1 //===-- lib/MC/XCOFFObjectWriter.cpp - XCOFF file writer ------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements XCOFF object file writer information.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/BinaryFormat/XCOFF.h"
14 #include "llvm/MC/MCAsmLayout.h"
15 #include "llvm/MC/MCAssembler.h"
16 #include "llvm/MC/MCObjectWriter.h"
17 #include "llvm/MC/MCSectionXCOFF.h"
18 #include "llvm/MC/MCSymbolXCOFF.h"
19 #include "llvm/MC/MCValue.h"
20 #include "llvm/MC/MCXCOFFObjectWriter.h"
21 #include "llvm/MC/StringTableBuilder.h"
22 #include "llvm/Support/Error.h"
23 #include "llvm/Support/MathExtras.h"
29 // An XCOFF object file has a limited set of predefined sections. The most
30 // important ones for us (right now) are:
31 // .text --> contains program code and read-only data.
32 // .data --> contains initialized data, function descriptors, and the TOC.
33 // .bss --> contains uninitialized data.
34 // Each of these sections is composed of 'Control Sections'. A Control Section
35 // is more commonly referred to as a csect. A csect is an indivisible unit of
36 // code or data, and acts as a container for symbols. A csect is mapped
37 // into a section based on its storage-mapping class, with the exception of
38 // XMC_RW which gets mapped to either .data or .bss based on whether it's
39 // explicitly initialized or not.
41 // We don't represent the sections in the MC layer as there is nothing
42 // interesting about them at at that level: they carry information that is
43 // only relevant to the ObjectWriter, so we materialize them in this class.
46 constexpr unsigned DefaultSectionAlign
= 4;
48 // Packs the csect's alignment and type into a byte.
49 uint8_t getEncodedType(const MCSectionXCOFF
*);
51 // Wrapper around an MCSymbolXCOFF.
53 const MCSymbolXCOFF
*const MCSym
;
54 uint32_t SymbolTableIndex
;
56 XCOFF::StorageClass
getStorageClass() const {
57 return MCSym
->getStorageClass();
59 StringRef
getName() const { return MCSym
->getName(); }
60 Symbol(const MCSymbolXCOFF
*MCSym
) : MCSym(MCSym
), SymbolTableIndex(-1) {}
63 // Wrapper for an MCSectionXCOFF.
64 struct ControlSection
{
65 const MCSectionXCOFF
*const MCCsect
;
66 uint32_t SymbolTableIndex
;
70 SmallVector
<Symbol
, 1> Syms
;
71 StringRef
getName() const { return MCCsect
->getSectionName(); }
72 ControlSection(const MCSectionXCOFF
*MCSec
)
73 : MCCsect(MCSec
), SymbolTableIndex(-1), Address(-1), Size(0) {}
76 // Represents the data related to a section excluding the csects that make up
77 // the raw data of the section. The csects are stored separately as not all
78 // sections contain csects, and some sections contain csects which are better
79 // stored separately, e.g. the .data section containing read-write, descriptor,
80 // TOCBase and TOC-entry csects.
82 char Name
[XCOFF::NameSize
];
83 // The physical/virtual address of the section. For an object file
84 // these values are equivalent.
87 uint32_t FileOffsetToData
;
88 uint32_t FileOffsetToRelocations
;
89 uint32_t RelocationCount
;
94 // Virtual sections do not need storage allocated in the object file.
100 FileOffsetToData
= 0;
101 FileOffsetToRelocations
= 0;
106 Section(const char *N
, XCOFF::SectionTypeFlags Flags
, bool IsVirtual
)
107 : Address(0), Size(0), FileOffsetToData(0), FileOffsetToRelocations(0),
108 RelocationCount(0), Flags(Flags
), Index(-1), IsVirtual(IsVirtual
) {
109 strncpy(Name
, N
, XCOFF::NameSize
);
113 class XCOFFObjectWriter
: public MCObjectWriter
{
114 // Type to be used for a container representing a set of csects with
115 // (approximately) the same storage mapping class. For example all the csects
116 // with a storage mapping class of `xmc_pr` will get placed into the same
118 using CsectGroup
= std::deque
<ControlSection
>;
120 support::endian::Writer W
;
121 std::unique_ptr
<MCXCOFFObjectTargetWriter
> TargetObjectWriter
;
122 StringTableBuilder Strings
;
124 // The non-empty sections, in the order they will appear in the section header
126 std::vector
<Section
*> Sections
;
128 // The Predefined sections.
132 // CsectGroups. These store the csects which make up different parts of
133 // the sections. Should have one for each set of csects that get mapped into
134 // the same section and get handled in a 'similar' way.
135 CsectGroup ProgramCodeCsects
;
136 CsectGroup BSSCsects
;
138 uint32_t SymbolTableEntryCount
= 0;
139 uint32_t SymbolTableOffset
= 0;
141 virtual void reset() override
;
143 void executePostLayoutBinding(MCAssembler
&, const MCAsmLayout
&) override
;
145 void recordRelocation(MCAssembler
&, const MCAsmLayout
&, const MCFragment
*,
146 const MCFixup
&, MCValue
, uint64_t &) override
;
148 uint64_t writeObject(MCAssembler
&, const MCAsmLayout
&) override
;
150 static bool nameShouldBeInStringTable(const StringRef
&);
151 void writeSymbolName(const StringRef
&);
152 void writeSymbolTableEntryForCsectMemberLabel(const Symbol
&,
153 const ControlSection
&, int16_t,
155 void writeSymbolTableEntryForControlSection(const ControlSection
&, int16_t,
156 XCOFF::StorageClass
);
157 void writeFileHeader();
158 void writeSectionHeaderTable();
159 void writeSections(const MCAssembler
&Asm
, const MCAsmLayout
&Layout
);
160 void writeSymbolTable(const MCAsmLayout
&Layout
);
162 // Called after all the csects and symbols have been processed by
163 // `executePostLayoutBinding`, this function handles building up the majority
164 // of the structures in the object file representation. Namely:
165 // *) Calculates physical/virtual addresses, raw-pointer offsets, and section
167 // *) Assigns symbol table indices.
168 // *) Builds up the section header table by adding any non-empty sections to
170 void assignAddressesAndIndices(const MCAsmLayout
&);
173 needsAuxiliaryHeader() const { /* TODO aux header support not implemented. */
177 // Returns the size of the auxiliary header to be written to the object file.
178 size_t auxiliaryHeaderSize() const {
179 assert(!needsAuxiliaryHeader() &&
180 "Auxiliary header support not implemented.");
185 XCOFFObjectWriter(std::unique_ptr
<MCXCOFFObjectTargetWriter
> MOTW
,
186 raw_pwrite_stream
&OS
);
189 XCOFFObjectWriter::XCOFFObjectWriter(
190 std::unique_ptr
<MCXCOFFObjectTargetWriter
> MOTW
, raw_pwrite_stream
&OS
)
191 : W(OS
, support::big
), TargetObjectWriter(std::move(MOTW
)),
192 Strings(StringTableBuilder::XCOFF
),
193 Text(".text", XCOFF::STYP_TEXT
, /* IsVirtual */ false),
194 BSS(".bss", XCOFF::STYP_BSS
, /* IsVirtual */ true) {}
196 void XCOFFObjectWriter::reset() {
197 // Reset any sections we have written to, and empty the section header table.
198 for (auto *Sec
: Sections
)
202 // Clear any csects we have stored.
203 ProgramCodeCsects
.clear();
206 // Reset the symbol table and string table.
207 SymbolTableEntryCount
= 0;
208 SymbolTableOffset
= 0;
211 MCObjectWriter::reset();
214 void XCOFFObjectWriter::executePostLayoutBinding(MCAssembler
&Asm
,
215 const MCAsmLayout
&Layout
) {
216 if (TargetObjectWriter
->is64Bit())
217 report_fatal_error("64-bit XCOFF object files are not supported yet.");
219 // Maps the MC Section representation to its corresponding ControlSection
220 // wrapper. Needed for finding the ControlSection to insert an MCSymbol into
221 // from its containing MCSectionXCOFF.
222 DenseMap
<const MCSectionXCOFF
*, ControlSection
*> WrapperMap
;
224 for (const auto &S
: Asm
) {
225 const auto *MCSec
= cast
<const MCSectionXCOFF
>(&S
);
226 assert(WrapperMap
.find(MCSec
) == WrapperMap
.end() &&
227 "Cannot add a csect twice.");
229 // If the name does not fit in the storage provided in the symbol table
230 // entry, add it to the string table.
231 if (nameShouldBeInStringTable(MCSec
->getSectionName()))
232 Strings
.add(MCSec
->getSectionName());
234 switch (MCSec
->getMappingClass()) {
236 assert(XCOFF::XTY_SD
== MCSec
->getCSectType() &&
237 "Only an initialized csect can contain program code.");
238 ProgramCodeCsects
.emplace_back(MCSec
);
239 WrapperMap
[MCSec
] = &ProgramCodeCsects
.back();
242 if (XCOFF::XTY_CM
== MCSec
->getCSectType()) {
243 BSSCsects
.emplace_back(MCSec
);
244 WrapperMap
[MCSec
] = &BSSCsects
.back();
247 report_fatal_error("Unhandled mapping of read-write csect to section.");
249 // TODO FIXME Handle emiting the TOC base.
252 assert(XCOFF::XTY_CM
== MCSec
->getCSectType() &&
253 "Mapping invalid csect. CSECT with bss storage class must be "
255 BSSCsects
.emplace_back(MCSec
);
256 WrapperMap
[MCSec
] = &BSSCsects
.back();
259 report_fatal_error("Unhandled mapping of csect to section.");
263 for (const MCSymbol
&S
: Asm
.symbols()) {
264 // Nothing to do for temporary symbols.
267 const MCSymbolXCOFF
*XSym
= cast
<MCSymbolXCOFF
>(&S
);
269 // Map the symbol into its containing csect.
270 const MCSectionXCOFF
*ContainingCsect
= XSym
->getContainingCsect();
271 assert(WrapperMap
.find(ContainingCsect
) != WrapperMap
.end() &&
272 "Expected containing csect to exist in map");
274 // Lookup the containing csect and add the symbol to it.
275 WrapperMap
[ContainingCsect
]->Syms
.emplace_back(XSym
);
277 // If the name does not fit in the storage provided in the symbol table
278 // entry, add it to the string table.
279 if (nameShouldBeInStringTable(XSym
->getName()))
280 Strings
.add(XSym
->getName());
284 assignAddressesAndIndices(Layout
);
287 void XCOFFObjectWriter::recordRelocation(MCAssembler
&, const MCAsmLayout
&,
288 const MCFragment
*, const MCFixup
&,
289 MCValue
, uint64_t &) {
290 report_fatal_error("XCOFF relocations not supported.");
293 void XCOFFObjectWriter::writeSections(const MCAssembler
&Asm
,
294 const MCAsmLayout
&Layout
) {
295 // Write the program code control sections one at a time.
296 uint32_t CurrentAddressLocation
= Text
.Address
;
297 for (const auto &Csect
: ProgramCodeCsects
) {
298 if (uint32_t PaddingSize
= Csect
.Address
- CurrentAddressLocation
)
299 W
.OS
.write_zeros(PaddingSize
);
300 Asm
.writeSectionData(W
.OS
, Csect
.MCCsect
, Layout
);
301 CurrentAddressLocation
= Csect
.Address
+ Csect
.Size
;
304 if (Text
.Index
!= -1) {
305 // The size of the tail padding in a section is the end virtual address of
306 // the current section minus the the end virtual address of the last csect
308 if (uint32_t PaddingSize
=
309 Text
.Address
+ Text
.Size
- CurrentAddressLocation
)
310 W
.OS
.write_zeros(PaddingSize
);
314 uint64_t XCOFFObjectWriter::writeObject(MCAssembler
&Asm
,
315 const MCAsmLayout
&Layout
) {
316 // We always emit a timestamp of 0 for reproducibility, so ensure incremental
317 // linking is not enabled, in case, like with Windows COFF, such a timestamp
318 // is incompatible with incremental linking of XCOFF.
319 if (Asm
.isIncrementalLinkerCompatible())
320 report_fatal_error("Incremental linking not supported for XCOFF.");
322 if (TargetObjectWriter
->is64Bit())
323 report_fatal_error("64-bit XCOFF object files are not supported yet.");
325 uint64_t StartOffset
= W
.OS
.tell();
328 writeSectionHeaderTable();
329 writeSections(Asm
, Layout
);
330 // TODO writeRelocations();
332 writeSymbolTable(Layout
);
333 // Write the string table.
336 return W
.OS
.tell() - StartOffset
;
339 bool XCOFFObjectWriter::nameShouldBeInStringTable(const StringRef
&SymbolName
) {
340 return SymbolName
.size() > XCOFF::NameSize
;
343 void XCOFFObjectWriter::writeSymbolName(const StringRef
&SymbolName
) {
344 if (nameShouldBeInStringTable(SymbolName
)) {
346 W
.write
<uint32_t>(Strings
.getOffset(SymbolName
));
348 char Name
[XCOFF::NameSize
];
349 std::strncpy(Name
, SymbolName
.data(), XCOFF::NameSize
);
350 ArrayRef
<char> NameRef(Name
, XCOFF::NameSize
);
355 void XCOFFObjectWriter::writeSymbolTableEntryForCsectMemberLabel(
356 const Symbol
&SymbolRef
, const ControlSection
&CSectionRef
,
357 int16_t SectionIndex
, uint64_t SymbolOffset
) {
358 // Name or Zeros and string table offset
359 writeSymbolName(SymbolRef
.getName());
360 assert(SymbolOffset
<= UINT32_MAX
- CSectionRef
.Address
&&
361 "Symbol address overflows.");
362 W
.write
<uint32_t>(CSectionRef
.Address
+ SymbolOffset
);
363 W
.write
<int16_t>(SectionIndex
);
364 // Basic/Derived type. See the description of the n_type field for symbol
365 // table entries for a detailed description. Since we don't yet support
366 // visibility, and all other bits are either optionally set or reserved, this
368 // TODO FIXME How to assert a symbol's visibilty is default?
369 // TODO Set the function indicator (bit 10, 0x0020) for functions
370 // when debugging is enabled.
371 W
.write
<uint16_t>(0);
372 W
.write
<uint8_t>(SymbolRef
.getStorageClass());
373 // Always 1 aux entry for now.
376 // Now output the auxiliary entry.
377 W
.write
<uint32_t>(CSectionRef
.SymbolTableIndex
);
378 // Parameter typecheck hash. Not supported.
379 W
.write
<uint32_t>(0);
380 // Typecheck section number. Not supported.
381 W
.write
<uint16_t>(0);
382 // Symbol type: Label
383 W
.write
<uint8_t>(XCOFF::XTY_LD
);
384 // Storage mapping class.
385 W
.write
<uint8_t>(CSectionRef
.MCCsect
->getMappingClass());
386 // Reserved (x_stab).
387 W
.write
<uint32_t>(0);
388 // Reserved (x_snstab).
389 W
.write
<uint16_t>(0);
392 void XCOFFObjectWriter::writeSymbolTableEntryForControlSection(
393 const ControlSection
&CSectionRef
, int16_t SectionIndex
,
394 XCOFF::StorageClass StorageClass
) {
395 // n_name, n_zeros, n_offset
396 writeSymbolName(CSectionRef
.getName());
398 W
.write
<uint32_t>(CSectionRef
.Address
);
400 W
.write
<int16_t>(SectionIndex
);
401 // Basic/Derived type. See the description of the n_type field for symbol
402 // table entries for a detailed description. Since we don't yet support
403 // visibility, and all other bits are either optionally set or reserved, this
405 // TODO FIXME How to assert a symbol's visibilty is default?
406 // TODO Set the function indicator (bit 10, 0x0020) for functions
407 // when debugging is enabled.
408 W
.write
<uint16_t>(0);
410 W
.write
<uint8_t>(StorageClass
);
411 // Always 1 aux entry for now.
414 // Now output the auxiliary entry.
415 W
.write
<uint32_t>(CSectionRef
.Size
);
416 // Parameter typecheck hash. Not supported.
417 W
.write
<uint32_t>(0);
418 // Typecheck section number. Not supported.
419 W
.write
<uint16_t>(0);
421 W
.write
<uint8_t>(getEncodedType(CSectionRef
.MCCsect
));
422 // Storage mapping class.
423 W
.write
<uint8_t>(CSectionRef
.MCCsect
->getMappingClass());
424 // Reserved (x_stab).
425 W
.write
<uint32_t>(0);
426 // Reserved (x_snstab).
427 W
.write
<uint16_t>(0);
430 void XCOFFObjectWriter::writeFileHeader() {
432 W
.write
<uint16_t>(0x01df);
433 // Number of sections.
434 W
.write
<uint16_t>(Sections
.size());
435 // Timestamp field. For reproducible output we write a 0, which represents no
438 // Byte Offset to the start of the symbol table.
439 W
.write
<uint32_t>(SymbolTableOffset
);
440 // Number of entries in the symbol table.
441 W
.write
<int32_t>(SymbolTableEntryCount
);
442 // Size of the optional header.
443 W
.write
<uint16_t>(0);
445 W
.write
<uint16_t>(0);
448 void XCOFFObjectWriter::writeSectionHeaderTable() {
449 for (const auto *Sec
: Sections
) {
451 ArrayRef
<char> NameRef(Sec
->Name
, XCOFF::NameSize
);
454 // Write the Physical Address and Virtual Address. In an object file these
456 W
.write
<uint32_t>(Sec
->Address
);
457 W
.write
<uint32_t>(Sec
->Address
);
459 W
.write
<uint32_t>(Sec
->Size
);
460 W
.write
<uint32_t>(Sec
->FileOffsetToData
);
462 // Relocation pointer and Lineno pointer. Not supported yet.
463 W
.write
<uint32_t>(0);
464 W
.write
<uint32_t>(0);
466 // Relocation and line-number counts. Not supported yet.
467 W
.write
<uint16_t>(0);
468 W
.write
<uint16_t>(0);
470 W
.write
<int32_t>(Sec
->Flags
);
474 void XCOFFObjectWriter::writeSymbolTable(const MCAsmLayout
&Layout
) {
475 // Print out symbol table for the program code.
476 for (const auto &Csect
: ProgramCodeCsects
) {
477 // Write out the control section first and then each symbol in it.
478 writeSymbolTableEntryForControlSection(Csect
, Text
.Index
,
479 Csect
.MCCsect
->getStorageClass());
480 for (const auto &Sym
: Csect
.Syms
)
481 writeSymbolTableEntryForCsectMemberLabel(
482 Sym
, Csect
, Text
.Index
, Layout
.getSymbolOffset(*Sym
.MCSym
));
485 // The BSS Section is special in that the csects must contain a single symbol,
486 // and the contained symbol cannot be represented in the symbol table as a
488 for (auto &Csect
: BSSCsects
) {
489 assert(Csect
.Syms
.size() == 1 &&
490 "Uninitialized csect cannot contain more then 1 symbol.");
491 Symbol
&Sym
= Csect
.Syms
.back();
492 writeSymbolTableEntryForControlSection(Csect
, BSS
.Index
,
493 Sym
.getStorageClass());
497 void XCOFFObjectWriter::assignAddressesAndIndices(const MCAsmLayout
&Layout
) {
498 // The address corrresponds to the address of sections and symbols in the
499 // object file. We place the shared address 0 immediately after the
500 // section header table.
501 uint32_t Address
= 0;
502 // Section indices are 1-based in XCOFF.
503 int16_t SectionIndex
= 1;
504 // The first symbol table entry is for the file name. We are not emitting it
505 // yet, so start at index 0.
506 uint32_t SymbolTableIndex
= 0;
508 // Text section comes first.
509 if (!ProgramCodeCsects
.empty()) {
510 Sections
.push_back(&Text
);
511 Text
.Index
= SectionIndex
++;
512 for (auto &Csect
: ProgramCodeCsects
) {
513 const MCSectionXCOFF
*MCSec
= Csect
.MCCsect
;
514 Csect
.Address
= alignTo(Address
, MCSec
->getAlignment());
515 Csect
.Size
= Layout
.getSectionAddressSize(MCSec
);
516 Address
= Csect
.Address
+ Csect
.Size
;
517 Csect
.SymbolTableIndex
= SymbolTableIndex
;
518 // 1 main and 1 auxiliary symbol table entry for the csect.
519 SymbolTableIndex
+= 2;
520 for (auto &Sym
: Csect
.Syms
) {
521 Sym
.SymbolTableIndex
= SymbolTableIndex
;
522 // 1 main and 1 auxiliary symbol table entry for each contained symbol
523 SymbolTableIndex
+= 2;
526 Address
= alignTo(Address
, DefaultSectionAlign
);
528 // The first csect of a section can be aligned by adjusting the virtual
529 // address of its containing section instead of writing zeroes into the
531 Text
.Address
= ProgramCodeCsects
.front().Address
;
533 Text
.Size
= Address
- Text
.Address
;
536 // Data section Second. TODO
538 // BSS Section third.
539 if (!BSSCsects
.empty()) {
540 Sections
.push_back(&BSS
);
541 BSS
.Index
= SectionIndex
++;
542 for (auto &Csect
: BSSCsects
) {
543 const MCSectionXCOFF
*MCSec
= Csect
.MCCsect
;
544 Csect
.Address
= alignTo(Address
, MCSec
->getAlignment());
545 Csect
.Size
= Layout
.getSectionAddressSize(MCSec
);
546 Address
= Csect
.Address
+ Csect
.Size
;
547 Csect
.SymbolTableIndex
= SymbolTableIndex
;
548 // 1 main and 1 auxiliary symbol table entry for the csect.
549 SymbolTableIndex
+= 2;
551 assert(Csect
.Syms
.size() == 1 &&
552 "csect in the BSS can only contain a single symbol.");
553 Csect
.Syms
[0].SymbolTableIndex
= Csect
.SymbolTableIndex
;
555 // Pad out Address to the default alignment. This is to match how the system
556 // assembler handles the .bss section. Its size is always a multiple of 4.
557 Address
= alignTo(Address
, DefaultSectionAlign
);
559 BSS
.Address
= BSSCsects
.front().Address
;
560 BSS
.Size
= Address
- BSS
.Address
;
563 SymbolTableEntryCount
= SymbolTableIndex
;
565 // Calculate the RawPointer value for each section.
566 uint64_t RawPointer
= sizeof(XCOFF::FileHeader32
) + auxiliaryHeaderSize() +
567 Sections
.size() * sizeof(XCOFF::SectionHeader32
);
568 for (auto *Sec
: Sections
) {
569 if (!Sec
->IsVirtual
) {
570 Sec
->FileOffsetToData
= RawPointer
;
571 RawPointer
+= Sec
->Size
;
575 // TODO Add in Relocation storage to the RawPointer Calculation.
576 // TODO What to align the SymbolTable to?
577 // TODO Error check that the number of symbol table entries fits in 32-bits
579 if (SymbolTableEntryCount
)
580 SymbolTableOffset
= RawPointer
;
583 // Takes the log base 2 of the alignment and shifts the result into the 5 most
584 // significant bits of a byte, then or's in the csect type into the least
585 // significant 3 bits.
586 uint8_t getEncodedType(const MCSectionXCOFF
*Sec
) {
587 unsigned Align
= Sec
->getAlignment();
588 assert(isPowerOf2_32(Align
) && "Alignment must be a power of 2.");
589 unsigned Log2Align
= Log2_32(Align
);
590 // Result is a number in the range [0, 31] which fits in the 5 least
591 // significant bits. Shift this value into the 5 most significant bits, and
592 // bitwise-or in the csect type.
593 uint8_t EncodedAlign
= Log2Align
<< 3;
594 return EncodedAlign
| Sec
->getCSectType();
597 } // end anonymous namespace
599 std::unique_ptr
<MCObjectWriter
>
600 llvm::createXCOFFObjectWriter(std::unique_ptr
<MCXCOFFObjectTargetWriter
> MOTW
,
601 raw_pwrite_stream
&OS
) {
602 return std::make_unique
<XCOFFObjectWriter
>(std::move(MOTW
), OS
);