[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Object / COFFObjectFile.cpp
blob2c0f6dc2b1e9b3ec05be2d54f30304c71f79dcac
1 //===- COFFObjectFile.cpp - COFF object file implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the COFFObjectFile class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/ArrayRef.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Triple.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/BinaryFormat/COFF.h"
18 #include "llvm/Object/Binary.h"
19 #include "llvm/Object/COFF.h"
20 #include "llvm/Object/Error.h"
21 #include "llvm/Object/ObjectFile.h"
22 #include "llvm/Support/BinaryStreamReader.h"
23 #include "llvm/Support/Endian.h"
24 #include "llvm/Support/Error.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/MemoryBuffer.h"
28 #include <algorithm>
29 #include <cassert>
30 #include <cstddef>
31 #include <cstdint>
32 #include <cstring>
33 #include <limits>
34 #include <memory>
35 #include <system_error>
37 using namespace llvm;
38 using namespace object;
40 using support::ulittle16_t;
41 using support::ulittle32_t;
42 using support::ulittle64_t;
43 using support::little16_t;
45 // Returns false if size is greater than the buffer size. And sets ec.
46 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) {
47 if (M.getBufferSize() < Size) {
48 EC = object_error::unexpected_eof;
49 return false;
51 return true;
54 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m.
55 // Returns unexpected_eof if error.
56 template <typename T>
57 static std::error_code getObject(const T *&Obj, MemoryBufferRef M,
58 const void *Ptr,
59 const uint64_t Size = sizeof(T)) {
60 uintptr_t Addr = uintptr_t(Ptr);
61 if (std::error_code EC = Binary::checkOffset(M, Addr, Size))
62 return EC;
63 Obj = reinterpret_cast<const T *>(Addr);
64 return std::error_code();
67 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without
68 // prefixed slashes.
69 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) {
70 assert(Str.size() <= 6 && "String too long, possible overflow.");
71 if (Str.size() > 6)
72 return true;
74 uint64_t Value = 0;
75 while (!Str.empty()) {
76 unsigned CharVal;
77 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25
78 CharVal = Str[0] - 'A';
79 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51
80 CharVal = Str[0] - 'a' + 26;
81 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61
82 CharVal = Str[0] - '0' + 52;
83 else if (Str[0] == '+') // 62
84 CharVal = 62;
85 else if (Str[0] == '/') // 63
86 CharVal = 63;
87 else
88 return true;
90 Value = (Value * 64) + CharVal;
91 Str = Str.substr(1);
94 if (Value > std::numeric_limits<uint32_t>::max())
95 return true;
97 Result = static_cast<uint32_t>(Value);
98 return false;
101 template <typename coff_symbol_type>
102 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const {
103 const coff_symbol_type *Addr =
104 reinterpret_cast<const coff_symbol_type *>(Ref.p);
106 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr)));
107 #ifndef NDEBUG
108 // Verify that the symbol points to a valid entry in the symbol table.
109 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base());
111 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 &&
112 "Symbol did not point to the beginning of a symbol");
113 #endif
115 return Addr;
118 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const {
119 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p);
121 #ifndef NDEBUG
122 // Verify that the section points to a valid entry in the section table.
123 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections()))
124 report_fatal_error("Section was outside of section table.");
126 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable);
127 assert(Offset % sizeof(coff_section) == 0 &&
128 "Section did not point to the beginning of a section");
129 #endif
131 return Addr;
134 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const {
135 auto End = reinterpret_cast<uintptr_t>(StringTable);
136 if (SymbolTable16) {
137 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref);
138 Symb += 1 + Symb->NumberOfAuxSymbols;
139 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
140 } else if (SymbolTable32) {
141 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref);
142 Symb += 1 + Symb->NumberOfAuxSymbols;
143 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
144 } else {
145 llvm_unreachable("no symbol table pointer!");
149 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const {
150 COFFSymbolRef Symb = getCOFFSymbol(Ref);
151 StringRef Result;
152 if (std::error_code EC = getSymbolName(Symb, Result))
153 return errorCodeToError(EC);
154 return Result;
157 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const {
158 return getCOFFSymbol(Ref).getValue();
161 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const {
162 // MSVC/link.exe seems to align symbols to the next-power-of-2
163 // up to 32 bytes.
164 COFFSymbolRef Symb = getCOFFSymbol(Ref);
165 return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue()));
168 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const {
169 uint64_t Result = getSymbolValue(Ref);
170 COFFSymbolRef Symb = getCOFFSymbol(Ref);
171 int32_t SectionNumber = Symb.getSectionNumber();
173 if (Symb.isAnyUndefined() || Symb.isCommon() ||
174 COFF::isReservedSectionNumber(SectionNumber))
175 return Result;
177 const coff_section *Section = nullptr;
178 if (std::error_code EC = getSection(SectionNumber, Section))
179 return errorCodeToError(EC);
180 Result += Section->VirtualAddress;
182 // The section VirtualAddress does not include ImageBase, and we want to
183 // return virtual addresses.
184 Result += getImageBase();
186 return Result;
189 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const {
190 COFFSymbolRef Symb = getCOFFSymbol(Ref);
191 int32_t SectionNumber = Symb.getSectionNumber();
193 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION)
194 return SymbolRef::ST_Function;
195 if (Symb.isAnyUndefined())
196 return SymbolRef::ST_Unknown;
197 if (Symb.isCommon())
198 return SymbolRef::ST_Data;
199 if (Symb.isFileRecord())
200 return SymbolRef::ST_File;
202 // TODO: perhaps we need a new symbol type ST_Section.
203 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition())
204 return SymbolRef::ST_Debug;
206 if (!COFF::isReservedSectionNumber(SectionNumber))
207 return SymbolRef::ST_Data;
209 return SymbolRef::ST_Other;
212 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const {
213 COFFSymbolRef Symb = getCOFFSymbol(Ref);
214 uint32_t Result = SymbolRef::SF_None;
216 if (Symb.isExternal() || Symb.isWeakExternal())
217 Result |= SymbolRef::SF_Global;
219 if (const coff_aux_weak_external *AWE = Symb.getWeakExternal()) {
220 Result |= SymbolRef::SF_Weak;
221 if (AWE->Characteristics != COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS)
222 Result |= SymbolRef::SF_Undefined;
225 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE)
226 Result |= SymbolRef::SF_Absolute;
228 if (Symb.isFileRecord())
229 Result |= SymbolRef::SF_FormatSpecific;
231 if (Symb.isSectionDefinition())
232 Result |= SymbolRef::SF_FormatSpecific;
234 if (Symb.isCommon())
235 Result |= SymbolRef::SF_Common;
237 if (Symb.isUndefined())
238 Result |= SymbolRef::SF_Undefined;
240 return Result;
243 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const {
244 COFFSymbolRef Symb = getCOFFSymbol(Ref);
245 return Symb.getValue();
248 Expected<section_iterator>
249 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const {
250 COFFSymbolRef Symb = getCOFFSymbol(Ref);
251 if (COFF::isReservedSectionNumber(Symb.getSectionNumber()))
252 return section_end();
253 const coff_section *Sec = nullptr;
254 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec))
255 return errorCodeToError(EC);
256 DataRefImpl Ret;
257 Ret.p = reinterpret_cast<uintptr_t>(Sec);
258 return section_iterator(SectionRef(Ret, this));
261 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const {
262 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl());
263 return Symb.getSectionNumber();
266 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const {
267 const coff_section *Sec = toSec(Ref);
268 Sec += 1;
269 Ref.p = reinterpret_cast<uintptr_t>(Sec);
272 Expected<StringRef> COFFObjectFile::getSectionName(DataRefImpl Ref) const {
273 const coff_section *Sec = toSec(Ref);
274 return getSectionName(Sec);
277 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const {
278 const coff_section *Sec = toSec(Ref);
279 uint64_t Result = Sec->VirtualAddress;
281 // The section VirtualAddress does not include ImageBase, and we want to
282 // return virtual addresses.
283 Result += getImageBase();
284 return Result;
287 uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const {
288 return toSec(Sec) - SectionTable;
291 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const {
292 return getSectionSize(toSec(Ref));
295 Expected<ArrayRef<uint8_t>>
296 COFFObjectFile::getSectionContents(DataRefImpl Ref) const {
297 const coff_section *Sec = toSec(Ref);
298 ArrayRef<uint8_t> Res;
299 if (Error E = getSectionContents(Sec, Res))
300 return std::move(E);
301 return Res;
304 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const {
305 const coff_section *Sec = toSec(Ref);
306 return Sec->getAlignment();
309 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const {
310 return false;
313 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const {
314 const coff_section *Sec = toSec(Ref);
315 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE;
318 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const {
319 const coff_section *Sec = toSec(Ref);
320 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA;
323 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const {
324 const coff_section *Sec = toSec(Ref);
325 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
326 COFF::IMAGE_SCN_MEM_READ |
327 COFF::IMAGE_SCN_MEM_WRITE;
328 return (Sec->Characteristics & BssFlags) == BssFlags;
331 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const {
332 uintptr_t Offset =
333 uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable);
334 assert((Offset % sizeof(coff_section)) == 0);
335 return (Offset / sizeof(coff_section)) + 1;
338 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const {
339 const coff_section *Sec = toSec(Ref);
340 // In COFF, a virtual section won't have any in-file
341 // content, so the file pointer to the content will be zero.
342 return Sec->PointerToRawData == 0;
345 static uint32_t getNumberOfRelocations(const coff_section *Sec,
346 MemoryBufferRef M, const uint8_t *base) {
347 // The field for the number of relocations in COFF section table is only
348 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to
349 // NumberOfRelocations field, and the actual relocation count is stored in the
350 // VirtualAddress field in the first relocation entry.
351 if (Sec->hasExtendedRelocations()) {
352 const coff_relocation *FirstReloc;
353 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>(
354 base + Sec->PointerToRelocations)))
355 return 0;
356 // -1 to exclude this first relocation entry.
357 return FirstReloc->VirtualAddress - 1;
359 return Sec->NumberOfRelocations;
362 static const coff_relocation *
363 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) {
364 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base);
365 if (!NumRelocs)
366 return nullptr;
367 auto begin = reinterpret_cast<const coff_relocation *>(
368 Base + Sec->PointerToRelocations);
369 if (Sec->hasExtendedRelocations()) {
370 // Skip the first relocation entry repurposed to store the number of
371 // relocations.
372 begin++;
374 if (Binary::checkOffset(M, uintptr_t(begin),
375 sizeof(coff_relocation) * NumRelocs))
376 return nullptr;
377 return begin;
380 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const {
381 const coff_section *Sec = toSec(Ref);
382 const coff_relocation *begin = getFirstReloc(Sec, Data, base());
383 if (begin && Sec->VirtualAddress != 0)
384 report_fatal_error("Sections with relocations should have an address of 0");
385 DataRefImpl Ret;
386 Ret.p = reinterpret_cast<uintptr_t>(begin);
387 return relocation_iterator(RelocationRef(Ret, this));
390 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const {
391 const coff_section *Sec = toSec(Ref);
392 const coff_relocation *I = getFirstReloc(Sec, Data, base());
393 if (I)
394 I += getNumberOfRelocations(Sec, Data, base());
395 DataRefImpl Ret;
396 Ret.p = reinterpret_cast<uintptr_t>(I);
397 return relocation_iterator(RelocationRef(Ret, this));
400 // Initialize the pointer to the symbol table.
401 std::error_code COFFObjectFile::initSymbolTablePtr() {
402 if (COFFHeader)
403 if (std::error_code EC = getObject(
404 SymbolTable16, Data, base() + getPointerToSymbolTable(),
405 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
406 return EC;
408 if (COFFBigObjHeader)
409 if (std::error_code EC = getObject(
410 SymbolTable32, Data, base() + getPointerToSymbolTable(),
411 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
412 return EC;
414 // Find string table. The first four byte of the string table contains the
415 // total size of the string table, including the size field itself. If the
416 // string table is empty, the value of the first four byte would be 4.
417 uint32_t StringTableOffset = getPointerToSymbolTable() +
418 getNumberOfSymbols() * getSymbolTableEntrySize();
419 const uint8_t *StringTableAddr = base() + StringTableOffset;
420 const ulittle32_t *StringTableSizePtr;
421 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr))
422 return EC;
423 StringTableSize = *StringTableSizePtr;
424 if (std::error_code EC =
425 getObject(StringTable, Data, StringTableAddr, StringTableSize))
426 return EC;
428 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some
429 // tools like cvtres write a size of 0 for an empty table instead of 4.
430 if (StringTableSize < 4)
431 StringTableSize = 4;
433 // Check that the string table is null terminated if has any in it.
434 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0)
435 return object_error::parse_failed;
436 return std::error_code();
439 uint64_t COFFObjectFile::getImageBase() const {
440 if (PE32Header)
441 return PE32Header->ImageBase;
442 else if (PE32PlusHeader)
443 return PE32PlusHeader->ImageBase;
444 // This actually comes up in practice.
445 return 0;
448 // Returns the file offset for the given VA.
449 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const {
450 uint64_t ImageBase = getImageBase();
451 uint64_t Rva = Addr - ImageBase;
452 assert(Rva <= UINT32_MAX);
453 return getRvaPtr((uint32_t)Rva, Res);
456 // Returns the file offset for the given RVA.
457 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const {
458 for (const SectionRef &S : sections()) {
459 const coff_section *Section = getCOFFSection(S);
460 uint32_t SectionStart = Section->VirtualAddress;
461 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize;
462 if (SectionStart <= Addr && Addr < SectionEnd) {
463 uint32_t Offset = Addr - SectionStart;
464 Res = uintptr_t(base()) + Section->PointerToRawData + Offset;
465 return std::error_code();
468 return object_error::parse_failed;
471 std::error_code
472 COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size,
473 ArrayRef<uint8_t> &Contents) const {
474 for (const SectionRef &S : sections()) {
475 const coff_section *Section = getCOFFSection(S);
476 uint32_t SectionStart = Section->VirtualAddress;
477 // Check if this RVA is within the section bounds. Be careful about integer
478 // overflow.
479 uint32_t OffsetIntoSection = RVA - SectionStart;
480 if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize &&
481 Size <= Section->VirtualSize - OffsetIntoSection) {
482 uintptr_t Begin =
483 uintptr_t(base()) + Section->PointerToRawData + OffsetIntoSection;
484 Contents =
485 ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size);
486 return std::error_code();
489 return object_error::parse_failed;
492 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name
493 // table entry.
494 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint,
495 StringRef &Name) const {
496 uintptr_t IntPtr = 0;
497 if (std::error_code EC = getRvaPtr(Rva, IntPtr))
498 return EC;
499 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr);
500 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr);
501 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2));
502 return std::error_code();
505 std::error_code
506 COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir,
507 const codeview::DebugInfo *&PDBInfo,
508 StringRef &PDBFileName) const {
509 ArrayRef<uint8_t> InfoBytes;
510 if (std::error_code EC = getRvaAndSizeAsBytes(
511 DebugDir->AddressOfRawData, DebugDir->SizeOfData, InfoBytes))
512 return EC;
513 if (InfoBytes.size() < sizeof(*PDBInfo) + 1)
514 return object_error::parse_failed;
515 PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data());
516 InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo));
517 PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()),
518 InfoBytes.size());
519 // Truncate the name at the first null byte. Ignore any padding.
520 PDBFileName = PDBFileName.split('\0').first;
521 return std::error_code();
524 std::error_code
525 COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo,
526 StringRef &PDBFileName) const {
527 for (const debug_directory &D : debug_directories())
528 if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW)
529 return getDebugPDBInfo(&D, PDBInfo, PDBFileName);
530 // If we get here, there is no PDB info to return.
531 PDBInfo = nullptr;
532 PDBFileName = StringRef();
533 return std::error_code();
536 // Find the import table.
537 std::error_code COFFObjectFile::initImportTablePtr() {
538 // First, we get the RVA of the import table. If the file lacks a pointer to
539 // the import table, do nothing.
540 const data_directory *DataEntry;
541 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry))
542 return std::error_code();
544 // Do nothing if the pointer to import table is NULL.
545 if (DataEntry->RelativeVirtualAddress == 0)
546 return std::error_code();
548 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress;
550 // Find the section that contains the RVA. This is needed because the RVA is
551 // the import table's memory address which is different from its file offset.
552 uintptr_t IntPtr = 0;
553 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr))
554 return EC;
555 if (std::error_code EC = checkOffset(Data, IntPtr, DataEntry->Size))
556 return EC;
557 ImportDirectory = reinterpret_cast<
558 const coff_import_directory_table_entry *>(IntPtr);
559 return std::error_code();
562 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory.
563 std::error_code COFFObjectFile::initDelayImportTablePtr() {
564 const data_directory *DataEntry;
565 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry))
566 return std::error_code();
567 if (DataEntry->RelativeVirtualAddress == 0)
568 return std::error_code();
570 uint32_t RVA = DataEntry->RelativeVirtualAddress;
571 NumberOfDelayImportDirectory = DataEntry->Size /
572 sizeof(delay_import_directory_table_entry) - 1;
574 uintptr_t IntPtr = 0;
575 if (std::error_code EC = getRvaPtr(RVA, IntPtr))
576 return EC;
577 DelayImportDirectory = reinterpret_cast<
578 const delay_import_directory_table_entry *>(IntPtr);
579 return std::error_code();
582 // Find the export table.
583 std::error_code COFFObjectFile::initExportTablePtr() {
584 // First, we get the RVA of the export table. If the file lacks a pointer to
585 // the export table, do nothing.
586 const data_directory *DataEntry;
587 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry))
588 return std::error_code();
590 // Do nothing if the pointer to export table is NULL.
591 if (DataEntry->RelativeVirtualAddress == 0)
592 return std::error_code();
594 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress;
595 uintptr_t IntPtr = 0;
596 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr))
597 return EC;
598 ExportDirectory =
599 reinterpret_cast<const export_directory_table_entry *>(IntPtr);
600 return std::error_code();
603 std::error_code COFFObjectFile::initBaseRelocPtr() {
604 const data_directory *DataEntry;
605 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry))
606 return std::error_code();
607 if (DataEntry->RelativeVirtualAddress == 0)
608 return std::error_code();
610 uintptr_t IntPtr = 0;
611 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
612 return EC;
613 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>(
614 IntPtr);
615 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>(
616 IntPtr + DataEntry->Size);
617 // FIXME: Verify the section containing BaseRelocHeader has at least
618 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress.
619 return std::error_code();
622 std::error_code COFFObjectFile::initDebugDirectoryPtr() {
623 // Get the RVA of the debug directory. Do nothing if it does not exist.
624 const data_directory *DataEntry;
625 if (getDataDirectory(COFF::DEBUG_DIRECTORY, DataEntry))
626 return std::error_code();
628 // Do nothing if the RVA is NULL.
629 if (DataEntry->RelativeVirtualAddress == 0)
630 return std::error_code();
632 // Check that the size is a multiple of the entry size.
633 if (DataEntry->Size % sizeof(debug_directory) != 0)
634 return object_error::parse_failed;
636 uintptr_t IntPtr = 0;
637 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
638 return EC;
639 DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr);
640 DebugDirectoryEnd = reinterpret_cast<const debug_directory *>(
641 IntPtr + DataEntry->Size);
642 // FIXME: Verify the section containing DebugDirectoryBegin has at least
643 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress.
644 return std::error_code();
647 std::error_code COFFObjectFile::initLoadConfigPtr() {
648 // Get the RVA of the debug directory. Do nothing if it does not exist.
649 const data_directory *DataEntry;
650 if (getDataDirectory(COFF::LOAD_CONFIG_TABLE, DataEntry))
651 return std::error_code();
653 // Do nothing if the RVA is NULL.
654 if (DataEntry->RelativeVirtualAddress == 0)
655 return std::error_code();
656 uintptr_t IntPtr = 0;
657 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
658 return EC;
660 LoadConfig = (const void *)IntPtr;
661 return std::error_code();
664 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC)
665 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr),
666 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr),
667 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr),
668 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0),
669 ImportDirectory(nullptr),
670 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0),
671 ExportDirectory(nullptr), BaseRelocHeader(nullptr), BaseRelocEnd(nullptr),
672 DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr) {
673 // Check that we at least have enough room for a header.
674 if (!checkSize(Data, EC, sizeof(coff_file_header)))
675 return;
677 // The current location in the file where we are looking at.
678 uint64_t CurPtr = 0;
680 // PE header is optional and is present only in executables. If it exists,
681 // it is placed right after COFF header.
682 bool HasPEHeader = false;
684 // Check if this is a PE/COFF file.
685 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) {
686 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte
687 // PE signature to find 'normal' COFF header.
688 const auto *DH = reinterpret_cast<const dos_header *>(base());
689 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') {
690 CurPtr = DH->AddressOfNewExeHeader;
691 // Check the PE magic bytes. ("PE\0\0")
692 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) {
693 EC = object_error::parse_failed;
694 return;
696 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes.
697 HasPEHeader = true;
701 if ((EC = getObject(COFFHeader, Data, base() + CurPtr)))
702 return;
704 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF
705 // import libraries share a common prefix but bigobj is more restrictive.
706 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN &&
707 COFFHeader->NumberOfSections == uint16_t(0xffff) &&
708 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) {
709 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr)))
710 return;
712 // Verify that we are dealing with bigobj.
713 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion &&
714 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic,
715 sizeof(COFF::BigObjMagic)) == 0) {
716 COFFHeader = nullptr;
717 CurPtr += sizeof(coff_bigobj_file_header);
718 } else {
719 // It's not a bigobj.
720 COFFBigObjHeader = nullptr;
723 if (COFFHeader) {
724 // The prior checkSize call may have failed. This isn't a hard error
725 // because we were just trying to sniff out bigobj.
726 EC = std::error_code();
727 CurPtr += sizeof(coff_file_header);
729 if (COFFHeader->isImportLibrary())
730 return;
733 if (HasPEHeader) {
734 const pe32_header *Header;
735 if ((EC = getObject(Header, Data, base() + CurPtr)))
736 return;
738 const uint8_t *DataDirAddr;
739 uint64_t DataDirSize;
740 if (Header->Magic == COFF::PE32Header::PE32) {
741 PE32Header = Header;
742 DataDirAddr = base() + CurPtr + sizeof(pe32_header);
743 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize;
744 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) {
745 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header);
746 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header);
747 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize;
748 } else {
749 // It's neither PE32 nor PE32+.
750 EC = object_error::parse_failed;
751 return;
753 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize)))
754 return;
757 if (COFFHeader)
758 CurPtr += COFFHeader->SizeOfOptionalHeader;
760 if ((EC = getObject(SectionTable, Data, base() + CurPtr,
761 (uint64_t)getNumberOfSections() * sizeof(coff_section))))
762 return;
764 // Initialize the pointer to the symbol table.
765 if (getPointerToSymbolTable() != 0) {
766 if ((EC = initSymbolTablePtr())) {
767 SymbolTable16 = nullptr;
768 SymbolTable32 = nullptr;
769 StringTable = nullptr;
770 StringTableSize = 0;
772 } else {
773 // We had better not have any symbols if we don't have a symbol table.
774 if (getNumberOfSymbols() != 0) {
775 EC = object_error::parse_failed;
776 return;
780 // Initialize the pointer to the beginning of the import table.
781 if ((EC = initImportTablePtr()))
782 return;
783 if ((EC = initDelayImportTablePtr()))
784 return;
786 // Initialize the pointer to the export table.
787 if ((EC = initExportTablePtr()))
788 return;
790 // Initialize the pointer to the base relocation table.
791 if ((EC = initBaseRelocPtr()))
792 return;
794 // Initialize the pointer to the export table.
795 if ((EC = initDebugDirectoryPtr()))
796 return;
798 if ((EC = initLoadConfigPtr()))
799 return;
801 EC = std::error_code();
804 basic_symbol_iterator COFFObjectFile::symbol_begin() const {
805 DataRefImpl Ret;
806 Ret.p = getSymbolTable();
807 return basic_symbol_iterator(SymbolRef(Ret, this));
810 basic_symbol_iterator COFFObjectFile::symbol_end() const {
811 // The symbol table ends where the string table begins.
812 DataRefImpl Ret;
813 Ret.p = reinterpret_cast<uintptr_t>(StringTable);
814 return basic_symbol_iterator(SymbolRef(Ret, this));
817 import_directory_iterator COFFObjectFile::import_directory_begin() const {
818 if (!ImportDirectory)
819 return import_directory_end();
820 if (ImportDirectory->isNull())
821 return import_directory_end();
822 return import_directory_iterator(
823 ImportDirectoryEntryRef(ImportDirectory, 0, this));
826 import_directory_iterator COFFObjectFile::import_directory_end() const {
827 return import_directory_iterator(
828 ImportDirectoryEntryRef(nullptr, -1, this));
831 delay_import_directory_iterator
832 COFFObjectFile::delay_import_directory_begin() const {
833 return delay_import_directory_iterator(
834 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this));
837 delay_import_directory_iterator
838 COFFObjectFile::delay_import_directory_end() const {
839 return delay_import_directory_iterator(
840 DelayImportDirectoryEntryRef(
841 DelayImportDirectory, NumberOfDelayImportDirectory, this));
844 export_directory_iterator COFFObjectFile::export_directory_begin() const {
845 return export_directory_iterator(
846 ExportDirectoryEntryRef(ExportDirectory, 0, this));
849 export_directory_iterator COFFObjectFile::export_directory_end() const {
850 if (!ExportDirectory)
851 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this));
852 ExportDirectoryEntryRef Ref(ExportDirectory,
853 ExportDirectory->AddressTableEntries, this);
854 return export_directory_iterator(Ref);
857 section_iterator COFFObjectFile::section_begin() const {
858 DataRefImpl Ret;
859 Ret.p = reinterpret_cast<uintptr_t>(SectionTable);
860 return section_iterator(SectionRef(Ret, this));
863 section_iterator COFFObjectFile::section_end() const {
864 DataRefImpl Ret;
865 int NumSections =
866 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections();
867 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections);
868 return section_iterator(SectionRef(Ret, this));
871 base_reloc_iterator COFFObjectFile::base_reloc_begin() const {
872 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this));
875 base_reloc_iterator COFFObjectFile::base_reloc_end() const {
876 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this));
879 uint8_t COFFObjectFile::getBytesInAddress() const {
880 return getArch() == Triple::x86_64 || getArch() == Triple::aarch64 ? 8 : 4;
883 StringRef COFFObjectFile::getFileFormatName() const {
884 switch(getMachine()) {
885 case COFF::IMAGE_FILE_MACHINE_I386:
886 return "COFF-i386";
887 case COFF::IMAGE_FILE_MACHINE_AMD64:
888 return "COFF-x86-64";
889 case COFF::IMAGE_FILE_MACHINE_ARMNT:
890 return "COFF-ARM";
891 case COFF::IMAGE_FILE_MACHINE_ARM64:
892 return "COFF-ARM64";
893 default:
894 return "COFF-<unknown arch>";
898 Triple::ArchType COFFObjectFile::getArch() const {
899 switch (getMachine()) {
900 case COFF::IMAGE_FILE_MACHINE_I386:
901 return Triple::x86;
902 case COFF::IMAGE_FILE_MACHINE_AMD64:
903 return Triple::x86_64;
904 case COFF::IMAGE_FILE_MACHINE_ARMNT:
905 return Triple::thumb;
906 case COFF::IMAGE_FILE_MACHINE_ARM64:
907 return Triple::aarch64;
908 default:
909 return Triple::UnknownArch;
913 Expected<uint64_t> COFFObjectFile::getStartAddress() const {
914 if (PE32Header)
915 return PE32Header->AddressOfEntryPoint;
916 return 0;
919 iterator_range<import_directory_iterator>
920 COFFObjectFile::import_directories() const {
921 return make_range(import_directory_begin(), import_directory_end());
924 iterator_range<delay_import_directory_iterator>
925 COFFObjectFile::delay_import_directories() const {
926 return make_range(delay_import_directory_begin(),
927 delay_import_directory_end());
930 iterator_range<export_directory_iterator>
931 COFFObjectFile::export_directories() const {
932 return make_range(export_directory_begin(), export_directory_end());
935 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const {
936 return make_range(base_reloc_begin(), base_reloc_end());
939 std::error_code
940 COFFObjectFile::getDataDirectory(uint32_t Index,
941 const data_directory *&Res) const {
942 // Error if there's no data directory or the index is out of range.
943 if (!DataDirectory) {
944 Res = nullptr;
945 return object_error::parse_failed;
947 assert(PE32Header || PE32PlusHeader);
948 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize
949 : PE32PlusHeader->NumberOfRvaAndSize;
950 if (Index >= NumEnt) {
951 Res = nullptr;
952 return object_error::parse_failed;
954 Res = &DataDirectory[Index];
955 return std::error_code();
958 std::error_code COFFObjectFile::getSection(int32_t Index,
959 const coff_section *&Result) const {
960 Result = nullptr;
961 if (COFF::isReservedSectionNumber(Index))
962 return std::error_code();
963 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) {
964 // We already verified the section table data, so no need to check again.
965 Result = SectionTable + (Index - 1);
966 return std::error_code();
968 return object_error::parse_failed;
971 std::error_code COFFObjectFile::getSection(StringRef SectionName,
972 const coff_section *&Result) const {
973 Result = nullptr;
974 for (const SectionRef &Section : sections()) {
975 auto NameOrErr = Section.getName();
976 if (!NameOrErr)
977 return errorToErrorCode(NameOrErr.takeError());
979 if (*NameOrErr == SectionName) {
980 Result = getCOFFSection(Section);
981 return std::error_code();
984 return object_error::parse_failed;
987 std::error_code COFFObjectFile::getString(uint32_t Offset,
988 StringRef &Result) const {
989 if (StringTableSize <= 4)
990 // Tried to get a string from an empty string table.
991 return object_error::parse_failed;
992 if (Offset >= StringTableSize)
993 return object_error::unexpected_eof;
994 Result = StringRef(StringTable + Offset);
995 return std::error_code();
998 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol,
999 StringRef &Res) const {
1000 return getSymbolName(Symbol.getGeneric(), Res);
1003 std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol,
1004 StringRef &Res) const {
1005 // Check for string table entry. First 4 bytes are 0.
1006 if (Symbol->Name.Offset.Zeroes == 0) {
1007 if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res))
1008 return EC;
1009 return std::error_code();
1012 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0)
1013 // Null terminated, let ::strlen figure out the length.
1014 Res = StringRef(Symbol->Name.ShortName);
1015 else
1016 // Not null terminated, use all 8 bytes.
1017 Res = StringRef(Symbol->Name.ShortName, COFF::NameSize);
1018 return std::error_code();
1021 ArrayRef<uint8_t>
1022 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const {
1023 const uint8_t *Aux = nullptr;
1025 size_t SymbolSize = getSymbolTableEntrySize();
1026 if (Symbol.getNumberOfAuxSymbols() > 0) {
1027 // AUX data comes immediately after the symbol in COFF
1028 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize;
1029 #ifndef NDEBUG
1030 // Verify that the Aux symbol points to a valid entry in the symbol table.
1031 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base());
1032 if (Offset < getPointerToSymbolTable() ||
1033 Offset >=
1034 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize))
1035 report_fatal_error("Aux Symbol data was outside of symbol table.");
1037 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 &&
1038 "Aux Symbol data did not point to the beginning of a symbol");
1039 #endif
1041 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize);
1044 uint32_t COFFObjectFile::getSymbolIndex(COFFSymbolRef Symbol) const {
1045 uintptr_t Offset =
1046 reinterpret_cast<uintptr_t>(Symbol.getRawPtr()) - getSymbolTable();
1047 assert(Offset % getSymbolTableEntrySize() == 0 &&
1048 "Symbol did not point to the beginning of a symbol");
1049 size_t Index = Offset / getSymbolTableEntrySize();
1050 assert(Index < getNumberOfSymbols());
1051 return Index;
1054 Expected<StringRef>
1055 COFFObjectFile::getSectionName(const coff_section *Sec) const {
1056 StringRef Name;
1057 if (Sec->Name[COFF::NameSize - 1] == 0)
1058 // Null terminated, let ::strlen figure out the length.
1059 Name = Sec->Name;
1060 else
1061 // Not null terminated, use all 8 bytes.
1062 Name = StringRef(Sec->Name, COFF::NameSize);
1064 // Check for string table entry. First byte is '/'.
1065 if (Name.startswith("/")) {
1066 uint32_t Offset;
1067 if (Name.startswith("//")) {
1068 if (decodeBase64StringEntry(Name.substr(2), Offset))
1069 return createStringError(object_error::parse_failed,
1070 "inalid section name");
1071 } else {
1072 if (Name.substr(1).getAsInteger(10, Offset))
1073 return createStringError(object_error::parse_failed,
1074 "invalid section name");
1076 if (std::error_code EC = getString(Offset, Name))
1077 return errorCodeToError(EC);
1080 return Name;
1083 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const {
1084 // SizeOfRawData and VirtualSize change what they represent depending on
1085 // whether or not we have an executable image.
1087 // For object files, SizeOfRawData contains the size of section's data;
1088 // VirtualSize should be zero but isn't due to buggy COFF writers.
1090 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the
1091 // actual section size is in VirtualSize. It is possible for VirtualSize to
1092 // be greater than SizeOfRawData; the contents past that point should be
1093 // considered to be zero.
1094 if (getDOSHeader())
1095 return std::min(Sec->VirtualSize, Sec->SizeOfRawData);
1096 return Sec->SizeOfRawData;
1099 Error COFFObjectFile::getSectionContents(const coff_section *Sec,
1100 ArrayRef<uint8_t> &Res) const {
1101 // In COFF, a virtual section won't have any in-file
1102 // content, so the file pointer to the content will be zero.
1103 if (Sec->PointerToRawData == 0)
1104 return Error::success();
1105 // The only thing that we need to verify is that the contents is contained
1106 // within the file bounds. We don't need to make sure it doesn't cover other
1107 // data, as there's nothing that says that is not allowed.
1108 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData;
1109 uint32_t SectionSize = getSectionSize(Sec);
1110 if (checkOffset(Data, ConStart, SectionSize))
1111 return make_error<BinaryError>();
1112 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize);
1113 return Error::success();
1116 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const {
1117 return reinterpret_cast<const coff_relocation*>(Rel.p);
1120 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const {
1121 Rel.p = reinterpret_cast<uintptr_t>(
1122 reinterpret_cast<const coff_relocation*>(Rel.p) + 1);
1125 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const {
1126 const coff_relocation *R = toRel(Rel);
1127 return R->VirtualAddress;
1130 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const {
1131 const coff_relocation *R = toRel(Rel);
1132 DataRefImpl Ref;
1133 if (R->SymbolTableIndex >= getNumberOfSymbols())
1134 return symbol_end();
1135 if (SymbolTable16)
1136 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex);
1137 else if (SymbolTable32)
1138 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex);
1139 else
1140 llvm_unreachable("no symbol table pointer!");
1141 return symbol_iterator(SymbolRef(Ref, this));
1144 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const {
1145 const coff_relocation* R = toRel(Rel);
1146 return R->Type;
1149 const coff_section *
1150 COFFObjectFile::getCOFFSection(const SectionRef &Section) const {
1151 return toSec(Section.getRawDataRefImpl());
1154 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const {
1155 if (SymbolTable16)
1156 return toSymb<coff_symbol16>(Ref);
1157 if (SymbolTable32)
1158 return toSymb<coff_symbol32>(Ref);
1159 llvm_unreachable("no symbol table pointer!");
1162 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const {
1163 return getCOFFSymbol(Symbol.getRawDataRefImpl());
1166 const coff_relocation *
1167 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const {
1168 return toRel(Reloc.getRawDataRefImpl());
1171 ArrayRef<coff_relocation>
1172 COFFObjectFile::getRelocations(const coff_section *Sec) const {
1173 return {getFirstReloc(Sec, Data, base()),
1174 getNumberOfRelocations(Sec, Data, base())};
1177 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \
1178 case COFF::reloc_type: \
1179 return #reloc_type;
1181 StringRef COFFObjectFile::getRelocationTypeName(uint16_t Type) const {
1182 switch (getMachine()) {
1183 case COFF::IMAGE_FILE_MACHINE_AMD64:
1184 switch (Type) {
1185 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE);
1186 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64);
1187 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32);
1188 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB);
1189 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32);
1190 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1);
1191 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2);
1192 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3);
1193 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4);
1194 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5);
1195 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION);
1196 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL);
1197 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7);
1198 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN);
1199 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32);
1200 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR);
1201 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32);
1202 default:
1203 return "Unknown";
1205 break;
1206 case COFF::IMAGE_FILE_MACHINE_ARMNT:
1207 switch (Type) {
1208 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE);
1209 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32);
1210 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB);
1211 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24);
1212 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11);
1213 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN);
1214 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24);
1215 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11);
1216 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_REL32);
1217 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION);
1218 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL);
1219 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A);
1220 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T);
1221 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T);
1222 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T);
1223 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T);
1224 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_PAIR);
1225 default:
1226 return "Unknown";
1228 break;
1229 case COFF::IMAGE_FILE_MACHINE_ARM64:
1230 switch (Type) {
1231 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ABSOLUTE);
1232 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32);
1233 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32NB);
1234 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH26);
1235 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEBASE_REL21);
1236 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL21);
1237 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12A);
1238 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12L);
1239 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL);
1240 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12A);
1241 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_HIGH12A);
1242 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12L);
1243 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_TOKEN);
1244 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECTION);
1245 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR64);
1246 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH19);
1247 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH14);
1248 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL32);
1249 default:
1250 return "Unknown";
1252 break;
1253 case COFF::IMAGE_FILE_MACHINE_I386:
1254 switch (Type) {
1255 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE);
1256 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16);
1257 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16);
1258 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32);
1259 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB);
1260 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12);
1261 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION);
1262 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL);
1263 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN);
1264 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7);
1265 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32);
1266 default:
1267 return "Unknown";
1269 break;
1270 default:
1271 return "Unknown";
1275 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME
1277 void COFFObjectFile::getRelocationTypeName(
1278 DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
1279 const coff_relocation *Reloc = toRel(Rel);
1280 StringRef Res = getRelocationTypeName(Reloc->Type);
1281 Result.append(Res.begin(), Res.end());
1284 bool COFFObjectFile::isRelocatableObject() const {
1285 return !DataDirectory;
1288 StringRef COFFObjectFile::mapDebugSectionName(StringRef Name) const {
1289 return StringSwitch<StringRef>(Name)
1290 .Case("eh_fram", "eh_frame")
1291 .Default(Name);
1294 bool ImportDirectoryEntryRef::
1295 operator==(const ImportDirectoryEntryRef &Other) const {
1296 return ImportTable == Other.ImportTable && Index == Other.Index;
1299 void ImportDirectoryEntryRef::moveNext() {
1300 ++Index;
1301 if (ImportTable[Index].isNull()) {
1302 Index = -1;
1303 ImportTable = nullptr;
1307 std::error_code ImportDirectoryEntryRef::getImportTableEntry(
1308 const coff_import_directory_table_entry *&Result) const {
1309 return getObject(Result, OwningObject->Data, ImportTable + Index);
1312 static imported_symbol_iterator
1313 makeImportedSymbolIterator(const COFFObjectFile *Object,
1314 uintptr_t Ptr, int Index) {
1315 if (Object->getBytesInAddress() == 4) {
1316 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr);
1317 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1319 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr);
1320 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1323 static imported_symbol_iterator
1324 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) {
1325 uintptr_t IntPtr = 0;
1326 Object->getRvaPtr(RVA, IntPtr);
1327 return makeImportedSymbolIterator(Object, IntPtr, 0);
1330 static imported_symbol_iterator
1331 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) {
1332 uintptr_t IntPtr = 0;
1333 Object->getRvaPtr(RVA, IntPtr);
1334 // Forward the pointer to the last entry which is null.
1335 int Index = 0;
1336 if (Object->getBytesInAddress() == 4) {
1337 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr);
1338 while (*Entry++)
1339 ++Index;
1340 } else {
1341 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr);
1342 while (*Entry++)
1343 ++Index;
1345 return makeImportedSymbolIterator(Object, IntPtr, Index);
1348 imported_symbol_iterator
1349 ImportDirectoryEntryRef::imported_symbol_begin() const {
1350 return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA,
1351 OwningObject);
1354 imported_symbol_iterator
1355 ImportDirectoryEntryRef::imported_symbol_end() const {
1356 return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA,
1357 OwningObject);
1360 iterator_range<imported_symbol_iterator>
1361 ImportDirectoryEntryRef::imported_symbols() const {
1362 return make_range(imported_symbol_begin(), imported_symbol_end());
1365 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const {
1366 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA,
1367 OwningObject);
1370 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const {
1371 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA,
1372 OwningObject);
1375 iterator_range<imported_symbol_iterator>
1376 ImportDirectoryEntryRef::lookup_table_symbols() const {
1377 return make_range(lookup_table_begin(), lookup_table_end());
1380 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const {
1381 uintptr_t IntPtr = 0;
1382 if (std::error_code EC =
1383 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr))
1384 return EC;
1385 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1386 return std::error_code();
1389 std::error_code
1390 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const {
1391 Result = ImportTable[Index].ImportLookupTableRVA;
1392 return std::error_code();
1395 std::error_code
1396 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const {
1397 Result = ImportTable[Index].ImportAddressTableRVA;
1398 return std::error_code();
1401 bool DelayImportDirectoryEntryRef::
1402 operator==(const DelayImportDirectoryEntryRef &Other) const {
1403 return Table == Other.Table && Index == Other.Index;
1406 void DelayImportDirectoryEntryRef::moveNext() {
1407 ++Index;
1410 imported_symbol_iterator
1411 DelayImportDirectoryEntryRef::imported_symbol_begin() const {
1412 return importedSymbolBegin(Table[Index].DelayImportNameTable,
1413 OwningObject);
1416 imported_symbol_iterator
1417 DelayImportDirectoryEntryRef::imported_symbol_end() const {
1418 return importedSymbolEnd(Table[Index].DelayImportNameTable,
1419 OwningObject);
1422 iterator_range<imported_symbol_iterator>
1423 DelayImportDirectoryEntryRef::imported_symbols() const {
1424 return make_range(imported_symbol_begin(), imported_symbol_end());
1427 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const {
1428 uintptr_t IntPtr = 0;
1429 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr))
1430 return EC;
1431 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1432 return std::error_code();
1435 std::error_code DelayImportDirectoryEntryRef::
1436 getDelayImportTable(const delay_import_directory_table_entry *&Result) const {
1437 Result = &Table[Index];
1438 return std::error_code();
1441 std::error_code DelayImportDirectoryEntryRef::
1442 getImportAddress(int AddrIndex, uint64_t &Result) const {
1443 uint32_t RVA = Table[Index].DelayImportAddressTable +
1444 AddrIndex * (OwningObject->is64() ? 8 : 4);
1445 uintptr_t IntPtr = 0;
1446 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1447 return EC;
1448 if (OwningObject->is64())
1449 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr);
1450 else
1451 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr);
1452 return std::error_code();
1455 bool ExportDirectoryEntryRef::
1456 operator==(const ExportDirectoryEntryRef &Other) const {
1457 return ExportTable == Other.ExportTable && Index == Other.Index;
1460 void ExportDirectoryEntryRef::moveNext() {
1461 ++Index;
1464 // Returns the name of the current export symbol. If the symbol is exported only
1465 // by ordinal, the empty string is set as a result.
1466 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const {
1467 uintptr_t IntPtr = 0;
1468 if (std::error_code EC =
1469 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr))
1470 return EC;
1471 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1472 return std::error_code();
1475 // Returns the starting ordinal number.
1476 std::error_code
1477 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const {
1478 Result = ExportTable->OrdinalBase;
1479 return std::error_code();
1482 // Returns the export ordinal of the current export symbol.
1483 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const {
1484 Result = ExportTable->OrdinalBase + Index;
1485 return std::error_code();
1488 // Returns the address of the current export symbol.
1489 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const {
1490 uintptr_t IntPtr = 0;
1491 if (std::error_code EC =
1492 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr))
1493 return EC;
1494 const export_address_table_entry *entry =
1495 reinterpret_cast<const export_address_table_entry *>(IntPtr);
1496 Result = entry[Index].ExportRVA;
1497 return std::error_code();
1500 // Returns the name of the current export symbol. If the symbol is exported only
1501 // by ordinal, the empty string is set as a result.
1502 std::error_code
1503 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const {
1504 uintptr_t IntPtr = 0;
1505 if (std::error_code EC =
1506 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr))
1507 return EC;
1508 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr);
1510 uint32_t NumEntries = ExportTable->NumberOfNamePointers;
1511 int Offset = 0;
1512 for (const ulittle16_t *I = Start, *E = Start + NumEntries;
1513 I < E; ++I, ++Offset) {
1514 if (*I != Index)
1515 continue;
1516 if (std::error_code EC =
1517 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr))
1518 return EC;
1519 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr);
1520 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr))
1521 return EC;
1522 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1523 return std::error_code();
1525 Result = "";
1526 return std::error_code();
1529 std::error_code ExportDirectoryEntryRef::isForwarder(bool &Result) const {
1530 const data_directory *DataEntry;
1531 if (auto EC = OwningObject->getDataDirectory(COFF::EXPORT_TABLE, DataEntry))
1532 return EC;
1533 uint32_t RVA;
1534 if (auto EC = getExportRVA(RVA))
1535 return EC;
1536 uint32_t Begin = DataEntry->RelativeVirtualAddress;
1537 uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size;
1538 Result = (Begin <= RVA && RVA < End);
1539 return std::error_code();
1542 std::error_code ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const {
1543 uint32_t RVA;
1544 if (auto EC = getExportRVA(RVA))
1545 return EC;
1546 uintptr_t IntPtr = 0;
1547 if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr))
1548 return EC;
1549 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1550 return std::error_code();
1553 bool ImportedSymbolRef::
1554 operator==(const ImportedSymbolRef &Other) const {
1555 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64
1556 && Index == Other.Index;
1559 void ImportedSymbolRef::moveNext() {
1560 ++Index;
1563 std::error_code
1564 ImportedSymbolRef::getSymbolName(StringRef &Result) const {
1565 uint32_t RVA;
1566 if (Entry32) {
1567 // If a symbol is imported only by ordinal, it has no name.
1568 if (Entry32[Index].isOrdinal())
1569 return std::error_code();
1570 RVA = Entry32[Index].getHintNameRVA();
1571 } else {
1572 if (Entry64[Index].isOrdinal())
1573 return std::error_code();
1574 RVA = Entry64[Index].getHintNameRVA();
1576 uintptr_t IntPtr = 0;
1577 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1578 return EC;
1579 // +2 because the first two bytes is hint.
1580 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2));
1581 return std::error_code();
1584 std::error_code ImportedSymbolRef::isOrdinal(bool &Result) const {
1585 if (Entry32)
1586 Result = Entry32[Index].isOrdinal();
1587 else
1588 Result = Entry64[Index].isOrdinal();
1589 return std::error_code();
1592 std::error_code ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const {
1593 if (Entry32)
1594 Result = Entry32[Index].getHintNameRVA();
1595 else
1596 Result = Entry64[Index].getHintNameRVA();
1597 return std::error_code();
1600 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const {
1601 uint32_t RVA;
1602 if (Entry32) {
1603 if (Entry32[Index].isOrdinal()) {
1604 Result = Entry32[Index].getOrdinal();
1605 return std::error_code();
1607 RVA = Entry32[Index].getHintNameRVA();
1608 } else {
1609 if (Entry64[Index].isOrdinal()) {
1610 Result = Entry64[Index].getOrdinal();
1611 return std::error_code();
1613 RVA = Entry64[Index].getHintNameRVA();
1615 uintptr_t IntPtr = 0;
1616 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1617 return EC;
1618 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr);
1619 return std::error_code();
1622 Expected<std::unique_ptr<COFFObjectFile>>
1623 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) {
1624 std::error_code EC;
1625 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC));
1626 if (EC)
1627 return errorCodeToError(EC);
1628 return std::move(Ret);
1631 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const {
1632 return Header == Other.Header && Index == Other.Index;
1635 void BaseRelocRef::moveNext() {
1636 // Header->BlockSize is the size of the current block, including the
1637 // size of the header itself.
1638 uint32_t Size = sizeof(*Header) +
1639 sizeof(coff_base_reloc_block_entry) * (Index + 1);
1640 if (Size == Header->BlockSize) {
1641 // .reloc contains a list of base relocation blocks. Each block
1642 // consists of the header followed by entries. The header contains
1643 // how many entories will follow. When we reach the end of the
1644 // current block, proceed to the next block.
1645 Header = reinterpret_cast<const coff_base_reloc_block_header *>(
1646 reinterpret_cast<const uint8_t *>(Header) + Size);
1647 Index = 0;
1648 } else {
1649 ++Index;
1653 std::error_code BaseRelocRef::getType(uint8_t &Type) const {
1654 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1655 Type = Entry[Index].getType();
1656 return std::error_code();
1659 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const {
1660 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1661 Result = Header->PageRVA + Entry[Index].getOffset();
1662 return std::error_code();
1665 #define RETURN_IF_ERROR(Expr) \
1666 do { \
1667 Error E = (Expr); \
1668 if (E) \
1669 return std::move(E); \
1670 } while (0)
1672 Expected<ArrayRef<UTF16>>
1673 ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) {
1674 BinaryStreamReader Reader = BinaryStreamReader(BBS);
1675 Reader.setOffset(Offset);
1676 uint16_t Length;
1677 RETURN_IF_ERROR(Reader.readInteger(Length));
1678 ArrayRef<UTF16> RawDirString;
1679 RETURN_IF_ERROR(Reader.readArray(RawDirString, Length));
1680 return RawDirString;
1683 Expected<ArrayRef<UTF16>>
1684 ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) {
1685 return getDirStringAtOffset(Entry.Identifier.getNameOffset());
1688 Expected<const coff_resource_dir_table &>
1689 ResourceSectionRef::getTableAtOffset(uint32_t Offset) {
1690 const coff_resource_dir_table *Table = nullptr;
1692 BinaryStreamReader Reader(BBS);
1693 Reader.setOffset(Offset);
1694 RETURN_IF_ERROR(Reader.readObject(Table));
1695 assert(Table != nullptr);
1696 return *Table;
1699 Expected<const coff_resource_dir_entry &>
1700 ResourceSectionRef::getTableEntryAtOffset(uint32_t Offset) {
1701 const coff_resource_dir_entry *Entry = nullptr;
1703 BinaryStreamReader Reader(BBS);
1704 Reader.setOffset(Offset);
1705 RETURN_IF_ERROR(Reader.readObject(Entry));
1706 assert(Entry != nullptr);
1707 return *Entry;
1710 Expected<const coff_resource_data_entry &>
1711 ResourceSectionRef::getDataEntryAtOffset(uint32_t Offset) {
1712 const coff_resource_data_entry *Entry = nullptr;
1714 BinaryStreamReader Reader(BBS);
1715 Reader.setOffset(Offset);
1716 RETURN_IF_ERROR(Reader.readObject(Entry));
1717 assert(Entry != nullptr);
1718 return *Entry;
1721 Expected<const coff_resource_dir_table &>
1722 ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) {
1723 assert(Entry.Offset.isSubDir());
1724 return getTableAtOffset(Entry.Offset.value());
1727 Expected<const coff_resource_data_entry &>
1728 ResourceSectionRef::getEntryData(const coff_resource_dir_entry &Entry) {
1729 assert(!Entry.Offset.isSubDir());
1730 return getDataEntryAtOffset(Entry.Offset.value());
1733 Expected<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() {
1734 return getTableAtOffset(0);
1737 Expected<const coff_resource_dir_entry &>
1738 ResourceSectionRef::getTableEntry(const coff_resource_dir_table &Table,
1739 uint32_t Index) {
1740 if (Index >= (uint32_t)(Table.NumberOfNameEntries + Table.NumberOfIDEntries))
1741 return createStringError(object_error::parse_failed, "index out of range");
1742 const uint8_t *TablePtr = reinterpret_cast<const uint8_t *>(&Table);
1743 ptrdiff_t TableOffset = TablePtr - BBS.data().data();
1744 return getTableEntryAtOffset(TableOffset + sizeof(Table) +
1745 Index * sizeof(coff_resource_dir_entry));
1748 Error ResourceSectionRef::load(const COFFObjectFile *O) {
1749 for (const SectionRef &S : O->sections()) {
1750 Expected<StringRef> Name = S.getName();
1751 if (!Name)
1752 return Name.takeError();
1754 if (*Name == ".rsrc" || *Name == ".rsrc$01")
1755 return load(O, S);
1757 return createStringError(object_error::parse_failed,
1758 "no resource section found");
1761 Error ResourceSectionRef::load(const COFFObjectFile *O, const SectionRef &S) {
1762 Obj = O;
1763 Section = S;
1764 Expected<StringRef> Contents = Section.getContents();
1765 if (!Contents)
1766 return Contents.takeError();
1767 BBS = BinaryByteStream(*Contents, support::little);
1768 const coff_section *COFFSect = Obj->getCOFFSection(Section);
1769 ArrayRef<coff_relocation> OrigRelocs = Obj->getRelocations(COFFSect);
1770 Relocs.reserve(OrigRelocs.size());
1771 for (const coff_relocation &R : OrigRelocs)
1772 Relocs.push_back(&R);
1773 std::sort(Relocs.begin(), Relocs.end(),
1774 [](const coff_relocation *A, const coff_relocation *B) {
1775 return A->VirtualAddress < B->VirtualAddress;
1777 return Error::success();
1780 Expected<StringRef>
1781 ResourceSectionRef::getContents(const coff_resource_data_entry &Entry) {
1782 if (!Obj)
1783 return createStringError(object_error::parse_failed, "no object provided");
1785 // Find a potential relocation at the DataRVA field (first member of
1786 // the coff_resource_data_entry struct).
1787 const uint8_t *EntryPtr = reinterpret_cast<const uint8_t *>(&Entry);
1788 ptrdiff_t EntryOffset = EntryPtr - BBS.data().data();
1789 coff_relocation RelocTarget{ulittle32_t(EntryOffset), ulittle32_t(0),
1790 ulittle16_t(0)};
1791 auto RelocsForOffset =
1792 std::equal_range(Relocs.begin(), Relocs.end(), &RelocTarget,
1793 [](const coff_relocation *A, const coff_relocation *B) {
1794 return A->VirtualAddress < B->VirtualAddress;
1797 if (RelocsForOffset.first != RelocsForOffset.second) {
1798 // We found a relocation with the right offset. Check that it does have
1799 // the expected type.
1800 const coff_relocation &R = **RelocsForOffset.first;
1801 uint16_t RVAReloc;
1802 switch (Obj->getMachine()) {
1803 case COFF::IMAGE_FILE_MACHINE_I386:
1804 RVAReloc = COFF::IMAGE_REL_I386_DIR32NB;
1805 break;
1806 case COFF::IMAGE_FILE_MACHINE_AMD64:
1807 RVAReloc = COFF::IMAGE_REL_AMD64_ADDR32NB;
1808 break;
1809 case COFF::IMAGE_FILE_MACHINE_ARMNT:
1810 RVAReloc = COFF::IMAGE_REL_ARM_ADDR32NB;
1811 break;
1812 case COFF::IMAGE_FILE_MACHINE_ARM64:
1813 RVAReloc = COFF::IMAGE_REL_ARM64_ADDR32NB;
1814 break;
1815 default:
1816 return createStringError(object_error::parse_failed,
1817 "unsupported architecture");
1819 if (R.Type != RVAReloc)
1820 return createStringError(object_error::parse_failed,
1821 "unexpected relocation type");
1822 // Get the relocation's symbol
1823 Expected<COFFSymbolRef> Sym = Obj->getSymbol(R.SymbolTableIndex);
1824 if (!Sym)
1825 return Sym.takeError();
1826 const coff_section *Section = nullptr;
1827 // And the symbol's section
1828 if (std::error_code EC = Obj->getSection(Sym->getSectionNumber(), Section))
1829 return errorCodeToError(EC);
1830 // Add the initial value of DataRVA to the symbol's offset to find the
1831 // data it points at.
1832 uint64_t Offset = Entry.DataRVA + Sym->getValue();
1833 ArrayRef<uint8_t> Contents;
1834 if (Error E = Obj->getSectionContents(Section, Contents))
1835 return std::move(E);
1836 if (Offset + Entry.DataSize > Contents.size())
1837 return createStringError(object_error::parse_failed,
1838 "data outside of section");
1839 // Return a reference to the data inside the section.
1840 return StringRef(reinterpret_cast<const char *>(Contents.data()) + Offset,
1841 Entry.DataSize);
1842 } else {
1843 // Relocatable objects need a relocation for the DataRVA field.
1844 if (Obj->isRelocatableObject())
1845 return createStringError(object_error::parse_failed,
1846 "no relocation found for DataRVA");
1848 // Locate the section that contains the address that DataRVA points at.
1849 uint64_t VA = Entry.DataRVA + Obj->getImageBase();
1850 for (const SectionRef &S : Obj->sections()) {
1851 if (VA >= S.getAddress() &&
1852 VA + Entry.DataSize <= S.getAddress() + S.getSize()) {
1853 uint64_t Offset = VA - S.getAddress();
1854 Expected<StringRef> Contents = S.getContents();
1855 if (!Contents)
1856 return Contents.takeError();
1857 return Contents->slice(Offset, Offset + Entry.DataSize);
1860 return createStringError(object_error::parse_failed,
1861 "address not found in image");