[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / CodeGen / SelectionDAG / FunctionLoweringInfo.cpp
blobcf6711adad48d7cea5d66d7f42a2c6f429edaeda
1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating functions from LLVM IR into
10 // Machine IR.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/FunctionLoweringInfo.h"
15 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
16 #include "llvm/CodeGen/Analysis.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/CodeGen/WasmEHFuncInfo.h"
27 #include "llvm/CodeGen/WinEHFuncInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Target/TargetOptions.h"
40 #include <algorithm>
41 using namespace llvm;
43 #define DEBUG_TYPE "function-lowering-info"
45 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
46 /// PHI nodes or outside of the basic block that defines it, or used by a
47 /// switch or atomic instruction, which may expand to multiple basic blocks.
48 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
49 if (I->use_empty()) return false;
50 if (isa<PHINode>(I)) return true;
51 const BasicBlock *BB = I->getParent();
52 for (const User *U : I->users())
53 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
54 return true;
56 return false;
59 static ISD::NodeType getPreferredExtendForValue(const Value *V) {
60 // For the users of the source value being used for compare instruction, if
61 // the number of signed predicate is greater than unsigned predicate, we
62 // prefer to use SIGN_EXTEND.
64 // With this optimization, we would be able to reduce some redundant sign or
65 // zero extension instruction, and eventually more machine CSE opportunities
66 // can be exposed.
67 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
68 unsigned NumOfSigned = 0, NumOfUnsigned = 0;
69 for (const User *U : V->users()) {
70 if (const auto *CI = dyn_cast<CmpInst>(U)) {
71 NumOfSigned += CI->isSigned();
72 NumOfUnsigned += CI->isUnsigned();
75 if (NumOfSigned > NumOfUnsigned)
76 ExtendKind = ISD::SIGN_EXTEND;
78 return ExtendKind;
81 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
82 SelectionDAG *DAG) {
83 Fn = &fn;
84 MF = &mf;
85 TLI = MF->getSubtarget().getTargetLowering();
86 RegInfo = &MF->getRegInfo();
87 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
88 unsigned StackAlign = TFI->getStackAlignment();
89 DA = DAG->getDivergenceAnalysis();
91 // Check whether the function can return without sret-demotion.
92 SmallVector<ISD::OutputArg, 4> Outs;
93 CallingConv::ID CC = Fn->getCallingConv();
95 GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
96 mf.getDataLayout());
97 CanLowerReturn =
98 TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext());
100 // If this personality uses funclets, we need to do a bit more work.
101 DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects;
102 EHPersonality Personality = classifyEHPersonality(
103 Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr);
104 if (isFuncletEHPersonality(Personality)) {
105 // Calculate state numbers if we haven't already.
106 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
107 if (Personality == EHPersonality::MSVC_CXX)
108 calculateWinCXXEHStateNumbers(&fn, EHInfo);
109 else if (isAsynchronousEHPersonality(Personality))
110 calculateSEHStateNumbers(&fn, EHInfo);
111 else if (Personality == EHPersonality::CoreCLR)
112 calculateClrEHStateNumbers(&fn, EHInfo);
114 // Map all BB references in the WinEH data to MBBs.
115 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
116 for (WinEHHandlerType &H : TBME.HandlerArray) {
117 if (const AllocaInst *AI = H.CatchObj.Alloca)
118 CatchObjects.insert({AI, {}}).first->second.push_back(
119 &H.CatchObj.FrameIndex);
120 else
121 H.CatchObj.FrameIndex = INT_MAX;
125 if (Personality == EHPersonality::Wasm_CXX) {
126 WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
127 calculateWasmEHInfo(&fn, EHInfo);
130 // Initialize the mapping of values to registers. This is only set up for
131 // instruction values that are used outside of the block that defines
132 // them.
133 for (const BasicBlock &BB : *Fn) {
134 for (const Instruction &I : BB) {
135 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
136 Type *Ty = AI->getAllocatedType();
137 unsigned Align =
138 std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty),
139 AI->getAlignment());
141 // Static allocas can be folded into the initial stack frame
142 // adjustment. For targets that don't realign the stack, don't
143 // do this if there is an extra alignment requirement.
144 if (AI->isStaticAlloca() &&
145 (TFI->isStackRealignable() || (Align <= StackAlign))) {
146 const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
147 uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty);
149 TySize *= CUI->getZExtValue(); // Get total allocated size.
150 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
151 int FrameIndex = INT_MAX;
152 auto Iter = CatchObjects.find(AI);
153 if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) {
154 FrameIndex = MF->getFrameInfo().CreateFixedObject(
155 TySize, 0, /*IsImmutable=*/false, /*isAliased=*/true);
156 MF->getFrameInfo().setObjectAlignment(FrameIndex, Align);
157 } else {
158 FrameIndex =
159 MF->getFrameInfo().CreateStackObject(TySize, Align, false, AI);
162 StaticAllocaMap[AI] = FrameIndex;
163 // Update the catch handler information.
164 if (Iter != CatchObjects.end()) {
165 for (int *CatchObjPtr : Iter->second)
166 *CatchObjPtr = FrameIndex;
168 } else {
169 // FIXME: Overaligned static allocas should be grouped into
170 // a single dynamic allocation instead of using a separate
171 // stack allocation for each one.
172 if (Align <= StackAlign)
173 Align = 0;
174 // Inform the Frame Information that we have variable-sized objects.
175 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, AI);
179 // Look for inline asm that clobbers the SP register.
180 if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
181 ImmutableCallSite CS(&I);
182 if (isa<InlineAsm>(CS.getCalledValue())) {
183 unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
184 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
185 std::vector<TargetLowering::AsmOperandInfo> Ops =
186 TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS);
187 for (TargetLowering::AsmOperandInfo &Op : Ops) {
188 if (Op.Type == InlineAsm::isClobber) {
189 // Clobbers don't have SDValue operands, hence SDValue().
190 TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
191 std::pair<unsigned, const TargetRegisterClass *> PhysReg =
192 TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
193 Op.ConstraintVT);
194 if (PhysReg.first == SP)
195 MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
201 // Look for calls to the @llvm.va_start intrinsic. We can omit some
202 // prologue boilerplate for variadic functions that don't examine their
203 // arguments.
204 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
205 if (II->getIntrinsicID() == Intrinsic::vastart)
206 MF->getFrameInfo().setHasVAStart(true);
209 // If we have a musttail call in a variadic function, we need to ensure we
210 // forward implicit register parameters.
211 if (const auto *CI = dyn_cast<CallInst>(&I)) {
212 if (CI->isMustTailCall() && Fn->isVarArg())
213 MF->getFrameInfo().setHasMustTailInVarArgFunc(true);
216 // Mark values used outside their block as exported, by allocating
217 // a virtual register for them.
218 if (isUsedOutsideOfDefiningBlock(&I))
219 if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I)))
220 InitializeRegForValue(&I);
222 // Decide the preferred extend type for a value.
223 PreferredExtendType[&I] = getPreferredExtendForValue(&I);
227 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
228 // also creates the initial PHI MachineInstrs, though none of the input
229 // operands are populated.
230 for (const BasicBlock &BB : *Fn) {
231 // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
232 // are really data, and no instructions can live here.
233 if (BB.isEHPad()) {
234 const Instruction *PadInst = BB.getFirstNonPHI();
235 // If this is a non-landingpad EH pad, mark this function as using
236 // funclets.
237 // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid
238 // setting this in such cases in order to improve frame layout.
239 if (!isa<LandingPadInst>(PadInst)) {
240 MF->setHasEHScopes(true);
241 MF->setHasEHFunclets(true);
242 MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
244 if (isa<CatchSwitchInst>(PadInst)) {
245 assert(&*BB.begin() == PadInst &&
246 "WinEHPrepare failed to remove PHIs from imaginary BBs");
247 continue;
249 if (isa<FuncletPadInst>(PadInst))
250 assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs");
253 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB);
254 MBBMap[&BB] = MBB;
255 MF->push_back(MBB);
257 // Transfer the address-taken flag. This is necessary because there could
258 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
259 // the first one should be marked.
260 if (BB.hasAddressTaken())
261 MBB->setHasAddressTaken();
263 // Mark landing pad blocks.
264 if (BB.isEHPad())
265 MBB->setIsEHPad();
267 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
268 // appropriate.
269 for (const PHINode &PN : BB.phis()) {
270 if (PN.use_empty())
271 continue;
273 // Skip empty types
274 if (PN.getType()->isEmptyTy())
275 continue;
277 DebugLoc DL = PN.getDebugLoc();
278 unsigned PHIReg = ValueMap[&PN];
279 assert(PHIReg && "PHI node does not have an assigned virtual register!");
281 SmallVector<EVT, 4> ValueVTs;
282 ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs);
283 for (EVT VT : ValueVTs) {
284 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
285 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
286 for (unsigned i = 0; i != NumRegisters; ++i)
287 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
288 PHIReg += NumRegisters;
293 if (isFuncletEHPersonality(Personality)) {
294 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
296 // Map all BB references in the WinEH data to MBBs.
297 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
298 for (WinEHHandlerType &H : TBME.HandlerArray) {
299 if (H.Handler)
300 H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()];
303 for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
304 if (UME.Cleanup)
305 UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()];
306 for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
307 const auto *BB = UME.Handler.get<const BasicBlock *>();
308 UME.Handler = MBBMap[BB];
310 for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
311 const auto *BB = CME.Handler.get<const BasicBlock *>();
312 CME.Handler = MBBMap[BB];
316 else if (Personality == EHPersonality::Wasm_CXX) {
317 WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
318 // Map all BB references in the WinEH data to MBBs.
319 DenseMap<BBOrMBB, BBOrMBB> NewMap;
320 for (auto &KV : EHInfo.EHPadUnwindMap) {
321 const auto *Src = KV.first.get<const BasicBlock *>();
322 const auto *Dst = KV.second.get<const BasicBlock *>();
323 NewMap[MBBMap[Src]] = MBBMap[Dst];
325 EHInfo.EHPadUnwindMap = std::move(NewMap);
329 /// clear - Clear out all the function-specific state. This returns this
330 /// FunctionLoweringInfo to an empty state, ready to be used for a
331 /// different function.
332 void FunctionLoweringInfo::clear() {
333 MBBMap.clear();
334 ValueMap.clear();
335 VirtReg2Value.clear();
336 StaticAllocaMap.clear();
337 LiveOutRegInfo.clear();
338 VisitedBBs.clear();
339 ArgDbgValues.clear();
340 DescribedArgs.clear();
341 ByValArgFrameIndexMap.clear();
342 RegFixups.clear();
343 RegsWithFixups.clear();
344 StatepointStackSlots.clear();
345 StatepointSpillMaps.clear();
346 PreferredExtendType.clear();
349 /// CreateReg - Allocate a single virtual register for the given type.
350 unsigned FunctionLoweringInfo::CreateReg(MVT VT, bool isDivergent) {
351 return RegInfo->createVirtualRegister(
352 MF->getSubtarget().getTargetLowering()->getRegClassFor(VT, isDivergent));
355 /// CreateRegs - Allocate the appropriate number of virtual registers of
356 /// the correctly promoted or expanded types. Assign these registers
357 /// consecutive vreg numbers and return the first assigned number.
359 /// In the case that the given value has struct or array type, this function
360 /// will assign registers for each member or element.
362 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty, bool isDivergent) {
363 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
365 SmallVector<EVT, 4> ValueVTs;
366 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
368 unsigned FirstReg = 0;
369 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
370 EVT ValueVT = ValueVTs[Value];
371 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
373 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
374 for (unsigned i = 0; i != NumRegs; ++i) {
375 unsigned R = CreateReg(RegisterVT, isDivergent);
376 if (!FirstReg) FirstReg = R;
379 return FirstReg;
382 unsigned FunctionLoweringInfo::CreateRegs(const Value *V) {
383 return CreateRegs(V->getType(), DA && !TLI->requiresUniformRegister(*MF, V) &&
384 DA->isDivergent(V));
387 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
388 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
389 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
390 /// the larger bit width by zero extension. The bit width must be no smaller
391 /// than the LiveOutInfo's existing bit width.
392 const FunctionLoweringInfo::LiveOutInfo *
393 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
394 if (!LiveOutRegInfo.inBounds(Reg))
395 return nullptr;
397 LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
398 if (!LOI->IsValid)
399 return nullptr;
401 if (BitWidth > LOI->Known.getBitWidth()) {
402 LOI->NumSignBits = 1;
403 LOI->Known = LOI->Known.zext(BitWidth, false /* => any extend */);
406 return LOI;
409 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
410 /// register based on the LiveOutInfo of its operands.
411 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
412 Type *Ty = PN->getType();
413 if (!Ty->isIntegerTy() || Ty->isVectorTy())
414 return;
416 SmallVector<EVT, 1> ValueVTs;
417 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
418 assert(ValueVTs.size() == 1 &&
419 "PHIs with non-vector integer types should have a single VT.");
420 EVT IntVT = ValueVTs[0];
422 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
423 return;
424 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
425 unsigned BitWidth = IntVT.getSizeInBits();
427 unsigned DestReg = ValueMap[PN];
428 if (!Register::isVirtualRegister(DestReg))
429 return;
430 LiveOutRegInfo.grow(DestReg);
431 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
433 Value *V = PN->getIncomingValue(0);
434 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
435 DestLOI.NumSignBits = 1;
436 DestLOI.Known = KnownBits(BitWidth);
437 return;
440 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
441 APInt Val = CI->getValue().zextOrTrunc(BitWidth);
442 DestLOI.NumSignBits = Val.getNumSignBits();
443 DestLOI.Known.Zero = ~Val;
444 DestLOI.Known.One = Val;
445 } else {
446 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
447 "CopyToReg node was created.");
448 unsigned SrcReg = ValueMap[V];
449 if (!Register::isVirtualRegister(SrcReg)) {
450 DestLOI.IsValid = false;
451 return;
453 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
454 if (!SrcLOI) {
455 DestLOI.IsValid = false;
456 return;
458 DestLOI = *SrcLOI;
461 assert(DestLOI.Known.Zero.getBitWidth() == BitWidth &&
462 DestLOI.Known.One.getBitWidth() == BitWidth &&
463 "Masks should have the same bit width as the type.");
465 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
466 Value *V = PN->getIncomingValue(i);
467 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
468 DestLOI.NumSignBits = 1;
469 DestLOI.Known = KnownBits(BitWidth);
470 return;
473 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
474 APInt Val = CI->getValue().zextOrTrunc(BitWidth);
475 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
476 DestLOI.Known.Zero &= ~Val;
477 DestLOI.Known.One &= Val;
478 continue;
481 assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
482 "its CopyToReg node was created.");
483 unsigned SrcReg = ValueMap[V];
484 if (!Register::isVirtualRegister(SrcReg)) {
485 DestLOI.IsValid = false;
486 return;
488 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
489 if (!SrcLOI) {
490 DestLOI.IsValid = false;
491 return;
493 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
494 DestLOI.Known.Zero &= SrcLOI->Known.Zero;
495 DestLOI.Known.One &= SrcLOI->Known.One;
499 /// setArgumentFrameIndex - Record frame index for the byval
500 /// argument. This overrides previous frame index entry for this argument,
501 /// if any.
502 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
503 int FI) {
504 ByValArgFrameIndexMap[A] = FI;
507 /// getArgumentFrameIndex - Get frame index for the byval argument.
508 /// If the argument does not have any assigned frame index then 0 is
509 /// returned.
510 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
511 auto I = ByValArgFrameIndexMap.find(A);
512 if (I != ByValArgFrameIndexMap.end())
513 return I->second;
514 LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
515 return INT_MAX;
518 unsigned FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
519 const Value *CPI, const TargetRegisterClass *RC) {
520 MachineRegisterInfo &MRI = MF->getRegInfo();
521 auto I = CatchPadExceptionPointers.insert({CPI, 0});
522 unsigned &VReg = I.first->second;
523 if (I.second)
524 VReg = MRI.createVirtualRegister(RC);
525 assert(VReg && "null vreg in exception pointer table!");
526 return VReg;
529 const Value *
530 FunctionLoweringInfo::getValueFromVirtualReg(unsigned Vreg) {
531 if (VirtReg2Value.empty()) {
532 SmallVector<EVT, 4> ValueVTs;
533 for (auto &P : ValueMap) {
534 ValueVTs.clear();
535 ComputeValueVTs(*TLI, Fn->getParent()->getDataLayout(),
536 P.first->getType(), ValueVTs);
537 unsigned Reg = P.second;
538 for (EVT VT : ValueVTs) {
539 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
540 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
541 VirtReg2Value[Reg++] = P.first;
545 return VirtReg2Value.lookup(Vreg);