mismatched input and output types.
17158 // Try to make the types match the type of the output.
17159 if (InVT1 != VT || InVT2 != VT) {
17160 if ((VT.getSizeInBits() % InVT1.getSizeInBits() == 0) && InVT1 == InVT2) {
17161 // If the output vector length is a multiple of both input lengths,
17162 // we can concatenate them and pad the rest with undefs.
17163 unsigned NumConcats = VT.getSizeInBits() / InVT1.getSizeInBits();
17164 assert(NumConcats >= 2 && "Concat needs at least two inputs!");
17165 SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1));
17166 ConcatOps[0] = VecIn1;
17167 ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1);
17168 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
17169 VecIn2 = SDValue();
17170 } else if (InVT1.getSizeInBits() == VT.getSizeInBits() * 2) {
17171 if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems))
17172 return SDValue();
17174 if (!VecIn2.getNode()) {
17175 // If we only have one input vector, and it's twice the size of the
17176 // output, split it in two.
17177 VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1,
17178 DAG.getConstant(NumElems, DL, IdxTy));
17179 VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx);
17180 // Since we now have shorter input vectors, adjust the offset of the
17181 // second vector's start.
17182 Vec2Offset = NumElems;
17183 } else if (InVT2.getSizeInBits() <= InVT1.getSizeInBits()) {
17184 // VecIn1 is wider than the output, and we have another, possibly
17185 // smaller input. Pad the smaller input with undefs, shuffle at the
17186 // input vector width, and extract the output.
17187 // The shuffle type is different than VT, so check legality again.
17188 if (LegalOperations &&
17189 !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1))
17190 return SDValue();
17192 // Legalizing INSERT_SUBVECTOR is tricky - you basically have to
17193 // lower it back into a BUILD_VECTOR. So if the inserted type is
17194 // illegal, don't even try.
17195 if (InVT1 != InVT2) {
17196 if (!TLI.isTypeLegal(InVT2))
17197 return SDValue();
17198 VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1,
17199 DAG.getUNDEF(InVT1), VecIn2, ZeroIdx);
17201 ShuffleNumElems = NumElems * 2;
17202 } else {
17203 // Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider
17204 // than VecIn1. We can't handle this for now - this case will disappear
17205 // when we start sorting the vectors by type.
17206 return SDValue();
17208 } else if (InVT2.getSizeInBits() * 2 == VT.getSizeInBits() &&
17209 InVT1.getSizeInBits() == VT.getSizeInBits()) {
17210 SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2));
17211 ConcatOps[0] = VecIn2;
17212 VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
17213 } else {
17214 // TODO: Support cases where the length mismatch isn't exactly by a
17215 // factor of 2.
17216 // TODO: Move this check upwards, so that if we have bad type
17217 // mismatches, we don't create any DAG nodes.
17218 return SDValue();
17222 // Initialize mask to undef.
17223 SmallVector<int, 8> Mask(ShuffleNumElems, -1);
17225 // Only need to run up to the number of elements actually used, not the
17226 // total number of elements in the shuffle - if we are shuffling a wider
17227 // vector, the high lanes should be set to undef.
17228 for (unsigned i = 0; i != NumElems; ++i) {
17229 if (VectorMask[i] <= 0)
17230 continue;
17232 unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1);
17233 if (VectorMask[i] == (int)LeftIdx) {
17234 Mask[i] = ExtIndex;
17235 } else if (VectorMask[i] == (int)LeftIdx + 1) {
17236 Mask[i] = Vec2Offset + ExtIndex;
17240 // The type the input vectors may have changed above.
17241 InVT1 = VecIn1.getValueType();
17243 // If we already have a VecIn2, it should have the same type as VecIn1.
17244 // If we don't, get an undef/zero vector of the appropriate type.
17245 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1);
17246 assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type.");
17248 SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask);
17249 if (ShuffleNumElems > NumElems)
17250 Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx);
17252 return Shuffle;
17255 static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG) {
17256 assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector");
17258 // First, determine where the build vector is not undef.
17259 // TODO: We could extend this to handle zero elements as well as undefs.
17260 int NumBVOps = BV->getNumOperands();
17261 int ZextElt = -1;
17262 for (int i = 0; i != NumBVOps; ++i) {
17263 SDValue Op = BV->getOperand(i);
17264 if (Op.isUndef())
17265 continue;
17266 if (ZextElt == -1)
17267 ZextElt = i;
17268 else
17269 return SDValue();
17271 // Bail out if there's no non-undef element.
17272 if (ZextElt == -1)
17273 return SDValue();
17275 // The build vector contains some number of undef elements and exactly
17276 // one other element. That other element must be a zero-extended scalar
17277 // extracted from a vector at a constant index to turn this into a shuffle.
17278 // Also, require that the build vector does not implicitly truncate/extend
17279 // its elements.
17280 // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND.
17281 EVT VT = BV->getValueType(0);
17282 SDValue Zext = BV->getOperand(ZextElt);
17283 if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() ||
17284 Zext.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
17285 !isa<ConstantSDNode>(Zext.getOperand(0).getOperand(1)) ||
17286 Zext.getValueSizeInBits() != VT.getScalarSizeInBits())
17287 return SDValue();
17289 // The zero-extend must be a multiple of the source size, and we must be
17290 // building a vector of the same size as the source of the extract element.
17291 SDValue Extract = Zext.getOperand(0);
17292 unsigned DestSize = Zext.getValueSizeInBits();
17293 unsigned SrcSize = Extract.getValueSizeInBits();
17294 if (DestSize % SrcSize != 0 ||
17295 Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits())
17296 return SDValue();
17298 // Create a shuffle mask that will combine the extracted element with zeros
17299 // and undefs.
17300 int ZextRatio = DestSize / SrcSize;
17301 int NumMaskElts = NumBVOps * ZextRatio;
17302 SmallVector<int, 32> ShufMask(NumMaskElts, -1);
17303 for (int i = 0; i != NumMaskElts; ++i) {
17304 if (i / ZextRatio == ZextElt) {
17305 // The low bits of the (potentially translated) extracted element map to
17306 // the source vector. The high bits map to zero. We will use a zero vector
17307 // as the 2nd source operand of the shuffle, so use the 1st element of
17308 // that vector (mask value is number-of-elements) for the high bits.
17309 if (i % ZextRatio == 0)
17310 ShufMask[i] = Extract.getConstantOperandVal(1);
17311 else
17312 ShufMask[i] = NumMaskElts;
17315 // Undef elements of the build vector remain undef because we initialize
17316 // the shuffle mask with -1.
17319 // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... -->
17320 // bitcast (shuffle V, ZeroVec, VectorMask)
17321 SDLoc DL(BV);
17322 EVT VecVT = Extract.getOperand(0).getValueType();
17323 SDValue ZeroVec = DAG.getConstant(0, DL, VecVT);
17324 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17325 SDValue Shuf = TLI.buildLegalVectorShuffle(VecVT, DL, Extract.getOperand(0),
17326 ZeroVec, ShufMask, DAG);
17327 if (!Shuf)
17328 return SDValue();
17329 return DAG.getBitcast(VT, Shuf);
17332 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
17333 // operations. If the types of the vectors we're extracting from allow it,
17334 // turn this into a vector_shuffle node.
17335 SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) {
17336 SDLoc DL(N);
17337 EVT VT = N->getValueType(0);
17339 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
17340 if (!isTypeLegal(VT))
17341 return SDValue();
17343 if (SDValue V = reduceBuildVecToShuffleWithZero(N, DAG))
17344 return V;
17346 // May only combine to shuffle after legalize if shuffle is legal.
17347 if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT))
17348 return SDValue();
17350 bool UsesZeroVector = false;
17351 unsigned NumElems = N->getNumOperands();
17353 // Record, for each element of the newly built vector, which input vector
17354 // that element comes from. -1 stands for undef, 0 for the zero vector,
17355 // and positive values for the input vectors.
17356 // VectorMask maps each element to its vector number, and VecIn maps vector
17357 // numbers to their initial SDValues.
17359 SmallVector<int, 8> VectorMask(NumElems, -1);
17360 SmallVector<SDValue, 8> VecIn;
17361 VecIn.push_back(SDValue());
17363 for (unsigned i = 0; i != NumElems; ++i) {
17364 SDValue Op = N->getOperand(i);
17366 if (Op.isUndef())
17367 continue;
17369 // See if we can use a blend with a zero vector.
17370 // TODO: Should we generalize this to a blend with an arbitrary constant
17371 // vector?
17372 if (isNullConstant(Op) || isNullFPConstant(Op)) {
17373 UsesZeroVector = true;
17374 VectorMask[i] = 0;
17375 continue;
17378 // Not an undef or zero. If the input is something other than an
17379 // EXTRACT_VECTOR_ELT with an in-range constant index, bail out.
17380 if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
17381 !isa<ConstantSDNode>(Op.getOperand(1)))
17382 return SDValue();
17383 SDValue ExtractedFromVec = Op.getOperand(0);
17385 const APInt &ExtractIdx = Op.getConstantOperandAPInt(1);
17386 if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements()))
17387 return SDValue();
17389 // All inputs must have the same element type as the output.
17390 if (VT.getVectorElementType() !=
17391 ExtractedFromVec.getValueType().getVectorElementType())
17392 return SDValue();
17394 // Have we seen this input vector before?
17395 // The vectors are expected to be tiny (usually 1 or 2 elements), so using
17396 // a map back from SDValues to numbers isn't worth it.
17397 unsigned Idx = std::distance(
17398 VecIn.begin(), std::find(VecIn.begin(), VecIn.end(), ExtractedFromVec));
17399 if (Idx == VecIn.size())
17400 VecIn.push_back(ExtractedFromVec);
17402 VectorMask[i] = Idx;
17405 // If we didn't find at least one input vector, bail out.
17406 if (VecIn.size() < 2)
17407 return SDValue();
17409 // If all the Operands of BUILD_VECTOR extract from same
17410 // vector, then split the vector efficiently based on the maximum
17411 // vector access index and adjust the VectorMask and
17412 // VecIn accordingly.
17413 bool DidSplitVec = false;
17414 if (VecIn.size() == 2) {
17415 unsigned MaxIndex = 0;
17416 unsigned NearestPow2 = 0;
17417 SDValue Vec = VecIn.back();
17418 EVT InVT = Vec.getValueType();
17419 MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
17420 SmallVector<unsigned, 8> IndexVec(NumElems, 0);
17422 for (unsigned i = 0; i < NumElems; i++) {
17423 if (VectorMask[i] <= 0)
17424 continue;
17425 unsigned Index = N->getOperand(i).getConstantOperandVal(1);
17426 IndexVec[i] = Index;
17427 MaxIndex = std::max(MaxIndex, Index);
17430 NearestPow2 = PowerOf2Ceil(MaxIndex);
17431 if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 &&
17432 NumElems * 2 < NearestPow2) {
17433 unsigned SplitSize = NearestPow2 / 2;
17434 EVT SplitVT = EVT::getVectorVT(*DAG.getContext(),
17435 InVT.getVectorElementType(), SplitSize);
17436 if (TLI.isTypeLegal(SplitVT)) {
17437 SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
17438 DAG.getConstant(SplitSize, DL, IdxTy));
17439 SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
17440 DAG.getConstant(0, DL, IdxTy));
17441 VecIn.pop_back();
17442 VecIn.push_back(VecIn1);
17443 VecIn.push_back(VecIn2);
17444 DidSplitVec = true;
17446 for (unsigned i = 0; i < NumElems; i++) {
17447 if (VectorMask[i] <= 0)
17448 continue;
17449 VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2;
17455 // TODO: We want to sort the vectors by descending length, so that adjacent
17456 // pairs have similar length, and the longer vector is always first in the
17457 // pair.
17459 // TODO: Should this fire if some of the input vectors has illegal type (like
17460 // it does now), or should we let legalization run its course first?
17462 // Shuffle phase:
17463 // Take pairs of vectors, and shuffle them so that the result has elements
17464 // from these vectors in the correct places.
17465 // For example, given:
17466 // t10: i32 = extract_vector_elt t1, Constant:i64<0>
17467 // t11: i32 = extract_vector_elt t2, Constant:i64<0>
17468 // t12: i32 = extract_vector_elt t3, Constant:i64<0>
17469 // t13: i32 = extract_vector_elt t1, Constant:i64<1>
17470 // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13
17471 // We will generate:
17472 // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2
17473 // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef
17474 SmallVector<SDValue, 4> Shuffles;
17475 for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) {
17476 unsigned LeftIdx = 2 * In + 1;
17477 SDValue VecLeft = VecIn[LeftIdx];
17478 SDValue VecRight =
17479 (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue();
17481 if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft,
17482 VecRight, LeftIdx, DidSplitVec))
17483 Shuffles.push_back(Shuffle);
17484 else
17485 return SDValue();
17488 // If we need the zero vector as an "ingredient" in the blend tree, add it
17489 // to the list of shuffles.
17490 if (UsesZeroVector)
17491 Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT)
17492 : DAG.getConstantFP(0.0, DL, VT));
17494 // If we only have one shuffle, we're done.
17495 if (Shuffles.size() == 1)
17496 return Shuffles[0];
17498 // Update the vector mask to point to the post-shuffle vectors.
17499 for (int &Vec : VectorMask)
17500 if (Vec == 0)
17501 Vec = Shuffles.size() - 1;
17502 else
17503 Vec = (Vec - 1) / 2;
17505 // More than one shuffle. Generate a binary tree of blends, e.g. if from
17506 // the previous step we got the set of shuffles t10, t11, t12, t13, we will
17507 // generate:
17508 // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2
17509 // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4
17510 // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6
17511 // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8
17512 // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11
17513 // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13
17514 // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21
17516 // Make sure the initial size of the shuffle list is even.
17517 if (Shuffles.size() % 2)
17518 Shuffles.push_back(DAG.getUNDEF(VT));
17520 for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) {
17521 if (CurSize % 2) {
17522 Shuffles[CurSize] = DAG.getUNDEF(VT);
17523 CurSize++;
17525 for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) {
17526 int Left = 2 * In;
17527 int Right = 2 * In + 1;
17528 SmallVector<int, 8> Mask(NumElems, -1);
17529 for (unsigned i = 0; i != NumElems; ++i) {
17530 if (VectorMask[i] == Left) {
17531 Mask[i] = i;
17532 VectorMask[i] = In;
17533 } else if (VectorMask[i] == Right) {
17534 Mask[i] = i + NumElems;
17535 VectorMask[i] = In;
17539 Shuffles[In] =
17540 DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask);
17543 return Shuffles[0];
17546 // Try to turn a build vector of zero extends of extract vector elts into a
17547 // a vector zero extend and possibly an extract subvector.
17548 // TODO: Support sign extend?
17549 // TODO: Allow undef elements?
17550 SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) {
17551 if (LegalOperations)
17552 return SDValue();
17554 EVT VT = N->getValueType(0);
17556 bool FoundZeroExtend = false;
17557 SDValue Op0 = N->getOperand(0);
17558 auto checkElem = [&](SDValue Op) -> int64_t {
17559 unsigned Opc = Op.getOpcode();
17560 FoundZeroExtend |= (Opc == ISD::ZERO_EXTEND);
17561 if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND) &&
17562 Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
17563 Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0))
17564 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1)))
17565 return C->getZExtValue();
17566 return -1;
17569 // Make sure the first element matches
17570 // (zext (extract_vector_elt X, C))
17571 int64_t Offset = checkElem(Op0);
17572 if (Offset < 0)
17573 return SDValue();
17575 unsigned NumElems = N->getNumOperands();
17576 SDValue In = Op0.getOperand(0).getOperand(0);
17577 EVT InSVT = In.getValueType().getScalarType();
17578 EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems);
17580 // Don't create an illegal input type after type legalization.
17581 if (LegalTypes && !TLI.isTypeLegal(InVT))
17582 return SDValue();
17584 // Ensure all the elements come from the same vector and are adjacent.
17585 for (unsigned i = 1; i != NumElems; ++i) {
17586 if ((Offset + i) != checkElem(N->getOperand(i)))
17587 return SDValue();
17590 SDLoc DL(N);
17591 In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In,
17592 Op0.getOperand(0).getOperand(1));
17593 return DAG.getNode(FoundZeroExtend ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, DL,
17594 VT, In);
17597 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
17598 EVT VT = N->getValueType(0);
17600 // A vector built entirely of undefs is undef.
17601 if (ISD::allOperandsUndef(N))
17602 return DAG.getUNDEF(VT);
17604 // If this is a splat of a bitcast from another vector, change to a
17605 // concat_vector.
17606 // For example:
17607 // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) ->
17608 // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X))))
17610 // If X is a build_vector itself, the concat can become a larger build_vector.
17611 // TODO: Maybe this is useful for non-splat too?
17612 if (!LegalOperations) {
17613 if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) {
17614 Splat = peekThroughBitcasts(Splat);
17615 EVT SrcVT = Splat.getValueType();
17616 if (SrcVT.isVector()) {
17617 unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements();
17618 EVT NewVT = EVT::getVectorVT(*DAG.getContext(),
17619 SrcVT.getVectorElementType(), NumElts);
17620 if (!LegalTypes || TLI.isTypeLegal(NewVT)) {
17621 SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat);
17622 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N),
17623 NewVT, Ops);
17624 return DAG.getBitcast(VT, Concat);
17630 // A splat of a single element is a SPLAT_VECTOR if supported on the target.
17631 if (TLI.getOperationAction(ISD::SPLAT_VECTOR, VT) != TargetLowering::Expand)
17632 if (SDValue V = cast<BuildVectorSDNode>(N)->getSplatValue()) {
17633 assert(!V.isUndef() && "Splat of undef should have been handled earlier");
17634 return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, V);
17637 // Check if we can express BUILD VECTOR via subvector extract.
17638 if (!LegalTypes && (N->getNumOperands() > 1)) {
17639 SDValue Op0 = N->getOperand(0);
17640 auto checkElem = [&](SDValue Op) -> uint64_t {
17641 if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) &&
17642 (Op0.getOperand(0) == Op.getOperand(0)))
17643 if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
17644 return CNode->getZExtValue();
17645 return -1;
17648 int Offset = checkElem(Op0);
17649 for (unsigned i = 0; i < N->getNumOperands(); ++i) {
17650 if (Offset + i != checkElem(N->getOperand(i))) {
17651 Offset = -1;
17652 break;
17656 if ((Offset == 0) &&
17657 (Op0.getOperand(0).getValueType() == N->getValueType(0)))
17658 return Op0.getOperand(0);
17659 if ((Offset != -1) &&
17660 ((Offset % N->getValueType(0).getVectorNumElements()) ==
17661 0)) // IDX must be multiple of output size.
17662 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0),
17663 Op0.getOperand(0), Op0.getOperand(1));
17666 if (SDValue V = convertBuildVecZextToZext(N))
17667 return V;
17669 if (SDValue V = reduceBuildVecExtToExtBuildVec(N))
17670 return V;
17672 if (SDValue V = reduceBuildVecToShuffle(N))
17673 return V;
17675 return SDValue();
17678 static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) {
17679 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17680 EVT OpVT = N->getOperand(0).getValueType();
17682 // If the operands are legal vectors, leave them alone.
17683 if (TLI.isTypeLegal(OpVT))
17684 return SDValue();
17686 SDLoc DL(N);
17687 EVT VT = N->getValueType(0);
17688 SmallVector<SDValue, 8> Ops;
17690 EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits());
17691 SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
17693 // Keep track of what we encounter.
17694 bool AnyInteger = false;
17695 bool AnyFP = false;
17696 for (const SDValue &Op : N->ops()) {
17697 if (ISD::BITCAST == Op.getOpcode() &&
17698 !Op.getOperand(0).getValueType().isVector())
17699 Ops.push_back(Op.getOperand(0));
17700 else if (ISD::UNDEF == Op.getOpcode())
17701 Ops.push_back(ScalarUndef);
17702 else
17703 return SDValue();
17705 // Note whether we encounter an integer or floating point scalar.
17706 // If it's neither, bail out, it could be something weird like x86mmx.
17707 EVT LastOpVT = Ops.back().getValueType();
17708 if (LastOpVT.isFloatingPoint())
17709 AnyFP = true;
17710 else if (LastOpVT.isInteger())
17711 AnyInteger = true;
17712 else
17713 return SDValue();
17716 // If any of the operands is a floating point scalar bitcast to a vector,
17717 // use floating point types throughout, and bitcast everything.
17718 // Replace UNDEFs by another scalar UNDEF node, of the final desired type.
17719 if (AnyFP) {
17720 SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits());
17721 ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
17722 if (AnyInteger) {
17723 for (SDValue &Op : Ops) {
17724 if (Op.getValueType() == SVT)
17725 continue;
17726 if (Op.isUndef())
17727 Op = ScalarUndef;
17728 else
17729 Op = DAG.getBitcast(SVT, Op);
17734 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT,
17735 VT.getSizeInBits() / SVT.getSizeInBits());
17736 return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops));
17739 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR
17740 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at
17741 // most two distinct vectors the same size as the result, attempt to turn this
17742 // into a legal shuffle.
17743 static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) {
17744 EVT VT = N->getValueType(0);
17745 EVT OpVT = N->getOperand(0).getValueType();
17746 int NumElts = VT.getVectorNumElements();
17747 int NumOpElts = OpVT.getVectorNumElements();
17749 SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT);
17750 SmallVector<int, 8> Mask;
17752 for (SDValue Op : N->ops()) {
17753 Op = peekThroughBitcasts(Op);
17755 // UNDEF nodes convert to UNDEF shuffle mask values.
17756 if (Op.isUndef()) {
17757 Mask.append((unsigned)NumOpElts, -1);
17758 continue;
17761 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
17762 return SDValue();
17764 // What vector are we extracting the subvector from and at what index?
17765 SDValue ExtVec = Op.getOperand(0);
17767 // We want the EVT of the original extraction to correctly scale the
17768 // extraction index.
17769 EVT ExtVT = ExtVec.getValueType();
17770 ExtVec = peekThroughBitcasts(ExtVec);
17772 // UNDEF nodes convert to UNDEF shuffle mask values.
17773 if (ExtVec.isUndef()) {
17774 Mask.append((unsigned)NumOpElts, -1);
17775 continue;
17778 if (!isa<ConstantSDNode>(Op.getOperand(1)))
17779 return SDValue();
17780 int ExtIdx = Op.getConstantOperandVal(1);
17782 // Ensure that we are extracting a subvector from a vector the same
17783 // size as the result.
17784 if (ExtVT.getSizeInBits() != VT.getSizeInBits())
17785 return SDValue();
17787 // Scale the subvector index to account for any bitcast.
17788 int NumExtElts = ExtVT.getVectorNumElements();
17789 if (0 == (NumExtElts % NumElts))
17790 ExtIdx /= (NumExtElts / NumElts);
17791 else if (0 == (NumElts % NumExtElts))
17792 ExtIdx *= (NumElts / NumExtElts);
17793 else
17794 return SDValue();
17796 // At most we can reference 2 inputs in the final shuffle.
17797 if (SV0.isUndef() || SV0 == ExtVec) {
17798 SV0 = ExtVec;
17799 for (int i = 0; i != NumOpElts; ++i)
17800 Mask.push_back(i + ExtIdx);
17801 } else if (SV1.isUndef() || SV1 == ExtVec) {
17802 SV1 = ExtVec;
17803 for (int i = 0; i != NumOpElts; ++i)
17804 Mask.push_back(i + ExtIdx + NumElts);
17805 } else {
17806 return SDValue();
17810 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17811 return TLI.buildLegalVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0),
17812 DAG.getBitcast(VT, SV1), Mask, DAG);
17815 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
17816 // If we only have one input vector, we don't need to do any concatenation.
17817 if (N->getNumOperands() == 1)
17818 return N->getOperand(0);
17820 // Check if all of the operands are undefs.
17821 EVT VT = N->getValueType(0);
17822 if (ISD::allOperandsUndef(N))
17823 return DAG.getUNDEF(VT);
17825 // Optimize concat_vectors where all but the first of the vectors are undef.
17826 if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) {
17827 return Op.isUndef();
17828 })) {
17829 SDValue In = N->getOperand(0);
17830 assert(In.getValueType().isVector() && "Must concat vectors");
17832 // If the input is a concat_vectors, just make a larger concat by padding
17833 // with smaller undefs.
17834 if (In.getOpcode() == ISD::CONCAT_VECTORS && In.hasOneUse()) {
17835 unsigned NumOps = N->getNumOperands() * In.getNumOperands();
17836 SmallVector<SDValue, 4> Ops(In->op_begin(), In->op_end());
17837 Ops.resize(NumOps, DAG.getUNDEF(Ops[0].getValueType()));
17838 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
17841 SDValue Scalar = peekThroughOneUseBitcasts(In);
17843 // concat_vectors(scalar_to_vector(scalar), undef) ->
17844 // scalar_to_vector(scalar)
17845 if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR &&
17846 Scalar.hasOneUse()) {
17847 EVT SVT = Scalar.getValueType().getVectorElementType();
17848 if (SVT == Scalar.getOperand(0).getValueType())
17849 Scalar = Scalar.getOperand(0);
17852 // concat_vectors(scalar, undef) -> scalar_to_vector(scalar)
17853 if (!Scalar.getValueType().isVector()) {
17854 // If the bitcast type isn't legal, it might be a trunc of a legal type;
17855 // look through the trunc so we can still do the transform:
17856 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
17857 if (Scalar->getOpcode() == ISD::TRUNCATE &&
17858 !TLI.isTypeLegal(Scalar.getValueType()) &&
17859 TLI.isTypeLegal(Scalar->getOperand(0).getValueType()))
17860 Scalar = Scalar->getOperand(0);
17862 EVT SclTy = Scalar.getValueType();
17864 if (!SclTy.isFloatingPoint() && !SclTy.isInteger())
17865 return SDValue();
17867 // Bail out if the vector size is not a multiple of the scalar size.
17868 if (VT.getSizeInBits() % SclTy.getSizeInBits())
17869 return SDValue();
17871 unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits();
17872 if (VNTNumElms < 2)
17873 return SDValue();
17875 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms);
17876 if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType()))
17877 return SDValue();
17879 SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar);
17880 return DAG.getBitcast(VT, Res);
17884 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR.
17885 // We have already tested above for an UNDEF only concatenation.
17886 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...))
17887 // -> (BUILD_VECTOR A, B, ..., C, D, ...)
17888 auto IsBuildVectorOrUndef = [](const SDValue &Op) {
17889 return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode();
17891 if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) {
17892 SmallVector<SDValue, 8> Opnds;
17893 EVT SVT = VT.getScalarType();
17895 EVT MinVT = SVT;
17896 if (!SVT.isFloatingPoint()) {
17897 // If BUILD_VECTOR are from built from integer, they may have different
17898 // operand types. Get the smallest type and truncate all operands to it.
17899 bool FoundMinVT = false;
17900 for (const SDValue &Op : N->ops())
17901 if (ISD::BUILD_VECTOR == Op.getOpcode()) {
17902 EVT OpSVT = Op.getOperand(0).getValueType();
17903 MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT;
17904 FoundMinVT = true;
17906 assert(FoundMinVT && "Concat vector type mismatch");
17909 for (const SDValue &Op : N->ops()) {
17910 EVT OpVT = Op.getValueType();
17911 unsigned NumElts = OpVT.getVectorNumElements();
17913 if (ISD::UNDEF == Op.getOpcode())
17914 Opnds.append(NumElts, DAG.getUNDEF(MinVT));
17916 if (ISD::BUILD_VECTOR == Op.getOpcode()) {
17917 if (SVT.isFloatingPoint()) {
17918 assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch");
17919 Opnds.append(Op->op_begin(), Op->op_begin() + NumElts);
17920 } else {
17921 for (unsigned i = 0; i != NumElts; ++i)
17922 Opnds.push_back(
17923 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i)));
17928 assert(VT.getVectorNumElements() == Opnds.size() &&
17929 "Concat vector type mismatch");
17930 return DAG.getBuildVector(VT, SDLoc(N), Opnds);
17933 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR.
17934 if (SDValue V = combineConcatVectorOfScalars(N, DAG))
17935 return V;
17937 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE.
17938 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT))
17939 if (SDValue V = combineConcatVectorOfExtracts(N, DAG))
17940 return V;
17942 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
17943 // nodes often generate nop CONCAT_VECTOR nodes.
17944 // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
17945 // place the incoming vectors at the exact same location.
17946 SDValue SingleSource = SDValue();
17947 unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements();
17949 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
17950 SDValue Op = N->getOperand(i);
17952 if (Op.isUndef())
17953 continue;
17955 // Check if this is the identity extract:
17956 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
17957 return SDValue();
17959 // Find the single incoming vector for the extract_subvector.
17960 if (SingleSource.getNode()) {
17961 if (Op.getOperand(0) != SingleSource)
17962 return SDValue();
17963 } else {
17964 SingleSource = Op.getOperand(0);
17966 // Check the source type is the same as the type of the result.
17967 // If not, this concat may extend the vector, so we can not
17968 // optimize it away.
17969 if (SingleSource.getValueType() != N->getValueType(0))
17970 return SDValue();
17973 auto *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1));
17974 // The extract index must be constant.
17975 if (!CS)
17976 return SDValue();
17978 // Check that we are reading from the identity index.
17979 unsigned IdentityIndex = i * PartNumElem;
17980 if (CS->getAPIntValue() != IdentityIndex)
17981 return SDValue();
17984 if (SingleSource.getNode())
17985 return SingleSource;
17987 return SDValue();
17990 // Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find
17991 // if the subvector can be sourced for free.
17992 static SDValue getSubVectorSrc(SDValue V, SDValue Index, EVT SubVT) {
17993 if (V.getOpcode() == ISD::INSERT_SUBVECTOR &&
17994 V.getOperand(1).getValueType() == SubVT && V.getOperand(2) == Index) {
17995 return V.getOperand(1);
17997 auto *IndexC = dyn_cast<ConstantSDNode>(Index);
17998 if (IndexC && V.getOpcode() == ISD::CONCAT_VECTORS &&
17999 V.getOperand(0).getValueType() == SubVT &&
18000 (IndexC->getZExtValue() % SubVT.getVectorNumElements()) == 0) {
18001 uint64_t SubIdx = IndexC->getZExtValue() / SubVT.getVectorNumElements();
18002 return V.getOperand(SubIdx);
18004 return SDValue();
18007 static SDValue narrowInsertExtractVectorBinOp(SDNode *Extract,
18008 SelectionDAG &DAG) {
18009 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18010 SDValue BinOp = Extract->getOperand(0);
18011 unsigned BinOpcode = BinOp.getOpcode();
18012 if (!TLI.isBinOp(BinOpcode) || BinOp.getNode()->getNumValues() != 1)
18013 return SDValue();
18015 EVT VecVT = BinOp.getValueType();
18016 SDValue Bop0 = BinOp.getOperand(0), Bop1 = BinOp.getOperand(1);
18017 if (VecVT != Bop0.getValueType() || VecVT != Bop1.getValueType())
18018 return SDValue();
18020 SDValue Index = Extract->getOperand(1);
18021 EVT SubVT = Extract->getValueType(0);
18022 if (!TLI.isOperationLegalOrCustom(BinOpcode, SubVT))
18023 return SDValue();
18025 SDValue Sub0 = getSubVectorSrc(Bop0, Index, SubVT);
18026 SDValue Sub1 = getSubVectorSrc(Bop1, Index, SubVT);
18028 // TODO: We could handle the case where only 1 operand is being inserted by
18029 // creating an extract of the other operand, but that requires checking
18030 // number of uses and/or costs.
18031 if (!Sub0 || !Sub1)
18032 return SDValue();
18034 // We are inserting both operands of the wide binop only to extract back
18035 // to the narrow vector size. Eliminate all of the insert/extract:
18036 // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y
18037 return DAG.getNode(BinOpcode, SDLoc(Extract), SubVT, Sub0, Sub1,
18038 BinOp->getFlags());
18041 /// If we are extracting a subvector produced by a wide binary operator try
18042 /// to use a narrow binary operator and/or avoid concatenation and extraction.
18043 static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG) {
18044 // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share
18045 // some of these bailouts with other transforms.
18047 if (SDValue V = narrowInsertExtractVectorBinOp(Extract, DAG))
18048 return V;
18050 // The extract index must be a constant, so we can map it to a concat operand.
18051 auto *ExtractIndexC = dyn_cast<ConstantSDNode>(Extract->getOperand(1));
18052 if (!ExtractIndexC)
18053 return SDValue();
18055 // We are looking for an optionally bitcasted wide vector binary operator
18056 // feeding an extract subvector.
18057 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18058 SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0));
18059 unsigned BOpcode = BinOp.getOpcode();
18060 if (!TLI.isBinOp(BOpcode) || BinOp.getNode()->getNumValues() != 1)
18061 return SDValue();
18063 // The binop must be a vector type, so we can extract some fraction of it.
18064 EVT WideBVT = BinOp.getValueType();
18065 if (!WideBVT.isVector())
18066 return SDValue();
18068 EVT VT = Extract->getValueType(0);
18069 unsigned ExtractIndex = ExtractIndexC->getZExtValue();
18070 assert(ExtractIndex % VT.getVectorNumElements() == 0 &&
18071 "Extract index is not a multiple of the vector length.");
18073 // Bail out if this is not a proper multiple width extraction.
18074 unsigned WideWidth = WideBVT.getSizeInBits();
18075 unsigned NarrowWidth = VT.getSizeInBits();
18076 if (WideWidth % NarrowWidth != 0)
18077 return SDValue();
18079 // Bail out if we are extracting a fraction of a single operation. This can
18080 // occur because we potentially looked through a bitcast of the binop.
18081 unsigned NarrowingRatio = WideWidth / NarrowWidth;
18082 unsigned WideNumElts = WideBVT.getVectorNumElements();
18083 if (WideNumElts % NarrowingRatio != 0)
18084 return SDValue();
18086 // Bail out if the target does not support a narrower version of the binop.
18087 EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(),
18088 WideNumElts / NarrowingRatio);
18089 if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT))
18090 return SDValue();
18092 // If extraction is cheap, we don't need to look at the binop operands
18093 // for concat ops. The narrow binop alone makes this transform profitable.
18094 // We can't just reuse the original extract index operand because we may have
18095 // bitcasted.
18096 unsigned ConcatOpNum = ExtractIndex / VT.getVectorNumElements();
18097 unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements();
18098 EVT ExtBOIdxVT = Extract->getOperand(1).getValueType();
18099 if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) &&
18100 BinOp.hasOneUse() && Extract->getOperand(0)->hasOneUse()) {
18101 // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N)
18102 SDLoc DL(Extract);
18103 SDValue NewExtIndex = DAG.getConstant(ExtBOIdx, DL, ExtBOIdxVT);
18104 SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
18105 BinOp.getOperand(0), NewExtIndex);
18106 SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
18107 BinOp.getOperand(1), NewExtIndex);
18108 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y,
18109 BinOp.getNode()->getFlags());
18110 return DAG.getBitcast(VT, NarrowBinOp);
18113 // Only handle the case where we are doubling and then halving. A larger ratio
18114 // may require more than two narrow binops to replace the wide binop.
18115 if (NarrowingRatio != 2)
18116 return SDValue();
18118 // TODO: The motivating case for this transform is an x86 AVX1 target. That
18119 // target has temptingly almost legal versions of bitwise logic ops in 256-bit
18120 // flavors, but no other 256-bit integer support. This could be extended to
18121 // handle any binop, but that may require fixing/adding other folds to avoid
18122 // codegen regressions.
18123 if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR)
18124 return SDValue();
18126 // We need at least one concatenation operation of a binop operand to make
18127 // this transform worthwhile. The concat must double the input vector sizes.
18128 auto GetSubVector = [ConcatOpNum](SDValue V) -> SDValue {
18129 if (V.getOpcode() == ISD::CONCAT_VECTORS && V.getNumOperands() == 2)
18130 return V.getOperand(ConcatOpNum);
18131 return SDValue();
18133 SDValue SubVecL = GetSubVector(peekThroughBitcasts(BinOp.getOperand(0)));
18134 SDValue SubVecR = GetSubVector(peekThroughBitcasts(BinOp.getOperand(1)));
18136 if (SubVecL || SubVecR) {
18137 // If a binop operand was not the result of a concat, we must extract a
18138 // half-sized operand for our new narrow binop:
18139 // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN
18140 // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC)
18141 // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN
18142 SDLoc DL(Extract);
18143 SDValue IndexC = DAG.getConstant(ExtBOIdx, DL, ExtBOIdxVT);
18144 SDValue X = SubVecL ? DAG.getBitcast(NarrowBVT, SubVecL)
18145 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
18146 BinOp.getOperand(0), IndexC);
18148 SDValue Y = SubVecR ? DAG.getBitcast(NarrowBVT, SubVecR)
18149 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
18150 BinOp.getOperand(1), IndexC);
18152 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y);
18153 return DAG.getBitcast(VT, NarrowBinOp);
18156 return SDValue();
18159 /// If we are extracting a subvector from a wide vector load, convert to a
18160 /// narrow load to eliminate the extraction:
18161 /// (extract_subvector (load wide vector)) --> (load narrow vector)
18162 static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) {
18163 // TODO: Add support for big-endian. The offset calculation must be adjusted.
18164 if (DAG.getDataLayout().isBigEndian())
18165 return SDValue();
18167 auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0));
18168 auto *ExtIdx = dyn_cast<ConstantSDNode>(Extract->getOperand(1));
18169 if (!Ld || Ld->getExtensionType() || !Ld->isSimple() ||
18170 !ExtIdx)
18171 return SDValue();
18173 // Allow targets to opt-out.
18174 EVT VT = Extract->getValueType(0);
18175 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18176 if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT))
18177 return SDValue();
18179 // The narrow load will be offset from the base address of the old load if
18180 // we are extracting from something besides index 0 (little-endian).
18181 SDLoc DL(Extract);
18182 SDValue BaseAddr = Ld->getOperand(1);
18183 unsigned Offset = ExtIdx->getZExtValue() * VT.getScalarType().getStoreSize();
18185 // TODO: Use "BaseIndexOffset" to make this more effective.
18186 SDValue NewAddr = DAG.getMemBasePlusOffset(BaseAddr, Offset, DL);
18187 MachineFunction &MF = DAG.getMachineFunction();
18188 MachineMemOperand *MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset,
18189 VT.getStoreSize());
18190 SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO);
18191 DAG.makeEquivalentMemoryOrdering(Ld, NewLd);
18192 return NewLd;
18195 SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode *N) {
18196 EVT NVT = N->getValueType(0);
18197 SDValue V = N->getOperand(0);
18199 // Extract from UNDEF is UNDEF.
18200 if (V.isUndef())
18201 return DAG.getUNDEF(NVT);
18203 if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT))
18204 if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG))
18205 return NarrowLoad;
18207 // Combine an extract of an extract into a single extract_subvector.
18208 // ext (ext X, C), 0 --> ext X, C
18209 SDValue Index = N->getOperand(1);
18210 if (isNullConstant(Index) && V.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
18211 V.hasOneUse() && isa<ConstantSDNode>(V.getOperand(1))) {
18212 if (TLI.isExtractSubvectorCheap(NVT, V.getOperand(0).getValueType(),
18213 V.getConstantOperandVal(1)) &&
18214 TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NVT)) {
18215 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, V.getOperand(0),
18216 V.getOperand(1));
18220 // Try to move vector bitcast after extract_subv by scaling extraction index:
18221 // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index')
18222 if (isa<ConstantSDNode>(Index) && V.getOpcode() == ISD::BITCAST &&
18223 V.getOperand(0).getValueType().isVector()) {
18224 SDValue SrcOp = V.getOperand(0);
18225 EVT SrcVT = SrcOp.getValueType();
18226 unsigned SrcNumElts = SrcVT.getVectorNumElements();
18227 unsigned DestNumElts = V.getValueType().getVectorNumElements();
18228 if ((SrcNumElts % DestNumElts) == 0) {
18229 unsigned SrcDestRatio = SrcNumElts / DestNumElts;
18230 unsigned NewExtNumElts = NVT.getVectorNumElements() * SrcDestRatio;
18231 EVT NewExtVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
18232 NewExtNumElts);
18233 if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) {
18234 unsigned IndexValScaled = N->getConstantOperandVal(1) * SrcDestRatio;
18235 SDLoc DL(N);
18236 SDValue NewIndex = DAG.getIntPtrConstant(IndexValScaled, DL);
18237 SDValue NewExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT,
18238 V.getOperand(0), NewIndex);
18239 return DAG.getBitcast(NVT, NewExtract);
18242 // TODO - handle (DestNumElts % SrcNumElts) == 0
18245 // Combine:
18246 // (extract_subvec (concat V1, V2, ...), i)
18247 // Into:
18248 // Vi if possible
18249 // Only operand 0 is checked as 'concat' assumes all inputs of the same
18250 // type.
18251 if (V.getOpcode() == ISD::CONCAT_VECTORS && isa<ConstantSDNode>(Index) &&
18252 V.getOperand(0).getValueType() == NVT) {
18253 unsigned Idx = N->getConstantOperandVal(1);
18254 unsigned NumElems = NVT.getVectorNumElements();
18255 assert((Idx % NumElems) == 0 &&
18256 "IDX in concat is not a multiple of the result vector length.");
18257 return V->getOperand(Idx / NumElems);
18260 V = peekThroughBitcasts(V);
18262 // If the input is a build vector. Try to make a smaller build vector.
18263 if (V.getOpcode() == ISD::BUILD_VECTOR) {
18264 if (auto *IdxC = dyn_cast<ConstantSDNode>(Index)) {
18265 EVT InVT = V.getValueType();
18266 unsigned ExtractSize = NVT.getSizeInBits();
18267 unsigned EltSize = InVT.getScalarSizeInBits();
18268 // Only do this if we won't split any elements.
18269 if (ExtractSize % EltSize == 0) {
18270 unsigned NumElems = ExtractSize / EltSize;
18271 EVT EltVT = InVT.getVectorElementType();
18272 EVT ExtractVT = NumElems == 1 ? EltVT
18273 : EVT::getVectorVT(*DAG.getContext(),
18274 EltVT, NumElems);
18275 if ((Level < AfterLegalizeDAG ||
18276 (NumElems == 1 ||
18277 TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) &&
18278 (!LegalTypes || TLI.isTypeLegal(ExtractVT))) {
18279 unsigned IdxVal = IdxC->getZExtValue();
18280 IdxVal *= NVT.getScalarSizeInBits();
18281 IdxVal /= EltSize;
18283 if (NumElems == 1) {
18284 SDValue Src = V->getOperand(IdxVal);
18285 if (EltVT != Src.getValueType())
18286 Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src);
18287 return DAG.getBitcast(NVT, Src);
18290 // Extract the pieces from the original build_vector.
18291 SDValue BuildVec = DAG.getBuildVector(
18292 ExtractVT, SDLoc(N), V->ops().slice(IdxVal, NumElems));
18293 return DAG.getBitcast(NVT, BuildVec);
18299 if (V.getOpcode() == ISD::INSERT_SUBVECTOR) {
18300 // Handle only simple case where vector being inserted and vector
18301 // being extracted are of same size.
18302 EVT SmallVT = V.getOperand(1).getValueType();
18303 if (!NVT.bitsEq(SmallVT))
18304 return SDValue();
18306 // Only handle cases where both indexes are constants.
18307 auto *ExtIdx = dyn_cast<ConstantSDNode>(Index);
18308 auto *InsIdx = dyn_cast<ConstantSDNode>(V.getOperand(2));
18309 if (InsIdx && ExtIdx) {
18310 // Combine:
18311 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
18312 // Into:
18313 // indices are equal or bit offsets are equal => V1
18314 // otherwise => (extract_subvec V1, ExtIdx)
18315 if (InsIdx->getZExtValue() * SmallVT.getScalarSizeInBits() ==
18316 ExtIdx->getZExtValue() * NVT.getScalarSizeInBits())
18317 return DAG.getBitcast(NVT, V.getOperand(1));
18318 return DAG.getNode(
18319 ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT,
18320 DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)),
18321 Index);
18325 if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG))
18326 return NarrowBOp;
18328 if (SimplifyDemandedVectorElts(SDValue(N, 0)))
18329 return SDValue(N, 0);
18331 return SDValue();
18334 /// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles
18335 /// followed by concatenation. Narrow vector ops may have better performance
18336 /// than wide ops, and this can unlock further narrowing of other vector ops.
18337 /// Targets can invert this transform later if it is not profitable.
18338 static SDValue foldShuffleOfConcatUndefs(ShuffleVectorSDNode *Shuf,
18339 SelectionDAG &DAG) {
18340 SDValue N0 = Shuf->getOperand(0), N1 = Shuf->getOperand(1);
18341 if (N0.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 ||
18342 N1.getOpcode() != ISD::CONCAT_VECTORS || N1.getNumOperands() != 2 ||
18343 !N0.getOperand(1).isUndef() || !N1.getOperand(1).isUndef())
18344 return SDValue();
18346 // Split the wide shuffle mask into halves. Any mask element that is accessing
18347 // operand 1 is offset down to account for narrowing of the vectors.
18348 ArrayRef<int> Mask = Shuf->getMask();
18349 EVT VT = Shuf->getValueType(0);
18350 unsigned NumElts = VT.getVectorNumElements();
18351 unsigned HalfNumElts = NumElts / 2;
18352 SmallVector<int, 16> Mask0(HalfNumElts, -1);
18353 SmallVector<int, 16> Mask1(HalfNumElts, -1);
18354 for (unsigned i = 0; i != NumElts; ++i) {
18355 if (Mask[i] == -1)
18356 continue;
18357 int M = Mask[i] < (int)NumElts ? Mask[i] : Mask[i] - (int)HalfNumElts;
18358 if (i < HalfNumElts)
18359 Mask0[i] = M;
18360 else
18361 Mask1[i - HalfNumElts] = M;
18364 // Ask the target if this is a valid transform.
18365 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18366 EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
18367 HalfNumElts);
18368 if (!TLI.isShuffleMaskLegal(Mask0, HalfVT) ||
18369 !TLI.isShuffleMaskLegal(Mask1, HalfVT))
18370 return SDValue();
18372 // shuffle (concat X, undef), (concat Y, undef), Mask -->
18373 // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1)
18374 SDValue X = N0.getOperand(0), Y = N1.getOperand(0);
18375 SDLoc DL(Shuf);
18376 SDValue Shuf0 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask0);
18377 SDValue Shuf1 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask1);
18378 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Shuf0, Shuf1);
18381 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat,
18382 // or turn a shuffle of a single concat into simpler shuffle then concat.
18383 static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
18384 EVT VT = N->getValueType(0);
18385 unsigned NumElts = VT.getVectorNumElements();
18387 SDValue N0 = N->getOperand(0);
18388 SDValue N1 = N->getOperand(1);
18389 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
18390 ArrayRef<int> Mask = SVN->getMask();
18392 SmallVector<SDValue, 4> Ops;
18393 EVT ConcatVT = N0.getOperand(0).getValueType();
18394 unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
18395 unsigned NumConcats = NumElts / NumElemsPerConcat;
18397 auto IsUndefMaskElt = [](int i) { return i == -1; };
18399 // Special case: shuffle(concat(A,B)) can be more efficiently represented
18400 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high
18401 // half vector elements.
18402 if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() &&
18403 llvm::all_of(Mask.slice(NumElemsPerConcat, NumElemsPerConcat),
18404 IsUndefMaskElt)) {
18405 N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0),
18406 N0.getOperand(1),
18407 Mask.slice(0, NumElemsPerConcat));
18408 N1 = DAG.getUNDEF(ConcatVT);
18409 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1);
18412 // Look at every vector that's inserted. We're looking for exact
18413 // subvector-sized copies from a concatenated vector
18414 for (unsigned I = 0; I != NumConcats; ++I) {
18415 unsigned Begin = I * NumElemsPerConcat;
18416 ArrayRef<int> SubMask = Mask.slice(Begin, NumElemsPerConcat);
18418 // Make sure we're dealing with a copy.
18419 if (llvm::all_of(SubMask, IsUndefMaskElt)) {
18420 Ops.push_back(DAG.getUNDEF(ConcatVT));
18421 continue;
18424 int OpIdx = -1;
18425 for (int i = 0; i != (int)NumElemsPerConcat; ++i) {
18426 if (IsUndefMaskElt(SubMask[i]))
18427 continue;
18428 if ((SubMask[i] % (int)NumElemsPerConcat) != i)
18429 return SDValue();
18430 int EltOpIdx = SubMask[i] / NumElemsPerConcat;
18431 if (0 <= OpIdx && EltOpIdx != OpIdx)
18432 return SDValue();
18433 OpIdx = EltOpIdx;
18435 assert(0 <= OpIdx && "Unknown concat_vectors op");
18437 if (OpIdx < (int)N0.getNumOperands())
18438 Ops.push_back(N0.getOperand(OpIdx));
18439 else
18440 Ops.push_back(N1.getOperand(OpIdx - N0.getNumOperands()));
18443 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
18446 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
18447 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
18449 // SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always
18450 // a simplification in some sense, but it isn't appropriate in general: some
18451 // BUILD_VECTORs are substantially cheaper than others. The general case
18452 // of a BUILD_VECTOR requires inserting each element individually (or
18453 // performing the equivalent in a temporary stack variable). A BUILD_VECTOR of
18454 // all constants is a single constant pool load. A BUILD_VECTOR where each
18455 // element is identical is a splat. A BUILD_VECTOR where most of the operands
18456 // are undef lowers to a small number of element insertions.
18458 // To deal with this, we currently use a bunch of mostly arbitrary heuristics.
18459 // We don't fold shuffles where one side is a non-zero constant, and we don't
18460 // fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate
18461 // non-constant operands. This seems to work out reasonably well in practice.
18462 static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN,
18463 SelectionDAG &DAG,
18464 const TargetLowering &TLI) {
18465 EVT VT = SVN->getValueType(0);
18466 unsigned NumElts = VT.getVectorNumElements();
18467 SDValue N0 = SVN->getOperand(0);
18468 SDValue N1 = SVN->getOperand(1);
18470 if (!N0->hasOneUse())
18471 return SDValue();
18473 // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as
18474 // discussed above.
18475 if (!N1.isUndef()) {
18476 if (!N1->hasOneUse())
18477 return SDValue();
18479 bool N0AnyConst = isAnyConstantBuildVector(N0);
18480 bool N1AnyConst = isAnyConstantBuildVector(N1);
18481 if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode()))
18482 return SDValue();
18483 if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode()))
18484 return SDValue();
18487 // If both inputs are splats of the same value then we can safely merge this
18488 // to a single BUILD_VECTOR with undef elements based on the shuffle mask.
18489 bool IsSplat = false;
18490 auto *BV0 = dyn_cast<BuildVectorSDNode>(N0);
18491 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
18492 if (BV0 && BV1)
18493 if (SDValue Splat0 = BV0->getSplatValue())
18494 IsSplat = (Splat0 == BV1->getSplatValue());
18496 SmallVector<SDValue, 8> Ops;
18497 SmallSet<SDValue, 16> DuplicateOps;
18498 for (int M : SVN->getMask()) {
18499 SDValue Op = DAG.getUNDEF(VT.getScalarType());
18500 if (M >= 0) {
18501 int Idx = M < (int)NumElts ? M : M - NumElts;
18502 SDValue &S = (M < (int)NumElts ? N0 : N1);
18503 if (S.getOpcode() == ISD::BUILD_VECTOR) {
18504 Op = S.getOperand(Idx);
18505 } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) {
18506 SDValue Op0 = S.getOperand(0);
18507 Op = Idx == 0 ? Op0 : DAG.getUNDEF(Op0.getValueType());
18508 } else {
18509 // Operand can't be combined - bail out.
18510 return SDValue();
18514 // Don't duplicate a non-constant BUILD_VECTOR operand unless we're
18515 // generating a splat; semantically, this is fine, but it's likely to
18516 // generate low-quality code if the target can't reconstruct an appropriate
18517 // shuffle.
18518 if (!Op.isUndef() && !isa<ConstantSDNode>(Op) && !isa<ConstantFPSDNode>(Op))
18519 if (!IsSplat && !DuplicateOps.insert(Op).second)
18520 return SDValue();
18522 Ops.push_back(Op);
18525 // BUILD_VECTOR requires all inputs to be of the same type, find the
18526 // maximum type and extend them all.
18527 EVT SVT = VT.getScalarType();
18528 if (SVT.isInteger())
18529 for (SDValue &Op : Ops)
18530 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
18531 if (SVT != VT.getScalarType())
18532 for (SDValue &Op : Ops)
18533 Op = TLI.isZExtFree(Op.getValueType(), SVT)
18534 ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT)
18535 : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT);
18536 return DAG.getBuildVector(VT, SDLoc(SVN), Ops);
18539 // Match shuffles that can be converted to any_vector_extend_in_reg.
18540 // This is often generated during legalization.
18541 // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src))
18542 // TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case.
18543 static SDValue combineShuffleToVectorExtend(ShuffleVectorSDNode *SVN,
18544 SelectionDAG &DAG,
18545 const TargetLowering &TLI,
18546 bool LegalOperations) {
18547 EVT VT = SVN->getValueType(0);
18548 bool IsBigEndian = DAG.getDataLayout().isBigEndian();
18550 // TODO Add support for big-endian when we have a test case.
18551 if (!VT.isInteger() || IsBigEndian)
18552 return SDValue();
18554 unsigned NumElts = VT.getVectorNumElements();
18555 unsigned EltSizeInBits = VT.getScalarSizeInBits();
18556 ArrayRef<int> Mask = SVN->getMask();
18557 SDValue N0 = SVN->getOperand(0);
18559 // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32))
18560 auto isAnyExtend = [&Mask, &NumElts](unsigned Scale) {
18561 for (unsigned i = 0; i != NumElts; ++i) {
18562 if (Mask[i] < 0)
18563 continue;
18564 if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale))
18565 continue;
18566 return false;
18568 return true;
18571 // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for
18572 // power-of-2 extensions as they are the most likely.
18573 for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) {
18574 // Check for non power of 2 vector sizes
18575 if (NumElts % Scale != 0)
18576 continue;
18577 if (!isAnyExtend(Scale))
18578 continue;
18580 EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale);
18581 EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale);
18582 // Never create an illegal type. Only create unsupported operations if we
18583 // are pre-legalization.
18584 if (TLI.isTypeLegal(OutVT))
18585 if (!LegalOperations ||
18586 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG, OutVT))
18587 return DAG.getBitcast(VT,
18588 DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG,
18589 SDLoc(SVN), OutVT, N0));
18592 return SDValue();
18595 // Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of
18596 // each source element of a large type into the lowest elements of a smaller
18597 // destination type. This is often generated during legalization.
18598 // If the source node itself was a '*_extend_vector_inreg' node then we should
18599 // then be able to remove it.
18600 static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN,
18601 SelectionDAG &DAG) {
18602 EVT VT = SVN->getValueType(0);
18603 bool IsBigEndian = DAG.getDataLayout().isBigEndian();
18605 // TODO Add support for big-endian when we have a test case.
18606 if (!VT.isInteger() || IsBigEndian)
18607 return SDValue();
18609 SDValue N0 = peekThroughBitcasts(SVN->getOperand(0));
18611 unsigned Opcode = N0.getOpcode();
18612 if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG &&
18613 Opcode != ISD::SIGN_EXTEND_VECTOR_INREG &&
18614 Opcode != ISD::ZERO_EXTEND_VECTOR_INREG)
18615 return SDValue();
18617 SDValue N00 = N0.getOperand(0);
18618 ArrayRef<int> Mask = SVN->getMask();
18619 unsigned NumElts = VT.getVectorNumElements();
18620 unsigned EltSizeInBits = VT.getScalarSizeInBits();
18621 unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits();
18622 unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits();
18624 if (ExtDstSizeInBits % ExtSrcSizeInBits != 0)
18625 return SDValue();
18626 unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits;
18628 // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1>
18629 // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1>
18630 // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1>
18631 auto isTruncate = [&Mask, &NumElts](unsigned Scale) {
18632 for (unsigned i = 0; i != NumElts; ++i) {
18633 if (Mask[i] < 0)
18634 continue;
18635 if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale))
18636 continue;
18637 return false;
18639 return true;
18642 // At the moment we just handle the case where we've truncated back to the
18643 // same size as before the extension.
18644 // TODO: handle more extension/truncation cases as cases arise.
18645 if (EltSizeInBits != ExtSrcSizeInBits)
18646 return SDValue();
18648 // We can remove *extend_vector_inreg only if the truncation happens at
18649 // the same scale as the extension.
18650 if (isTruncate(ExtScale))
18651 return DAG.getBitcast(VT, N00);
18653 return SDValue();
18656 // Combine shuffles of splat-shuffles of the form:
18657 // shuffle (shuffle V, undef, splat-mask), undef, M
18658 // If splat-mask contains undef elements, we need to be careful about
18659 // introducing undef's in the folded mask which are not the result of composing
18660 // the masks of the shuffles.
18661 static SDValue combineShuffleOfSplatVal(ShuffleVectorSDNode *Shuf,
18662 SelectionDAG &DAG) {
18663 if (!Shuf->getOperand(1).isUndef())
18664 return SDValue();
18665 auto *Splat = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0));
18666 if (!Splat || !Splat->isSplat())
18667 return SDValue();
18669 ArrayRef<int> ShufMask = Shuf->getMask();
18670 ArrayRef<int> SplatMask = Splat->getMask();
18671 assert(ShufMask.size() == SplatMask.size() && "Mask length mismatch");
18673 // Prefer simplifying to the splat-shuffle, if possible. This is legal if
18674 // every undef mask element in the splat-shuffle has a corresponding undef
18675 // element in the user-shuffle's mask or if the composition of mask elements
18676 // would result in undef.
18677 // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask):
18678 // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u]
18679 // In this case it is not legal to simplify to the splat-shuffle because we
18680 // may be exposing the users of the shuffle an undef element at index 1
18681 // which was not there before the combine.
18682 // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u]
18683 // In this case the composition of masks yields SplatMask, so it's ok to
18684 // simplify to the splat-shuffle.
18685 // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u]
18686 // In this case the composed mask includes all undef elements of SplatMask
18687 // and in addition sets element zero to undef. It is safe to simplify to
18688 // the splat-shuffle.
18689 auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask,
18690 ArrayRef<int> SplatMask) {
18691 for (unsigned i = 0, e = UserMask.size(); i != e; ++i)
18692 if (UserMask[i] != -1 && SplatMask[i] == -1 &&
18693 SplatMask[UserMask[i]] != -1)
18694 return false;
18695 return true;
18697 if (CanSimplifyToExistingSplat(ShufMask, SplatMask))
18698 return Shuf->getOperand(0);
18700 // Create a new shuffle with a mask that is composed of the two shuffles'
18701 // masks.
18702 SmallVector<int, 32> NewMask;
18703 for (int Idx : ShufMask)
18704 NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]);
18706 return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat),
18707 Splat->getOperand(0), Splat->getOperand(1),
18708 NewMask);
18711 /// If the shuffle mask is taking exactly one element from the first vector
18712 /// operand and passing through all other elements from the second vector
18713 /// operand, return the index of the mask element that is choosing an element
18714 /// from the first operand. Otherwise, return -1.
18715 static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) {
18716 int MaskSize = Mask.size();
18717 int EltFromOp0 = -1;
18718 // TODO: This does not match if there are undef elements in the shuffle mask.
18719 // Should we ignore undefs in the shuffle mask instead? The trade-off is
18720 // removing an instruction (a shuffle), but losing the knowledge that some
18721 // vector lanes are not needed.
18722 for (int i = 0; i != MaskSize; ++i) {
18723 if (Mask[i] >= 0 && Mask[i] < MaskSize) {
18724 // We're looking for a shuffle of exactly one element from operand 0.
18725 if (EltFromOp0 != -1)
18726 return -1;
18727 EltFromOp0 = i;
18728 } else if (Mask[i] != i + MaskSize) {
18729 // Nothing from operand 1 can change lanes.
18730 return -1;
18733 return EltFromOp0;
18736 /// If a shuffle inserts exactly one element from a source vector operand into
18737 /// another vector operand and we can access the specified element as a scalar,
18738 /// then we can eliminate the shuffle.
18739 static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf,
18740 SelectionDAG &DAG) {
18741 // First, check if we are taking one element of a vector and shuffling that
18742 // element into another vector.
18743 ArrayRef<int> Mask = Shuf->getMask();
18744 SmallVector<int, 16> CommutedMask(Mask.begin(), Mask.end());
18745 SDValue Op0 = Shuf->getOperand(0);
18746 SDValue Op1 = Shuf->getOperand(1);
18747 int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask);
18748 if (ShufOp0Index == -1) {
18749 // Commute mask and check again.
18750 ShuffleVectorSDNode::commuteMask(CommutedMask);
18751 ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask);
18752 if (ShufOp0Index == -1)
18753 return SDValue();
18754 // Commute operands to match the commuted shuffle mask.
18755 std::swap(Op0, Op1);
18756 Mask = CommutedMask;
18759 // The shuffle inserts exactly one element from operand 0 into operand 1.
18760 // Now see if we can access that element as a scalar via a real insert element
18761 // instruction.
18762 // TODO: We can try harder to locate the element as a scalar. Examples: it
18763 // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant.
18764 assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() &&
18765 "Shuffle mask value must be from operand 0");
18766 if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT)
18767 return SDValue();
18769 auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2));
18770 if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index])
18771 return SDValue();
18773 // There's an existing insertelement with constant insertion index, so we
18774 // don't need to check the legality/profitability of a replacement operation
18775 // that differs at most in the constant value. The target should be able to
18776 // lower any of those in a similar way. If not, legalization will expand this
18777 // to a scalar-to-vector plus shuffle.
18779 // Note that the shuffle may move the scalar from the position that the insert
18780 // element used. Therefore, our new insert element occurs at the shuffle's
18781 // mask index value, not the insert's index value.
18782 // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C'
18783 SDValue NewInsIndex = DAG.getConstant(ShufOp0Index, SDLoc(Shuf),
18784 Op0.getOperand(2).getValueType());
18785 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(),
18786 Op1, Op0.getOperand(1), NewInsIndex);
18789 /// If we have a unary shuffle of a shuffle, see if it can be folded away
18790 /// completely. This has the potential to lose undef knowledge because the first
18791 /// shuffle may not have an undef mask element where the second one does. So
18792 /// only call this after doing simplifications based on demanded elements.
18793 static SDValue simplifyShuffleOfShuffle(ShuffleVectorSDNode *Shuf) {
18794 // shuf (shuf0 X, Y, Mask0), undef, Mask
18795 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0));
18796 if (!Shuf0 || !Shuf->getOperand(1).isUndef())
18797 return SDValue();
18799 ArrayRef<int> Mask = Shuf->getMask();
18800 ArrayRef<int> Mask0 = Shuf0->getMask();
18801 for (int i = 0, e = (int)Mask.size(); i != e; ++i) {
18802 // Ignore undef elements.
18803 if (Mask[i] == -1)
18804 continue;
18805 assert(Mask[i] >= 0 && Mask[i] < e && "Unexpected shuffle mask value");
18807 // Is the element of the shuffle operand chosen by this shuffle the same as
18808 // the element chosen by the shuffle operand itself?
18809 if (Mask0[Mask[i]] != Mask0[i])
18810 return SDValue();
18812 // Every element of this shuffle is identical to the result of the previous
18813 // shuffle, so we can replace this value.
18814 return Shuf->getOperand(0);
18817 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
18818 EVT VT = N->getValueType(0);
18819 unsigned NumElts = VT.getVectorNumElements();
18821 SDValue N0 = N->getOperand(0);
18822 SDValue N1 = N->getOperand(1);
18824 assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
18826 // Canonicalize shuffle undef, undef -> undef
18827 if (N0.isUndef() && N1.isUndef())
18828 return DAG.getUNDEF(VT);
18830 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
18832 // Canonicalize shuffle v, v -> v, undef
18833 if (N0 == N1) {
18834 SmallVector<int, 8> NewMask;
18835 for (unsigned i = 0; i != NumElts; ++i) {
18836 int Idx = SVN->getMaskElt(i);
18837 if (Idx >= (int)NumElts) Idx -= NumElts;
18838 NewMask.push_back(Idx);
18840 return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask);
18843 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
18844 if (N0.isUndef())
18845 return DAG.getCommutedVectorShuffle(*SVN);
18847 // Remove references to rhs if it is undef
18848 if (N1.isUndef()) {
18849 bool Changed = false;
18850 SmallVector<int, 8> NewMask;
18851 for (unsigned i = 0; i != NumElts; ++i) {
18852 int Idx = SVN->getMaskElt(i);
18853 if (Idx >= (int)NumElts) {
18854 Idx = -1;
18855 Changed = true;
18857 NewMask.push_back(Idx);
18859 if (Changed)
18860 return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask);
18863 if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG))
18864 return InsElt;
18866 // A shuffle of a single vector that is a splatted value can always be folded.
18867 if (SDValue V = combineShuffleOfSplatVal(SVN, DAG))
18868 return V;
18870 // If it is a splat, check if the argument vector is another splat or a
18871 // build_vector.
18872 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
18873 int SplatIndex = SVN->getSplatIndex();
18874 if (N0.hasOneUse() && TLI.isExtractVecEltCheap(VT, SplatIndex) &&
18875 TLI.isBinOp(N0.getOpcode()) && N0.getNode()->getNumValues() == 1) {
18876 // splat (vector_bo L, R), Index -->
18877 // splat (scalar_bo (extelt L, Index), (extelt R, Index))
18878 SDValue L = N0.getOperand(0), R = N0.getOperand(1);
18879 SDLoc DL(N);
18880 EVT EltVT = VT.getScalarType();
18881 SDValue Index = DAG.getIntPtrConstant(SplatIndex, DL);
18882 SDValue ExtL = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, L, Index);
18883 SDValue ExtR = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, R, Index);
18884 SDValue NewBO = DAG.getNode(N0.getOpcode(), DL, EltVT, ExtL, ExtR,
18885 N0.getNode()->getFlags());
18886 SDValue Insert = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, NewBO);
18887 SmallVector<int, 16> ZeroMask(VT.getVectorNumElements(), 0);
18888 return DAG.getVectorShuffle(VT, DL, Insert, DAG.getUNDEF(VT), ZeroMask);
18891 // If this is a bit convert that changes the element type of the vector but
18892 // not the number of vector elements, look through it. Be careful not to
18893 // look though conversions that change things like v4f32 to v2f64.
18894 SDNode *V = N0.getNode();
18895 if (V->getOpcode() == ISD::BITCAST) {
18896 SDValue ConvInput = V->getOperand(0);
18897 if (ConvInput.getValueType().isVector() &&
18898 ConvInput.getValueType().getVectorNumElements() == NumElts)
18899 V = ConvInput.getNode();
18902 if (V->getOpcode() == ISD::BUILD_VECTOR) {
18903 assert(V->getNumOperands() == NumElts &&
18904 "BUILD_VECTOR has wrong number of operands");
18905 SDValue Base;
18906 bool AllSame = true;
18907 for (unsigned i = 0; i != NumElts; ++i) {
18908 if (!V->getOperand(i).isUndef()) {
18909 Base = V->getOperand(i);
18910 break;
18913 // Splat of <u, u, u, u>, return <u, u, u, u>
18914 if (!Base.getNode())
18915 return N0;
18916 for (unsigned i = 0; i != NumElts; ++i) {
18917 if (V->getOperand(i) != Base) {
18918 AllSame = false;
18919 break;
18922 // Splat of <x, x, x, x>, return <x, x, x, x>
18923 if (AllSame)
18924 return N0;
18926 // Canonicalize any other splat as a build_vector.
18927 SDValue Splatted = V->getOperand(SplatIndex);
18928 SmallVector<SDValue, 8> Ops(NumElts, Splatted);
18929 SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops);
18931 // We may have jumped through bitcasts, so the type of the
18932 // BUILD_VECTOR may not match the type of the shuffle.
18933 if (V->getValueType(0) != VT)
18934 NewBV = DAG.getBitcast(VT, NewBV);
18935 return NewBV;
18939 // Simplify source operands based on shuffle mask.
18940 if (SimplifyDemandedVectorElts(SDValue(N, 0)))
18941 return SDValue(N, 0);
18943 // This is intentionally placed after demanded elements simplification because
18944 // it could eliminate knowledge of undef elements created by this shuffle.
18945 if (SDValue ShufOp = simplifyShuffleOfShuffle(SVN))
18946 return ShufOp;
18948 // Match shuffles that can be converted to any_vector_extend_in_reg.
18949 if (SDValue V = combineShuffleToVectorExtend(SVN, DAG, TLI, LegalOperations))
18950 return V;
18952 // Combine "truncate_vector_in_reg" style shuffles.
18953 if (SDValue V = combineTruncationShuffle(SVN, DAG))
18954 return V;
18956 if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
18957 Level < AfterLegalizeVectorOps &&
18958 (N1.isUndef() ||
18959 (N1.getOpcode() == ISD::CONCAT_VECTORS &&
18960 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
18961 if (SDValue V = partitionShuffleOfConcats(N, DAG))
18962 return V;
18965 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
18966 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
18967 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT))
18968 if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI))
18969 return Res;
18971 // If this shuffle only has a single input that is a bitcasted shuffle,
18972 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output
18973 // back to their original types.
18974 if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
18975 N1.isUndef() && Level < AfterLegalizeVectorOps &&
18976 TLI.isTypeLegal(VT)) {
18977 auto ScaleShuffleMask = [](ArrayRef<int> Mask, int Scale) {
18978 if (Scale == 1)
18979 return SmallVector<int, 8>(Mask.begin(), Mask.end());
18981 SmallVector<int, 8> NewMask;
18982 for (int M : Mask)
18983 for (int s = 0; s != Scale; ++s)
18984 NewMask.push_back(M < 0 ? -1 : Scale * M + s);
18985 return NewMask;
18988 SDValue BC0 = peekThroughOneUseBitcasts(N0);
18989 if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) {
18990 EVT SVT = VT.getScalarType();
18991 EVT InnerVT = BC0->getValueType(0);
18992 EVT InnerSVT = InnerVT.getScalarType();
18994 // Determine which shuffle works with the smaller scalar type.
18995 EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT;
18996 EVT ScaleSVT = ScaleVT.getScalarType();
18998 if (TLI.isTypeLegal(ScaleVT) &&
18999 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) &&
19000 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) {
19001 int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits();
19002 int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits();
19004 // Scale the shuffle masks to the smaller scalar type.
19005 ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0);
19006 SmallVector<int, 8> InnerMask =
19007 ScaleShuffleMask(InnerSVN->getMask(), InnerScale);
19008 SmallVector<int, 8> OuterMask =
19009 ScaleShuffleMask(SVN->getMask(), OuterScale);
19011 // Merge the shuffle masks.
19012 SmallVector<int, 8> NewMask;
19013 for (int M : OuterMask)
19014 NewMask.push_back(M < 0 ? -1 : InnerMask[M]);
19016 // Test for shuffle mask legality over both commutations.
19017 SDValue SV0 = BC0->getOperand(0);
19018 SDValue SV1 = BC0->getOperand(1);
19019 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
19020 if (!LegalMask) {
19021 std::swap(SV0, SV1);
19022 ShuffleVectorSDNode::commuteMask(NewMask);
19023 LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
19026 if (LegalMask) {
19027 SV0 = DAG.getBitcast(ScaleVT, SV0);
19028 SV1 = DAG.getBitcast(ScaleVT, SV1);
19029 return DAG.getBitcast(
19030 VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask));
19036 // Canonicalize shuffles according to rules:
19037 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
19038 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
19039 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
19040 if (N1.getOpcode() == ISD::VECTOR_SHUFFLE &&
19041 N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
19042 TLI.isTypeLegal(VT)) {
19043 // The incoming shuffle must be of the same type as the result of the
19044 // current shuffle.
19045 assert(N1->getOperand(0).getValueType() == VT &&
19046 "Shuffle types don't match");
19048 SDValue SV0 = N1->getOperand(0);
19049 SDValue SV1 = N1->getOperand(1);
19050 bool HasSameOp0 = N0 == SV0;
19051 bool IsSV1Undef = SV1.isUndef();
19052 if (HasSameOp0 || IsSV1Undef || N0 == SV1)
19053 // Commute the operands of this shuffle so that next rule
19054 // will trigger.
19055 return DAG.getCommutedVectorShuffle(*SVN);
19058 // Try to fold according to rules:
19059 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
19060 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
19061 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
19062 // Don't try to fold shuffles with illegal type.
19063 // Only fold if this shuffle is the only user of the other shuffle.
19064 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) &&
19065 Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) {
19066 ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
19068 // Don't try to fold splats; they're likely to simplify somehow, or they
19069 // might be free.
19070 if (OtherSV->isSplat())
19071 return SDValue();
19073 // The incoming shuffle must be of the same type as the result of the
19074 // current shuffle.
19075 assert(OtherSV->getOperand(0).getValueType() == VT &&
19076 "Shuffle types don't match");
19078 SDValue SV0, SV1;
19079 SmallVector<int, 4> Mask;
19080 // Compute the combined shuffle mask for a shuffle with SV0 as the first
19081 // operand, and SV1 as the second operand.
19082 for (unsigned i = 0; i != NumElts; ++i) {
19083 int Idx = SVN->getMaskElt(i);
19084 if (Idx < 0) {
19085 // Propagate Undef.
19086 Mask.push_back(Idx);
19087 continue;
19090 SDValue CurrentVec;
19091 if (Idx < (int)NumElts) {
19092 // This shuffle index refers to the inner shuffle N0. Lookup the inner
19093 // shuffle mask to identify which vector is actually referenced.
19094 Idx = OtherSV->getMaskElt(Idx);
19095 if (Idx < 0) {
19096 // Propagate Undef.
19097 Mask.push_back(Idx);
19098 continue;
19101 CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0)
19102 : OtherSV->getOperand(1);
19103 } else {
19104 // This shuffle index references an element within N1.
19105 CurrentVec = N1;
19108 // Simple case where 'CurrentVec' is UNDEF.
19109 if (CurrentVec.isUndef()) {
19110 Mask.push_back(-1);
19111 continue;
19114 // Canonicalize the shuffle index. We don't know yet if CurrentVec
19115 // will be the first or second operand of the combined shuffle.
19116 Idx = Idx % NumElts;
19117 if (!SV0.getNode() || SV0 == CurrentVec) {
19118 // Ok. CurrentVec is the left hand side.
19119 // Update the mask accordingly.
19120 SV0 = CurrentVec;
19121 Mask.push_back(Idx);
19122 continue;
19125 // Bail out if we cannot convert the shuffle pair into a single shuffle.
19126 if (SV1.getNode() && SV1 != CurrentVec)
19127 return SDValue();
19129 // Ok. CurrentVec is the right hand side.
19130 // Update the mask accordingly.
19131 SV1 = CurrentVec;
19132 Mask.push_back(Idx + NumElts);
19135 // Check if all indices in Mask are Undef. In case, propagate Undef.
19136 bool isUndefMask = true;
19137 for (unsigned i = 0; i != NumElts && isUndefMask; ++i)
19138 isUndefMask &= Mask[i] < 0;
19140 if (isUndefMask)
19141 return DAG.getUNDEF(VT);
19143 if (!SV0.getNode())
19144 SV0 = DAG.getUNDEF(VT);
19145 if (!SV1.getNode())
19146 SV1 = DAG.getUNDEF(VT);
19148 // Avoid introducing shuffles with illegal mask.
19149 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
19150 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
19151 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
19152 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2)
19153 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2)
19154 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2)
19155 return TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, Mask, DAG);
19158 if (SDValue V = foldShuffleOfConcatUndefs(SVN, DAG))
19159 return V;
19161 return SDValue();
19164 SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) {
19165 SDValue InVal = N->getOperand(0);
19166 EVT VT = N->getValueType(0);
19168 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern
19169 // with a VECTOR_SHUFFLE and possible truncate.
19170 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
19171 SDValue InVec = InVal->getOperand(0);
19172 SDValue EltNo = InVal->getOperand(1);
19173 auto InVecT = InVec.getValueType();
19174 if (ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo)) {
19175 SmallVector<int, 8> NewMask(InVecT.getVectorNumElements(), -1);
19176 int Elt = C0->getZExtValue();
19177 NewMask[0] = Elt;
19178 // If we have an implict truncate do truncate here as long as it's legal.
19179 // if it's not legal, this should
19180 if (VT.getScalarType() != InVal.getValueType() &&
19181 InVal.getValueType().isScalarInteger() &&
19182 isTypeLegal(VT.getScalarType())) {
19183 SDValue Val =
19184 DAG.getNode(ISD::TRUNCATE, SDLoc(InVal), VT.getScalarType(), InVal);
19185 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val);
19187 if (VT.getScalarType() == InVecT.getScalarType() &&
19188 VT.getVectorNumElements() <= InVecT.getVectorNumElements()) {
19189 SDValue LegalShuffle =
19190 TLI.buildLegalVectorShuffle(InVecT, SDLoc(N), InVec,
19191 DAG.getUNDEF(InVecT), NewMask, DAG);
19192 if (LegalShuffle) {
19193 // If the initial vector is the correct size this shuffle is a
19194 // valid result.
19195 if (VT == InVecT)
19196 return LegalShuffle;
19197 // If not we must truncate the vector.
19198 if (VT.getVectorNumElements() != InVecT.getVectorNumElements()) {
19199 MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
19200 SDValue ZeroIdx = DAG.getConstant(0, SDLoc(N), IdxTy);
19201 EVT SubVT =
19202 EVT::getVectorVT(*DAG.getContext(), InVecT.getVectorElementType(),
19203 VT.getVectorNumElements());
19204 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT,
19205 LegalShuffle, ZeroIdx);
19212 return SDValue();
19215 SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) {
19216 EVT VT = N->getValueType(0);
19217 SDValue N0 = N->getOperand(0);
19218 SDValue N1 = N->getOperand(1);
19219 SDValue N2 = N->getOperand(2);
19221 // If inserting an UNDEF, just return the original vector.
19222 if (N1.isUndef())
19223 return N0;
19225 // If this is an insert of an extracted vector into an undef vector, we can
19226 // just use the input to the extract.
19227 if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
19228 N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT)
19229 return N1.getOperand(0);
19231 // If we are inserting a bitcast value into an undef, with the same
19232 // number of elements, just use the bitcast input of the extract.
19233 // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 ->
19234 // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2)
19235 if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST &&
19236 N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR &&
19237 N1.getOperand(0).getOperand(1) == N2 &&
19238 N1.getOperand(0).getOperand(0).getValueType().getVectorNumElements() ==
19239 VT.getVectorNumElements() &&
19240 N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() ==
19241 VT.getSizeInBits()) {
19242 return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0));
19245 // If both N1 and N2 are bitcast values on which insert_subvector
19246 // would makes sense, pull the bitcast through.
19247 // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 ->
19248 // BITCAST (INSERT_SUBVECTOR N0 N1 N2)
19249 if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) {
19250 SDValue CN0 = N0.getOperand(0);
19251 SDValue CN1 = N1.getOperand(0);
19252 EVT CN0VT = CN0.getValueType();
19253 EVT CN1VT = CN1.getValueType();
19254 if (CN0VT.isVector() && CN1VT.isVector() &&
19255 CN0VT.getVectorElementType() == CN1VT.getVectorElementType() &&
19256 CN0VT.getVectorNumElements() == VT.getVectorNumElements()) {
19257 SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N),
19258 CN0.getValueType(), CN0, CN1, N2);
19259 return DAG.getBitcast(VT, NewINSERT);
19263 // Combine INSERT_SUBVECTORs where we are inserting to the same index.
19264 // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx )
19265 // --> INSERT_SUBVECTOR( Vec, SubNew, Idx )
19266 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR &&
19267 N0.getOperand(1).getValueType() == N1.getValueType() &&
19268 N0.getOperand(2) == N2)
19269 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0),
19270 N1, N2);
19272 // Eliminate an intermediate insert into an undef vector:
19273 // insert_subvector undef, (insert_subvector undef, X, 0), N2 -->
19274 // insert_subvector undef, X, N2
19275 if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR &&
19276 N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2)))
19277 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0,
19278 N1.getOperand(1), N2);
19280 if (!isa<ConstantSDNode>(N2))
19281 return SDValue();
19283 uint64_t InsIdx = cast<ConstantSDNode>(N2)->getZExtValue();
19285 // Push subvector bitcasts to the output, adjusting the index as we go.
19286 // insert_subvector(bitcast(v), bitcast(s), c1)
19287 // -> bitcast(insert_subvector(v, s, c2))
19288 if ((N0.isUndef() || N0.getOpcode() == ISD::BITCAST) &&
19289 N1.getOpcode() == ISD::BITCAST) {
19290 SDValue N0Src = peekThroughBitcasts(N0);
19291 SDValue N1Src = peekThroughBitcasts(N1);
19292 EVT N0SrcSVT = N0Src.getValueType().getScalarType();
19293 EVT N1SrcSVT = N1Src.getValueType().getScalarType();
19294 if ((N0.isUndef() || N0SrcSVT == N1SrcSVT) &&
19295 N0Src.getValueType().isVector() && N1Src.getValueType().isVector()) {
19296 EVT NewVT;
19297 SDLoc DL(N);
19298 SDValue NewIdx;
19299 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
19300 LLVMContext &Ctx = *DAG.getContext();
19301 unsigned NumElts = VT.getVectorNumElements();
19302 unsigned EltSizeInBits = VT.getScalarSizeInBits();
19303 if ((EltSizeInBits % N1SrcSVT.getSizeInBits()) == 0) {
19304 unsigned Scale = EltSizeInBits / N1SrcSVT.getSizeInBits();
19305 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts * Scale);
19306 NewIdx = DAG.getConstant(InsIdx * Scale, DL, IdxVT);
19307 } else if ((N1SrcSVT.getSizeInBits() % EltSizeInBits) == 0) {
19308 unsigned Scale = N1SrcSVT.getSizeInBits() / EltSizeInBits;
19309 if ((NumElts % Scale) == 0 && (InsIdx % Scale) == 0) {
19310 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts / Scale);
19311 NewIdx = DAG.getConstant(InsIdx / Scale, DL, IdxVT);
19314 if (NewIdx && hasOperation(ISD::INSERT_SUBVECTOR, NewVT)) {
19315 SDValue Res = DAG.getBitcast(NewVT, N0Src);
19316 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, Res, N1Src, NewIdx);
19317 return DAG.getBitcast(VT, Res);
19322 // Canonicalize insert_subvector dag nodes.
19323 // Example:
19324 // (insert_subvector (insert_subvector A, Idx0), Idx1)
19325 // -> (insert_subvector (insert_subvector A, Idx1), Idx0)
19326 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() &&
19327 N1.getValueType() == N0.getOperand(1).getValueType() &&
19328 isa<ConstantSDNode>(N0.getOperand(2))) {
19329 unsigned OtherIdx = N0.getConstantOperandVal(2);
19330 if (InsIdx < OtherIdx) {
19331 // Swap nodes.
19332 SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT,
19333 N0.getOperand(0), N1, N2);
19334 AddToWorklist(NewOp.getNode());
19335 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()),
19336 VT, NewOp, N0.getOperand(1), N0.getOperand(2));
19340 // If the input vector is a concatenation, and the insert replaces
19341 // one of the pieces, we can optimize into a single concat_vectors.
19342 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() &&
19343 N0.getOperand(0).getValueType() == N1.getValueType()) {
19344 unsigned Factor = N1.getValueType().getVectorNumElements();
19346 SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end());
19347 Ops[cast<ConstantSDNode>(N2)->getZExtValue() / Factor] = N1;
19349 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
19352 // Simplify source operands based on insertion.
19353 if (SimplifyDemandedVectorElts(SDValue(N, 0)))
19354 return SDValue(N, 0);
19356 return SDValue();
19359 SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) {
19360 SDValue N0 = N->getOperand(0);
19362 // fold (fp_to_fp16 (fp16_to_fp op)) -> op
19363 if (N0->getOpcode() == ISD::FP16_TO_FP)
19364 return N0->getOperand(0);
19366 return SDValue();
19369 SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) {
19370 SDValue N0 = N->getOperand(0);
19372 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op)
19373 if (N0->getOpcode() == ISD::AND) {
19374 ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1));
19375 if (AndConst && AndConst->getAPIntValue() == 0xffff) {
19376 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0),
19377 N0.getOperand(0));
19381 return SDValue();
19384 SDValue DAGCombiner::visitVECREDUCE(SDNode *N) {
19385 SDValue N0 = N->getOperand(0);
19386 EVT VT = N0.getValueType();
19387 unsigned Opcode = N->getOpcode();
19389 // VECREDUCE over 1-element vector is just an extract.
19390 if (VT.getVectorNumElements() == 1) {
19391 SDLoc dl(N);
19392 SDValue Res = DAG.getNode(
19393 ISD::EXTRACT_VECTOR_ELT, dl, VT.getVectorElementType(), N0,
19394 DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
19395 if (Res.getValueType() != N->getValueType(0))
19396 Res = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Res);
19397 return Res;
19400 // On an boolean vector an and/or reduction is the same as a umin/umax
19401 // reduction. Convert them if the latter is legal while the former isn't.
19402 if (Opcode == ISD::VECREDUCE_AND || Opcode == ISD::VECREDUCE_OR) {
19403 unsigned NewOpcode = Opcode == ISD::VECREDUCE_AND
19404 ? ISD::VECREDUCE_UMIN : ISD::VECREDUCE_UMAX;
19405 if (!TLI.isOperationLegalOrCustom(Opcode, VT) &&
19406 TLI.isOperationLegalOrCustom(NewOpcode, VT) &&
19407 DAG.ComputeNumSignBits(N0) == VT.getScalarSizeInBits())
19408 return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), N0);
19411 return SDValue();
19414 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle
19415 /// with the destination vector and a zero vector.
19416 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
19417 /// vector_shuffle V, Zero, <0, 4, 2, 4>
19418 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
19419 assert(N->getOpcode() == ISD::AND && "Unexpected opcode!");
19421 EVT VT = N->getValueType(0);
19422 SDValue LHS = N->getOperand(0);
19423 SDValue RHS = peekThroughBitcasts(N->getOperand(1));
19424 SDLoc DL(N);
19426 // Make sure we're not running after operation legalization where it
19427 // may have custom lowered the vector shuffles.
19428 if (LegalOperations)
19429 return SDValue();
19431 if (RHS.getOpcode() != ISD::BUILD_VECTOR)
19432 return SDValue();
19434 EVT RVT = RHS.getValueType();
19435 unsigned NumElts = RHS.getNumOperands();
19437 // Attempt to create a valid clear mask, splitting the mask into
19438 // sub elements and checking to see if each is
19439 // all zeros or all ones - suitable for shuffle masking.
19440 auto BuildClearMask = [&](int Split) {
19441 int NumSubElts = NumElts * Split;
19442 int NumSubBits = RVT.getScalarSizeInBits() / Split;
19444 SmallVector<int, 8> Indices;
19445 for (int i = 0; i != NumSubElts; ++i) {
19446 int EltIdx = i / Split;
19447 int SubIdx = i % Split;
19448 SDValue Elt = RHS.getOperand(EltIdx);
19449 if (Elt.isUndef()) {
19450 Indices.push_back(-1);
19451 continue;
19454 APInt Bits;
19455 if (isa<ConstantSDNode>(Elt))
19456 Bits = cast<ConstantSDNode>(Elt)->getAPIntValue();
19457 else if (isa<ConstantFPSDNode>(Elt))
19458 Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt();
19459 else
19460 return SDValue();
19462 // Extract the sub element from the constant bit mask.
19463 if (DAG.getDataLayout().isBigEndian()) {
19464 Bits.lshrInPlace((Split - SubIdx - 1) * NumSubBits);
19465 } else {
19466 Bits.lshrInPlace(SubIdx * NumSubBits);
19469 if (Split > 1)
19470 Bits = Bits.trunc(NumSubBits);
19472 if (Bits.isAllOnesValue())
19473 Indices.push_back(i);
19474 else if (Bits == 0)
19475 Indices.push_back(i + NumSubElts);
19476 else
19477 return SDValue();
19480 // Let's see if the target supports this vector_shuffle.
19481 EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits);
19482 EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts);
19483 if (!TLI.isVectorClearMaskLegal(Indices, ClearVT))
19484 return SDValue();
19486 SDValue Zero = DAG.getConstant(0, DL, ClearVT);
19487 return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL,
19488 DAG.getBitcast(ClearVT, LHS),
19489 Zero, Indices));
19492 // Determine maximum split level (byte level masking).
19493 int MaxSplit = 1;
19494 if (RVT.getScalarSizeInBits() % 8 == 0)
19495 MaxSplit = RVT.getScalarSizeInBits() / 8;
19497 for (int Split = 1; Split <= MaxSplit; ++Split)
19498 if (RVT.getScalarSizeInBits() % Split == 0)
19499 if (SDValue S = BuildClearMask(Split))
19500 return S;
19502 return SDValue();
19505 /// If a vector binop is performed on splat values, it may be profitable to
19506 /// extract, scalarize, and insert/splat.
19507 static SDValue scalarizeBinOpOfSplats(SDNode *N, SelectionDAG &DAG) {
19508 SDValue N0 = N->getOperand(0);
19509 SDValue N1 = N->getOperand(1);
19510 unsigned Opcode = N->getOpcode();
19511 EVT VT = N->getValueType(0);
19512 EVT EltVT = VT.getVectorElementType();
19513 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
19515 // TODO: Remove/replace the extract cost check? If the elements are available
19516 // as scalars, then there may be no extract cost. Should we ask if
19517 // inserting a scalar back into a vector is cheap instead?
19518 int Index0, Index1;
19519 SDValue Src0 = DAG.getSplatSourceVector(N0, Index0);
19520 SDValue Src1 = DAG.getSplatSourceVector(N1, Index1);
19521 if (!Src0 || !Src1 || Index0 != Index1 ||
19522 Src0.getValueType().getVectorElementType() != EltVT ||
19523 Src1.getValueType().getVectorElementType() != EltVT ||
19524 !TLI.isExtractVecEltCheap(VT, Index0) ||
19525 !TLI.isOperationLegalOrCustom(Opcode, EltVT))
19526 return SDValue();
19528 SDLoc DL(N);
19529 SDValue IndexC =
19530 DAG.getConstant(Index0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()));
19531 SDValue X = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, N0, IndexC);
19532 SDValue Y = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, N1, IndexC);
19533 SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags());
19535 // If all lanes but 1 are undefined, no need to splat the scalar result.
19536 // TODO: Keep track of undefs and use that info in the general case.
19537 if (N0.getOpcode() == ISD::BUILD_VECTOR && N0.getOpcode() == N1.getOpcode() &&
19538 count_if(N0->ops(), [](SDValue V) { return !V.isUndef(); }) == 1 &&
19539 count_if(N1->ops(), [](SDValue V) { return !V.isUndef(); }) == 1) {
19540 // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) -->
19541 // build_vec ..undef, (bo X, Y), undef...
19542 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), DAG.getUNDEF(EltVT));
19543 Ops[Index0] = ScalarBO;
19544 return DAG.getBuildVector(VT, DL, Ops);
19547 // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index
19548 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), ScalarBO);
19549 return DAG.getBuildVector(VT, DL, Ops);
19552 /// Visit a binary vector operation, like ADD.
19553 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
19554 assert(N->getValueType(0).isVector() &&
19555 "SimplifyVBinOp only works on vectors!");
19557 SDValue LHS = N->getOperand(0);
19558 SDValue RHS = N->getOperand(1);
19559 SDValue Ops[] = {LHS, RHS};
19560 EVT VT = N->getValueType(0);
19561 unsigned Opcode = N->getOpcode();
19563 // See if we can constant fold the vector operation.
19564 if (SDValue Fold = DAG.FoldConstantVectorArithmetic(
19565 Opcode, SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags()))
19566 return Fold;
19568 // Move unary shuffles with identical masks after a vector binop:
19569 // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask))
19570 // --> shuffle (VBinOp A, B), Undef, Mask
19571 // This does not require type legality checks because we are creating the
19572 // same types of operations that are in the original sequence. We do have to
19573 // restrict ops like integer div that have immediate UB (eg, div-by-zero)
19574 // though. This code is adapted from the identical transform in instcombine.
19575 if (Opcode != ISD::UDIV && Opcode != ISD::SDIV &&
19576 Opcode != ISD::UREM && Opcode != ISD::SREM &&
19577 Opcode != ISD::UDIVREM && Opcode != ISD::SDIVREM) {
19578 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS);
19579 auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS);
19580 if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) &&
19581 LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() &&
19582 (LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) {
19583 SDLoc DL(N);
19584 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS.getOperand(0),
19585 RHS.getOperand(0), N->getFlags());
19586 SDValue UndefV = LHS.getOperand(1);
19587 return DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask());
19591 // The following pattern is likely to emerge with vector reduction ops. Moving
19592 // the binary operation ahead of insertion may allow using a narrower vector
19593 // instruction that has better performance than the wide version of the op:
19594 // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z
19595 if (LHS.getOpcode() == ISD::INSERT_SUBVECTOR && LHS.getOperand(0).isUndef() &&
19596 RHS.getOpcode() == ISD::INSERT_SUBVECTOR && RHS.getOperand(0).isUndef() &&
19597 LHS.getOperand(2) == RHS.getOperand(2) &&
19598 (LHS.hasOneUse() || RHS.hasOneUse())) {
19599 SDValue X = LHS.getOperand(1);
19600 SDValue Y = RHS.getOperand(1);
19601 SDValue Z = LHS.getOperand(2);
19602 EVT NarrowVT = X.getValueType();
19603 if (NarrowVT == Y.getValueType() &&
19604 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) {
19605 // (binop undef, undef) may not return undef, so compute that result.
19606 SDLoc DL(N);
19607 SDValue VecC =
19608 DAG.getNode(Opcode, DL, VT, DAG.getUNDEF(VT), DAG.getUNDEF(VT));
19609 SDValue NarrowBO = DAG.getNode(Opcode, DL, NarrowVT, X, Y);
19610 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, VecC, NarrowBO, Z);
19614 // Make sure all but the first op are undef or constant.
19615 auto ConcatWithConstantOrUndef = [](SDValue Concat) {
19616 return Concat.getOpcode() == ISD::CONCAT_VECTORS &&
19617 std::all_of(std::next(Concat->op_begin()), Concat->op_end(),
19618 [](const SDValue &Op) {
19619 return Op.isUndef() ||
19620 ISD::isBuildVectorOfConstantSDNodes(Op.getNode());
19624 // The following pattern is likely to emerge with vector reduction ops. Moving
19625 // the binary operation ahead of the concat may allow using a narrower vector
19626 // instruction that has better performance than the wide version of the op:
19627 // VBinOp (concat X, undef/constant), (concat Y, undef/constant) -->
19628 // concat (VBinOp X, Y), VecC
19629 if (ConcatWithConstantOrUndef(LHS) && ConcatWithConstantOrUndef(RHS) &&
19630 (LHS.hasOneUse() || RHS.hasOneUse())) {
19631 EVT NarrowVT = LHS.getOperand(0).getValueType();
19632 if (NarrowVT == RHS.getOperand(0).getValueType() &&
19633 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) {
19634 SDLoc DL(N);
19635 unsigned NumOperands = LHS.getNumOperands();
19636 SmallVector<SDValue, 4> ConcatOps;
19637 for (unsigned i = 0; i != NumOperands; ++i) {
19638 // This constant fold for operands 1 and up.
19639 ConcatOps.push_back(DAG.getNode(Opcode, DL, NarrowVT, LHS.getOperand(i),
19640 RHS.getOperand(i)));
19643 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
19647 if (SDValue V = scalarizeBinOpOfSplats(N, DAG))
19648 return V;
19650 return SDValue();
19653 SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1,
19654 SDValue N2) {
19655 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
19657 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
19658 cast<CondCodeSDNode>(N0.getOperand(2))->get());
19660 // If we got a simplified select_cc node back from SimplifySelectCC, then
19661 // break it down into a new SETCC node, and a new SELECT node, and then return
19662 // the SELECT node, since we were called with a SELECT node.
19663 if (SCC.getNode()) {
19664 // Check to see if we got a select_cc back (to turn into setcc/select).
19665 // Otherwise, just return whatever node we got back, like fabs.
19666 if (SCC.getOpcode() == ISD::SELECT_CC) {
19667 const SDNodeFlags Flags = N0.getNode()->getFlags();
19668 SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
19669 N0.getValueType(),
19670 SCC.getOperand(0), SCC.getOperand(1),
19671 SCC.getOperand(4), Flags);
19672 AddToWorklist(SETCC.getNode());
19673 SDValue SelectNode = DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC,
19674 SCC.getOperand(2), SCC.getOperand(3));
19675 SelectNode->setFlags(Flags);
19676 return SelectNode;
19679 return SCC;
19681 return SDValue();
19684 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values
19685 /// being selected between, see if we can simplify the select. Callers of this
19686 /// should assume that TheSelect is deleted if this returns true. As such, they
19687 /// should return the appropriate thing (e.g. the node) back to the top-level of
19688 /// the DAG combiner loop to avoid it being looked at.
19689 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
19690 SDValue RHS) {
19691 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
19692 // The select + setcc is redundant, because fsqrt returns NaN for X < 0.
19693 if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) {
19694 if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) {
19695 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?))
19696 SDValue Sqrt = RHS;
19697 ISD::CondCode CC;
19698 SDValue CmpLHS;
19699 const ConstantFPSDNode *Zero = nullptr;
19701 if (TheSelect->getOpcode() == ISD::SELECT_CC) {
19702 CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get();
19703 CmpLHS = TheSelect->getOperand(0);
19704 Zero = isConstOrConstSplatFP(TheSelect->getOperand(1));
19705 } else {
19706 // SELECT or VSELECT
19707 SDValue Cmp = TheSelect->getOperand(0);
19708 if (Cmp.getOpcode() == ISD::SETCC) {
19709 CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get();
19710 CmpLHS = Cmp.getOperand(0);
19711 Zero = isConstOrConstSplatFP(Cmp.getOperand(1));
19714 if (Zero && Zero->isZero() &&
19715 Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT ||
19716 CC == ISD::SETULT || CC == ISD::SETLT)) {
19717 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
19718 CombineTo(TheSelect, Sqrt);
19719 return true;
19723 // Cannot simplify select with vector condition
19724 if (TheSelect->getOperand(0).getValueType().isVector()) return false;
19726 // If this is a select from two identical things, try to pull the operation
19727 // through the select.
19728 if (LHS.getOpcode() != RHS.getOpcode() ||
19729 !LHS.hasOneUse() || !RHS.hasOneUse())
19730 return false;
19732 // If this is a load and the token chain is identical, replace the select
19733 // of two loads with a load through a select of the address to load from.
19734 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
19735 // constants have been dropped into the constant pool.
19736 if (LHS.getOpcode() == ISD::LOAD) {
19737 LoadSDNode *LLD = cast<LoadSDNode>(LHS);
19738 LoadSDNode *RLD = cast<LoadSDNode>(RHS);
19740 // Token chains must be identical.
19741 if (LHS.getOperand(0) != RHS.getOperand(0) ||
19742 // Do not let this transformation reduce the number of volatile loads.
19743 // Be conservative for atomics for the moment
19744 // TODO: This does appear to be legal for unordered atomics (see D66309)
19745 !LLD->isSimple() || !RLD->isSimple() ||
19746 // FIXME: If either is a pre/post inc/dec load,
19747 // we'd need to split out the address adjustment.
19748 LLD->isIndexed() || RLD->isIndexed() ||
19749 // If this is an EXTLOAD, the VT's must match.
19750 LLD->getMemoryVT() != RLD->getMemoryVT() ||
19751 // If this is an EXTLOAD, the kind of extension must match.
19752 (LLD->getExtensionType() != RLD->getExtensionType() &&
19753 // The only exception is if one of the extensions is anyext.
19754 LLD->getExtensionType() != ISD::EXTLOAD &&
19755 RLD->getExtensionType() != ISD::EXTLOAD) ||
19756 // FIXME: this discards src value information. This is
19757 // over-conservative. It would be beneficial to be able to remember
19758 // both potential memory locations. Since we are discarding
19759 // src value info, don't do the transformation if the memory
19760 // locations are not in the default address space.
19761 LLD->getPointerInfo().getAddrSpace() != 0 ||
19762 RLD->getPointerInfo().getAddrSpace() != 0 ||
19763 // We can't produce a CMOV of a TargetFrameIndex since we won't
19764 // generate the address generation required.
19765 LLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex ||
19766 RLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex ||
19767 !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
19768 LLD->getBasePtr().getValueType()))
19769 return false;
19771 // The loads must not depend on one another.
19772 if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD))
19773 return false;
19775 // Check that the select condition doesn't reach either load. If so,
19776 // folding this will induce a cycle into the DAG. If not, this is safe to
19777 // xform, so create a select of the addresses.
19779 SmallPtrSet<const SDNode *, 32> Visited;
19780 SmallVector<const SDNode *, 16> Worklist;
19782 // Always fail if LLD and RLD are not independent. TheSelect is a
19783 // predecessor to all Nodes in question so we need not search past it.
19785 Visited.insert(TheSelect);
19786 Worklist.push_back(LLD);
19787 Worklist.push_back(RLD);
19789 if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) ||
19790 SDNode::hasPredecessorHelper(RLD, Visited, Worklist))
19791 return false;
19793 SDValue Addr;
19794 if (TheSelect->getOpcode() == ISD::SELECT) {
19795 // We cannot do this optimization if any pair of {RLD, LLD} is a
19796 // predecessor to {RLD, LLD, CondNode}. As we've already compared the
19797 // Loads, we only need to check if CondNode is a successor to one of the
19798 // loads. We can further avoid this if there's no use of their chain
19799 // value.
19800 SDNode *CondNode = TheSelect->getOperand(0).getNode();
19801 Worklist.push_back(CondNode);
19803 if ((LLD->hasAnyUseOfValue(1) &&
19804 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
19805 (RLD->hasAnyUseOfValue(1) &&
19806 SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
19807 return false;
19809 Addr = DAG.getSelect(SDLoc(TheSelect),
19810 LLD->getBasePtr().getValueType(),
19811 TheSelect->getOperand(0), LLD->getBasePtr(),
19812 RLD->getBasePtr());
19813 } else { // Otherwise SELECT_CC
19814 // We cannot do this optimization if any pair of {RLD, LLD} is a
19815 // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared
19816 // the Loads, we only need to check if CondLHS/CondRHS is a successor to
19817 // one of the loads. We can further avoid this if there's no use of their
19818 // chain value.
19820 SDNode *CondLHS = TheSelect->getOperand(0).getNode();
19821 SDNode *CondRHS = TheSelect->getOperand(1).getNode();
19822 Worklist.push_back(CondLHS);
19823 Worklist.push_back(CondRHS);
19825 if ((LLD->hasAnyUseOfValue(1) &&
19826 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
19827 (RLD->hasAnyUseOfValue(1) &&
19828 SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
19829 return false;
19831 Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
19832 LLD->getBasePtr().getValueType(),
19833 TheSelect->getOperand(0),
19834 TheSelect->getOperand(1),
19835 LLD->getBasePtr(), RLD->getBasePtr(),
19836 TheSelect->getOperand(4));
19839 SDValue Load;
19840 // It is safe to replace the two loads if they have different alignments,
19841 // but the new load must be the minimum (most restrictive) alignment of the
19842 // inputs.
19843 unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment());
19844 MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags();
19845 if (!RLD->isInvariant())
19846 MMOFlags &= ~MachineMemOperand::MOInvariant;
19847 if (!RLD->isDereferenceable())
19848 MMOFlags &= ~MachineMemOperand::MODereferenceable;
19849 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
19850 // FIXME: Discards pointer and AA info.
19851 Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect),
19852 LLD->getChain(), Addr, MachinePointerInfo(), Alignment,
19853 MMOFlags);
19854 } else {
19855 // FIXME: Discards pointer and AA info.
19856 Load = DAG.getExtLoad(
19857 LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType()
19858 : LLD->getExtensionType(),
19859 SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr,
19860 MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags);
19863 // Users of the select now use the result of the load.
19864 CombineTo(TheSelect, Load);
19866 // Users of the old loads now use the new load's chain. We know the
19867 // old-load value is dead now.
19868 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
19869 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
19870 return true;
19873 return false;
19876 /// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and
19877 /// bitwise 'and'.
19878 SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0,
19879 SDValue N1, SDValue N2, SDValue N3,
19880 ISD::CondCode CC) {
19881 // If this is a select where the false operand is zero and the compare is a
19882 // check of the sign bit, see if we can perform the "gzip trick":
19883 // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
19884 // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A
19885 EVT XType = N0.getValueType();
19886 EVT AType = N2.getValueType();
19887 if (!isNullConstant(N3) || !XType.bitsGE(AType))
19888 return SDValue();
19890 // If the comparison is testing for a positive value, we have to invert
19891 // the sign bit mask, so only do that transform if the target has a bitwise
19892 // 'and not' instruction (the invert is free).
19893 if (CC == ISD::SETGT && TLI.hasAndNot(N2)) {
19894 // (X > -1) ? A : 0
19895 // (X > 0) ? X : 0 <-- This is canonical signed max.
19896 if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2)))
19897 return SDValue();
19898 } else if (CC == ISD::SETLT) {
19899 // (X < 0) ? A : 0
19900 // (X < 1) ? X : 0 <-- This is un-canonicalized signed min.
19901 if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2)))
19902 return SDValue();
19903 } else {
19904 return SDValue();
19907 // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit
19908 // constant.
19909 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
19910 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
19911 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) {
19912 unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1;
19913 SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy);
19914 SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt);
19915 AddToWorklist(Shift.getNode());
19917 if (XType.bitsGT(AType)) {
19918 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
19919 AddToWorklist(Shift.getNode());
19922 if (CC == ISD::SETGT)
19923 Shift = DAG.getNOT(DL, Shift, AType);
19925 return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
19928 SDValue ShiftAmt = DAG.getConstant(XType.getSizeInBits() - 1, DL, ShiftAmtTy);
19929 SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt);
19930 AddToWorklist(Shift.getNode());
19932 if (XType.bitsGT(AType)) {
19933 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
19934 AddToWorklist(Shift.getNode());
19937 if (CC == ISD::SETGT)
19938 Shift = DAG.getNOT(DL, Shift, AType);
19940 return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
19943 /// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
19944 /// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
19945 /// in it. This may be a win when the constant is not otherwise available
19946 /// because it replaces two constant pool loads with one.
19947 SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset(
19948 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3,
19949 ISD::CondCode CC) {
19950 if (!TLI.reduceSelectOfFPConstantLoads(N0.getValueType()))
19951 return SDValue();
19953 // If we are before legalize types, we want the other legalization to happen
19954 // first (for example, to avoid messing with soft float).
19955 auto *TV = dyn_cast<ConstantFPSDNode>(N2);
19956 auto *FV = dyn_cast<ConstantFPSDNode>(N3);
19957 EVT VT = N2.getValueType();
19958 if (!TV || !FV || !TLI.isTypeLegal(VT))
19959 return SDValue();
19961 // If a constant can be materialized without loads, this does not make sense.
19962 if (TLI.getOperationAction(ISD::ConstantFP, VT) == TargetLowering::Legal ||
19963 TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0), ForCodeSize) ||
19964 TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0), ForCodeSize))
19965 return SDValue();
19967 // If both constants have multiple uses, then we won't need to do an extra
19968 // load. The values are likely around in registers for other users.
19969 if (!TV->hasOneUse() && !FV->hasOneUse())
19970 return SDValue();
19972 Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()),
19973 const_cast<ConstantFP*>(TV->getConstantFPValue()) };
19974 Type *FPTy = Elts[0]->getType();
19975 const DataLayout &TD = DAG.getDataLayout();
19977 // Create a ConstantArray of the two constants.
19978 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
19979 SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()),
19980 TD.getPrefTypeAlignment(FPTy));
19981 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
19983 // Get offsets to the 0 and 1 elements of the array, so we can select between
19984 // them.
19985 SDValue Zero = DAG.getIntPtrConstant(0, DL);
19986 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
19987 SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV));
19988 SDValue Cond =
19989 DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC);
19990 AddToWorklist(Cond.getNode());
19991 SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero);
19992 AddToWorklist(CstOffset.getNode());
19993 CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset);
19994 AddToWorklist(CPIdx.getNode());
19995 return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
19996 MachinePointerInfo::getConstantPool(
19997 DAG.getMachineFunction()), Alignment);
20000 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3
20001 /// where 'cond' is the comparison specified by CC.
20002 SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
20003 SDValue N2, SDValue N3, ISD::CondCode CC,
20004 bool NotExtCompare) {
20005 // (x ? y : y) -> y.
20006 if (N2 == N3) return N2;
20008 EVT CmpOpVT = N0.getValueType();
20009 EVT CmpResVT = getSetCCResultType(CmpOpVT);
20010 EVT VT = N2.getValueType();
20011 auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
20012 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
20013 auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
20015 // Determine if the condition we're dealing with is constant.
20016 if (SDValue SCC = DAG.FoldSetCC(CmpResVT, N0, N1, CC, DL)) {
20017 AddToWorklist(SCC.getNode());
20018 if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC)) {
20019 // fold select_cc true, x, y -> x
20020 // fold select_cc false, x, y -> y
20021 return !(SCCC->isNullValue()) ? N2 : N3;
20025 if (SDValue V =
20026 convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC))
20027 return V;
20029 if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC))
20030 return V;
20032 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
20033 // where y is has a single bit set.
20034 // A plaintext description would be, we can turn the SELECT_CC into an AND
20035 // when the condition can be materialized as an all-ones register. Any
20036 // single bit-test can be materialized as an all-ones register with
20037 // shift-left and shift-right-arith.
20038 // TODO: The operation legality checks could be loosened to include "custom",
20039 // but that may cause regressions for targets that do not have shift
20040 // instructions.
20041 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
20042 N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2) &&
20043 TLI.isOperationLegal(ISD::SHL, VT) &&
20044 TLI.isOperationLegal(ISD::SRA, VT)) {
20045 SDValue AndLHS = N0->getOperand(0);
20046 auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
20047 if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
20048 // Shift the tested bit over the sign bit.
20049 const APInt &AndMask = ConstAndRHS->getAPIntValue();
20050 SDValue ShlAmt =
20051 DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS),
20052 getShiftAmountTy(AndLHS.getValueType()));
20053 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
20055 // Now arithmetic right shift it all the way over, so the result is either
20056 // all-ones, or zero.
20057 SDValue ShrAmt =
20058 DAG.getConstant(AndMask.getBitWidth() - 1, SDLoc(Shl),
20059 getShiftAmountTy(Shl.getValueType()));
20060 SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
20062 return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
20066 // fold select C, 16, 0 -> shl C, 4
20067 bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2();
20068 bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2();
20070 if ((Fold || Swap) &&
20071 TLI.getBooleanContents(CmpOpVT) ==
20072 TargetLowering::ZeroOrOneBooleanContent &&
20073 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT))) {
20075 if (Swap) {
20076 CC = ISD::getSetCCInverse(CC, CmpOpVT.isInteger());
20077 std::swap(N2C, N3C);
20080 // If the caller doesn't want us to simplify this into a zext of a compare,
20081 // don't do it.
20082 if (NotExtCompare && N2C->isOne())
20083 return SDValue();
20085 SDValue Temp, SCC;
20086 // zext (setcc n0, n1)
20087 if (LegalTypes) {
20088 SCC = DAG.getSetCC(DL, CmpResVT, N0, N1, CC);
20089 if (VT.bitsLT(SCC.getValueType()))
20090 Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), VT);
20091 else
20092 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC);
20093 } else {
20094 SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
20095 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC);
20098 AddToWorklist(SCC.getNode());
20099 AddToWorklist(Temp.getNode());
20101 if (N2C->isOne())
20102 return Temp;
20104 // shl setcc result by log2 n2c
20105 return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
20106 DAG.getConstant(N2C->getAPIntValue().logBase2(),
20107 SDLoc(Temp),
20108 getShiftAmountTy(Temp.getValueType())));
20111 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X)
20112 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X)
20113 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X)
20114 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X)
20115 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X)
20116 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X)
20117 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X)
20118 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X)
20119 if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
20120 SDValue ValueOnZero = N2;
20121 SDValue Count = N3;
20122 // If the condition is NE instead of E, swap the operands.
20123 if (CC == ISD::SETNE)
20124 std::swap(ValueOnZero, Count);
20125 // Check if the value on zero is a constant equal to the bits in the type.
20126 if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) {
20127 if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) {
20128 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is
20129 // legal, combine to just cttz.
20130 if ((Count.getOpcode() == ISD::CTTZ ||
20131 Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) &&
20132 N0 == Count.getOperand(0) &&
20133 (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT)))
20134 return DAG.getNode(ISD::CTTZ, DL, VT, N0);
20135 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is
20136 // legal, combine to just ctlz.
20137 if ((Count.getOpcode() == ISD::CTLZ ||
20138 Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) &&
20139 N0 == Count.getOperand(0) &&
20140 (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT)))
20141 return DAG.getNode(ISD::CTLZ, DL, VT, N0);
20146 return SDValue();
20149 /// This is a stub for TargetLowering::SimplifySetCC.
20150 SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
20151 ISD::CondCode Cond, const SDLoc &DL,
20152 bool foldBooleans) {
20153 TargetLowering::DAGCombinerInfo
20154 DagCombineInfo(DAG, Level, false, this);
20155 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
20158 /// Given an ISD::SDIV node expressing a divide by constant, return
20159 /// a DAG expression to select that will generate the same value by multiplying
20160 /// by a magic number.
20161 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
20162 SDValue DAGCombiner::BuildSDIV(SDNode *N) {
20163 // when optimising for minimum size, we don't want to expand a div to a mul
20164 // and a shift.
20165 if (DAG.getMachineFunction().getFunction().hasMinSize())
20166 return SDValue();
20168 SmallVector<SDNode *, 8> Built;
20169 if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, Built)) {
20170 for (SDNode *N : Built)
20171 AddToWorklist(N);
20172 return S;
20175 return SDValue();
20178 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a
20179 /// DAG expression that will generate the same value by right shifting.
20180 SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) {
20181 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
20182 if (!C)
20183 return SDValue();
20185 // Avoid division by zero.
20186 if (C->isNullValue())
20187 return SDValue();
20189 SmallVector<SDNode *, 8> Built;
20190 if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) {
20191 for (SDNode *N : Built)
20192 AddToWorklist(N);
20193 return S;
20196 return SDValue();
20199 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG
20200 /// expression that will generate the same value by multiplying by a magic
20201 /// number.
20202 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
20203 SDValue DAGCombiner::BuildUDIV(SDNode *N) {
20204 // when optimising for minimum size, we don't want to expand a div to a mul
20205 // and a shift.
20206 if (DAG.getMachineFunction().getFunction().hasMinSize())
20207 return SDValue();
20209 SmallVector<SDNode *, 8> Built;
20210 if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, Built)) {
20211 for (SDNode *N : Built)
20212 AddToWorklist(N);
20213 return S;
20216 return SDValue();
20219 /// Determines the LogBase2 value for a non-null input value using the
20220 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
20221 SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) {
20222 EVT VT = V.getValueType();
20223 unsigned EltBits = VT.getScalarSizeInBits();
20224 SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V);
20225 SDValue Base = DAG.getConstant(EltBits - 1, DL, VT);
20226 SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz);
20227 return LogBase2;
20230 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
20231 /// For the reciprocal, we need to find the zero of the function:
20232 /// F(X) = A X - 1 [which has a zero at X = 1/A]
20233 /// =>
20234 /// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
20235 /// does not require additional intermediate precision]
20236 /// For the last iteration, put numerator N into it to gain more precision:
20237 /// Result = N X_i + X_i (N - N A X_i)
20238 SDValue DAGCombiner::BuildDivEstimate(SDValue N, SDValue Op,
20239 SDNodeFlags Flags) {
20240 if (Level >= AfterLegalizeDAG)
20241 return SDValue();
20243 // TODO: Handle half and/or extended types?
20244 EVT VT = Op.getValueType();
20245 if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64)
20246 return SDValue();
20248 // If estimates are explicitly disabled for this function, we're done.
20249 MachineFunction &MF = DAG.getMachineFunction();
20250 int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF);
20251 if (Enabled == TLI.ReciprocalEstimate::Disabled)
20252 return SDValue();
20254 // Estimates may be explicitly enabled for this type with a custom number of
20255 // refinement steps.
20256 int Iterations = TLI.getDivRefinementSteps(VT, MF);
20257 if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) {
20258 AddToWorklist(Est.getNode());
20260 SDLoc DL(Op);
20261 if (Iterations) {
20262 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
20264 // Newton iterations: Est = Est + Est (N - Arg * Est)
20265 // If this is the last iteration, also multiply by the numerator.
20266 for (int i = 0; i < Iterations; ++i) {
20267 SDValue MulEst = Est;
20269 if (i == Iterations - 1) {
20270 MulEst = DAG.getNode(ISD::FMUL, DL, VT, N, Est, Flags);
20271 AddToWorklist(MulEst.getNode());
20274 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, MulEst, Flags);
20275 AddToWorklist(NewEst.getNode());
20277 NewEst = DAG.getNode(ISD::FSUB, DL, VT,
20278 (i == Iterations - 1 ? N : FPOne), NewEst, Flags);
20279 AddToWorklist(NewEst.getNode());
20281 NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
20282 AddToWorklist(NewEst.getNode());
20284 Est = DAG.getNode(ISD::FADD, DL, VT, MulEst, NewEst, Flags);
20285 AddToWorklist(Est.getNode());
20287 } else {
20288 // If no iterations are available, multiply with N.
20289 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, N, Flags);
20290 AddToWorklist(Est.getNode());
20293 return Est;
20296 return SDValue();
20299 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
20300 /// For the reciprocal sqrt, we need to find the zero of the function:
20301 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
20302 /// =>
20303 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2)
20304 /// As a result, we precompute A/2 prior to the iteration loop.
20305 SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est,
20306 unsigned Iterations,
20307 SDNodeFlags Flags, bool Reciprocal) {
20308 EVT VT = Arg.getValueType();
20309 SDLoc DL(Arg);
20310 SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT);
20312 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that
20313 // this entire sequence requires only one FP constant.
20314 SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags);
20315 HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags);
20317 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
20318 for (unsigned i = 0; i < Iterations; ++i) {
20319 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags);
20320 NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags);
20321 NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags);
20322 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
20325 // If non-reciprocal square root is requested, multiply the result by Arg.
20326 if (!Reciprocal)
20327 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags);
20329 return Est;
20332 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
20333 /// For the reciprocal sqrt, we need to find the zero of the function:
20334 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
20335 /// =>
20336 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0))
20337 SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est,
20338 unsigned Iterations,
20339 SDNodeFlags Flags, bool Reciprocal) {
20340 EVT VT = Arg.getValueType();
20341 SDLoc DL(Arg);
20342 SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT);
20343 SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT);
20345 // This routine must enter the loop below to work correctly
20346 // when (Reciprocal == false).
20347 assert(Iterations > 0);
20349 // Newton iterations for reciprocal square root:
20350 // E = (E * -0.5) * ((A * E) * E + -3.0)
20351 for (unsigned i = 0; i < Iterations; ++i) {
20352 SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags);
20353 SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags);
20354 SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags);
20356 // When calculating a square root at the last iteration build:
20357 // S = ((A * E) * -0.5) * ((A * E) * E + -3.0)
20358 // (notice a common subexpression)
20359 SDValue LHS;
20360 if (Reciprocal || (i + 1) < Iterations) {
20361 // RSQRT: LHS = (E * -0.5)
20362 LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags);
20363 } else {
20364 // SQRT: LHS = (A * E) * -0.5
20365 LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags);
20368 Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags);
20371 return Est;
20374 /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case
20375 /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if
20376 /// Op can be zero.
20377 SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags,
20378 bool Reciprocal) {
20379 if (Level >= AfterLegalizeDAG)
20380 return SDValue();
20382 // TODO: Handle half and/or extended types?
20383 EVT VT = Op.getValueType();
20384 if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64)
20385 return SDValue();
20387 // If estimates are explicitly disabled for this function, we're done.
20388 MachineFunction &MF = DAG.getMachineFunction();
20389 int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF);
20390 if (Enabled == TLI.ReciprocalEstimate::Disabled)
20391 return SDValue();
20393 // Estimates may be explicitly enabled for this type with a custom number of
20394 // refinement steps.
20395 int Iterations = TLI.getSqrtRefinementSteps(VT, MF);
20397 bool UseOneConstNR = false;
20398 if (SDValue Est =
20399 TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR,
20400 Reciprocal)) {
20401 AddToWorklist(Est.getNode());
20403 if (Iterations) {
20404 Est = UseOneConstNR
20405 ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal)
20406 : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal);
20408 if (!Reciprocal) {
20409 // The estimate is now completely wrong if the input was exactly 0.0 or
20410 // possibly a denormal. Force the answer to 0.0 for those cases.
20411 SDLoc DL(Op);
20412 EVT CCVT = getSetCCResultType(VT);
20413 ISD::NodeType SelOpcode = VT.isVector() ? ISD::VSELECT : ISD::SELECT;
20414 const Function &F = DAG.getMachineFunction().getFunction();
20415 Attribute Denorms = F.getFnAttribute("denormal-fp-math");
20416 if (Denorms.getValueAsString().equals("ieee")) {
20417 // fabs(X) < SmallestNormal ? 0.0 : Est
20418 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
20419 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
20420 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
20421 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
20422 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
20423 SDValue IsDenorm = DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
20424 Est = DAG.getNode(SelOpcode, DL, VT, IsDenorm, FPZero, Est);
20425 } else {
20426 // X == 0.0 ? 0.0 : Est
20427 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
20428 SDValue IsZero = DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
20429 Est = DAG.getNode(SelOpcode, DL, VT, IsZero, FPZero, Est);
20433 return Est;
20436 return SDValue();
20439 SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) {
20440 return buildSqrtEstimateImpl(Op, Flags, true);
20443 SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) {
20444 return buildSqrtEstimateImpl(Op, Flags, false);
20447 /// Return true if there is any possibility that the two addresses overlap.
20448 bool DAGCombiner::isAlias(SDNode *Op0, SDNode *Op1) const {
20450 struct MemUseCharacteristics {
20451 bool IsVolatile;
20452 bool IsAtomic;
20453 SDValue BasePtr;
20454 int64_t Offset;
20455 Optional<int64_t> NumBytes;
20456 MachineMemOperand *MMO;
20459 auto getCharacteristics = [](SDNode *N) -> MemUseCharacteristics {
20460 if (const auto *LSN = dyn_cast<LSBaseSDNode>(N)) {
20461 int64_t Offset = 0;
20462 if (auto *C = dyn_cast<ConstantSDNode>(LSN->getOffset()))
20463 Offset = (LSN->getAddressingMode() == ISD::PRE_INC)
20464 ? C->getSExtValue()
20465 : (LSN->getAddressingMode() == ISD::PRE_DEC)
20466 ? -1 * C->getSExtValue()
20467 : 0;
20468 return {LSN->isVolatile(), LSN->isAtomic(), LSN->getBasePtr(),
20469 Offset /*base offset*/,
20470 Optional<int64_t>(LSN->getMemoryVT().getStoreSize()),
20471 LSN->getMemOperand()};
20473 if (const auto *LN = cast<LifetimeSDNode>(N))
20474 return {false /*isVolatile*/, /*isAtomic*/ false, LN->getOperand(1),
20475 (LN->hasOffset()) ? LN->getOffset() : 0,
20476 (LN->hasOffset()) ? Optional<int64_t>(LN->getSize())
20477 : Optional<int64_t>(),
20478 (MachineMemOperand *)nullptr};
20479 // Default.
20480 return {false /*isvolatile*/, /*isAtomic*/ false, SDValue(),
20481 (int64_t)0 /*offset*/,
20482 Optional<int64_t>() /*size*/, (MachineMemOperand *)nullptr};
20485 MemUseCharacteristics MUC0 = getCharacteristics(Op0),
20486 MUC1 = getCharacteristics(Op1);
20488 // If they are to the same address, then they must be aliases.
20489 if (MUC0.BasePtr.getNode() && MUC0.BasePtr == MUC1.BasePtr &&
20490 MUC0.Offset == MUC1.Offset)
20491 return true;
20493 // If they are both volatile then they cannot be reordered.
20494 if (MUC0.IsVolatile && MUC1.IsVolatile)
20495 return true;
20497 // Be conservative about atomics for the moment
20498 // TODO: This is way overconservative for unordered atomics (see D66309)
20499 if (MUC0.IsAtomic && MUC1.IsAtomic)
20500 return true;
20502 if (MUC0.MMO && MUC1.MMO) {
20503 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
20504 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
20505 return false;
20508 // Try to prove that there is aliasing, or that there is no aliasing. Either
20509 // way, we can return now. If nothing can be proved, proceed with more tests.
20510 bool IsAlias;
20511 if (BaseIndexOffset::computeAliasing(Op0, MUC0.NumBytes, Op1, MUC1.NumBytes,
20512 DAG, IsAlias))
20513 return IsAlias;
20515 // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if
20516 // either are not known.
20517 if (!MUC0.MMO || !MUC1.MMO)
20518 return true;
20520 // If one operation reads from invariant memory, and the other may store, they
20521 // cannot alias. These should really be checking the equivalent of mayWrite,
20522 // but it only matters for memory nodes other than load /store.
20523 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
20524 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
20525 return false;
20527 // If we know required SrcValue1 and SrcValue2 have relatively large
20528 // alignment compared to the size and offset of the access, we may be able
20529 // to prove they do not alias. This check is conservative for now to catch
20530 // cases created by splitting vector types.
20531 int64_t SrcValOffset0 = MUC0.MMO->getOffset();
20532 int64_t SrcValOffset1 = MUC1.MMO->getOffset();
20533 unsigned OrigAlignment0 = MUC0.MMO->getBaseAlignment();
20534 unsigned OrigAlignment1 = MUC1.MMO->getBaseAlignment();
20535 if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 &&
20536 MUC0.NumBytes.hasValue() && MUC1.NumBytes.hasValue() &&
20537 *MUC0.NumBytes == *MUC1.NumBytes && OrigAlignment0 > *MUC0.NumBytes) {
20538 int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0;
20539 int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1;
20541 // There is no overlap between these relatively aligned accesses of
20542 // similar size. Return no alias.
20543 if ((OffAlign0 + *MUC0.NumBytes) <= OffAlign1 ||
20544 (OffAlign1 + *MUC1.NumBytes) <= OffAlign0)
20545 return false;
20548 bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0
20549 ? CombinerGlobalAA
20550 : DAG.getSubtarget().useAA();
20551 #ifndef NDEBUG
20552 if (CombinerAAOnlyFunc.getNumOccurrences() &&
20553 CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
20554 UseAA = false;
20555 #endif
20557 if (UseAA && AA && MUC0.MMO->getValue() && MUC1.MMO->getValue()) {
20558 // Use alias analysis information.
20559 int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1);
20560 int64_t Overlap0 = *MUC0.NumBytes + SrcValOffset0 - MinOffset;
20561 int64_t Overlap1 = *MUC1.NumBytes + SrcValOffset1 - MinOffset;
20562 AliasResult AAResult = AA->alias(
20563 MemoryLocation(MUC0.MMO->getValue(), Overlap0,
20564 UseTBAA ? MUC0.MMO->getAAInfo() : AAMDNodes()),
20565 MemoryLocation(MUC1.MMO->getValue(), Overlap1,
20566 UseTBAA ? MUC1.MMO->getAAInfo() : AAMDNodes()));
20567 if (AAResult == NoAlias)
20568 return false;
20571 // Otherwise we have to assume they alias.
20572 return true;
20575 /// Walk up chain skipping non-aliasing memory nodes,
20576 /// looking for aliasing nodes and adding them to the Aliases vector.
20577 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
20578 SmallVectorImpl<SDValue> &Aliases) {
20579 SmallVector<SDValue, 8> Chains; // List of chains to visit.
20580 SmallPtrSet<SDNode *, 16> Visited; // Visited node set.
20582 // Get alias information for node.
20583 // TODO: relax aliasing for unordered atomics (see D66309)
20584 const bool IsLoad = isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->isSimple();
20586 // Starting off.
20587 Chains.push_back(OriginalChain);
20588 unsigned Depth = 0;
20590 // Attempt to improve chain by a single step
20591 std::function<bool(SDValue &)> ImproveChain = [&](SDValue &C) -> bool {
20592 switch (C.getOpcode()) {
20593 case ISD::EntryToken:
20594 // No need to mark EntryToken.
20595 C = SDValue();
20596 return true;
20597 case ISD::LOAD:
20598 case ISD::STORE: {
20599 // Get alias information for C.
20600 // TODO: Relax aliasing for unordered atomics (see D66309)
20601 bool IsOpLoad = isa<LoadSDNode>(C.getNode()) &&
20602 cast<LSBaseSDNode>(C.getNode())->isSimple();
20603 if ((IsLoad && IsOpLoad) || !isAlias(N, C.getNode())) {
20604 // Look further up the chain.
20605 C = C.getOperand(0);
20606 return true;
20608 // Alias, so stop here.
20609 return false;
20612 case ISD::CopyFromReg:
20613 // Always forward past past CopyFromReg.
20614 C = C.getOperand(0);
20615 return true;
20617 case ISD::LIFETIME_START:
20618 case ISD::LIFETIME_END: {
20619 // We can forward past any lifetime start/end that can be proven not to
20620 // alias the memory access.
20621 if (!isAlias(N, C.getNode())) {
20622 // Look further up the chain.
20623 C = C.getOperand(0);
20624 return true;
20626 return false;
20628 default:
20629 return false;
20633 // Look at each chain and determine if it is an alias. If so, add it to the
20634 // aliases list. If not, then continue up the chain looking for the next
20635 // candidate.
20636 while (!Chains.empty()) {
20637 SDValue Chain = Chains.pop_back_val();
20639 // Don't bother if we've seen Chain before.
20640 if (!Visited.insert(Chain.getNode()).second)
20641 continue;
20643 // For TokenFactor nodes, look at each operand and only continue up the
20644 // chain until we reach the depth limit.
20646 // FIXME: The depth check could be made to return the last non-aliasing
20647 // chain we found before we hit a tokenfactor rather than the original
20648 // chain.
20649 if (Depth > TLI.getGatherAllAliasesMaxDepth()) {
20650 Aliases.clear();
20651 Aliases.push_back(OriginalChain);
20652 return;
20655 if (Chain.getOpcode() == ISD::TokenFactor) {
20656 // We have to check each of the operands of the token factor for "small"
20657 // token factors, so we queue them up. Adding the operands to the queue
20658 // (stack) in reverse order maintains the original order and increases the
20659 // likelihood that getNode will find a matching token factor (CSE.)
20660 if (Chain.getNumOperands() > 16) {
20661 Aliases.push_back(Chain);
20662 continue;
20664 for (unsigned n = Chain.getNumOperands(); n;)
20665 Chains.push_back(Chain.getOperand(--n));
20666 ++Depth;
20667 continue;
20669 // Everything else
20670 if (ImproveChain(Chain)) {
20671 // Updated Chain Found, Consider new chain if one exists.
20672 if (Chain.getNode())
20673 Chains.push_back(Chain);
20674 ++Depth;
20675 continue;
20677 // No Improved Chain Possible, treat as Alias.
20678 Aliases.push_back(Chain);
20682 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain
20683 /// (aliasing node.)
20684 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
20685 if (OptLevel == CodeGenOpt::None)
20686 return OldChain;
20688 // Ops for replacing token factor.
20689 SmallVector<SDValue, 8> Aliases;
20691 // Accumulate all the aliases to this node.
20692 GatherAllAliases(N, OldChain, Aliases);
20694 // If no operands then chain to entry token.
20695 if (Aliases.size() == 0)
20696 return DAG.getEntryNode();
20698 // If a single operand then chain to it. We don't need to revisit it.
20699 if (Aliases.size() == 1)
20700 return Aliases[0];
20702 // Construct a custom tailored token factor.
20703 return DAG.getTokenFactor(SDLoc(N), Aliases);
20706 namespace {
20707 // TODO: Replace with with std::monostate when we move to C++17.
20708 struct UnitT { } Unit;
20709 bool operator==(const UnitT &, const UnitT &) { return true; }
20710 bool operator!=(const UnitT &, const UnitT &) { return false; }
20711 } // namespace
20713 // This function tries to collect a bunch of potentially interesting
20714 // nodes to improve the chains of, all at once. This might seem
20715 // redundant, as this function gets called when visiting every store
20716 // node, so why not let the work be done on each store as it's visited?
20718 // I believe this is mainly important because MergeConsecutiveStores
20719 // is unable to deal with merging stores of different sizes, so unless
20720 // we improve the chains of all the potential candidates up-front
20721 // before running MergeConsecutiveStores, it might only see some of
20722 // the nodes that will eventually be candidates, and then not be able
20723 // to go from a partially-merged state to the desired final
20724 // fully-merged state.
20726 bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) {
20727 SmallVector<StoreSDNode *, 8> ChainedStores;
20728 StoreSDNode *STChain = St;
20729 // Intervals records which offsets from BaseIndex have been covered. In
20730 // the common case, every store writes to the immediately previous address
20731 // space and thus merged with the previous interval at insertion time.
20733 using IMap =
20734 llvm::IntervalMap<int64_t, UnitT, 8, IntervalMapHalfOpenInfo<int64_t>>;
20735 IMap::Allocator A;
20736 IMap Intervals(A);
20738 // This holds the base pointer, index, and the offset in bytes from the base
20739 // pointer.
20740 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
20742 // We must have a base and an offset.
20743 if (!BasePtr.getBase().getNode())
20744 return false;
20746 // Do not handle stores to undef base pointers.
20747 if (BasePtr.getBase().isUndef())
20748 return false;
20750 // Add ST's interval.
20751 Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8, Unit);
20753 while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) {
20754 // If the chain has more than one use, then we can't reorder the mem ops.
20755 if (!SDValue(Chain, 0)->hasOneUse())
20756 break;
20757 // TODO: Relax for unordered atomics (see D66309)
20758 if (!Chain->isSimple() || Chain->isIndexed())
20759 break;
20761 // Find the base pointer and offset for this memory node.
20762 const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG);
20763 // Check that the base pointer is the same as the original one.
20764 int64_t Offset;
20765 if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset))
20766 break;
20767 int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8;
20768 // Make sure we don't overlap with other intervals by checking the ones to
20769 // the left or right before inserting.
20770 auto I = Intervals.find(Offset);
20771 // If there's a next interval, we should end before it.
20772 if (I != Intervals.end() && I.start() < (Offset + Length))
20773 break;
20774 // If there's a previous interval, we should start after it.
20775 if (I != Intervals.begin() && (--I).stop() <= Offset)
20776 break;
20777 Intervals.insert(Offset, Offset + Length, Unit);
20779 ChainedStores.push_back(Chain);
20780 STChain = Chain;
20783 // If we didn't find a chained store, exit.
20784 if (ChainedStores.size() == 0)
20785 return false;
20787 // Improve all chained stores (St and ChainedStores members) starting from
20788 // where the store chain ended and return single TokenFactor.
20789 SDValue NewChain = STChain->getChain();
20790 SmallVector<SDValue, 8> TFOps;
20791 for (unsigned I = ChainedStores.size(); I;) {
20792 StoreSDNode *S = ChainedStores[--I];
20793 SDValue BetterChain = FindBetterChain(S, NewChain);
20794 S = cast<StoreSDNode>(DAG.UpdateNodeOperands(
20795 S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3)));
20796 TFOps.push_back(SDValue(S, 0));
20797 ChainedStores[I] = S;
20800 // Improve St's chain. Use a new node to avoid creating a loop from CombineTo.
20801 SDValue BetterChain = FindBetterChain(St, NewChain);
20802 SDValue NewST;
20803 if (St->isTruncatingStore())
20804 NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(),
20805 St->getBasePtr(), St->getMemoryVT(),
20806 St->getMemOperand());
20807 else
20808 NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(),
20809 St->getBasePtr(), St->getMemOperand());
20811 TFOps.push_back(NewST);
20813 // If we improved every element of TFOps, then we've lost the dependence on
20814 // NewChain to successors of St and we need to add it back to TFOps. Do so at
20815 // the beginning to keep relative order consistent with FindBetterChains.
20816 auto hasImprovedChain = [&](SDValue ST) -> bool {
20817 return ST->getOperand(0) != NewChain;
20819 bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain);
20820 if (AddNewChain)
20821 TFOps.insert(TFOps.begin(), NewChain);
20823 SDValue TF = DAG.getTokenFactor(SDLoc(STChain), TFOps);
20824 CombineTo(St, TF);
20826 // Add TF and its operands to the worklist.
20827 AddToWorklist(TF.getNode());
20828 for (const SDValue &Op : TF->ops())
20829 AddToWorklist(Op.getNode());
20830 AddToWorklist(STChain);
20831 return true;
20834 bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) {
20835 if (OptLevel == CodeGenOpt::None)
20836 return false;
20838 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
20840 // We must have a base and an offset.
20841 if (!BasePtr.getBase().getNode())
20842 return false;
20844 // Do not handle stores to undef base pointers.
20845 if (BasePtr.getBase().isUndef())
20846 return false;
20848 // Directly improve a chain of disjoint stores starting at St.
20849 if (parallelizeChainedStores(St))
20850 return true;
20852 // Improve St's Chain..
20853 SDValue BetterChain = FindBetterChain(St, St->getChain());
20854 if (St->getChain() != BetterChain) {
20855 replaceStoreChain(St, BetterChain);
20856 return true;
20858 return false;
20861 /// This is the entry point for the file.
20862 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA,
20863 CodeGenOpt::Level OptLevel) {
20864 /// This is the main entry point to this class.
20865 DAGCombiner(*this, AA, OptLevel).Run(Level);