[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / CodeGen / TargetSchedule.cpp
blobce59452fd1b8fe7a9303c3177b9cc36b566b5fdb
1 //===- llvm/Target/TargetSchedule.cpp - Sched Machine Model ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a wrapper around MCSchedModel that allows the interface
10 // to benefit from information currently only available in TargetInstrInfo.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/TargetSchedule.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/MachineInstr.h"
17 #include "llvm/CodeGen/MachineOperand.h"
18 #include "llvm/CodeGen/TargetInstrInfo.h"
19 #include "llvm/CodeGen/TargetRegisterInfo.h"
20 #include "llvm/CodeGen/TargetSubtargetInfo.h"
21 #include "llvm/MC/MCInstrDesc.h"
22 #include "llvm/MC/MCInstrItineraries.h"
23 #include "llvm/MC/MCSchedule.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <algorithm>
28 #include <cassert>
29 #include <cstdint>
31 using namespace llvm;
33 static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true),
34 cl::desc("Use TargetSchedModel for latency lookup"));
36 static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true),
37 cl::desc("Use InstrItineraryData for latency lookup"));
39 bool TargetSchedModel::hasInstrSchedModel() const {
40 return EnableSchedModel && SchedModel.hasInstrSchedModel();
43 bool TargetSchedModel::hasInstrItineraries() const {
44 return EnableSchedItins && !InstrItins.isEmpty();
47 static unsigned gcd(unsigned Dividend, unsigned Divisor) {
48 // Dividend and Divisor will be naturally swapped as needed.
49 while (Divisor) {
50 unsigned Rem = Dividend % Divisor;
51 Dividend = Divisor;
52 Divisor = Rem;
54 return Dividend;
57 static unsigned lcm(unsigned A, unsigned B) {
58 unsigned LCM = (uint64_t(A) * B) / gcd(A, B);
59 assert((LCM >= A && LCM >= B) && "LCM overflow");
60 return LCM;
63 void TargetSchedModel::init(const TargetSubtargetInfo *TSInfo) {
64 STI = TSInfo;
65 SchedModel = TSInfo->getSchedModel();
66 TII = TSInfo->getInstrInfo();
67 STI->initInstrItins(InstrItins);
69 unsigned NumRes = SchedModel.getNumProcResourceKinds();
70 ResourceFactors.resize(NumRes);
71 ResourceLCM = SchedModel.IssueWidth;
72 for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
73 unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
74 if (NumUnits > 0)
75 ResourceLCM = lcm(ResourceLCM, NumUnits);
77 MicroOpFactor = ResourceLCM / SchedModel.IssueWidth;
78 for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
79 unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
80 ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0;
84 /// Returns true only if instruction is specified as single issue.
85 bool TargetSchedModel::mustBeginGroup(const MachineInstr *MI,
86 const MCSchedClassDesc *SC) const {
87 if (hasInstrSchedModel()) {
88 if (!SC)
89 SC = resolveSchedClass(MI);
90 if (SC->isValid())
91 return SC->BeginGroup;
93 return false;
96 bool TargetSchedModel::mustEndGroup(const MachineInstr *MI,
97 const MCSchedClassDesc *SC) const {
98 if (hasInstrSchedModel()) {
99 if (!SC)
100 SC = resolveSchedClass(MI);
101 if (SC->isValid())
102 return SC->EndGroup;
104 return false;
107 unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI,
108 const MCSchedClassDesc *SC) const {
109 if (hasInstrItineraries()) {
110 int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass());
111 return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, *MI);
113 if (hasInstrSchedModel()) {
114 if (!SC)
115 SC = resolveSchedClass(MI);
116 if (SC->isValid())
117 return SC->NumMicroOps;
119 return MI->isTransient() ? 0 : 1;
122 // The machine model may explicitly specify an invalid latency, which
123 // effectively means infinite latency. Since users of the TargetSchedule API
124 // don't know how to handle this, we convert it to a very large latency that is
125 // easy to distinguish when debugging the DAG but won't induce overflow.
126 static unsigned capLatency(int Cycles) {
127 return Cycles >= 0 ? Cycles : 1000;
130 /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require
131 /// evaluation of predicates that depend on instruction operands or flags.
132 const MCSchedClassDesc *TargetSchedModel::
133 resolveSchedClass(const MachineInstr *MI) const {
134 // Get the definition's scheduling class descriptor from this machine model.
135 unsigned SchedClass = MI->getDesc().getSchedClass();
136 const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass);
137 if (!SCDesc->isValid())
138 return SCDesc;
140 #ifndef NDEBUG
141 unsigned NIter = 0;
142 #endif
143 while (SCDesc->isVariant()) {
144 assert(++NIter < 6 && "Variants are nested deeper than the magic number");
146 SchedClass = STI->resolveSchedClass(SchedClass, MI, this);
147 SCDesc = SchedModel.getSchedClassDesc(SchedClass);
149 return SCDesc;
152 /// Find the def index of this operand. This index maps to the machine model and
153 /// is independent of use operands. Def operands may be reordered with uses or
154 /// merged with uses without affecting the def index (e.g. before/after
155 /// regalloc). However, an instruction's def operands must never be reordered
156 /// with respect to each other.
157 static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) {
158 unsigned DefIdx = 0;
159 for (unsigned i = 0; i != DefOperIdx; ++i) {
160 const MachineOperand &MO = MI->getOperand(i);
161 if (MO.isReg() && MO.isDef())
162 ++DefIdx;
164 return DefIdx;
167 /// Find the use index of this operand. This is independent of the instruction's
168 /// def operands.
170 /// Note that uses are not determined by the operand's isUse property, which
171 /// is simply the inverse of isDef. Here we consider any readsReg operand to be
172 /// a "use". The machine model allows an operand to be both a Def and Use.
173 static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) {
174 unsigned UseIdx = 0;
175 for (unsigned i = 0; i != UseOperIdx; ++i) {
176 const MachineOperand &MO = MI->getOperand(i);
177 if (MO.isReg() && MO.readsReg() && !MO.isDef())
178 ++UseIdx;
180 return UseIdx;
183 // Top-level API for clients that know the operand indices.
184 unsigned TargetSchedModel::computeOperandLatency(
185 const MachineInstr *DefMI, unsigned DefOperIdx,
186 const MachineInstr *UseMI, unsigned UseOperIdx) const {
188 if (!hasInstrSchedModel() && !hasInstrItineraries())
189 return TII->defaultDefLatency(SchedModel, *DefMI);
191 if (hasInstrItineraries()) {
192 int OperLatency = 0;
193 if (UseMI) {
194 OperLatency = TII->getOperandLatency(&InstrItins, *DefMI, DefOperIdx,
195 *UseMI, UseOperIdx);
197 else {
198 unsigned DefClass = DefMI->getDesc().getSchedClass();
199 OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx);
201 if (OperLatency >= 0)
202 return OperLatency;
204 // No operand latency was found.
205 unsigned InstrLatency = TII->getInstrLatency(&InstrItins, *DefMI);
207 // Expected latency is the max of the stage latency and itinerary props.
208 // Rather than directly querying InstrItins stage latency, we call a TII
209 // hook to allow subtargets to specialize latency. This hook is only
210 // applicable to the InstrItins model. InstrSchedModel should model all
211 // special cases without TII hooks.
212 InstrLatency =
213 std::max(InstrLatency, TII->defaultDefLatency(SchedModel, *DefMI));
214 return InstrLatency;
216 // hasInstrSchedModel()
217 const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
218 unsigned DefIdx = findDefIdx(DefMI, DefOperIdx);
219 if (DefIdx < SCDesc->NumWriteLatencyEntries) {
220 // Lookup the definition's write latency in SubtargetInfo.
221 const MCWriteLatencyEntry *WLEntry =
222 STI->getWriteLatencyEntry(SCDesc, DefIdx);
223 unsigned WriteID = WLEntry->WriteResourceID;
224 unsigned Latency = capLatency(WLEntry->Cycles);
225 if (!UseMI)
226 return Latency;
228 // Lookup the use's latency adjustment in SubtargetInfo.
229 const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI);
230 if (UseDesc->NumReadAdvanceEntries == 0)
231 return Latency;
232 unsigned UseIdx = findUseIdx(UseMI, UseOperIdx);
233 int Advance = STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID);
234 if (Advance > 0 && (unsigned)Advance > Latency) // unsigned wrap
235 return 0;
236 return Latency - Advance;
238 // If DefIdx does not exist in the model (e.g. implicit defs), then return
239 // unit latency (defaultDefLatency may be too conservative).
240 #ifndef NDEBUG
241 if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit()
242 && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef()
243 && SchedModel.isComplete()) {
244 errs() << "DefIdx " << DefIdx << " exceeds machine model writes for "
245 << *DefMI << " (Try with MCSchedModel.CompleteModel set to false)";
246 llvm_unreachable("incomplete machine model");
248 #endif
249 // FIXME: Automatically giving all implicit defs defaultDefLatency is
250 // undesirable. We should only do it for defs that are known to the MC
251 // desc like flags. Truly implicit defs should get 1 cycle latency.
252 return DefMI->isTransient() ? 0 : TII->defaultDefLatency(SchedModel, *DefMI);
255 unsigned
256 TargetSchedModel::computeInstrLatency(const MCSchedClassDesc &SCDesc) const {
257 return capLatency(MCSchedModel::computeInstrLatency(*STI, SCDesc));
260 unsigned TargetSchedModel::computeInstrLatency(unsigned Opcode) const {
261 assert(hasInstrSchedModel() && "Only call this function with a SchedModel");
262 unsigned SCIdx = TII->get(Opcode).getSchedClass();
263 return capLatency(SchedModel.computeInstrLatency(*STI, SCIdx));
266 unsigned TargetSchedModel::computeInstrLatency(const MCInst &Inst) const {
267 if (hasInstrSchedModel())
268 return capLatency(SchedModel.computeInstrLatency(*STI, *TII, Inst));
269 return computeInstrLatency(Inst.getOpcode());
272 unsigned
273 TargetSchedModel::computeInstrLatency(const MachineInstr *MI,
274 bool UseDefaultDefLatency) const {
275 // For the itinerary model, fall back to the old subtarget hook.
276 // Allow subtargets to compute Bundle latencies outside the machine model.
277 if (hasInstrItineraries() || MI->isBundle() ||
278 (!hasInstrSchedModel() && !UseDefaultDefLatency))
279 return TII->getInstrLatency(&InstrItins, *MI);
281 if (hasInstrSchedModel()) {
282 const MCSchedClassDesc *SCDesc = resolveSchedClass(MI);
283 if (SCDesc->isValid())
284 return computeInstrLatency(*SCDesc);
286 return TII->defaultDefLatency(SchedModel, *MI);
289 unsigned TargetSchedModel::
290 computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
291 const MachineInstr *DepMI) const {
292 if (!SchedModel.isOutOfOrder())
293 return 1;
295 // Out-of-order processor can dispatch WAW dependencies in the same cycle.
297 // Treat predication as a data dependency for out-of-order cpus. In-order
298 // cpus do not need to treat predicated writes specially.
300 // TODO: The following hack exists because predication passes do not
301 // correctly append imp-use operands, and readsReg() strangely returns false
302 // for predicated defs.
303 Register Reg = DefMI->getOperand(DefOperIdx).getReg();
304 const MachineFunction &MF = *DefMI->getMF();
305 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
306 if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(*DepMI))
307 return computeInstrLatency(DefMI);
309 // If we have a per operand scheduling model, check if this def is writing
310 // an unbuffered resource. If so, it treated like an in-order cpu.
311 if (hasInstrSchedModel()) {
312 const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
313 if (SCDesc->isValid()) {
314 for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc),
315 *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) {
316 if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->BufferSize)
317 return 1;
321 return 0;
324 double
325 TargetSchedModel::computeReciprocalThroughput(const MachineInstr *MI) const {
326 if (hasInstrItineraries()) {
327 unsigned SchedClass = MI->getDesc().getSchedClass();
328 return MCSchedModel::getReciprocalThroughput(SchedClass,
329 *getInstrItineraries());
332 if (hasInstrSchedModel())
333 return MCSchedModel::getReciprocalThroughput(*STI, *resolveSchedClass(MI));
335 return 0.0;
338 double
339 TargetSchedModel::computeReciprocalThroughput(unsigned Opcode) const {
340 unsigned SchedClass = TII->get(Opcode).getSchedClass();
341 if (hasInstrItineraries())
342 return MCSchedModel::getReciprocalThroughput(SchedClass,
343 *getInstrItineraries());
344 if (hasInstrSchedModel()) {
345 const MCSchedClassDesc &SCDesc = *SchedModel.getSchedClassDesc(SchedClass);
346 if (SCDesc.isValid() && !SCDesc.isVariant())
347 return MCSchedModel::getReciprocalThroughput(*STI, SCDesc);
350 return 0.0;
353 double
354 TargetSchedModel::computeReciprocalThroughput(const MCInst &MI) const {
355 if (hasInstrSchedModel())
356 return SchedModel.getReciprocalThroughput(*STI, *TII, MI);
357 return computeReciprocalThroughput(MI.getOpcode());