1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/MC/MCAssembler.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Statistic.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/MC/MCAsmBackend.h"
17 #include "llvm/MC/MCAsmInfo.h"
18 #include "llvm/MC/MCAsmLayout.h"
19 #include "llvm/MC/MCCodeEmitter.h"
20 #include "llvm/MC/MCCodeView.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDwarf.h"
23 #include "llvm/MC/MCExpr.h"
24 #include "llvm/MC/MCFixup.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCFragment.h"
27 #include "llvm/MC/MCInst.h"
28 #include "llvm/MC/MCObjectWriter.h"
29 #include "llvm/MC/MCSection.h"
30 #include "llvm/MC/MCSectionELF.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/MC/MCValue.h"
33 #include "llvm/Support/Alignment.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/LEB128.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
48 #define DEBUG_TYPE "assembler"
53 STATISTIC(EmittedFragments
, "Number of emitted assembler fragments - total");
54 STATISTIC(EmittedRelaxableFragments
,
55 "Number of emitted assembler fragments - relaxable");
56 STATISTIC(EmittedDataFragments
,
57 "Number of emitted assembler fragments - data");
58 STATISTIC(EmittedCompactEncodedInstFragments
,
59 "Number of emitted assembler fragments - compact encoded inst");
60 STATISTIC(EmittedAlignFragments
,
61 "Number of emitted assembler fragments - align");
62 STATISTIC(EmittedFillFragments
,
63 "Number of emitted assembler fragments - fill");
64 STATISTIC(EmittedOrgFragments
,
65 "Number of emitted assembler fragments - org");
66 STATISTIC(evaluateFixup
, "Number of evaluated fixups");
67 STATISTIC(FragmentLayouts
, "Number of fragment layouts");
68 STATISTIC(ObjectBytes
, "Number of emitted object file bytes");
69 STATISTIC(RelaxationSteps
, "Number of assembler layout and relaxation steps");
70 STATISTIC(RelaxedInstructions
, "Number of relaxed instructions");
71 STATISTIC(PaddingFragmentsRelaxations
,
72 "Number of Padding Fragments relaxations");
73 STATISTIC(PaddingFragmentsBytes
,
74 "Total size of all padding from adding Fragments");
76 } // end namespace stats
77 } // end anonymous namespace
79 // FIXME FIXME FIXME: There are number of places in this file where we convert
80 // what is a 64-bit assembler value used for computation into a value in the
81 // object file, which may truncate it. We should detect that truncation where
82 // invalid and report errors back.
86 MCAssembler::MCAssembler(MCContext
&Context
,
87 std::unique_ptr
<MCAsmBackend
> Backend
,
88 std::unique_ptr
<MCCodeEmitter
> Emitter
,
89 std::unique_ptr
<MCObjectWriter
> Writer
)
90 : Context(Context
), Backend(std::move(Backend
)),
91 Emitter(std::move(Emitter
)), Writer(std::move(Writer
)),
92 BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false),
93 IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) {
94 VersionInfo
.Major
= 0; // Major version == 0 for "none specified"
97 MCAssembler::~MCAssembler() = default;
99 void MCAssembler::reset() {
102 IndirectSymbols
.clear();
104 LinkerOptions
.clear();
109 SubsectionsViaSymbols
= false;
110 IncrementalLinkerCompatible
= false;
112 LOHContainer
.reset();
113 VersionInfo
.Major
= 0;
114 VersionInfo
.SDKVersion
= VersionTuple();
116 // reset objects owned by us
118 getBackendPtr()->reset();
120 getEmitterPtr()->reset();
122 getWriterPtr()->reset();
123 getLOHContainer().reset();
126 bool MCAssembler::registerSection(MCSection
&Section
) {
127 if (Section
.isRegistered())
129 Sections
.push_back(&Section
);
130 Section
.setIsRegistered(true);
134 bool MCAssembler::isThumbFunc(const MCSymbol
*Symbol
) const {
135 if (ThumbFuncs
.count(Symbol
))
138 if (!Symbol
->isVariable())
141 const MCExpr
*Expr
= Symbol
->getVariableValue();
144 if (!Expr
->evaluateAsRelocatable(V
, nullptr, nullptr))
147 if (V
.getSymB() || V
.getRefKind() != MCSymbolRefExpr::VK_None
)
150 const MCSymbolRefExpr
*Ref
= V
.getSymA();
154 if (Ref
->getKind() != MCSymbolRefExpr::VK_None
)
157 const MCSymbol
&Sym
= Ref
->getSymbol();
158 if (!isThumbFunc(&Sym
))
161 ThumbFuncs
.insert(Symbol
); // Cache it.
165 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol
&Symbol
) const {
166 // Non-temporary labels should always be visible to the linker.
167 if (!Symbol
.isTemporary())
170 // Absolute temporary labels are never visible.
171 if (!Symbol
.isInSection())
174 if (Symbol
.isUsedInReloc())
180 const MCSymbol
*MCAssembler::getAtom(const MCSymbol
&S
) const {
181 // Linker visible symbols define atoms.
182 if (isSymbolLinkerVisible(S
))
185 // Absolute and undefined symbols have no defining atom.
186 if (!S
.isInSection())
189 // Non-linker visible symbols in sections which can't be atomized have no
191 if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
192 *S
.getFragment()->getParent()))
195 // Otherwise, return the atom for the containing fragment.
196 return S
.getFragment()->getAtom();
199 bool MCAssembler::evaluateFixup(const MCAsmLayout
&Layout
,
200 const MCFixup
&Fixup
, const MCFragment
*DF
,
201 MCValue
&Target
, uint64_t &Value
,
202 bool &WasForced
) const {
203 ++stats::evaluateFixup
;
205 // FIXME: This code has some duplication with recordRelocation. We should
206 // probably merge the two into a single callback that tries to evaluate a
207 // fixup and records a relocation if one is needed.
209 // On error claim to have completely evaluated the fixup, to prevent any
210 // further processing from being done.
211 const MCExpr
*Expr
= Fixup
.getValue();
212 MCContext
&Ctx
= getContext();
215 if (!Expr
->evaluateAsRelocatable(Target
, &Layout
, &Fixup
)) {
216 Ctx
.reportError(Fixup
.getLoc(), "expected relocatable expression");
219 if (const MCSymbolRefExpr
*RefB
= Target
.getSymB()) {
220 if (RefB
->getKind() != MCSymbolRefExpr::VK_None
) {
221 Ctx
.reportError(Fixup
.getLoc(),
222 "unsupported subtraction of qualified symbol");
227 assert(getBackendPtr() && "Expected assembler backend");
228 bool IsPCRel
= getBackendPtr()->getFixupKindInfo(Fixup
.getKind()).Flags
&
229 MCFixupKindInfo::FKF_IsPCRel
;
231 bool IsResolved
= false;
233 if (Target
.getSymB()) {
235 } else if (!Target
.getSymA()) {
238 const MCSymbolRefExpr
*A
= Target
.getSymA();
239 const MCSymbol
&SA
= A
->getSymbol();
240 if (A
->getKind() != MCSymbolRefExpr::VK_None
|| SA
.isUndefined()) {
242 } else if (auto *Writer
= getWriterPtr()) {
243 IsResolved
= Writer
->isSymbolRefDifferenceFullyResolvedImpl(
244 *this, SA
, *DF
, false, true);
248 IsResolved
= Target
.isAbsolute();
251 Value
= Target
.getConstant();
253 if (const MCSymbolRefExpr
*A
= Target
.getSymA()) {
254 const MCSymbol
&Sym
= A
->getSymbol();
256 Value
+= Layout
.getSymbolOffset(Sym
);
258 if (const MCSymbolRefExpr
*B
= Target
.getSymB()) {
259 const MCSymbol
&Sym
= B
->getSymbol();
261 Value
-= Layout
.getSymbolOffset(Sym
);
264 bool ShouldAlignPC
= getBackend().getFixupKindInfo(Fixup
.getKind()).Flags
&
265 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
;
266 assert((ShouldAlignPC
? IsPCRel
: true) &&
267 "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
270 uint32_t Offset
= Layout
.getFragmentOffset(DF
) + Fixup
.getOffset();
272 // A number of ARM fixups in Thumb mode require that the effective PC
273 // address be determined as the 32-bit aligned version of the actual offset.
274 if (ShouldAlignPC
) Offset
&= ~0x3;
278 // Let the backend force a relocation if needed.
279 if (IsResolved
&& getBackend().shouldForceRelocation(*this, Fixup
, Target
)) {
287 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout
&Layout
,
288 const MCFragment
&F
) const {
289 assert(getBackendPtr() && "Requires assembler backend");
290 switch (F
.getKind()) {
291 case MCFragment::FT_Data
:
292 return cast
<MCDataFragment
>(F
).getContents().size();
293 case MCFragment::FT_Relaxable
:
294 return cast
<MCRelaxableFragment
>(F
).getContents().size();
295 case MCFragment::FT_CompactEncodedInst
:
296 return cast
<MCCompactEncodedInstFragment
>(F
).getContents().size();
297 case MCFragment::FT_Fill
: {
298 auto &FF
= cast
<MCFillFragment
>(F
);
299 int64_t NumValues
= 0;
300 if (!FF
.getNumValues().evaluateAsAbsolute(NumValues
, Layout
)) {
301 getContext().reportError(FF
.getLoc(),
302 "expected assembly-time absolute expression");
305 int64_t Size
= NumValues
* FF
.getValueSize();
307 getContext().reportError(FF
.getLoc(), "invalid number of bytes");
313 case MCFragment::FT_LEB
:
314 return cast
<MCLEBFragment
>(F
).getContents().size();
316 case MCFragment::FT_Padding
:
317 return cast
<MCPaddingFragment
>(F
).getSize();
319 case MCFragment::FT_SymbolId
:
322 case MCFragment::FT_Align
: {
323 const MCAlignFragment
&AF
= cast
<MCAlignFragment
>(F
);
324 unsigned Offset
= Layout
.getFragmentOffset(&AF
);
325 unsigned Size
= offsetToAlignment(Offset
, Align(AF
.getAlignment()));
327 // Insert extra Nops for code alignment if the target define
328 // shouldInsertExtraNopBytesForCodeAlign target hook.
329 if (AF
.getParent()->UseCodeAlign() && AF
.hasEmitNops() &&
330 getBackend().shouldInsertExtraNopBytesForCodeAlign(AF
, Size
))
333 // If we are padding with nops, force the padding to be larger than the
335 if (Size
> 0 && AF
.hasEmitNops()) {
336 while (Size
% getBackend().getMinimumNopSize())
337 Size
+= AF
.getAlignment();
339 if (Size
> AF
.getMaxBytesToEmit())
344 case MCFragment::FT_Org
: {
345 const MCOrgFragment
&OF
= cast
<MCOrgFragment
>(F
);
347 if (!OF
.getOffset().evaluateAsValue(Value
, Layout
)) {
348 getContext().reportError(OF
.getLoc(),
349 "expected assembly-time absolute expression");
353 uint64_t FragmentOffset
= Layout
.getFragmentOffset(&OF
);
354 int64_t TargetLocation
= Value
.getConstant();
355 if (const MCSymbolRefExpr
*A
= Value
.getSymA()) {
357 if (!Layout
.getSymbolOffset(A
->getSymbol(), Val
)) {
358 getContext().reportError(OF
.getLoc(), "expected absolute expression");
361 TargetLocation
+= Val
;
363 int64_t Size
= TargetLocation
- FragmentOffset
;
364 if (Size
< 0 || Size
>= 0x40000000) {
365 getContext().reportError(
366 OF
.getLoc(), "invalid .org offset '" + Twine(TargetLocation
) +
367 "' (at offset '" + Twine(FragmentOffset
) + "')");
373 case MCFragment::FT_Dwarf
:
374 return cast
<MCDwarfLineAddrFragment
>(F
).getContents().size();
375 case MCFragment::FT_DwarfFrame
:
376 return cast
<MCDwarfCallFrameFragment
>(F
).getContents().size();
377 case MCFragment::FT_CVInlineLines
:
378 return cast
<MCCVInlineLineTableFragment
>(F
).getContents().size();
379 case MCFragment::FT_CVDefRange
:
380 return cast
<MCCVDefRangeFragment
>(F
).getContents().size();
381 case MCFragment::FT_Dummy
:
382 llvm_unreachable("Should not have been added");
385 llvm_unreachable("invalid fragment kind");
388 void MCAsmLayout::layoutFragment(MCFragment
*F
) {
389 MCFragment
*Prev
= F
->getPrevNode();
391 // We should never try to recompute something which is valid.
392 assert(!isFragmentValid(F
) && "Attempt to recompute a valid fragment!");
393 // We should never try to compute the fragment layout if its predecessor
395 assert((!Prev
|| isFragmentValid(Prev
)) &&
396 "Attempt to compute fragment before its predecessor!");
398 ++stats::FragmentLayouts
;
400 // Compute fragment offset and size.
402 F
->Offset
= Prev
->Offset
+ getAssembler().computeFragmentSize(*this, *Prev
);
405 LastValidFragment
[F
->getParent()] = F
;
407 // If bundling is enabled and this fragment has instructions in it, it has to
408 // obey the bundling restrictions. With padding, we'll have:
413 // -------------------------------------
414 // Prev |##########| F |
415 // -------------------------------------
420 // The fragment's offset will point to after the padding, and its computed
421 // size won't include the padding.
423 // When the -mc-relax-all flag is used, we optimize bundling by writting the
424 // padding directly into fragments when the instructions are emitted inside
425 // the streamer. When the fragment is larger than the bundle size, we need to
426 // ensure that it's bundle aligned. This means that if we end up with
427 // multiple fragments, we must emit bundle padding between fragments.
429 // ".align N" is an example of a directive that introduces multiple
430 // fragments. We could add a special case to handle ".align N" by emitting
431 // within-fragment padding (which would produce less padding when N is less
432 // than the bundle size), but for now we don't.
434 if (Assembler
.isBundlingEnabled() && F
->hasInstructions()) {
435 assert(isa
<MCEncodedFragment
>(F
) &&
436 "Only MCEncodedFragment implementations have instructions");
437 MCEncodedFragment
*EF
= cast
<MCEncodedFragment
>(F
);
438 uint64_t FSize
= Assembler
.computeFragmentSize(*this, *EF
);
440 if (!Assembler
.getRelaxAll() && FSize
> Assembler
.getBundleAlignSize())
441 report_fatal_error("Fragment can't be larger than a bundle size");
443 uint64_t RequiredBundlePadding
=
444 computeBundlePadding(Assembler
, EF
, EF
->Offset
, FSize
);
445 if (RequiredBundlePadding
> UINT8_MAX
)
446 report_fatal_error("Padding cannot exceed 255 bytes");
447 EF
->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding
));
448 EF
->Offset
+= RequiredBundlePadding
;
452 void MCAssembler::registerSymbol(const MCSymbol
&Symbol
, bool *Created
) {
453 bool New
= !Symbol
.isRegistered();
457 Symbol
.setIsRegistered(true);
458 Symbols
.push_back(&Symbol
);
462 void MCAssembler::writeFragmentPadding(raw_ostream
&OS
,
463 const MCEncodedFragment
&EF
,
464 uint64_t FSize
) const {
465 assert(getBackendPtr() && "Expected assembler backend");
466 // Should NOP padding be written out before this fragment?
467 unsigned BundlePadding
= EF
.getBundlePadding();
468 if (BundlePadding
> 0) {
469 assert(isBundlingEnabled() &&
470 "Writing bundle padding with disabled bundling");
471 assert(EF
.hasInstructions() &&
472 "Writing bundle padding for a fragment without instructions");
474 unsigned TotalLength
= BundlePadding
+ static_cast<unsigned>(FSize
);
475 if (EF
.alignToBundleEnd() && TotalLength
> getBundleAlignSize()) {
476 // If the padding itself crosses a bundle boundary, it must be emitted
477 // in 2 pieces, since even nop instructions must not cross boundaries.
478 // v--------------v <- BundleAlignSize
479 // v---------v <- BundlePadding
480 // ----------------------------
481 // | Prev |####|####| F |
482 // ----------------------------
483 // ^-------------------^ <- TotalLength
484 unsigned DistanceToBoundary
= TotalLength
- getBundleAlignSize();
485 if (!getBackend().writeNopData(OS
, DistanceToBoundary
))
486 report_fatal_error("unable to write NOP sequence of " +
487 Twine(DistanceToBoundary
) + " bytes");
488 BundlePadding
-= DistanceToBoundary
;
490 if (!getBackend().writeNopData(OS
, BundlePadding
))
491 report_fatal_error("unable to write NOP sequence of " +
492 Twine(BundlePadding
) + " bytes");
496 /// Write the fragment \p F to the output file.
497 static void writeFragment(raw_ostream
&OS
, const MCAssembler
&Asm
,
498 const MCAsmLayout
&Layout
, const MCFragment
&F
) {
499 // FIXME: Embed in fragments instead?
500 uint64_t FragmentSize
= Asm
.computeFragmentSize(Layout
, F
);
502 support::endianness Endian
= Asm
.getBackend().Endian
;
504 if (const MCEncodedFragment
*EF
= dyn_cast
<MCEncodedFragment
>(&F
))
505 Asm
.writeFragmentPadding(OS
, *EF
, FragmentSize
);
507 // This variable (and its dummy usage) is to participate in the assert at
508 // the end of the function.
509 uint64_t Start
= OS
.tell();
512 ++stats::EmittedFragments
;
514 switch (F
.getKind()) {
515 case MCFragment::FT_Align
: {
516 ++stats::EmittedAlignFragments
;
517 const MCAlignFragment
&AF
= cast
<MCAlignFragment
>(F
);
518 assert(AF
.getValueSize() && "Invalid virtual align in concrete fragment!");
520 uint64_t Count
= FragmentSize
/ AF
.getValueSize();
522 // FIXME: This error shouldn't actually occur (the front end should emit
523 // multiple .align directives to enforce the semantics it wants), but is
524 // severe enough that we want to report it. How to handle this?
525 if (Count
* AF
.getValueSize() != FragmentSize
)
526 report_fatal_error("undefined .align directive, value size '" +
527 Twine(AF
.getValueSize()) +
528 "' is not a divisor of padding size '" +
529 Twine(FragmentSize
) + "'");
531 // See if we are aligning with nops, and if so do that first to try to fill
532 // the Count bytes. Then if that did not fill any bytes or there are any
533 // bytes left to fill use the Value and ValueSize to fill the rest.
534 // If we are aligning with nops, ask that target to emit the right data.
535 if (AF
.hasEmitNops()) {
536 if (!Asm
.getBackend().writeNopData(OS
, Count
))
537 report_fatal_error("unable to write nop sequence of " +
538 Twine(Count
) + " bytes");
542 // Otherwise, write out in multiples of the value size.
543 for (uint64_t i
= 0; i
!= Count
; ++i
) {
544 switch (AF
.getValueSize()) {
545 default: llvm_unreachable("Invalid size!");
546 case 1: OS
<< char(AF
.getValue()); break;
548 support::endian::write
<uint16_t>(OS
, AF
.getValue(), Endian
);
551 support::endian::write
<uint32_t>(OS
, AF
.getValue(), Endian
);
554 support::endian::write
<uint64_t>(OS
, AF
.getValue(), Endian
);
561 case MCFragment::FT_Data
:
562 ++stats::EmittedDataFragments
;
563 OS
<< cast
<MCDataFragment
>(F
).getContents();
566 case MCFragment::FT_Relaxable
:
567 ++stats::EmittedRelaxableFragments
;
568 OS
<< cast
<MCRelaxableFragment
>(F
).getContents();
571 case MCFragment::FT_CompactEncodedInst
:
572 ++stats::EmittedCompactEncodedInstFragments
;
573 OS
<< cast
<MCCompactEncodedInstFragment
>(F
).getContents();
576 case MCFragment::FT_Fill
: {
577 ++stats::EmittedFillFragments
;
578 const MCFillFragment
&FF
= cast
<MCFillFragment
>(F
);
579 uint64_t V
= FF
.getValue();
580 unsigned VSize
= FF
.getValueSize();
581 const unsigned MaxChunkSize
= 16;
582 char Data
[MaxChunkSize
];
583 // Duplicate V into Data as byte vector to reduce number of
584 // writes done. As such, do endian conversion here.
585 for (unsigned I
= 0; I
!= VSize
; ++I
) {
586 unsigned index
= Endian
== support::little
? I
: (VSize
- I
- 1);
587 Data
[I
] = uint8_t(V
>> (index
* 8));
589 for (unsigned I
= VSize
; I
< MaxChunkSize
; ++I
)
590 Data
[I
] = Data
[I
- VSize
];
592 // Set to largest multiple of VSize in Data.
593 const unsigned NumPerChunk
= MaxChunkSize
/ VSize
;
594 // Set ChunkSize to largest multiple of VSize in Data
595 const unsigned ChunkSize
= VSize
* NumPerChunk
;
597 // Do copies by chunk.
598 StringRef
Ref(Data
, ChunkSize
);
599 for (uint64_t I
= 0, E
= FragmentSize
/ ChunkSize
; I
!= E
; ++I
)
602 // do remainder if needed.
603 unsigned TrailingCount
= FragmentSize
% ChunkSize
;
605 OS
.write(Data
, TrailingCount
);
609 case MCFragment::FT_LEB
: {
610 const MCLEBFragment
&LF
= cast
<MCLEBFragment
>(F
);
611 OS
<< LF
.getContents();
615 case MCFragment::FT_Padding
: {
616 if (!Asm
.getBackend().writeNopData(OS
, FragmentSize
))
617 report_fatal_error("unable to write nop sequence of " +
618 Twine(FragmentSize
) + " bytes");
622 case MCFragment::FT_SymbolId
: {
623 const MCSymbolIdFragment
&SF
= cast
<MCSymbolIdFragment
>(F
);
624 support::endian::write
<uint32_t>(OS
, SF
.getSymbol()->getIndex(), Endian
);
628 case MCFragment::FT_Org
: {
629 ++stats::EmittedOrgFragments
;
630 const MCOrgFragment
&OF
= cast
<MCOrgFragment
>(F
);
632 for (uint64_t i
= 0, e
= FragmentSize
; i
!= e
; ++i
)
633 OS
<< char(OF
.getValue());
638 case MCFragment::FT_Dwarf
: {
639 const MCDwarfLineAddrFragment
&OF
= cast
<MCDwarfLineAddrFragment
>(F
);
640 OS
<< OF
.getContents();
643 case MCFragment::FT_DwarfFrame
: {
644 const MCDwarfCallFrameFragment
&CF
= cast
<MCDwarfCallFrameFragment
>(F
);
645 OS
<< CF
.getContents();
648 case MCFragment::FT_CVInlineLines
: {
649 const auto &OF
= cast
<MCCVInlineLineTableFragment
>(F
);
650 OS
<< OF
.getContents();
653 case MCFragment::FT_CVDefRange
: {
654 const auto &DRF
= cast
<MCCVDefRangeFragment
>(F
);
655 OS
<< DRF
.getContents();
658 case MCFragment::FT_Dummy
:
659 llvm_unreachable("Should not have been added");
662 assert(OS
.tell() - Start
== FragmentSize
&&
663 "The stream should advance by fragment size");
666 void MCAssembler::writeSectionData(raw_ostream
&OS
, const MCSection
*Sec
,
667 const MCAsmLayout
&Layout
) const {
668 assert(getBackendPtr() && "Expected assembler backend");
670 // Ignore virtual sections.
671 if (Sec
->isVirtualSection()) {
672 assert(Layout
.getSectionFileSize(Sec
) == 0 && "Invalid size for section!");
674 // Check that contents are only things legal inside a virtual section.
675 for (const MCFragment
&F
: *Sec
) {
676 switch (F
.getKind()) {
677 default: llvm_unreachable("Invalid fragment in virtual section!");
678 case MCFragment::FT_Data
: {
679 // Check that we aren't trying to write a non-zero contents (or fixups)
680 // into a virtual section. This is to support clients which use standard
681 // directives to fill the contents of virtual sections.
682 const MCDataFragment
&DF
= cast
<MCDataFragment
>(F
);
683 if (DF
.fixup_begin() != DF
.fixup_end())
684 report_fatal_error("cannot have fixups in virtual section!");
685 for (unsigned i
= 0, e
= DF
.getContents().size(); i
!= e
; ++i
)
686 if (DF
.getContents()[i
]) {
687 if (auto *ELFSec
= dyn_cast
<const MCSectionELF
>(Sec
))
688 report_fatal_error("non-zero initializer found in section '" +
689 ELFSec
->getSectionName() + "'");
691 report_fatal_error("non-zero initializer found in virtual section");
695 case MCFragment::FT_Align
:
696 // Check that we aren't trying to write a non-zero value into a virtual
698 assert((cast
<MCAlignFragment
>(F
).getValueSize() == 0 ||
699 cast
<MCAlignFragment
>(F
).getValue() == 0) &&
700 "Invalid align in virtual section!");
702 case MCFragment::FT_Fill
:
703 assert((cast
<MCFillFragment
>(F
).getValue() == 0) &&
704 "Invalid fill in virtual section!");
712 uint64_t Start
= OS
.tell();
715 for (const MCFragment
&F
: *Sec
)
716 writeFragment(OS
, *this, Layout
, F
);
718 assert(OS
.tell() - Start
== Layout
.getSectionAddressSize(Sec
));
721 std::tuple
<MCValue
, uint64_t, bool>
722 MCAssembler::handleFixup(const MCAsmLayout
&Layout
, MCFragment
&F
,
723 const MCFixup
&Fixup
) {
724 // Evaluate the fixup.
728 bool IsResolved
= evaluateFixup(Layout
, Fixup
, &F
, Target
, FixedValue
,
731 // The fixup was unresolved, we need a relocation. Inform the object
732 // writer of the relocation, and give it an opportunity to adjust the
733 // fixup value if need be.
734 if (Target
.getSymA() && Target
.getSymB() &&
735 getBackend().requiresDiffExpressionRelocations()) {
736 // The fixup represents the difference between two symbols, which the
737 // backend has indicated must be resolved at link time. Split up the fixup
738 // into two relocations, one for the add, and one for the sub, and emit
739 // both of these. The constant will be associated with the add half of the
741 MCFixup FixupAdd
= MCFixup::createAddFor(Fixup
);
743 MCValue::get(Target
.getSymA(), nullptr, Target
.getConstant());
744 getWriter().recordRelocation(*this, Layout
, &F
, FixupAdd
, TargetAdd
,
746 MCFixup FixupSub
= MCFixup::createSubFor(Fixup
);
747 MCValue TargetSub
= MCValue::get(Target
.getSymB());
748 getWriter().recordRelocation(*this, Layout
, &F
, FixupSub
, TargetSub
,
751 getWriter().recordRelocation(*this, Layout
, &F
, Fixup
, Target
,
755 return std::make_tuple(Target
, FixedValue
, IsResolved
);
758 void MCAssembler::layout(MCAsmLayout
&Layout
) {
759 assert(getBackendPtr() && "Expected assembler backend");
760 DEBUG_WITH_TYPE("mc-dump", {
761 errs() << "assembler backend - pre-layout\n--\n";
764 // Create dummy fragments and assign section ordinals.
765 unsigned SectionIndex
= 0;
766 for (MCSection
&Sec
: *this) {
767 // Create dummy fragments to eliminate any empty sections, this simplifies
769 if (Sec
.getFragmentList().empty())
770 new MCDataFragment(&Sec
);
772 Sec
.setOrdinal(SectionIndex
++);
775 // Assign layout order indices to sections and fragments.
776 for (unsigned i
= 0, e
= Layout
.getSectionOrder().size(); i
!= e
; ++i
) {
777 MCSection
*Sec
= Layout
.getSectionOrder()[i
];
778 Sec
->setLayoutOrder(i
);
780 unsigned FragmentIndex
= 0;
781 for (MCFragment
&Frag
: *Sec
)
782 Frag
.setLayoutOrder(FragmentIndex
++);
785 // Layout until everything fits.
786 while (layoutOnce(Layout
))
787 if (getContext().hadError())
790 DEBUG_WITH_TYPE("mc-dump", {
791 errs() << "assembler backend - post-relaxation\n--\n";
794 // Finalize the layout, including fragment lowering.
795 finishLayout(Layout
);
797 DEBUG_WITH_TYPE("mc-dump", {
798 errs() << "assembler backend - final-layout\n--\n";
801 // Allow the object writer a chance to perform post-layout binding (for
802 // example, to set the index fields in the symbol data).
803 getWriter().executePostLayoutBinding(*this, Layout
);
805 // Evaluate and apply the fixups, generating relocation entries as necessary.
806 for (MCSection
&Sec
: *this) {
807 for (MCFragment
&Frag
: Sec
) {
808 // Data and relaxable fragments both have fixups. So only process
810 // FIXME: Is there a better way to do this? MCEncodedFragmentWithFixups
811 // being templated makes this tricky.
812 if (isa
<MCEncodedFragment
>(&Frag
) &&
813 isa
<MCCompactEncodedInstFragment
>(&Frag
))
815 if (!isa
<MCEncodedFragment
>(&Frag
) && !isa
<MCCVDefRangeFragment
>(&Frag
) &&
816 !isa
<MCAlignFragment
>(&Frag
))
818 ArrayRef
<MCFixup
> Fixups
;
819 MutableArrayRef
<char> Contents
;
820 const MCSubtargetInfo
*STI
= nullptr;
821 if (auto *FragWithFixups
= dyn_cast
<MCDataFragment
>(&Frag
)) {
822 Fixups
= FragWithFixups
->getFixups();
823 Contents
= FragWithFixups
->getContents();
824 STI
= FragWithFixups
->getSubtargetInfo();
825 assert(!FragWithFixups
->hasInstructions() || STI
!= nullptr);
826 } else if (auto *FragWithFixups
= dyn_cast
<MCRelaxableFragment
>(&Frag
)) {
827 Fixups
= FragWithFixups
->getFixups();
828 Contents
= FragWithFixups
->getContents();
829 STI
= FragWithFixups
->getSubtargetInfo();
830 assert(!FragWithFixups
->hasInstructions() || STI
!= nullptr);
831 } else if (auto *FragWithFixups
= dyn_cast
<MCCVDefRangeFragment
>(&Frag
)) {
832 Fixups
= FragWithFixups
->getFixups();
833 Contents
= FragWithFixups
->getContents();
834 } else if (auto *FragWithFixups
= dyn_cast
<MCDwarfLineAddrFragment
>(&Frag
)) {
835 Fixups
= FragWithFixups
->getFixups();
836 Contents
= FragWithFixups
->getContents();
837 } else if (auto *AF
= dyn_cast
<MCAlignFragment
>(&Frag
)) {
838 // Insert fixup type for code alignment if the target define
839 // shouldInsertFixupForCodeAlign target hook.
840 if (Sec
.UseCodeAlign() && AF
->hasEmitNops()) {
841 getBackend().shouldInsertFixupForCodeAlign(*this, Layout
, *AF
);
844 } else if (auto *FragWithFixups
=
845 dyn_cast
<MCDwarfCallFrameFragment
>(&Frag
)) {
846 Fixups
= FragWithFixups
->getFixups();
847 Contents
= FragWithFixups
->getContents();
849 llvm_unreachable("Unknown fragment with fixups!");
850 for (const MCFixup
&Fixup
: Fixups
) {
854 std::tie(Target
, FixedValue
, IsResolved
) =
855 handleFixup(Layout
, Frag
, Fixup
);
856 getBackend().applyFixup(*this, Fixup
, Target
, Contents
, FixedValue
,
863 void MCAssembler::Finish() {
864 // Create the layout object.
865 MCAsmLayout
Layout(*this);
868 // Write the object file.
869 stats::ObjectBytes
+= getWriter().writeObject(*this, Layout
);
872 bool MCAssembler::fixupNeedsRelaxation(const MCFixup
&Fixup
,
873 const MCRelaxableFragment
*DF
,
874 const MCAsmLayout
&Layout
) const {
875 assert(getBackendPtr() && "Expected assembler backend");
879 bool Resolved
= evaluateFixup(Layout
, Fixup
, DF
, Target
, Value
, WasForced
);
880 if (Target
.getSymA() &&
881 Target
.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8
&&
882 Fixup
.getKind() == FK_Data_1
)
884 return getBackend().fixupNeedsRelaxationAdvanced(Fixup
, Resolved
, Value
, DF
,
888 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment
*F
,
889 const MCAsmLayout
&Layout
) const {
890 assert(getBackendPtr() && "Expected assembler backend");
891 // If this inst doesn't ever need relaxation, ignore it. This occurs when we
892 // are intentionally pushing out inst fragments, or because we relaxed a
893 // previous instruction to one that doesn't need relaxation.
894 if (!getBackend().mayNeedRelaxation(F
->getInst(), *F
->getSubtargetInfo()))
897 for (const MCFixup
&Fixup
: F
->getFixups())
898 if (fixupNeedsRelaxation(Fixup
, F
, Layout
))
904 bool MCAssembler::relaxInstruction(MCAsmLayout
&Layout
,
905 MCRelaxableFragment
&F
) {
906 assert(getEmitterPtr() &&
907 "Expected CodeEmitter defined for relaxInstruction");
908 if (!fragmentNeedsRelaxation(&F
, Layout
))
911 ++stats::RelaxedInstructions
;
913 // FIXME-PERF: We could immediately lower out instructions if we can tell
914 // they are fully resolved, to avoid retesting on later passes.
916 // Relax the fragment.
919 getBackend().relaxInstruction(F
.getInst(), *F
.getSubtargetInfo(), Relaxed
);
921 // Encode the new instruction.
923 // FIXME-PERF: If it matters, we could let the target do this. It can
924 // probably do so more efficiently in many cases.
925 SmallVector
<MCFixup
, 4> Fixups
;
926 SmallString
<256> Code
;
927 raw_svector_ostream
VecOS(Code
);
928 getEmitter().encodeInstruction(Relaxed
, VecOS
, Fixups
, *F
.getSubtargetInfo());
930 // Update the fragment.
932 F
.getContents() = Code
;
933 F
.getFixups() = Fixups
;
938 bool MCAssembler::relaxPaddingFragment(MCAsmLayout
&Layout
,
939 MCPaddingFragment
&PF
) {
940 assert(getBackendPtr() && "Expected assembler backend");
941 uint64_t OldSize
= PF
.getSize();
942 if (!getBackend().relaxFragment(&PF
, Layout
))
944 uint64_t NewSize
= PF
.getSize();
946 ++stats::PaddingFragmentsRelaxations
;
947 stats::PaddingFragmentsBytes
+= NewSize
;
948 stats::PaddingFragmentsBytes
-= OldSize
;
952 bool MCAssembler::relaxLEB(MCAsmLayout
&Layout
, MCLEBFragment
&LF
) {
953 uint64_t OldSize
= LF
.getContents().size();
955 bool Abs
= LF
.getValue().evaluateKnownAbsolute(Value
, Layout
);
957 report_fatal_error("sleb128 and uleb128 expressions must be absolute");
958 SmallString
<8> &Data
= LF
.getContents();
960 raw_svector_ostream
OSE(Data
);
961 // The compiler can generate EH table assembly that is impossible to assemble
962 // without either adding padding to an LEB fragment or adding extra padding
963 // to a later alignment fragment. To accommodate such tables, relaxation can
964 // only increase an LEB fragment size here, not decrease it. See PR35809.
966 encodeSLEB128(Value
, OSE
, OldSize
);
968 encodeULEB128(Value
, OSE
, OldSize
);
969 return OldSize
!= LF
.getContents().size();
972 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout
&Layout
,
973 MCDwarfLineAddrFragment
&DF
) {
974 MCContext
&Context
= Layout
.getAssembler().getContext();
975 uint64_t OldSize
= DF
.getContents().size();
977 bool Abs
= DF
.getAddrDelta().evaluateKnownAbsolute(AddrDelta
, Layout
);
978 assert(Abs
&& "We created a line delta with an invalid expression");
981 LineDelta
= DF
.getLineDelta();
982 SmallVectorImpl
<char> &Data
= DF
.getContents();
984 raw_svector_ostream
OSE(Data
);
985 DF
.getFixups().clear();
987 if (!getBackend().requiresDiffExpressionRelocations()) {
988 MCDwarfLineAddr::Encode(Context
, getDWARFLinetableParams(), LineDelta
,
993 bool SetDelta
= MCDwarfLineAddr::FixedEncode(Context
,
994 getDWARFLinetableParams(),
995 LineDelta
, AddrDelta
,
996 OSE
, &Offset
, &Size
);
997 // Add Fixups for address delta or new address.
998 const MCExpr
*FixupExpr
;
1000 FixupExpr
= &DF
.getAddrDelta();
1002 const MCBinaryExpr
*ABE
= cast
<MCBinaryExpr
>(&DF
.getAddrDelta());
1003 FixupExpr
= ABE
->getLHS();
1005 DF
.getFixups().push_back(
1006 MCFixup::create(Offset
, FixupExpr
,
1007 MCFixup::getKindForSize(Size
, false /*isPCRel*/)));
1010 return OldSize
!= Data
.size();
1013 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout
&Layout
,
1014 MCDwarfCallFrameFragment
&DF
) {
1015 MCContext
&Context
= Layout
.getAssembler().getContext();
1016 uint64_t OldSize
= DF
.getContents().size();
1018 bool Abs
= DF
.getAddrDelta().evaluateKnownAbsolute(AddrDelta
, Layout
);
1019 assert(Abs
&& "We created call frame with an invalid expression");
1021 SmallVectorImpl
<char> &Data
= DF
.getContents();
1023 raw_svector_ostream
OSE(Data
);
1024 DF
.getFixups().clear();
1026 if (getBackend().requiresDiffExpressionRelocations()) {
1029 MCDwarfFrameEmitter::EncodeAdvanceLoc(Context
, AddrDelta
, OSE
, &Offset
,
1032 DF
.getFixups().push_back(MCFixup::create(
1033 Offset
, &DF
.getAddrDelta(),
1034 MCFixup::getKindForSizeInBits(Size
/*In bits.*/, false /*isPCRel*/)));
1037 MCDwarfFrameEmitter::EncodeAdvanceLoc(Context
, AddrDelta
, OSE
);
1040 return OldSize
!= Data
.size();
1043 bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout
&Layout
,
1044 MCCVInlineLineTableFragment
&F
) {
1045 unsigned OldSize
= F
.getContents().size();
1046 getContext().getCVContext().encodeInlineLineTable(Layout
, F
);
1047 return OldSize
!= F
.getContents().size();
1050 bool MCAssembler::relaxCVDefRange(MCAsmLayout
&Layout
,
1051 MCCVDefRangeFragment
&F
) {
1052 unsigned OldSize
= F
.getContents().size();
1053 getContext().getCVContext().encodeDefRange(Layout
, F
);
1054 return OldSize
!= F
.getContents().size();
1057 bool MCAssembler::layoutSectionOnce(MCAsmLayout
&Layout
, MCSection
&Sec
) {
1058 // Holds the first fragment which needed relaxing during this layout. It will
1059 // remain NULL if none were relaxed.
1060 // When a fragment is relaxed, all the fragments following it should get
1061 // invalidated because their offset is going to change.
1062 MCFragment
*FirstRelaxedFragment
= nullptr;
1064 // Attempt to relax all the fragments in the section.
1065 for (MCSection::iterator I
= Sec
.begin(), IE
= Sec
.end(); I
!= IE
; ++I
) {
1066 // Check if this is a fragment that needs relaxation.
1067 bool RelaxedFrag
= false;
1068 switch(I
->getKind()) {
1071 case MCFragment::FT_Relaxable
:
1072 assert(!getRelaxAll() &&
1073 "Did not expect a MCRelaxableFragment in RelaxAll mode");
1074 RelaxedFrag
= relaxInstruction(Layout
, *cast
<MCRelaxableFragment
>(I
));
1076 case MCFragment::FT_Dwarf
:
1077 RelaxedFrag
= relaxDwarfLineAddr(Layout
,
1078 *cast
<MCDwarfLineAddrFragment
>(I
));
1080 case MCFragment::FT_DwarfFrame
:
1082 relaxDwarfCallFrameFragment(Layout
,
1083 *cast
<MCDwarfCallFrameFragment
>(I
));
1085 case MCFragment::FT_LEB
:
1086 RelaxedFrag
= relaxLEB(Layout
, *cast
<MCLEBFragment
>(I
));
1088 case MCFragment::FT_Padding
:
1089 RelaxedFrag
= relaxPaddingFragment(Layout
, *cast
<MCPaddingFragment
>(I
));
1091 case MCFragment::FT_CVInlineLines
:
1093 relaxCVInlineLineTable(Layout
, *cast
<MCCVInlineLineTableFragment
>(I
));
1095 case MCFragment::FT_CVDefRange
:
1096 RelaxedFrag
= relaxCVDefRange(Layout
, *cast
<MCCVDefRangeFragment
>(I
));
1099 if (RelaxedFrag
&& !FirstRelaxedFragment
)
1100 FirstRelaxedFragment
= &*I
;
1102 if (FirstRelaxedFragment
) {
1103 Layout
.invalidateFragmentsFrom(FirstRelaxedFragment
);
1109 bool MCAssembler::layoutOnce(MCAsmLayout
&Layout
) {
1110 ++stats::RelaxationSteps
;
1112 bool WasRelaxed
= false;
1113 for (iterator it
= begin(), ie
= end(); it
!= ie
; ++it
) {
1114 MCSection
&Sec
= *it
;
1115 while (layoutSectionOnce(Layout
, Sec
))
1122 void MCAssembler::finishLayout(MCAsmLayout
&Layout
) {
1123 assert(getBackendPtr() && "Expected assembler backend");
1124 // The layout is done. Mark every fragment as valid.
1125 for (unsigned int i
= 0, n
= Layout
.getSectionOrder().size(); i
!= n
; ++i
) {
1126 MCSection
&Section
= *Layout
.getSectionOrder()[i
];
1127 Layout
.getFragmentOffset(&*Section
.rbegin());
1128 computeFragmentSize(Layout
, *Section
.rbegin());
1130 getBackend().finishLayout(*this, Layout
);
1133 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1134 LLVM_DUMP_METHOD
void MCAssembler::dump() const{
1135 raw_ostream
&OS
= errs();
1137 OS
<< "<MCAssembler\n";
1138 OS
<< " Sections:[\n ";
1139 for (const_iterator it
= begin(), ie
= end(); it
!= ie
; ++it
) {
1140 if (it
!= begin()) OS
<< ",\n ";
1146 for (const_symbol_iterator it
= symbol_begin(), ie
= symbol_end(); it
!= ie
; ++it
) {
1147 if (it
!= symbol_begin()) OS
<< ",\n ";
1150 OS
<< ", Index:" << it
->getIndex() << ", ";