1 //===-- Execution.cpp - Implement code to simulate the program ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the actual instruction interpreter.
11 //===----------------------------------------------------------------------===//
13 #include "Interpreter.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/CodeGen/IntrinsicLowering.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/DerivedTypes.h"
19 #include "llvm/IR/GetElementPtrTypeIterator.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/Support/CommandLine.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/raw_ostream.h"
30 #define DEBUG_TYPE "interpreter"
32 STATISTIC(NumDynamicInsts
, "Number of dynamic instructions executed");
34 static cl::opt
<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden
,
35 cl::desc("make the interpreter print every volatile load and store"));
37 //===----------------------------------------------------------------------===//
38 // Various Helper Functions
39 //===----------------------------------------------------------------------===//
41 static void SetValue(Value
*V
, GenericValue Val
, ExecutionContext
&SF
) {
45 //===----------------------------------------------------------------------===//
46 // Unary Instruction Implementations
47 //===----------------------------------------------------------------------===//
49 static void executeFNegInst(GenericValue
&Dest
, GenericValue Src
, Type
*Ty
) {
50 switch (Ty
->getTypeID()) {
52 Dest
.FloatVal
= -Src
.FloatVal
;
54 case Type::DoubleTyID
:
55 Dest
.DoubleVal
= -Src
.DoubleVal
;
58 llvm_unreachable("Unhandled type for FNeg instruction");
62 void Interpreter::visitUnaryOperator(UnaryOperator
&I
) {
63 ExecutionContext
&SF
= ECStack
.back();
64 Type
*Ty
= I
.getOperand(0)->getType();
65 GenericValue Src
= getOperandValue(I
.getOperand(0), SF
);
66 GenericValue R
; // Result
68 // First process vector operation
69 if (Ty
->isVectorTy()) {
70 R
.AggregateVal
.resize(Src
.AggregateVal
.size());
72 switch(I
.getOpcode()) {
74 llvm_unreachable("Don't know how to handle this unary operator");
76 case Instruction::FNeg
:
77 if (cast
<VectorType
>(Ty
)->getElementType()->isFloatTy()) {
78 for (unsigned i
= 0; i
< R
.AggregateVal
.size(); ++i
)
79 R
.AggregateVal
[i
].FloatVal
= -Src
.AggregateVal
[i
].FloatVal
;
80 } else if (cast
<VectorType
>(Ty
)->getElementType()->isDoubleTy()) {
81 for (unsigned i
= 0; i
< R
.AggregateVal
.size(); ++i
)
82 R
.AggregateVal
[i
].DoubleVal
= -Src
.AggregateVal
[i
].DoubleVal
;
84 llvm_unreachable("Unhandled type for FNeg instruction");
89 switch (I
.getOpcode()) {
91 llvm_unreachable("Don't know how to handle this unary operator");
93 case Instruction::FNeg
: executeFNegInst(R
, Src
, Ty
); break;
99 //===----------------------------------------------------------------------===//
100 // Binary Instruction Implementations
101 //===----------------------------------------------------------------------===//
103 #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
104 case Type::TY##TyID: \
105 Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
108 static void executeFAddInst(GenericValue
&Dest
, GenericValue Src1
,
109 GenericValue Src2
, Type
*Ty
) {
110 switch (Ty
->getTypeID()) {
111 IMPLEMENT_BINARY_OPERATOR(+, Float
);
112 IMPLEMENT_BINARY_OPERATOR(+, Double
);
114 dbgs() << "Unhandled type for FAdd instruction: " << *Ty
<< "\n";
115 llvm_unreachable(nullptr);
119 static void executeFSubInst(GenericValue
&Dest
, GenericValue Src1
,
120 GenericValue Src2
, Type
*Ty
) {
121 switch (Ty
->getTypeID()) {
122 IMPLEMENT_BINARY_OPERATOR(-, Float
);
123 IMPLEMENT_BINARY_OPERATOR(-, Double
);
125 dbgs() << "Unhandled type for FSub instruction: " << *Ty
<< "\n";
126 llvm_unreachable(nullptr);
130 static void executeFMulInst(GenericValue
&Dest
, GenericValue Src1
,
131 GenericValue Src2
, Type
*Ty
) {
132 switch (Ty
->getTypeID()) {
133 IMPLEMENT_BINARY_OPERATOR(*, Float
);
134 IMPLEMENT_BINARY_OPERATOR(*, Double
);
136 dbgs() << "Unhandled type for FMul instruction: " << *Ty
<< "\n";
137 llvm_unreachable(nullptr);
141 static void executeFDivInst(GenericValue
&Dest
, GenericValue Src1
,
142 GenericValue Src2
, Type
*Ty
) {
143 switch (Ty
->getTypeID()) {
144 IMPLEMENT_BINARY_OPERATOR(/, Float
);
145 IMPLEMENT_BINARY_OPERATOR(/, Double
);
147 dbgs() << "Unhandled type for FDiv instruction: " << *Ty
<< "\n";
148 llvm_unreachable(nullptr);
152 static void executeFRemInst(GenericValue
&Dest
, GenericValue Src1
,
153 GenericValue Src2
, Type
*Ty
) {
154 switch (Ty
->getTypeID()) {
155 case Type::FloatTyID
:
156 Dest
.FloatVal
= fmod(Src1
.FloatVal
, Src2
.FloatVal
);
158 case Type::DoubleTyID
:
159 Dest
.DoubleVal
= fmod(Src1
.DoubleVal
, Src2
.DoubleVal
);
162 dbgs() << "Unhandled type for Rem instruction: " << *Ty
<< "\n";
163 llvm_unreachable(nullptr);
167 #define IMPLEMENT_INTEGER_ICMP(OP, TY) \
168 case Type::IntegerTyID: \
169 Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
172 #define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY) \
173 case Type::VectorTyID: { \
174 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
175 Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
176 for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
177 Dest.AggregateVal[_i].IntVal = APInt(1, \
178 Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal));\
181 // Handle pointers specially because they must be compared with only as much
182 // width as the host has. We _do not_ want to be comparing 64 bit values when
183 // running on a 32-bit target, otherwise the upper 32 bits might mess up
184 // comparisons if they contain garbage.
185 #define IMPLEMENT_POINTER_ICMP(OP) \
186 case Type::PointerTyID: \
187 Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
188 (void*)(intptr_t)Src2.PointerVal); \
191 static GenericValue
executeICMP_EQ(GenericValue Src1
, GenericValue Src2
,
194 switch (Ty
->getTypeID()) {
195 IMPLEMENT_INTEGER_ICMP(eq
,Ty
);
196 IMPLEMENT_VECTOR_INTEGER_ICMP(eq
,Ty
);
197 IMPLEMENT_POINTER_ICMP(==);
199 dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty
<< "\n";
200 llvm_unreachable(nullptr);
205 static GenericValue
executeICMP_NE(GenericValue Src1
, GenericValue Src2
,
208 switch (Ty
->getTypeID()) {
209 IMPLEMENT_INTEGER_ICMP(ne
,Ty
);
210 IMPLEMENT_VECTOR_INTEGER_ICMP(ne
,Ty
);
211 IMPLEMENT_POINTER_ICMP(!=);
213 dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty
<< "\n";
214 llvm_unreachable(nullptr);
219 static GenericValue
executeICMP_ULT(GenericValue Src1
, GenericValue Src2
,
222 switch (Ty
->getTypeID()) {
223 IMPLEMENT_INTEGER_ICMP(ult
,Ty
);
224 IMPLEMENT_VECTOR_INTEGER_ICMP(ult
,Ty
);
225 IMPLEMENT_POINTER_ICMP(<);
227 dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty
<< "\n";
228 llvm_unreachable(nullptr);
233 static GenericValue
executeICMP_SLT(GenericValue Src1
, GenericValue Src2
,
236 switch (Ty
->getTypeID()) {
237 IMPLEMENT_INTEGER_ICMP(slt
,Ty
);
238 IMPLEMENT_VECTOR_INTEGER_ICMP(slt
,Ty
);
239 IMPLEMENT_POINTER_ICMP(<);
241 dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty
<< "\n";
242 llvm_unreachable(nullptr);
247 static GenericValue
executeICMP_UGT(GenericValue Src1
, GenericValue Src2
,
250 switch (Ty
->getTypeID()) {
251 IMPLEMENT_INTEGER_ICMP(ugt
,Ty
);
252 IMPLEMENT_VECTOR_INTEGER_ICMP(ugt
,Ty
);
253 IMPLEMENT_POINTER_ICMP(>);
255 dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty
<< "\n";
256 llvm_unreachable(nullptr);
261 static GenericValue
executeICMP_SGT(GenericValue Src1
, GenericValue Src2
,
264 switch (Ty
->getTypeID()) {
265 IMPLEMENT_INTEGER_ICMP(sgt
,Ty
);
266 IMPLEMENT_VECTOR_INTEGER_ICMP(sgt
,Ty
);
267 IMPLEMENT_POINTER_ICMP(>);
269 dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty
<< "\n";
270 llvm_unreachable(nullptr);
275 static GenericValue
executeICMP_ULE(GenericValue Src1
, GenericValue Src2
,
278 switch (Ty
->getTypeID()) {
279 IMPLEMENT_INTEGER_ICMP(ule
,Ty
);
280 IMPLEMENT_VECTOR_INTEGER_ICMP(ule
,Ty
);
281 IMPLEMENT_POINTER_ICMP(<=);
283 dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty
<< "\n";
284 llvm_unreachable(nullptr);
289 static GenericValue
executeICMP_SLE(GenericValue Src1
, GenericValue Src2
,
292 switch (Ty
->getTypeID()) {
293 IMPLEMENT_INTEGER_ICMP(sle
,Ty
);
294 IMPLEMENT_VECTOR_INTEGER_ICMP(sle
,Ty
);
295 IMPLEMENT_POINTER_ICMP(<=);
297 dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty
<< "\n";
298 llvm_unreachable(nullptr);
303 static GenericValue
executeICMP_UGE(GenericValue Src1
, GenericValue Src2
,
306 switch (Ty
->getTypeID()) {
307 IMPLEMENT_INTEGER_ICMP(uge
,Ty
);
308 IMPLEMENT_VECTOR_INTEGER_ICMP(uge
,Ty
);
309 IMPLEMENT_POINTER_ICMP(>=);
311 dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty
<< "\n";
312 llvm_unreachable(nullptr);
317 static GenericValue
executeICMP_SGE(GenericValue Src1
, GenericValue Src2
,
320 switch (Ty
->getTypeID()) {
321 IMPLEMENT_INTEGER_ICMP(sge
,Ty
);
322 IMPLEMENT_VECTOR_INTEGER_ICMP(sge
,Ty
);
323 IMPLEMENT_POINTER_ICMP(>=);
325 dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty
<< "\n";
326 llvm_unreachable(nullptr);
331 void Interpreter::visitICmpInst(ICmpInst
&I
) {
332 ExecutionContext
&SF
= ECStack
.back();
333 Type
*Ty
= I
.getOperand(0)->getType();
334 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
335 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
336 GenericValue R
; // Result
338 switch (I
.getPredicate()) {
339 case ICmpInst::ICMP_EQ
: R
= executeICMP_EQ(Src1
, Src2
, Ty
); break;
340 case ICmpInst::ICMP_NE
: R
= executeICMP_NE(Src1
, Src2
, Ty
); break;
341 case ICmpInst::ICMP_ULT
: R
= executeICMP_ULT(Src1
, Src2
, Ty
); break;
342 case ICmpInst::ICMP_SLT
: R
= executeICMP_SLT(Src1
, Src2
, Ty
); break;
343 case ICmpInst::ICMP_UGT
: R
= executeICMP_UGT(Src1
, Src2
, Ty
); break;
344 case ICmpInst::ICMP_SGT
: R
= executeICMP_SGT(Src1
, Src2
, Ty
); break;
345 case ICmpInst::ICMP_ULE
: R
= executeICMP_ULE(Src1
, Src2
, Ty
); break;
346 case ICmpInst::ICMP_SLE
: R
= executeICMP_SLE(Src1
, Src2
, Ty
); break;
347 case ICmpInst::ICMP_UGE
: R
= executeICMP_UGE(Src1
, Src2
, Ty
); break;
348 case ICmpInst::ICMP_SGE
: R
= executeICMP_SGE(Src1
, Src2
, Ty
); break;
350 dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I
;
351 llvm_unreachable(nullptr);
357 #define IMPLEMENT_FCMP(OP, TY) \
358 case Type::TY##TyID: \
359 Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
362 #define IMPLEMENT_VECTOR_FCMP_T(OP, TY) \
363 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
364 Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
365 for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
366 Dest.AggregateVal[_i].IntVal = APInt(1, \
367 Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\
370 #define IMPLEMENT_VECTOR_FCMP(OP) \
371 case Type::VectorTyID: \
372 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { \
373 IMPLEMENT_VECTOR_FCMP_T(OP, Float); \
375 IMPLEMENT_VECTOR_FCMP_T(OP, Double); \
378 static GenericValue
executeFCMP_OEQ(GenericValue Src1
, GenericValue Src2
,
381 switch (Ty
->getTypeID()) {
382 IMPLEMENT_FCMP(==, Float
);
383 IMPLEMENT_FCMP(==, Double
);
384 IMPLEMENT_VECTOR_FCMP(==);
386 dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty
<< "\n";
387 llvm_unreachable(nullptr);
392 #define IMPLEMENT_SCALAR_NANS(TY, X,Y) \
393 if (TY->isFloatTy()) { \
394 if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
395 Dest.IntVal = APInt(1,false); \
399 if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
400 Dest.IntVal = APInt(1,false); \
405 #define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG) \
406 assert(X.AggregateVal.size() == Y.AggregateVal.size()); \
407 Dest.AggregateVal.resize( X.AggregateVal.size() ); \
408 for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) { \
409 if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val || \
410 Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val) \
411 Dest.AggregateVal[_i].IntVal = APInt(1,FLAG); \
413 Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG); \
417 #define MASK_VECTOR_NANS(TY, X,Y, FLAG) \
418 if (TY->isVectorTy()) { \
419 if (cast<VectorType>(TY)->getElementType()->isFloatTy()) { \
420 MASK_VECTOR_NANS_T(X, Y, Float, FLAG) \
422 MASK_VECTOR_NANS_T(X, Y, Double, FLAG) \
428 static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
432 // if input is scalar value and Src1 or Src2 is NaN return false
433 IMPLEMENT_SCALAR_NANS(Ty
, Src1
, Src2
)
434 // if vector input detect NaNs and fill mask
435 MASK_VECTOR_NANS(Ty
, Src1
, Src2
, false)
436 GenericValue DestMask
= Dest
;
437 switch (Ty
->getTypeID()) {
438 IMPLEMENT_FCMP(!=, Float
);
439 IMPLEMENT_FCMP(!=, Double
);
440 IMPLEMENT_VECTOR_FCMP(!=);
442 dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty
<< "\n";
443 llvm_unreachable(nullptr);
445 // in vector case mask out NaN elements
446 if (Ty
->isVectorTy())
447 for( size_t _i
=0; _i
<Src1
.AggregateVal
.size(); _i
++)
448 if (DestMask
.AggregateVal
[_i
].IntVal
== false)
449 Dest
.AggregateVal
[_i
].IntVal
= APInt(1,false);
454 static GenericValue
executeFCMP_OLE(GenericValue Src1
, GenericValue Src2
,
457 switch (Ty
->getTypeID()) {
458 IMPLEMENT_FCMP(<=, Float
);
459 IMPLEMENT_FCMP(<=, Double
);
460 IMPLEMENT_VECTOR_FCMP(<=);
462 dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty
<< "\n";
463 llvm_unreachable(nullptr);
468 static GenericValue
executeFCMP_OGE(GenericValue Src1
, GenericValue Src2
,
471 switch (Ty
->getTypeID()) {
472 IMPLEMENT_FCMP(>=, Float
);
473 IMPLEMENT_FCMP(>=, Double
);
474 IMPLEMENT_VECTOR_FCMP(>=);
476 dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty
<< "\n";
477 llvm_unreachable(nullptr);
482 static GenericValue
executeFCMP_OLT(GenericValue Src1
, GenericValue Src2
,
485 switch (Ty
->getTypeID()) {
486 IMPLEMENT_FCMP(<, Float
);
487 IMPLEMENT_FCMP(<, Double
);
488 IMPLEMENT_VECTOR_FCMP(<);
490 dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty
<< "\n";
491 llvm_unreachable(nullptr);
496 static GenericValue
executeFCMP_OGT(GenericValue Src1
, GenericValue Src2
,
499 switch (Ty
->getTypeID()) {
500 IMPLEMENT_FCMP(>, Float
);
501 IMPLEMENT_FCMP(>, Double
);
502 IMPLEMENT_VECTOR_FCMP(>);
504 dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty
<< "\n";
505 llvm_unreachable(nullptr);
510 #define IMPLEMENT_UNORDERED(TY, X,Y) \
511 if (TY->isFloatTy()) { \
512 if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
513 Dest.IntVal = APInt(1,true); \
516 } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
517 Dest.IntVal = APInt(1,true); \
521 #define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, FUNC) \
522 if (TY->isVectorTy()) { \
523 GenericValue DestMask = Dest; \
524 Dest = FUNC(Src1, Src2, Ty); \
525 for (size_t _i = 0; _i < Src1.AggregateVal.size(); _i++) \
526 if (DestMask.AggregateVal[_i].IntVal == true) \
527 Dest.AggregateVal[_i].IntVal = APInt(1, true); \
531 static GenericValue
executeFCMP_UEQ(GenericValue Src1
, GenericValue Src2
,
534 IMPLEMENT_UNORDERED(Ty
, Src1
, Src2
)
535 MASK_VECTOR_NANS(Ty
, Src1
, Src2
, true)
536 IMPLEMENT_VECTOR_UNORDERED(Ty
, Src1
, Src2
, executeFCMP_OEQ
)
537 return executeFCMP_OEQ(Src1
, Src2
, Ty
);
541 static GenericValue
executeFCMP_UNE(GenericValue Src1
, GenericValue Src2
,
544 IMPLEMENT_UNORDERED(Ty
, Src1
, Src2
)
545 MASK_VECTOR_NANS(Ty
, Src1
, Src2
, true)
546 IMPLEMENT_VECTOR_UNORDERED(Ty
, Src1
, Src2
, executeFCMP_ONE
)
547 return executeFCMP_ONE(Src1
, Src2
, Ty
);
550 static GenericValue
executeFCMP_ULE(GenericValue Src1
, GenericValue Src2
,
553 IMPLEMENT_UNORDERED(Ty
, Src1
, Src2
)
554 MASK_VECTOR_NANS(Ty
, Src1
, Src2
, true)
555 IMPLEMENT_VECTOR_UNORDERED(Ty
, Src1
, Src2
, executeFCMP_OLE
)
556 return executeFCMP_OLE(Src1
, Src2
, Ty
);
559 static GenericValue
executeFCMP_UGE(GenericValue Src1
, GenericValue Src2
,
562 IMPLEMENT_UNORDERED(Ty
, Src1
, Src2
)
563 MASK_VECTOR_NANS(Ty
, Src1
, Src2
, true)
564 IMPLEMENT_VECTOR_UNORDERED(Ty
, Src1
, Src2
, executeFCMP_OGE
)
565 return executeFCMP_OGE(Src1
, Src2
, Ty
);
568 static GenericValue
executeFCMP_ULT(GenericValue Src1
, GenericValue Src2
,
571 IMPLEMENT_UNORDERED(Ty
, Src1
, Src2
)
572 MASK_VECTOR_NANS(Ty
, Src1
, Src2
, true)
573 IMPLEMENT_VECTOR_UNORDERED(Ty
, Src1
, Src2
, executeFCMP_OLT
)
574 return executeFCMP_OLT(Src1
, Src2
, Ty
);
577 static GenericValue
executeFCMP_UGT(GenericValue Src1
, GenericValue Src2
,
580 IMPLEMENT_UNORDERED(Ty
, Src1
, Src2
)
581 MASK_VECTOR_NANS(Ty
, Src1
, Src2
, true)
582 IMPLEMENT_VECTOR_UNORDERED(Ty
, Src1
, Src2
, executeFCMP_OGT
)
583 return executeFCMP_OGT(Src1
, Src2
, Ty
);
586 static GenericValue
executeFCMP_ORD(GenericValue Src1
, GenericValue Src2
,
589 if(Ty
->isVectorTy()) {
590 assert(Src1
.AggregateVal
.size() == Src2
.AggregateVal
.size());
591 Dest
.AggregateVal
.resize( Src1
.AggregateVal
.size() );
592 if (cast
<VectorType
>(Ty
)->getElementType()->isFloatTy()) {
593 for( size_t _i
=0;_i
<Src1
.AggregateVal
.size();_i
++)
594 Dest
.AggregateVal
[_i
].IntVal
= APInt(1,
595 ( (Src1
.AggregateVal
[_i
].FloatVal
==
596 Src1
.AggregateVal
[_i
].FloatVal
) &&
597 (Src2
.AggregateVal
[_i
].FloatVal
==
598 Src2
.AggregateVal
[_i
].FloatVal
)));
600 for( size_t _i
=0;_i
<Src1
.AggregateVal
.size();_i
++)
601 Dest
.AggregateVal
[_i
].IntVal
= APInt(1,
602 ( (Src1
.AggregateVal
[_i
].DoubleVal
==
603 Src1
.AggregateVal
[_i
].DoubleVal
) &&
604 (Src2
.AggregateVal
[_i
].DoubleVal
==
605 Src2
.AggregateVal
[_i
].DoubleVal
)));
607 } else if (Ty
->isFloatTy())
608 Dest
.IntVal
= APInt(1,(Src1
.FloatVal
== Src1
.FloatVal
&&
609 Src2
.FloatVal
== Src2
.FloatVal
));
611 Dest
.IntVal
= APInt(1,(Src1
.DoubleVal
== Src1
.DoubleVal
&&
612 Src2
.DoubleVal
== Src2
.DoubleVal
));
617 static GenericValue
executeFCMP_UNO(GenericValue Src1
, GenericValue Src2
,
620 if(Ty
->isVectorTy()) {
621 assert(Src1
.AggregateVal
.size() == Src2
.AggregateVal
.size());
622 Dest
.AggregateVal
.resize( Src1
.AggregateVal
.size() );
623 if (cast
<VectorType
>(Ty
)->getElementType()->isFloatTy()) {
624 for( size_t _i
=0;_i
<Src1
.AggregateVal
.size();_i
++)
625 Dest
.AggregateVal
[_i
].IntVal
= APInt(1,
626 ( (Src1
.AggregateVal
[_i
].FloatVal
!=
627 Src1
.AggregateVal
[_i
].FloatVal
) ||
628 (Src2
.AggregateVal
[_i
].FloatVal
!=
629 Src2
.AggregateVal
[_i
].FloatVal
)));
631 for( size_t _i
=0;_i
<Src1
.AggregateVal
.size();_i
++)
632 Dest
.AggregateVal
[_i
].IntVal
= APInt(1,
633 ( (Src1
.AggregateVal
[_i
].DoubleVal
!=
634 Src1
.AggregateVal
[_i
].DoubleVal
) ||
635 (Src2
.AggregateVal
[_i
].DoubleVal
!=
636 Src2
.AggregateVal
[_i
].DoubleVal
)));
638 } else if (Ty
->isFloatTy())
639 Dest
.IntVal
= APInt(1,(Src1
.FloatVal
!= Src1
.FloatVal
||
640 Src2
.FloatVal
!= Src2
.FloatVal
));
642 Dest
.IntVal
= APInt(1,(Src1
.DoubleVal
!= Src1
.DoubleVal
||
643 Src2
.DoubleVal
!= Src2
.DoubleVal
));
648 static GenericValue
executeFCMP_BOOL(GenericValue Src1
, GenericValue Src2
,
649 Type
*Ty
, const bool val
) {
651 if(Ty
->isVectorTy()) {
652 assert(Src1
.AggregateVal
.size() == Src2
.AggregateVal
.size());
653 Dest
.AggregateVal
.resize( Src1
.AggregateVal
.size() );
654 for( size_t _i
=0; _i
<Src1
.AggregateVal
.size(); _i
++)
655 Dest
.AggregateVal
[_i
].IntVal
= APInt(1,val
);
657 Dest
.IntVal
= APInt(1, val
);
663 void Interpreter::visitFCmpInst(FCmpInst
&I
) {
664 ExecutionContext
&SF
= ECStack
.back();
665 Type
*Ty
= I
.getOperand(0)->getType();
666 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
667 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
668 GenericValue R
; // Result
670 switch (I
.getPredicate()) {
672 dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I
;
673 llvm_unreachable(nullptr);
675 case FCmpInst::FCMP_FALSE
: R
= executeFCMP_BOOL(Src1
, Src2
, Ty
, false);
677 case FCmpInst::FCMP_TRUE
: R
= executeFCMP_BOOL(Src1
, Src2
, Ty
, true);
679 case FCmpInst::FCMP_ORD
: R
= executeFCMP_ORD(Src1
, Src2
, Ty
); break;
680 case FCmpInst::FCMP_UNO
: R
= executeFCMP_UNO(Src1
, Src2
, Ty
); break;
681 case FCmpInst::FCMP_UEQ
: R
= executeFCMP_UEQ(Src1
, Src2
, Ty
); break;
682 case FCmpInst::FCMP_OEQ
: R
= executeFCMP_OEQ(Src1
, Src2
, Ty
); break;
683 case FCmpInst::FCMP_UNE
: R
= executeFCMP_UNE(Src1
, Src2
, Ty
); break;
684 case FCmpInst::FCMP_ONE
: R
= executeFCMP_ONE(Src1
, Src2
, Ty
); break;
685 case FCmpInst::FCMP_ULT
: R
= executeFCMP_ULT(Src1
, Src2
, Ty
); break;
686 case FCmpInst::FCMP_OLT
: R
= executeFCMP_OLT(Src1
, Src2
, Ty
); break;
687 case FCmpInst::FCMP_UGT
: R
= executeFCMP_UGT(Src1
, Src2
, Ty
); break;
688 case FCmpInst::FCMP_OGT
: R
= executeFCMP_OGT(Src1
, Src2
, Ty
); break;
689 case FCmpInst::FCMP_ULE
: R
= executeFCMP_ULE(Src1
, Src2
, Ty
); break;
690 case FCmpInst::FCMP_OLE
: R
= executeFCMP_OLE(Src1
, Src2
, Ty
); break;
691 case FCmpInst::FCMP_UGE
: R
= executeFCMP_UGE(Src1
, Src2
, Ty
); break;
692 case FCmpInst::FCMP_OGE
: R
= executeFCMP_OGE(Src1
, Src2
, Ty
); break;
698 static GenericValue
executeCmpInst(unsigned predicate
, GenericValue Src1
,
699 GenericValue Src2
, Type
*Ty
) {
702 case ICmpInst::ICMP_EQ
: return executeICMP_EQ(Src1
, Src2
, Ty
);
703 case ICmpInst::ICMP_NE
: return executeICMP_NE(Src1
, Src2
, Ty
);
704 case ICmpInst::ICMP_UGT
: return executeICMP_UGT(Src1
, Src2
, Ty
);
705 case ICmpInst::ICMP_SGT
: return executeICMP_SGT(Src1
, Src2
, Ty
);
706 case ICmpInst::ICMP_ULT
: return executeICMP_ULT(Src1
, Src2
, Ty
);
707 case ICmpInst::ICMP_SLT
: return executeICMP_SLT(Src1
, Src2
, Ty
);
708 case ICmpInst::ICMP_UGE
: return executeICMP_UGE(Src1
, Src2
, Ty
);
709 case ICmpInst::ICMP_SGE
: return executeICMP_SGE(Src1
, Src2
, Ty
);
710 case ICmpInst::ICMP_ULE
: return executeICMP_ULE(Src1
, Src2
, Ty
);
711 case ICmpInst::ICMP_SLE
: return executeICMP_SLE(Src1
, Src2
, Ty
);
712 case FCmpInst::FCMP_ORD
: return executeFCMP_ORD(Src1
, Src2
, Ty
);
713 case FCmpInst::FCMP_UNO
: return executeFCMP_UNO(Src1
, Src2
, Ty
);
714 case FCmpInst::FCMP_OEQ
: return executeFCMP_OEQ(Src1
, Src2
, Ty
);
715 case FCmpInst::FCMP_UEQ
: return executeFCMP_UEQ(Src1
, Src2
, Ty
);
716 case FCmpInst::FCMP_ONE
: return executeFCMP_ONE(Src1
, Src2
, Ty
);
717 case FCmpInst::FCMP_UNE
: return executeFCMP_UNE(Src1
, Src2
, Ty
);
718 case FCmpInst::FCMP_OLT
: return executeFCMP_OLT(Src1
, Src2
, Ty
);
719 case FCmpInst::FCMP_ULT
: return executeFCMP_ULT(Src1
, Src2
, Ty
);
720 case FCmpInst::FCMP_OGT
: return executeFCMP_OGT(Src1
, Src2
, Ty
);
721 case FCmpInst::FCMP_UGT
: return executeFCMP_UGT(Src1
, Src2
, Ty
);
722 case FCmpInst::FCMP_OLE
: return executeFCMP_OLE(Src1
, Src2
, Ty
);
723 case FCmpInst::FCMP_ULE
: return executeFCMP_ULE(Src1
, Src2
, Ty
);
724 case FCmpInst::FCMP_OGE
: return executeFCMP_OGE(Src1
, Src2
, Ty
);
725 case FCmpInst::FCMP_UGE
: return executeFCMP_UGE(Src1
, Src2
, Ty
);
726 case FCmpInst::FCMP_FALSE
: return executeFCMP_BOOL(Src1
, Src2
, Ty
, false);
727 case FCmpInst::FCMP_TRUE
: return executeFCMP_BOOL(Src1
, Src2
, Ty
, true);
729 dbgs() << "Unhandled Cmp predicate\n";
730 llvm_unreachable(nullptr);
734 void Interpreter::visitBinaryOperator(BinaryOperator
&I
) {
735 ExecutionContext
&SF
= ECStack
.back();
736 Type
*Ty
= I
.getOperand(0)->getType();
737 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
738 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
739 GenericValue R
; // Result
741 // First process vector operation
742 if (Ty
->isVectorTy()) {
743 assert(Src1
.AggregateVal
.size() == Src2
.AggregateVal
.size());
744 R
.AggregateVal
.resize(Src1
.AggregateVal
.size());
746 // Macros to execute binary operation 'OP' over integer vectors
747 #define INTEGER_VECTOR_OPERATION(OP) \
748 for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
749 R.AggregateVal[i].IntVal = \
750 Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal;
752 // Additional macros to execute binary operations udiv/sdiv/urem/srem since
753 // they have different notation.
754 #define INTEGER_VECTOR_FUNCTION(OP) \
755 for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
756 R.AggregateVal[i].IntVal = \
757 Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal);
759 // Macros to execute binary operation 'OP' over floating point type TY
760 // (float or double) vectors
761 #define FLOAT_VECTOR_FUNCTION(OP, TY) \
762 for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
763 R.AggregateVal[i].TY = \
764 Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY;
766 // Macros to choose appropriate TY: float or double and run operation
768 #define FLOAT_VECTOR_OP(OP) { \
769 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) \
770 FLOAT_VECTOR_FUNCTION(OP, FloatVal) \
772 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) \
773 FLOAT_VECTOR_FUNCTION(OP, DoubleVal) \
775 dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \
776 llvm_unreachable(0); \
781 switch(I
.getOpcode()){
783 dbgs() << "Don't know how to handle this binary operator!\n-->" << I
;
784 llvm_unreachable(nullptr);
786 case Instruction::Add
: INTEGER_VECTOR_OPERATION(+) break;
787 case Instruction::Sub
: INTEGER_VECTOR_OPERATION(-) break;
788 case Instruction::Mul
: INTEGER_VECTOR_OPERATION(*) break;
789 case Instruction::UDiv
: INTEGER_VECTOR_FUNCTION(udiv
) break;
790 case Instruction::SDiv
: INTEGER_VECTOR_FUNCTION(sdiv
) break;
791 case Instruction::URem
: INTEGER_VECTOR_FUNCTION(urem
) break;
792 case Instruction::SRem
: INTEGER_VECTOR_FUNCTION(srem
) break;
793 case Instruction::And
: INTEGER_VECTOR_OPERATION(&) break;
794 case Instruction::Or
: INTEGER_VECTOR_OPERATION(|) break;
795 case Instruction::Xor
: INTEGER_VECTOR_OPERATION(^) break;
796 case Instruction::FAdd
: FLOAT_VECTOR_OP(+) break;
797 case Instruction::FSub
: FLOAT_VECTOR_OP(-) break;
798 case Instruction::FMul
: FLOAT_VECTOR_OP(*) break;
799 case Instruction::FDiv
: FLOAT_VECTOR_OP(/) break;
800 case Instruction::FRem
:
801 if (cast
<VectorType
>(Ty
)->getElementType()->isFloatTy())
802 for (unsigned i
= 0; i
< R
.AggregateVal
.size(); ++i
)
803 R
.AggregateVal
[i
].FloatVal
=
804 fmod(Src1
.AggregateVal
[i
].FloatVal
, Src2
.AggregateVal
[i
].FloatVal
);
806 if (cast
<VectorType
>(Ty
)->getElementType()->isDoubleTy())
807 for (unsigned i
= 0; i
< R
.AggregateVal
.size(); ++i
)
808 R
.AggregateVal
[i
].DoubleVal
=
809 fmod(Src1
.AggregateVal
[i
].DoubleVal
, Src2
.AggregateVal
[i
].DoubleVal
);
811 dbgs() << "Unhandled type for Rem instruction: " << *Ty
<< "\n";
812 llvm_unreachable(nullptr);
818 switch (I
.getOpcode()) {
820 dbgs() << "Don't know how to handle this binary operator!\n-->" << I
;
821 llvm_unreachable(nullptr);
823 case Instruction::Add
: R
.IntVal
= Src1
.IntVal
+ Src2
.IntVal
; break;
824 case Instruction::Sub
: R
.IntVal
= Src1
.IntVal
- Src2
.IntVal
; break;
825 case Instruction::Mul
: R
.IntVal
= Src1
.IntVal
* Src2
.IntVal
; break;
826 case Instruction::FAdd
: executeFAddInst(R
, Src1
, Src2
, Ty
); break;
827 case Instruction::FSub
: executeFSubInst(R
, Src1
, Src2
, Ty
); break;
828 case Instruction::FMul
: executeFMulInst(R
, Src1
, Src2
, Ty
); break;
829 case Instruction::FDiv
: executeFDivInst(R
, Src1
, Src2
, Ty
); break;
830 case Instruction::FRem
: executeFRemInst(R
, Src1
, Src2
, Ty
); break;
831 case Instruction::UDiv
: R
.IntVal
= Src1
.IntVal
.udiv(Src2
.IntVal
); break;
832 case Instruction::SDiv
: R
.IntVal
= Src1
.IntVal
.sdiv(Src2
.IntVal
); break;
833 case Instruction::URem
: R
.IntVal
= Src1
.IntVal
.urem(Src2
.IntVal
); break;
834 case Instruction::SRem
: R
.IntVal
= Src1
.IntVal
.srem(Src2
.IntVal
); break;
835 case Instruction::And
: R
.IntVal
= Src1
.IntVal
& Src2
.IntVal
; break;
836 case Instruction::Or
: R
.IntVal
= Src1
.IntVal
| Src2
.IntVal
; break;
837 case Instruction::Xor
: R
.IntVal
= Src1
.IntVal
^ Src2
.IntVal
; break;
843 static GenericValue
executeSelectInst(GenericValue Src1
, GenericValue Src2
,
844 GenericValue Src3
, Type
*Ty
) {
846 if(Ty
->isVectorTy()) {
847 assert(Src1
.AggregateVal
.size() == Src2
.AggregateVal
.size());
848 assert(Src2
.AggregateVal
.size() == Src3
.AggregateVal
.size());
849 Dest
.AggregateVal
.resize( Src1
.AggregateVal
.size() );
850 for (size_t i
= 0; i
< Src1
.AggregateVal
.size(); ++i
)
851 Dest
.AggregateVal
[i
] = (Src1
.AggregateVal
[i
].IntVal
== 0) ?
852 Src3
.AggregateVal
[i
] : Src2
.AggregateVal
[i
];
854 Dest
= (Src1
.IntVal
== 0) ? Src3
: Src2
;
859 void Interpreter::visitSelectInst(SelectInst
&I
) {
860 ExecutionContext
&SF
= ECStack
.back();
861 Type
* Ty
= I
.getOperand(0)->getType();
862 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
863 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
864 GenericValue Src3
= getOperandValue(I
.getOperand(2), SF
);
865 GenericValue R
= executeSelectInst(Src1
, Src2
, Src3
, Ty
);
869 //===----------------------------------------------------------------------===//
870 // Terminator Instruction Implementations
871 //===----------------------------------------------------------------------===//
873 void Interpreter::exitCalled(GenericValue GV
) {
874 // runAtExitHandlers() assumes there are no stack frames, but
875 // if exit() was called, then it had a stack frame. Blow away
876 // the stack before interpreting atexit handlers.
879 exit(GV
.IntVal
.zextOrTrunc(32).getZExtValue());
882 /// Pop the last stack frame off of ECStack and then copy the result
883 /// back into the result variable if we are not returning void. The
884 /// result variable may be the ExitValue, or the Value of the calling
885 /// CallInst if there was a previous stack frame. This method may
886 /// invalidate any ECStack iterators you have. This method also takes
887 /// care of switching to the normal destination BB, if we are returning
890 void Interpreter::popStackAndReturnValueToCaller(Type
*RetTy
,
891 GenericValue Result
) {
892 // Pop the current stack frame.
895 if (ECStack
.empty()) { // Finished main. Put result into exit code...
896 if (RetTy
&& !RetTy
->isVoidTy()) { // Nonvoid return type?
897 ExitValue
= Result
; // Capture the exit value of the program
899 memset(&ExitValue
.Untyped
, 0, sizeof(ExitValue
.Untyped
));
902 // If we have a previous stack frame, and we have a previous call,
903 // fill in the return value...
904 ExecutionContext
&CallingSF
= ECStack
.back();
905 if (Instruction
*I
= CallingSF
.Caller
.getInstruction()) {
907 if (!CallingSF
.Caller
.getType()->isVoidTy())
908 SetValue(I
, Result
, CallingSF
);
909 if (InvokeInst
*II
= dyn_cast
<InvokeInst
> (I
))
910 SwitchToNewBasicBlock (II
->getNormalDest (), CallingSF
);
911 CallingSF
.Caller
= CallSite(); // We returned from the call...
916 void Interpreter::visitReturnInst(ReturnInst
&I
) {
917 ExecutionContext
&SF
= ECStack
.back();
918 Type
*RetTy
= Type::getVoidTy(I
.getContext());
921 // Save away the return value... (if we are not 'ret void')
922 if (I
.getNumOperands()) {
923 RetTy
= I
.getReturnValue()->getType();
924 Result
= getOperandValue(I
.getReturnValue(), SF
);
927 popStackAndReturnValueToCaller(RetTy
, Result
);
930 void Interpreter::visitUnreachableInst(UnreachableInst
&I
) {
931 report_fatal_error("Program executed an 'unreachable' instruction!");
934 void Interpreter::visitBranchInst(BranchInst
&I
) {
935 ExecutionContext
&SF
= ECStack
.back();
938 Dest
= I
.getSuccessor(0); // Uncond branches have a fixed dest...
939 if (!I
.isUnconditional()) {
940 Value
*Cond
= I
.getCondition();
941 if (getOperandValue(Cond
, SF
).IntVal
== 0) // If false cond...
942 Dest
= I
.getSuccessor(1);
944 SwitchToNewBasicBlock(Dest
, SF
);
947 void Interpreter::visitSwitchInst(SwitchInst
&I
) {
948 ExecutionContext
&SF
= ECStack
.back();
949 Value
* Cond
= I
.getCondition();
950 Type
*ElTy
= Cond
->getType();
951 GenericValue CondVal
= getOperandValue(Cond
, SF
);
953 // Check to see if any of the cases match...
954 BasicBlock
*Dest
= nullptr;
955 for (auto Case
: I
.cases()) {
956 GenericValue CaseVal
= getOperandValue(Case
.getCaseValue(), SF
);
957 if (executeICMP_EQ(CondVal
, CaseVal
, ElTy
).IntVal
!= 0) {
958 Dest
= cast
<BasicBlock
>(Case
.getCaseSuccessor());
962 if (!Dest
) Dest
= I
.getDefaultDest(); // No cases matched: use default
963 SwitchToNewBasicBlock(Dest
, SF
);
966 void Interpreter::visitIndirectBrInst(IndirectBrInst
&I
) {
967 ExecutionContext
&SF
= ECStack
.back();
968 void *Dest
= GVTOP(getOperandValue(I
.getAddress(), SF
));
969 SwitchToNewBasicBlock((BasicBlock
*)Dest
, SF
);
973 // SwitchToNewBasicBlock - This method is used to jump to a new basic block.
974 // This function handles the actual updating of block and instruction iterators
975 // as well as execution of all of the PHI nodes in the destination block.
977 // This method does this because all of the PHI nodes must be executed
978 // atomically, reading their inputs before any of the results are updated. Not
979 // doing this can cause problems if the PHI nodes depend on other PHI nodes for
980 // their inputs. If the input PHI node is updated before it is read, incorrect
981 // results can happen. Thus we use a two phase approach.
983 void Interpreter::SwitchToNewBasicBlock(BasicBlock
*Dest
, ExecutionContext
&SF
){
984 BasicBlock
*PrevBB
= SF
.CurBB
; // Remember where we came from...
985 SF
.CurBB
= Dest
; // Update CurBB to branch destination
986 SF
.CurInst
= SF
.CurBB
->begin(); // Update new instruction ptr...
988 if (!isa
<PHINode
>(SF
.CurInst
)) return; // Nothing fancy to do
990 // Loop over all of the PHI nodes in the current block, reading their inputs.
991 std::vector
<GenericValue
> ResultValues
;
993 for (; PHINode
*PN
= dyn_cast
<PHINode
>(SF
.CurInst
); ++SF
.CurInst
) {
994 // Search for the value corresponding to this previous bb...
995 int i
= PN
->getBasicBlockIndex(PrevBB
);
996 assert(i
!= -1 && "PHINode doesn't contain entry for predecessor??");
997 Value
*IncomingValue
= PN
->getIncomingValue(i
);
999 // Save the incoming value for this PHI node...
1000 ResultValues
.push_back(getOperandValue(IncomingValue
, SF
));
1003 // Now loop over all of the PHI nodes setting their values...
1004 SF
.CurInst
= SF
.CurBB
->begin();
1005 for (unsigned i
= 0; isa
<PHINode
>(SF
.CurInst
); ++SF
.CurInst
, ++i
) {
1006 PHINode
*PN
= cast
<PHINode
>(SF
.CurInst
);
1007 SetValue(PN
, ResultValues
[i
], SF
);
1011 //===----------------------------------------------------------------------===//
1012 // Memory Instruction Implementations
1013 //===----------------------------------------------------------------------===//
1015 void Interpreter::visitAllocaInst(AllocaInst
&I
) {
1016 ExecutionContext
&SF
= ECStack
.back();
1018 Type
*Ty
= I
.getType()->getElementType(); // Type to be allocated
1020 // Get the number of elements being allocated by the array...
1021 unsigned NumElements
=
1022 getOperandValue(I
.getOperand(0), SF
).IntVal
.getZExtValue();
1024 unsigned TypeSize
= (size_t)getDataLayout().getTypeAllocSize(Ty
);
1026 // Avoid malloc-ing zero bytes, use max()...
1027 unsigned MemToAlloc
= std::max(1U, NumElements
* TypeSize
);
1029 // Allocate enough memory to hold the type...
1030 void *Memory
= safe_malloc(MemToAlloc
);
1032 LLVM_DEBUG(dbgs() << "Allocated Type: " << *Ty
<< " (" << TypeSize
1033 << " bytes) x " << NumElements
<< " (Total: " << MemToAlloc
1034 << ") at " << uintptr_t(Memory
) << '\n');
1036 GenericValue Result
= PTOGV(Memory
);
1037 assert(Result
.PointerVal
&& "Null pointer returned by malloc!");
1038 SetValue(&I
, Result
, SF
);
1040 if (I
.getOpcode() == Instruction::Alloca
)
1041 ECStack
.back().Allocas
.add(Memory
);
1044 // getElementOffset - The workhorse for getelementptr.
1046 GenericValue
Interpreter::executeGEPOperation(Value
*Ptr
, gep_type_iterator I
,
1047 gep_type_iterator E
,
1048 ExecutionContext
&SF
) {
1049 assert(Ptr
->getType()->isPointerTy() &&
1050 "Cannot getElementOffset of a nonpointer type!");
1054 for (; I
!= E
; ++I
) {
1055 if (StructType
*STy
= I
.getStructTypeOrNull()) {
1056 const StructLayout
*SLO
= getDataLayout().getStructLayout(STy
);
1058 const ConstantInt
*CPU
= cast
<ConstantInt
>(I
.getOperand());
1059 unsigned Index
= unsigned(CPU
->getZExtValue());
1061 Total
+= SLO
->getElementOffset(Index
);
1063 // Get the index number for the array... which must be long type...
1064 GenericValue IdxGV
= getOperandValue(I
.getOperand(), SF
);
1068 cast
<IntegerType
>(I
.getOperand()->getType())->getBitWidth();
1070 Idx
= (int64_t)(int32_t)IdxGV
.IntVal
.getZExtValue();
1072 assert(BitWidth
== 64 && "Invalid index type for getelementptr");
1073 Idx
= (int64_t)IdxGV
.IntVal
.getZExtValue();
1075 Total
+= getDataLayout().getTypeAllocSize(I
.getIndexedType()) * Idx
;
1079 GenericValue Result
;
1080 Result
.PointerVal
= ((char*)getOperandValue(Ptr
, SF
).PointerVal
) + Total
;
1081 LLVM_DEBUG(dbgs() << "GEP Index " << Total
<< " bytes.\n");
1085 void Interpreter::visitGetElementPtrInst(GetElementPtrInst
&I
) {
1086 ExecutionContext
&SF
= ECStack
.back();
1087 SetValue(&I
, executeGEPOperation(I
.getPointerOperand(),
1088 gep_type_begin(I
), gep_type_end(I
), SF
), SF
);
1091 void Interpreter::visitLoadInst(LoadInst
&I
) {
1092 ExecutionContext
&SF
= ECStack
.back();
1093 GenericValue SRC
= getOperandValue(I
.getPointerOperand(), SF
);
1094 GenericValue
*Ptr
= (GenericValue
*)GVTOP(SRC
);
1095 GenericValue Result
;
1096 LoadValueFromMemory(Result
, Ptr
, I
.getType());
1097 SetValue(&I
, Result
, SF
);
1098 if (I
.isVolatile() && PrintVolatile
)
1099 dbgs() << "Volatile load " << I
;
1102 void Interpreter::visitStoreInst(StoreInst
&I
) {
1103 ExecutionContext
&SF
= ECStack
.back();
1104 GenericValue Val
= getOperandValue(I
.getOperand(0), SF
);
1105 GenericValue SRC
= getOperandValue(I
.getPointerOperand(), SF
);
1106 StoreValueToMemory(Val
, (GenericValue
*)GVTOP(SRC
),
1107 I
.getOperand(0)->getType());
1108 if (I
.isVolatile() && PrintVolatile
)
1109 dbgs() << "Volatile store: " << I
;
1112 //===----------------------------------------------------------------------===//
1113 // Miscellaneous Instruction Implementations
1114 //===----------------------------------------------------------------------===//
1116 void Interpreter::visitCallSite(CallSite CS
) {
1117 ExecutionContext
&SF
= ECStack
.back();
1119 // Check to see if this is an intrinsic function call...
1120 Function
*F
= CS
.getCalledFunction();
1121 if (F
&& F
->isDeclaration())
1122 switch (F
->getIntrinsicID()) {
1123 case Intrinsic::not_intrinsic
:
1125 case Intrinsic::vastart
: { // va_start
1126 GenericValue ArgIndex
;
1127 ArgIndex
.UIntPairVal
.first
= ECStack
.size() - 1;
1128 ArgIndex
.UIntPairVal
.second
= 0;
1129 SetValue(CS
.getInstruction(), ArgIndex
, SF
);
1132 case Intrinsic::vaend
: // va_end is a noop for the interpreter
1134 case Intrinsic::vacopy
: // va_copy: dest = src
1135 SetValue(CS
.getInstruction(), getOperandValue(*CS
.arg_begin(), SF
), SF
);
1138 // If it is an unknown intrinsic function, use the intrinsic lowering
1139 // class to transform it into hopefully tasty LLVM code.
1141 BasicBlock::iterator
me(CS
.getInstruction());
1142 BasicBlock
*Parent
= CS
.getInstruction()->getParent();
1143 bool atBegin(Parent
->begin() == me
);
1146 IL
->LowerIntrinsicCall(cast
<CallInst
>(CS
.getInstruction()));
1148 // Restore the CurInst pointer to the first instruction newly inserted, if
1151 SF
.CurInst
= Parent
->begin();
1161 std::vector
<GenericValue
> ArgVals
;
1162 const unsigned NumArgs
= SF
.Caller
.arg_size();
1163 ArgVals
.reserve(NumArgs
);
1165 for (CallSite::arg_iterator i
= SF
.Caller
.arg_begin(),
1166 e
= SF
.Caller
.arg_end(); i
!= e
; ++i
, ++pNum
) {
1168 ArgVals
.push_back(getOperandValue(V
, SF
));
1171 // To handle indirect calls, we must get the pointer value from the argument
1172 // and treat it as a function pointer.
1173 GenericValue SRC
= getOperandValue(SF
.Caller
.getCalledValue(), SF
);
1174 callFunction((Function
*)GVTOP(SRC
), ArgVals
);
1177 // auxiliary function for shift operations
1178 static unsigned getShiftAmount(uint64_t orgShiftAmount
,
1179 llvm::APInt valueToShift
) {
1180 unsigned valueWidth
= valueToShift
.getBitWidth();
1181 if (orgShiftAmount
< (uint64_t)valueWidth
)
1182 return orgShiftAmount
;
1183 // according to the llvm documentation, if orgShiftAmount > valueWidth,
1184 // the result is undfeined. but we do shift by this rule:
1185 return (NextPowerOf2(valueWidth
-1) - 1) & orgShiftAmount
;
1189 void Interpreter::visitShl(BinaryOperator
&I
) {
1190 ExecutionContext
&SF
= ECStack
.back();
1191 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
1192 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
1194 Type
*Ty
= I
.getType();
1196 if (Ty
->isVectorTy()) {
1197 uint32_t src1Size
= uint32_t(Src1
.AggregateVal
.size());
1198 assert(src1Size
== Src2
.AggregateVal
.size());
1199 for (unsigned i
= 0; i
< src1Size
; i
++) {
1200 GenericValue Result
;
1201 uint64_t shiftAmount
= Src2
.AggregateVal
[i
].IntVal
.getZExtValue();
1202 llvm::APInt valueToShift
= Src1
.AggregateVal
[i
].IntVal
;
1203 Result
.IntVal
= valueToShift
.shl(getShiftAmount(shiftAmount
, valueToShift
));
1204 Dest
.AggregateVal
.push_back(Result
);
1208 uint64_t shiftAmount
= Src2
.IntVal
.getZExtValue();
1209 llvm::APInt valueToShift
= Src1
.IntVal
;
1210 Dest
.IntVal
= valueToShift
.shl(getShiftAmount(shiftAmount
, valueToShift
));
1213 SetValue(&I
, Dest
, SF
);
1216 void Interpreter::visitLShr(BinaryOperator
&I
) {
1217 ExecutionContext
&SF
= ECStack
.back();
1218 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
1219 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
1221 Type
*Ty
= I
.getType();
1223 if (Ty
->isVectorTy()) {
1224 uint32_t src1Size
= uint32_t(Src1
.AggregateVal
.size());
1225 assert(src1Size
== Src2
.AggregateVal
.size());
1226 for (unsigned i
= 0; i
< src1Size
; i
++) {
1227 GenericValue Result
;
1228 uint64_t shiftAmount
= Src2
.AggregateVal
[i
].IntVal
.getZExtValue();
1229 llvm::APInt valueToShift
= Src1
.AggregateVal
[i
].IntVal
;
1230 Result
.IntVal
= valueToShift
.lshr(getShiftAmount(shiftAmount
, valueToShift
));
1231 Dest
.AggregateVal
.push_back(Result
);
1235 uint64_t shiftAmount
= Src2
.IntVal
.getZExtValue();
1236 llvm::APInt valueToShift
= Src1
.IntVal
;
1237 Dest
.IntVal
= valueToShift
.lshr(getShiftAmount(shiftAmount
, valueToShift
));
1240 SetValue(&I
, Dest
, SF
);
1243 void Interpreter::visitAShr(BinaryOperator
&I
) {
1244 ExecutionContext
&SF
= ECStack
.back();
1245 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
1246 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
1248 Type
*Ty
= I
.getType();
1250 if (Ty
->isVectorTy()) {
1251 size_t src1Size
= Src1
.AggregateVal
.size();
1252 assert(src1Size
== Src2
.AggregateVal
.size());
1253 for (unsigned i
= 0; i
< src1Size
; i
++) {
1254 GenericValue Result
;
1255 uint64_t shiftAmount
= Src2
.AggregateVal
[i
].IntVal
.getZExtValue();
1256 llvm::APInt valueToShift
= Src1
.AggregateVal
[i
].IntVal
;
1257 Result
.IntVal
= valueToShift
.ashr(getShiftAmount(shiftAmount
, valueToShift
));
1258 Dest
.AggregateVal
.push_back(Result
);
1262 uint64_t shiftAmount
= Src2
.IntVal
.getZExtValue();
1263 llvm::APInt valueToShift
= Src1
.IntVal
;
1264 Dest
.IntVal
= valueToShift
.ashr(getShiftAmount(shiftAmount
, valueToShift
));
1267 SetValue(&I
, Dest
, SF
);
1270 GenericValue
Interpreter::executeTruncInst(Value
*SrcVal
, Type
*DstTy
,
1271 ExecutionContext
&SF
) {
1272 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1273 Type
*SrcTy
= SrcVal
->getType();
1274 if (SrcTy
->isVectorTy()) {
1275 Type
*DstVecTy
= DstTy
->getScalarType();
1276 unsigned DBitWidth
= cast
<IntegerType
>(DstVecTy
)->getBitWidth();
1277 unsigned NumElts
= Src
.AggregateVal
.size();
1278 // the sizes of src and dst vectors must be equal
1279 Dest
.AggregateVal
.resize(NumElts
);
1280 for (unsigned i
= 0; i
< NumElts
; i
++)
1281 Dest
.AggregateVal
[i
].IntVal
= Src
.AggregateVal
[i
].IntVal
.trunc(DBitWidth
);
1283 IntegerType
*DITy
= cast
<IntegerType
>(DstTy
);
1284 unsigned DBitWidth
= DITy
->getBitWidth();
1285 Dest
.IntVal
= Src
.IntVal
.trunc(DBitWidth
);
1290 GenericValue
Interpreter::executeSExtInst(Value
*SrcVal
, Type
*DstTy
,
1291 ExecutionContext
&SF
) {
1292 Type
*SrcTy
= SrcVal
->getType();
1293 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1294 if (SrcTy
->isVectorTy()) {
1295 Type
*DstVecTy
= DstTy
->getScalarType();
1296 unsigned DBitWidth
= cast
<IntegerType
>(DstVecTy
)->getBitWidth();
1297 unsigned size
= Src
.AggregateVal
.size();
1298 // the sizes of src and dst vectors must be equal.
1299 Dest
.AggregateVal
.resize(size
);
1300 for (unsigned i
= 0; i
< size
; i
++)
1301 Dest
.AggregateVal
[i
].IntVal
= Src
.AggregateVal
[i
].IntVal
.sext(DBitWidth
);
1303 auto *DITy
= cast
<IntegerType
>(DstTy
);
1304 unsigned DBitWidth
= DITy
->getBitWidth();
1305 Dest
.IntVal
= Src
.IntVal
.sext(DBitWidth
);
1310 GenericValue
Interpreter::executeZExtInst(Value
*SrcVal
, Type
*DstTy
,
1311 ExecutionContext
&SF
) {
1312 Type
*SrcTy
= SrcVal
->getType();
1313 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1314 if (SrcTy
->isVectorTy()) {
1315 Type
*DstVecTy
= DstTy
->getScalarType();
1316 unsigned DBitWidth
= cast
<IntegerType
>(DstVecTy
)->getBitWidth();
1318 unsigned size
= Src
.AggregateVal
.size();
1319 // the sizes of src and dst vectors must be equal.
1320 Dest
.AggregateVal
.resize(size
);
1321 for (unsigned i
= 0; i
< size
; i
++)
1322 Dest
.AggregateVal
[i
].IntVal
= Src
.AggregateVal
[i
].IntVal
.zext(DBitWidth
);
1324 auto *DITy
= cast
<IntegerType
>(DstTy
);
1325 unsigned DBitWidth
= DITy
->getBitWidth();
1326 Dest
.IntVal
= Src
.IntVal
.zext(DBitWidth
);
1331 GenericValue
Interpreter::executeFPTruncInst(Value
*SrcVal
, Type
*DstTy
,
1332 ExecutionContext
&SF
) {
1333 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1335 if (SrcVal
->getType()->getTypeID() == Type::VectorTyID
) {
1336 assert(SrcVal
->getType()->getScalarType()->isDoubleTy() &&
1337 DstTy
->getScalarType()->isFloatTy() &&
1338 "Invalid FPTrunc instruction");
1340 unsigned size
= Src
.AggregateVal
.size();
1341 // the sizes of src and dst vectors must be equal.
1342 Dest
.AggregateVal
.resize(size
);
1343 for (unsigned i
= 0; i
< size
; i
++)
1344 Dest
.AggregateVal
[i
].FloatVal
= (float)Src
.AggregateVal
[i
].DoubleVal
;
1346 assert(SrcVal
->getType()->isDoubleTy() && DstTy
->isFloatTy() &&
1347 "Invalid FPTrunc instruction");
1348 Dest
.FloatVal
= (float)Src
.DoubleVal
;
1354 GenericValue
Interpreter::executeFPExtInst(Value
*SrcVal
, Type
*DstTy
,
1355 ExecutionContext
&SF
) {
1356 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1358 if (SrcVal
->getType()->getTypeID() == Type::VectorTyID
) {
1359 assert(SrcVal
->getType()->getScalarType()->isFloatTy() &&
1360 DstTy
->getScalarType()->isDoubleTy() && "Invalid FPExt instruction");
1362 unsigned size
= Src
.AggregateVal
.size();
1363 // the sizes of src and dst vectors must be equal.
1364 Dest
.AggregateVal
.resize(size
);
1365 for (unsigned i
= 0; i
< size
; i
++)
1366 Dest
.AggregateVal
[i
].DoubleVal
= (double)Src
.AggregateVal
[i
].FloatVal
;
1368 assert(SrcVal
->getType()->isFloatTy() && DstTy
->isDoubleTy() &&
1369 "Invalid FPExt instruction");
1370 Dest
.DoubleVal
= (double)Src
.FloatVal
;
1376 GenericValue
Interpreter::executeFPToUIInst(Value
*SrcVal
, Type
*DstTy
,
1377 ExecutionContext
&SF
) {
1378 Type
*SrcTy
= SrcVal
->getType();
1379 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1381 if (SrcTy
->getTypeID() == Type::VectorTyID
) {
1382 Type
*DstVecTy
= DstTy
->getScalarType();
1383 Type
*SrcVecTy
= SrcTy
->getScalarType();
1384 uint32_t DBitWidth
= cast
<IntegerType
>(DstVecTy
)->getBitWidth();
1385 unsigned size
= Src
.AggregateVal
.size();
1386 // the sizes of src and dst vectors must be equal.
1387 Dest
.AggregateVal
.resize(size
);
1389 if (SrcVecTy
->getTypeID() == Type::FloatTyID
) {
1390 assert(SrcVecTy
->isFloatingPointTy() && "Invalid FPToUI instruction");
1391 for (unsigned i
= 0; i
< size
; i
++)
1392 Dest
.AggregateVal
[i
].IntVal
= APIntOps::RoundFloatToAPInt(
1393 Src
.AggregateVal
[i
].FloatVal
, DBitWidth
);
1395 for (unsigned i
= 0; i
< size
; i
++)
1396 Dest
.AggregateVal
[i
].IntVal
= APIntOps::RoundDoubleToAPInt(
1397 Src
.AggregateVal
[i
].DoubleVal
, DBitWidth
);
1401 uint32_t DBitWidth
= cast
<IntegerType
>(DstTy
)->getBitWidth();
1402 assert(SrcTy
->isFloatingPointTy() && "Invalid FPToUI instruction");
1404 if (SrcTy
->getTypeID() == Type::FloatTyID
)
1405 Dest
.IntVal
= APIntOps::RoundFloatToAPInt(Src
.FloatVal
, DBitWidth
);
1407 Dest
.IntVal
= APIntOps::RoundDoubleToAPInt(Src
.DoubleVal
, DBitWidth
);
1414 GenericValue
Interpreter::executeFPToSIInst(Value
*SrcVal
, Type
*DstTy
,
1415 ExecutionContext
&SF
) {
1416 Type
*SrcTy
= SrcVal
->getType();
1417 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1419 if (SrcTy
->getTypeID() == Type::VectorTyID
) {
1420 Type
*DstVecTy
= DstTy
->getScalarType();
1421 Type
*SrcVecTy
= SrcTy
->getScalarType();
1422 uint32_t DBitWidth
= cast
<IntegerType
>(DstVecTy
)->getBitWidth();
1423 unsigned size
= Src
.AggregateVal
.size();
1424 // the sizes of src and dst vectors must be equal
1425 Dest
.AggregateVal
.resize(size
);
1427 if (SrcVecTy
->getTypeID() == Type::FloatTyID
) {
1428 assert(SrcVecTy
->isFloatingPointTy() && "Invalid FPToSI instruction");
1429 for (unsigned i
= 0; i
< size
; i
++)
1430 Dest
.AggregateVal
[i
].IntVal
= APIntOps::RoundFloatToAPInt(
1431 Src
.AggregateVal
[i
].FloatVal
, DBitWidth
);
1433 for (unsigned i
= 0; i
< size
; i
++)
1434 Dest
.AggregateVal
[i
].IntVal
= APIntOps::RoundDoubleToAPInt(
1435 Src
.AggregateVal
[i
].DoubleVal
, DBitWidth
);
1439 unsigned DBitWidth
= cast
<IntegerType
>(DstTy
)->getBitWidth();
1440 assert(SrcTy
->isFloatingPointTy() && "Invalid FPToSI instruction");
1442 if (SrcTy
->getTypeID() == Type::FloatTyID
)
1443 Dest
.IntVal
= APIntOps::RoundFloatToAPInt(Src
.FloatVal
, DBitWidth
);
1445 Dest
.IntVal
= APIntOps::RoundDoubleToAPInt(Src
.DoubleVal
, DBitWidth
);
1451 GenericValue
Interpreter::executeUIToFPInst(Value
*SrcVal
, Type
*DstTy
,
1452 ExecutionContext
&SF
) {
1453 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1455 if (SrcVal
->getType()->getTypeID() == Type::VectorTyID
) {
1456 Type
*DstVecTy
= DstTy
->getScalarType();
1457 unsigned size
= Src
.AggregateVal
.size();
1458 // the sizes of src and dst vectors must be equal
1459 Dest
.AggregateVal
.resize(size
);
1461 if (DstVecTy
->getTypeID() == Type::FloatTyID
) {
1462 assert(DstVecTy
->isFloatingPointTy() && "Invalid UIToFP instruction");
1463 for (unsigned i
= 0; i
< size
; i
++)
1464 Dest
.AggregateVal
[i
].FloatVal
=
1465 APIntOps::RoundAPIntToFloat(Src
.AggregateVal
[i
].IntVal
);
1467 for (unsigned i
= 0; i
< size
; i
++)
1468 Dest
.AggregateVal
[i
].DoubleVal
=
1469 APIntOps::RoundAPIntToDouble(Src
.AggregateVal
[i
].IntVal
);
1473 assert(DstTy
->isFloatingPointTy() && "Invalid UIToFP instruction");
1474 if (DstTy
->getTypeID() == Type::FloatTyID
)
1475 Dest
.FloatVal
= APIntOps::RoundAPIntToFloat(Src
.IntVal
);
1477 Dest
.DoubleVal
= APIntOps::RoundAPIntToDouble(Src
.IntVal
);
1483 GenericValue
Interpreter::executeSIToFPInst(Value
*SrcVal
, Type
*DstTy
,
1484 ExecutionContext
&SF
) {
1485 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1487 if (SrcVal
->getType()->getTypeID() == Type::VectorTyID
) {
1488 Type
*DstVecTy
= DstTy
->getScalarType();
1489 unsigned size
= Src
.AggregateVal
.size();
1490 // the sizes of src and dst vectors must be equal
1491 Dest
.AggregateVal
.resize(size
);
1493 if (DstVecTy
->getTypeID() == Type::FloatTyID
) {
1494 assert(DstVecTy
->isFloatingPointTy() && "Invalid SIToFP instruction");
1495 for (unsigned i
= 0; i
< size
; i
++)
1496 Dest
.AggregateVal
[i
].FloatVal
=
1497 APIntOps::RoundSignedAPIntToFloat(Src
.AggregateVal
[i
].IntVal
);
1499 for (unsigned i
= 0; i
< size
; i
++)
1500 Dest
.AggregateVal
[i
].DoubleVal
=
1501 APIntOps::RoundSignedAPIntToDouble(Src
.AggregateVal
[i
].IntVal
);
1505 assert(DstTy
->isFloatingPointTy() && "Invalid SIToFP instruction");
1507 if (DstTy
->getTypeID() == Type::FloatTyID
)
1508 Dest
.FloatVal
= APIntOps::RoundSignedAPIntToFloat(Src
.IntVal
);
1510 Dest
.DoubleVal
= APIntOps::RoundSignedAPIntToDouble(Src
.IntVal
);
1517 GenericValue
Interpreter::executePtrToIntInst(Value
*SrcVal
, Type
*DstTy
,
1518 ExecutionContext
&SF
) {
1519 uint32_t DBitWidth
= cast
<IntegerType
>(DstTy
)->getBitWidth();
1520 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1521 assert(SrcVal
->getType()->isPointerTy() && "Invalid PtrToInt instruction");
1523 Dest
.IntVal
= APInt(DBitWidth
, (intptr_t) Src
.PointerVal
);
1527 GenericValue
Interpreter::executeIntToPtrInst(Value
*SrcVal
, Type
*DstTy
,
1528 ExecutionContext
&SF
) {
1529 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1530 assert(DstTy
->isPointerTy() && "Invalid PtrToInt instruction");
1532 uint32_t PtrSize
= getDataLayout().getPointerSizeInBits();
1533 if (PtrSize
!= Src
.IntVal
.getBitWidth())
1534 Src
.IntVal
= Src
.IntVal
.zextOrTrunc(PtrSize
);
1536 Dest
.PointerVal
= PointerTy(intptr_t(Src
.IntVal
.getZExtValue()));
1540 GenericValue
Interpreter::executeBitCastInst(Value
*SrcVal
, Type
*DstTy
,
1541 ExecutionContext
&SF
) {
1543 // This instruction supports bitwise conversion of vectors to integers and
1544 // to vectors of other types (as long as they have the same size)
1545 Type
*SrcTy
= SrcVal
->getType();
1546 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1548 if ((SrcTy
->getTypeID() == Type::VectorTyID
) ||
1549 (DstTy
->getTypeID() == Type::VectorTyID
)) {
1550 // vector src bitcast to vector dst or vector src bitcast to scalar dst or
1551 // scalar src bitcast to vector dst
1552 bool isLittleEndian
= getDataLayout().isLittleEndian();
1553 GenericValue TempDst
, TempSrc
, SrcVec
;
1556 unsigned SrcBitSize
;
1557 unsigned DstBitSize
;
1561 if (SrcTy
->getTypeID() == Type::VectorTyID
) {
1562 SrcElemTy
= SrcTy
->getScalarType();
1563 SrcBitSize
= SrcTy
->getScalarSizeInBits();
1564 SrcNum
= Src
.AggregateVal
.size();
1567 // if src is scalar value, make it vector <1 x type>
1569 SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
1571 SrcVec
.AggregateVal
.push_back(Src
);
1574 if (DstTy
->getTypeID() == Type::VectorTyID
) {
1575 DstElemTy
= DstTy
->getScalarType();
1576 DstBitSize
= DstTy
->getScalarSizeInBits();
1577 DstNum
= (SrcNum
* SrcBitSize
) / DstBitSize
;
1580 DstBitSize
= DstTy
->getPrimitiveSizeInBits();
1584 if (SrcNum
* SrcBitSize
!= DstNum
* DstBitSize
)
1585 llvm_unreachable("Invalid BitCast");
1587 // If src is floating point, cast to integer first.
1588 TempSrc
.AggregateVal
.resize(SrcNum
);
1589 if (SrcElemTy
->isFloatTy()) {
1590 for (unsigned i
= 0; i
< SrcNum
; i
++)
1591 TempSrc
.AggregateVal
[i
].IntVal
=
1592 APInt::floatToBits(SrcVec
.AggregateVal
[i
].FloatVal
);
1594 } else if (SrcElemTy
->isDoubleTy()) {
1595 for (unsigned i
= 0; i
< SrcNum
; i
++)
1596 TempSrc
.AggregateVal
[i
].IntVal
=
1597 APInt::doubleToBits(SrcVec
.AggregateVal
[i
].DoubleVal
);
1598 } else if (SrcElemTy
->isIntegerTy()) {
1599 for (unsigned i
= 0; i
< SrcNum
; i
++)
1600 TempSrc
.AggregateVal
[i
].IntVal
= SrcVec
.AggregateVal
[i
].IntVal
;
1602 // Pointers are not allowed as the element type of vector.
1603 llvm_unreachable("Invalid Bitcast");
1606 // now TempSrc is integer type vector
1607 if (DstNum
< SrcNum
) {
1608 // Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>
1609 unsigned Ratio
= SrcNum
/ DstNum
;
1610 unsigned SrcElt
= 0;
1611 for (unsigned i
= 0; i
< DstNum
; i
++) {
1614 Elt
.IntVal
= Elt
.IntVal
.zext(DstBitSize
);
1615 unsigned ShiftAmt
= isLittleEndian
? 0 : SrcBitSize
* (Ratio
- 1);
1616 for (unsigned j
= 0; j
< Ratio
; j
++) {
1618 Tmp
= Tmp
.zext(SrcBitSize
);
1619 Tmp
= TempSrc
.AggregateVal
[SrcElt
++].IntVal
;
1620 Tmp
= Tmp
.zext(DstBitSize
);
1622 ShiftAmt
+= isLittleEndian
? SrcBitSize
: -SrcBitSize
;
1625 TempDst
.AggregateVal
.push_back(Elt
);
1628 // Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32>
1629 unsigned Ratio
= DstNum
/ SrcNum
;
1630 for (unsigned i
= 0; i
< SrcNum
; i
++) {
1631 unsigned ShiftAmt
= isLittleEndian
? 0 : DstBitSize
* (Ratio
- 1);
1632 for (unsigned j
= 0; j
< Ratio
; j
++) {
1634 Elt
.IntVal
= Elt
.IntVal
.zext(SrcBitSize
);
1635 Elt
.IntVal
= TempSrc
.AggregateVal
[i
].IntVal
;
1636 Elt
.IntVal
.lshrInPlace(ShiftAmt
);
1637 // it could be DstBitSize == SrcBitSize, so check it
1638 if (DstBitSize
< SrcBitSize
)
1639 Elt
.IntVal
= Elt
.IntVal
.trunc(DstBitSize
);
1640 ShiftAmt
+= isLittleEndian
? DstBitSize
: -DstBitSize
;
1641 TempDst
.AggregateVal
.push_back(Elt
);
1646 // convert result from integer to specified type
1647 if (DstTy
->getTypeID() == Type::VectorTyID
) {
1648 if (DstElemTy
->isDoubleTy()) {
1649 Dest
.AggregateVal
.resize(DstNum
);
1650 for (unsigned i
= 0; i
< DstNum
; i
++)
1651 Dest
.AggregateVal
[i
].DoubleVal
=
1652 TempDst
.AggregateVal
[i
].IntVal
.bitsToDouble();
1653 } else if (DstElemTy
->isFloatTy()) {
1654 Dest
.AggregateVal
.resize(DstNum
);
1655 for (unsigned i
= 0; i
< DstNum
; i
++)
1656 Dest
.AggregateVal
[i
].FloatVal
=
1657 TempDst
.AggregateVal
[i
].IntVal
.bitsToFloat();
1662 if (DstElemTy
->isDoubleTy())
1663 Dest
.DoubleVal
= TempDst
.AggregateVal
[0].IntVal
.bitsToDouble();
1664 else if (DstElemTy
->isFloatTy()) {
1665 Dest
.FloatVal
= TempDst
.AggregateVal
[0].IntVal
.bitsToFloat();
1667 Dest
.IntVal
= TempDst
.AggregateVal
[0].IntVal
;
1670 } else { // if ((SrcTy->getTypeID() == Type::VectorTyID) ||
1671 // (DstTy->getTypeID() == Type::VectorTyID))
1673 // scalar src bitcast to scalar dst
1674 if (DstTy
->isPointerTy()) {
1675 assert(SrcTy
->isPointerTy() && "Invalid BitCast");
1676 Dest
.PointerVal
= Src
.PointerVal
;
1677 } else if (DstTy
->isIntegerTy()) {
1678 if (SrcTy
->isFloatTy())
1679 Dest
.IntVal
= APInt::floatToBits(Src
.FloatVal
);
1680 else if (SrcTy
->isDoubleTy()) {
1681 Dest
.IntVal
= APInt::doubleToBits(Src
.DoubleVal
);
1682 } else if (SrcTy
->isIntegerTy()) {
1683 Dest
.IntVal
= Src
.IntVal
;
1685 llvm_unreachable("Invalid BitCast");
1687 } else if (DstTy
->isFloatTy()) {
1688 if (SrcTy
->isIntegerTy())
1689 Dest
.FloatVal
= Src
.IntVal
.bitsToFloat();
1691 Dest
.FloatVal
= Src
.FloatVal
;
1693 } else if (DstTy
->isDoubleTy()) {
1694 if (SrcTy
->isIntegerTy())
1695 Dest
.DoubleVal
= Src
.IntVal
.bitsToDouble();
1697 Dest
.DoubleVal
= Src
.DoubleVal
;
1700 llvm_unreachable("Invalid Bitcast");
1707 void Interpreter::visitTruncInst(TruncInst
&I
) {
1708 ExecutionContext
&SF
= ECStack
.back();
1709 SetValue(&I
, executeTruncInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1712 void Interpreter::visitSExtInst(SExtInst
&I
) {
1713 ExecutionContext
&SF
= ECStack
.back();
1714 SetValue(&I
, executeSExtInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1717 void Interpreter::visitZExtInst(ZExtInst
&I
) {
1718 ExecutionContext
&SF
= ECStack
.back();
1719 SetValue(&I
, executeZExtInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1722 void Interpreter::visitFPTruncInst(FPTruncInst
&I
) {
1723 ExecutionContext
&SF
= ECStack
.back();
1724 SetValue(&I
, executeFPTruncInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1727 void Interpreter::visitFPExtInst(FPExtInst
&I
) {
1728 ExecutionContext
&SF
= ECStack
.back();
1729 SetValue(&I
, executeFPExtInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1732 void Interpreter::visitUIToFPInst(UIToFPInst
&I
) {
1733 ExecutionContext
&SF
= ECStack
.back();
1734 SetValue(&I
, executeUIToFPInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1737 void Interpreter::visitSIToFPInst(SIToFPInst
&I
) {
1738 ExecutionContext
&SF
= ECStack
.back();
1739 SetValue(&I
, executeSIToFPInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1742 void Interpreter::visitFPToUIInst(FPToUIInst
&I
) {
1743 ExecutionContext
&SF
= ECStack
.back();
1744 SetValue(&I
, executeFPToUIInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1747 void Interpreter::visitFPToSIInst(FPToSIInst
&I
) {
1748 ExecutionContext
&SF
= ECStack
.back();
1749 SetValue(&I
, executeFPToSIInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1752 void Interpreter::visitPtrToIntInst(PtrToIntInst
&I
) {
1753 ExecutionContext
&SF
= ECStack
.back();
1754 SetValue(&I
, executePtrToIntInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1757 void Interpreter::visitIntToPtrInst(IntToPtrInst
&I
) {
1758 ExecutionContext
&SF
= ECStack
.back();
1759 SetValue(&I
, executeIntToPtrInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1762 void Interpreter::visitBitCastInst(BitCastInst
&I
) {
1763 ExecutionContext
&SF
= ECStack
.back();
1764 SetValue(&I
, executeBitCastInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1767 #define IMPLEMENT_VAARG(TY) \
1768 case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
1770 void Interpreter::visitVAArgInst(VAArgInst
&I
) {
1771 ExecutionContext
&SF
= ECStack
.back();
1773 // Get the incoming valist parameter. LLI treats the valist as a
1774 // (ec-stack-depth var-arg-index) pair.
1775 GenericValue VAList
= getOperandValue(I
.getOperand(0), SF
);
1777 GenericValue Src
= ECStack
[VAList
.UIntPairVal
.first
]
1778 .VarArgs
[VAList
.UIntPairVal
.second
];
1779 Type
*Ty
= I
.getType();
1780 switch (Ty
->getTypeID()) {
1781 case Type::IntegerTyID
:
1782 Dest
.IntVal
= Src
.IntVal
;
1784 IMPLEMENT_VAARG(Pointer
);
1785 IMPLEMENT_VAARG(Float
);
1786 IMPLEMENT_VAARG(Double
);
1788 dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty
<< "\n";
1789 llvm_unreachable(nullptr);
1792 // Set the Value of this Instruction.
1793 SetValue(&I
, Dest
, SF
);
1795 // Move the pointer to the next vararg.
1796 ++VAList
.UIntPairVal
.second
;
1799 void Interpreter::visitExtractElementInst(ExtractElementInst
&I
) {
1800 ExecutionContext
&SF
= ECStack
.back();
1801 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
1802 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
1805 Type
*Ty
= I
.getType();
1806 const unsigned indx
= unsigned(Src2
.IntVal
.getZExtValue());
1808 if(Src1
.AggregateVal
.size() > indx
) {
1809 switch (Ty
->getTypeID()) {
1811 dbgs() << "Unhandled destination type for extractelement instruction: "
1813 llvm_unreachable(nullptr);
1815 case Type::IntegerTyID
:
1816 Dest
.IntVal
= Src1
.AggregateVal
[indx
].IntVal
;
1818 case Type::FloatTyID
:
1819 Dest
.FloatVal
= Src1
.AggregateVal
[indx
].FloatVal
;
1821 case Type::DoubleTyID
:
1822 Dest
.DoubleVal
= Src1
.AggregateVal
[indx
].DoubleVal
;
1826 dbgs() << "Invalid index in extractelement instruction\n";
1829 SetValue(&I
, Dest
, SF
);
1832 void Interpreter::visitInsertElementInst(InsertElementInst
&I
) {
1833 ExecutionContext
&SF
= ECStack
.back();
1834 VectorType
*Ty
= cast
<VectorType
>(I
.getType());
1836 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
1837 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
1838 GenericValue Src3
= getOperandValue(I
.getOperand(2), SF
);
1841 Type
*TyContained
= Ty
->getElementType();
1843 const unsigned indx
= unsigned(Src3
.IntVal
.getZExtValue());
1844 Dest
.AggregateVal
= Src1
.AggregateVal
;
1846 if(Src1
.AggregateVal
.size() <= indx
)
1847 llvm_unreachable("Invalid index in insertelement instruction");
1848 switch (TyContained
->getTypeID()) {
1850 llvm_unreachable("Unhandled dest type for insertelement instruction");
1851 case Type::IntegerTyID
:
1852 Dest
.AggregateVal
[indx
].IntVal
= Src2
.IntVal
;
1854 case Type::FloatTyID
:
1855 Dest
.AggregateVal
[indx
].FloatVal
= Src2
.FloatVal
;
1857 case Type::DoubleTyID
:
1858 Dest
.AggregateVal
[indx
].DoubleVal
= Src2
.DoubleVal
;
1861 SetValue(&I
, Dest
, SF
);
1864 void Interpreter::visitShuffleVectorInst(ShuffleVectorInst
&I
){
1865 ExecutionContext
&SF
= ECStack
.back();
1867 VectorType
*Ty
= cast
<VectorType
>(I
.getType());
1869 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
1870 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
1871 GenericValue Src3
= getOperandValue(I
.getOperand(2), SF
);
1874 // There is no need to check types of src1 and src2, because the compiled
1875 // bytecode can't contain different types for src1 and src2 for a
1876 // shufflevector instruction.
1878 Type
*TyContained
= Ty
->getElementType();
1879 unsigned src1Size
= (unsigned)Src1
.AggregateVal
.size();
1880 unsigned src2Size
= (unsigned)Src2
.AggregateVal
.size();
1881 unsigned src3Size
= (unsigned)Src3
.AggregateVal
.size();
1883 Dest
.AggregateVal
.resize(src3Size
);
1885 switch (TyContained
->getTypeID()) {
1887 llvm_unreachable("Unhandled dest type for insertelement instruction");
1889 case Type::IntegerTyID
:
1890 for( unsigned i
=0; i
<src3Size
; i
++) {
1891 unsigned j
= Src3
.AggregateVal
[i
].IntVal
.getZExtValue();
1893 Dest
.AggregateVal
[i
].IntVal
= Src1
.AggregateVal
[j
].IntVal
;
1894 else if(j
< src1Size
+ src2Size
)
1895 Dest
.AggregateVal
[i
].IntVal
= Src2
.AggregateVal
[j
-src1Size
].IntVal
;
1897 // The selector may not be greater than sum of lengths of first and
1898 // second operands and llasm should not allow situation like
1899 // %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef,
1900 // <2 x i32> < i32 0, i32 5 >,
1901 // where i32 5 is invalid, but let it be additional check here:
1902 llvm_unreachable("Invalid mask in shufflevector instruction");
1905 case Type::FloatTyID
:
1906 for( unsigned i
=0; i
<src3Size
; i
++) {
1907 unsigned j
= Src3
.AggregateVal
[i
].IntVal
.getZExtValue();
1909 Dest
.AggregateVal
[i
].FloatVal
= Src1
.AggregateVal
[j
].FloatVal
;
1910 else if(j
< src1Size
+ src2Size
)
1911 Dest
.AggregateVal
[i
].FloatVal
= Src2
.AggregateVal
[j
-src1Size
].FloatVal
;
1913 llvm_unreachable("Invalid mask in shufflevector instruction");
1916 case Type::DoubleTyID
:
1917 for( unsigned i
=0; i
<src3Size
; i
++) {
1918 unsigned j
= Src3
.AggregateVal
[i
].IntVal
.getZExtValue();
1920 Dest
.AggregateVal
[i
].DoubleVal
= Src1
.AggregateVal
[j
].DoubleVal
;
1921 else if(j
< src1Size
+ src2Size
)
1922 Dest
.AggregateVal
[i
].DoubleVal
=
1923 Src2
.AggregateVal
[j
-src1Size
].DoubleVal
;
1925 llvm_unreachable("Invalid mask in shufflevector instruction");
1929 SetValue(&I
, Dest
, SF
);
1932 void Interpreter::visitExtractValueInst(ExtractValueInst
&I
) {
1933 ExecutionContext
&SF
= ECStack
.back();
1934 Value
*Agg
= I
.getAggregateOperand();
1936 GenericValue Src
= getOperandValue(Agg
, SF
);
1938 ExtractValueInst::idx_iterator IdxBegin
= I
.idx_begin();
1939 unsigned Num
= I
.getNumIndices();
1940 GenericValue
*pSrc
= &Src
;
1942 for (unsigned i
= 0 ; i
< Num
; ++i
) {
1943 pSrc
= &pSrc
->AggregateVal
[*IdxBegin
];
1947 Type
*IndexedType
= ExtractValueInst::getIndexedType(Agg
->getType(), I
.getIndices());
1948 switch (IndexedType
->getTypeID()) {
1950 llvm_unreachable("Unhandled dest type for extractelement instruction");
1952 case Type::IntegerTyID
:
1953 Dest
.IntVal
= pSrc
->IntVal
;
1955 case Type::FloatTyID
:
1956 Dest
.FloatVal
= pSrc
->FloatVal
;
1958 case Type::DoubleTyID
:
1959 Dest
.DoubleVal
= pSrc
->DoubleVal
;
1961 case Type::ArrayTyID
:
1962 case Type::StructTyID
:
1963 case Type::VectorTyID
:
1964 Dest
.AggregateVal
= pSrc
->AggregateVal
;
1966 case Type::PointerTyID
:
1967 Dest
.PointerVal
= pSrc
->PointerVal
;
1971 SetValue(&I
, Dest
, SF
);
1974 void Interpreter::visitInsertValueInst(InsertValueInst
&I
) {
1976 ExecutionContext
&SF
= ECStack
.back();
1977 Value
*Agg
= I
.getAggregateOperand();
1979 GenericValue Src1
= getOperandValue(Agg
, SF
);
1980 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
1981 GenericValue Dest
= Src1
; // Dest is a slightly changed Src1
1983 ExtractValueInst::idx_iterator IdxBegin
= I
.idx_begin();
1984 unsigned Num
= I
.getNumIndices();
1986 GenericValue
*pDest
= &Dest
;
1987 for (unsigned i
= 0 ; i
< Num
; ++i
) {
1988 pDest
= &pDest
->AggregateVal
[*IdxBegin
];
1991 // pDest points to the target value in the Dest now
1993 Type
*IndexedType
= ExtractValueInst::getIndexedType(Agg
->getType(), I
.getIndices());
1995 switch (IndexedType
->getTypeID()) {
1997 llvm_unreachable("Unhandled dest type for insertelement instruction");
1999 case Type::IntegerTyID
:
2000 pDest
->IntVal
= Src2
.IntVal
;
2002 case Type::FloatTyID
:
2003 pDest
->FloatVal
= Src2
.FloatVal
;
2005 case Type::DoubleTyID
:
2006 pDest
->DoubleVal
= Src2
.DoubleVal
;
2008 case Type::ArrayTyID
:
2009 case Type::StructTyID
:
2010 case Type::VectorTyID
:
2011 pDest
->AggregateVal
= Src2
.AggregateVal
;
2013 case Type::PointerTyID
:
2014 pDest
->PointerVal
= Src2
.PointerVal
;
2018 SetValue(&I
, Dest
, SF
);
2021 GenericValue
Interpreter::getConstantExprValue (ConstantExpr
*CE
,
2022 ExecutionContext
&SF
) {
2023 switch (CE
->getOpcode()) {
2024 case Instruction::Trunc
:
2025 return executeTruncInst(CE
->getOperand(0), CE
->getType(), SF
);
2026 case Instruction::ZExt
:
2027 return executeZExtInst(CE
->getOperand(0), CE
->getType(), SF
);
2028 case Instruction::SExt
:
2029 return executeSExtInst(CE
->getOperand(0), CE
->getType(), SF
);
2030 case Instruction::FPTrunc
:
2031 return executeFPTruncInst(CE
->getOperand(0), CE
->getType(), SF
);
2032 case Instruction::FPExt
:
2033 return executeFPExtInst(CE
->getOperand(0), CE
->getType(), SF
);
2034 case Instruction::UIToFP
:
2035 return executeUIToFPInst(CE
->getOperand(0), CE
->getType(), SF
);
2036 case Instruction::SIToFP
:
2037 return executeSIToFPInst(CE
->getOperand(0), CE
->getType(), SF
);
2038 case Instruction::FPToUI
:
2039 return executeFPToUIInst(CE
->getOperand(0), CE
->getType(), SF
);
2040 case Instruction::FPToSI
:
2041 return executeFPToSIInst(CE
->getOperand(0), CE
->getType(), SF
);
2042 case Instruction::PtrToInt
:
2043 return executePtrToIntInst(CE
->getOperand(0), CE
->getType(), SF
);
2044 case Instruction::IntToPtr
:
2045 return executeIntToPtrInst(CE
->getOperand(0), CE
->getType(), SF
);
2046 case Instruction::BitCast
:
2047 return executeBitCastInst(CE
->getOperand(0), CE
->getType(), SF
);
2048 case Instruction::GetElementPtr
:
2049 return executeGEPOperation(CE
->getOperand(0), gep_type_begin(CE
),
2050 gep_type_end(CE
), SF
);
2051 case Instruction::FCmp
:
2052 case Instruction::ICmp
:
2053 return executeCmpInst(CE
->getPredicate(),
2054 getOperandValue(CE
->getOperand(0), SF
),
2055 getOperandValue(CE
->getOperand(1), SF
),
2056 CE
->getOperand(0)->getType());
2057 case Instruction::Select
:
2058 return executeSelectInst(getOperandValue(CE
->getOperand(0), SF
),
2059 getOperandValue(CE
->getOperand(1), SF
),
2060 getOperandValue(CE
->getOperand(2), SF
),
2061 CE
->getOperand(0)->getType());
2066 // The cases below here require a GenericValue parameter for the result
2067 // so we initialize one, compute it and then return it.
2068 GenericValue Op0
= getOperandValue(CE
->getOperand(0), SF
);
2069 GenericValue Op1
= getOperandValue(CE
->getOperand(1), SF
);
2071 Type
* Ty
= CE
->getOperand(0)->getType();
2072 switch (CE
->getOpcode()) {
2073 case Instruction::Add
: Dest
.IntVal
= Op0
.IntVal
+ Op1
.IntVal
; break;
2074 case Instruction::Sub
: Dest
.IntVal
= Op0
.IntVal
- Op1
.IntVal
; break;
2075 case Instruction::Mul
: Dest
.IntVal
= Op0
.IntVal
* Op1
.IntVal
; break;
2076 case Instruction::FAdd
: executeFAddInst(Dest
, Op0
, Op1
, Ty
); break;
2077 case Instruction::FSub
: executeFSubInst(Dest
, Op0
, Op1
, Ty
); break;
2078 case Instruction::FMul
: executeFMulInst(Dest
, Op0
, Op1
, Ty
); break;
2079 case Instruction::FDiv
: executeFDivInst(Dest
, Op0
, Op1
, Ty
); break;
2080 case Instruction::FRem
: executeFRemInst(Dest
, Op0
, Op1
, Ty
); break;
2081 case Instruction::SDiv
: Dest
.IntVal
= Op0
.IntVal
.sdiv(Op1
.IntVal
); break;
2082 case Instruction::UDiv
: Dest
.IntVal
= Op0
.IntVal
.udiv(Op1
.IntVal
); break;
2083 case Instruction::URem
: Dest
.IntVal
= Op0
.IntVal
.urem(Op1
.IntVal
); break;
2084 case Instruction::SRem
: Dest
.IntVal
= Op0
.IntVal
.srem(Op1
.IntVal
); break;
2085 case Instruction::And
: Dest
.IntVal
= Op0
.IntVal
& Op1
.IntVal
; break;
2086 case Instruction::Or
: Dest
.IntVal
= Op0
.IntVal
| Op1
.IntVal
; break;
2087 case Instruction::Xor
: Dest
.IntVal
= Op0
.IntVal
^ Op1
.IntVal
; break;
2088 case Instruction::Shl
:
2089 Dest
.IntVal
= Op0
.IntVal
.shl(Op1
.IntVal
.getZExtValue());
2091 case Instruction::LShr
:
2092 Dest
.IntVal
= Op0
.IntVal
.lshr(Op1
.IntVal
.getZExtValue());
2094 case Instruction::AShr
:
2095 Dest
.IntVal
= Op0
.IntVal
.ashr(Op1
.IntVal
.getZExtValue());
2098 dbgs() << "Unhandled ConstantExpr: " << *CE
<< "\n";
2099 llvm_unreachable("Unhandled ConstantExpr");
2104 GenericValue
Interpreter::getOperandValue(Value
*V
, ExecutionContext
&SF
) {
2105 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
2106 return getConstantExprValue(CE
, SF
);
2107 } else if (Constant
*CPV
= dyn_cast
<Constant
>(V
)) {
2108 return getConstantValue(CPV
);
2109 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
2110 return PTOGV(getPointerToGlobal(GV
));
2112 return SF
.Values
[V
];
2116 //===----------------------------------------------------------------------===//
2117 // Dispatch and Execution Code
2118 //===----------------------------------------------------------------------===//
2120 //===----------------------------------------------------------------------===//
2121 // callFunction - Execute the specified function...
2123 void Interpreter::callFunction(Function
*F
, ArrayRef
<GenericValue
> ArgVals
) {
2124 assert((ECStack
.empty() || !ECStack
.back().Caller
.getInstruction() ||
2125 ECStack
.back().Caller
.arg_size() == ArgVals
.size()) &&
2126 "Incorrect number of arguments passed into function call!");
2127 // Make a new stack frame... and fill it in.
2128 ECStack
.emplace_back();
2129 ExecutionContext
&StackFrame
= ECStack
.back();
2130 StackFrame
.CurFunction
= F
;
2132 // Special handling for external functions.
2133 if (F
->isDeclaration()) {
2134 GenericValue Result
= callExternalFunction (F
, ArgVals
);
2135 // Simulate a 'ret' instruction of the appropriate type.
2136 popStackAndReturnValueToCaller (F
->getReturnType (), Result
);
2140 // Get pointers to first LLVM BB & Instruction in function.
2141 StackFrame
.CurBB
= &F
->front();
2142 StackFrame
.CurInst
= StackFrame
.CurBB
->begin();
2144 // Run through the function arguments and initialize their values...
2145 assert((ArgVals
.size() == F
->arg_size() ||
2146 (ArgVals
.size() > F
->arg_size() && F
->getFunctionType()->isVarArg()))&&
2147 "Invalid number of values passed to function invocation!");
2149 // Handle non-varargs arguments...
2151 for (Function::arg_iterator AI
= F
->arg_begin(), E
= F
->arg_end();
2153 SetValue(&*AI
, ArgVals
[i
], StackFrame
);
2155 // Handle varargs arguments...
2156 StackFrame
.VarArgs
.assign(ArgVals
.begin()+i
, ArgVals
.end());
2160 void Interpreter::run() {
2161 while (!ECStack
.empty()) {
2162 // Interpret a single instruction & increment the "PC".
2163 ExecutionContext
&SF
= ECStack
.back(); // Current stack frame
2164 Instruction
&I
= *SF
.CurInst
++; // Increment before execute
2166 // Track the number of dynamic instructions executed.
2169 LLVM_DEBUG(dbgs() << "About to interpret: " << I
<< "\n");
2170 visit(I
); // Dispatch to one of the visit* methods...