1 //===- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler ------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This implements bottom-up and top-down register pressure reduction list
10 // schedulers, using standard algorithms. The basic approach uses a priority
11 // queue of available nodes to schedule. One at a time, nodes are taken from
12 // the priority queue (thus in priority order), checked for legality to
13 // schedule, and emitted if legal.
15 //===----------------------------------------------------------------------===//
17 #include "ScheduleDAGSDNodes.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/CodeGen/ISDOpcodes.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/ScheduleDAG.h"
29 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
30 #include "llvm/CodeGen/SchedulerRegistry.h"
31 #include "llvm/CodeGen/SelectionDAGISel.h"
32 #include "llvm/CodeGen/SelectionDAGNodes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/Config/llvm-config.h"
39 #include "llvm/IR/InlineAsm.h"
40 #include "llvm/MC/MCInstrDesc.h"
41 #include "llvm/MC/MCRegisterInfo.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/CodeGen.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/MachineValueType.h"
49 #include "llvm/Support/raw_ostream.h"
62 #define DEBUG_TYPE "pre-RA-sched"
64 STATISTIC(NumBacktracks
, "Number of times scheduler backtracked");
65 STATISTIC(NumUnfolds
, "Number of nodes unfolded");
66 STATISTIC(NumDups
, "Number of duplicated nodes");
67 STATISTIC(NumPRCopies
, "Number of physical register copies");
69 static RegisterScheduler
70 burrListDAGScheduler("list-burr",
71 "Bottom-up register reduction list scheduling",
72 createBURRListDAGScheduler
);
74 static RegisterScheduler
75 sourceListDAGScheduler("source",
76 "Similar to list-burr but schedules in source "
77 "order when possible",
78 createSourceListDAGScheduler
);
80 static RegisterScheduler
81 hybridListDAGScheduler("list-hybrid",
82 "Bottom-up register pressure aware list scheduling "
83 "which tries to balance latency and register pressure",
84 createHybridListDAGScheduler
);
86 static RegisterScheduler
87 ILPListDAGScheduler("list-ilp",
88 "Bottom-up register pressure aware list scheduling "
89 "which tries to balance ILP and register pressure",
90 createILPListDAGScheduler
);
92 static cl::opt
<bool> DisableSchedCycles(
93 "disable-sched-cycles", cl::Hidden
, cl::init(false),
94 cl::desc("Disable cycle-level precision during preRA scheduling"));
96 // Temporary sched=list-ilp flags until the heuristics are robust.
97 // Some options are also available under sched=list-hybrid.
98 static cl::opt
<bool> DisableSchedRegPressure(
99 "disable-sched-reg-pressure", cl::Hidden
, cl::init(false),
100 cl::desc("Disable regpressure priority in sched=list-ilp"));
101 static cl::opt
<bool> DisableSchedLiveUses(
102 "disable-sched-live-uses", cl::Hidden
, cl::init(true),
103 cl::desc("Disable live use priority in sched=list-ilp"));
104 static cl::opt
<bool> DisableSchedVRegCycle(
105 "disable-sched-vrcycle", cl::Hidden
, cl::init(false),
106 cl::desc("Disable virtual register cycle interference checks"));
107 static cl::opt
<bool> DisableSchedPhysRegJoin(
108 "disable-sched-physreg-join", cl::Hidden
, cl::init(false),
109 cl::desc("Disable physreg def-use affinity"));
110 static cl::opt
<bool> DisableSchedStalls(
111 "disable-sched-stalls", cl::Hidden
, cl::init(true),
112 cl::desc("Disable no-stall priority in sched=list-ilp"));
113 static cl::opt
<bool> DisableSchedCriticalPath(
114 "disable-sched-critical-path", cl::Hidden
, cl::init(false),
115 cl::desc("Disable critical path priority in sched=list-ilp"));
116 static cl::opt
<bool> DisableSchedHeight(
117 "disable-sched-height", cl::Hidden
, cl::init(false),
118 cl::desc("Disable scheduled-height priority in sched=list-ilp"));
119 static cl::opt
<bool> Disable2AddrHack(
120 "disable-2addr-hack", cl::Hidden
, cl::init(true),
121 cl::desc("Disable scheduler's two-address hack"));
123 static cl::opt
<int> MaxReorderWindow(
124 "max-sched-reorder", cl::Hidden
, cl::init(6),
125 cl::desc("Number of instructions to allow ahead of the critical path "
126 "in sched=list-ilp"));
128 static cl::opt
<unsigned> AvgIPC(
129 "sched-avg-ipc", cl::Hidden
, cl::init(1),
130 cl::desc("Average inst/cycle whan no target itinerary exists."));
134 //===----------------------------------------------------------------------===//
135 /// ScheduleDAGRRList - The actual register reduction list scheduler
136 /// implementation. This supports both top-down and bottom-up scheduling.
138 class ScheduleDAGRRList
: public ScheduleDAGSDNodes
{
140 /// NeedLatency - True if the scheduler will make use of latency information.
143 /// AvailableQueue - The priority queue to use for the available SUnits.
144 SchedulingPriorityQueue
*AvailableQueue
;
146 /// PendingQueue - This contains all of the instructions whose operands have
147 /// been issued, but their results are not ready yet (due to the latency of
148 /// the operation). Once the operands becomes available, the instruction is
149 /// added to the AvailableQueue.
150 std::vector
<SUnit
*> PendingQueue
;
152 /// HazardRec - The hazard recognizer to use.
153 ScheduleHazardRecognizer
*HazardRec
;
155 /// CurCycle - The current scheduler state corresponds to this cycle.
156 unsigned CurCycle
= 0;
158 /// MinAvailableCycle - Cycle of the soonest available instruction.
159 unsigned MinAvailableCycle
;
161 /// IssueCount - Count instructions issued in this cycle
162 /// Currently valid only for bottom-up scheduling.
165 /// LiveRegDefs - A set of physical registers and their definition
166 /// that are "live". These nodes must be scheduled before any other nodes that
167 /// modifies the registers can be scheduled.
168 unsigned NumLiveRegs
;
169 std::unique_ptr
<SUnit
*[]> LiveRegDefs
;
170 std::unique_ptr
<SUnit
*[]> LiveRegGens
;
172 // Collect interferences between physical register use/defs.
173 // Each interference is an SUnit and set of physical registers.
174 SmallVector
<SUnit
*, 4> Interferences
;
176 using LRegsMapT
= DenseMap
<SUnit
*, SmallVector
<unsigned, 4>>;
180 /// Topo - A topological ordering for SUnits which permits fast IsReachable
181 /// and similar queries.
182 ScheduleDAGTopologicalSort Topo
;
184 // Hack to keep track of the inverse of FindCallSeqStart without more crazy
186 DenseMap
<SUnit
*, SUnit
*> CallSeqEndForStart
;
189 ScheduleDAGRRList(MachineFunction
&mf
, bool needlatency
,
190 SchedulingPriorityQueue
*availqueue
,
191 CodeGenOpt::Level OptLevel
)
192 : ScheduleDAGSDNodes(mf
),
193 NeedLatency(needlatency
), AvailableQueue(availqueue
),
194 Topo(SUnits
, nullptr) {
195 const TargetSubtargetInfo
&STI
= mf
.getSubtarget();
196 if (DisableSchedCycles
|| !NeedLatency
)
197 HazardRec
= new ScheduleHazardRecognizer();
199 HazardRec
= STI
.getInstrInfo()->CreateTargetHazardRecognizer(&STI
, this);
202 ~ScheduleDAGRRList() override
{
204 delete AvailableQueue
;
207 void Schedule() override
;
209 ScheduleHazardRecognizer
*getHazardRec() { return HazardRec
; }
211 /// IsReachable - Checks if SU is reachable from TargetSU.
212 bool IsReachable(const SUnit
*SU
, const SUnit
*TargetSU
) {
213 return Topo
.IsReachable(SU
, TargetSU
);
216 /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
218 bool WillCreateCycle(SUnit
*SU
, SUnit
*TargetSU
) {
219 return Topo
.WillCreateCycle(SU
, TargetSU
);
222 /// AddPredQueued - Queues and update to add a predecessor edge to SUnit SU.
223 /// This returns true if this is a new predecessor.
224 /// Does *NOT* update the topological ordering! It just queues an update.
225 void AddPredQueued(SUnit
*SU
, const SDep
&D
) {
226 Topo
.AddPredQueued(SU
, D
.getSUnit());
230 /// AddPred - adds a predecessor edge to SUnit SU.
231 /// This returns true if this is a new predecessor.
232 /// Updates the topological ordering if required.
233 void AddPred(SUnit
*SU
, const SDep
&D
) {
234 Topo
.AddPred(SU
, D
.getSUnit());
238 /// RemovePred - removes a predecessor edge from SUnit SU.
239 /// This returns true if an edge was removed.
240 /// Updates the topological ordering if required.
241 void RemovePred(SUnit
*SU
, const SDep
&D
) {
242 Topo
.RemovePred(SU
, D
.getSUnit());
247 bool isReady(SUnit
*SU
) {
248 return DisableSchedCycles
|| !AvailableQueue
->hasReadyFilter() ||
249 AvailableQueue
->isReady(SU
);
252 void ReleasePred(SUnit
*SU
, const SDep
*PredEdge
);
253 void ReleasePredecessors(SUnit
*SU
);
254 void ReleasePending();
255 void AdvanceToCycle(unsigned NextCycle
);
256 void AdvancePastStalls(SUnit
*SU
);
257 void EmitNode(SUnit
*SU
);
258 void ScheduleNodeBottomUp(SUnit
*);
259 void CapturePred(SDep
*PredEdge
);
260 void UnscheduleNodeBottomUp(SUnit
*);
261 void RestoreHazardCheckerBottomUp();
262 void BacktrackBottomUp(SUnit
*, SUnit
*);
263 SUnit
*TryUnfoldSU(SUnit
*);
264 SUnit
*CopyAndMoveSuccessors(SUnit
*);
265 void InsertCopiesAndMoveSuccs(SUnit
*, unsigned,
266 const TargetRegisterClass
*,
267 const TargetRegisterClass
*,
268 SmallVectorImpl
<SUnit
*>&);
269 bool DelayForLiveRegsBottomUp(SUnit
*, SmallVectorImpl
<unsigned>&);
271 void releaseInterferences(unsigned Reg
= 0);
273 SUnit
*PickNodeToScheduleBottomUp();
274 void ListScheduleBottomUp();
276 /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
277 SUnit
*CreateNewSUnit(SDNode
*N
) {
278 unsigned NumSUnits
= SUnits
.size();
279 SUnit
*NewNode
= newSUnit(N
);
280 // Update the topological ordering.
281 if (NewNode
->NodeNum
>= NumSUnits
)
286 /// CreateClone - Creates a new SUnit from an existing one.
287 SUnit
*CreateClone(SUnit
*N
) {
288 unsigned NumSUnits
= SUnits
.size();
289 SUnit
*NewNode
= Clone(N
);
290 // Update the topological ordering.
291 if (NewNode
->NodeNum
>= NumSUnits
)
296 /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't
297 /// need actual latency information but the hybrid scheduler does.
298 bool forceUnitLatencies() const override
{
303 } // end anonymous namespace
305 /// GetCostForDef - Looks up the register class and cost for a given definition.
306 /// Typically this just means looking up the representative register class,
307 /// but for untyped values (MVT::Untyped) it means inspecting the node's
308 /// opcode to determine what register class is being generated.
309 static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter
&RegDefPos
,
310 const TargetLowering
*TLI
,
311 const TargetInstrInfo
*TII
,
312 const TargetRegisterInfo
*TRI
,
313 unsigned &RegClass
, unsigned &Cost
,
314 const MachineFunction
&MF
) {
315 MVT VT
= RegDefPos
.GetValue();
317 // Special handling for untyped values. These values can only come from
318 // the expansion of custom DAG-to-DAG patterns.
319 if (VT
== MVT::Untyped
) {
320 const SDNode
*Node
= RegDefPos
.GetNode();
322 // Special handling for CopyFromReg of untyped values.
323 if (!Node
->isMachineOpcode() && Node
->getOpcode() == ISD::CopyFromReg
) {
324 unsigned Reg
= cast
<RegisterSDNode
>(Node
->getOperand(1))->getReg();
325 const TargetRegisterClass
*RC
= MF
.getRegInfo().getRegClass(Reg
);
326 RegClass
= RC
->getID();
331 unsigned Opcode
= Node
->getMachineOpcode();
332 if (Opcode
== TargetOpcode::REG_SEQUENCE
) {
333 unsigned DstRCIdx
= cast
<ConstantSDNode
>(Node
->getOperand(0))->getZExtValue();
334 const TargetRegisterClass
*RC
= TRI
->getRegClass(DstRCIdx
);
335 RegClass
= RC
->getID();
340 unsigned Idx
= RegDefPos
.GetIdx();
341 const MCInstrDesc Desc
= TII
->get(Opcode
);
342 const TargetRegisterClass
*RC
= TII
->getRegClass(Desc
, Idx
, TRI
, MF
);
343 RegClass
= RC
->getID();
344 // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
345 // better way to determine it.
348 RegClass
= TLI
->getRepRegClassFor(VT
)->getID();
349 Cost
= TLI
->getRepRegClassCostFor(VT
);
353 /// Schedule - Schedule the DAG using list scheduling.
354 void ScheduleDAGRRList::Schedule() {
355 LLVM_DEBUG(dbgs() << "********** List Scheduling " << printMBBReference(*BB
)
356 << " '" << BB
->getName() << "' **********\n");
361 DisableSchedCycles
? 0 : std::numeric_limits
<unsigned>::max();
363 // Allocate slots for each physical register, plus one for a special register
364 // to track the virtual resource of a calling sequence.
365 LiveRegDefs
.reset(new SUnit
*[TRI
->getNumRegs() + 1]());
366 LiveRegGens
.reset(new SUnit
*[TRI
->getNumRegs() + 1]());
367 CallSeqEndForStart
.clear();
368 assert(Interferences
.empty() && LRegsMap
.empty() && "stale Interferences");
370 // Build the scheduling graph.
371 BuildSchedGraph(nullptr);
376 AvailableQueue
->initNodes(SUnits
);
380 // Execute the actual scheduling loop.
381 ListScheduleBottomUp();
383 AvailableQueue
->releaseState();
386 dbgs() << "*** Final schedule ***\n";
392 //===----------------------------------------------------------------------===//
393 // Bottom-Up Scheduling
394 //===----------------------------------------------------------------------===//
396 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
397 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
398 void ScheduleDAGRRList::ReleasePred(SUnit
*SU
, const SDep
*PredEdge
) {
399 SUnit
*PredSU
= PredEdge
->getSUnit();
402 if (PredSU
->NumSuccsLeft
== 0) {
403 dbgs() << "*** Scheduling failed! ***\n";
405 dbgs() << " has been released too many times!\n";
406 llvm_unreachable(nullptr);
409 --PredSU
->NumSuccsLeft
;
411 if (!forceUnitLatencies()) {
412 // Updating predecessor's height. This is now the cycle when the
413 // predecessor can be scheduled without causing a pipeline stall.
414 PredSU
->setHeightToAtLeast(SU
->getHeight() + PredEdge
->getLatency());
417 // If all the node's successors are scheduled, this node is ready
418 // to be scheduled. Ignore the special EntrySU node.
419 if (PredSU
->NumSuccsLeft
== 0 && PredSU
!= &EntrySU
) {
420 PredSU
->isAvailable
= true;
422 unsigned Height
= PredSU
->getHeight();
423 if (Height
< MinAvailableCycle
)
424 MinAvailableCycle
= Height
;
426 if (isReady(PredSU
)) {
427 AvailableQueue
->push(PredSU
);
429 // CapturePred and others may have left the node in the pending queue, avoid
431 else if (!PredSU
->isPending
) {
432 PredSU
->isPending
= true;
433 PendingQueue
.push_back(PredSU
);
438 /// IsChainDependent - Test if Outer is reachable from Inner through
439 /// chain dependencies.
440 static bool IsChainDependent(SDNode
*Outer
, SDNode
*Inner
,
442 const TargetInstrInfo
*TII
) {
447 // For a TokenFactor, examine each operand. There may be multiple ways
448 // to get to the CALLSEQ_BEGIN, but we need to find the path with the
449 // most nesting in order to ensure that we find the corresponding match.
450 if (N
->getOpcode() == ISD::TokenFactor
) {
451 for (const SDValue
&Op
: N
->op_values())
452 if (IsChainDependent(Op
.getNode(), Inner
, NestLevel
, TII
))
456 // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
457 if (N
->isMachineOpcode()) {
458 if (N
->getMachineOpcode() == TII
->getCallFrameDestroyOpcode()) {
460 } else if (N
->getMachineOpcode() == TII
->getCallFrameSetupOpcode()) {
466 // Otherwise, find the chain and continue climbing.
467 for (const SDValue
&Op
: N
->op_values())
468 if (Op
.getValueType() == MVT::Other
) {
470 goto found_chain_operand
;
473 found_chain_operand
:;
474 if (N
->getOpcode() == ISD::EntryToken
)
479 /// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
480 /// the corresponding (lowered) CALLSEQ_BEGIN node.
482 /// NestLevel and MaxNested are used in recursion to indcate the current level
483 /// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
484 /// level seen so far.
486 /// TODO: It would be better to give CALLSEQ_END an explicit operand to point
487 /// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
489 FindCallSeqStart(SDNode
*N
, unsigned &NestLevel
, unsigned &MaxNest
,
490 const TargetInstrInfo
*TII
) {
492 // For a TokenFactor, examine each operand. There may be multiple ways
493 // to get to the CALLSEQ_BEGIN, but we need to find the path with the
494 // most nesting in order to ensure that we find the corresponding match.
495 if (N
->getOpcode() == ISD::TokenFactor
) {
496 SDNode
*Best
= nullptr;
497 unsigned BestMaxNest
= MaxNest
;
498 for (const SDValue
&Op
: N
->op_values()) {
499 unsigned MyNestLevel
= NestLevel
;
500 unsigned MyMaxNest
= MaxNest
;
501 if (SDNode
*New
= FindCallSeqStart(Op
.getNode(),
502 MyNestLevel
, MyMaxNest
, TII
))
503 if (!Best
|| (MyMaxNest
> BestMaxNest
)) {
505 BestMaxNest
= MyMaxNest
;
509 MaxNest
= BestMaxNest
;
512 // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
513 if (N
->isMachineOpcode()) {
514 if (N
->getMachineOpcode() == TII
->getCallFrameDestroyOpcode()) {
516 MaxNest
= std::max(MaxNest
, NestLevel
);
517 } else if (N
->getMachineOpcode() == TII
->getCallFrameSetupOpcode()) {
518 assert(NestLevel
!= 0);
524 // Otherwise, find the chain and continue climbing.
525 for (const SDValue
&Op
: N
->op_values())
526 if (Op
.getValueType() == MVT::Other
) {
528 goto found_chain_operand
;
531 found_chain_operand
:;
532 if (N
->getOpcode() == ISD::EntryToken
)
537 /// Call ReleasePred for each predecessor, then update register live def/gen.
538 /// Always update LiveRegDefs for a register dependence even if the current SU
539 /// also defines the register. This effectively create one large live range
540 /// across a sequence of two-address node. This is important because the
541 /// entire chain must be scheduled together. Example:
544 /// flags = (2) addc flags
545 /// flags = (1) addc flags
549 /// LiveRegDefs[flags] = 3
550 /// LiveRegGens[flags] = 1
552 /// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
553 /// interference on flags.
554 void ScheduleDAGRRList::ReleasePredecessors(SUnit
*SU
) {
555 // Bottom up: release predecessors
556 for (SDep
&Pred
: SU
->Preds
) {
557 ReleasePred(SU
, &Pred
);
558 if (Pred
.isAssignedRegDep()) {
559 // This is a physical register dependency and it's impossible or
560 // expensive to copy the register. Make sure nothing that can
561 // clobber the register is scheduled between the predecessor and
563 SUnit
*RegDef
= LiveRegDefs
[Pred
.getReg()]; (void)RegDef
;
564 assert((!RegDef
|| RegDef
== SU
|| RegDef
== Pred
.getSUnit()) &&
565 "interference on register dependence");
566 LiveRegDefs
[Pred
.getReg()] = Pred
.getSUnit();
567 if (!LiveRegGens
[Pred
.getReg()]) {
569 LiveRegGens
[Pred
.getReg()] = SU
;
574 // If we're scheduling a lowered CALLSEQ_END, find the corresponding
575 // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
576 // these nodes, to prevent other calls from being interscheduled with them.
577 unsigned CallResource
= TRI
->getNumRegs();
578 if (!LiveRegDefs
[CallResource
])
579 for (SDNode
*Node
= SU
->getNode(); Node
; Node
= Node
->getGluedNode())
580 if (Node
->isMachineOpcode() &&
581 Node
->getMachineOpcode() == TII
->getCallFrameDestroyOpcode()) {
582 unsigned NestLevel
= 0;
583 unsigned MaxNest
= 0;
584 SDNode
*N
= FindCallSeqStart(Node
, NestLevel
, MaxNest
, TII
);
585 assert(N
&& "Must find call sequence start");
587 SUnit
*Def
= &SUnits
[N
->getNodeId()];
588 CallSeqEndForStart
[Def
] = SU
;
591 LiveRegDefs
[CallResource
] = Def
;
592 LiveRegGens
[CallResource
] = SU
;
597 /// Check to see if any of the pending instructions are ready to issue. If
598 /// so, add them to the available queue.
599 void ScheduleDAGRRList::ReleasePending() {
600 if (DisableSchedCycles
) {
601 assert(PendingQueue
.empty() && "pending instrs not allowed in this mode");
605 // If the available queue is empty, it is safe to reset MinAvailableCycle.
606 if (AvailableQueue
->empty())
607 MinAvailableCycle
= std::numeric_limits
<unsigned>::max();
609 // Check to see if any of the pending instructions are ready to issue. If
610 // so, add them to the available queue.
611 for (unsigned i
= 0, e
= PendingQueue
.size(); i
!= e
; ++i
) {
612 unsigned ReadyCycle
= PendingQueue
[i
]->getHeight();
613 if (ReadyCycle
< MinAvailableCycle
)
614 MinAvailableCycle
= ReadyCycle
;
616 if (PendingQueue
[i
]->isAvailable
) {
617 if (!isReady(PendingQueue
[i
]))
619 AvailableQueue
->push(PendingQueue
[i
]);
621 PendingQueue
[i
]->isPending
= false;
622 PendingQueue
[i
] = PendingQueue
.back();
623 PendingQueue
.pop_back();
628 /// Move the scheduler state forward by the specified number of Cycles.
629 void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle
) {
630 if (NextCycle
<= CurCycle
)
634 AvailableQueue
->setCurCycle(NextCycle
);
635 if (!HazardRec
->isEnabled()) {
636 // Bypass lots of virtual calls in case of long latency.
637 CurCycle
= NextCycle
;
640 for (; CurCycle
!= NextCycle
; ++CurCycle
) {
641 HazardRec
->RecedeCycle();
644 // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
645 // available Q to release pending nodes at least once before popping.
649 /// Move the scheduler state forward until the specified node's dependents are
650 /// ready and can be scheduled with no resource conflicts.
651 void ScheduleDAGRRList::AdvancePastStalls(SUnit
*SU
) {
652 if (DisableSchedCycles
)
655 // FIXME: Nodes such as CopyFromReg probably should not advance the current
656 // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
657 // has predecessors the cycle will be advanced when they are scheduled.
658 // But given the crude nature of modeling latency though such nodes, we
659 // currently need to treat these nodes like real instructions.
660 // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;
662 unsigned ReadyCycle
= SU
->getHeight();
664 // Bump CurCycle to account for latency. We assume the latency of other
665 // available instructions may be hidden by the stall (not a full pipe stall).
666 // This updates the hazard recognizer's cycle before reserving resources for
668 AdvanceToCycle(ReadyCycle
);
670 // Calls are scheduled in their preceding cycle, so don't conflict with
671 // hazards from instructions after the call. EmitNode will reset the
672 // scoreboard state before emitting the call.
676 // FIXME: For resource conflicts in very long non-pipelined stages, we
677 // should probably skip ahead here to avoid useless scoreboard checks.
680 ScheduleHazardRecognizer::HazardType HT
=
681 HazardRec
->getHazardType(SU
, -Stalls
);
683 if (HT
== ScheduleHazardRecognizer::NoHazard
)
688 AdvanceToCycle(CurCycle
+ Stalls
);
691 /// Record this SUnit in the HazardRecognizer.
692 /// Does not update CurCycle.
693 void ScheduleDAGRRList::EmitNode(SUnit
*SU
) {
694 if (!HazardRec
->isEnabled())
697 // Check for phys reg copy.
701 switch (SU
->getNode()->getOpcode()) {
703 assert(SU
->getNode()->isMachineOpcode() &&
704 "This target-independent node should not be scheduled.");
706 case ISD::MERGE_VALUES
:
707 case ISD::TokenFactor
:
708 case ISD::LIFETIME_START
:
709 case ISD::LIFETIME_END
:
711 case ISD::CopyFromReg
:
713 // Noops don't affect the scoreboard state. Copies are likely to be
717 case ISD::INLINEASM_BR
:
718 // For inline asm, clear the pipeline state.
723 // Calls are scheduled with their preceding instructions. For bottom-up
724 // scheduling, clear the pipeline state before emitting.
728 HazardRec
->EmitInstruction(SU
);
731 static void resetVRegCycle(SUnit
*SU
);
733 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
734 /// count of its predecessors. If a predecessor pending count is zero, add it to
735 /// the Available queue.
736 void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit
*SU
) {
737 LLVM_DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle
<< "]: ");
738 LLVM_DEBUG(dumpNode(*SU
));
741 if (CurCycle
< SU
->getHeight())
742 LLVM_DEBUG(dbgs() << " Height [" << SU
->getHeight()
743 << "] pipeline stall!\n");
746 // FIXME: Do not modify node height. It may interfere with
747 // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
748 // node its ready cycle can aid heuristics, and after scheduling it can
749 // indicate the scheduled cycle.
750 SU
->setHeightToAtLeast(CurCycle
);
752 // Reserve resources for the scheduled instruction.
755 Sequence
.push_back(SU
);
757 AvailableQueue
->scheduledNode(SU
);
759 // If HazardRec is disabled, and each inst counts as one cycle, then
760 // advance CurCycle before ReleasePredecessors to avoid useless pushes to
761 // PendingQueue for schedulers that implement HasReadyFilter.
762 if (!HazardRec
->isEnabled() && AvgIPC
< 2)
763 AdvanceToCycle(CurCycle
+ 1);
765 // Update liveness of predecessors before successors to avoid treating a
766 // two-address node as a live range def.
767 ReleasePredecessors(SU
);
769 // Release all the implicit physical register defs that are live.
770 for (SDep
&Succ
: SU
->Succs
) {
771 // LiveRegDegs[Succ.getReg()] != SU when SU is a two-address node.
772 if (Succ
.isAssignedRegDep() && LiveRegDefs
[Succ
.getReg()] == SU
) {
773 assert(NumLiveRegs
> 0 && "NumLiveRegs is already zero!");
775 LiveRegDefs
[Succ
.getReg()] = nullptr;
776 LiveRegGens
[Succ
.getReg()] = nullptr;
777 releaseInterferences(Succ
.getReg());
780 // Release the special call resource dependence, if this is the beginning
782 unsigned CallResource
= TRI
->getNumRegs();
783 if (LiveRegDefs
[CallResource
] == SU
)
784 for (const SDNode
*SUNode
= SU
->getNode(); SUNode
;
785 SUNode
= SUNode
->getGluedNode()) {
786 if (SUNode
->isMachineOpcode() &&
787 SUNode
->getMachineOpcode() == TII
->getCallFrameSetupOpcode()) {
788 assert(NumLiveRegs
> 0 && "NumLiveRegs is already zero!");
790 LiveRegDefs
[CallResource
] = nullptr;
791 LiveRegGens
[CallResource
] = nullptr;
792 releaseInterferences(CallResource
);
798 SU
->isScheduled
= true;
800 // Conditions under which the scheduler should eagerly advance the cycle:
801 // (1) No available instructions
802 // (2) All pipelines full, so available instructions must have hazards.
804 // If HazardRec is disabled, the cycle was pre-advanced before calling
805 // ReleasePredecessors. In that case, IssueCount should remain 0.
807 // Check AvailableQueue after ReleasePredecessors in case of zero latency.
808 if (HazardRec
->isEnabled() || AvgIPC
> 1) {
809 if (SU
->getNode() && SU
->getNode()->isMachineOpcode())
811 if ((HazardRec
->isEnabled() && HazardRec
->atIssueLimit())
812 || (!HazardRec
->isEnabled() && IssueCount
== AvgIPC
))
813 AdvanceToCycle(CurCycle
+ 1);
817 /// CapturePred - This does the opposite of ReleasePred. Since SU is being
818 /// unscheduled, increase the succ left count of its predecessors. Remove
819 /// them from AvailableQueue if necessary.
820 void ScheduleDAGRRList::CapturePred(SDep
*PredEdge
) {
821 SUnit
*PredSU
= PredEdge
->getSUnit();
822 if (PredSU
->isAvailable
) {
823 PredSU
->isAvailable
= false;
824 if (!PredSU
->isPending
)
825 AvailableQueue
->remove(PredSU
);
828 assert(PredSU
->NumSuccsLeft
< std::numeric_limits
<unsigned>::max() &&
829 "NumSuccsLeft will overflow!");
830 ++PredSU
->NumSuccsLeft
;
833 /// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
834 /// its predecessor states to reflect the change.
835 void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit
*SU
) {
836 LLVM_DEBUG(dbgs() << "*** Unscheduling [" << SU
->getHeight() << "]: ");
837 LLVM_DEBUG(dumpNode(*SU
));
839 for (SDep
&Pred
: SU
->Preds
) {
841 if (Pred
.isAssignedRegDep() && SU
== LiveRegGens
[Pred
.getReg()]){
842 assert(NumLiveRegs
> 0 && "NumLiveRegs is already zero!");
843 assert(LiveRegDefs
[Pred
.getReg()] == Pred
.getSUnit() &&
844 "Physical register dependency violated?");
846 LiveRegDefs
[Pred
.getReg()] = nullptr;
847 LiveRegGens
[Pred
.getReg()] = nullptr;
848 releaseInterferences(Pred
.getReg());
852 // Reclaim the special call resource dependence, if this is the beginning
854 unsigned CallResource
= TRI
->getNumRegs();
855 for (const SDNode
*SUNode
= SU
->getNode(); SUNode
;
856 SUNode
= SUNode
->getGluedNode()) {
857 if (SUNode
->isMachineOpcode() &&
858 SUNode
->getMachineOpcode() == TII
->getCallFrameSetupOpcode()) {
859 SUnit
*SeqEnd
= CallSeqEndForStart
[SU
];
860 assert(SeqEnd
&& "Call sequence start/end must be known");
861 assert(!LiveRegDefs
[CallResource
]);
862 assert(!LiveRegGens
[CallResource
]);
864 LiveRegDefs
[CallResource
] = SU
;
865 LiveRegGens
[CallResource
] = SeqEnd
;
869 // Release the special call resource dependence, if this is the end
871 if (LiveRegGens
[CallResource
] == SU
)
872 for (const SDNode
*SUNode
= SU
->getNode(); SUNode
;
873 SUNode
= SUNode
->getGluedNode()) {
874 if (SUNode
->isMachineOpcode() &&
875 SUNode
->getMachineOpcode() == TII
->getCallFrameDestroyOpcode()) {
876 assert(NumLiveRegs
> 0 && "NumLiveRegs is already zero!");
877 assert(LiveRegDefs
[CallResource
]);
878 assert(LiveRegGens
[CallResource
]);
880 LiveRegDefs
[CallResource
] = nullptr;
881 LiveRegGens
[CallResource
] = nullptr;
882 releaseInterferences(CallResource
);
886 for (auto &Succ
: SU
->Succs
) {
887 if (Succ
.isAssignedRegDep()) {
888 auto Reg
= Succ
.getReg();
889 if (!LiveRegDefs
[Reg
])
891 // This becomes the nearest def. Note that an earlier def may still be
892 // pending if this is a two-address node.
893 LiveRegDefs
[Reg
] = SU
;
895 // Update LiveRegGen only if was empty before this unscheduling.
896 // This is to avoid incorrect updating LiveRegGen set in previous run.
897 if (!LiveRegGens
[Reg
]) {
898 // Find the successor with the lowest height.
899 LiveRegGens
[Reg
] = Succ
.getSUnit();
900 for (auto &Succ2
: SU
->Succs
) {
901 if (Succ2
.isAssignedRegDep() && Succ2
.getReg() == Reg
&&
902 Succ2
.getSUnit()->getHeight() < LiveRegGens
[Reg
]->getHeight())
903 LiveRegGens
[Reg
] = Succ2
.getSUnit();
908 if (SU
->getHeight() < MinAvailableCycle
)
909 MinAvailableCycle
= SU
->getHeight();
911 SU
->setHeightDirty();
912 SU
->isScheduled
= false;
913 SU
->isAvailable
= true;
914 if (!DisableSchedCycles
&& AvailableQueue
->hasReadyFilter()) {
915 // Don't make available until backtracking is complete.
916 SU
->isPending
= true;
917 PendingQueue
.push_back(SU
);
920 AvailableQueue
->push(SU
);
922 AvailableQueue
->unscheduledNode(SU
);
925 /// After backtracking, the hazard checker needs to be restored to a state
926 /// corresponding the current cycle.
927 void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
930 unsigned LookAhead
= std::min((unsigned)Sequence
.size(),
931 HazardRec
->getMaxLookAhead());
935 std::vector
<SUnit
*>::const_iterator I
= (Sequence
.end() - LookAhead
);
936 unsigned HazardCycle
= (*I
)->getHeight();
937 for (auto E
= Sequence
.end(); I
!= E
; ++I
) {
939 for (; SU
->getHeight() > HazardCycle
; ++HazardCycle
) {
940 HazardRec
->RecedeCycle();
946 /// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
947 /// BTCycle in order to schedule a specific node.
948 void ScheduleDAGRRList::BacktrackBottomUp(SUnit
*SU
, SUnit
*BtSU
) {
949 SUnit
*OldSU
= Sequence
.back();
952 // FIXME: use ready cycle instead of height
953 CurCycle
= OldSU
->getHeight();
954 UnscheduleNodeBottomUp(OldSU
);
955 AvailableQueue
->setCurCycle(CurCycle
);
958 OldSU
= Sequence
.back();
961 assert(!SU
->isSucc(OldSU
) && "Something is wrong!");
963 RestoreHazardCheckerBottomUp();
970 static bool isOperandOf(const SUnit
*SU
, SDNode
*N
) {
971 for (const SDNode
*SUNode
= SU
->getNode(); SUNode
;
972 SUNode
= SUNode
->getGluedNode()) {
973 if (SUNode
->isOperandOf(N
))
979 /// TryUnfold - Attempt to unfold
980 SUnit
*ScheduleDAGRRList::TryUnfoldSU(SUnit
*SU
) {
981 SDNode
*N
= SU
->getNode();
982 // Use while over if to ease fall through.
983 SmallVector
<SDNode
*, 2> NewNodes
;
984 if (!TII
->unfoldMemoryOperand(*DAG
, N
, NewNodes
))
987 // unfolding an x86 DEC64m operation results in store, dec, load which
988 // can't be handled here so quit
989 if (NewNodes
.size() == 3)
992 assert(NewNodes
.size() == 2 && "Expected a load folding node!");
995 SDNode
*LoadNode
= NewNodes
[0];
996 unsigned NumVals
= N
->getNumValues();
997 unsigned OldNumVals
= SU
->getNode()->getNumValues();
999 // LoadNode may already exist. This can happen when there is another
1000 // load from the same location and producing the same type of value
1001 // but it has different alignment or volatileness.
1002 bool isNewLoad
= true;
1004 if (LoadNode
->getNodeId() != -1) {
1005 LoadSU
= &SUnits
[LoadNode
->getNodeId()];
1006 // If LoadSU has already been scheduled, we should clone it but
1007 // this would negate the benefit to unfolding so just return SU.
1008 if (LoadSU
->isScheduled
)
1012 LoadSU
= CreateNewSUnit(LoadNode
);
1013 LoadNode
->setNodeId(LoadSU
->NodeNum
);
1015 InitNumRegDefsLeft(LoadSU
);
1016 computeLatency(LoadSU
);
1021 // This can only happen when isNewLoad is false.
1022 if (N
->getNodeId() != -1) {
1023 NewSU
= &SUnits
[N
->getNodeId()];
1024 // If NewSU has already been scheduled, we need to clone it, but this
1025 // negates the benefit to unfolding so just return SU.
1026 if (NewSU
->isScheduled
) {
1031 NewSU
= CreateNewSUnit(N
);
1032 N
->setNodeId(NewSU
->NodeNum
);
1034 const MCInstrDesc
&MCID
= TII
->get(N
->getMachineOpcode());
1035 for (unsigned i
= 0; i
!= MCID
.getNumOperands(); ++i
) {
1036 if (MCID
.getOperandConstraint(i
, MCOI::TIED_TO
) != -1) {
1037 NewSU
->isTwoAddress
= true;
1041 if (MCID
.isCommutable())
1042 NewSU
->isCommutable
= true;
1044 InitNumRegDefsLeft(NewSU
);
1045 computeLatency(NewSU
);
1048 LLVM_DEBUG(dbgs() << "Unfolding SU #" << SU
->NodeNum
<< "\n");
1050 // Now that we are committed to unfolding replace DAG Uses.
1051 for (unsigned i
= 0; i
!= NumVals
; ++i
)
1052 DAG
->ReplaceAllUsesOfValueWith(SDValue(SU
->getNode(), i
), SDValue(N
, i
));
1053 DAG
->ReplaceAllUsesOfValueWith(SDValue(SU
->getNode(), OldNumVals
- 1),
1054 SDValue(LoadNode
, 1));
1056 // Record all the edges to and from the old SU, by category.
1057 SmallVector
<SDep
, 4> ChainPreds
;
1058 SmallVector
<SDep
, 4> ChainSuccs
;
1059 SmallVector
<SDep
, 4> LoadPreds
;
1060 SmallVector
<SDep
, 4> NodePreds
;
1061 SmallVector
<SDep
, 4> NodeSuccs
;
1062 for (SDep
&Pred
: SU
->Preds
) {
1064 ChainPreds
.push_back(Pred
);
1065 else if (isOperandOf(Pred
.getSUnit(), LoadNode
))
1066 LoadPreds
.push_back(Pred
);
1068 NodePreds
.push_back(Pred
);
1070 for (SDep
&Succ
: SU
->Succs
) {
1072 ChainSuccs
.push_back(Succ
);
1074 NodeSuccs
.push_back(Succ
);
1077 // Now assign edges to the newly-created nodes.
1078 for (const SDep
&Pred
: ChainPreds
) {
1079 RemovePred(SU
, Pred
);
1081 AddPredQueued(LoadSU
, Pred
);
1083 for (const SDep
&Pred
: LoadPreds
) {
1084 RemovePred(SU
, Pred
);
1086 AddPredQueued(LoadSU
, Pred
);
1088 for (const SDep
&Pred
: NodePreds
) {
1089 RemovePred(SU
, Pred
);
1090 AddPredQueued(NewSU
, Pred
);
1092 for (SDep D
: NodeSuccs
) {
1093 SUnit
*SuccDep
= D
.getSUnit();
1095 RemovePred(SuccDep
, D
);
1097 AddPredQueued(SuccDep
, D
);
1098 // Balance register pressure.
1099 if (AvailableQueue
->tracksRegPressure() && SuccDep
->isScheduled
&&
1100 !D
.isCtrl() && NewSU
->NumRegDefsLeft
> 0)
1101 --NewSU
->NumRegDefsLeft
;
1103 for (SDep D
: ChainSuccs
) {
1104 SUnit
*SuccDep
= D
.getSUnit();
1106 RemovePred(SuccDep
, D
);
1109 AddPredQueued(SuccDep
, D
);
1113 // Add a data dependency to reflect that NewSU reads the value defined
1115 SDep
D(LoadSU
, SDep::Data
, 0);
1116 D
.setLatency(LoadSU
->Latency
);
1117 AddPredQueued(NewSU
, D
);
1120 AvailableQueue
->addNode(LoadSU
);
1122 AvailableQueue
->addNode(NewSU
);
1126 if (NewSU
->NumSuccsLeft
== 0)
1127 NewSU
->isAvailable
= true;
1132 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
1133 /// successors to the newly created node.
1134 SUnit
*ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit
*SU
) {
1135 SDNode
*N
= SU
->getNode();
1139 LLVM_DEBUG(dbgs() << "Considering duplicating the SU\n");
1140 LLVM_DEBUG(dumpNode(*SU
));
1142 if (N
->getGluedNode() &&
1143 !TII
->canCopyGluedNodeDuringSchedule(N
)) {
1146 << "Giving up because it has incoming glue and the target does not "
1147 "want to copy it\n");
1152 bool TryUnfold
= false;
1153 for (unsigned i
= 0, e
= N
->getNumValues(); i
!= e
; ++i
) {
1154 MVT VT
= N
->getSimpleValueType(i
);
1155 if (VT
== MVT::Glue
) {
1156 LLVM_DEBUG(dbgs() << "Giving up because it has outgoing glue\n");
1158 } else if (VT
== MVT::Other
)
1161 for (const SDValue
&Op
: N
->op_values()) {
1162 MVT VT
= Op
.getNode()->getSimpleValueType(Op
.getResNo());
1163 if (VT
== MVT::Glue
&& !TII
->canCopyGluedNodeDuringSchedule(N
)) {
1165 dbgs() << "Giving up because it one of the operands is glue and "
1166 "the target does not want to copy it\n");
1171 // If possible unfold instruction.
1173 SUnit
*UnfoldSU
= TryUnfoldSU(SU
);
1178 // If this can be scheduled don't bother duplicating and just return
1179 if (SU
->NumSuccsLeft
== 0)
1183 LLVM_DEBUG(dbgs() << " Duplicating SU #" << SU
->NodeNum
<< "\n");
1184 NewSU
= CreateClone(SU
);
1186 // New SUnit has the exact same predecessors.
1187 for (SDep
&Pred
: SU
->Preds
)
1188 if (!Pred
.isArtificial())
1189 AddPredQueued(NewSU
, Pred
);
1191 // Make sure the clone comes after the original. (InstrEmitter assumes
1193 AddPredQueued(NewSU
, SDep(SU
, SDep::Artificial
));
1195 // Only copy scheduled successors. Cut them from old node's successor
1196 // list and move them over.
1197 SmallVector
<std::pair
<SUnit
*, SDep
>, 4> DelDeps
;
1198 for (SDep
&Succ
: SU
->Succs
) {
1199 if (Succ
.isArtificial())
1201 SUnit
*SuccSU
= Succ
.getSUnit();
1202 if (SuccSU
->isScheduled
) {
1205 AddPredQueued(SuccSU
, D
);
1207 DelDeps
.push_back(std::make_pair(SuccSU
, D
));
1210 for (auto &DelDep
: DelDeps
)
1211 RemovePred(DelDep
.first
, DelDep
.second
);
1213 AvailableQueue
->updateNode(SU
);
1214 AvailableQueue
->addNode(NewSU
);
1220 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
1221 /// scheduled successors of the given SUnit to the last copy.
1222 void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit
*SU
, unsigned Reg
,
1223 const TargetRegisterClass
*DestRC
,
1224 const TargetRegisterClass
*SrcRC
,
1225 SmallVectorImpl
<SUnit
*> &Copies
) {
1226 SUnit
*CopyFromSU
= CreateNewSUnit(nullptr);
1227 CopyFromSU
->CopySrcRC
= SrcRC
;
1228 CopyFromSU
->CopyDstRC
= DestRC
;
1230 SUnit
*CopyToSU
= CreateNewSUnit(nullptr);
1231 CopyToSU
->CopySrcRC
= DestRC
;
1232 CopyToSU
->CopyDstRC
= SrcRC
;
1234 // Only copy scheduled successors. Cut them from old node's successor
1235 // list and move them over.
1236 SmallVector
<std::pair
<SUnit
*, SDep
>, 4> DelDeps
;
1237 for (SDep
&Succ
: SU
->Succs
) {
1238 if (Succ
.isArtificial())
1240 SUnit
*SuccSU
= Succ
.getSUnit();
1241 if (SuccSU
->isScheduled
) {
1243 D
.setSUnit(CopyToSU
);
1244 AddPredQueued(SuccSU
, D
);
1245 DelDeps
.push_back(std::make_pair(SuccSU
, Succ
));
1248 // Avoid scheduling the def-side copy before other successors. Otherwise
1249 // we could introduce another physreg interference on the copy and
1250 // continue inserting copies indefinitely.
1251 AddPredQueued(SuccSU
, SDep(CopyFromSU
, SDep::Artificial
));
1254 for (auto &DelDep
: DelDeps
)
1255 RemovePred(DelDep
.first
, DelDep
.second
);
1257 SDep
FromDep(SU
, SDep::Data
, Reg
);
1258 FromDep
.setLatency(SU
->Latency
);
1259 AddPredQueued(CopyFromSU
, FromDep
);
1260 SDep
ToDep(CopyFromSU
, SDep::Data
, 0);
1261 ToDep
.setLatency(CopyFromSU
->Latency
);
1262 AddPredQueued(CopyToSU
, ToDep
);
1264 AvailableQueue
->updateNode(SU
);
1265 AvailableQueue
->addNode(CopyFromSU
);
1266 AvailableQueue
->addNode(CopyToSU
);
1267 Copies
.push_back(CopyFromSU
);
1268 Copies
.push_back(CopyToSU
);
1273 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
1274 /// definition of the specified node.
1275 /// FIXME: Move to SelectionDAG?
1276 static MVT
getPhysicalRegisterVT(SDNode
*N
, unsigned Reg
,
1277 const TargetInstrInfo
*TII
) {
1279 if (N
->getOpcode() == ISD::CopyFromReg
) {
1280 // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type.
1283 const MCInstrDesc
&MCID
= TII
->get(N
->getMachineOpcode());
1284 assert(MCID
.ImplicitDefs
&& "Physical reg def must be in implicit def list!");
1285 NumRes
= MCID
.getNumDefs();
1286 for (const MCPhysReg
*ImpDef
= MCID
.getImplicitDefs(); *ImpDef
; ++ImpDef
) {
1292 return N
->getSimpleValueType(NumRes
);
1295 /// CheckForLiveRegDef - Return true and update live register vector if the
1296 /// specified register def of the specified SUnit clobbers any "live" registers.
1297 static void CheckForLiveRegDef(SUnit
*SU
, unsigned Reg
,
1298 SUnit
**LiveRegDefs
,
1299 SmallSet
<unsigned, 4> &RegAdded
,
1300 SmallVectorImpl
<unsigned> &LRegs
,
1301 const TargetRegisterInfo
*TRI
) {
1302 for (MCRegAliasIterator
AliasI(Reg
, TRI
, true); AliasI
.isValid(); ++AliasI
) {
1304 // Check if Ref is live.
1305 if (!LiveRegDefs
[*AliasI
]) continue;
1307 // Allow multiple uses of the same def.
1308 if (LiveRegDefs
[*AliasI
] == SU
) continue;
1310 // Add Reg to the set of interfering live regs.
1311 if (RegAdded
.insert(*AliasI
).second
) {
1312 LRegs
.push_back(*AliasI
);
1317 /// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered
1318 /// by RegMask, and add them to LRegs.
1319 static void CheckForLiveRegDefMasked(SUnit
*SU
, const uint32_t *RegMask
,
1320 ArrayRef
<SUnit
*> LiveRegDefs
,
1321 SmallSet
<unsigned, 4> &RegAdded
,
1322 SmallVectorImpl
<unsigned> &LRegs
) {
1323 // Look at all live registers. Skip Reg0 and the special CallResource.
1324 for (unsigned i
= 1, e
= LiveRegDefs
.size()-1; i
!= e
; ++i
) {
1325 if (!LiveRegDefs
[i
]) continue;
1326 if (LiveRegDefs
[i
] == SU
) continue;
1327 if (!MachineOperand::clobbersPhysReg(RegMask
, i
)) continue;
1328 if (RegAdded
.insert(i
).second
)
1333 /// getNodeRegMask - Returns the register mask attached to an SDNode, if any.
1334 static const uint32_t *getNodeRegMask(const SDNode
*N
) {
1335 for (const SDValue
&Op
: N
->op_values())
1336 if (const auto *RegOp
= dyn_cast
<RegisterMaskSDNode
>(Op
.getNode()))
1337 return RegOp
->getRegMask();
1341 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
1342 /// scheduling of the given node to satisfy live physical register dependencies.
1343 /// If the specific node is the last one that's available to schedule, do
1344 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
1345 bool ScheduleDAGRRList::
1346 DelayForLiveRegsBottomUp(SUnit
*SU
, SmallVectorImpl
<unsigned> &LRegs
) {
1347 if (NumLiveRegs
== 0)
1350 SmallSet
<unsigned, 4> RegAdded
;
1351 // If this node would clobber any "live" register, then it's not ready.
1353 // If SU is the currently live definition of the same register that it uses,
1354 // then we are free to schedule it.
1355 for (SDep
&Pred
: SU
->Preds
) {
1356 if (Pred
.isAssignedRegDep() && LiveRegDefs
[Pred
.getReg()] != SU
)
1357 CheckForLiveRegDef(Pred
.getSUnit(), Pred
.getReg(), LiveRegDefs
.get(),
1358 RegAdded
, LRegs
, TRI
);
1361 for (SDNode
*Node
= SU
->getNode(); Node
; Node
= Node
->getGluedNode()) {
1362 if (Node
->getOpcode() == ISD::INLINEASM
||
1363 Node
->getOpcode() == ISD::INLINEASM_BR
) {
1364 // Inline asm can clobber physical defs.
1365 unsigned NumOps
= Node
->getNumOperands();
1366 if (Node
->getOperand(NumOps
-1).getValueType() == MVT::Glue
)
1367 --NumOps
; // Ignore the glue operand.
1369 for (unsigned i
= InlineAsm::Op_FirstOperand
; i
!= NumOps
;) {
1371 cast
<ConstantSDNode
>(Node
->getOperand(i
))->getZExtValue();
1372 unsigned NumVals
= InlineAsm::getNumOperandRegisters(Flags
);
1374 ++i
; // Skip the ID value.
1375 if (InlineAsm::isRegDefKind(Flags
) ||
1376 InlineAsm::isRegDefEarlyClobberKind(Flags
) ||
1377 InlineAsm::isClobberKind(Flags
)) {
1378 // Check for def of register or earlyclobber register.
1379 for (; NumVals
; --NumVals
, ++i
) {
1380 unsigned Reg
= cast
<RegisterSDNode
>(Node
->getOperand(i
))->getReg();
1381 if (Register::isPhysicalRegister(Reg
))
1382 CheckForLiveRegDef(SU
, Reg
, LiveRegDefs
.get(), RegAdded
, LRegs
, TRI
);
1390 if (!Node
->isMachineOpcode())
1392 // If we're in the middle of scheduling a call, don't begin scheduling
1393 // another call. Also, don't allow any physical registers to be live across
1395 if (Node
->getMachineOpcode() == TII
->getCallFrameDestroyOpcode()) {
1396 // Check the special calling-sequence resource.
1397 unsigned CallResource
= TRI
->getNumRegs();
1398 if (LiveRegDefs
[CallResource
]) {
1399 SDNode
*Gen
= LiveRegGens
[CallResource
]->getNode();
1400 while (SDNode
*Glued
= Gen
->getGluedNode())
1402 if (!IsChainDependent(Gen
, Node
, 0, TII
) &&
1403 RegAdded
.insert(CallResource
).second
)
1404 LRegs
.push_back(CallResource
);
1407 if (const uint32_t *RegMask
= getNodeRegMask(Node
))
1408 CheckForLiveRegDefMasked(SU
, RegMask
,
1409 makeArrayRef(LiveRegDefs
.get(), TRI
->getNumRegs()),
1412 const MCInstrDesc
&MCID
= TII
->get(Node
->getMachineOpcode());
1413 if (MCID
.hasOptionalDef()) {
1414 // Most ARM instructions have an OptionalDef for CPSR, to model the S-bit.
1415 // This operand can be either a def of CPSR, if the S bit is set; or a use
1416 // of %noreg. When the OptionalDef is set to a valid register, we need to
1417 // handle it in the same way as an ImplicitDef.
1418 for (unsigned i
= 0; i
< MCID
.getNumDefs(); ++i
)
1419 if (MCID
.OpInfo
[i
].isOptionalDef()) {
1420 const SDValue
&OptionalDef
= Node
->getOperand(i
- Node
->getNumValues());
1421 unsigned Reg
= cast
<RegisterSDNode
>(OptionalDef
)->getReg();
1422 CheckForLiveRegDef(SU
, Reg
, LiveRegDefs
.get(), RegAdded
, LRegs
, TRI
);
1425 if (!MCID
.ImplicitDefs
)
1427 for (const MCPhysReg
*Reg
= MCID
.getImplicitDefs(); *Reg
; ++Reg
)
1428 CheckForLiveRegDef(SU
, *Reg
, LiveRegDefs
.get(), RegAdded
, LRegs
, TRI
);
1431 return !LRegs
.empty();
1434 void ScheduleDAGRRList::releaseInterferences(unsigned Reg
) {
1435 // Add the nodes that aren't ready back onto the available list.
1436 for (unsigned i
= Interferences
.size(); i
> 0; --i
) {
1437 SUnit
*SU
= Interferences
[i
-1];
1438 LRegsMapT::iterator LRegsPos
= LRegsMap
.find(SU
);
1440 SmallVectorImpl
<unsigned> &LRegs
= LRegsPos
->second
;
1441 if (!is_contained(LRegs
, Reg
))
1444 SU
->isPending
= false;
1445 // The interfering node may no longer be available due to backtracking.
1446 // Furthermore, it may have been made available again, in which case it is
1447 // now already in the AvailableQueue.
1448 if (SU
->isAvailable
&& !SU
->NodeQueueId
) {
1449 LLVM_DEBUG(dbgs() << " Repushing SU #" << SU
->NodeNum
<< '\n');
1450 AvailableQueue
->push(SU
);
1452 if (i
< Interferences
.size())
1453 Interferences
[i
-1] = Interferences
.back();
1454 Interferences
.pop_back();
1455 LRegsMap
.erase(LRegsPos
);
1459 /// Return a node that can be scheduled in this cycle. Requirements:
1460 /// (1) Ready: latency has been satisfied
1461 /// (2) No Hazards: resources are available
1462 /// (3) No Interferences: may unschedule to break register interferences.
1463 SUnit
*ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
1464 SUnit
*CurSU
= AvailableQueue
->empty() ? nullptr : AvailableQueue
->pop();
1465 auto FindAvailableNode
= [&]() {
1467 SmallVector
<unsigned, 4> LRegs
;
1468 if (!DelayForLiveRegsBottomUp(CurSU
, LRegs
))
1470 LLVM_DEBUG(dbgs() << " Interfering reg ";
1471 if (LRegs
[0] == TRI
->getNumRegs()) dbgs() << "CallResource";
1472 else dbgs() << printReg(LRegs
[0], TRI
);
1473 dbgs() << " SU #" << CurSU
->NodeNum
<< '\n');
1474 std::pair
<LRegsMapT::iterator
, bool> LRegsPair
=
1475 LRegsMap
.insert(std::make_pair(CurSU
, LRegs
));
1476 if (LRegsPair
.second
) {
1477 CurSU
->isPending
= true; // This SU is not in AvailableQueue right now.
1478 Interferences
.push_back(CurSU
);
1481 assert(CurSU
->isPending
&& "Interferences are pending");
1482 // Update the interference with current live regs.
1483 LRegsPair
.first
->second
= LRegs
;
1485 CurSU
= AvailableQueue
->pop();
1488 FindAvailableNode();
1492 // We query the topological order in the loop body, so make sure outstanding
1493 // updates are applied before entering it (we only enter the loop if there
1494 // are some interferences). If we make changes to the ordering, we exit
1497 // All candidates are delayed due to live physical reg dependencies.
1498 // Try backtracking, code duplication, or inserting cross class copies
1500 for (SUnit
*TrySU
: Interferences
) {
1501 SmallVectorImpl
<unsigned> &LRegs
= LRegsMap
[TrySU
];
1503 // Try unscheduling up to the point where it's safe to schedule
1505 SUnit
*BtSU
= nullptr;
1506 unsigned LiveCycle
= std::numeric_limits
<unsigned>::max();
1507 for (unsigned Reg
: LRegs
) {
1508 if (LiveRegGens
[Reg
]->getHeight() < LiveCycle
) {
1509 BtSU
= LiveRegGens
[Reg
];
1510 LiveCycle
= BtSU
->getHeight();
1513 if (!WillCreateCycle(TrySU
, BtSU
)) {
1514 // BacktrackBottomUp mutates Interferences!
1515 BacktrackBottomUp(TrySU
, BtSU
);
1517 // Force the current node to be scheduled before the node that
1518 // requires the physical reg dep.
1519 if (BtSU
->isAvailable
) {
1520 BtSU
->isAvailable
= false;
1521 if (!BtSU
->isPending
)
1522 AvailableQueue
->remove(BtSU
);
1524 LLVM_DEBUG(dbgs() << "ARTIFICIAL edge from SU(" << BtSU
->NodeNum
1525 << ") to SU(" << TrySU
->NodeNum
<< ")\n");
1526 AddPredQueued(TrySU
, SDep(BtSU
, SDep::Artificial
));
1528 // If one or more successors has been unscheduled, then the current
1529 // node is no longer available.
1530 if (!TrySU
->isAvailable
|| !TrySU
->NodeQueueId
) {
1531 LLVM_DEBUG(dbgs() << "TrySU not available; choosing node from queue\n");
1532 CurSU
= AvailableQueue
->pop();
1534 LLVM_DEBUG(dbgs() << "TrySU available\n");
1535 // Available and in AvailableQueue
1536 AvailableQueue
->remove(TrySU
);
1539 FindAvailableNode();
1540 // Interferences has been mutated. We must break.
1546 // Can't backtrack. If it's too expensive to copy the value, then try
1547 // duplicate the nodes that produces these "too expensive to copy"
1548 // values to break the dependency. In case even that doesn't work,
1549 // insert cross class copies.
1550 // If it's not too expensive, i.e. cost != -1, issue copies.
1551 SUnit
*TrySU
= Interferences
[0];
1552 SmallVectorImpl
<unsigned> &LRegs
= LRegsMap
[TrySU
];
1553 assert(LRegs
.size() == 1 && "Can't handle this yet!");
1554 unsigned Reg
= LRegs
[0];
1555 SUnit
*LRDef
= LiveRegDefs
[Reg
];
1556 MVT VT
= getPhysicalRegisterVT(LRDef
->getNode(), Reg
, TII
);
1557 const TargetRegisterClass
*RC
=
1558 TRI
->getMinimalPhysRegClass(Reg
, VT
);
1559 const TargetRegisterClass
*DestRC
= TRI
->getCrossCopyRegClass(RC
);
1561 // If cross copy register class is the same as RC, then it must be possible
1562 // copy the value directly. Do not try duplicate the def.
1563 // If cross copy register class is not the same as RC, then it's possible to
1564 // copy the value but it require cross register class copies and it is
1566 // If cross copy register class is null, then it's not possible to copy
1567 // the value at all.
1568 SUnit
*NewDef
= nullptr;
1570 NewDef
= CopyAndMoveSuccessors(LRDef
);
1571 if (!DestRC
&& !NewDef
)
1572 report_fatal_error("Can't handle live physical register dependency!");
1575 // Issue copies, these can be expensive cross register class copies.
1576 SmallVector
<SUnit
*, 2> Copies
;
1577 InsertCopiesAndMoveSuccs(LRDef
, Reg
, DestRC
, RC
, Copies
);
1578 LLVM_DEBUG(dbgs() << " Adding an edge from SU #" << TrySU
->NodeNum
1579 << " to SU #" << Copies
.front()->NodeNum
<< "\n");
1580 AddPredQueued(TrySU
, SDep(Copies
.front(), SDep::Artificial
));
1581 NewDef
= Copies
.back();
1584 LLVM_DEBUG(dbgs() << " Adding an edge from SU #" << NewDef
->NodeNum
1585 << " to SU #" << TrySU
->NodeNum
<< "\n");
1586 LiveRegDefs
[Reg
] = NewDef
;
1587 AddPredQueued(NewDef
, SDep(TrySU
, SDep::Artificial
));
1588 TrySU
->isAvailable
= false;
1591 assert(CurSU
&& "Unable to resolve live physical register dependencies!");
1595 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
1597 void ScheduleDAGRRList::ListScheduleBottomUp() {
1598 // Release any predecessors of the special Exit node.
1599 ReleasePredecessors(&ExitSU
);
1601 // Add root to Available queue.
1602 if (!SUnits
.empty()) {
1603 SUnit
*RootSU
= &SUnits
[DAG
->getRoot().getNode()->getNodeId()];
1604 assert(RootSU
->Succs
.empty() && "Graph root shouldn't have successors!");
1605 RootSU
->isAvailable
= true;
1606 AvailableQueue
->push(RootSU
);
1609 // While Available queue is not empty, grab the node with the highest
1610 // priority. If it is not ready put it back. Schedule the node.
1611 Sequence
.reserve(SUnits
.size());
1612 while (!AvailableQueue
->empty() || !Interferences
.empty()) {
1613 LLVM_DEBUG(dbgs() << "\nExamining Available:\n";
1614 AvailableQueue
->dump(this));
1616 // Pick the best node to schedule taking all constraints into
1618 SUnit
*SU
= PickNodeToScheduleBottomUp();
1620 AdvancePastStalls(SU
);
1622 ScheduleNodeBottomUp(SU
);
1624 while (AvailableQueue
->empty() && !PendingQueue
.empty()) {
1625 // Advance the cycle to free resources. Skip ahead to the next ready SU.
1626 assert(MinAvailableCycle
< std::numeric_limits
<unsigned>::max() &&
1627 "MinAvailableCycle uninitialized");
1628 AdvanceToCycle(std::max(CurCycle
+ 1, MinAvailableCycle
));
1632 // Reverse the order if it is bottom up.
1633 std::reverse(Sequence
.begin(), Sequence
.end());
1636 VerifyScheduledSequence(/*isBottomUp=*/true);
1642 class RegReductionPQBase
;
1645 bool isReady(SUnit
* SU
, unsigned CurCycle
) const { return true; }
1650 struct reverse_sort
: public queue_sort
{
1653 reverse_sort(SF
&sf
) : SortFunc(sf
) {}
1655 bool operator()(SUnit
* left
, SUnit
* right
) const {
1656 // reverse left/right rather than simply !SortFunc(left, right)
1657 // to expose different paths in the comparison logic.
1658 return SortFunc(right
, left
);
1663 /// bu_ls_rr_sort - Priority function for bottom up register pressure
1664 // reduction scheduler.
1665 struct bu_ls_rr_sort
: public queue_sort
{
1668 HasReadyFilter
= false
1671 RegReductionPQBase
*SPQ
;
1673 bu_ls_rr_sort(RegReductionPQBase
*spq
) : SPQ(spq
) {}
1675 bool operator()(SUnit
* left
, SUnit
* right
) const;
1678 // src_ls_rr_sort - Priority function for source order scheduler.
1679 struct src_ls_rr_sort
: public queue_sort
{
1682 HasReadyFilter
= false
1685 RegReductionPQBase
*SPQ
;
1687 src_ls_rr_sort(RegReductionPQBase
*spq
) : SPQ(spq
) {}
1689 bool operator()(SUnit
* left
, SUnit
* right
) const;
1692 // hybrid_ls_rr_sort - Priority function for hybrid scheduler.
1693 struct hybrid_ls_rr_sort
: public queue_sort
{
1696 HasReadyFilter
= false
1699 RegReductionPQBase
*SPQ
;
1701 hybrid_ls_rr_sort(RegReductionPQBase
*spq
) : SPQ(spq
) {}
1703 bool isReady(SUnit
*SU
, unsigned CurCycle
) const;
1705 bool operator()(SUnit
* left
, SUnit
* right
) const;
1708 // ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
1710 struct ilp_ls_rr_sort
: public queue_sort
{
1713 HasReadyFilter
= false
1716 RegReductionPQBase
*SPQ
;
1718 ilp_ls_rr_sort(RegReductionPQBase
*spq
) : SPQ(spq
) {}
1720 bool isReady(SUnit
*SU
, unsigned CurCycle
) const;
1722 bool operator()(SUnit
* left
, SUnit
* right
) const;
1725 class RegReductionPQBase
: public SchedulingPriorityQueue
{
1727 std::vector
<SUnit
*> Queue
;
1728 unsigned CurQueueId
= 0;
1729 bool TracksRegPressure
;
1732 // SUnits - The SUnits for the current graph.
1733 std::vector
<SUnit
> *SUnits
;
1735 MachineFunction
&MF
;
1736 const TargetInstrInfo
*TII
;
1737 const TargetRegisterInfo
*TRI
;
1738 const TargetLowering
*TLI
;
1739 ScheduleDAGRRList
*scheduleDAG
= nullptr;
1741 // SethiUllmanNumbers - The SethiUllman number for each node.
1742 std::vector
<unsigned> SethiUllmanNumbers
;
1744 /// RegPressure - Tracking current reg pressure per register class.
1745 std::vector
<unsigned> RegPressure
;
1747 /// RegLimit - Tracking the number of allocatable registers per register
1749 std::vector
<unsigned> RegLimit
;
1752 RegReductionPQBase(MachineFunction
&mf
,
1753 bool hasReadyFilter
,
1756 const TargetInstrInfo
*tii
,
1757 const TargetRegisterInfo
*tri
,
1758 const TargetLowering
*tli
)
1759 : SchedulingPriorityQueue(hasReadyFilter
), TracksRegPressure(tracksrp
),
1760 SrcOrder(srcorder
), MF(mf
), TII(tii
), TRI(tri
), TLI(tli
) {
1761 if (TracksRegPressure
) {
1762 unsigned NumRC
= TRI
->getNumRegClasses();
1763 RegLimit
.resize(NumRC
);
1764 RegPressure
.resize(NumRC
);
1765 std::fill(RegLimit
.begin(), RegLimit
.end(), 0);
1766 std::fill(RegPressure
.begin(), RegPressure
.end(), 0);
1767 for (const TargetRegisterClass
*RC
: TRI
->regclasses())
1768 RegLimit
[RC
->getID()] = tri
->getRegPressureLimit(RC
, MF
);
1772 void setScheduleDAG(ScheduleDAGRRList
*scheduleDag
) {
1773 scheduleDAG
= scheduleDag
;
1776 ScheduleHazardRecognizer
* getHazardRec() {
1777 return scheduleDAG
->getHazardRec();
1780 void initNodes(std::vector
<SUnit
> &sunits
) override
;
1782 void addNode(const SUnit
*SU
) override
;
1784 void updateNode(const SUnit
*SU
) override
;
1786 void releaseState() override
{
1788 SethiUllmanNumbers
.clear();
1789 std::fill(RegPressure
.begin(), RegPressure
.end(), 0);
1792 unsigned getNodePriority(const SUnit
*SU
) const;
1794 unsigned getNodeOrdering(const SUnit
*SU
) const {
1795 if (!SU
->getNode()) return 0;
1797 return SU
->getNode()->getIROrder();
1800 bool empty() const override
{ return Queue
.empty(); }
1802 void push(SUnit
*U
) override
{
1803 assert(!U
->NodeQueueId
&& "Node in the queue already");
1804 U
->NodeQueueId
= ++CurQueueId
;
1808 void remove(SUnit
*SU
) override
{
1809 assert(!Queue
.empty() && "Queue is empty!");
1810 assert(SU
->NodeQueueId
!= 0 && "Not in queue!");
1811 std::vector
<SUnit
*>::iterator I
= llvm::find(Queue
, SU
);
1812 if (I
!= std::prev(Queue
.end()))
1813 std::swap(*I
, Queue
.back());
1815 SU
->NodeQueueId
= 0;
1818 bool tracksRegPressure() const override
{ return TracksRegPressure
; }
1820 void dumpRegPressure() const;
1822 bool HighRegPressure(const SUnit
*SU
) const;
1824 bool MayReduceRegPressure(SUnit
*SU
) const;
1826 int RegPressureDiff(SUnit
*SU
, unsigned &LiveUses
) const;
1828 void scheduledNode(SUnit
*SU
) override
;
1830 void unscheduledNode(SUnit
*SU
) override
;
1833 bool canClobber(const SUnit
*SU
, const SUnit
*Op
);
1834 void AddPseudoTwoAddrDeps();
1835 void PrescheduleNodesWithMultipleUses();
1836 void CalculateSethiUllmanNumbers();
1840 static SUnit
*popFromQueueImpl(std::vector
<SUnit
*> &Q
, SF
&Picker
) {
1841 std::vector
<SUnit
*>::iterator Best
= Q
.begin();
1842 for (auto I
= std::next(Q
.begin()), E
= Q
.end(); I
!= E
; ++I
)
1843 if (Picker(*Best
, *I
))
1846 if (Best
!= std::prev(Q
.end()))
1847 std::swap(*Best
, Q
.back());
1853 SUnit
*popFromQueue(std::vector
<SUnit
*> &Q
, SF
&Picker
, ScheduleDAG
*DAG
) {
1855 if (DAG
->StressSched
) {
1856 reverse_sort
<SF
> RPicker(Picker
);
1857 return popFromQueueImpl(Q
, RPicker
);
1861 return popFromQueueImpl(Q
, Picker
);
1864 //===----------------------------------------------------------------------===//
1865 // RegReductionPriorityQueue Definition
1866 //===----------------------------------------------------------------------===//
1868 // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1869 // to reduce register pressure.
1872 class RegReductionPriorityQueue
: public RegReductionPQBase
{
1876 RegReductionPriorityQueue(MachineFunction
&mf
,
1879 const TargetInstrInfo
*tii
,
1880 const TargetRegisterInfo
*tri
,
1881 const TargetLowering
*tli
)
1882 : RegReductionPQBase(mf
, SF::HasReadyFilter
, tracksrp
, srcorder
,
1886 bool isBottomUp() const override
{ return SF::IsBottomUp
; }
1888 bool isReady(SUnit
*U
) const override
{
1889 return Picker
.HasReadyFilter
&& Picker
.isReady(U
, getCurCycle());
1892 SUnit
*pop() override
{
1893 if (Queue
.empty()) return nullptr;
1895 SUnit
*V
= popFromQueue(Queue
, Picker
, scheduleDAG
);
1900 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1901 LLVM_DUMP_METHOD
void dump(ScheduleDAG
*DAG
) const override
{
1902 // Emulate pop() without clobbering NodeQueueIds.
1903 std::vector
<SUnit
*> DumpQueue
= Queue
;
1904 SF DumpPicker
= Picker
;
1905 while (!DumpQueue
.empty()) {
1906 SUnit
*SU
= popFromQueue(DumpQueue
, DumpPicker
, scheduleDAG
);
1907 dbgs() << "Height " << SU
->getHeight() << ": ";
1914 using BURegReductionPriorityQueue
= RegReductionPriorityQueue
<bu_ls_rr_sort
>;
1915 using SrcRegReductionPriorityQueue
= RegReductionPriorityQueue
<src_ls_rr_sort
>;
1916 using HybridBURRPriorityQueue
= RegReductionPriorityQueue
<hybrid_ls_rr_sort
>;
1917 using ILPBURRPriorityQueue
= RegReductionPriorityQueue
<ilp_ls_rr_sort
>;
1919 } // end anonymous namespace
1921 //===----------------------------------------------------------------------===//
1922 // Static Node Priority for Register Pressure Reduction
1923 //===----------------------------------------------------------------------===//
1925 // Check for special nodes that bypass scheduling heuristics.
1926 // Currently this pushes TokenFactor nodes down, but may be used for other
1927 // pseudo-ops as well.
1929 // Return -1 to schedule right above left, 1 for left above right.
1930 // Return 0 if no bias exists.
1931 static int checkSpecialNodes(const SUnit
*left
, const SUnit
*right
) {
1932 bool LSchedLow
= left
->isScheduleLow
;
1933 bool RSchedLow
= right
->isScheduleLow
;
1934 if (LSchedLow
!= RSchedLow
)
1935 return LSchedLow
< RSchedLow
? 1 : -1;
1939 /// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
1940 /// Smaller number is the higher priority.
1942 CalcNodeSethiUllmanNumber(const SUnit
*SU
, std::vector
<unsigned> &SUNumbers
) {
1943 if (SUNumbers
[SU
->NodeNum
] != 0)
1944 return SUNumbers
[SU
->NodeNum
];
1946 // Use WorkList to avoid stack overflow on excessively large IRs.
1948 WorkState(const SUnit
*SU
) : SU(SU
) {}
1950 unsigned PredsProcessed
= 0;
1953 SmallVector
<WorkState
, 16> WorkList
;
1954 WorkList
.push_back(SU
);
1955 while (!WorkList
.empty()) {
1956 auto &Temp
= WorkList
.back();
1957 auto *TempSU
= Temp
.SU
;
1958 bool AllPredsKnown
= true;
1959 // Try to find a non-evaluated pred and push it into the processing stack.
1960 for (unsigned P
= Temp
.PredsProcessed
; P
< TempSU
->Preds
.size(); ++P
) {
1961 auto &Pred
= TempSU
->Preds
[P
];
1962 if (Pred
.isCtrl()) continue; // ignore chain preds
1963 SUnit
*PredSU
= Pred
.getSUnit();
1964 if (SUNumbers
[PredSU
->NodeNum
] == 0) {
1966 // In debug mode, check that we don't have such element in the stack.
1967 for (auto It
: WorkList
)
1968 assert(It
.SU
!= PredSU
&& "Trying to push an element twice?");
1970 // Next time start processing this one starting from the next pred.
1971 Temp
.PredsProcessed
= P
+ 1;
1972 WorkList
.push_back(PredSU
);
1973 AllPredsKnown
= false;
1981 // Once all preds are known, we can calculate the answer for this one.
1982 unsigned SethiUllmanNumber
= 0;
1984 for (const SDep
&Pred
: TempSU
->Preds
) {
1985 if (Pred
.isCtrl()) continue; // ignore chain preds
1986 SUnit
*PredSU
= Pred
.getSUnit();
1987 unsigned PredSethiUllman
= SUNumbers
[PredSU
->NodeNum
];
1988 assert(PredSethiUllman
> 0 && "We should have evaluated this pred!");
1989 if (PredSethiUllman
> SethiUllmanNumber
) {
1990 SethiUllmanNumber
= PredSethiUllman
;
1992 } else if (PredSethiUllman
== SethiUllmanNumber
)
1996 SethiUllmanNumber
+= Extra
;
1997 if (SethiUllmanNumber
== 0)
1998 SethiUllmanNumber
= 1;
1999 SUNumbers
[TempSU
->NodeNum
] = SethiUllmanNumber
;
2000 WorkList
.pop_back();
2003 assert(SUNumbers
[SU
->NodeNum
] > 0 && "SethiUllman should never be zero!");
2004 return SUNumbers
[SU
->NodeNum
];
2007 /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
2008 /// scheduling units.
2009 void RegReductionPQBase::CalculateSethiUllmanNumbers() {
2010 SethiUllmanNumbers
.assign(SUnits
->size(), 0);
2012 for (const SUnit
&SU
: *SUnits
)
2013 CalcNodeSethiUllmanNumber(&SU
, SethiUllmanNumbers
);
2016 void RegReductionPQBase::addNode(const SUnit
*SU
) {
2017 unsigned SUSize
= SethiUllmanNumbers
.size();
2018 if (SUnits
->size() > SUSize
)
2019 SethiUllmanNumbers
.resize(SUSize
*2, 0);
2020 CalcNodeSethiUllmanNumber(SU
, SethiUllmanNumbers
);
2023 void RegReductionPQBase::updateNode(const SUnit
*SU
) {
2024 SethiUllmanNumbers
[SU
->NodeNum
] = 0;
2025 CalcNodeSethiUllmanNumber(SU
, SethiUllmanNumbers
);
2028 // Lower priority means schedule further down. For bottom-up scheduling, lower
2029 // priority SUs are scheduled before higher priority SUs.
2030 unsigned RegReductionPQBase::getNodePriority(const SUnit
*SU
) const {
2031 assert(SU
->NodeNum
< SethiUllmanNumbers
.size());
2032 unsigned Opc
= SU
->getNode() ? SU
->getNode()->getOpcode() : 0;
2033 if (Opc
== ISD::TokenFactor
|| Opc
== ISD::CopyToReg
)
2034 // CopyToReg should be close to its uses to facilitate coalescing and
2037 if (Opc
== TargetOpcode::EXTRACT_SUBREG
||
2038 Opc
== TargetOpcode::SUBREG_TO_REG
||
2039 Opc
== TargetOpcode::INSERT_SUBREG
)
2040 // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2041 // close to their uses to facilitate coalescing.
2043 if (SU
->NumSuccs
== 0 && SU
->NumPreds
!= 0)
2044 // If SU does not have a register use, i.e. it doesn't produce a value
2045 // that would be consumed (e.g. store), then it terminates a chain of
2046 // computation. Give it a large SethiUllman number so it will be
2047 // scheduled right before its predecessors that it doesn't lengthen
2048 // their live ranges.
2050 if (SU
->NumPreds
== 0 && SU
->NumSuccs
!= 0)
2051 // If SU does not have a register def, schedule it close to its uses
2052 // because it does not lengthen any live ranges.
2055 return SethiUllmanNumbers
[SU
->NodeNum
];
2057 unsigned Priority
= SethiUllmanNumbers
[SU
->NodeNum
];
2059 // FIXME: This assumes all of the defs are used as call operands.
2060 int NP
= (int)Priority
- SU
->getNode()->getNumValues();
2061 return (NP
> 0) ? NP
: 0;
2067 //===----------------------------------------------------------------------===//
2068 // Register Pressure Tracking
2069 //===----------------------------------------------------------------------===//
2071 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2072 LLVM_DUMP_METHOD
void RegReductionPQBase::dumpRegPressure() const {
2073 for (const TargetRegisterClass
*RC
: TRI
->regclasses()) {
2074 unsigned Id
= RC
->getID();
2075 unsigned RP
= RegPressure
[Id
];
2077 LLVM_DEBUG(dbgs() << TRI
->getRegClassName(RC
) << ": " << RP
<< " / "
2078 << RegLimit
[Id
] << '\n');
2083 bool RegReductionPQBase::HighRegPressure(const SUnit
*SU
) const {
2087 for (const SDep
&Pred
: SU
->Preds
) {
2090 SUnit
*PredSU
= Pred
.getSUnit();
2091 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2092 // to cover the number of registers defined (they are all live).
2093 if (PredSU
->NumRegDefsLeft
== 0) {
2096 for (ScheduleDAGSDNodes::RegDefIter
RegDefPos(PredSU
, scheduleDAG
);
2097 RegDefPos
.IsValid(); RegDefPos
.Advance()) {
2098 unsigned RCId
, Cost
;
2099 GetCostForDef(RegDefPos
, TLI
, TII
, TRI
, RCId
, Cost
, MF
);
2101 if ((RegPressure
[RCId
] + Cost
) >= RegLimit
[RCId
])
2108 bool RegReductionPQBase::MayReduceRegPressure(SUnit
*SU
) const {
2109 const SDNode
*N
= SU
->getNode();
2111 if (!N
->isMachineOpcode() || !SU
->NumSuccs
)
2114 unsigned NumDefs
= TII
->get(N
->getMachineOpcode()).getNumDefs();
2115 for (unsigned i
= 0; i
!= NumDefs
; ++i
) {
2116 MVT VT
= N
->getSimpleValueType(i
);
2117 if (!N
->hasAnyUseOfValue(i
))
2119 unsigned RCId
= TLI
->getRepRegClassFor(VT
)->getID();
2120 if (RegPressure
[RCId
] >= RegLimit
[RCId
])
2126 // Compute the register pressure contribution by this instruction by count up
2127 // for uses that are not live and down for defs. Only count register classes
2128 // that are already under high pressure. As a side effect, compute the number of
2129 // uses of registers that are already live.
2131 // FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
2132 // so could probably be factored.
2133 int RegReductionPQBase::RegPressureDiff(SUnit
*SU
, unsigned &LiveUses
) const {
2136 for (const SDep
&Pred
: SU
->Preds
) {
2139 SUnit
*PredSU
= Pred
.getSUnit();
2140 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2141 // to cover the number of registers defined (they are all live).
2142 if (PredSU
->NumRegDefsLeft
== 0) {
2143 if (PredSU
->getNode()->isMachineOpcode())
2147 for (ScheduleDAGSDNodes::RegDefIter
RegDefPos(PredSU
, scheduleDAG
);
2148 RegDefPos
.IsValid(); RegDefPos
.Advance()) {
2149 MVT VT
= RegDefPos
.GetValue();
2150 unsigned RCId
= TLI
->getRepRegClassFor(VT
)->getID();
2151 if (RegPressure
[RCId
] >= RegLimit
[RCId
])
2155 const SDNode
*N
= SU
->getNode();
2157 if (!N
|| !N
->isMachineOpcode() || !SU
->NumSuccs
)
2160 unsigned NumDefs
= TII
->get(N
->getMachineOpcode()).getNumDefs();
2161 for (unsigned i
= 0; i
!= NumDefs
; ++i
) {
2162 MVT VT
= N
->getSimpleValueType(i
);
2163 if (!N
->hasAnyUseOfValue(i
))
2165 unsigned RCId
= TLI
->getRepRegClassFor(VT
)->getID();
2166 if (RegPressure
[RCId
] >= RegLimit
[RCId
])
2172 void RegReductionPQBase::scheduledNode(SUnit
*SU
) {
2173 if (!TracksRegPressure
)
2179 for (const SDep
&Pred
: SU
->Preds
) {
2182 SUnit
*PredSU
= Pred
.getSUnit();
2183 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2184 // to cover the number of registers defined (they are all live).
2185 if (PredSU
->NumRegDefsLeft
== 0) {
2188 // FIXME: The ScheduleDAG currently loses information about which of a
2189 // node's values is consumed by each dependence. Consequently, if the node
2190 // defines multiple register classes, we don't know which to pressurize
2191 // here. Instead the following loop consumes the register defs in an
2192 // arbitrary order. At least it handles the common case of clustered loads
2193 // to the same class. For precise liveness, each SDep needs to indicate the
2194 // result number. But that tightly couples the ScheduleDAG with the
2195 // SelectionDAG making updates tricky. A simpler hack would be to attach a
2196 // value type or register class to SDep.
2198 // The most important aspect of register tracking is balancing the increase
2199 // here with the reduction further below. Note that this SU may use multiple
2200 // defs in PredSU. The can't be determined here, but we've already
2201 // compensated by reducing NumRegDefsLeft in PredSU during
2202 // ScheduleDAGSDNodes::AddSchedEdges.
2203 --PredSU
->NumRegDefsLeft
;
2204 unsigned SkipRegDefs
= PredSU
->NumRegDefsLeft
;
2205 for (ScheduleDAGSDNodes::RegDefIter
RegDefPos(PredSU
, scheduleDAG
);
2206 RegDefPos
.IsValid(); RegDefPos
.Advance(), --SkipRegDefs
) {
2210 unsigned RCId
, Cost
;
2211 GetCostForDef(RegDefPos
, TLI
, TII
, TRI
, RCId
, Cost
, MF
);
2212 RegPressure
[RCId
] += Cost
;
2217 // We should have this assert, but there may be dead SDNodes that never
2218 // materialize as SUnits, so they don't appear to generate liveness.
2219 //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
2220 int SkipRegDefs
= (int)SU
->NumRegDefsLeft
;
2221 for (ScheduleDAGSDNodes::RegDefIter
RegDefPos(SU
, scheduleDAG
);
2222 RegDefPos
.IsValid(); RegDefPos
.Advance(), --SkipRegDefs
) {
2223 if (SkipRegDefs
> 0)
2225 unsigned RCId
, Cost
;
2226 GetCostForDef(RegDefPos
, TLI
, TII
, TRI
, RCId
, Cost
, MF
);
2227 if (RegPressure
[RCId
] < Cost
) {
2228 // Register pressure tracking is imprecise. This can happen. But we try
2229 // hard not to let it happen because it likely results in poor scheduling.
2230 LLVM_DEBUG(dbgs() << " SU(" << SU
->NodeNum
2231 << ") has too many regdefs\n");
2232 RegPressure
[RCId
] = 0;
2235 RegPressure
[RCId
] -= Cost
;
2238 LLVM_DEBUG(dumpRegPressure());
2241 void RegReductionPQBase::unscheduledNode(SUnit
*SU
) {
2242 if (!TracksRegPressure
)
2245 const SDNode
*N
= SU
->getNode();
2248 if (!N
->isMachineOpcode()) {
2249 if (N
->getOpcode() != ISD::CopyToReg
)
2252 unsigned Opc
= N
->getMachineOpcode();
2253 if (Opc
== TargetOpcode::EXTRACT_SUBREG
||
2254 Opc
== TargetOpcode::INSERT_SUBREG
||
2255 Opc
== TargetOpcode::SUBREG_TO_REG
||
2256 Opc
== TargetOpcode::REG_SEQUENCE
||
2257 Opc
== TargetOpcode::IMPLICIT_DEF
)
2261 for (const SDep
&Pred
: SU
->Preds
) {
2264 SUnit
*PredSU
= Pred
.getSUnit();
2265 // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
2266 // counts data deps.
2267 if (PredSU
->NumSuccsLeft
!= PredSU
->Succs
.size())
2269 const SDNode
*PN
= PredSU
->getNode();
2270 if (!PN
->isMachineOpcode()) {
2271 if (PN
->getOpcode() == ISD::CopyFromReg
) {
2272 MVT VT
= PN
->getSimpleValueType(0);
2273 unsigned RCId
= TLI
->getRepRegClassFor(VT
)->getID();
2274 RegPressure
[RCId
] += TLI
->getRepRegClassCostFor(VT
);
2278 unsigned POpc
= PN
->getMachineOpcode();
2279 if (POpc
== TargetOpcode::IMPLICIT_DEF
)
2281 if (POpc
== TargetOpcode::EXTRACT_SUBREG
||
2282 POpc
== TargetOpcode::INSERT_SUBREG
||
2283 POpc
== TargetOpcode::SUBREG_TO_REG
) {
2284 MVT VT
= PN
->getSimpleValueType(0);
2285 unsigned RCId
= TLI
->getRepRegClassFor(VT
)->getID();
2286 RegPressure
[RCId
] += TLI
->getRepRegClassCostFor(VT
);
2289 unsigned NumDefs
= TII
->get(PN
->getMachineOpcode()).getNumDefs();
2290 for (unsigned i
= 0; i
!= NumDefs
; ++i
) {
2291 MVT VT
= PN
->getSimpleValueType(i
);
2292 if (!PN
->hasAnyUseOfValue(i
))
2294 unsigned RCId
= TLI
->getRepRegClassFor(VT
)->getID();
2295 if (RegPressure
[RCId
] < TLI
->getRepRegClassCostFor(VT
))
2296 // Register pressure tracking is imprecise. This can happen.
2297 RegPressure
[RCId
] = 0;
2299 RegPressure
[RCId
] -= TLI
->getRepRegClassCostFor(VT
);
2303 // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
2304 // may transfer data dependencies to CopyToReg.
2305 if (SU
->NumSuccs
&& N
->isMachineOpcode()) {
2306 unsigned NumDefs
= TII
->get(N
->getMachineOpcode()).getNumDefs();
2307 for (unsigned i
= NumDefs
, e
= N
->getNumValues(); i
!= e
; ++i
) {
2308 MVT VT
= N
->getSimpleValueType(i
);
2309 if (VT
== MVT::Glue
|| VT
== MVT::Other
)
2311 if (!N
->hasAnyUseOfValue(i
))
2313 unsigned RCId
= TLI
->getRepRegClassFor(VT
)->getID();
2314 RegPressure
[RCId
] += TLI
->getRepRegClassCostFor(VT
);
2318 LLVM_DEBUG(dumpRegPressure());
2321 //===----------------------------------------------------------------------===//
2322 // Dynamic Node Priority for Register Pressure Reduction
2323 //===----------------------------------------------------------------------===//
2325 /// closestSucc - Returns the scheduled cycle of the successor which is
2326 /// closest to the current cycle.
2327 static unsigned closestSucc(const SUnit
*SU
) {
2328 unsigned MaxHeight
= 0;
2329 for (const SDep
&Succ
: SU
->Succs
) {
2330 if (Succ
.isCtrl()) continue; // ignore chain succs
2331 unsigned Height
= Succ
.getSUnit()->getHeight();
2332 // If there are bunch of CopyToRegs stacked up, they should be considered
2333 // to be at the same position.
2334 if (Succ
.getSUnit()->getNode() &&
2335 Succ
.getSUnit()->getNode()->getOpcode() == ISD::CopyToReg
)
2336 Height
= closestSucc(Succ
.getSUnit())+1;
2337 if (Height
> MaxHeight
)
2343 /// calcMaxScratches - Returns an cost estimate of the worse case requirement
2344 /// for scratch registers, i.e. number of data dependencies.
2345 static unsigned calcMaxScratches(const SUnit
*SU
) {
2346 unsigned Scratches
= 0;
2347 for (const SDep
&Pred
: SU
->Preds
) {
2348 if (Pred
.isCtrl()) continue; // ignore chain preds
2354 /// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
2355 /// CopyFromReg from a virtual register.
2356 static bool hasOnlyLiveInOpers(const SUnit
*SU
) {
2357 bool RetVal
= false;
2358 for (const SDep
&Pred
: SU
->Preds
) {
2359 if (Pred
.isCtrl()) continue;
2360 const SUnit
*PredSU
= Pred
.getSUnit();
2361 if (PredSU
->getNode() &&
2362 PredSU
->getNode()->getOpcode() == ISD::CopyFromReg
) {
2364 cast
<RegisterSDNode
>(PredSU
->getNode()->getOperand(1))->getReg();
2365 if (Register::isVirtualRegister(Reg
)) {
2375 /// hasOnlyLiveOutUses - Return true if SU has only value successors that are
2376 /// CopyToReg to a virtual register. This SU def is probably a liveout and
2377 /// it has no other use. It should be scheduled closer to the terminator.
2378 static bool hasOnlyLiveOutUses(const SUnit
*SU
) {
2379 bool RetVal
= false;
2380 for (const SDep
&Succ
: SU
->Succs
) {
2381 if (Succ
.isCtrl()) continue;
2382 const SUnit
*SuccSU
= Succ
.getSUnit();
2383 if (SuccSU
->getNode() && SuccSU
->getNode()->getOpcode() == ISD::CopyToReg
) {
2385 cast
<RegisterSDNode
>(SuccSU
->getNode()->getOperand(1))->getReg();
2386 if (Register::isVirtualRegister(Reg
)) {
2396 // Set isVRegCycle for a node with only live in opers and live out uses. Also
2397 // set isVRegCycle for its CopyFromReg operands.
2399 // This is only relevant for single-block loops, in which case the VRegCycle
2400 // node is likely an induction variable in which the operand and target virtual
2401 // registers should be coalesced (e.g. pre/post increment values). Setting the
2402 // isVRegCycle flag helps the scheduler prioritize other uses of the same
2403 // CopyFromReg so that this node becomes the virtual register "kill". This
2404 // avoids interference between the values live in and out of the block and
2405 // eliminates a copy inside the loop.
2406 static void initVRegCycle(SUnit
*SU
) {
2407 if (DisableSchedVRegCycle
)
2410 if (!hasOnlyLiveInOpers(SU
) || !hasOnlyLiveOutUses(SU
))
2413 LLVM_DEBUG(dbgs() << "VRegCycle: SU(" << SU
->NodeNum
<< ")\n");
2415 SU
->isVRegCycle
= true;
2417 for (const SDep
&Pred
: SU
->Preds
) {
2418 if (Pred
.isCtrl()) continue;
2419 Pred
.getSUnit()->isVRegCycle
= true;
2423 // After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
2424 // CopyFromReg operands. We should no longer penalize other uses of this VReg.
2425 static void resetVRegCycle(SUnit
*SU
) {
2426 if (!SU
->isVRegCycle
)
2429 for (const SDep
&Pred
: SU
->Preds
) {
2430 if (Pred
.isCtrl()) continue; // ignore chain preds
2431 SUnit
*PredSU
= Pred
.getSUnit();
2432 if (PredSU
->isVRegCycle
) {
2433 assert(PredSU
->getNode()->getOpcode() == ISD::CopyFromReg
&&
2434 "VRegCycle def must be CopyFromReg");
2435 Pred
.getSUnit()->isVRegCycle
= false;
2440 // Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
2441 // means a node that defines the VRegCycle has not been scheduled yet.
2442 static bool hasVRegCycleUse(const SUnit
*SU
) {
2443 // If this SU also defines the VReg, don't hoist it as a "use".
2444 if (SU
->isVRegCycle
)
2447 for (const SDep
&Pred
: SU
->Preds
) {
2448 if (Pred
.isCtrl()) continue; // ignore chain preds
2449 if (Pred
.getSUnit()->isVRegCycle
&&
2450 Pred
.getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg
) {
2451 LLVM_DEBUG(dbgs() << " VReg cycle use: SU (" << SU
->NodeNum
<< ")\n");
2458 // Check for either a dependence (latency) or resource (hazard) stall.
2460 // Note: The ScheduleHazardRecognizer interface requires a non-const SU.
2461 static bool BUHasStall(SUnit
*SU
, int Height
, RegReductionPQBase
*SPQ
) {
2462 if ((int)SPQ
->getCurCycle() < Height
) return true;
2463 if (SPQ
->getHazardRec()->getHazardType(SU
, 0)
2464 != ScheduleHazardRecognizer::NoHazard
)
2469 // Return -1 if left has higher priority, 1 if right has higher priority.
2470 // Return 0 if latency-based priority is equivalent.
2471 static int BUCompareLatency(SUnit
*left
, SUnit
*right
, bool checkPref
,
2472 RegReductionPQBase
*SPQ
) {
2473 // Scheduling an instruction that uses a VReg whose postincrement has not yet
2474 // been scheduled will induce a copy. Model this as an extra cycle of latency.
2475 int LPenalty
= hasVRegCycleUse(left
) ? 1 : 0;
2476 int RPenalty
= hasVRegCycleUse(right
) ? 1 : 0;
2477 int LHeight
= (int)left
->getHeight() + LPenalty
;
2478 int RHeight
= (int)right
->getHeight() + RPenalty
;
2480 bool LStall
= (!checkPref
|| left
->SchedulingPref
== Sched::ILP
) &&
2481 BUHasStall(left
, LHeight
, SPQ
);
2482 bool RStall
= (!checkPref
|| right
->SchedulingPref
== Sched::ILP
) &&
2483 BUHasStall(right
, RHeight
, SPQ
);
2485 // If scheduling one of the node will cause a pipeline stall, delay it.
2486 // If scheduling either one of the node will cause a pipeline stall, sort
2487 // them according to their height.
2491 if (LHeight
!= RHeight
)
2492 return LHeight
> RHeight
? 1 : -1;
2496 // If either node is scheduling for latency, sort them by height/depth
2498 if (!checkPref
|| (left
->SchedulingPref
== Sched::ILP
||
2499 right
->SchedulingPref
== Sched::ILP
)) {
2500 // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer
2501 // is enabled, grouping instructions by cycle, then its height is already
2502 // covered so only its depth matters. We also reach this point if both stall
2503 // but have the same height.
2504 if (!SPQ
->getHazardRec()->isEnabled()) {
2505 if (LHeight
!= RHeight
)
2506 return LHeight
> RHeight
? 1 : -1;
2508 int LDepth
= left
->getDepth() - LPenalty
;
2509 int RDepth
= right
->getDepth() - RPenalty
;
2510 if (LDepth
!= RDepth
) {
2511 LLVM_DEBUG(dbgs() << " Comparing latency of SU (" << left
->NodeNum
2512 << ") depth " << LDepth
<< " vs SU (" << right
->NodeNum
2513 << ") depth " << RDepth
<< "\n");
2514 return LDepth
< RDepth
? 1 : -1;
2516 if (left
->Latency
!= right
->Latency
)
2517 return left
->Latency
> right
->Latency
? 1 : -1;
2522 static bool BURRSort(SUnit
*left
, SUnit
*right
, RegReductionPQBase
*SPQ
) {
2523 // Schedule physical register definitions close to their use. This is
2524 // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
2525 // long as shortening physreg live ranges is generally good, we can defer
2526 // creating a subtarget hook.
2527 if (!DisableSchedPhysRegJoin
) {
2528 bool LHasPhysReg
= left
->hasPhysRegDefs
;
2529 bool RHasPhysReg
= right
->hasPhysRegDefs
;
2530 if (LHasPhysReg
!= RHasPhysReg
) {
2532 static const char *const PhysRegMsg
[] = { " has no physreg",
2533 " defines a physreg" };
2535 LLVM_DEBUG(dbgs() << " SU (" << left
->NodeNum
<< ") "
2536 << PhysRegMsg
[LHasPhysReg
] << " SU(" << right
->NodeNum
2537 << ") " << PhysRegMsg
[RHasPhysReg
] << "\n");
2538 return LHasPhysReg
< RHasPhysReg
;
2542 // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
2543 unsigned LPriority
= SPQ
->getNodePriority(left
);
2544 unsigned RPriority
= SPQ
->getNodePriority(right
);
2546 // Be really careful about hoisting call operands above previous calls.
2547 // Only allows it if it would reduce register pressure.
2548 if (left
->isCall
&& right
->isCallOp
) {
2549 unsigned RNumVals
= right
->getNode()->getNumValues();
2550 RPriority
= (RPriority
> RNumVals
) ? (RPriority
- RNumVals
) : 0;
2552 if (right
->isCall
&& left
->isCallOp
) {
2553 unsigned LNumVals
= left
->getNode()->getNumValues();
2554 LPriority
= (LPriority
> LNumVals
) ? (LPriority
- LNumVals
) : 0;
2557 if (LPriority
!= RPriority
)
2558 return LPriority
> RPriority
;
2560 // One or both of the nodes are calls and their sethi-ullman numbers are the
2561 // same, then keep source order.
2562 if (left
->isCall
|| right
->isCall
) {
2563 unsigned LOrder
= SPQ
->getNodeOrdering(left
);
2564 unsigned ROrder
= SPQ
->getNodeOrdering(right
);
2566 // Prefer an ordering where the lower the non-zero order number, the higher
2568 if ((LOrder
|| ROrder
) && LOrder
!= ROrder
)
2569 return LOrder
!= 0 && (LOrder
< ROrder
|| ROrder
== 0);
2572 // Try schedule def + use closer when Sethi-Ullman numbers are the same.
2577 // and the following instructions are both ready.
2581 // Then schedule t2 = op first.
2588 // This creates more short live intervals.
2589 unsigned LDist
= closestSucc(left
);
2590 unsigned RDist
= closestSucc(right
);
2592 return LDist
< RDist
;
2594 // How many registers becomes live when the node is scheduled.
2595 unsigned LScratch
= calcMaxScratches(left
);
2596 unsigned RScratch
= calcMaxScratches(right
);
2597 if (LScratch
!= RScratch
)
2598 return LScratch
> RScratch
;
2600 // Comparing latency against a call makes little sense unless the node
2601 // is register pressure-neutral.
2602 if ((left
->isCall
&& RPriority
> 0) || (right
->isCall
&& LPriority
> 0))
2603 return (left
->NodeQueueId
> right
->NodeQueueId
);
2605 // Do not compare latencies when one or both of the nodes are calls.
2606 if (!DisableSchedCycles
&&
2607 !(left
->isCall
|| right
->isCall
)) {
2608 int result
= BUCompareLatency(left
, right
, false /*checkPref*/, SPQ
);
2613 if (left
->getHeight() != right
->getHeight())
2614 return left
->getHeight() > right
->getHeight();
2616 if (left
->getDepth() != right
->getDepth())
2617 return left
->getDepth() < right
->getDepth();
2620 assert(left
->NodeQueueId
&& right
->NodeQueueId
&&
2621 "NodeQueueId cannot be zero");
2622 return (left
->NodeQueueId
> right
->NodeQueueId
);
2626 bool bu_ls_rr_sort::operator()(SUnit
*left
, SUnit
*right
) const {
2627 if (int res
= checkSpecialNodes(left
, right
))
2630 return BURRSort(left
, right
, SPQ
);
2633 // Source order, otherwise bottom up.
2634 bool src_ls_rr_sort::operator()(SUnit
*left
, SUnit
*right
) const {
2635 if (int res
= checkSpecialNodes(left
, right
))
2638 unsigned LOrder
= SPQ
->getNodeOrdering(left
);
2639 unsigned ROrder
= SPQ
->getNodeOrdering(right
);
2641 // Prefer an ordering where the lower the non-zero order number, the higher
2643 if ((LOrder
|| ROrder
) && LOrder
!= ROrder
)
2644 return LOrder
!= 0 && (LOrder
< ROrder
|| ROrder
== 0);
2646 return BURRSort(left
, right
, SPQ
);
2649 // If the time between now and when the instruction will be ready can cover
2650 // the spill code, then avoid adding it to the ready queue. This gives long
2651 // stalls highest priority and allows hoisting across calls. It should also
2652 // speed up processing the available queue.
2653 bool hybrid_ls_rr_sort::isReady(SUnit
*SU
, unsigned CurCycle
) const {
2654 static const unsigned ReadyDelay
= 3;
2656 if (SPQ
->MayReduceRegPressure(SU
)) return true;
2658 if (SU
->getHeight() > (CurCycle
+ ReadyDelay
)) return false;
2660 if (SPQ
->getHazardRec()->getHazardType(SU
, -ReadyDelay
)
2661 != ScheduleHazardRecognizer::NoHazard
)
2667 // Return true if right should be scheduled with higher priority than left.
2668 bool hybrid_ls_rr_sort::operator()(SUnit
*left
, SUnit
*right
) const {
2669 if (int res
= checkSpecialNodes(left
, right
))
2672 if (left
->isCall
|| right
->isCall
)
2673 // No way to compute latency of calls.
2674 return BURRSort(left
, right
, SPQ
);
2676 bool LHigh
= SPQ
->HighRegPressure(left
);
2677 bool RHigh
= SPQ
->HighRegPressure(right
);
2678 // Avoid causing spills. If register pressure is high, schedule for
2679 // register pressure reduction.
2680 if (LHigh
&& !RHigh
) {
2681 LLVM_DEBUG(dbgs() << " pressure SU(" << left
->NodeNum
<< ") > SU("
2682 << right
->NodeNum
<< ")\n");
2685 else if (!LHigh
&& RHigh
) {
2686 LLVM_DEBUG(dbgs() << " pressure SU(" << right
->NodeNum
<< ") > SU("
2687 << left
->NodeNum
<< ")\n");
2690 if (!LHigh
&& !RHigh
) {
2691 int result
= BUCompareLatency(left
, right
, true /*checkPref*/, SPQ
);
2695 return BURRSort(left
, right
, SPQ
);
2698 // Schedule as many instructions in each cycle as possible. So don't make an
2699 // instruction available unless it is ready in the current cycle.
2700 bool ilp_ls_rr_sort::isReady(SUnit
*SU
, unsigned CurCycle
) const {
2701 if (SU
->getHeight() > CurCycle
) return false;
2703 if (SPQ
->getHazardRec()->getHazardType(SU
, 0)
2704 != ScheduleHazardRecognizer::NoHazard
)
2710 static bool canEnableCoalescing(SUnit
*SU
) {
2711 unsigned Opc
= SU
->getNode() ? SU
->getNode()->getOpcode() : 0;
2712 if (Opc
== ISD::TokenFactor
|| Opc
== ISD::CopyToReg
)
2713 // CopyToReg should be close to its uses to facilitate coalescing and
2717 if (Opc
== TargetOpcode::EXTRACT_SUBREG
||
2718 Opc
== TargetOpcode::SUBREG_TO_REG
||
2719 Opc
== TargetOpcode::INSERT_SUBREG
)
2720 // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2721 // close to their uses to facilitate coalescing.
2724 if (SU
->NumPreds
== 0 && SU
->NumSuccs
!= 0)
2725 // If SU does not have a register def, schedule it close to its uses
2726 // because it does not lengthen any live ranges.
2732 // list-ilp is currently an experimental scheduler that allows various
2733 // heuristics to be enabled prior to the normal register reduction logic.
2734 bool ilp_ls_rr_sort::operator()(SUnit
*left
, SUnit
*right
) const {
2735 if (int res
= checkSpecialNodes(left
, right
))
2738 if (left
->isCall
|| right
->isCall
)
2739 // No way to compute latency of calls.
2740 return BURRSort(left
, right
, SPQ
);
2742 unsigned LLiveUses
= 0, RLiveUses
= 0;
2743 int LPDiff
= 0, RPDiff
= 0;
2744 if (!DisableSchedRegPressure
|| !DisableSchedLiveUses
) {
2745 LPDiff
= SPQ
->RegPressureDiff(left
, LLiveUses
);
2746 RPDiff
= SPQ
->RegPressureDiff(right
, RLiveUses
);
2748 if (!DisableSchedRegPressure
&& LPDiff
!= RPDiff
) {
2749 LLVM_DEBUG(dbgs() << "RegPressureDiff SU(" << left
->NodeNum
2750 << "): " << LPDiff
<< " != SU(" << right
->NodeNum
2751 << "): " << RPDiff
<< "\n");
2752 return LPDiff
> RPDiff
;
2755 if (!DisableSchedRegPressure
&& (LPDiff
> 0 || RPDiff
> 0)) {
2756 bool LReduce
= canEnableCoalescing(left
);
2757 bool RReduce
= canEnableCoalescing(right
);
2758 if (LReduce
&& !RReduce
) return false;
2759 if (RReduce
&& !LReduce
) return true;
2762 if (!DisableSchedLiveUses
&& (LLiveUses
!= RLiveUses
)) {
2763 LLVM_DEBUG(dbgs() << "Live uses SU(" << left
->NodeNum
<< "): " << LLiveUses
2764 << " != SU(" << right
->NodeNum
<< "): " << RLiveUses
2766 return LLiveUses
< RLiveUses
;
2769 if (!DisableSchedStalls
) {
2770 bool LStall
= BUHasStall(left
, left
->getHeight(), SPQ
);
2771 bool RStall
= BUHasStall(right
, right
->getHeight(), SPQ
);
2772 if (LStall
!= RStall
)
2773 return left
->getHeight() > right
->getHeight();
2776 if (!DisableSchedCriticalPath
) {
2777 int spread
= (int)left
->getDepth() - (int)right
->getDepth();
2778 if (std::abs(spread
) > MaxReorderWindow
) {
2779 LLVM_DEBUG(dbgs() << "Depth of SU(" << left
->NodeNum
<< "): "
2780 << left
->getDepth() << " != SU(" << right
->NodeNum
2781 << "): " << right
->getDepth() << "\n");
2782 return left
->getDepth() < right
->getDepth();
2786 if (!DisableSchedHeight
&& left
->getHeight() != right
->getHeight()) {
2787 int spread
= (int)left
->getHeight() - (int)right
->getHeight();
2788 if (std::abs(spread
) > MaxReorderWindow
)
2789 return left
->getHeight() > right
->getHeight();
2792 return BURRSort(left
, right
, SPQ
);
2795 void RegReductionPQBase::initNodes(std::vector
<SUnit
> &sunits
) {
2797 // Add pseudo dependency edges for two-address nodes.
2798 if (!Disable2AddrHack
)
2799 AddPseudoTwoAddrDeps();
2800 // Reroute edges to nodes with multiple uses.
2801 if (!TracksRegPressure
&& !SrcOrder
)
2802 PrescheduleNodesWithMultipleUses();
2803 // Calculate node priorities.
2804 CalculateSethiUllmanNumbers();
2806 // For single block loops, mark nodes that look like canonical IV increments.
2807 if (scheduleDAG
->BB
->isSuccessor(scheduleDAG
->BB
))
2808 for (SUnit
&SU
: sunits
)
2812 //===----------------------------------------------------------------------===//
2813 // Preschedule for Register Pressure
2814 //===----------------------------------------------------------------------===//
2816 bool RegReductionPQBase::canClobber(const SUnit
*SU
, const SUnit
*Op
) {
2817 if (SU
->isTwoAddress
) {
2818 unsigned Opc
= SU
->getNode()->getMachineOpcode();
2819 const MCInstrDesc
&MCID
= TII
->get(Opc
);
2820 unsigned NumRes
= MCID
.getNumDefs();
2821 unsigned NumOps
= MCID
.getNumOperands() - NumRes
;
2822 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
2823 if (MCID
.getOperandConstraint(i
+NumRes
, MCOI::TIED_TO
) != -1) {
2824 SDNode
*DU
= SU
->getNode()->getOperand(i
).getNode();
2825 if (DU
->getNodeId() != -1 &&
2826 Op
->OrigNode
== &(*SUnits
)[DU
->getNodeId()])
2834 /// canClobberReachingPhysRegUse - True if SU would clobber one of it's
2835 /// successor's explicit physregs whose definition can reach DepSU.
2836 /// i.e. DepSU should not be scheduled above SU.
2837 static bool canClobberReachingPhysRegUse(const SUnit
*DepSU
, const SUnit
*SU
,
2838 ScheduleDAGRRList
*scheduleDAG
,
2839 const TargetInstrInfo
*TII
,
2840 const TargetRegisterInfo
*TRI
) {
2841 const MCPhysReg
*ImpDefs
2842 = TII
->get(SU
->getNode()->getMachineOpcode()).getImplicitDefs();
2843 const uint32_t *RegMask
= getNodeRegMask(SU
->getNode());
2844 if(!ImpDefs
&& !RegMask
)
2847 for (const SDep
&Succ
: SU
->Succs
) {
2848 SUnit
*SuccSU
= Succ
.getSUnit();
2849 for (const SDep
&SuccPred
: SuccSU
->Preds
) {
2850 if (!SuccPred
.isAssignedRegDep())
2854 MachineOperand::clobbersPhysReg(RegMask
, SuccPred
.getReg()) &&
2855 scheduleDAG
->IsReachable(DepSU
, SuccPred
.getSUnit()))
2859 for (const MCPhysReg
*ImpDef
= ImpDefs
; *ImpDef
; ++ImpDef
)
2860 // Return true if SU clobbers this physical register use and the
2861 // definition of the register reaches from DepSU. IsReachable queries
2862 // a topological forward sort of the DAG (following the successors).
2863 if (TRI
->regsOverlap(*ImpDef
, SuccPred
.getReg()) &&
2864 scheduleDAG
->IsReachable(DepSU
, SuccPred
.getSUnit()))
2871 /// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
2872 /// physical register defs.
2873 static bool canClobberPhysRegDefs(const SUnit
*SuccSU
, const SUnit
*SU
,
2874 const TargetInstrInfo
*TII
,
2875 const TargetRegisterInfo
*TRI
) {
2876 SDNode
*N
= SuccSU
->getNode();
2877 unsigned NumDefs
= TII
->get(N
->getMachineOpcode()).getNumDefs();
2878 const MCPhysReg
*ImpDefs
= TII
->get(N
->getMachineOpcode()).getImplicitDefs();
2879 assert(ImpDefs
&& "Caller should check hasPhysRegDefs");
2880 for (const SDNode
*SUNode
= SU
->getNode(); SUNode
;
2881 SUNode
= SUNode
->getGluedNode()) {
2882 if (!SUNode
->isMachineOpcode())
2884 const MCPhysReg
*SUImpDefs
=
2885 TII
->get(SUNode
->getMachineOpcode()).getImplicitDefs();
2886 const uint32_t *SURegMask
= getNodeRegMask(SUNode
);
2887 if (!SUImpDefs
&& !SURegMask
)
2889 for (unsigned i
= NumDefs
, e
= N
->getNumValues(); i
!= e
; ++i
) {
2890 MVT VT
= N
->getSimpleValueType(i
);
2891 if (VT
== MVT::Glue
|| VT
== MVT::Other
)
2893 if (!N
->hasAnyUseOfValue(i
))
2895 unsigned Reg
= ImpDefs
[i
- NumDefs
];
2896 if (SURegMask
&& MachineOperand::clobbersPhysReg(SURegMask
, Reg
))
2900 for (;*SUImpDefs
; ++SUImpDefs
) {
2901 unsigned SUReg
= *SUImpDefs
;
2902 if (TRI
->regsOverlap(Reg
, SUReg
))
2910 /// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
2911 /// are not handled well by the general register pressure reduction
2912 /// heuristics. When presented with code like this:
2921 /// the heuristics tend to push the store up, but since the
2922 /// operand of the store has another use (U), this would increase
2923 /// the length of that other use (the U->N edge).
2925 /// This function transforms code like the above to route U's
2926 /// dependence through the store when possible, like this:
2937 /// This results in the store being scheduled immediately
2938 /// after N, which shortens the U->N live range, reducing
2939 /// register pressure.
2940 void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
2941 // Visit all the nodes in topological order, working top-down.
2942 for (SUnit
&SU
: *SUnits
) {
2943 // For now, only look at nodes with no data successors, such as stores.
2944 // These are especially important, due to the heuristics in
2945 // getNodePriority for nodes with no data successors.
2946 if (SU
.NumSuccs
!= 0)
2948 // For now, only look at nodes with exactly one data predecessor.
2949 if (SU
.NumPreds
!= 1)
2951 // Avoid prescheduling copies to virtual registers, which don't behave
2952 // like other nodes from the perspective of scheduling heuristics.
2953 if (SDNode
*N
= SU
.getNode())
2954 if (N
->getOpcode() == ISD::CopyToReg
&&
2955 Register::isVirtualRegister(
2956 cast
<RegisterSDNode
>(N
->getOperand(1))->getReg()))
2959 SDNode
*PredFrameSetup
= nullptr;
2960 for (const SDep
&Pred
: SU
.Preds
)
2961 if (Pred
.isCtrl() && Pred
.getSUnit()) {
2962 // Find the predecessor which is not data dependence.
2963 SDNode
*PredND
= Pred
.getSUnit()->getNode();
2965 // If PredND is FrameSetup, we should not pre-scheduled the node,
2966 // or else, when bottom up scheduling, ADJCALLSTACKDOWN and
2967 // ADJCALLSTACKUP may hold CallResource too long and make other
2968 // calls can't be scheduled. If there's no other available node
2969 // to schedule, the schedular will try to rename the register by
2970 // creating copy to avoid the conflict which will fail because
2971 // CallResource is not a real physical register.
2972 if (PredND
&& PredND
->isMachineOpcode() &&
2973 (PredND
->getMachineOpcode() == TII
->getCallFrameSetupOpcode())) {
2974 PredFrameSetup
= PredND
;
2978 // Skip the node has FrameSetup parent.
2979 if (PredFrameSetup
!= nullptr)
2982 // Locate the single data predecessor.
2983 SUnit
*PredSU
= nullptr;
2984 for (const SDep
&Pred
: SU
.Preds
)
2985 if (!Pred
.isCtrl()) {
2986 PredSU
= Pred
.getSUnit();
2991 // Don't rewrite edges that carry physregs, because that requires additional
2992 // support infrastructure.
2993 if (PredSU
->hasPhysRegDefs
)
2995 // Short-circuit the case where SU is PredSU's only data successor.
2996 if (PredSU
->NumSuccs
== 1)
2998 // Avoid prescheduling to copies from virtual registers, which don't behave
2999 // like other nodes from the perspective of scheduling heuristics.
3000 if (SDNode
*N
= SU
.getNode())
3001 if (N
->getOpcode() == ISD::CopyFromReg
&&
3002 Register::isVirtualRegister(
3003 cast
<RegisterSDNode
>(N
->getOperand(1))->getReg()))
3006 // Perform checks on the successors of PredSU.
3007 for (const SDep
&PredSucc
: PredSU
->Succs
) {
3008 SUnit
*PredSuccSU
= PredSucc
.getSUnit();
3009 if (PredSuccSU
== &SU
) continue;
3010 // If PredSU has another successor with no data successors, for
3011 // now don't attempt to choose either over the other.
3012 if (PredSuccSU
->NumSuccs
== 0)
3013 goto outer_loop_continue
;
3014 // Don't break physical register dependencies.
3015 if (SU
.hasPhysRegClobbers
&& PredSuccSU
->hasPhysRegDefs
)
3016 if (canClobberPhysRegDefs(PredSuccSU
, &SU
, TII
, TRI
))
3017 goto outer_loop_continue
;
3018 // Don't introduce graph cycles.
3019 if (scheduleDAG
->IsReachable(&SU
, PredSuccSU
))
3020 goto outer_loop_continue
;
3023 // Ok, the transformation is safe and the heuristics suggest it is
3024 // profitable. Update the graph.
3026 dbgs() << " Prescheduling SU #" << SU
.NodeNum
<< " next to PredSU #"
3028 << " to guide scheduling in the presence of multiple uses\n");
3029 for (unsigned i
= 0; i
!= PredSU
->Succs
.size(); ++i
) {
3030 SDep Edge
= PredSU
->Succs
[i
];
3031 assert(!Edge
.isAssignedRegDep());
3032 SUnit
*SuccSU
= Edge
.getSUnit();
3033 if (SuccSU
!= &SU
) {
3034 Edge
.setSUnit(PredSU
);
3035 scheduleDAG
->RemovePred(SuccSU
, Edge
);
3036 scheduleDAG
->AddPredQueued(&SU
, Edge
);
3038 scheduleDAG
->AddPredQueued(SuccSU
, Edge
);
3042 outer_loop_continue
:;
3046 /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
3047 /// it as a def&use operand. Add a pseudo control edge from it to the other
3048 /// node (if it won't create a cycle) so the two-address one will be scheduled
3049 /// first (lower in the schedule). If both nodes are two-address, favor the
3050 /// one that has a CopyToReg use (more likely to be a loop induction update).
3051 /// If both are two-address, but one is commutable while the other is not
3052 /// commutable, favor the one that's not commutable.
3053 void RegReductionPQBase::AddPseudoTwoAddrDeps() {
3054 for (SUnit
&SU
: *SUnits
) {
3055 if (!SU
.isTwoAddress
)
3058 SDNode
*Node
= SU
.getNode();
3059 if (!Node
|| !Node
->isMachineOpcode() || SU
.getNode()->getGluedNode())
3062 bool isLiveOut
= hasOnlyLiveOutUses(&SU
);
3063 unsigned Opc
= Node
->getMachineOpcode();
3064 const MCInstrDesc
&MCID
= TII
->get(Opc
);
3065 unsigned NumRes
= MCID
.getNumDefs();
3066 unsigned NumOps
= MCID
.getNumOperands() - NumRes
;
3067 for (unsigned j
= 0; j
!= NumOps
; ++j
) {
3068 if (MCID
.getOperandConstraint(j
+NumRes
, MCOI::TIED_TO
) == -1)
3070 SDNode
*DU
= SU
.getNode()->getOperand(j
).getNode();
3071 if (DU
->getNodeId() == -1)
3073 const SUnit
*DUSU
= &(*SUnits
)[DU
->getNodeId()];
3076 for (const SDep
&Succ
: DUSU
->Succs
) {
3079 SUnit
*SuccSU
= Succ
.getSUnit();
3082 // Be conservative. Ignore if nodes aren't at roughly the same
3083 // depth and height.
3084 if (SuccSU
->getHeight() < SU
.getHeight() &&
3085 (SU
.getHeight() - SuccSU
->getHeight()) > 1)
3087 // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
3088 // constrains whatever is using the copy, instead of the copy
3089 // itself. In the case that the copy is coalesced, this
3090 // preserves the intent of the pseudo two-address heurietics.
3091 while (SuccSU
->Succs
.size() == 1 &&
3092 SuccSU
->getNode()->isMachineOpcode() &&
3093 SuccSU
->getNode()->getMachineOpcode() ==
3094 TargetOpcode::COPY_TO_REGCLASS
)
3095 SuccSU
= SuccSU
->Succs
.front().getSUnit();
3096 // Don't constrain non-instruction nodes.
3097 if (!SuccSU
->getNode() || !SuccSU
->getNode()->isMachineOpcode())
3099 // Don't constrain nodes with physical register defs if the
3100 // predecessor can clobber them.
3101 if (SuccSU
->hasPhysRegDefs
&& SU
.hasPhysRegClobbers
) {
3102 if (canClobberPhysRegDefs(SuccSU
, &SU
, TII
, TRI
))
3105 // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
3106 // these may be coalesced away. We want them close to their uses.
3107 unsigned SuccOpc
= SuccSU
->getNode()->getMachineOpcode();
3108 if (SuccOpc
== TargetOpcode::EXTRACT_SUBREG
||
3109 SuccOpc
== TargetOpcode::INSERT_SUBREG
||
3110 SuccOpc
== TargetOpcode::SUBREG_TO_REG
)
3112 if (!canClobberReachingPhysRegUse(SuccSU
, &SU
, scheduleDAG
, TII
, TRI
) &&
3113 (!canClobber(SuccSU
, DUSU
) ||
3114 (isLiveOut
&& !hasOnlyLiveOutUses(SuccSU
)) ||
3115 (!SU
.isCommutable
&& SuccSU
->isCommutable
)) &&
3116 !scheduleDAG
->IsReachable(SuccSU
, &SU
)) {
3118 << " Adding a pseudo-two-addr edge from SU #"
3119 << SU
.NodeNum
<< " to SU #" << SuccSU
->NodeNum
<< "\n");
3120 scheduleDAG
->AddPredQueued(&SU
, SDep(SuccSU
, SDep::Artificial
));
3127 //===----------------------------------------------------------------------===//
3128 // Public Constructor Functions
3129 //===----------------------------------------------------------------------===//
3131 ScheduleDAGSDNodes
*
3132 llvm::createBURRListDAGScheduler(SelectionDAGISel
*IS
,
3133 CodeGenOpt::Level OptLevel
) {
3134 const TargetSubtargetInfo
&STI
= IS
->MF
->getSubtarget();
3135 const TargetInstrInfo
*TII
= STI
.getInstrInfo();
3136 const TargetRegisterInfo
*TRI
= STI
.getRegisterInfo();
3138 BURegReductionPriorityQueue
*PQ
=
3139 new BURegReductionPriorityQueue(*IS
->MF
, false, false, TII
, TRI
, nullptr);
3140 ScheduleDAGRRList
*SD
= new ScheduleDAGRRList(*IS
->MF
, false, PQ
, OptLevel
);
3141 PQ
->setScheduleDAG(SD
);
3145 ScheduleDAGSDNodes
*
3146 llvm::createSourceListDAGScheduler(SelectionDAGISel
*IS
,
3147 CodeGenOpt::Level OptLevel
) {
3148 const TargetSubtargetInfo
&STI
= IS
->MF
->getSubtarget();
3149 const TargetInstrInfo
*TII
= STI
.getInstrInfo();
3150 const TargetRegisterInfo
*TRI
= STI
.getRegisterInfo();
3152 SrcRegReductionPriorityQueue
*PQ
=
3153 new SrcRegReductionPriorityQueue(*IS
->MF
, false, true, TII
, TRI
, nullptr);
3154 ScheduleDAGRRList
*SD
= new ScheduleDAGRRList(*IS
->MF
, false, PQ
, OptLevel
);
3155 PQ
->setScheduleDAG(SD
);
3159 ScheduleDAGSDNodes
*
3160 llvm::createHybridListDAGScheduler(SelectionDAGISel
*IS
,
3161 CodeGenOpt::Level OptLevel
) {
3162 const TargetSubtargetInfo
&STI
= IS
->MF
->getSubtarget();
3163 const TargetInstrInfo
*TII
= STI
.getInstrInfo();
3164 const TargetRegisterInfo
*TRI
= STI
.getRegisterInfo();
3165 const TargetLowering
*TLI
= IS
->TLI
;
3167 HybridBURRPriorityQueue
*PQ
=
3168 new HybridBURRPriorityQueue(*IS
->MF
, true, false, TII
, TRI
, TLI
);
3170 ScheduleDAGRRList
*SD
= new ScheduleDAGRRList(*IS
->MF
, true, PQ
, OptLevel
);
3171 PQ
->setScheduleDAG(SD
);
3175 ScheduleDAGSDNodes
*
3176 llvm::createILPListDAGScheduler(SelectionDAGISel
*IS
,
3177 CodeGenOpt::Level OptLevel
) {
3178 const TargetSubtargetInfo
&STI
= IS
->MF
->getSubtarget();
3179 const TargetInstrInfo
*TII
= STI
.getInstrInfo();
3180 const TargetRegisterInfo
*TRI
= STI
.getRegisterInfo();
3181 const TargetLowering
*TLI
= IS
->TLI
;
3183 ILPBURRPriorityQueue
*PQ
=
3184 new ILPBURRPriorityQueue(*IS
->MF
, true, false, TII
, TRI
, TLI
);
3185 ScheduleDAGRRList
*SD
= new ScheduleDAGRRList(*IS
->MF
, true, PQ
, OptLevel
);
3186 PQ
->setScheduleDAG(SD
);