1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This implements the SelectionDAGISel class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectionDAGISel.h"
14 #include "ScheduleDAGSDNodes.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/CFG.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
31 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/TargetTransformInfo.h"
34 #include "llvm/CodeGen/FastISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineMemOperand.h"
45 #include "llvm/CodeGen/MachineModuleInfo.h"
46 #include "llvm/CodeGen/MachineOperand.h"
47 #include "llvm/CodeGen/MachinePassRegistry.h"
48 #include "llvm/CodeGen/MachineRegisterInfo.h"
49 #include "llvm/CodeGen/SchedulerRegistry.h"
50 #include "llvm/CodeGen/SelectionDAG.h"
51 #include "llvm/CodeGen/SelectionDAGNodes.h"
52 #include "llvm/CodeGen/StackProtector.h"
53 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
54 #include "llvm/CodeGen/TargetInstrInfo.h"
55 #include "llvm/CodeGen/TargetLowering.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/TargetSubtargetInfo.h"
58 #include "llvm/CodeGen/ValueTypes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugInfoMetadata.h"
63 #include "llvm/IR/DebugLoc.h"
64 #include "llvm/IR/DiagnosticInfo.h"
65 #include "llvm/IR/Dominators.h"
66 #include "llvm/IR/Function.h"
67 #include "llvm/IR/InlineAsm.h"
68 #include "llvm/IR/InstIterator.h"
69 #include "llvm/IR/InstrTypes.h"
70 #include "llvm/IR/Instruction.h"
71 #include "llvm/IR/Instructions.h"
72 #include "llvm/IR/IntrinsicInst.h"
73 #include "llvm/IR/Intrinsics.h"
74 #include "llvm/IR/Metadata.h"
75 #include "llvm/IR/Type.h"
76 #include "llvm/IR/User.h"
77 #include "llvm/IR/Value.h"
78 #include "llvm/MC/MCInstrDesc.h"
79 #include "llvm/MC/MCRegisterInfo.h"
80 #include "llvm/Pass.h"
81 #include "llvm/Support/BranchProbability.h"
82 #include "llvm/Support/Casting.h"
83 #include "llvm/Support/CodeGen.h"
84 #include "llvm/Support/CommandLine.h"
85 #include "llvm/Support/Compiler.h"
86 #include "llvm/Support/Debug.h"
87 #include "llvm/Support/ErrorHandling.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/Timer.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetIntrinsicInfo.h"
93 #include "llvm/Target/TargetMachine.h"
94 #include "llvm/Target/TargetOptions.h"
95 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
106 using namespace llvm
;
108 #define DEBUG_TYPE "isel"
110 STATISTIC(NumFastIselFailures
, "Number of instructions fast isel failed on");
111 STATISTIC(NumFastIselSuccess
, "Number of instructions fast isel selected");
112 STATISTIC(NumFastIselBlocks
, "Number of blocks selected entirely by fast isel");
113 STATISTIC(NumDAGBlocks
, "Number of blocks selected using DAG");
114 STATISTIC(NumDAGIselRetries
,"Number of times dag isel has to try another path");
115 STATISTIC(NumEntryBlocks
, "Number of entry blocks encountered");
116 STATISTIC(NumFastIselFailLowerArguments
,
117 "Number of entry blocks where fast isel failed to lower arguments");
119 static cl::opt
<int> EnableFastISelAbort(
120 "fast-isel-abort", cl::Hidden
,
121 cl::desc("Enable abort calls when \"fast\" instruction selection "
122 "fails to lower an instruction: 0 disable the abort, 1 will "
123 "abort but for args, calls and terminators, 2 will also "
124 "abort for argument lowering, and 3 will never fallback "
125 "to SelectionDAG."));
127 static cl::opt
<bool> EnableFastISelFallbackReport(
128 "fast-isel-report-on-fallback", cl::Hidden
,
129 cl::desc("Emit a diagnostic when \"fast\" instruction selection "
130 "falls back to SelectionDAG."));
134 cl::desc("use Machine Branch Probability Info"),
135 cl::init(true), cl::Hidden
);
138 static cl::opt
<std::string
>
139 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden
,
140 cl::desc("Only display the basic block whose name "
141 "matches this for all view-*-dags options"));
143 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden
,
144 cl::desc("Pop up a window to show dags before the first "
145 "dag combine pass"));
147 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden
,
148 cl::desc("Pop up a window to show dags before legalize types"));
150 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden
,
151 cl::desc("Pop up a window to show dags before legalize"));
153 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden
,
154 cl::desc("Pop up a window to show dags before the second "
155 "dag combine pass"));
157 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden
,
158 cl::desc("Pop up a window to show dags before the post legalize types"
159 " dag combine pass"));
161 ViewISelDAGs("view-isel-dags", cl::Hidden
,
162 cl::desc("Pop up a window to show isel dags as they are selected"));
164 ViewSchedDAGs("view-sched-dags", cl::Hidden
,
165 cl::desc("Pop up a window to show sched dags as they are processed"));
167 ViewSUnitDAGs("view-sunit-dags", cl::Hidden
,
168 cl::desc("Pop up a window to show SUnit dags after they are processed"));
170 static const bool ViewDAGCombine1
= false,
171 ViewLegalizeTypesDAGs
= false, ViewLegalizeDAGs
= false,
172 ViewDAGCombine2
= false,
173 ViewDAGCombineLT
= false,
174 ViewISelDAGs
= false, ViewSchedDAGs
= false,
175 ViewSUnitDAGs
= false;
178 //===---------------------------------------------------------------------===//
180 /// RegisterScheduler class - Track the registration of instruction schedulers.
182 //===---------------------------------------------------------------------===//
183 MachinePassRegistry
<RegisterScheduler::FunctionPassCtor
>
184 RegisterScheduler::Registry
;
186 //===---------------------------------------------------------------------===//
188 /// ISHeuristic command line option for instruction schedulers.
190 //===---------------------------------------------------------------------===//
191 static cl::opt
<RegisterScheduler::FunctionPassCtor
, false,
192 RegisterPassParser
<RegisterScheduler
>>
193 ISHeuristic("pre-RA-sched",
194 cl::init(&createDefaultScheduler
), cl::Hidden
,
195 cl::desc("Instruction schedulers available (before register"
198 static RegisterScheduler
199 defaultListDAGScheduler("default", "Best scheduler for the target",
200 createDefaultScheduler
);
204 //===--------------------------------------------------------------------===//
205 /// This class is used by SelectionDAGISel to temporarily override
206 /// the optimization level on a per-function basis.
207 class OptLevelChanger
{
208 SelectionDAGISel
&IS
;
209 CodeGenOpt::Level SavedOptLevel
;
213 OptLevelChanger(SelectionDAGISel
&ISel
,
214 CodeGenOpt::Level NewOptLevel
) : IS(ISel
) {
215 SavedOptLevel
= IS
.OptLevel
;
216 if (NewOptLevel
== SavedOptLevel
)
218 IS
.OptLevel
= NewOptLevel
;
219 IS
.TM
.setOptLevel(NewOptLevel
);
220 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
221 << IS
.MF
->getFunction().getName() << "\n");
222 LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel
<< " ; After: -O"
223 << NewOptLevel
<< "\n");
224 SavedFastISel
= IS
.TM
.Options
.EnableFastISel
;
225 if (NewOptLevel
== CodeGenOpt::None
) {
226 IS
.TM
.setFastISel(IS
.TM
.getO0WantsFastISel());
228 dbgs() << "\tFastISel is "
229 << (IS
.TM
.Options
.EnableFastISel
? "enabled" : "disabled")
235 if (IS
.OptLevel
== SavedOptLevel
)
237 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
238 << IS
.MF
->getFunction().getName() << "\n");
239 LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS
.OptLevel
<< " ; After: -O"
240 << SavedOptLevel
<< "\n");
241 IS
.OptLevel
= SavedOptLevel
;
242 IS
.TM
.setOptLevel(SavedOptLevel
);
243 IS
.TM
.setFastISel(SavedFastISel
);
247 //===--------------------------------------------------------------------===//
248 /// createDefaultScheduler - This creates an instruction scheduler appropriate
250 ScheduleDAGSDNodes
* createDefaultScheduler(SelectionDAGISel
*IS
,
251 CodeGenOpt::Level OptLevel
) {
252 const TargetLowering
*TLI
= IS
->TLI
;
253 const TargetSubtargetInfo
&ST
= IS
->MF
->getSubtarget();
255 // Try first to see if the Target has its own way of selecting a scheduler
256 if (auto *SchedulerCtor
= ST
.getDAGScheduler(OptLevel
)) {
257 return SchedulerCtor(IS
, OptLevel
);
260 if (OptLevel
== CodeGenOpt::None
||
261 (ST
.enableMachineScheduler() && ST
.enableMachineSchedDefaultSched()) ||
262 TLI
->getSchedulingPreference() == Sched::Source
)
263 return createSourceListDAGScheduler(IS
, OptLevel
);
264 if (TLI
->getSchedulingPreference() == Sched::RegPressure
)
265 return createBURRListDAGScheduler(IS
, OptLevel
);
266 if (TLI
->getSchedulingPreference() == Sched::Hybrid
)
267 return createHybridListDAGScheduler(IS
, OptLevel
);
268 if (TLI
->getSchedulingPreference() == Sched::VLIW
)
269 return createVLIWDAGScheduler(IS
, OptLevel
);
270 assert(TLI
->getSchedulingPreference() == Sched::ILP
&&
271 "Unknown sched type!");
272 return createILPListDAGScheduler(IS
, OptLevel
);
275 } // end namespace llvm
277 // EmitInstrWithCustomInserter - This method should be implemented by targets
278 // that mark instructions with the 'usesCustomInserter' flag. These
279 // instructions are special in various ways, which require special support to
280 // insert. The specified MachineInstr is created but not inserted into any
281 // basic blocks, and this method is called to expand it into a sequence of
282 // instructions, potentially also creating new basic blocks and control flow.
283 // When new basic blocks are inserted and the edges from MBB to its successors
284 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
287 TargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
288 MachineBasicBlock
*MBB
) const {
290 dbgs() << "If a target marks an instruction with "
291 "'usesCustomInserter', it must implement "
292 "TargetLowering::EmitInstrWithCustomInserter!";
294 llvm_unreachable(nullptr);
297 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr
&MI
,
298 SDNode
*Node
) const {
299 assert(!MI
.hasPostISelHook() &&
300 "If a target marks an instruction with 'hasPostISelHook', "
301 "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
304 //===----------------------------------------------------------------------===//
305 // SelectionDAGISel code
306 //===----------------------------------------------------------------------===//
308 SelectionDAGISel::SelectionDAGISel(TargetMachine
&tm
,
309 CodeGenOpt::Level OL
) :
310 MachineFunctionPass(ID
), TM(tm
),
311 FuncInfo(new FunctionLoweringInfo()),
312 SwiftError(new SwiftErrorValueTracking()),
313 CurDAG(new SelectionDAG(tm
, OL
)),
314 SDB(new SelectionDAGBuilder(*CurDAG
, *FuncInfo
, *SwiftError
, OL
)),
318 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
319 initializeBranchProbabilityInfoWrapperPassPass(
320 *PassRegistry::getPassRegistry());
321 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
322 initializeTargetLibraryInfoWrapperPassPass(
323 *PassRegistry::getPassRegistry());
326 SelectionDAGISel::~SelectionDAGISel() {
333 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage
&AU
) const {
334 if (OptLevel
!= CodeGenOpt::None
)
335 AU
.addRequired
<AAResultsWrapperPass
>();
336 AU
.addRequired
<GCModuleInfo
>();
337 AU
.addRequired
<StackProtector
>();
338 AU
.addPreserved
<GCModuleInfo
>();
339 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
340 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
341 if (UseMBPI
&& OptLevel
!= CodeGenOpt::None
)
342 AU
.addRequired
<BranchProbabilityInfoWrapperPass
>();
343 MachineFunctionPass::getAnalysisUsage(AU
);
346 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
347 /// may trap on it. In this case we have to split the edge so that the path
348 /// through the predecessor block that doesn't go to the phi block doesn't
349 /// execute the possibly trapping instruction. If available, we pass domtree
350 /// and loop info to be updated when we split critical edges. This is because
351 /// SelectionDAGISel preserves these analyses.
352 /// This is required for correctness, so it must be done at -O0.
354 static void SplitCriticalSideEffectEdges(Function
&Fn
, DominatorTree
*DT
,
356 // Loop for blocks with phi nodes.
357 for (BasicBlock
&BB
: Fn
) {
358 PHINode
*PN
= dyn_cast
<PHINode
>(BB
.begin());
362 // For each block with a PHI node, check to see if any of the input values
363 // are potentially trapping constant expressions. Constant expressions are
364 // the only potentially trapping value that can occur as the argument to a
366 for (BasicBlock::iterator I
= BB
.begin(); (PN
= dyn_cast
<PHINode
>(I
)); ++I
)
367 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
368 ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(PN
->getIncomingValue(i
));
369 if (!CE
|| !CE
->canTrap()) continue;
371 // The only case we have to worry about is when the edge is critical.
372 // Since this block has a PHI Node, we assume it has multiple input
373 // edges: check to see if the pred has multiple successors.
374 BasicBlock
*Pred
= PN
->getIncomingBlock(i
);
375 if (Pred
->getTerminator()->getNumSuccessors() == 1)
378 // Okay, we have to split this edge.
380 Pred
->getTerminator(), GetSuccessorNumber(Pred
, &BB
),
381 CriticalEdgeSplittingOptions(DT
, LI
).setMergeIdenticalEdges());
387 static void computeUsesMSVCFloatingPoint(const Triple
&TT
, const Function
&F
,
388 MachineModuleInfo
&MMI
) {
389 // Only needed for MSVC
390 if (!TT
.isWindowsMSVCEnvironment())
393 // If it's already set, nothing to do.
394 if (MMI
.usesMSVCFloatingPoint())
397 for (const Instruction
&I
: instructions(F
)) {
398 if (I
.getType()->isFPOrFPVectorTy()) {
399 MMI
.setUsesMSVCFloatingPoint(true);
402 for (const auto &Op
: I
.operands()) {
403 if (Op
->getType()->isFPOrFPVectorTy()) {
404 MMI
.setUsesMSVCFloatingPoint(true);
411 bool SelectionDAGISel::runOnMachineFunction(MachineFunction
&mf
) {
412 // If we already selected that function, we do not need to run SDISel.
413 if (mf
.getProperties().hasProperty(
414 MachineFunctionProperties::Property::Selected
))
416 // Do some sanity-checking on the command-line options.
417 assert((!EnableFastISelAbort
|| TM
.Options
.EnableFastISel
) &&
418 "-fast-isel-abort > 0 requires -fast-isel");
420 const Function
&Fn
= mf
.getFunction();
423 // Reset the target options before resetting the optimization
425 // FIXME: This is a horrible hack and should be processed via
426 // codegen looking at the optimization level explicitly when
427 // it wants to look at it.
428 TM
.resetTargetOptions(Fn
);
429 // Reset OptLevel to None for optnone functions.
430 CodeGenOpt::Level NewOptLevel
= OptLevel
;
431 if (OptLevel
!= CodeGenOpt::None
&& skipFunction(Fn
))
432 NewOptLevel
= CodeGenOpt::None
;
433 OptLevelChanger
OLC(*this, NewOptLevel
);
435 TII
= MF
->getSubtarget().getInstrInfo();
436 TLI
= MF
->getSubtarget().getTargetLowering();
437 RegInfo
= &MF
->getRegInfo();
438 LibInfo
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(Fn
);
439 GFI
= Fn
.hasGC() ? &getAnalysis
<GCModuleInfo
>().getFunctionInfo(Fn
) : nullptr;
440 ORE
= std::make_unique
<OptimizationRemarkEmitter
>(&Fn
);
441 auto *DTWP
= getAnalysisIfAvailable
<DominatorTreeWrapperPass
>();
442 DominatorTree
*DT
= DTWP
? &DTWP
->getDomTree() : nullptr;
443 auto *LIWP
= getAnalysisIfAvailable
<LoopInfoWrapperPass
>();
444 LoopInfo
*LI
= LIWP
? &LIWP
->getLoopInfo() : nullptr;
446 LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn
.getName() << "\n");
448 SplitCriticalSideEffectEdges(const_cast<Function
&>(Fn
), DT
, LI
);
450 CurDAG
->init(*MF
, *ORE
, this, LibInfo
,
451 getAnalysisIfAvailable
<LegacyDivergenceAnalysis
>());
452 FuncInfo
->set(Fn
, *MF
, CurDAG
);
453 SwiftError
->setFunction(*MF
);
455 // Now get the optional analyzes if we want to.
456 // This is based on the possibly changed OptLevel (after optnone is taken
457 // into account). That's unfortunate but OK because it just means we won't
458 // ask for passes that have been required anyway.
460 if (UseMBPI
&& OptLevel
!= CodeGenOpt::None
)
461 FuncInfo
->BPI
= &getAnalysis
<BranchProbabilityInfoWrapperPass
>().getBPI();
463 FuncInfo
->BPI
= nullptr;
465 if (OptLevel
!= CodeGenOpt::None
)
466 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
470 SDB
->init(GFI
, AA
, LibInfo
);
472 MF
->setHasInlineAsm(false);
474 FuncInfo
->SplitCSR
= false;
476 // We split CSR if the target supports it for the given function
477 // and the function has only return exits.
478 if (OptLevel
!= CodeGenOpt::None
&& TLI
->supportSplitCSR(MF
)) {
479 FuncInfo
->SplitCSR
= true;
481 // Collect all the return blocks.
482 for (const BasicBlock
&BB
: Fn
) {
483 if (!succ_empty(&BB
))
486 const Instruction
*Term
= BB
.getTerminator();
487 if (isa
<UnreachableInst
>(Term
) || isa
<ReturnInst
>(Term
))
490 // Bail out if the exit block is not Return nor Unreachable.
491 FuncInfo
->SplitCSR
= false;
496 MachineBasicBlock
*EntryMBB
= &MF
->front();
497 if (FuncInfo
->SplitCSR
)
498 // This performs initialization so lowering for SplitCSR will be correct.
499 TLI
->initializeSplitCSR(EntryMBB
);
501 SelectAllBasicBlocks(Fn
);
502 if (FastISelFailed
&& EnableFastISelFallbackReport
) {
503 DiagnosticInfoISelFallback
DiagFallback(Fn
);
504 Fn
.getContext().diagnose(DiagFallback
);
507 // Replace forward-declared registers with the registers containing
508 // the desired value.
509 // Note: it is important that this happens **before** the call to
510 // EmitLiveInCopies, since implementations can skip copies of unused
511 // registers. If we don't apply the reg fixups before, some registers may
512 // appear as unused and will be skipped, resulting in bad MI.
513 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
514 for (DenseMap
<unsigned, unsigned>::iterator I
= FuncInfo
->RegFixups
.begin(),
515 E
= FuncInfo
->RegFixups
.end();
517 unsigned From
= I
->first
;
518 unsigned To
= I
->second
;
519 // If To is also scheduled to be replaced, find what its ultimate
522 DenseMap
<unsigned, unsigned>::iterator J
= FuncInfo
->RegFixups
.find(To
);
527 // Make sure the new register has a sufficiently constrained register class.
528 if (Register::isVirtualRegister(From
) && Register::isVirtualRegister(To
))
529 MRI
.constrainRegClass(To
, MRI
.getRegClass(From
));
532 // Replacing one register with another won't touch the kill flags.
533 // We need to conservatively clear the kill flags as a kill on the old
534 // register might dominate existing uses of the new register.
535 if (!MRI
.use_empty(To
))
536 MRI
.clearKillFlags(From
);
537 MRI
.replaceRegWith(From
, To
);
540 // If the first basic block in the function has live ins that need to be
541 // copied into vregs, emit the copies into the top of the block before
542 // emitting the code for the block.
543 const TargetRegisterInfo
&TRI
= *MF
->getSubtarget().getRegisterInfo();
544 RegInfo
->EmitLiveInCopies(EntryMBB
, TRI
, *TII
);
546 // Insert copies in the entry block and the return blocks.
547 if (FuncInfo
->SplitCSR
) {
548 SmallVector
<MachineBasicBlock
*, 4> Returns
;
549 // Collect all the return blocks.
550 for (MachineBasicBlock
&MBB
: mf
) {
551 if (!MBB
.succ_empty())
554 MachineBasicBlock::iterator Term
= MBB
.getFirstTerminator();
555 if (Term
!= MBB
.end() && Term
->isReturn()) {
556 Returns
.push_back(&MBB
);
560 TLI
->insertCopiesSplitCSR(EntryMBB
, Returns
);
563 DenseMap
<unsigned, unsigned> LiveInMap
;
564 if (!FuncInfo
->ArgDbgValues
.empty())
565 for (std::pair
<unsigned, unsigned> LI
: RegInfo
->liveins())
567 LiveInMap
.insert(LI
);
569 // Insert DBG_VALUE instructions for function arguments to the entry block.
570 for (unsigned i
= 0, e
= FuncInfo
->ArgDbgValues
.size(); i
!= e
; ++i
) {
571 MachineInstr
*MI
= FuncInfo
->ArgDbgValues
[e
-i
-1];
572 bool hasFI
= MI
->getOperand(0).isFI();
574 hasFI
? TRI
.getFrameRegister(*MF
) : MI
->getOperand(0).getReg();
575 if (Register::isPhysicalRegister(Reg
))
576 EntryMBB
->insert(EntryMBB
->begin(), MI
);
578 MachineInstr
*Def
= RegInfo
->getVRegDef(Reg
);
580 MachineBasicBlock::iterator InsertPos
= Def
;
581 // FIXME: VR def may not be in entry block.
582 Def
->getParent()->insert(std::next(InsertPos
), MI
);
584 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
585 << Register::virtReg2Index(Reg
) << "\n");
588 // If Reg is live-in then update debug info to track its copy in a vreg.
589 DenseMap
<unsigned, unsigned>::iterator LDI
= LiveInMap
.find(Reg
);
590 if (LDI
!= LiveInMap
.end()) {
591 assert(!hasFI
&& "There's no handling of frame pointer updating here yet "
593 MachineInstr
*Def
= RegInfo
->getVRegDef(LDI
->second
);
594 MachineBasicBlock::iterator InsertPos
= Def
;
595 const MDNode
*Variable
= MI
->getDebugVariable();
596 const MDNode
*Expr
= MI
->getDebugExpression();
597 DebugLoc DL
= MI
->getDebugLoc();
598 bool IsIndirect
= MI
->isIndirectDebugValue();
600 assert(MI
->getOperand(1).getImm() == 0 &&
601 "DBG_VALUE with nonzero offset");
602 assert(cast
<DILocalVariable
>(Variable
)->isValidLocationForIntrinsic(DL
) &&
603 "Expected inlined-at fields to agree");
604 // Def is never a terminator here, so it is ok to increment InsertPos.
605 BuildMI(*EntryMBB
, ++InsertPos
, DL
, TII
->get(TargetOpcode::DBG_VALUE
),
606 IsIndirect
, LDI
->second
, Variable
, Expr
);
608 // If this vreg is directly copied into an exported register then
609 // that COPY instructions also need DBG_VALUE, if it is the only
610 // user of LDI->second.
611 MachineInstr
*CopyUseMI
= nullptr;
612 for (MachineRegisterInfo::use_instr_iterator
613 UI
= RegInfo
->use_instr_begin(LDI
->second
),
614 E
= RegInfo
->use_instr_end(); UI
!= E
; ) {
615 MachineInstr
*UseMI
= &*(UI
++);
616 if (UseMI
->isDebugValue()) continue;
617 if (UseMI
->isCopy() && !CopyUseMI
&& UseMI
->getParent() == EntryMBB
) {
618 CopyUseMI
= UseMI
; continue;
620 // Otherwise this is another use or second copy use.
621 CopyUseMI
= nullptr; break;
624 // Use MI's debug location, which describes where Variable was
625 // declared, rather than whatever is attached to CopyUseMI.
626 MachineInstr
*NewMI
=
627 BuildMI(*MF
, DL
, TII
->get(TargetOpcode::DBG_VALUE
), IsIndirect
,
628 CopyUseMI
->getOperand(0).getReg(), Variable
, Expr
);
629 MachineBasicBlock::iterator Pos
= CopyUseMI
;
630 EntryMBB
->insertAfter(Pos
, NewMI
);
635 // Determine if there are any calls in this machine function.
636 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
637 for (const auto &MBB
: *MF
) {
638 if (MFI
.hasCalls() && MF
->hasInlineAsm())
641 for (const auto &MI
: MBB
) {
642 const MCInstrDesc
&MCID
= TII
->get(MI
.getOpcode());
643 if ((MCID
.isCall() && !MCID
.isReturn()) ||
644 MI
.isStackAligningInlineAsm()) {
645 MFI
.setHasCalls(true);
647 if (MI
.isInlineAsm()) {
648 MF
->setHasInlineAsm(true);
653 // Determine if there is a call to setjmp in the machine function.
654 MF
->setExposesReturnsTwice(Fn
.callsFunctionThatReturnsTwice());
656 // Determine if floating point is used for msvc
657 computeUsesMSVCFloatingPoint(TM
.getTargetTriple(), Fn
, MF
->getMMI());
659 // Replace forward-declared registers with the registers containing
660 // the desired value.
661 for (DenseMap
<unsigned, unsigned>::iterator
662 I
= FuncInfo
->RegFixups
.begin(), E
= FuncInfo
->RegFixups
.end();
664 unsigned From
= I
->first
;
665 unsigned To
= I
->second
;
666 // If To is also scheduled to be replaced, find what its ultimate
669 DenseMap
<unsigned, unsigned>::iterator J
= FuncInfo
->RegFixups
.find(To
);
673 // Make sure the new register has a sufficiently constrained register class.
674 if (Register::isVirtualRegister(From
) && Register::isVirtualRegister(To
))
675 MRI
.constrainRegClass(To
, MRI
.getRegClass(From
));
679 // Replacing one register with another won't touch the kill flags.
680 // We need to conservatively clear the kill flags as a kill on the old
681 // register might dominate existing uses of the new register.
682 if (!MRI
.use_empty(To
))
683 MRI
.clearKillFlags(From
);
684 MRI
.replaceRegWith(From
, To
);
687 TLI
->finalizeLowering(*MF
);
689 // Release function-specific state. SDB and CurDAG are already cleared
693 LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
694 LLVM_DEBUG(MF
->print(dbgs()));
699 static void reportFastISelFailure(MachineFunction
&MF
,
700 OptimizationRemarkEmitter
&ORE
,
701 OptimizationRemarkMissed
&R
,
703 // Print the function name explicitly if we don't have a debug location (which
704 // makes the diagnostic less useful) or if we're going to emit a raw error.
705 if (!R
.getLocation().isValid() || ShouldAbort
)
706 R
<< (" (in function: " + MF
.getName() + ")").str();
709 report_fatal_error(R
.getMsg());
714 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin
,
715 BasicBlock::const_iterator End
,
717 // Allow creating illegal types during DAG building for the basic block.
718 CurDAG
->NewNodesMustHaveLegalTypes
= false;
720 // Lower the instructions. If a call is emitted as a tail call, cease emitting
721 // nodes for this block.
722 for (BasicBlock::const_iterator I
= Begin
; I
!= End
&& !SDB
->HasTailCall
; ++I
) {
723 if (!ElidedArgCopyInstrs
.count(&*I
))
727 // Make sure the root of the DAG is up-to-date.
728 CurDAG
->setRoot(SDB
->getControlRoot());
729 HadTailCall
= SDB
->HasTailCall
;
730 SDB
->resolveOrClearDbgInfo();
733 // Final step, emit the lowered DAG as machine code.
737 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
738 SmallPtrSet
<SDNode
*, 16> VisitedNodes
;
739 SmallVector
<SDNode
*, 128> Worklist
;
741 Worklist
.push_back(CurDAG
->getRoot().getNode());
746 SDNode
*N
= Worklist
.pop_back_val();
748 // If we've already seen this node, ignore it.
749 if (!VisitedNodes
.insert(N
).second
)
752 // Otherwise, add all chain operands to the worklist.
753 for (const SDValue
&Op
: N
->op_values())
754 if (Op
.getValueType() == MVT::Other
)
755 Worklist
.push_back(Op
.getNode());
757 // If this is a CopyToReg with a vreg dest, process it.
758 if (N
->getOpcode() != ISD::CopyToReg
)
761 unsigned DestReg
= cast
<RegisterSDNode
>(N
->getOperand(1))->getReg();
762 if (!Register::isVirtualRegister(DestReg
))
765 // Ignore non-integer values.
766 SDValue Src
= N
->getOperand(2);
767 EVT SrcVT
= Src
.getValueType();
768 if (!SrcVT
.isInteger())
771 unsigned NumSignBits
= CurDAG
->ComputeNumSignBits(Src
);
772 Known
= CurDAG
->computeKnownBits(Src
);
773 FuncInfo
->AddLiveOutRegInfo(DestReg
, NumSignBits
, Known
);
774 } while (!Worklist
.empty());
777 void SelectionDAGISel::CodeGenAndEmitDAG() {
778 StringRef GroupName
= "sdag";
779 StringRef GroupDescription
= "Instruction Selection and Scheduling";
780 std::string BlockName
;
781 bool MatchFilterBB
= false; (void)MatchFilterBB
;
783 TargetTransformInfo
&TTI
=
784 getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(*FuncInfo
->Fn
);
787 // Pre-type legalization allow creation of any node types.
788 CurDAG
->NewNodesMustHaveLegalTypes
= false;
791 MatchFilterBB
= (FilterDAGBasicBlockName
.empty() ||
792 FilterDAGBasicBlockName
==
793 FuncInfo
->MBB
->getBasicBlock()->getName());
796 if (ViewDAGCombine1
|| ViewLegalizeTypesDAGs
|| ViewLegalizeDAGs
||
797 ViewDAGCombine2
|| ViewDAGCombineLT
|| ViewISelDAGs
|| ViewSchedDAGs
||
802 (MF
->getName() + ":" + FuncInfo
->MBB
->getBasicBlock()->getName()).str();
804 LLVM_DEBUG(dbgs() << "Initial selection DAG: "
805 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
809 if (ViewDAGCombine1
&& MatchFilterBB
)
810 CurDAG
->viewGraph("dag-combine1 input for " + BlockName
);
812 // Run the DAG combiner in pre-legalize mode.
814 NamedRegionTimer
T("combine1", "DAG Combining 1", GroupName
,
815 GroupDescription
, TimePassesIsEnabled
);
816 CurDAG
->Combine(BeforeLegalizeTypes
, AA
, OptLevel
);
820 if (TTI
.hasBranchDivergence())
821 CurDAG
->VerifyDAGDiverence();
824 LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
825 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
829 // Second step, hack on the DAG until it only uses operations and types that
830 // the target supports.
831 if (ViewLegalizeTypesDAGs
&& MatchFilterBB
)
832 CurDAG
->viewGraph("legalize-types input for " + BlockName
);
836 NamedRegionTimer
T("legalize_types", "Type Legalization", GroupName
,
837 GroupDescription
, TimePassesIsEnabled
);
838 Changed
= CurDAG
->LegalizeTypes();
842 if (TTI
.hasBranchDivergence())
843 CurDAG
->VerifyDAGDiverence();
846 LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
847 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
851 // Only allow creation of legal node types.
852 CurDAG
->NewNodesMustHaveLegalTypes
= true;
855 if (ViewDAGCombineLT
&& MatchFilterBB
)
856 CurDAG
->viewGraph("dag-combine-lt input for " + BlockName
);
858 // Run the DAG combiner in post-type-legalize mode.
860 NamedRegionTimer
T("combine_lt", "DAG Combining after legalize types",
861 GroupName
, GroupDescription
, TimePassesIsEnabled
);
862 CurDAG
->Combine(AfterLegalizeTypes
, AA
, OptLevel
);
866 if (TTI
.hasBranchDivergence())
867 CurDAG
->VerifyDAGDiverence();
870 LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
871 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
877 NamedRegionTimer
T("legalize_vec", "Vector Legalization", GroupName
,
878 GroupDescription
, TimePassesIsEnabled
);
879 Changed
= CurDAG
->LegalizeVectors();
883 LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
884 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
889 NamedRegionTimer
T("legalize_types2", "Type Legalization 2", GroupName
,
890 GroupDescription
, TimePassesIsEnabled
);
891 CurDAG
->LegalizeTypes();
894 LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
895 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
899 if (ViewDAGCombineLT
&& MatchFilterBB
)
900 CurDAG
->viewGraph("dag-combine-lv input for " + BlockName
);
902 // Run the DAG combiner in post-type-legalize mode.
904 NamedRegionTimer
T("combine_lv", "DAG Combining after legalize vectors",
905 GroupName
, GroupDescription
, TimePassesIsEnabled
);
906 CurDAG
->Combine(AfterLegalizeVectorOps
, AA
, OptLevel
);
909 LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
910 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
915 if (TTI
.hasBranchDivergence())
916 CurDAG
->VerifyDAGDiverence();
920 if (ViewLegalizeDAGs
&& MatchFilterBB
)
921 CurDAG
->viewGraph("legalize input for " + BlockName
);
924 NamedRegionTimer
T("legalize", "DAG Legalization", GroupName
,
925 GroupDescription
, TimePassesIsEnabled
);
930 if (TTI
.hasBranchDivergence())
931 CurDAG
->VerifyDAGDiverence();
934 LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
935 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
939 if (ViewDAGCombine2
&& MatchFilterBB
)
940 CurDAG
->viewGraph("dag-combine2 input for " + BlockName
);
942 // Run the DAG combiner in post-legalize mode.
944 NamedRegionTimer
T("combine2", "DAG Combining 2", GroupName
,
945 GroupDescription
, TimePassesIsEnabled
);
946 CurDAG
->Combine(AfterLegalizeDAG
, AA
, OptLevel
);
950 if (TTI
.hasBranchDivergence())
951 CurDAG
->VerifyDAGDiverence();
954 LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
955 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
959 if (OptLevel
!= CodeGenOpt::None
)
960 ComputeLiveOutVRegInfo();
962 if (ViewISelDAGs
&& MatchFilterBB
)
963 CurDAG
->viewGraph("isel input for " + BlockName
);
965 // Third, instruction select all of the operations to machine code, adding the
966 // code to the MachineBasicBlock.
968 NamedRegionTimer
T("isel", "Instruction Selection", GroupName
,
969 GroupDescription
, TimePassesIsEnabled
);
970 DoInstructionSelection();
973 LLVM_DEBUG(dbgs() << "Selected selection DAG: "
974 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
978 if (ViewSchedDAGs
&& MatchFilterBB
)
979 CurDAG
->viewGraph("scheduler input for " + BlockName
);
981 // Schedule machine code.
982 ScheduleDAGSDNodes
*Scheduler
= CreateScheduler();
984 NamedRegionTimer
T("sched", "Instruction Scheduling", GroupName
,
985 GroupDescription
, TimePassesIsEnabled
);
986 Scheduler
->Run(CurDAG
, FuncInfo
->MBB
);
989 if (ViewSUnitDAGs
&& MatchFilterBB
)
990 Scheduler
->viewGraph();
992 // Emit machine code to BB. This can change 'BB' to the last block being
994 MachineBasicBlock
*FirstMBB
= FuncInfo
->MBB
, *LastMBB
;
996 NamedRegionTimer
T("emit", "Instruction Creation", GroupName
,
997 GroupDescription
, TimePassesIsEnabled
);
999 // FuncInfo->InsertPt is passed by reference and set to the end of the
1000 // scheduled instructions.
1001 LastMBB
= FuncInfo
->MBB
= Scheduler
->EmitSchedule(FuncInfo
->InsertPt
);
1004 // If the block was split, make sure we update any references that are used to
1005 // update PHI nodes later on.
1006 if (FirstMBB
!= LastMBB
)
1007 SDB
->UpdateSplitBlock(FirstMBB
, LastMBB
);
1009 // Free the scheduler state.
1011 NamedRegionTimer
T("cleanup", "Instruction Scheduling Cleanup", GroupName
,
1012 GroupDescription
, TimePassesIsEnabled
);
1016 // Free the SelectionDAG state, now that we're finished with it.
1022 /// ISelUpdater - helper class to handle updates of the instruction selection
1024 class ISelUpdater
: public SelectionDAG::DAGUpdateListener
{
1025 SelectionDAG::allnodes_iterator
&ISelPosition
;
1028 ISelUpdater(SelectionDAG
&DAG
, SelectionDAG::allnodes_iterator
&isp
)
1029 : SelectionDAG::DAGUpdateListener(DAG
), ISelPosition(isp
) {}
1031 /// NodeDeleted - Handle nodes deleted from the graph. If the node being
1032 /// deleted is the current ISelPosition node, update ISelPosition.
1034 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{
1035 if (ISelPosition
== SelectionDAG::allnodes_iterator(N
))
1040 } // end anonymous namespace
1042 // This function is used to enforce the topological node id property
1043 // property leveraged during Instruction selection. Before selection all
1044 // nodes are given a non-negative id such that all nodes have a larger id than
1045 // their operands. As this holds transitively we can prune checks that a node N
1046 // is a predecessor of M another by not recursively checking through M's
1047 // operands if N's ID is larger than M's ID. This is significantly improves
1048 // performance of for various legality checks (e.g. IsLegalToFold /
1051 // However, when we fuse multiple nodes into a single node
1052 // during selection we may induce a predecessor relationship between inputs and
1053 // outputs of distinct nodes being merged violating the topological property.
1054 // Should a fused node have a successor which has yet to be selected, our
1055 // legality checks would be incorrect. To avoid this we mark all unselected
1056 // sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x =>
1057 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
1058 // We use bit-negation to more clearly enforce that node id -1 can only be
1059 // achieved by selected nodes). As the conversion is reversable the original Id,
1060 // topological pruning can still be leveraged when looking for unselected nodes.
1061 // This method is call internally in all ISel replacement calls.
1062 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode
*Node
) {
1063 SmallVector
<SDNode
*, 4> Nodes
;
1064 Nodes
.push_back(Node
);
1066 while (!Nodes
.empty()) {
1067 SDNode
*N
= Nodes
.pop_back_val();
1068 for (auto *U
: N
->uses()) {
1069 auto UId
= U
->getNodeId();
1071 InvalidateNodeId(U
);
1078 // InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a
1079 // NodeId with the equivalent node id which is invalid for topological
1081 void SelectionDAGISel::InvalidateNodeId(SDNode
*N
) {
1082 int InvalidId
= -(N
->getNodeId() + 1);
1083 N
->setNodeId(InvalidId
);
1086 // getUninvalidatedNodeId - get original uninvalidated node id.
1087 int SelectionDAGISel::getUninvalidatedNodeId(SDNode
*N
) {
1088 int Id
= N
->getNodeId();
1094 void SelectionDAGISel::DoInstructionSelection() {
1095 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1096 << printMBBReference(*FuncInfo
->MBB
) << " '"
1097 << FuncInfo
->MBB
->getName() << "'\n");
1099 PreprocessISelDAG();
1101 // Select target instructions for the DAG.
1103 // Number all nodes with a topological order and set DAGSize.
1104 DAGSize
= CurDAG
->AssignTopologicalOrder();
1106 // Create a dummy node (which is not added to allnodes), that adds
1107 // a reference to the root node, preventing it from being deleted,
1108 // and tracking any changes of the root.
1109 HandleSDNode
Dummy(CurDAG
->getRoot());
1110 SelectionDAG::allnodes_iterator
ISelPosition (CurDAG
->getRoot().getNode());
1113 // Make sure that ISelPosition gets properly updated when nodes are deleted
1114 // in calls made from this function.
1115 ISelUpdater
ISU(*CurDAG
, ISelPosition
);
1117 // The AllNodes list is now topological-sorted. Visit the
1118 // nodes by starting at the end of the list (the root of the
1119 // graph) and preceding back toward the beginning (the entry
1121 while (ISelPosition
!= CurDAG
->allnodes_begin()) {
1122 SDNode
*Node
= &*--ISelPosition
;
1123 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1124 // but there are currently some corner cases that it misses. Also, this
1125 // makes it theoretically possible to disable the DAGCombiner.
1126 if (Node
->use_empty())
1130 SmallVector
<SDNode
*, 4> Nodes
;
1131 Nodes
.push_back(Node
);
1133 while (!Nodes
.empty()) {
1134 auto N
= Nodes
.pop_back_val();
1135 if (N
->getOpcode() == ISD::TokenFactor
|| N
->getNodeId() < 0)
1137 for (const SDValue
&Op
: N
->op_values()) {
1138 if (Op
->getOpcode() == ISD::TokenFactor
)
1139 Nodes
.push_back(Op
.getNode());
1141 // We rely on topological ordering of node ids for checking for
1142 // cycles when fusing nodes during selection. All unselected nodes
1143 // successors of an already selected node should have a negative id.
1144 // This assertion will catch such cases. If this assertion triggers
1145 // it is likely you using DAG-level Value/Node replacement functions
1146 // (versus equivalent ISEL replacement) in backend-specific
1147 // selections. See comment in EnforceNodeIdInvariant for more
1149 assert(Op
->getNodeId() != -1 &&
1150 "Node has already selected predecessor node");
1156 // When we are using non-default rounding modes or FP exception behavior
1157 // FP operations are represented by StrictFP pseudo-operations. For
1158 // targets that do not (yet) understand strict FP operations directly,
1159 // we convert them to normal FP opcodes instead at this point. This
1160 // will allow them to be handled by existing target-specific instruction
1162 if (Node
->isStrictFPOpcode() &&
1163 (TLI
->getOperationAction(Node
->getOpcode(), Node
->getValueType(0))
1164 != TargetLowering::Legal
))
1165 Node
= CurDAG
->mutateStrictFPToFP(Node
);
1167 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1168 Node
->dump(CurDAG
));
1173 CurDAG
->setRoot(Dummy
.getValue());
1176 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1178 PostprocessISelDAG();
1181 static bool hasExceptionPointerOrCodeUser(const CatchPadInst
*CPI
) {
1182 for (const User
*U
: CPI
->users()) {
1183 if (const IntrinsicInst
*EHPtrCall
= dyn_cast
<IntrinsicInst
>(U
)) {
1184 Intrinsic::ID IID
= EHPtrCall
->getIntrinsicID();
1185 if (IID
== Intrinsic::eh_exceptionpointer
||
1186 IID
== Intrinsic::eh_exceptioncode
)
1193 // wasm.landingpad.index intrinsic is for associating a landing pad index number
1194 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic
1195 // and store the mapping in the function.
1196 static void mapWasmLandingPadIndex(MachineBasicBlock
*MBB
,
1197 const CatchPadInst
*CPI
) {
1198 MachineFunction
*MF
= MBB
->getParent();
1199 // In case of single catch (...), we don't emit LSDA, so we don't need
1200 // this information.
1201 bool IsSingleCatchAllClause
=
1202 CPI
->getNumArgOperands() == 1 &&
1203 cast
<Constant
>(CPI
->getArgOperand(0))->isNullValue();
1204 if (!IsSingleCatchAllClause
) {
1205 // Create a mapping from landing pad label to landing pad index.
1206 bool IntrFound
= false;
1207 for (const User
*U
: CPI
->users()) {
1208 if (const auto *Call
= dyn_cast
<IntrinsicInst
>(U
)) {
1209 Intrinsic::ID IID
= Call
->getIntrinsicID();
1210 if (IID
== Intrinsic::wasm_landingpad_index
) {
1211 Value
*IndexArg
= Call
->getArgOperand(1);
1212 int Index
= cast
<ConstantInt
>(IndexArg
)->getZExtValue();
1213 MF
->setWasmLandingPadIndex(MBB
, Index
);
1219 assert(IntrFound
&& "wasm.landingpad.index intrinsic not found!");
1224 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1225 /// do other setup for EH landing-pad blocks.
1226 bool SelectionDAGISel::PrepareEHLandingPad() {
1227 MachineBasicBlock
*MBB
= FuncInfo
->MBB
;
1228 const Constant
*PersonalityFn
= FuncInfo
->Fn
->getPersonalityFn();
1229 const BasicBlock
*LLVMBB
= MBB
->getBasicBlock();
1230 const TargetRegisterClass
*PtrRC
=
1231 TLI
->getRegClassFor(TLI
->getPointerTy(CurDAG
->getDataLayout()));
1233 auto Pers
= classifyEHPersonality(PersonalityFn
);
1235 // Catchpads have one live-in register, which typically holds the exception
1237 if (isFuncletEHPersonality(Pers
)) {
1238 if (const auto *CPI
= dyn_cast
<CatchPadInst
>(LLVMBB
->getFirstNonPHI())) {
1239 if (hasExceptionPointerOrCodeUser(CPI
)) {
1240 // Get or create the virtual register to hold the pointer or code. Mark
1241 // the live in physreg and copy into the vreg.
1242 MCPhysReg EHPhysReg
= TLI
->getExceptionPointerRegister(PersonalityFn
);
1243 assert(EHPhysReg
&& "target lacks exception pointer register");
1244 MBB
->addLiveIn(EHPhysReg
);
1245 unsigned VReg
= FuncInfo
->getCatchPadExceptionPointerVReg(CPI
, PtrRC
);
1246 BuildMI(*MBB
, FuncInfo
->InsertPt
, SDB
->getCurDebugLoc(),
1247 TII
->get(TargetOpcode::COPY
), VReg
)
1248 .addReg(EHPhysReg
, RegState::Kill
);
1254 // Add a label to mark the beginning of the landing pad. Deletion of the
1255 // landing pad can thus be detected via the MachineModuleInfo.
1256 MCSymbol
*Label
= MF
->addLandingPad(MBB
);
1258 const MCInstrDesc
&II
= TII
->get(TargetOpcode::EH_LABEL
);
1259 BuildMI(*MBB
, FuncInfo
->InsertPt
, SDB
->getCurDebugLoc(), II
)
1262 if (Pers
== EHPersonality::Wasm_CXX
) {
1263 if (const auto *CPI
= dyn_cast
<CatchPadInst
>(LLVMBB
->getFirstNonPHI()))
1264 mapWasmLandingPadIndex(MBB
, CPI
);
1266 // Assign the call site to the landing pad's begin label.
1267 MF
->setCallSiteLandingPad(Label
, SDB
->LPadToCallSiteMap
[MBB
]);
1268 // Mark exception register as live in.
1269 if (unsigned Reg
= TLI
->getExceptionPointerRegister(PersonalityFn
))
1270 FuncInfo
->ExceptionPointerVirtReg
= MBB
->addLiveIn(Reg
, PtrRC
);
1271 // Mark exception selector register as live in.
1272 if (unsigned Reg
= TLI
->getExceptionSelectorRegister(PersonalityFn
))
1273 FuncInfo
->ExceptionSelectorVirtReg
= MBB
->addLiveIn(Reg
, PtrRC
);
1279 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1280 /// side-effect free and is either dead or folded into a generated instruction.
1281 /// Return false if it needs to be emitted.
1282 static bool isFoldedOrDeadInstruction(const Instruction
*I
,
1283 FunctionLoweringInfo
*FuncInfo
) {
1284 return !I
->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1285 !I
->isTerminator() && // Terminators aren't folded.
1286 !isa
<DbgInfoIntrinsic
>(I
) && // Debug instructions aren't folded.
1287 !I
->isEHPad() && // EH pad instructions aren't folded.
1288 !FuncInfo
->isExportedInst(I
); // Exported instrs must be computed.
1291 /// Collect llvm.dbg.declare information. This is done after argument lowering
1292 /// in case the declarations refer to arguments.
1293 static void processDbgDeclares(FunctionLoweringInfo
*FuncInfo
) {
1294 MachineFunction
*MF
= FuncInfo
->MF
;
1295 const DataLayout
&DL
= MF
->getDataLayout();
1296 for (const BasicBlock
&BB
: *FuncInfo
->Fn
) {
1297 for (const Instruction
&I
: BB
) {
1298 const DbgDeclareInst
*DI
= dyn_cast
<DbgDeclareInst
>(&I
);
1302 assert(DI
->getVariable() && "Missing variable");
1303 assert(DI
->getDebugLoc() && "Missing location");
1304 const Value
*Address
= DI
->getAddress();
1308 // Look through casts and constant offset GEPs. These mostly come from
1310 APInt
Offset(DL
.getTypeSizeInBits(Address
->getType()), 0);
1311 Address
= Address
->stripAndAccumulateInBoundsConstantOffsets(DL
, Offset
);
1313 // Check if the variable is a static alloca or a byval or inalloca
1314 // argument passed in memory. If it is not, then we will ignore this
1315 // intrinsic and handle this during isel like dbg.value.
1316 int FI
= std::numeric_limits
<int>::max();
1317 if (const auto *AI
= dyn_cast
<AllocaInst
>(Address
)) {
1318 auto SI
= FuncInfo
->StaticAllocaMap
.find(AI
);
1319 if (SI
!= FuncInfo
->StaticAllocaMap
.end())
1321 } else if (const auto *Arg
= dyn_cast
<Argument
>(Address
))
1322 FI
= FuncInfo
->getArgumentFrameIndex(Arg
);
1324 if (FI
== std::numeric_limits
<int>::max())
1327 DIExpression
*Expr
= DI
->getExpression();
1328 if (Offset
.getBoolValue())
1329 Expr
= DIExpression::prepend(Expr
, DIExpression::ApplyOffset
,
1330 Offset
.getZExtValue());
1331 MF
->setVariableDbgInfo(DI
->getVariable(), Expr
, FI
, DI
->getDebugLoc());
1336 void SelectionDAGISel::SelectAllBasicBlocks(const Function
&Fn
) {
1337 FastISelFailed
= false;
1338 // Initialize the Fast-ISel state, if needed.
1339 FastISel
*FastIS
= nullptr;
1340 if (TM
.Options
.EnableFastISel
) {
1341 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1342 FastIS
= TLI
->createFastISel(*FuncInfo
, LibInfo
);
1345 ReversePostOrderTraversal
<const Function
*> RPOT(&Fn
);
1347 // Lower arguments up front. An RPO iteration always visits the entry block
1349 assert(*RPOT
.begin() == &Fn
.getEntryBlock());
1352 // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1353 FuncInfo
->MBB
= FuncInfo
->MBBMap
[&Fn
.getEntryBlock()];
1354 FuncInfo
->InsertPt
= FuncInfo
->MBB
->begin();
1356 CurDAG
->setFunctionLoweringInfo(FuncInfo
);
1361 // See if fast isel can lower the arguments.
1362 FastIS
->startNewBlock();
1363 if (!FastIS
->lowerArguments()) {
1364 FastISelFailed
= true;
1365 // Fast isel failed to lower these arguments
1366 ++NumFastIselFailLowerArguments
;
1368 OptimizationRemarkMissed
R("sdagisel", "FastISelFailure",
1370 &Fn
.getEntryBlock());
1371 R
<< "FastISel didn't lower all arguments: "
1372 << ore::NV("Prototype", Fn
.getType());
1373 reportFastISelFailure(*MF
, *ORE
, R
, EnableFastISelAbort
> 1);
1375 // Use SelectionDAG argument lowering
1377 CurDAG
->setRoot(SDB
->getControlRoot());
1379 CodeGenAndEmitDAG();
1382 // If we inserted any instructions at the beginning, make a note of
1383 // where they are, so we can be sure to emit subsequent instructions
1385 if (FuncInfo
->InsertPt
!= FuncInfo
->MBB
->begin())
1386 FastIS
->setLastLocalValue(&*std::prev(FuncInfo
->InsertPt
));
1388 FastIS
->setLastLocalValue(nullptr);
1391 bool Inserted
= SwiftError
->createEntriesInEntryBlock(SDB
->getCurDebugLoc());
1393 if (FastIS
&& Inserted
)
1394 FastIS
->setLastLocalValue(&*std::prev(FuncInfo
->InsertPt
));
1396 processDbgDeclares(FuncInfo
);
1398 // Iterate over all basic blocks in the function.
1399 StackProtector
&SP
= getAnalysis
<StackProtector
>();
1400 for (const BasicBlock
*LLVMBB
: RPOT
) {
1401 if (OptLevel
!= CodeGenOpt::None
) {
1402 bool AllPredsVisited
= true;
1403 for (const_pred_iterator PI
= pred_begin(LLVMBB
), PE
= pred_end(LLVMBB
);
1405 if (!FuncInfo
->VisitedBBs
.count(*PI
)) {
1406 AllPredsVisited
= false;
1411 if (AllPredsVisited
) {
1412 for (const PHINode
&PN
: LLVMBB
->phis())
1413 FuncInfo
->ComputePHILiveOutRegInfo(&PN
);
1415 for (const PHINode
&PN
: LLVMBB
->phis())
1416 FuncInfo
->InvalidatePHILiveOutRegInfo(&PN
);
1419 FuncInfo
->VisitedBBs
.insert(LLVMBB
);
1422 BasicBlock::const_iterator
const Begin
=
1423 LLVMBB
->getFirstNonPHI()->getIterator();
1424 BasicBlock::const_iterator
const End
= LLVMBB
->end();
1425 BasicBlock::const_iterator BI
= End
;
1427 FuncInfo
->MBB
= FuncInfo
->MBBMap
[LLVMBB
];
1429 continue; // Some blocks like catchpads have no code or MBB.
1431 // Insert new instructions after any phi or argument setup code.
1432 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1434 // Setup an EH landing-pad block.
1435 FuncInfo
->ExceptionPointerVirtReg
= 0;
1436 FuncInfo
->ExceptionSelectorVirtReg
= 0;
1437 if (LLVMBB
->isEHPad())
1438 if (!PrepareEHLandingPad())
1441 // Before doing SelectionDAG ISel, see if FastISel has been requested.
1443 if (LLVMBB
!= &Fn
.getEntryBlock())
1444 FastIS
->startNewBlock();
1446 unsigned NumFastIselRemaining
= std::distance(Begin
, End
);
1448 // Pre-assign swifterror vregs.
1449 SwiftError
->preassignVRegs(FuncInfo
->MBB
, Begin
, End
);
1451 // Do FastISel on as many instructions as possible.
1452 for (; BI
!= Begin
; --BI
) {
1453 const Instruction
*Inst
= &*std::prev(BI
);
1455 // If we no longer require this instruction, skip it.
1456 if (isFoldedOrDeadInstruction(Inst
, FuncInfo
) ||
1457 ElidedArgCopyInstrs
.count(Inst
)) {
1458 --NumFastIselRemaining
;
1462 // Bottom-up: reset the insert pos at the top, after any local-value
1464 FastIS
->recomputeInsertPt();
1466 // Try to select the instruction with FastISel.
1467 if (FastIS
->selectInstruction(Inst
)) {
1468 --NumFastIselRemaining
;
1469 ++NumFastIselSuccess
;
1470 // If fast isel succeeded, skip over all the folded instructions, and
1471 // then see if there is a load right before the selected instructions.
1472 // Try to fold the load if so.
1473 const Instruction
*BeforeInst
= Inst
;
1474 while (BeforeInst
!= &*Begin
) {
1475 BeforeInst
= &*std::prev(BasicBlock::const_iterator(BeforeInst
));
1476 if (!isFoldedOrDeadInstruction(BeforeInst
, FuncInfo
))
1479 if (BeforeInst
!= Inst
&& isa
<LoadInst
>(BeforeInst
) &&
1480 BeforeInst
->hasOneUse() &&
1481 FastIS
->tryToFoldLoad(cast
<LoadInst
>(BeforeInst
), Inst
)) {
1482 // If we succeeded, don't re-select the load.
1483 BI
= std::next(BasicBlock::const_iterator(BeforeInst
));
1484 --NumFastIselRemaining
;
1485 ++NumFastIselSuccess
;
1490 FastISelFailed
= true;
1492 // Then handle certain instructions as single-LLVM-Instruction blocks.
1493 // We cannot separate out GCrelocates to their own blocks since we need
1494 // to keep track of gc-relocates for a particular gc-statepoint. This is
1495 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1497 if (isa
<CallInst
>(Inst
) && !isStatepoint(Inst
) && !isGCRelocate(Inst
) &&
1498 !isGCResult(Inst
)) {
1499 OptimizationRemarkMissed
R("sdagisel", "FastISelFailure",
1500 Inst
->getDebugLoc(), LLVMBB
);
1502 R
<< "FastISel missed call";
1504 if (R
.isEnabled() || EnableFastISelAbort
) {
1505 std::string InstStrStorage
;
1506 raw_string_ostream
InstStr(InstStrStorage
);
1509 R
<< ": " << InstStr
.str();
1512 reportFastISelFailure(*MF
, *ORE
, R
, EnableFastISelAbort
> 2);
1514 if (!Inst
->getType()->isVoidTy() && !Inst
->getType()->isTokenTy() &&
1515 !Inst
->use_empty()) {
1516 unsigned &R
= FuncInfo
->ValueMap
[Inst
];
1518 R
= FuncInfo
->CreateRegs(Inst
);
1521 bool HadTailCall
= false;
1522 MachineBasicBlock::iterator SavedInsertPt
= FuncInfo
->InsertPt
;
1523 SelectBasicBlock(Inst
->getIterator(), BI
, HadTailCall
);
1525 // If the call was emitted as a tail call, we're done with the block.
1526 // We also need to delete any previously emitted instructions.
1528 FastIS
->removeDeadCode(SavedInsertPt
, FuncInfo
->MBB
->end());
1533 // Recompute NumFastIselRemaining as Selection DAG instruction
1534 // selection may have handled the call, input args, etc.
1535 unsigned RemainingNow
= std::distance(Begin
, BI
);
1536 NumFastIselFailures
+= NumFastIselRemaining
- RemainingNow
;
1537 NumFastIselRemaining
= RemainingNow
;
1541 OptimizationRemarkMissed
R("sdagisel", "FastISelFailure",
1542 Inst
->getDebugLoc(), LLVMBB
);
1544 bool ShouldAbort
= EnableFastISelAbort
;
1545 if (Inst
->isTerminator()) {
1546 // Use a different message for terminator misses.
1547 R
<< "FastISel missed terminator";
1548 // Don't abort for terminator unless the level is really high
1549 ShouldAbort
= (EnableFastISelAbort
> 2);
1551 R
<< "FastISel missed";
1554 if (R
.isEnabled() || EnableFastISelAbort
) {
1555 std::string InstStrStorage
;
1556 raw_string_ostream
InstStr(InstStrStorage
);
1558 R
<< ": " << InstStr
.str();
1561 reportFastISelFailure(*MF
, *ORE
, R
, ShouldAbort
);
1563 NumFastIselFailures
+= NumFastIselRemaining
;
1567 FastIS
->recomputeInsertPt();
1570 if (SP
.shouldEmitSDCheck(*LLVMBB
)) {
1571 bool FunctionBasedInstrumentation
=
1572 TLI
->getSSPStackGuardCheck(*Fn
.getParent());
1573 SDB
->SPDescriptor
.initialize(LLVMBB
, FuncInfo
->MBBMap
[LLVMBB
],
1574 FunctionBasedInstrumentation
);
1580 ++NumFastIselBlocks
;
1583 // Run SelectionDAG instruction selection on the remainder of the block
1584 // not handled by FastISel. If FastISel is not run, this is the entire
1587 SelectBasicBlock(Begin
, BI
, HadTailCall
);
1589 // But if FastISel was run, we already selected some of the block.
1590 // If we emitted a tail-call, we need to delete any previously emitted
1591 // instruction that follows it.
1592 if (HadTailCall
&& FuncInfo
->InsertPt
!= FuncInfo
->MBB
->end())
1593 FastIS
->removeDeadCode(FuncInfo
->InsertPt
, FuncInfo
->MBB
->end());
1597 FastIS
->finishBasicBlock();
1599 FuncInfo
->PHINodesToUpdate
.clear();
1600 ElidedArgCopyInstrs
.clear();
1603 SP
.copyToMachineFrameInfo(MF
->getFrameInfo());
1605 SwiftError
->propagateVRegs();
1608 SDB
->clearDanglingDebugInfo();
1609 SDB
->SPDescriptor
.resetPerFunctionState();
1612 /// Given that the input MI is before a partial terminator sequence TSeq, return
1613 /// true if M + TSeq also a partial terminator sequence.
1615 /// A Terminator sequence is a sequence of MachineInstrs which at this point in
1616 /// lowering copy vregs into physical registers, which are then passed into
1617 /// terminator instructors so we can satisfy ABI constraints. A partial
1618 /// terminator sequence is an improper subset of a terminator sequence (i.e. it
1619 /// may be the whole terminator sequence).
1620 static bool MIIsInTerminatorSequence(const MachineInstr
&MI
) {
1621 // If we do not have a copy or an implicit def, we return true if and only if
1622 // MI is a debug value.
1623 if (!MI
.isCopy() && !MI
.isImplicitDef())
1624 // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1625 // physical registers if there is debug info associated with the terminator
1626 // of our mbb. We want to include said debug info in our terminator
1627 // sequence, so we return true in that case.
1628 return MI
.isDebugValue();
1630 // We have left the terminator sequence if we are not doing one of the
1633 // 1. Copying a vreg into a physical register.
1634 // 2. Copying a vreg into a vreg.
1635 // 3. Defining a register via an implicit def.
1637 // OPI should always be a register definition...
1638 MachineInstr::const_mop_iterator OPI
= MI
.operands_begin();
1639 if (!OPI
->isReg() || !OPI
->isDef())
1642 // Defining any register via an implicit def is always ok.
1643 if (MI
.isImplicitDef())
1646 // Grab the copy source...
1647 MachineInstr::const_mop_iterator OPI2
= OPI
;
1649 assert(OPI2
!= MI
.operands_end()
1650 && "Should have a copy implying we should have 2 arguments.");
1652 // Make sure that the copy dest is not a vreg when the copy source is a
1653 // physical register.
1654 if (!OPI2
->isReg() || (!Register::isPhysicalRegister(OPI
->getReg()) &&
1655 Register::isPhysicalRegister(OPI2
->getReg())))
1661 /// Find the split point at which to splice the end of BB into its success stack
1662 /// protector check machine basic block.
1664 /// On many platforms, due to ABI constraints, terminators, even before register
1665 /// allocation, use physical registers. This creates an issue for us since
1666 /// physical registers at this point can not travel across basic
1667 /// blocks. Luckily, selectiondag always moves physical registers into vregs
1668 /// when they enter functions and moves them through a sequence of copies back
1669 /// into the physical registers right before the terminator creating a
1670 /// ``Terminator Sequence''. This function is searching for the beginning of the
1671 /// terminator sequence so that we can ensure that we splice off not just the
1672 /// terminator, but additionally the copies that move the vregs into the
1673 /// physical registers.
1674 static MachineBasicBlock::iterator
1675 FindSplitPointForStackProtector(MachineBasicBlock
*BB
) {
1676 MachineBasicBlock::iterator SplitPoint
= BB
->getFirstTerminator();
1678 if (SplitPoint
== BB
->begin())
1681 MachineBasicBlock::iterator Start
= BB
->begin();
1682 MachineBasicBlock::iterator Previous
= SplitPoint
;
1685 while (MIIsInTerminatorSequence(*Previous
)) {
1686 SplitPoint
= Previous
;
1687 if (Previous
== Start
)
1696 SelectionDAGISel::FinishBasicBlock() {
1697 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1698 << FuncInfo
->PHINodesToUpdate
.size() << "\n";
1699 for (unsigned i
= 0, e
= FuncInfo
->PHINodesToUpdate
.size(); i
!= e
;
1701 << "Node " << i
<< " : (" << FuncInfo
->PHINodesToUpdate
[i
].first
1702 << ", " << FuncInfo
->PHINodesToUpdate
[i
].second
<< ")\n");
1704 // Next, now that we know what the last MBB the LLVM BB expanded is, update
1705 // PHI nodes in successors.
1706 for (unsigned i
= 0, e
= FuncInfo
->PHINodesToUpdate
.size(); i
!= e
; ++i
) {
1707 MachineInstrBuilder
PHI(*MF
, FuncInfo
->PHINodesToUpdate
[i
].first
);
1708 assert(PHI
->isPHI() &&
1709 "This is not a machine PHI node that we are updating!");
1710 if (!FuncInfo
->MBB
->isSuccessor(PHI
->getParent()))
1712 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[i
].second
).addMBB(FuncInfo
->MBB
);
1715 // Handle stack protector.
1716 if (SDB
->SPDescriptor
.shouldEmitFunctionBasedCheckStackProtector()) {
1717 // The target provides a guard check function. There is no need to
1718 // generate error handling code or to split current basic block.
1719 MachineBasicBlock
*ParentMBB
= SDB
->SPDescriptor
.getParentMBB();
1721 // Add load and check to the basicblock.
1722 FuncInfo
->MBB
= ParentMBB
;
1723 FuncInfo
->InsertPt
=
1724 FindSplitPointForStackProtector(ParentMBB
);
1725 SDB
->visitSPDescriptorParent(SDB
->SPDescriptor
, ParentMBB
);
1726 CurDAG
->setRoot(SDB
->getRoot());
1728 CodeGenAndEmitDAG();
1730 // Clear the Per-BB State.
1731 SDB
->SPDescriptor
.resetPerBBState();
1732 } else if (SDB
->SPDescriptor
.shouldEmitStackProtector()) {
1733 MachineBasicBlock
*ParentMBB
= SDB
->SPDescriptor
.getParentMBB();
1734 MachineBasicBlock
*SuccessMBB
= SDB
->SPDescriptor
.getSuccessMBB();
1736 // Find the split point to split the parent mbb. At the same time copy all
1737 // physical registers used in the tail of parent mbb into virtual registers
1738 // before the split point and back into physical registers after the split
1739 // point. This prevents us needing to deal with Live-ins and many other
1740 // register allocation issues caused by us splitting the parent mbb. The
1741 // register allocator will clean up said virtual copies later on.
1742 MachineBasicBlock::iterator SplitPoint
=
1743 FindSplitPointForStackProtector(ParentMBB
);
1745 // Splice the terminator of ParentMBB into SuccessMBB.
1746 SuccessMBB
->splice(SuccessMBB
->end(), ParentMBB
,
1750 // Add compare/jump on neq/jump to the parent BB.
1751 FuncInfo
->MBB
= ParentMBB
;
1752 FuncInfo
->InsertPt
= ParentMBB
->end();
1753 SDB
->visitSPDescriptorParent(SDB
->SPDescriptor
, ParentMBB
);
1754 CurDAG
->setRoot(SDB
->getRoot());
1756 CodeGenAndEmitDAG();
1758 // CodeGen Failure MBB if we have not codegened it yet.
1759 MachineBasicBlock
*FailureMBB
= SDB
->SPDescriptor
.getFailureMBB();
1760 if (FailureMBB
->empty()) {
1761 FuncInfo
->MBB
= FailureMBB
;
1762 FuncInfo
->InsertPt
= FailureMBB
->end();
1763 SDB
->visitSPDescriptorFailure(SDB
->SPDescriptor
);
1764 CurDAG
->setRoot(SDB
->getRoot());
1766 CodeGenAndEmitDAG();
1769 // Clear the Per-BB State.
1770 SDB
->SPDescriptor
.resetPerBBState();
1773 // Lower each BitTestBlock.
1774 for (auto &BTB
: SDB
->SL
->BitTestCases
) {
1775 // Lower header first, if it wasn't already lowered
1777 // Set the current basic block to the mbb we wish to insert the code into
1778 FuncInfo
->MBB
= BTB
.Parent
;
1779 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1781 SDB
->visitBitTestHeader(BTB
, FuncInfo
->MBB
);
1782 CurDAG
->setRoot(SDB
->getRoot());
1784 CodeGenAndEmitDAG();
1787 BranchProbability UnhandledProb
= BTB
.Prob
;
1788 for (unsigned j
= 0, ej
= BTB
.Cases
.size(); j
!= ej
; ++j
) {
1789 UnhandledProb
-= BTB
.Cases
[j
].ExtraProb
;
1790 // Set the current basic block to the mbb we wish to insert the code into
1791 FuncInfo
->MBB
= BTB
.Cases
[j
].ThisBB
;
1792 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1795 // If all cases cover a contiguous range, it is not necessary to jump to
1796 // the default block after the last bit test fails. This is because the
1797 // range check during bit test header creation has guaranteed that every
1798 // case here doesn't go outside the range. In this case, there is no need
1799 // to perform the last bit test, as it will always be true. Instead, make
1800 // the second-to-last bit-test fall through to the target of the last bit
1801 // test, and delete the last bit test.
1803 MachineBasicBlock
*NextMBB
;
1804 if (BTB
.ContiguousRange
&& j
+ 2 == ej
) {
1805 // Second-to-last bit-test with contiguous range: fall through to the
1806 // target of the final bit test.
1807 NextMBB
= BTB
.Cases
[j
+ 1].TargetBB
;
1808 } else if (j
+ 1 == ej
) {
1809 // For the last bit test, fall through to Default.
1810 NextMBB
= BTB
.Default
;
1812 // Otherwise, fall through to the next bit test.
1813 NextMBB
= BTB
.Cases
[j
+ 1].ThisBB
;
1816 SDB
->visitBitTestCase(BTB
, NextMBB
, UnhandledProb
, BTB
.Reg
, BTB
.Cases
[j
],
1819 CurDAG
->setRoot(SDB
->getRoot());
1821 CodeGenAndEmitDAG();
1823 if (BTB
.ContiguousRange
&& j
+ 2 == ej
) {
1824 // Since we're not going to use the final bit test, remove it.
1825 BTB
.Cases
.pop_back();
1831 for (unsigned pi
= 0, pe
= FuncInfo
->PHINodesToUpdate
.size();
1833 MachineInstrBuilder
PHI(*MF
, FuncInfo
->PHINodesToUpdate
[pi
].first
);
1834 MachineBasicBlock
*PHIBB
= PHI
->getParent();
1835 assert(PHI
->isPHI() &&
1836 "This is not a machine PHI node that we are updating!");
1837 // This is "default" BB. We have two jumps to it. From "header" BB and
1838 // from last "case" BB, unless the latter was skipped.
1839 if (PHIBB
== BTB
.Default
) {
1840 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pi
].second
).addMBB(BTB
.Parent
);
1841 if (!BTB
.ContiguousRange
) {
1842 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pi
].second
)
1843 .addMBB(BTB
.Cases
.back().ThisBB
);
1846 // One of "cases" BB.
1847 for (unsigned j
= 0, ej
= BTB
.Cases
.size();
1849 MachineBasicBlock
* cBB
= BTB
.Cases
[j
].ThisBB
;
1850 if (cBB
->isSuccessor(PHIBB
))
1851 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pi
].second
).addMBB(cBB
);
1855 SDB
->SL
->BitTestCases
.clear();
1857 // If the JumpTable record is filled in, then we need to emit a jump table.
1858 // Updating the PHI nodes is tricky in this case, since we need to determine
1859 // whether the PHI is a successor of the range check MBB or the jump table MBB
1860 for (unsigned i
= 0, e
= SDB
->SL
->JTCases
.size(); i
!= e
; ++i
) {
1861 // Lower header first, if it wasn't already lowered
1862 if (!SDB
->SL
->JTCases
[i
].first
.Emitted
) {
1863 // Set the current basic block to the mbb we wish to insert the code into
1864 FuncInfo
->MBB
= SDB
->SL
->JTCases
[i
].first
.HeaderBB
;
1865 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1867 SDB
->visitJumpTableHeader(SDB
->SL
->JTCases
[i
].second
,
1868 SDB
->SL
->JTCases
[i
].first
, FuncInfo
->MBB
);
1869 CurDAG
->setRoot(SDB
->getRoot());
1871 CodeGenAndEmitDAG();
1874 // Set the current basic block to the mbb we wish to insert the code into
1875 FuncInfo
->MBB
= SDB
->SL
->JTCases
[i
].second
.MBB
;
1876 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1878 SDB
->visitJumpTable(SDB
->SL
->JTCases
[i
].second
);
1879 CurDAG
->setRoot(SDB
->getRoot());
1881 CodeGenAndEmitDAG();
1884 for (unsigned pi
= 0, pe
= FuncInfo
->PHINodesToUpdate
.size();
1886 MachineInstrBuilder
PHI(*MF
, FuncInfo
->PHINodesToUpdate
[pi
].first
);
1887 MachineBasicBlock
*PHIBB
= PHI
->getParent();
1888 assert(PHI
->isPHI() &&
1889 "This is not a machine PHI node that we are updating!");
1890 // "default" BB. We can go there only from header BB.
1891 if (PHIBB
== SDB
->SL
->JTCases
[i
].second
.Default
)
1892 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pi
].second
)
1893 .addMBB(SDB
->SL
->JTCases
[i
].first
.HeaderBB
);
1894 // JT BB. Just iterate over successors here
1895 if (FuncInfo
->MBB
->isSuccessor(PHIBB
))
1896 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pi
].second
).addMBB(FuncInfo
->MBB
);
1899 SDB
->SL
->JTCases
.clear();
1901 // If we generated any switch lowering information, build and codegen any
1902 // additional DAGs necessary.
1903 for (unsigned i
= 0, e
= SDB
->SL
->SwitchCases
.size(); i
!= e
; ++i
) {
1904 // Set the current basic block to the mbb we wish to insert the code into
1905 FuncInfo
->MBB
= SDB
->SL
->SwitchCases
[i
].ThisBB
;
1906 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1908 // Determine the unique successors.
1909 SmallVector
<MachineBasicBlock
*, 2> Succs
;
1910 Succs
.push_back(SDB
->SL
->SwitchCases
[i
].TrueBB
);
1911 if (SDB
->SL
->SwitchCases
[i
].TrueBB
!= SDB
->SL
->SwitchCases
[i
].FalseBB
)
1912 Succs
.push_back(SDB
->SL
->SwitchCases
[i
].FalseBB
);
1914 // Emit the code. Note that this could result in FuncInfo->MBB being split.
1915 SDB
->visitSwitchCase(SDB
->SL
->SwitchCases
[i
], FuncInfo
->MBB
);
1916 CurDAG
->setRoot(SDB
->getRoot());
1918 CodeGenAndEmitDAG();
1920 // Remember the last block, now that any splitting is done, for use in
1921 // populating PHI nodes in successors.
1922 MachineBasicBlock
*ThisBB
= FuncInfo
->MBB
;
1924 // Handle any PHI nodes in successors of this chunk, as if we were coming
1925 // from the original BB before switch expansion. Note that PHI nodes can
1926 // occur multiple times in PHINodesToUpdate. We have to be very careful to
1927 // handle them the right number of times.
1928 for (unsigned i
= 0, e
= Succs
.size(); i
!= e
; ++i
) {
1929 FuncInfo
->MBB
= Succs
[i
];
1930 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1931 // FuncInfo->MBB may have been removed from the CFG if a branch was
1933 if (ThisBB
->isSuccessor(FuncInfo
->MBB
)) {
1934 for (MachineBasicBlock::iterator
1935 MBBI
= FuncInfo
->MBB
->begin(), MBBE
= FuncInfo
->MBB
->end();
1936 MBBI
!= MBBE
&& MBBI
->isPHI(); ++MBBI
) {
1937 MachineInstrBuilder
PHI(*MF
, MBBI
);
1938 // This value for this PHI node is recorded in PHINodesToUpdate.
1939 for (unsigned pn
= 0; ; ++pn
) {
1940 assert(pn
!= FuncInfo
->PHINodesToUpdate
.size() &&
1941 "Didn't find PHI entry!");
1942 if (FuncInfo
->PHINodesToUpdate
[pn
].first
== PHI
) {
1943 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pn
].second
).addMBB(ThisBB
);
1951 SDB
->SL
->SwitchCases
.clear();
1954 /// Create the scheduler. If a specific scheduler was specified
1955 /// via the SchedulerRegistry, use it, otherwise select the
1956 /// one preferred by the target.
1958 ScheduleDAGSDNodes
*SelectionDAGISel::CreateScheduler() {
1959 return ISHeuristic(this, OptLevel
);
1962 //===----------------------------------------------------------------------===//
1963 // Helper functions used by the generated instruction selector.
1964 //===----------------------------------------------------------------------===//
1965 // Calls to these methods are generated by tblgen.
1967 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
1968 /// the dag combiner simplified the 255, we still want to match. RHS is the
1969 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1970 /// specified in the .td file (e.g. 255).
1971 bool SelectionDAGISel::CheckAndMask(SDValue LHS
, ConstantSDNode
*RHS
,
1972 int64_t DesiredMaskS
) const {
1973 const APInt
&ActualMask
= RHS
->getAPIntValue();
1974 const APInt
&DesiredMask
= APInt(LHS
.getValueSizeInBits(), DesiredMaskS
);
1976 // If the actual mask exactly matches, success!
1977 if (ActualMask
== DesiredMask
)
1980 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1981 if (!ActualMask
.isSubsetOf(DesiredMask
))
1984 // Otherwise, the DAG Combiner may have proven that the value coming in is
1985 // either already zero or is not demanded. Check for known zero input bits.
1986 APInt NeededMask
= DesiredMask
& ~ActualMask
;
1987 if (CurDAG
->MaskedValueIsZero(LHS
, NeededMask
))
1990 // TODO: check to see if missing bits are just not demanded.
1992 // Otherwise, this pattern doesn't match.
1996 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
1997 /// the dag combiner simplified the 255, we still want to match. RHS is the
1998 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1999 /// specified in the .td file (e.g. 255).
2000 bool SelectionDAGISel::CheckOrMask(SDValue LHS
, ConstantSDNode
*RHS
,
2001 int64_t DesiredMaskS
) const {
2002 const APInt
&ActualMask
= RHS
->getAPIntValue();
2003 const APInt
&DesiredMask
= APInt(LHS
.getValueSizeInBits(), DesiredMaskS
);
2005 // If the actual mask exactly matches, success!
2006 if (ActualMask
== DesiredMask
)
2009 // If the actual AND mask is allowing unallowed bits, this doesn't match.
2010 if (!ActualMask
.isSubsetOf(DesiredMask
))
2013 // Otherwise, the DAG Combiner may have proven that the value coming in is
2014 // either already zero or is not demanded. Check for known zero input bits.
2015 APInt NeededMask
= DesiredMask
& ~ActualMask
;
2016 KnownBits Known
= CurDAG
->computeKnownBits(LHS
);
2018 // If all the missing bits in the or are already known to be set, match!
2019 if (NeededMask
.isSubsetOf(Known
.One
))
2022 // TODO: check to see if missing bits are just not demanded.
2024 // Otherwise, this pattern doesn't match.
2028 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2029 /// by tblgen. Others should not call it.
2030 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector
<SDValue
> &Ops
,
2032 std::vector
<SDValue
> InOps
;
2033 std::swap(InOps
, Ops
);
2035 Ops
.push_back(InOps
[InlineAsm::Op_InputChain
]); // 0
2036 Ops
.push_back(InOps
[InlineAsm::Op_AsmString
]); // 1
2037 Ops
.push_back(InOps
[InlineAsm::Op_MDNode
]); // 2, !srcloc
2038 Ops
.push_back(InOps
[InlineAsm::Op_ExtraInfo
]); // 3 (SideEffect, AlignStack)
2040 unsigned i
= InlineAsm::Op_FirstOperand
, e
= InOps
.size();
2041 if (InOps
[e
-1].getValueType() == MVT::Glue
)
2042 --e
; // Don't process a glue operand if it is here.
2045 unsigned Flags
= cast
<ConstantSDNode
>(InOps
[i
])->getZExtValue();
2046 if (!InlineAsm::isMemKind(Flags
)) {
2047 // Just skip over this operand, copying the operands verbatim.
2048 Ops
.insert(Ops
.end(), InOps
.begin()+i
,
2049 InOps
.begin()+i
+InlineAsm::getNumOperandRegisters(Flags
) + 1);
2050 i
+= InlineAsm::getNumOperandRegisters(Flags
) + 1;
2052 assert(InlineAsm::getNumOperandRegisters(Flags
) == 1 &&
2053 "Memory operand with multiple values?");
2055 unsigned TiedToOperand
;
2056 if (InlineAsm::isUseOperandTiedToDef(Flags
, TiedToOperand
)) {
2057 // We need the constraint ID from the operand this is tied to.
2058 unsigned CurOp
= InlineAsm::Op_FirstOperand
;
2059 Flags
= cast
<ConstantSDNode
>(InOps
[CurOp
])->getZExtValue();
2060 for (; TiedToOperand
; --TiedToOperand
) {
2061 CurOp
+= InlineAsm::getNumOperandRegisters(Flags
)+1;
2062 Flags
= cast
<ConstantSDNode
>(InOps
[CurOp
])->getZExtValue();
2066 // Otherwise, this is a memory operand. Ask the target to select it.
2067 std::vector
<SDValue
> SelOps
;
2068 unsigned ConstraintID
= InlineAsm::getMemoryConstraintID(Flags
);
2069 if (SelectInlineAsmMemoryOperand(InOps
[i
+1], ConstraintID
, SelOps
))
2070 report_fatal_error("Could not match memory address. Inline asm"
2073 // Add this to the output node.
2075 InlineAsm::getFlagWord(InlineAsm::Kind_Mem
, SelOps
.size());
2076 NewFlags
= InlineAsm::getFlagWordForMem(NewFlags
, ConstraintID
);
2077 Ops
.push_back(CurDAG
->getTargetConstant(NewFlags
, DL
, MVT::i32
));
2078 Ops
.insert(Ops
.end(), SelOps
.begin(), SelOps
.end());
2083 // Add the glue input back if present.
2084 if (e
!= InOps
.size())
2085 Ops
.push_back(InOps
.back());
2088 /// findGlueUse - Return use of MVT::Glue value produced by the specified
2091 static SDNode
*findGlueUse(SDNode
*N
) {
2092 unsigned FlagResNo
= N
->getNumValues()-1;
2093 for (SDNode::use_iterator I
= N
->use_begin(), E
= N
->use_end(); I
!= E
; ++I
) {
2094 SDUse
&Use
= I
.getUse();
2095 if (Use
.getResNo() == FlagResNo
)
2096 return Use
.getUser();
2101 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2102 /// beyond "ImmedUse". We may ignore chains as they are checked separately.
2103 static bool findNonImmUse(SDNode
*Root
, SDNode
*Def
, SDNode
*ImmedUse
,
2104 bool IgnoreChains
) {
2105 SmallPtrSet
<const SDNode
*, 16> Visited
;
2106 SmallVector
<const SDNode
*, 16> WorkList
;
2107 // Only check if we have non-immediate uses of Def.
2108 if (ImmedUse
->isOnlyUserOf(Def
))
2111 // We don't care about paths to Def that go through ImmedUse so mark it
2112 // visited and mark non-def operands as used.
2113 Visited
.insert(ImmedUse
);
2114 for (const SDValue
&Op
: ImmedUse
->op_values()) {
2115 SDNode
*N
= Op
.getNode();
2116 // Ignore chain deps (they are validated by
2117 // HandleMergeInputChains) and immediate uses
2118 if ((Op
.getValueType() == MVT::Other
&& IgnoreChains
) || N
== Def
)
2120 if (!Visited
.insert(N
).second
)
2122 WorkList
.push_back(N
);
2125 // Initialize worklist to operands of Root.
2126 if (Root
!= ImmedUse
) {
2127 for (const SDValue
&Op
: Root
->op_values()) {
2128 SDNode
*N
= Op
.getNode();
2129 // Ignore chains (they are validated by HandleMergeInputChains)
2130 if ((Op
.getValueType() == MVT::Other
&& IgnoreChains
) || N
== Def
)
2132 if (!Visited
.insert(N
).second
)
2134 WorkList
.push_back(N
);
2138 return SDNode::hasPredecessorHelper(Def
, Visited
, WorkList
, 0, true);
2141 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2142 /// operand node N of U during instruction selection that starts at Root.
2143 bool SelectionDAGISel::IsProfitableToFold(SDValue N
, SDNode
*U
,
2144 SDNode
*Root
) const {
2145 if (OptLevel
== CodeGenOpt::None
) return false;
2146 return N
.hasOneUse();
2149 /// IsLegalToFold - Returns true if the specific operand node N of
2150 /// U can be folded during instruction selection that starts at Root.
2151 bool SelectionDAGISel::IsLegalToFold(SDValue N
, SDNode
*U
, SDNode
*Root
,
2152 CodeGenOpt::Level OptLevel
,
2153 bool IgnoreChains
) {
2154 if (OptLevel
== CodeGenOpt::None
) return false;
2156 // If Root use can somehow reach N through a path that that doesn't contain
2157 // U then folding N would create a cycle. e.g. In the following
2158 // diagram, Root can reach N through X. If N is folded into Root, then
2159 // X is both a predecessor and a successor of U.
2170 // * indicates nodes to be folded together.
2172 // If Root produces glue, then it gets (even more) interesting. Since it
2173 // will be "glued" together with its glue use in the scheduler, we need to
2174 // check if it might reach N.
2193 // If GU (glue use) indirectly reaches N (the load), and Root folds N
2194 // (call it Fold), then X is a predecessor of GU and a successor of
2195 // Fold. But since Fold and GU are glued together, this will create
2196 // a cycle in the scheduling graph.
2198 // If the node has glue, walk down the graph to the "lowest" node in the
2200 EVT VT
= Root
->getValueType(Root
->getNumValues()-1);
2201 while (VT
== MVT::Glue
) {
2202 SDNode
*GU
= findGlueUse(Root
);
2206 VT
= Root
->getValueType(Root
->getNumValues()-1);
2208 // If our query node has a glue result with a use, we've walked up it. If
2209 // the user (which has already been selected) has a chain or indirectly uses
2210 // the chain, HandleMergeInputChains will not consider it. Because of
2211 // this, we cannot ignore chains in this predicate.
2212 IgnoreChains
= false;
2215 return !findNonImmUse(Root
, N
.getNode(), U
, IgnoreChains
);
2218 void SelectionDAGISel::Select_INLINEASM(SDNode
*N
, bool Branch
) {
2221 std::vector
<SDValue
> Ops(N
->op_begin(), N
->op_end());
2222 SelectInlineAsmMemoryOperands(Ops
, DL
);
2224 const EVT VTs
[] = {MVT::Other
, MVT::Glue
};
2225 SDValue New
= CurDAG
->getNode(Branch
? ISD::INLINEASM_BR
: ISD::INLINEASM
, DL
, VTs
, Ops
);
2227 ReplaceUses(N
, New
.getNode());
2228 CurDAG
->RemoveDeadNode(N
);
2231 void SelectionDAGISel::Select_READ_REGISTER(SDNode
*Op
) {
2233 MDNodeSDNode
*MD
= dyn_cast
<MDNodeSDNode
>(Op
->getOperand(1));
2234 const MDString
*RegStr
= dyn_cast
<MDString
>(MD
->getMD()->getOperand(0));
2236 TLI
->getRegisterByName(RegStr
->getString().data(), Op
->getValueType(0),
2237 CurDAG
->getMachineFunction());
2238 SDValue New
= CurDAG
->getCopyFromReg(
2239 Op
->getOperand(0), dl
, Reg
, Op
->getValueType(0));
2241 ReplaceUses(Op
, New
.getNode());
2242 CurDAG
->RemoveDeadNode(Op
);
2245 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode
*Op
) {
2247 MDNodeSDNode
*MD
= dyn_cast
<MDNodeSDNode
>(Op
->getOperand(1));
2248 const MDString
*RegStr
= dyn_cast
<MDString
>(MD
->getMD()->getOperand(0));
2249 Register Reg
= TLI
->getRegisterByName(RegStr
->getString().data(),
2250 Op
->getOperand(2).getValueType(),
2251 CurDAG
->getMachineFunction());
2252 SDValue New
= CurDAG
->getCopyToReg(
2253 Op
->getOperand(0), dl
, Reg
, Op
->getOperand(2));
2255 ReplaceUses(Op
, New
.getNode());
2256 CurDAG
->RemoveDeadNode(Op
);
2259 void SelectionDAGISel::Select_UNDEF(SDNode
*N
) {
2260 CurDAG
->SelectNodeTo(N
, TargetOpcode::IMPLICIT_DEF
, N
->getValueType(0));
2263 /// GetVBR - decode a vbr encoding whose top bit is set.
2264 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline uint64_t
2265 GetVBR(uint64_t Val
, const unsigned char *MatcherTable
, unsigned &Idx
) {
2266 assert(Val
>= 128 && "Not a VBR");
2267 Val
&= 127; // Remove first vbr bit.
2272 NextBits
= MatcherTable
[Idx
++];
2273 Val
|= (NextBits
&127) << Shift
;
2275 } while (NextBits
& 128);
2280 /// When a match is complete, this method updates uses of interior chain results
2281 /// to use the new results.
2282 void SelectionDAGISel::UpdateChains(
2283 SDNode
*NodeToMatch
, SDValue InputChain
,
2284 SmallVectorImpl
<SDNode
*> &ChainNodesMatched
, bool isMorphNodeTo
) {
2285 SmallVector
<SDNode
*, 4> NowDeadNodes
;
2287 // Now that all the normal results are replaced, we replace the chain and
2288 // glue results if present.
2289 if (!ChainNodesMatched
.empty()) {
2290 assert(InputChain
.getNode() &&
2291 "Matched input chains but didn't produce a chain");
2292 // Loop over all of the nodes we matched that produced a chain result.
2293 // Replace all the chain results with the final chain we ended up with.
2294 for (unsigned i
= 0, e
= ChainNodesMatched
.size(); i
!= e
; ++i
) {
2295 SDNode
*ChainNode
= ChainNodesMatched
[i
];
2296 // If ChainNode is null, it's because we replaced it on a previous
2297 // iteration and we cleared it out of the map. Just skip it.
2301 assert(ChainNode
->getOpcode() != ISD::DELETED_NODE
&&
2302 "Deleted node left in chain");
2304 // Don't replace the results of the root node if we're doing a
2306 if (ChainNode
== NodeToMatch
&& isMorphNodeTo
)
2309 SDValue ChainVal
= SDValue(ChainNode
, ChainNode
->getNumValues()-1);
2310 if (ChainVal
.getValueType() == MVT::Glue
)
2311 ChainVal
= ChainVal
.getValue(ChainVal
->getNumValues()-2);
2312 assert(ChainVal
.getValueType() == MVT::Other
&& "Not a chain?");
2313 SelectionDAG::DAGNodeDeletedListener
NDL(
2314 *CurDAG
, [&](SDNode
*N
, SDNode
*E
) {
2315 std::replace(ChainNodesMatched
.begin(), ChainNodesMatched
.end(), N
,
2316 static_cast<SDNode
*>(nullptr));
2318 if (ChainNode
->getOpcode() != ISD::TokenFactor
)
2319 ReplaceUses(ChainVal
, InputChain
);
2321 // If the node became dead and we haven't already seen it, delete it.
2322 if (ChainNode
!= NodeToMatch
&& ChainNode
->use_empty() &&
2323 !std::count(NowDeadNodes
.begin(), NowDeadNodes
.end(), ChainNode
))
2324 NowDeadNodes
.push_back(ChainNode
);
2328 if (!NowDeadNodes
.empty())
2329 CurDAG
->RemoveDeadNodes(NowDeadNodes
);
2331 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2334 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2335 /// operation for when the pattern matched at least one node with a chains. The
2336 /// input vector contains a list of all of the chained nodes that we match. We
2337 /// must determine if this is a valid thing to cover (i.e. matching it won't
2338 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2339 /// be used as the input node chain for the generated nodes.
2341 HandleMergeInputChains(SmallVectorImpl
<SDNode
*> &ChainNodesMatched
,
2342 SelectionDAG
*CurDAG
) {
2344 SmallPtrSet
<const SDNode
*, 16> Visited
;
2345 SmallVector
<const SDNode
*, 8> Worklist
;
2346 SmallVector
<SDValue
, 3> InputChains
;
2347 unsigned int Max
= 8192;
2349 // Quick exit on trivial merge.
2350 if (ChainNodesMatched
.size() == 1)
2351 return ChainNodesMatched
[0]->getOperand(0);
2353 // Add chains that aren't already added (internal). Peek through
2355 std::function
<void(const SDValue
)> AddChains
= [&](const SDValue V
) {
2356 if (V
.getValueType() != MVT::Other
)
2358 if (V
->getOpcode() == ISD::EntryToken
)
2360 if (!Visited
.insert(V
.getNode()).second
)
2362 if (V
->getOpcode() == ISD::TokenFactor
) {
2363 for (const SDValue
&Op
: V
->op_values())
2366 InputChains
.push_back(V
);
2369 for (auto *N
: ChainNodesMatched
) {
2370 Worklist
.push_back(N
);
2374 while (!Worklist
.empty())
2375 AddChains(Worklist
.pop_back_val()->getOperand(0));
2377 // Skip the search if there are no chain dependencies.
2378 if (InputChains
.size() == 0)
2379 return CurDAG
->getEntryNode();
2381 // If one of these chains is a successor of input, we must have a
2382 // node that is both the predecessor and successor of the
2383 // to-be-merged nodes. Fail.
2385 for (SDValue V
: InputChains
)
2386 Worklist
.push_back(V
.getNode());
2388 for (auto *N
: ChainNodesMatched
)
2389 if (SDNode::hasPredecessorHelper(N
, Visited
, Worklist
, Max
, true))
2392 // Return merged chain.
2393 if (InputChains
.size() == 1)
2394 return InputChains
[0];
2395 return CurDAG
->getNode(ISD::TokenFactor
, SDLoc(ChainNodesMatched
[0]),
2396 MVT::Other
, InputChains
);
2399 /// MorphNode - Handle morphing a node in place for the selector.
2400 SDNode
*SelectionDAGISel::
2401 MorphNode(SDNode
*Node
, unsigned TargetOpc
, SDVTList VTList
,
2402 ArrayRef
<SDValue
> Ops
, unsigned EmitNodeInfo
) {
2403 // It is possible we're using MorphNodeTo to replace a node with no
2404 // normal results with one that has a normal result (or we could be
2405 // adding a chain) and the input could have glue and chains as well.
2406 // In this case we need to shift the operands down.
2407 // FIXME: This is a horrible hack and broken in obscure cases, no worse
2408 // than the old isel though.
2409 int OldGlueResultNo
= -1, OldChainResultNo
= -1;
2411 unsigned NTMNumResults
= Node
->getNumValues();
2412 if (Node
->getValueType(NTMNumResults
-1) == MVT::Glue
) {
2413 OldGlueResultNo
= NTMNumResults
-1;
2414 if (NTMNumResults
!= 1 &&
2415 Node
->getValueType(NTMNumResults
-2) == MVT::Other
)
2416 OldChainResultNo
= NTMNumResults
-2;
2417 } else if (Node
->getValueType(NTMNumResults
-1) == MVT::Other
)
2418 OldChainResultNo
= NTMNumResults
-1;
2420 // Call the underlying SelectionDAG routine to do the transmogrification. Note
2421 // that this deletes operands of the old node that become dead.
2422 SDNode
*Res
= CurDAG
->MorphNodeTo(Node
, ~TargetOpc
, VTList
, Ops
);
2424 // MorphNodeTo can operate in two ways: if an existing node with the
2425 // specified operands exists, it can just return it. Otherwise, it
2426 // updates the node in place to have the requested operands.
2428 // If we updated the node in place, reset the node ID. To the isel,
2429 // this should be just like a newly allocated machine node.
2433 unsigned ResNumResults
= Res
->getNumValues();
2434 // Move the glue if needed.
2435 if ((EmitNodeInfo
& OPFL_GlueOutput
) && OldGlueResultNo
!= -1 &&
2436 (unsigned)OldGlueResultNo
!= ResNumResults
-1)
2437 ReplaceUses(SDValue(Node
, OldGlueResultNo
),
2438 SDValue(Res
, ResNumResults
- 1));
2440 if ((EmitNodeInfo
& OPFL_GlueOutput
) != 0)
2443 // Move the chain reference if needed.
2444 if ((EmitNodeInfo
& OPFL_Chain
) && OldChainResultNo
!= -1 &&
2445 (unsigned)OldChainResultNo
!= ResNumResults
-1)
2446 ReplaceUses(SDValue(Node
, OldChainResultNo
),
2447 SDValue(Res
, ResNumResults
- 1));
2449 // Otherwise, no replacement happened because the node already exists. Replace
2450 // Uses of the old node with the new one.
2452 ReplaceNode(Node
, Res
);
2454 EnforceNodeIdInvariant(Res
);
2460 /// CheckSame - Implements OP_CheckSame.
2461 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2462 CheckSame(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2464 const SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RecordedNodes
) {
2465 // Accept if it is exactly the same as a previously recorded node.
2466 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
2467 assert(RecNo
< RecordedNodes
.size() && "Invalid CheckSame");
2468 return N
== RecordedNodes
[RecNo
].first
;
2471 /// CheckChildSame - Implements OP_CheckChildXSame.
2472 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2473 CheckChildSame(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2475 const SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RecordedNodes
,
2477 if (ChildNo
>= N
.getNumOperands())
2478 return false; // Match fails if out of range child #.
2479 return ::CheckSame(MatcherTable
, MatcherIndex
, N
.getOperand(ChildNo
),
2483 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2484 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2485 CheckPatternPredicate(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2486 const SelectionDAGISel
&SDISel
) {
2487 return SDISel
.CheckPatternPredicate(MatcherTable
[MatcherIndex
++]);
2490 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2491 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2492 CheckNodePredicate(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2493 const SelectionDAGISel
&SDISel
, SDNode
*N
) {
2494 return SDISel
.CheckNodePredicate(N
, MatcherTable
[MatcherIndex
++]);
2497 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2498 CheckOpcode(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2500 uint16_t Opc
= MatcherTable
[MatcherIndex
++];
2501 Opc
|= (unsigned short)MatcherTable
[MatcherIndex
++] << 8;
2502 return N
->getOpcode() == Opc
;
2505 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2506 CheckType(const unsigned char *MatcherTable
, unsigned &MatcherIndex
, SDValue N
,
2507 const TargetLowering
*TLI
, const DataLayout
&DL
) {
2508 MVT::SimpleValueType VT
= (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
2509 if (N
.getValueType() == VT
) return true;
2511 // Handle the case when VT is iPTR.
2512 return VT
== MVT::iPTR
&& N
.getValueType() == TLI
->getPointerTy(DL
);
2515 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2516 CheckChildType(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2517 SDValue N
, const TargetLowering
*TLI
, const DataLayout
&DL
,
2519 if (ChildNo
>= N
.getNumOperands())
2520 return false; // Match fails if out of range child #.
2521 return ::CheckType(MatcherTable
, MatcherIndex
, N
.getOperand(ChildNo
), TLI
,
2525 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2526 CheckCondCode(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2528 return cast
<CondCodeSDNode
>(N
)->get() ==
2529 (ISD::CondCode
)MatcherTable
[MatcherIndex
++];
2532 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2533 CheckChild2CondCode(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2535 if (2 >= N
.getNumOperands())
2537 return ::CheckCondCode(MatcherTable
, MatcherIndex
, N
.getOperand(2));
2540 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2541 CheckValueType(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2542 SDValue N
, const TargetLowering
*TLI
, const DataLayout
&DL
) {
2543 MVT::SimpleValueType VT
= (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
2544 if (cast
<VTSDNode
>(N
)->getVT() == VT
)
2547 // Handle the case when VT is iPTR.
2548 return VT
== MVT::iPTR
&& cast
<VTSDNode
>(N
)->getVT() == TLI
->getPointerTy(DL
);
2551 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2552 CheckInteger(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2554 int64_t Val
= MatcherTable
[MatcherIndex
++];
2556 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
2558 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
);
2559 return C
&& C
->getSExtValue() == Val
;
2562 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2563 CheckChildInteger(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2564 SDValue N
, unsigned ChildNo
) {
2565 if (ChildNo
>= N
.getNumOperands())
2566 return false; // Match fails if out of range child #.
2567 return ::CheckInteger(MatcherTable
, MatcherIndex
, N
.getOperand(ChildNo
));
2570 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2571 CheckAndImm(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2572 SDValue N
, const SelectionDAGISel
&SDISel
) {
2573 int64_t Val
= MatcherTable
[MatcherIndex
++];
2575 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
2577 if (N
->getOpcode() != ISD::AND
) return false;
2579 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
2580 return C
&& SDISel
.CheckAndMask(N
.getOperand(0), C
, Val
);
2583 LLVM_ATTRIBUTE_ALWAYS_INLINE
static inline bool
2584 CheckOrImm(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2585 SDValue N
, const SelectionDAGISel
&SDISel
) {
2586 int64_t Val
= MatcherTable
[MatcherIndex
++];
2588 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
2590 if (N
->getOpcode() != ISD::OR
) return false;
2592 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
2593 return C
&& SDISel
.CheckOrMask(N
.getOperand(0), C
, Val
);
2596 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2597 /// scope, evaluate the current node. If the current predicate is known to
2598 /// fail, set Result=true and return anything. If the current predicate is
2599 /// known to pass, set Result=false and return the MatcherIndex to continue
2600 /// with. If the current predicate is unknown, set Result=false and return the
2601 /// MatcherIndex to continue with.
2602 static unsigned IsPredicateKnownToFail(const unsigned char *Table
,
2603 unsigned Index
, SDValue N
,
2605 const SelectionDAGISel
&SDISel
,
2606 SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RecordedNodes
) {
2607 switch (Table
[Index
++]) {
2610 return Index
-1; // Could not evaluate this predicate.
2611 case SelectionDAGISel::OPC_CheckSame
:
2612 Result
= !::CheckSame(Table
, Index
, N
, RecordedNodes
);
2614 case SelectionDAGISel::OPC_CheckChild0Same
:
2615 case SelectionDAGISel::OPC_CheckChild1Same
:
2616 case SelectionDAGISel::OPC_CheckChild2Same
:
2617 case SelectionDAGISel::OPC_CheckChild3Same
:
2618 Result
= !::CheckChildSame(Table
, Index
, N
, RecordedNodes
,
2619 Table
[Index
-1] - SelectionDAGISel::OPC_CheckChild0Same
);
2621 case SelectionDAGISel::OPC_CheckPatternPredicate
:
2622 Result
= !::CheckPatternPredicate(Table
, Index
, SDISel
);
2624 case SelectionDAGISel::OPC_CheckPredicate
:
2625 Result
= !::CheckNodePredicate(Table
, Index
, SDISel
, N
.getNode());
2627 case SelectionDAGISel::OPC_CheckOpcode
:
2628 Result
= !::CheckOpcode(Table
, Index
, N
.getNode());
2630 case SelectionDAGISel::OPC_CheckType
:
2631 Result
= !::CheckType(Table
, Index
, N
, SDISel
.TLI
,
2632 SDISel
.CurDAG
->getDataLayout());
2634 case SelectionDAGISel::OPC_CheckTypeRes
: {
2635 unsigned Res
= Table
[Index
++];
2636 Result
= !::CheckType(Table
, Index
, N
.getValue(Res
), SDISel
.TLI
,
2637 SDISel
.CurDAG
->getDataLayout());
2640 case SelectionDAGISel::OPC_CheckChild0Type
:
2641 case SelectionDAGISel::OPC_CheckChild1Type
:
2642 case SelectionDAGISel::OPC_CheckChild2Type
:
2643 case SelectionDAGISel::OPC_CheckChild3Type
:
2644 case SelectionDAGISel::OPC_CheckChild4Type
:
2645 case SelectionDAGISel::OPC_CheckChild5Type
:
2646 case SelectionDAGISel::OPC_CheckChild6Type
:
2647 case SelectionDAGISel::OPC_CheckChild7Type
:
2648 Result
= !::CheckChildType(
2649 Table
, Index
, N
, SDISel
.TLI
, SDISel
.CurDAG
->getDataLayout(),
2650 Table
[Index
- 1] - SelectionDAGISel::OPC_CheckChild0Type
);
2652 case SelectionDAGISel::OPC_CheckCondCode
:
2653 Result
= !::CheckCondCode(Table
, Index
, N
);
2655 case SelectionDAGISel::OPC_CheckChild2CondCode
:
2656 Result
= !::CheckChild2CondCode(Table
, Index
, N
);
2658 case SelectionDAGISel::OPC_CheckValueType
:
2659 Result
= !::CheckValueType(Table
, Index
, N
, SDISel
.TLI
,
2660 SDISel
.CurDAG
->getDataLayout());
2662 case SelectionDAGISel::OPC_CheckInteger
:
2663 Result
= !::CheckInteger(Table
, Index
, N
);
2665 case SelectionDAGISel::OPC_CheckChild0Integer
:
2666 case SelectionDAGISel::OPC_CheckChild1Integer
:
2667 case SelectionDAGISel::OPC_CheckChild2Integer
:
2668 case SelectionDAGISel::OPC_CheckChild3Integer
:
2669 case SelectionDAGISel::OPC_CheckChild4Integer
:
2670 Result
= !::CheckChildInteger(Table
, Index
, N
,
2671 Table
[Index
-1] - SelectionDAGISel::OPC_CheckChild0Integer
);
2673 case SelectionDAGISel::OPC_CheckAndImm
:
2674 Result
= !::CheckAndImm(Table
, Index
, N
, SDISel
);
2676 case SelectionDAGISel::OPC_CheckOrImm
:
2677 Result
= !::CheckOrImm(Table
, Index
, N
, SDISel
);
2685 /// FailIndex - If this match fails, this is the index to continue with.
2688 /// NodeStack - The node stack when the scope was formed.
2689 SmallVector
<SDValue
, 4> NodeStack
;
2691 /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2692 unsigned NumRecordedNodes
;
2694 /// NumMatchedMemRefs - The number of matched memref entries.
2695 unsigned NumMatchedMemRefs
;
2697 /// InputChain/InputGlue - The current chain/glue
2698 SDValue InputChain
, InputGlue
;
2700 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2701 bool HasChainNodesMatched
;
2704 /// \A DAG update listener to keep the matching state
2705 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2706 /// change the DAG while matching. X86 addressing mode matcher is an example
2708 class MatchStateUpdater
: public SelectionDAG::DAGUpdateListener
2710 SDNode
**NodeToMatch
;
2711 SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RecordedNodes
;
2712 SmallVectorImpl
<MatchScope
> &MatchScopes
;
2715 MatchStateUpdater(SelectionDAG
&DAG
, SDNode
**NodeToMatch
,
2716 SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RN
,
2717 SmallVectorImpl
<MatchScope
> &MS
)
2718 : SelectionDAG::DAGUpdateListener(DAG
), NodeToMatch(NodeToMatch
),
2719 RecordedNodes(RN
), MatchScopes(MS
) {}
2721 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{
2722 // Some early-returns here to avoid the search if we deleted the node or
2723 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2724 // do, so it's unnecessary to update matching state at that point).
2725 // Neither of these can occur currently because we only install this
2726 // update listener during matching a complex patterns.
2727 if (!E
|| E
->isMachineOpcode())
2729 // Check if NodeToMatch was updated.
2730 if (N
== *NodeToMatch
)
2732 // Performing linear search here does not matter because we almost never
2733 // run this code. You'd have to have a CSE during complex pattern
2735 for (auto &I
: RecordedNodes
)
2736 if (I
.first
.getNode() == N
)
2739 for (auto &I
: MatchScopes
)
2740 for (auto &J
: I
.NodeStack
)
2741 if (J
.getNode() == N
)
2746 } // end anonymous namespace
2748 void SelectionDAGISel::SelectCodeCommon(SDNode
*NodeToMatch
,
2749 const unsigned char *MatcherTable
,
2750 unsigned TableSize
) {
2751 // FIXME: Should these even be selected? Handle these cases in the caller?
2752 switch (NodeToMatch
->getOpcode()) {
2755 case ISD::EntryToken
: // These nodes remain the same.
2756 case ISD::BasicBlock
:
2758 case ISD::RegisterMask
:
2759 case ISD::HANDLENODE
:
2760 case ISD::MDNODE_SDNODE
:
2761 case ISD::TargetConstant
:
2762 case ISD::TargetConstantFP
:
2763 case ISD::TargetConstantPool
:
2764 case ISD::TargetFrameIndex
:
2765 case ISD::TargetExternalSymbol
:
2767 case ISD::TargetBlockAddress
:
2768 case ISD::TargetJumpTable
:
2769 case ISD::TargetGlobalTLSAddress
:
2770 case ISD::TargetGlobalAddress
:
2771 case ISD::TokenFactor
:
2772 case ISD::CopyFromReg
:
2773 case ISD::CopyToReg
:
2775 case ISD::ANNOTATION_LABEL
:
2776 case ISD::LIFETIME_START
:
2777 case ISD::LIFETIME_END
:
2778 NodeToMatch
->setNodeId(-1); // Mark selected.
2780 case ISD::AssertSext
:
2781 case ISD::AssertZext
:
2782 ReplaceUses(SDValue(NodeToMatch
, 0), NodeToMatch
->getOperand(0));
2783 CurDAG
->RemoveDeadNode(NodeToMatch
);
2785 case ISD::INLINEASM
:
2786 case ISD::INLINEASM_BR
:
2787 Select_INLINEASM(NodeToMatch
,
2788 NodeToMatch
->getOpcode() == ISD::INLINEASM_BR
);
2790 case ISD::READ_REGISTER
:
2791 Select_READ_REGISTER(NodeToMatch
);
2793 case ISD::WRITE_REGISTER
:
2794 Select_WRITE_REGISTER(NodeToMatch
);
2797 Select_UNDEF(NodeToMatch
);
2801 assert(!NodeToMatch
->isMachineOpcode() && "Node already selected!");
2803 // Set up the node stack with NodeToMatch as the only node on the stack.
2804 SmallVector
<SDValue
, 8> NodeStack
;
2805 SDValue N
= SDValue(NodeToMatch
, 0);
2806 NodeStack
.push_back(N
);
2808 // MatchScopes - Scopes used when matching, if a match failure happens, this
2809 // indicates where to continue checking.
2810 SmallVector
<MatchScope
, 8> MatchScopes
;
2812 // RecordedNodes - This is the set of nodes that have been recorded by the
2813 // state machine. The second value is the parent of the node, or null if the
2814 // root is recorded.
2815 SmallVector
<std::pair
<SDValue
, SDNode
*>, 8> RecordedNodes
;
2817 // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2819 SmallVector
<MachineMemOperand
*, 2> MatchedMemRefs
;
2821 // These are the current input chain and glue for use when generating nodes.
2822 // Various Emit operations change these. For example, emitting a copytoreg
2823 // uses and updates these.
2824 SDValue InputChain
, InputGlue
;
2826 // ChainNodesMatched - If a pattern matches nodes that have input/output
2827 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2828 // which ones they are. The result is captured into this list so that we can
2829 // update the chain results when the pattern is complete.
2830 SmallVector
<SDNode
*, 3> ChainNodesMatched
;
2832 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
2834 // Determine where to start the interpreter. Normally we start at opcode #0,
2835 // but if the state machine starts with an OPC_SwitchOpcode, then we
2836 // accelerate the first lookup (which is guaranteed to be hot) with the
2837 // OpcodeOffset table.
2838 unsigned MatcherIndex
= 0;
2840 if (!OpcodeOffset
.empty()) {
2841 // Already computed the OpcodeOffset table, just index into it.
2842 if (N
.getOpcode() < OpcodeOffset
.size())
2843 MatcherIndex
= OpcodeOffset
[N
.getOpcode()];
2844 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex
<< "\n");
2846 } else if (MatcherTable
[0] == OPC_SwitchOpcode
) {
2847 // Otherwise, the table isn't computed, but the state machine does start
2848 // with an OPC_SwitchOpcode instruction. Populate the table now, since this
2849 // is the first time we're selecting an instruction.
2852 // Get the size of this case.
2853 unsigned CaseSize
= MatcherTable
[Idx
++];
2855 CaseSize
= GetVBR(CaseSize
, MatcherTable
, Idx
);
2856 if (CaseSize
== 0) break;
2858 // Get the opcode, add the index to the table.
2859 uint16_t Opc
= MatcherTable
[Idx
++];
2860 Opc
|= (unsigned short)MatcherTable
[Idx
++] << 8;
2861 if (Opc
>= OpcodeOffset
.size())
2862 OpcodeOffset
.resize((Opc
+1)*2);
2863 OpcodeOffset
[Opc
] = Idx
;
2867 // Okay, do the lookup for the first opcode.
2868 if (N
.getOpcode() < OpcodeOffset
.size())
2869 MatcherIndex
= OpcodeOffset
[N
.getOpcode()];
2873 assert(MatcherIndex
< TableSize
&& "Invalid index");
2875 unsigned CurrentOpcodeIndex
= MatcherIndex
;
2877 BuiltinOpcodes Opcode
= (BuiltinOpcodes
)MatcherTable
[MatcherIndex
++];
2880 // Okay, the semantics of this operation are that we should push a scope
2881 // then evaluate the first child. However, pushing a scope only to have
2882 // the first check fail (which then pops it) is inefficient. If we can
2883 // determine immediately that the first check (or first several) will
2884 // immediately fail, don't even bother pushing a scope for them.
2888 unsigned NumToSkip
= MatcherTable
[MatcherIndex
++];
2889 if (NumToSkip
& 128)
2890 NumToSkip
= GetVBR(NumToSkip
, MatcherTable
, MatcherIndex
);
2891 // Found the end of the scope with no match.
2892 if (NumToSkip
== 0) {
2897 FailIndex
= MatcherIndex
+NumToSkip
;
2899 unsigned MatcherIndexOfPredicate
= MatcherIndex
;
2900 (void)MatcherIndexOfPredicate
; // silence warning.
2902 // If we can't evaluate this predicate without pushing a scope (e.g. if
2903 // it is a 'MoveParent') or if the predicate succeeds on this node, we
2904 // push the scope and evaluate the full predicate chain.
2906 MatcherIndex
= IsPredicateKnownToFail(MatcherTable
, MatcherIndex
, N
,
2907 Result
, *this, RecordedNodes
);
2912 dbgs() << " Skipped scope entry (due to false predicate) at "
2913 << "index " << MatcherIndexOfPredicate
<< ", continuing at "
2914 << FailIndex
<< "\n");
2915 ++NumDAGIselRetries
;
2917 // Otherwise, we know that this case of the Scope is guaranteed to fail,
2918 // move to the next case.
2919 MatcherIndex
= FailIndex
;
2922 // If the whole scope failed to match, bail.
2923 if (FailIndex
== 0) break;
2925 // Push a MatchScope which indicates where to go if the first child fails
2927 MatchScope NewEntry
;
2928 NewEntry
.FailIndex
= FailIndex
;
2929 NewEntry
.NodeStack
.append(NodeStack
.begin(), NodeStack
.end());
2930 NewEntry
.NumRecordedNodes
= RecordedNodes
.size();
2931 NewEntry
.NumMatchedMemRefs
= MatchedMemRefs
.size();
2932 NewEntry
.InputChain
= InputChain
;
2933 NewEntry
.InputGlue
= InputGlue
;
2934 NewEntry
.HasChainNodesMatched
= !ChainNodesMatched
.empty();
2935 MatchScopes
.push_back(NewEntry
);
2938 case OPC_RecordNode
: {
2939 // Remember this node, it may end up being an operand in the pattern.
2940 SDNode
*Parent
= nullptr;
2941 if (NodeStack
.size() > 1)
2942 Parent
= NodeStack
[NodeStack
.size()-2].getNode();
2943 RecordedNodes
.push_back(std::make_pair(N
, Parent
));
2947 case OPC_RecordChild0
: case OPC_RecordChild1
:
2948 case OPC_RecordChild2
: case OPC_RecordChild3
:
2949 case OPC_RecordChild4
: case OPC_RecordChild5
:
2950 case OPC_RecordChild6
: case OPC_RecordChild7
: {
2951 unsigned ChildNo
= Opcode
-OPC_RecordChild0
;
2952 if (ChildNo
>= N
.getNumOperands())
2953 break; // Match fails if out of range child #.
2955 RecordedNodes
.push_back(std::make_pair(N
->getOperand(ChildNo
),
2959 case OPC_RecordMemRef
:
2960 if (auto *MN
= dyn_cast
<MemSDNode
>(N
))
2961 MatchedMemRefs
.push_back(MN
->getMemOperand());
2963 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N
->dump(CurDAG
);
2969 case OPC_CaptureGlueInput
:
2970 // If the current node has an input glue, capture it in InputGlue.
2971 if (N
->getNumOperands() != 0 &&
2972 N
->getOperand(N
->getNumOperands()-1).getValueType() == MVT::Glue
)
2973 InputGlue
= N
->getOperand(N
->getNumOperands()-1);
2976 case OPC_MoveChild
: {
2977 unsigned ChildNo
= MatcherTable
[MatcherIndex
++];
2978 if (ChildNo
>= N
.getNumOperands())
2979 break; // Match fails if out of range child #.
2980 N
= N
.getOperand(ChildNo
);
2981 NodeStack
.push_back(N
);
2985 case OPC_MoveChild0
: case OPC_MoveChild1
:
2986 case OPC_MoveChild2
: case OPC_MoveChild3
:
2987 case OPC_MoveChild4
: case OPC_MoveChild5
:
2988 case OPC_MoveChild6
: case OPC_MoveChild7
: {
2989 unsigned ChildNo
= Opcode
-OPC_MoveChild0
;
2990 if (ChildNo
>= N
.getNumOperands())
2991 break; // Match fails if out of range child #.
2992 N
= N
.getOperand(ChildNo
);
2993 NodeStack
.push_back(N
);
2997 case OPC_MoveParent
:
2998 // Pop the current node off the NodeStack.
2999 NodeStack
.pop_back();
3000 assert(!NodeStack
.empty() && "Node stack imbalance!");
3001 N
= NodeStack
.back();
3005 if (!::CheckSame(MatcherTable
, MatcherIndex
, N
, RecordedNodes
)) break;
3008 case OPC_CheckChild0Same
: case OPC_CheckChild1Same
:
3009 case OPC_CheckChild2Same
: case OPC_CheckChild3Same
:
3010 if (!::CheckChildSame(MatcherTable
, MatcherIndex
, N
, RecordedNodes
,
3011 Opcode
-OPC_CheckChild0Same
))
3015 case OPC_CheckPatternPredicate
:
3016 if (!::CheckPatternPredicate(MatcherTable
, MatcherIndex
, *this)) break;
3018 case OPC_CheckPredicate
:
3019 if (!::CheckNodePredicate(MatcherTable
, MatcherIndex
, *this,
3023 case OPC_CheckPredicateWithOperands
: {
3024 unsigned OpNum
= MatcherTable
[MatcherIndex
++];
3025 SmallVector
<SDValue
, 8> Operands
;
3027 for (unsigned i
= 0; i
< OpNum
; ++i
)
3028 Operands
.push_back(RecordedNodes
[MatcherTable
[MatcherIndex
++]].first
);
3030 unsigned PredNo
= MatcherTable
[MatcherIndex
++];
3031 if (!CheckNodePredicateWithOperands(N
.getNode(), PredNo
, Operands
))
3035 case OPC_CheckComplexPat
: {
3036 unsigned CPNum
= MatcherTable
[MatcherIndex
++];
3037 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3038 assert(RecNo
< RecordedNodes
.size() && "Invalid CheckComplexPat");
3040 // If target can modify DAG during matching, keep the matching state
3042 std::unique_ptr
<MatchStateUpdater
> MSU
;
3043 if (ComplexPatternFuncMutatesDAG())
3044 MSU
.reset(new MatchStateUpdater(*CurDAG
, &NodeToMatch
, RecordedNodes
,
3047 if (!CheckComplexPattern(NodeToMatch
, RecordedNodes
[RecNo
].second
,
3048 RecordedNodes
[RecNo
].first
, CPNum
,
3053 case OPC_CheckOpcode
:
3054 if (!::CheckOpcode(MatcherTable
, MatcherIndex
, N
.getNode())) break;
3058 if (!::CheckType(MatcherTable
, MatcherIndex
, N
, TLI
,
3059 CurDAG
->getDataLayout()))
3063 case OPC_CheckTypeRes
: {
3064 unsigned Res
= MatcherTable
[MatcherIndex
++];
3065 if (!::CheckType(MatcherTable
, MatcherIndex
, N
.getValue(Res
), TLI
,
3066 CurDAG
->getDataLayout()))
3071 case OPC_SwitchOpcode
: {
3072 unsigned CurNodeOpcode
= N
.getOpcode();
3073 unsigned SwitchStart
= MatcherIndex
-1; (void)SwitchStart
;
3076 // Get the size of this case.
3077 CaseSize
= MatcherTable
[MatcherIndex
++];
3079 CaseSize
= GetVBR(CaseSize
, MatcherTable
, MatcherIndex
);
3080 if (CaseSize
== 0) break;
3082 uint16_t Opc
= MatcherTable
[MatcherIndex
++];
3083 Opc
|= (unsigned short)MatcherTable
[MatcherIndex
++] << 8;
3085 // If the opcode matches, then we will execute this case.
3086 if (CurNodeOpcode
== Opc
)
3089 // Otherwise, skip over this case.
3090 MatcherIndex
+= CaseSize
;
3093 // If no cases matched, bail out.
3094 if (CaseSize
== 0) break;
3096 // Otherwise, execute the case we found.
3097 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart
<< " to "
3098 << MatcherIndex
<< "\n");
3102 case OPC_SwitchType
: {
3103 MVT CurNodeVT
= N
.getSimpleValueType();
3104 unsigned SwitchStart
= MatcherIndex
-1; (void)SwitchStart
;
3107 // Get the size of this case.
3108 CaseSize
= MatcherTable
[MatcherIndex
++];
3110 CaseSize
= GetVBR(CaseSize
, MatcherTable
, MatcherIndex
);
3111 if (CaseSize
== 0) break;
3113 MVT CaseVT
= (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
3114 if (CaseVT
== MVT::iPTR
)
3115 CaseVT
= TLI
->getPointerTy(CurDAG
->getDataLayout());
3117 // If the VT matches, then we will execute this case.
3118 if (CurNodeVT
== CaseVT
)
3121 // Otherwise, skip over this case.
3122 MatcherIndex
+= CaseSize
;
3125 // If no cases matched, bail out.
3126 if (CaseSize
== 0) break;
3128 // Otherwise, execute the case we found.
3129 LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT
).getEVTString()
3130 << "] from " << SwitchStart
<< " to " << MatcherIndex
3134 case OPC_CheckChild0Type
: case OPC_CheckChild1Type
:
3135 case OPC_CheckChild2Type
: case OPC_CheckChild3Type
:
3136 case OPC_CheckChild4Type
: case OPC_CheckChild5Type
:
3137 case OPC_CheckChild6Type
: case OPC_CheckChild7Type
:
3138 if (!::CheckChildType(MatcherTable
, MatcherIndex
, N
, TLI
,
3139 CurDAG
->getDataLayout(),
3140 Opcode
- OPC_CheckChild0Type
))
3143 case OPC_CheckCondCode
:
3144 if (!::CheckCondCode(MatcherTable
, MatcherIndex
, N
)) break;
3146 case OPC_CheckChild2CondCode
:
3147 if (!::CheckChild2CondCode(MatcherTable
, MatcherIndex
, N
)) break;
3149 case OPC_CheckValueType
:
3150 if (!::CheckValueType(MatcherTable
, MatcherIndex
, N
, TLI
,
3151 CurDAG
->getDataLayout()))
3154 case OPC_CheckInteger
:
3155 if (!::CheckInteger(MatcherTable
, MatcherIndex
, N
)) break;
3157 case OPC_CheckChild0Integer
: case OPC_CheckChild1Integer
:
3158 case OPC_CheckChild2Integer
: case OPC_CheckChild3Integer
:
3159 case OPC_CheckChild4Integer
:
3160 if (!::CheckChildInteger(MatcherTable
, MatcherIndex
, N
,
3161 Opcode
-OPC_CheckChild0Integer
)) break;
3163 case OPC_CheckAndImm
:
3164 if (!::CheckAndImm(MatcherTable
, MatcherIndex
, N
, *this)) break;
3166 case OPC_CheckOrImm
:
3167 if (!::CheckOrImm(MatcherTable
, MatcherIndex
, N
, *this)) break;
3169 case OPC_CheckImmAllOnesV
:
3170 if (!ISD::isBuildVectorAllOnes(N
.getNode())) break;
3172 case OPC_CheckImmAllZerosV
:
3173 if (!ISD::isBuildVectorAllZeros(N
.getNode())) break;
3176 case OPC_CheckFoldableChainNode
: {
3177 assert(NodeStack
.size() != 1 && "No parent node");
3178 // Verify that all intermediate nodes between the root and this one have
3180 bool HasMultipleUses
= false;
3181 for (unsigned i
= 1, e
= NodeStack
.size()-1; i
!= e
; ++i
)
3182 if (!NodeStack
[i
].getNode()->hasOneUse()) {
3183 HasMultipleUses
= true;
3186 if (HasMultipleUses
) break;
3188 // Check to see that the target thinks this is profitable to fold and that
3189 // we can fold it without inducing cycles in the graph.
3190 if (!IsProfitableToFold(N
, NodeStack
[NodeStack
.size()-2].getNode(),
3192 !IsLegalToFold(N
, NodeStack
[NodeStack
.size()-2].getNode(),
3193 NodeToMatch
, OptLevel
,
3194 true/*We validate our own chains*/))
3199 case OPC_EmitInteger
: {
3200 MVT::SimpleValueType VT
=
3201 (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
3202 int64_t Val
= MatcherTable
[MatcherIndex
++];
3204 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
3205 RecordedNodes
.push_back(std::pair
<SDValue
, SDNode
*>(
3206 CurDAG
->getTargetConstant(Val
, SDLoc(NodeToMatch
),
3210 case OPC_EmitRegister
: {
3211 MVT::SimpleValueType VT
=
3212 (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
3213 unsigned RegNo
= MatcherTable
[MatcherIndex
++];
3214 RecordedNodes
.push_back(std::pair
<SDValue
, SDNode
*>(
3215 CurDAG
->getRegister(RegNo
, VT
), nullptr));
3218 case OPC_EmitRegister2
: {
3219 // For targets w/ more than 256 register names, the register enum
3220 // values are stored in two bytes in the matcher table (just like
3222 MVT::SimpleValueType VT
=
3223 (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
3224 unsigned RegNo
= MatcherTable
[MatcherIndex
++];
3225 RegNo
|= MatcherTable
[MatcherIndex
++] << 8;
3226 RecordedNodes
.push_back(std::pair
<SDValue
, SDNode
*>(
3227 CurDAG
->getRegister(RegNo
, VT
), nullptr));
3231 case OPC_EmitConvertToTarget
: {
3232 // Convert from IMM/FPIMM to target version.
3233 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3234 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitConvertToTarget");
3235 SDValue Imm
= RecordedNodes
[RecNo
].first
;
3237 if (Imm
->getOpcode() == ISD::Constant
) {
3238 const ConstantInt
*Val
=cast
<ConstantSDNode
>(Imm
)->getConstantIntValue();
3239 Imm
= CurDAG
->getTargetConstant(*Val
, SDLoc(NodeToMatch
),
3240 Imm
.getValueType());
3241 } else if (Imm
->getOpcode() == ISD::ConstantFP
) {
3242 const ConstantFP
*Val
=cast
<ConstantFPSDNode
>(Imm
)->getConstantFPValue();
3243 Imm
= CurDAG
->getTargetConstantFP(*Val
, SDLoc(NodeToMatch
),
3244 Imm
.getValueType());
3247 RecordedNodes
.push_back(std::make_pair(Imm
, RecordedNodes
[RecNo
].second
));
3251 case OPC_EmitMergeInputChains1_0
: // OPC_EmitMergeInputChains, 1, 0
3252 case OPC_EmitMergeInputChains1_1
: // OPC_EmitMergeInputChains, 1, 1
3253 case OPC_EmitMergeInputChains1_2
: { // OPC_EmitMergeInputChains, 1, 2
3254 // These are space-optimized forms of OPC_EmitMergeInputChains.
3255 assert(!InputChain
.getNode() &&
3256 "EmitMergeInputChains should be the first chain producing node");
3257 assert(ChainNodesMatched
.empty() &&
3258 "Should only have one EmitMergeInputChains per match");
3260 // Read all of the chained nodes.
3261 unsigned RecNo
= Opcode
- OPC_EmitMergeInputChains1_0
;
3262 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitMergeInputChains");
3263 ChainNodesMatched
.push_back(RecordedNodes
[RecNo
].first
.getNode());
3265 // FIXME: What if other value results of the node have uses not matched
3267 if (ChainNodesMatched
.back() != NodeToMatch
&&
3268 !RecordedNodes
[RecNo
].first
.hasOneUse()) {
3269 ChainNodesMatched
.clear();
3273 // Merge the input chains if they are not intra-pattern references.
3274 InputChain
= HandleMergeInputChains(ChainNodesMatched
, CurDAG
);
3276 if (!InputChain
.getNode())
3277 break; // Failed to merge.
3281 case OPC_EmitMergeInputChains
: {
3282 assert(!InputChain
.getNode() &&
3283 "EmitMergeInputChains should be the first chain producing node");
3284 // This node gets a list of nodes we matched in the input that have
3285 // chains. We want to token factor all of the input chains to these nodes
3286 // together. However, if any of the input chains is actually one of the
3287 // nodes matched in this pattern, then we have an intra-match reference.
3288 // Ignore these because the newly token factored chain should not refer to
3290 unsigned NumChains
= MatcherTable
[MatcherIndex
++];
3291 assert(NumChains
!= 0 && "Can't TF zero chains");
3293 assert(ChainNodesMatched
.empty() &&
3294 "Should only have one EmitMergeInputChains per match");
3296 // Read all of the chained nodes.
3297 for (unsigned i
= 0; i
!= NumChains
; ++i
) {
3298 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3299 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitMergeInputChains");
3300 ChainNodesMatched
.push_back(RecordedNodes
[RecNo
].first
.getNode());
3302 // FIXME: What if other value results of the node have uses not matched
3304 if (ChainNodesMatched
.back() != NodeToMatch
&&
3305 !RecordedNodes
[RecNo
].first
.hasOneUse()) {
3306 ChainNodesMatched
.clear();
3311 // If the inner loop broke out, the match fails.
3312 if (ChainNodesMatched
.empty())
3315 // Merge the input chains if they are not intra-pattern references.
3316 InputChain
= HandleMergeInputChains(ChainNodesMatched
, CurDAG
);
3318 if (!InputChain
.getNode())
3319 break; // Failed to merge.
3324 case OPC_EmitCopyToReg
:
3325 case OPC_EmitCopyToReg2
: {
3326 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3327 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitCopyToReg");
3328 unsigned DestPhysReg
= MatcherTable
[MatcherIndex
++];
3329 if (Opcode
== OPC_EmitCopyToReg2
)
3330 DestPhysReg
|= MatcherTable
[MatcherIndex
++] << 8;
3332 if (!InputChain
.getNode())
3333 InputChain
= CurDAG
->getEntryNode();
3335 InputChain
= CurDAG
->getCopyToReg(InputChain
, SDLoc(NodeToMatch
),
3336 DestPhysReg
, RecordedNodes
[RecNo
].first
,
3339 InputGlue
= InputChain
.getValue(1);
3343 case OPC_EmitNodeXForm
: {
3344 unsigned XFormNo
= MatcherTable
[MatcherIndex
++];
3345 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3346 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitNodeXForm");
3347 SDValue Res
= RunSDNodeXForm(RecordedNodes
[RecNo
].first
, XFormNo
);
3348 RecordedNodes
.push_back(std::pair
<SDValue
,SDNode
*>(Res
, nullptr));
3351 case OPC_Coverage
: {
3352 // This is emitted right before MorphNode/EmitNode.
3353 // So it should be safe to assume that this node has been selected
3354 unsigned index
= MatcherTable
[MatcherIndex
++];
3355 index
|= (MatcherTable
[MatcherIndex
++] << 8);
3356 dbgs() << "COVERED: " << getPatternForIndex(index
) << "\n";
3357 dbgs() << "INCLUDED: " << getIncludePathForIndex(index
) << "\n";
3361 case OPC_EmitNode
: case OPC_MorphNodeTo
:
3362 case OPC_EmitNode0
: case OPC_EmitNode1
: case OPC_EmitNode2
:
3363 case OPC_MorphNodeTo0
: case OPC_MorphNodeTo1
: case OPC_MorphNodeTo2
: {
3364 uint16_t TargetOpc
= MatcherTable
[MatcherIndex
++];
3365 TargetOpc
|= (unsigned short)MatcherTable
[MatcherIndex
++] << 8;
3366 unsigned EmitNodeInfo
= MatcherTable
[MatcherIndex
++];
3367 // Get the result VT list.
3369 // If this is one of the compressed forms, get the number of VTs based
3370 // on the Opcode. Otherwise read the next byte from the table.
3371 if (Opcode
>= OPC_MorphNodeTo0
&& Opcode
<= OPC_MorphNodeTo2
)
3372 NumVTs
= Opcode
- OPC_MorphNodeTo0
;
3373 else if (Opcode
>= OPC_EmitNode0
&& Opcode
<= OPC_EmitNode2
)
3374 NumVTs
= Opcode
- OPC_EmitNode0
;
3376 NumVTs
= MatcherTable
[MatcherIndex
++];
3377 SmallVector
<EVT
, 4> VTs
;
3378 for (unsigned i
= 0; i
!= NumVTs
; ++i
) {
3379 MVT::SimpleValueType VT
=
3380 (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
3381 if (VT
== MVT::iPTR
)
3382 VT
= TLI
->getPointerTy(CurDAG
->getDataLayout()).SimpleTy
;
3386 if (EmitNodeInfo
& OPFL_Chain
)
3387 VTs
.push_back(MVT::Other
);
3388 if (EmitNodeInfo
& OPFL_GlueOutput
)
3389 VTs
.push_back(MVT::Glue
);
3391 // This is hot code, so optimize the two most common cases of 1 and 2
3394 if (VTs
.size() == 1)
3395 VTList
= CurDAG
->getVTList(VTs
[0]);
3396 else if (VTs
.size() == 2)
3397 VTList
= CurDAG
->getVTList(VTs
[0], VTs
[1]);
3399 VTList
= CurDAG
->getVTList(VTs
);
3401 // Get the operand list.
3402 unsigned NumOps
= MatcherTable
[MatcherIndex
++];
3403 SmallVector
<SDValue
, 8> Ops
;
3404 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
3405 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3407 RecNo
= GetVBR(RecNo
, MatcherTable
, MatcherIndex
);
3409 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitNode");
3410 Ops
.push_back(RecordedNodes
[RecNo
].first
);
3413 // If there are variadic operands to add, handle them now.
3414 if (EmitNodeInfo
& OPFL_VariadicInfo
) {
3415 // Determine the start index to copy from.
3416 unsigned FirstOpToCopy
= getNumFixedFromVariadicInfo(EmitNodeInfo
);
3417 FirstOpToCopy
+= (EmitNodeInfo
& OPFL_Chain
) ? 1 : 0;
3418 assert(NodeToMatch
->getNumOperands() >= FirstOpToCopy
&&
3419 "Invalid variadic node");
3420 // Copy all of the variadic operands, not including a potential glue
3422 for (unsigned i
= FirstOpToCopy
, e
= NodeToMatch
->getNumOperands();
3424 SDValue V
= NodeToMatch
->getOperand(i
);
3425 if (V
.getValueType() == MVT::Glue
) break;
3430 // If this has chain/glue inputs, add them.
3431 if (EmitNodeInfo
& OPFL_Chain
)
3432 Ops
.push_back(InputChain
);
3433 if ((EmitNodeInfo
& OPFL_GlueInput
) && InputGlue
.getNode() != nullptr)
3434 Ops
.push_back(InputGlue
);
3437 MachineSDNode
*Res
= nullptr;
3438 bool IsMorphNodeTo
= Opcode
== OPC_MorphNodeTo
||
3439 (Opcode
>= OPC_MorphNodeTo0
&& Opcode
<= OPC_MorphNodeTo2
);
3440 if (!IsMorphNodeTo
) {
3441 // If this is a normal EmitNode command, just create the new node and
3442 // add the results to the RecordedNodes list.
3443 Res
= CurDAG
->getMachineNode(TargetOpc
, SDLoc(NodeToMatch
),
3446 // Add all the non-glue/non-chain results to the RecordedNodes list.
3447 for (unsigned i
= 0, e
= VTs
.size(); i
!= e
; ++i
) {
3448 if (VTs
[i
] == MVT::Other
|| VTs
[i
] == MVT::Glue
) break;
3449 RecordedNodes
.push_back(std::pair
<SDValue
,SDNode
*>(SDValue(Res
, i
),
3453 assert(NodeToMatch
->getOpcode() != ISD::DELETED_NODE
&&
3454 "NodeToMatch was removed partway through selection");
3455 SelectionDAG::DAGNodeDeletedListener
NDL(*CurDAG
, [&](SDNode
*N
,
3457 CurDAG
->salvageDebugInfo(*N
);
3458 auto &Chain
= ChainNodesMatched
;
3459 assert((!E
|| !is_contained(Chain
, N
)) &&
3460 "Chain node replaced during MorphNode");
3461 Chain
.erase(std::remove(Chain
.begin(), Chain
.end(), N
), Chain
.end());
3463 Res
= cast
<MachineSDNode
>(MorphNode(NodeToMatch
, TargetOpc
, VTList
,
3464 Ops
, EmitNodeInfo
));
3467 // If the node had chain/glue results, update our notion of the current
3469 if (EmitNodeInfo
& OPFL_GlueOutput
) {
3470 InputGlue
= SDValue(Res
, VTs
.size()-1);
3471 if (EmitNodeInfo
& OPFL_Chain
)
3472 InputChain
= SDValue(Res
, VTs
.size()-2);
3473 } else if (EmitNodeInfo
& OPFL_Chain
)
3474 InputChain
= SDValue(Res
, VTs
.size()-1);
3476 // If the OPFL_MemRefs glue is set on this node, slap all of the
3477 // accumulated memrefs onto it.
3479 // FIXME: This is vastly incorrect for patterns with multiple outputs
3480 // instructions that access memory and for ComplexPatterns that match
3482 if (EmitNodeInfo
& OPFL_MemRefs
) {
3483 // Only attach load or store memory operands if the generated
3484 // instruction may load or store.
3485 const MCInstrDesc
&MCID
= TII
->get(TargetOpc
);
3486 bool mayLoad
= MCID
.mayLoad();
3487 bool mayStore
= MCID
.mayStore();
3489 // We expect to have relatively few of these so just filter them into a
3490 // temporary buffer so that we can easily add them to the instruction.
3491 SmallVector
<MachineMemOperand
*, 4> FilteredMemRefs
;
3492 for (MachineMemOperand
*MMO
: MatchedMemRefs
) {
3493 if (MMO
->isLoad()) {
3495 FilteredMemRefs
.push_back(MMO
);
3496 } else if (MMO
->isStore()) {
3498 FilteredMemRefs
.push_back(MMO
);
3500 FilteredMemRefs
.push_back(MMO
);
3504 CurDAG
->setNodeMemRefs(Res
, FilteredMemRefs
);
3507 LLVM_DEBUG(if (!MatchedMemRefs
.empty() && Res
->memoperands_empty()) dbgs()
3508 << " Dropping mem operands\n";
3509 dbgs() << " " << (IsMorphNodeTo
? "Morphed" : "Created")
3511 Res
->dump(CurDAG
););
3513 // If this was a MorphNodeTo then we're completely done!
3514 if (IsMorphNodeTo
) {
3515 // Update chain uses.
3516 UpdateChains(Res
, InputChain
, ChainNodesMatched
, true);
3522 case OPC_CompleteMatch
: {
3523 // The match has been completed, and any new nodes (if any) have been
3524 // created. Patch up references to the matched dag to use the newly
3526 unsigned NumResults
= MatcherTable
[MatcherIndex
++];
3528 for (unsigned i
= 0; i
!= NumResults
; ++i
) {
3529 unsigned ResSlot
= MatcherTable
[MatcherIndex
++];
3531 ResSlot
= GetVBR(ResSlot
, MatcherTable
, MatcherIndex
);
3533 assert(ResSlot
< RecordedNodes
.size() && "Invalid CompleteMatch");
3534 SDValue Res
= RecordedNodes
[ResSlot
].first
;
3536 assert(i
< NodeToMatch
->getNumValues() &&
3537 NodeToMatch
->getValueType(i
) != MVT::Other
&&
3538 NodeToMatch
->getValueType(i
) != MVT::Glue
&&
3539 "Invalid number of results to complete!");
3540 assert((NodeToMatch
->getValueType(i
) == Res
.getValueType() ||
3541 NodeToMatch
->getValueType(i
) == MVT::iPTR
||
3542 Res
.getValueType() == MVT::iPTR
||
3543 NodeToMatch
->getValueType(i
).getSizeInBits() ==
3544 Res
.getValueSizeInBits()) &&
3545 "invalid replacement");
3546 ReplaceUses(SDValue(NodeToMatch
, i
), Res
);
3549 // Update chain uses.
3550 UpdateChains(NodeToMatch
, InputChain
, ChainNodesMatched
, false);
3552 // If the root node defines glue, we need to update it to the glue result.
3553 // TODO: This never happens in our tests and I think it can be removed /
3554 // replaced with an assert, but if we do it this the way the change is
3556 if (NodeToMatch
->getValueType(NodeToMatch
->getNumValues() - 1) ==
3558 InputGlue
.getNode())
3559 ReplaceUses(SDValue(NodeToMatch
, NodeToMatch
->getNumValues() - 1),
3562 assert(NodeToMatch
->use_empty() &&
3563 "Didn't replace all uses of the node?");
3564 CurDAG
->RemoveDeadNode(NodeToMatch
);
3570 // If the code reached this point, then the match failed. See if there is
3571 // another child to try in the current 'Scope', otherwise pop it until we
3572 // find a case to check.
3573 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex
3575 ++NumDAGIselRetries
;
3577 if (MatchScopes
.empty()) {
3578 CannotYetSelect(NodeToMatch
);
3582 // Restore the interpreter state back to the point where the scope was
3584 MatchScope
&LastScope
= MatchScopes
.back();
3585 RecordedNodes
.resize(LastScope
.NumRecordedNodes
);
3587 NodeStack
.append(LastScope
.NodeStack
.begin(), LastScope
.NodeStack
.end());
3588 N
= NodeStack
.back();
3590 if (LastScope
.NumMatchedMemRefs
!= MatchedMemRefs
.size())
3591 MatchedMemRefs
.resize(LastScope
.NumMatchedMemRefs
);
3592 MatcherIndex
= LastScope
.FailIndex
;
3594 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex
<< "\n");
3596 InputChain
= LastScope
.InputChain
;
3597 InputGlue
= LastScope
.InputGlue
;
3598 if (!LastScope
.HasChainNodesMatched
)
3599 ChainNodesMatched
.clear();
3601 // Check to see what the offset is at the new MatcherIndex. If it is zero
3602 // we have reached the end of this scope, otherwise we have another child
3603 // in the current scope to try.
3604 unsigned NumToSkip
= MatcherTable
[MatcherIndex
++];
3605 if (NumToSkip
& 128)
3606 NumToSkip
= GetVBR(NumToSkip
, MatcherTable
, MatcherIndex
);
3608 // If we have another child in this scope to match, update FailIndex and
3610 if (NumToSkip
!= 0) {
3611 LastScope
.FailIndex
= MatcherIndex
+NumToSkip
;
3615 // End of this scope, pop it and try the next child in the containing
3617 MatchScopes
.pop_back();
3622 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode
*N
) const {
3623 assert(N
->getOpcode() == ISD::OR
&& "Unexpected opcode");
3624 auto *C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
3628 // Detect when "or" is used to add an offset to a stack object.
3629 if (auto *FN
= dyn_cast
<FrameIndexSDNode
>(N
->getOperand(0))) {
3630 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
3631 unsigned A
= MFI
.getObjectAlignment(FN
->getIndex());
3632 assert(isPowerOf2_32(A
) && "Unexpected alignment");
3633 int32_t Off
= C
->getSExtValue();
3634 // If the alleged offset fits in the zero bits guaranteed by
3635 // the alignment, then this or is really an add.
3636 return (Off
>= 0) && (((A
- 1) & Off
) == unsigned(Off
));
3641 void SelectionDAGISel::CannotYetSelect(SDNode
*N
) {
3643 raw_string_ostream
Msg(msg
);
3644 Msg
<< "Cannot select: ";
3646 if (N
->getOpcode() != ISD::INTRINSIC_W_CHAIN
&&
3647 N
->getOpcode() != ISD::INTRINSIC_WO_CHAIN
&&
3648 N
->getOpcode() != ISD::INTRINSIC_VOID
) {
3649 N
->printrFull(Msg
, CurDAG
);
3650 Msg
<< "\nIn function: " << MF
->getName();
3652 bool HasInputChain
= N
->getOperand(0).getValueType() == MVT::Other
;
3654 cast
<ConstantSDNode
>(N
->getOperand(HasInputChain
))->getZExtValue();
3655 if (iid
< Intrinsic::num_intrinsics
)
3656 Msg
<< "intrinsic %" << Intrinsic::getName((Intrinsic::ID
)iid
, None
);
3657 else if (const TargetIntrinsicInfo
*TII
= TM
.getIntrinsicInfo())
3658 Msg
<< "target intrinsic %" << TII
->getName(iid
);
3660 Msg
<< "unknown intrinsic #" << iid
;
3662 report_fatal_error(Msg
.str());
3665 char SelectionDAGISel::ID
= 0;