[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Support / YAMLTraits.cpp
blobeba22fd14725a6ab2e59c47a150fe9eadb2b7d83
1 //===- lib/Support/YAMLTraits.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Support/YAMLTraits.h"
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/StringExtras.h"
13 #include "llvm/ADT/StringRef.h"
14 #include "llvm/ADT/Twine.h"
15 #include "llvm/Support/Casting.h"
16 #include "llvm/Support/Errc.h"
17 #include "llvm/Support/ErrorHandling.h"
18 #include "llvm/Support/Format.h"
19 #include "llvm/Support/LineIterator.h"
20 #include "llvm/Support/MemoryBuffer.h"
21 #include "llvm/Support/Unicode.h"
22 #include "llvm/Support/YAMLParser.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include <algorithm>
25 #include <cassert>
26 #include <cstdint>
27 #include <cstdlib>
28 #include <cstring>
29 #include <string>
30 #include <vector>
32 using namespace llvm;
33 using namespace yaml;
35 //===----------------------------------------------------------------------===//
36 // IO
37 //===----------------------------------------------------------------------===//
39 IO::IO(void *Context) : Ctxt(Context) {}
41 IO::~IO() = default;
43 void *IO::getContext() const {
44 return Ctxt;
47 void IO::setContext(void *Context) {
48 Ctxt = Context;
51 //===----------------------------------------------------------------------===//
52 // Input
53 //===----------------------------------------------------------------------===//
55 Input::Input(StringRef InputContent, void *Ctxt,
56 SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
57 : IO(Ctxt), Strm(new Stream(InputContent, SrcMgr, false, &EC)) {
58 if (DiagHandler)
59 SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
60 DocIterator = Strm->begin();
63 Input::Input(MemoryBufferRef Input, void *Ctxt,
64 SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
65 : IO(Ctxt), Strm(new Stream(Input, SrcMgr, false, &EC)) {
66 if (DiagHandler)
67 SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
68 DocIterator = Strm->begin();
71 Input::~Input() = default;
73 std::error_code Input::error() { return EC; }
75 // Pin the vtables to this file.
76 void Input::HNode::anchor() {}
77 void Input::EmptyHNode::anchor() {}
78 void Input::ScalarHNode::anchor() {}
79 void Input::MapHNode::anchor() {}
80 void Input::SequenceHNode::anchor() {}
82 bool Input::outputting() const {
83 return false;
86 bool Input::setCurrentDocument() {
87 if (DocIterator != Strm->end()) {
88 Node *N = DocIterator->getRoot();
89 if (!N) {
90 assert(Strm->failed() && "Root is NULL iff parsing failed");
91 EC = make_error_code(errc::invalid_argument);
92 return false;
95 if (isa<NullNode>(N)) {
96 // Empty files are allowed and ignored
97 ++DocIterator;
98 return setCurrentDocument();
100 TopNode = createHNodes(N);
101 CurrentNode = TopNode.get();
102 return true;
104 return false;
107 bool Input::nextDocument() {
108 return ++DocIterator != Strm->end();
111 const Node *Input::getCurrentNode() const {
112 return CurrentNode ? CurrentNode->_node : nullptr;
115 bool Input::mapTag(StringRef Tag, bool Default) {
116 // CurrentNode can be null if setCurrentDocument() was unable to
117 // parse the document because it was invalid or empty.
118 if (!CurrentNode)
119 return false;
121 std::string foundTag = CurrentNode->_node->getVerbatimTag();
122 if (foundTag.empty()) {
123 // If no tag found and 'Tag' is the default, say it was found.
124 return Default;
126 // Return true iff found tag matches supplied tag.
127 return Tag.equals(foundTag);
130 void Input::beginMapping() {
131 if (EC)
132 return;
133 // CurrentNode can be null if the document is empty.
134 MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
135 if (MN) {
136 MN->ValidKeys.clear();
140 std::vector<StringRef> Input::keys() {
141 MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
142 std::vector<StringRef> Ret;
143 if (!MN) {
144 setError(CurrentNode, "not a mapping");
145 return Ret;
147 for (auto &P : MN->Mapping)
148 Ret.push_back(P.first());
149 return Ret;
152 bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault,
153 void *&SaveInfo) {
154 UseDefault = false;
155 if (EC)
156 return false;
158 // CurrentNode is null for empty documents, which is an error in case required
159 // nodes are present.
160 if (!CurrentNode) {
161 if (Required)
162 EC = make_error_code(errc::invalid_argument);
163 return false;
166 MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
167 if (!MN) {
168 if (Required || !isa<EmptyHNode>(CurrentNode))
169 setError(CurrentNode, "not a mapping");
170 return false;
172 MN->ValidKeys.push_back(Key);
173 HNode *Value = MN->Mapping[Key].get();
174 if (!Value) {
175 if (Required)
176 setError(CurrentNode, Twine("missing required key '") + Key + "'");
177 else
178 UseDefault = true;
179 return false;
181 SaveInfo = CurrentNode;
182 CurrentNode = Value;
183 return true;
186 void Input::postflightKey(void *saveInfo) {
187 CurrentNode = reinterpret_cast<HNode *>(saveInfo);
190 void Input::endMapping() {
191 if (EC)
192 return;
193 // CurrentNode can be null if the document is empty.
194 MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
195 if (!MN)
196 return;
197 for (const auto &NN : MN->Mapping) {
198 if (!is_contained(MN->ValidKeys, NN.first())) {
199 setError(NN.second.get(), Twine("unknown key '") + NN.first() + "'");
200 break;
205 void Input::beginFlowMapping() { beginMapping(); }
207 void Input::endFlowMapping() { endMapping(); }
209 unsigned Input::beginSequence() {
210 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode))
211 return SQ->Entries.size();
212 if (isa<EmptyHNode>(CurrentNode))
213 return 0;
214 // Treat case where there's a scalar "null" value as an empty sequence.
215 if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
216 if (isNull(SN->value()))
217 return 0;
219 // Any other type of HNode is an error.
220 setError(CurrentNode, "not a sequence");
221 return 0;
224 void Input::endSequence() {
227 bool Input::preflightElement(unsigned Index, void *&SaveInfo) {
228 if (EC)
229 return false;
230 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
231 SaveInfo = CurrentNode;
232 CurrentNode = SQ->Entries[Index].get();
233 return true;
235 return false;
238 void Input::postflightElement(void *SaveInfo) {
239 CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
242 unsigned Input::beginFlowSequence() { return beginSequence(); }
244 bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) {
245 if (EC)
246 return false;
247 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
248 SaveInfo = CurrentNode;
249 CurrentNode = SQ->Entries[index].get();
250 return true;
252 return false;
255 void Input::postflightFlowElement(void *SaveInfo) {
256 CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
259 void Input::endFlowSequence() {
262 void Input::beginEnumScalar() {
263 ScalarMatchFound = false;
266 bool Input::matchEnumScalar(const char *Str, bool) {
267 if (ScalarMatchFound)
268 return false;
269 if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
270 if (SN->value().equals(Str)) {
271 ScalarMatchFound = true;
272 return true;
275 return false;
278 bool Input::matchEnumFallback() {
279 if (ScalarMatchFound)
280 return false;
281 ScalarMatchFound = true;
282 return true;
285 void Input::endEnumScalar() {
286 if (!ScalarMatchFound) {
287 setError(CurrentNode, "unknown enumerated scalar");
291 bool Input::beginBitSetScalar(bool &DoClear) {
292 BitValuesUsed.clear();
293 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
294 BitValuesUsed.insert(BitValuesUsed.begin(), SQ->Entries.size(), false);
295 } else {
296 setError(CurrentNode, "expected sequence of bit values");
298 DoClear = true;
299 return true;
302 bool Input::bitSetMatch(const char *Str, bool) {
303 if (EC)
304 return false;
305 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
306 unsigned Index = 0;
307 for (auto &N : SQ->Entries) {
308 if (ScalarHNode *SN = dyn_cast<ScalarHNode>(N.get())) {
309 if (SN->value().equals(Str)) {
310 BitValuesUsed[Index] = true;
311 return true;
313 } else {
314 setError(CurrentNode, "unexpected scalar in sequence of bit values");
316 ++Index;
318 } else {
319 setError(CurrentNode, "expected sequence of bit values");
321 return false;
324 void Input::endBitSetScalar() {
325 if (EC)
326 return;
327 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
328 assert(BitValuesUsed.size() == SQ->Entries.size());
329 for (unsigned i = 0; i < SQ->Entries.size(); ++i) {
330 if (!BitValuesUsed[i]) {
331 setError(SQ->Entries[i].get(), "unknown bit value");
332 return;
338 void Input::scalarString(StringRef &S, QuotingType) {
339 if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
340 S = SN->value();
341 } else {
342 setError(CurrentNode, "unexpected scalar");
346 void Input::blockScalarString(StringRef &S) { scalarString(S, QuotingType::None); }
348 void Input::scalarTag(std::string &Tag) {
349 Tag = CurrentNode->_node->getVerbatimTag();
352 void Input::setError(HNode *hnode, const Twine &message) {
353 assert(hnode && "HNode must not be NULL");
354 setError(hnode->_node, message);
357 NodeKind Input::getNodeKind() {
358 if (isa<ScalarHNode>(CurrentNode))
359 return NodeKind::Scalar;
360 else if (isa<MapHNode>(CurrentNode))
361 return NodeKind::Map;
362 else if (isa<SequenceHNode>(CurrentNode))
363 return NodeKind::Sequence;
364 llvm_unreachable("Unsupported node kind");
367 void Input::setError(Node *node, const Twine &message) {
368 Strm->printError(node, message);
369 EC = make_error_code(errc::invalid_argument);
372 std::unique_ptr<Input::HNode> Input::createHNodes(Node *N) {
373 SmallString<128> StringStorage;
374 if (ScalarNode *SN = dyn_cast<ScalarNode>(N)) {
375 StringRef KeyStr = SN->getValue(StringStorage);
376 if (!StringStorage.empty()) {
377 // Copy string to permanent storage
378 KeyStr = StringStorage.str().copy(StringAllocator);
380 return std::make_unique<ScalarHNode>(N, KeyStr);
381 } else if (BlockScalarNode *BSN = dyn_cast<BlockScalarNode>(N)) {
382 StringRef ValueCopy = BSN->getValue().copy(StringAllocator);
383 return std::make_unique<ScalarHNode>(N, ValueCopy);
384 } else if (SequenceNode *SQ = dyn_cast<SequenceNode>(N)) {
385 auto SQHNode = std::make_unique<SequenceHNode>(N);
386 for (Node &SN : *SQ) {
387 auto Entry = createHNodes(&SN);
388 if (EC)
389 break;
390 SQHNode->Entries.push_back(std::move(Entry));
392 return std::move(SQHNode);
393 } else if (MappingNode *Map = dyn_cast<MappingNode>(N)) {
394 auto mapHNode = std::make_unique<MapHNode>(N);
395 for (KeyValueNode &KVN : *Map) {
396 Node *KeyNode = KVN.getKey();
397 ScalarNode *Key = dyn_cast<ScalarNode>(KeyNode);
398 Node *Value = KVN.getValue();
399 if (!Key || !Value) {
400 if (!Key)
401 setError(KeyNode, "Map key must be a scalar");
402 if (!Value)
403 setError(KeyNode, "Map value must not be empty");
404 break;
406 StringStorage.clear();
407 StringRef KeyStr = Key->getValue(StringStorage);
408 if (!StringStorage.empty()) {
409 // Copy string to permanent storage
410 KeyStr = StringStorage.str().copy(StringAllocator);
412 auto ValueHNode = createHNodes(Value);
413 if (EC)
414 break;
415 mapHNode->Mapping[KeyStr] = std::move(ValueHNode);
417 return std::move(mapHNode);
418 } else if (isa<NullNode>(N)) {
419 return std::make_unique<EmptyHNode>(N);
420 } else {
421 setError(N, "unknown node kind");
422 return nullptr;
426 void Input::setError(const Twine &Message) {
427 setError(CurrentNode, Message);
430 bool Input::canElideEmptySequence() {
431 return false;
434 //===----------------------------------------------------------------------===//
435 // Output
436 //===----------------------------------------------------------------------===//
438 Output::Output(raw_ostream &yout, void *context, int WrapColumn)
439 : IO(context), Out(yout), WrapColumn(WrapColumn) {}
441 Output::~Output() = default;
443 bool Output::outputting() const {
444 return true;
447 void Output::beginMapping() {
448 StateStack.push_back(inMapFirstKey);
449 PaddingBeforeContainer = Padding;
450 Padding = "\n";
453 bool Output::mapTag(StringRef Tag, bool Use) {
454 if (Use) {
455 // If this tag is being written inside a sequence we should write the start
456 // of the sequence before writing the tag, otherwise the tag won't be
457 // attached to the element in the sequence, but rather the sequence itself.
458 bool SequenceElement = false;
459 if (StateStack.size() > 1) {
460 auto &E = StateStack[StateStack.size() - 2];
461 SequenceElement = inSeqAnyElement(E) || inFlowSeqAnyElement(E);
463 if (SequenceElement && StateStack.back() == inMapFirstKey) {
464 newLineCheck();
465 } else {
466 output(" ");
468 output(Tag);
469 if (SequenceElement) {
470 // If we're writing the tag during the first element of a map, the tag
471 // takes the place of the first element in the sequence.
472 if (StateStack.back() == inMapFirstKey) {
473 StateStack.pop_back();
474 StateStack.push_back(inMapOtherKey);
476 // Tags inside maps in sequences should act as keys in the map from a
477 // formatting perspective, so we always want a newline in a sequence.
478 Padding = "\n";
481 return Use;
484 void Output::endMapping() {
485 // If we did not map anything, we should explicitly emit an empty map
486 if (StateStack.back() == inMapFirstKey) {
487 Padding = PaddingBeforeContainer;
488 newLineCheck();
489 output("{}");
490 Padding = "\n";
492 StateStack.pop_back();
495 std::vector<StringRef> Output::keys() {
496 report_fatal_error("invalid call");
499 bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault,
500 bool &UseDefault, void *&) {
501 UseDefault = false;
502 if (Required || !SameAsDefault || WriteDefaultValues) {
503 auto State = StateStack.back();
504 if (State == inFlowMapFirstKey || State == inFlowMapOtherKey) {
505 flowKey(Key);
506 } else {
507 newLineCheck();
508 paddedKey(Key);
510 return true;
512 return false;
515 void Output::postflightKey(void *) {
516 if (StateStack.back() == inMapFirstKey) {
517 StateStack.pop_back();
518 StateStack.push_back(inMapOtherKey);
519 } else if (StateStack.back() == inFlowMapFirstKey) {
520 StateStack.pop_back();
521 StateStack.push_back(inFlowMapOtherKey);
525 void Output::beginFlowMapping() {
526 StateStack.push_back(inFlowMapFirstKey);
527 newLineCheck();
528 ColumnAtMapFlowStart = Column;
529 output("{ ");
532 void Output::endFlowMapping() {
533 StateStack.pop_back();
534 outputUpToEndOfLine(" }");
537 void Output::beginDocuments() {
538 outputUpToEndOfLine("---");
541 bool Output::preflightDocument(unsigned index) {
542 if (index > 0)
543 outputUpToEndOfLine("\n---");
544 return true;
547 void Output::postflightDocument() {
550 void Output::endDocuments() {
551 output("\n...\n");
554 unsigned Output::beginSequence() {
555 StateStack.push_back(inSeqFirstElement);
556 PaddingBeforeContainer = Padding;
557 Padding = "\n";
558 return 0;
561 void Output::endSequence() {
562 // If we did not emit anything, we should explicitly emit an empty sequence
563 if (StateStack.back() == inSeqFirstElement) {
564 Padding = PaddingBeforeContainer;
565 newLineCheck();
566 output("[]");
567 Padding = "\n";
569 StateStack.pop_back();
572 bool Output::preflightElement(unsigned, void *&) {
573 return true;
576 void Output::postflightElement(void *) {
577 if (StateStack.back() == inSeqFirstElement) {
578 StateStack.pop_back();
579 StateStack.push_back(inSeqOtherElement);
580 } else if (StateStack.back() == inFlowSeqFirstElement) {
581 StateStack.pop_back();
582 StateStack.push_back(inFlowSeqOtherElement);
586 unsigned Output::beginFlowSequence() {
587 StateStack.push_back(inFlowSeqFirstElement);
588 newLineCheck();
589 ColumnAtFlowStart = Column;
590 output("[ ");
591 NeedFlowSequenceComma = false;
592 return 0;
595 void Output::endFlowSequence() {
596 StateStack.pop_back();
597 outputUpToEndOfLine(" ]");
600 bool Output::preflightFlowElement(unsigned, void *&) {
601 if (NeedFlowSequenceComma)
602 output(", ");
603 if (WrapColumn && Column > WrapColumn) {
604 output("\n");
605 for (int i = 0; i < ColumnAtFlowStart; ++i)
606 output(" ");
607 Column = ColumnAtFlowStart;
608 output(" ");
610 return true;
613 void Output::postflightFlowElement(void *) {
614 NeedFlowSequenceComma = true;
617 void Output::beginEnumScalar() {
618 EnumerationMatchFound = false;
621 bool Output::matchEnumScalar(const char *Str, bool Match) {
622 if (Match && !EnumerationMatchFound) {
623 newLineCheck();
624 outputUpToEndOfLine(Str);
625 EnumerationMatchFound = true;
627 return false;
630 bool Output::matchEnumFallback() {
631 if (EnumerationMatchFound)
632 return false;
633 EnumerationMatchFound = true;
634 return true;
637 void Output::endEnumScalar() {
638 if (!EnumerationMatchFound)
639 llvm_unreachable("bad runtime enum value");
642 bool Output::beginBitSetScalar(bool &DoClear) {
643 newLineCheck();
644 output("[ ");
645 NeedBitValueComma = false;
646 DoClear = false;
647 return true;
650 bool Output::bitSetMatch(const char *Str, bool Matches) {
651 if (Matches) {
652 if (NeedBitValueComma)
653 output(", ");
654 output(Str);
655 NeedBitValueComma = true;
657 return false;
660 void Output::endBitSetScalar() {
661 outputUpToEndOfLine(" ]");
664 void Output::scalarString(StringRef &S, QuotingType MustQuote) {
665 newLineCheck();
666 if (S.empty()) {
667 // Print '' for the empty string because leaving the field empty is not
668 // allowed.
669 outputUpToEndOfLine("''");
670 return;
672 if (MustQuote == QuotingType::None) {
673 // Only quote if we must.
674 outputUpToEndOfLine(S);
675 return;
678 const char *const Quote = MustQuote == QuotingType::Single ? "'" : "\"";
679 output(Quote); // Starting quote.
681 // When using double-quoted strings (and only in that case), non-printable characters may be
682 // present, and will be escaped using a variety of unicode-scalar and special short-form
683 // escapes. This is handled in yaml::escape.
684 if (MustQuote == QuotingType::Double) {
685 output(yaml::escape(S, /* EscapePrintable= */ false));
686 outputUpToEndOfLine(Quote);
687 return;
690 unsigned i = 0;
691 unsigned j = 0;
692 unsigned End = S.size();
693 const char *Base = S.data();
695 // When using single-quoted strings, any single quote ' must be doubled to be escaped.
696 while (j < End) {
697 if (S[j] == '\'') { // Escape quotes.
698 output(StringRef(&Base[i], j - i)); // "flush".
699 output(StringLiteral("''")); // Print it as ''
700 i = j + 1;
702 ++j;
704 output(StringRef(&Base[i], j - i));
705 outputUpToEndOfLine(Quote); // Ending quote.
708 void Output::blockScalarString(StringRef &S) {
709 if (!StateStack.empty())
710 newLineCheck();
711 output(" |");
712 outputNewLine();
714 unsigned Indent = StateStack.empty() ? 1 : StateStack.size();
716 auto Buffer = MemoryBuffer::getMemBuffer(S, "", false);
717 for (line_iterator Lines(*Buffer, false); !Lines.is_at_end(); ++Lines) {
718 for (unsigned I = 0; I < Indent; ++I) {
719 output(" ");
721 output(*Lines);
722 outputNewLine();
726 void Output::scalarTag(std::string &Tag) {
727 if (Tag.empty())
728 return;
729 newLineCheck();
730 output(Tag);
731 output(" ");
734 void Output::setError(const Twine &message) {
737 bool Output::canElideEmptySequence() {
738 // Normally, with an optional key/value where the value is an empty sequence,
739 // the whole key/value can be not written. But, that produces wrong yaml
740 // if the key/value is the only thing in the map and the map is used in
741 // a sequence. This detects if the this sequence is the first key/value
742 // in map that itself is embedded in a sequnce.
743 if (StateStack.size() < 2)
744 return true;
745 if (StateStack.back() != inMapFirstKey)
746 return true;
747 return !inSeqAnyElement(StateStack[StateStack.size() - 2]);
750 void Output::output(StringRef s) {
751 Column += s.size();
752 Out << s;
755 void Output::outputUpToEndOfLine(StringRef s) {
756 output(s);
757 if (StateStack.empty() || (!inFlowSeqAnyElement(StateStack.back()) &&
758 !inFlowMapAnyKey(StateStack.back())))
759 Padding = "\n";
762 void Output::outputNewLine() {
763 Out << "\n";
764 Column = 0;
767 // if seq at top, indent as if map, then add "- "
768 // if seq in middle, use "- " if firstKey, else use " "
771 void Output::newLineCheck() {
772 if (Padding != "\n") {
773 output(Padding);
774 Padding = {};
775 return;
777 outputNewLine();
778 Padding = {};
780 if (StateStack.size() == 0)
781 return;
783 unsigned Indent = StateStack.size() - 1;
784 bool OutputDash = false;
786 if (StateStack.back() == inSeqFirstElement ||
787 StateStack.back() == inSeqOtherElement) {
788 OutputDash = true;
789 } else if ((StateStack.size() > 1) &&
790 ((StateStack.back() == inMapFirstKey) ||
791 inFlowSeqAnyElement(StateStack.back()) ||
792 (StateStack.back() == inFlowMapFirstKey)) &&
793 inSeqAnyElement(StateStack[StateStack.size() - 2])) {
794 --Indent;
795 OutputDash = true;
798 for (unsigned i = 0; i < Indent; ++i) {
799 output(" ");
801 if (OutputDash) {
802 output("- ");
807 void Output::paddedKey(StringRef key) {
808 output(key);
809 output(":");
810 const char *spaces = " ";
811 if (key.size() < strlen(spaces))
812 Padding = &spaces[key.size()];
813 else
814 Padding = " ";
817 void Output::flowKey(StringRef Key) {
818 if (StateStack.back() == inFlowMapOtherKey)
819 output(", ");
820 if (WrapColumn && Column > WrapColumn) {
821 output("\n");
822 for (int I = 0; I < ColumnAtMapFlowStart; ++I)
823 output(" ");
824 Column = ColumnAtMapFlowStart;
825 output(" ");
827 output(Key);
828 output(": ");
831 NodeKind Output::getNodeKind() { report_fatal_error("invalid call"); }
833 bool Output::inSeqAnyElement(InState State) {
834 return State == inSeqFirstElement || State == inSeqOtherElement;
837 bool Output::inFlowSeqAnyElement(InState State) {
838 return State == inFlowSeqFirstElement || State == inFlowSeqOtherElement;
841 bool Output::inMapAnyKey(InState State) {
842 return State == inMapFirstKey || State == inMapOtherKey;
845 bool Output::inFlowMapAnyKey(InState State) {
846 return State == inFlowMapFirstKey || State == inFlowMapOtherKey;
849 //===----------------------------------------------------------------------===//
850 // traits for built-in types
851 //===----------------------------------------------------------------------===//
853 void ScalarTraits<bool>::output(const bool &Val, void *, raw_ostream &Out) {
854 Out << (Val ? "true" : "false");
857 StringRef ScalarTraits<bool>::input(StringRef Scalar, void *, bool &Val) {
858 if (Scalar.equals("true")) {
859 Val = true;
860 return StringRef();
861 } else if (Scalar.equals("false")) {
862 Val = false;
863 return StringRef();
865 return "invalid boolean";
868 void ScalarTraits<StringRef>::output(const StringRef &Val, void *,
869 raw_ostream &Out) {
870 Out << Val;
873 StringRef ScalarTraits<StringRef>::input(StringRef Scalar, void *,
874 StringRef &Val) {
875 Val = Scalar;
876 return StringRef();
879 void ScalarTraits<std::string>::output(const std::string &Val, void *,
880 raw_ostream &Out) {
881 Out << Val;
884 StringRef ScalarTraits<std::string>::input(StringRef Scalar, void *,
885 std::string &Val) {
886 Val = Scalar.str();
887 return StringRef();
890 void ScalarTraits<uint8_t>::output(const uint8_t &Val, void *,
891 raw_ostream &Out) {
892 // use temp uin32_t because ostream thinks uint8_t is a character
893 uint32_t Num = Val;
894 Out << Num;
897 StringRef ScalarTraits<uint8_t>::input(StringRef Scalar, void *, uint8_t &Val) {
898 unsigned long long n;
899 if (getAsUnsignedInteger(Scalar, 0, n))
900 return "invalid number";
901 if (n > 0xFF)
902 return "out of range number";
903 Val = n;
904 return StringRef();
907 void ScalarTraits<uint16_t>::output(const uint16_t &Val, void *,
908 raw_ostream &Out) {
909 Out << Val;
912 StringRef ScalarTraits<uint16_t>::input(StringRef Scalar, void *,
913 uint16_t &Val) {
914 unsigned long long n;
915 if (getAsUnsignedInteger(Scalar, 0, n))
916 return "invalid number";
917 if (n > 0xFFFF)
918 return "out of range number";
919 Val = n;
920 return StringRef();
923 void ScalarTraits<uint32_t>::output(const uint32_t &Val, void *,
924 raw_ostream &Out) {
925 Out << Val;
928 StringRef ScalarTraits<uint32_t>::input(StringRef Scalar, void *,
929 uint32_t &Val) {
930 unsigned long long n;
931 if (getAsUnsignedInteger(Scalar, 0, n))
932 return "invalid number";
933 if (n > 0xFFFFFFFFUL)
934 return "out of range number";
935 Val = n;
936 return StringRef();
939 void ScalarTraits<uint64_t>::output(const uint64_t &Val, void *,
940 raw_ostream &Out) {
941 Out << Val;
944 StringRef ScalarTraits<uint64_t>::input(StringRef Scalar, void *,
945 uint64_t &Val) {
946 unsigned long long N;
947 if (getAsUnsignedInteger(Scalar, 0, N))
948 return "invalid number";
949 Val = N;
950 return StringRef();
953 void ScalarTraits<int8_t>::output(const int8_t &Val, void *, raw_ostream &Out) {
954 // use temp in32_t because ostream thinks int8_t is a character
955 int32_t Num = Val;
956 Out << Num;
959 StringRef ScalarTraits<int8_t>::input(StringRef Scalar, void *, int8_t &Val) {
960 long long N;
961 if (getAsSignedInteger(Scalar, 0, N))
962 return "invalid number";
963 if ((N > 127) || (N < -128))
964 return "out of range number";
965 Val = N;
966 return StringRef();
969 void ScalarTraits<int16_t>::output(const int16_t &Val, void *,
970 raw_ostream &Out) {
971 Out << Val;
974 StringRef ScalarTraits<int16_t>::input(StringRef Scalar, void *, int16_t &Val) {
975 long long N;
976 if (getAsSignedInteger(Scalar, 0, N))
977 return "invalid number";
978 if ((N > INT16_MAX) || (N < INT16_MIN))
979 return "out of range number";
980 Val = N;
981 return StringRef();
984 void ScalarTraits<int32_t>::output(const int32_t &Val, void *,
985 raw_ostream &Out) {
986 Out << Val;
989 StringRef ScalarTraits<int32_t>::input(StringRef Scalar, void *, int32_t &Val) {
990 long long N;
991 if (getAsSignedInteger(Scalar, 0, N))
992 return "invalid number";
993 if ((N > INT32_MAX) || (N < INT32_MIN))
994 return "out of range number";
995 Val = N;
996 return StringRef();
999 void ScalarTraits<int64_t>::output(const int64_t &Val, void *,
1000 raw_ostream &Out) {
1001 Out << Val;
1004 StringRef ScalarTraits<int64_t>::input(StringRef Scalar, void *, int64_t &Val) {
1005 long long N;
1006 if (getAsSignedInteger(Scalar, 0, N))
1007 return "invalid number";
1008 Val = N;
1009 return StringRef();
1012 void ScalarTraits<double>::output(const double &Val, void *, raw_ostream &Out) {
1013 Out << format("%g", Val);
1016 StringRef ScalarTraits<double>::input(StringRef Scalar, void *, double &Val) {
1017 if (to_float(Scalar, Val))
1018 return StringRef();
1019 return "invalid floating point number";
1022 void ScalarTraits<float>::output(const float &Val, void *, raw_ostream &Out) {
1023 Out << format("%g", Val);
1026 StringRef ScalarTraits<float>::input(StringRef Scalar, void *, float &Val) {
1027 if (to_float(Scalar, Val))
1028 return StringRef();
1029 return "invalid floating point number";
1032 void ScalarTraits<Hex8>::output(const Hex8 &Val, void *, raw_ostream &Out) {
1033 uint8_t Num = Val;
1034 Out << format("0x%02X", Num);
1037 StringRef ScalarTraits<Hex8>::input(StringRef Scalar, void *, Hex8 &Val) {
1038 unsigned long long n;
1039 if (getAsUnsignedInteger(Scalar, 0, n))
1040 return "invalid hex8 number";
1041 if (n > 0xFF)
1042 return "out of range hex8 number";
1043 Val = n;
1044 return StringRef();
1047 void ScalarTraits<Hex16>::output(const Hex16 &Val, void *, raw_ostream &Out) {
1048 uint16_t Num = Val;
1049 Out << format("0x%04X", Num);
1052 StringRef ScalarTraits<Hex16>::input(StringRef Scalar, void *, Hex16 &Val) {
1053 unsigned long long n;
1054 if (getAsUnsignedInteger(Scalar, 0, n))
1055 return "invalid hex16 number";
1056 if (n > 0xFFFF)
1057 return "out of range hex16 number";
1058 Val = n;
1059 return StringRef();
1062 void ScalarTraits<Hex32>::output(const Hex32 &Val, void *, raw_ostream &Out) {
1063 uint32_t Num = Val;
1064 Out << format("0x%08X", Num);
1067 StringRef ScalarTraits<Hex32>::input(StringRef Scalar, void *, Hex32 &Val) {
1068 unsigned long long n;
1069 if (getAsUnsignedInteger(Scalar, 0, n))
1070 return "invalid hex32 number";
1071 if (n > 0xFFFFFFFFUL)
1072 return "out of range hex32 number";
1073 Val = n;
1074 return StringRef();
1077 void ScalarTraits<Hex64>::output(const Hex64 &Val, void *, raw_ostream &Out) {
1078 uint64_t Num = Val;
1079 Out << format("0x%016llX", Num);
1082 StringRef ScalarTraits<Hex64>::input(StringRef Scalar, void *, Hex64 &Val) {
1083 unsigned long long Num;
1084 if (getAsUnsignedInteger(Scalar, 0, Num))
1085 return "invalid hex64 number";
1086 Val = Num;
1087 return StringRef();