1 //===-- AArch64A57FPLoadBalancing.cpp - Balance FP ops statically on A57---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
8 // For best-case performance on Cortex-A57, we should try to use a balanced
9 // mix of odd and even D-registers when performing a critical sequence of
10 // independent, non-quadword FP/ASIMD floating-point multiply or
11 // multiply-accumulate operations.
13 // This pass attempts to detect situations where the register allocation may
14 // adversely affect this load balancing and to change the registers used so as
15 // to better utilize the CPU.
17 // Ideally we'd just take each multiply or multiply-accumulate in turn and
18 // allocate it alternating even or odd registers. However, multiply-accumulates
19 // are most efficiently performed in the same functional unit as their
20 // accumulation operand. Therefore this pass tries to find maximal sequences
21 // ("Chains") of multiply-accumulates linked via their accumulation operand,
22 // and assign them all the same "color" (oddness/evenness).
24 // This optimization affects S-register and D-register floating point
25 // multiplies and FMADD/FMAs, as well as vector (floating point only) muls and
26 // FMADD/FMA. Q register instructions (and 128-bit vector instructions) are
28 //===----------------------------------------------------------------------===//
31 #include "AArch64InstrInfo.h"
32 #include "AArch64Subtarget.h"
33 #include "llvm/ADT/BitVector.h"
34 #include "llvm/ADT/EquivalenceClasses.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/CodeGen/RegisterClassInfo.h"
41 #include "llvm/CodeGen/RegisterScavenging.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
47 #define DEBUG_TYPE "aarch64-a57-fp-load-balancing"
49 // Enforce the algorithm to use the scavenged register even when the original
50 // destination register is the correct color. Used for testing.
52 TransformAll("aarch64-a57-fp-load-balancing-force-all",
53 cl::desc("Always modify dest registers regardless of color"),
54 cl::init(false), cl::Hidden
);
56 // Never use the balance information obtained from chains - return a specific
57 // color always. Used for testing.
58 static cl::opt
<unsigned>
59 OverrideBalance("aarch64-a57-fp-load-balancing-override",
60 cl::desc("Ignore balance information, always return "
61 "(1: Even, 2: Odd)."),
62 cl::init(0), cl::Hidden
);
64 //===----------------------------------------------------------------------===//
67 // Is the instruction a type of multiply on 64-bit (or 32-bit) FPRs?
68 static bool isMul(MachineInstr
*MI
) {
69 switch (MI
->getOpcode()) {
70 case AArch64::FMULSrr
:
71 case AArch64::FNMULSrr
:
72 case AArch64::FMULDrr
:
73 case AArch64::FNMULDrr
:
80 // Is the instruction a type of FP multiply-accumulate on 64-bit (or 32-bit) FPRs?
81 static bool isMla(MachineInstr
*MI
) {
82 switch (MI
->getOpcode()) {
83 case AArch64::FMSUBSrrr
:
84 case AArch64::FMADDSrrr
:
85 case AArch64::FNMSUBSrrr
:
86 case AArch64::FNMADDSrrr
:
87 case AArch64::FMSUBDrrr
:
88 case AArch64::FMADDDrrr
:
89 case AArch64::FNMSUBDrrr
:
90 case AArch64::FNMADDDrrr
:
97 //===----------------------------------------------------------------------===//
100 /// A "color", which is either even or odd. Yes, these aren't really colors
101 /// but the algorithm is conceptually doing two-color graph coloring.
102 enum class Color
{ Even
, Odd
};
104 static const char *ColorNames
[2] = { "Even", "Odd" };
109 class AArch64A57FPLoadBalancing
: public MachineFunctionPass
{
110 MachineRegisterInfo
*MRI
;
111 const TargetRegisterInfo
*TRI
;
112 RegisterClassInfo RCI
;
116 explicit AArch64A57FPLoadBalancing() : MachineFunctionPass(ID
) {
117 initializeAArch64A57FPLoadBalancingPass(*PassRegistry::getPassRegistry());
120 bool runOnMachineFunction(MachineFunction
&F
) override
;
122 MachineFunctionProperties
getRequiredProperties() const override
{
123 return MachineFunctionProperties().set(
124 MachineFunctionProperties::Property::NoVRegs
);
127 StringRef
getPassName() const override
{
128 return "A57 FP Anti-dependency breaker";
131 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
132 AU
.setPreservesCFG();
133 MachineFunctionPass::getAnalysisUsage(AU
);
137 bool runOnBasicBlock(MachineBasicBlock
&MBB
);
138 bool colorChainSet(std::vector
<Chain
*> GV
, MachineBasicBlock
&MBB
,
140 bool colorChain(Chain
*G
, Color C
, MachineBasicBlock
&MBB
);
141 int scavengeRegister(Chain
*G
, Color C
, MachineBasicBlock
&MBB
);
142 void scanInstruction(MachineInstr
*MI
, unsigned Idx
,
143 std::map
<unsigned, Chain
*> &Active
,
144 std::vector
<std::unique_ptr
<Chain
>> &AllChains
);
145 void maybeKillChain(MachineOperand
&MO
, unsigned Idx
,
146 std::map
<unsigned, Chain
*> &RegChains
);
147 Color
getColor(unsigned Register
);
148 Chain
*getAndEraseNext(Color PreferredColor
, std::vector
<Chain
*> &L
);
152 char AArch64A57FPLoadBalancing::ID
= 0;
154 INITIALIZE_PASS_BEGIN(AArch64A57FPLoadBalancing
, DEBUG_TYPE
,
155 "AArch64 A57 FP Load-Balancing", false, false)
156 INITIALIZE_PASS_END(AArch64A57FPLoadBalancing
, DEBUG_TYPE
,
157 "AArch64 A57 FP Load-Balancing", false, false)
160 /// A Chain is a sequence of instructions that are linked together by
161 /// an accumulation operand. For example:
164 /// fmla def d1, ?, ?, killed d0
165 /// fmla def d2, ?, ?, killed d1
167 /// There may be other instructions interleaved in the sequence that
168 /// do not belong to the chain. These other instructions must not use
169 /// the "chain" register at any point.
171 /// We currently only support chains where the "chain" operand is killed
172 /// at each link in the chain for simplicity.
173 /// A chain has three important instructions - Start, Last and Kill.
174 /// * The start instruction is the first instruction in the chain.
175 /// * Last is the final instruction in the chain.
176 /// * Kill may or may not be defined. If defined, Kill is the instruction
177 /// where the outgoing value of the Last instruction is killed.
178 /// This information is important as if we know the outgoing value is
179 /// killed with no intervening uses, we can safely change its register.
181 /// Without a kill instruction, we must assume the outgoing value escapes
182 /// beyond our model and either must not change its register or must
183 /// create a fixup FMOV to keep the old register value consistent.
187 /// The important (marker) instructions.
188 MachineInstr
*StartInst
, *LastInst
, *KillInst
;
189 /// The index, from the start of the basic block, that each marker
190 /// appears. These are stored so we can do quick interval tests.
191 unsigned StartInstIdx
, LastInstIdx
, KillInstIdx
;
192 /// All instructions in the chain.
193 std::set
<MachineInstr
*> Insts
;
194 /// True if KillInst cannot be modified. If this is true,
195 /// we cannot change LastInst's outgoing register.
196 /// This will be true for tied values and regmasks.
197 bool KillIsImmutable
;
198 /// The "color" of LastInst. This will be the preferred chain color,
199 /// as changing intermediate nodes is easy but changing the last
200 /// instruction can be more tricky.
203 Chain(MachineInstr
*MI
, unsigned Idx
, Color C
)
204 : StartInst(MI
), LastInst(MI
), KillInst(nullptr),
205 StartInstIdx(Idx
), LastInstIdx(Idx
), KillInstIdx(0),
210 /// Add a new instruction into the chain. The instruction's dest operand
211 /// has the given color.
212 void add(MachineInstr
*MI
, unsigned Idx
, Color C
) {
216 assert((KillInstIdx
== 0 || LastInstIdx
< KillInstIdx
) &&
217 "Chain: broken invariant. A Chain can only be killed after its last "
223 /// Return true if MI is a member of the chain.
224 bool contains(MachineInstr
&MI
) { return Insts
.count(&MI
) > 0; }
226 /// Return the number of instructions in the chain.
227 unsigned size() const {
231 /// Inform the chain that its last active register (the dest register of
232 /// LastInst) is killed by MI with no intervening uses or defs.
233 void setKill(MachineInstr
*MI
, unsigned Idx
, bool Immutable
) {
236 KillIsImmutable
= Immutable
;
237 assert((KillInstIdx
== 0 || LastInstIdx
< KillInstIdx
) &&
238 "Chain: broken invariant. A Chain can only be killed after its last "
242 /// Return the first instruction in the chain.
243 MachineInstr
*getStart() const { return StartInst
; }
244 /// Return the last instruction in the chain.
245 MachineInstr
*getLast() const { return LastInst
; }
246 /// Return the "kill" instruction (as set with setKill()) or NULL.
247 MachineInstr
*getKill() const { return KillInst
; }
248 /// Return an instruction that can be used as an iterator for the end
249 /// of the chain. This is the maximum of KillInst (if set) and LastInst.
250 MachineBasicBlock::iterator
end() const {
251 return ++MachineBasicBlock::iterator(KillInst
? KillInst
: LastInst
);
253 MachineBasicBlock::iterator
begin() const { return getStart(); }
255 /// Can the Kill instruction (assuming one exists) be modified?
256 bool isKillImmutable() const { return KillIsImmutable
; }
258 /// Return the preferred color of this chain.
259 Color
getPreferredColor() {
260 if (OverrideBalance
!= 0)
261 return OverrideBalance
== 1 ? Color::Even
: Color::Odd
;
265 /// Return true if this chain (StartInst..KillInst) overlaps with Other.
266 bool rangeOverlapsWith(const Chain
&Other
) const {
267 unsigned End
= KillInst
? KillInstIdx
: LastInstIdx
;
268 unsigned OtherEnd
= Other
.KillInst
?
269 Other
.KillInstIdx
: Other
.LastInstIdx
;
271 return StartInstIdx
<= OtherEnd
&& Other
.StartInstIdx
<= End
;
274 /// Return true if this chain starts before Other.
275 bool startsBefore(const Chain
*Other
) const {
276 return StartInstIdx
< Other
->StartInstIdx
;
279 /// Return true if the group will require a fixup MOV at the end.
280 bool requiresFixup() const {
281 return (getKill() && isKillImmutable()) || !getKill();
284 /// Return a simple string representation of the chain.
285 std::string
str() const {
287 raw_string_ostream
OS(S
);
290 StartInst
->print(OS
, /* SkipOpers= */true);
292 LastInst
->print(OS
, /* SkipOpers= */true);
295 KillInst
->print(OS
, /* SkipOpers= */true);
305 } // end anonymous namespace
307 //===----------------------------------------------------------------------===//
309 bool AArch64A57FPLoadBalancing::runOnMachineFunction(MachineFunction
&F
) {
310 if (skipFunction(F
.getFunction()))
313 if (!F
.getSubtarget
<AArch64Subtarget
>().balanceFPOps())
316 bool Changed
= false;
317 LLVM_DEBUG(dbgs() << "***** AArch64A57FPLoadBalancing *****\n");
319 MRI
= &F
.getRegInfo();
320 TRI
= F
.getRegInfo().getTargetRegisterInfo();
321 RCI
.runOnMachineFunction(F
);
323 for (auto &MBB
: F
) {
324 Changed
|= runOnBasicBlock(MBB
);
330 bool AArch64A57FPLoadBalancing::runOnBasicBlock(MachineBasicBlock
&MBB
) {
331 bool Changed
= false;
332 LLVM_DEBUG(dbgs() << "Running on MBB: " << MBB
333 << " - scanning instructions...\n");
335 // First, scan the basic block producing a set of chains.
337 // The currently "active" chains - chains that can be added to and haven't
338 // been killed yet. This is keyed by register - all chains can only have one
339 // "link" register between each inst in the chain.
340 std::map
<unsigned, Chain
*> ActiveChains
;
341 std::vector
<std::unique_ptr
<Chain
>> AllChains
;
344 scanInstruction(&MI
, Idx
++, ActiveChains
, AllChains
);
346 LLVM_DEBUG(dbgs() << "Scan complete, " << AllChains
.size()
347 << " chains created.\n");
349 // Group the chains into disjoint sets based on their liveness range. This is
350 // a poor-man's version of graph coloring. Ideally we'd create an interference
351 // graph and perform full-on graph coloring on that, but;
352 // (a) That's rather heavyweight for only two colors.
353 // (b) We expect multiple disjoint interference regions - in practice the live
354 // range of chains is quite small and they are clustered between loads
356 EquivalenceClasses
<Chain
*> EC
;
357 for (auto &I
: AllChains
)
360 for (auto &I
: AllChains
)
361 for (auto &J
: AllChains
)
362 if (I
!= J
&& I
->rangeOverlapsWith(*J
))
363 EC
.unionSets(I
.get(), J
.get());
364 LLVM_DEBUG(dbgs() << "Created " << EC
.getNumClasses() << " disjoint sets.\n");
366 // Now we assume that every member of an equivalence class interferes
367 // with every other member of that class, and with no members of other classes.
369 // Convert the EquivalenceClasses to a simpler set of sets.
370 std::vector
<std::vector
<Chain
*> > V
;
371 for (auto I
= EC
.begin(), E
= EC
.end(); I
!= E
; ++I
) {
372 std::vector
<Chain
*> Cs(EC
.member_begin(I
), EC
.member_end());
373 if (Cs
.empty()) continue;
374 V
.push_back(std::move(Cs
));
377 // Now we have a set of sets, order them by start address so
378 // we can iterate over them sequentially.
380 [](const std::vector
<Chain
*> &A
, const std::vector
<Chain
*> &B
) {
381 return A
.front()->startsBefore(B
.front());
384 // As we only have two colors, we can track the global (BB-level) balance of
385 // odds versus evens. We aim to keep this near zero to keep both execution
387 // Positive means we're even-heavy, negative we're odd-heavy.
389 // FIXME: If chains have interdependencies, for example:
392 // We do not model this and may color each one differently, assuming we'll
393 // get ILP when we obviously can't. This hasn't been seen to be a problem
394 // in practice so far, so we simplify the algorithm by ignoring it.
398 Changed
|= colorChainSet(std::move(I
), MBB
, Parity
);
403 Chain
*AArch64A57FPLoadBalancing::getAndEraseNext(Color PreferredColor
,
404 std::vector
<Chain
*> &L
) {
408 // We try and get the best candidate from L to color next, given that our
409 // preferred color is "PreferredColor". L is ordered from larger to smaller
410 // chains. It is beneficial to color the large chains before the small chains,
411 // but if we can't find a chain of the maximum length with the preferred color,
412 // we fuzz the size and look for slightly smaller chains before giving up and
413 // returning a chain that must be recolored.
415 // FIXME: Does this need to be configurable?
416 const unsigned SizeFuzz
= 1;
417 unsigned MinSize
= L
.front()->size() - SizeFuzz
;
418 for (auto I
= L
.begin(), E
= L
.end(); I
!= E
; ++I
) {
419 if ((*I
)->size() <= MinSize
) {
420 // We've gone past the size limit. Return the previous item.
426 if ((*I
)->getPreferredColor() == PreferredColor
) {
433 // Bailout case - just return the first item.
434 Chain
*Ch
= L
.front();
439 bool AArch64A57FPLoadBalancing::colorChainSet(std::vector
<Chain
*> GV
,
440 MachineBasicBlock
&MBB
,
442 bool Changed
= false;
443 LLVM_DEBUG(dbgs() << "colorChainSet(): #sets=" << GV
.size() << "\n");
445 // Sort by descending size order so that we allocate the most important
447 // Tie-break equivalent sizes by sorting chains requiring fixups before
448 // those without fixups. The logic here is that we should look at the
449 // chains that we cannot change before we look at those we can,
450 // so the parity counter is updated and we know what color we should
452 // Final tie-break with instruction order so pass output is stable (i.e. not
453 // dependent on malloc'd pointer values).
454 llvm::sort(GV
, [](const Chain
*G1
, const Chain
*G2
) {
455 if (G1
->size() != G2
->size())
456 return G1
->size() > G2
->size();
457 if (G1
->requiresFixup() != G2
->requiresFixup())
458 return G1
->requiresFixup() > G2
->requiresFixup();
459 // Make sure startsBefore() produces a stable final order.
460 assert((G1
== G2
|| (G1
->startsBefore(G2
) ^ G2
->startsBefore(G1
))) &&
461 "Starts before not total order!");
462 return G1
->startsBefore(G2
);
465 Color PreferredColor
= Parity
< 0 ? Color::Even
: Color::Odd
;
466 while (Chain
*G
= getAndEraseNext(PreferredColor
, GV
)) {
467 // Start off by assuming we'll color to our own preferred color.
468 Color C
= PreferredColor
;
470 // But if we really don't care, use the chain's preferred color.
471 C
= G
->getPreferredColor();
473 LLVM_DEBUG(dbgs() << " - Parity=" << Parity
474 << ", Color=" << ColorNames
[(int)C
] << "\n");
476 // If we'll need a fixup FMOV, don't bother. Testing has shown that this
477 // happens infrequently and when it does it has at least a 50% chance of
478 // slowing code down instead of speeding it up.
479 if (G
->requiresFixup() && C
!= G
->getPreferredColor()) {
480 C
= G
->getPreferredColor();
481 LLVM_DEBUG(dbgs() << " - " << G
->str()
482 << " - not worthwhile changing; "
484 << ColorNames
[(int)C
] << "\n");
487 Changed
|= colorChain(G
, C
, MBB
);
489 Parity
+= (C
== Color::Even
) ? G
->size() : -G
->size();
490 PreferredColor
= Parity
< 0 ? Color::Even
: Color::Odd
;
496 int AArch64A57FPLoadBalancing::scavengeRegister(Chain
*G
, Color C
,
497 MachineBasicBlock
&MBB
) {
498 // Can we find an appropriate register that is available throughout the life
499 // of the chain? Simulate liveness backwards until the end of the chain.
500 LiveRegUnits
Units(*TRI
);
501 Units
.addLiveOuts(MBB
);
502 MachineBasicBlock::iterator I
= MBB
.end();
503 MachineBasicBlock::iterator ChainEnd
= G
->end();
504 while (I
!= ChainEnd
) {
506 Units
.stepBackward(*I
);
509 // Check which register units are alive throughout the chain.
510 MachineBasicBlock::iterator ChainBegin
= G
->begin();
511 assert(ChainBegin
!= ChainEnd
&& "Chain should contain instructions");
514 Units
.accumulate(*I
);
515 } while (I
!= ChainBegin
);
517 // Make sure we allocate in-order, to get the cheapest registers first.
518 unsigned RegClassID
= ChainBegin
->getDesc().OpInfo
[0].RegClass
;
519 auto Ord
= RCI
.getOrder(TRI
->getRegClass(RegClassID
));
520 for (auto Reg
: Ord
) {
521 if (!Units
.available(Reg
))
523 if (C
== getColor(Reg
))
530 bool AArch64A57FPLoadBalancing::colorChain(Chain
*G
, Color C
,
531 MachineBasicBlock
&MBB
) {
532 bool Changed
= false;
533 LLVM_DEBUG(dbgs() << " - colorChain(" << G
->str() << ", "
534 << ColorNames
[(int)C
] << ")\n");
536 // Try and obtain a free register of the right class. Without a register
537 // to play with we cannot continue.
538 int Reg
= scavengeRegister(G
, C
, MBB
);
540 LLVM_DEBUG(dbgs() << "Scavenging (thus coloring) failed!\n");
543 LLVM_DEBUG(dbgs() << " - Scavenged register: " << printReg(Reg
, TRI
) << "\n");
545 std::map
<unsigned, unsigned> Substs
;
546 for (MachineInstr
&I
: *G
) {
547 if (!G
->contains(I
) && (&I
!= G
->getKill() || G
->isKillImmutable()))
550 // I is a member of G, or I is a mutable instruction that kills G.
552 std::vector
<unsigned> ToErase
;
553 for (auto &U
: I
.operands()) {
554 if (U
.isReg() && U
.isUse() && Substs
.find(U
.getReg()) != Substs
.end()) {
555 Register OrigReg
= U
.getReg();
556 U
.setReg(Substs
[OrigReg
]);
558 // Don't erase straight away, because there may be other operands
559 // that also reference this substitution!
560 ToErase
.push_back(OrigReg
);
561 } else if (U
.isRegMask()) {
562 for (auto J
: Substs
) {
563 if (U
.clobbersPhysReg(J
.first
))
564 ToErase
.push_back(J
.first
);
568 // Now it's safe to remove the substs identified earlier.
569 for (auto J
: ToErase
)
572 // Only change the def if this isn't the last instruction.
573 if (&I
!= G
->getKill()) {
574 MachineOperand
&MO
= I
.getOperand(0);
576 bool Change
= TransformAll
|| getColor(MO
.getReg()) != C
;
577 if (G
->requiresFixup() && &I
== G
->getLast())
581 Substs
[MO
.getReg()] = Reg
;
588 assert(Substs
.size() == 0 && "No substitutions should be left active!");
591 LLVM_DEBUG(dbgs() << " - Kill instruction seen.\n");
593 // We didn't have a kill instruction, but we didn't seem to need to change
594 // the destination register anyway.
595 LLVM_DEBUG(dbgs() << " - Destination register not changed.\n");
600 void AArch64A57FPLoadBalancing::scanInstruction(
601 MachineInstr
*MI
, unsigned Idx
, std::map
<unsigned, Chain
*> &ActiveChains
,
602 std::vector
<std::unique_ptr
<Chain
>> &AllChains
) {
603 // Inspect "MI", updating ActiveChains and AllChains.
607 for (auto &I
: MI
->uses())
608 maybeKillChain(I
, Idx
, ActiveChains
);
609 for (auto &I
: MI
->defs())
610 maybeKillChain(I
, Idx
, ActiveChains
);
612 // Create a new chain. Multiplies don't require forwarding so can go on any
614 Register DestReg
= MI
->getOperand(0).getReg();
616 LLVM_DEBUG(dbgs() << "New chain started for register "
617 << printReg(DestReg
, TRI
) << " at " << *MI
);
619 auto G
= std::make_unique
<Chain
>(MI
, Idx
, getColor(DestReg
));
620 ActiveChains
[DestReg
] = G
.get();
621 AllChains
.push_back(std::move(G
));
623 } else if (isMla(MI
)) {
625 // It is beneficial to keep MLAs on the same functional unit as their
626 // accumulator operand.
627 Register DestReg
= MI
->getOperand(0).getReg();
628 Register AccumReg
= MI
->getOperand(3).getReg();
630 maybeKillChain(MI
->getOperand(1), Idx
, ActiveChains
);
631 maybeKillChain(MI
->getOperand(2), Idx
, ActiveChains
);
632 if (DestReg
!= AccumReg
)
633 maybeKillChain(MI
->getOperand(0), Idx
, ActiveChains
);
635 if (ActiveChains
.find(AccumReg
) != ActiveChains
.end()) {
636 LLVM_DEBUG(dbgs() << "Chain found for accumulator register "
637 << printReg(AccumReg
, TRI
) << " in MI " << *MI
);
639 // For simplicity we only chain together sequences of MULs/MLAs where the
640 // accumulator register is killed on each instruction. This means we don't
641 // need to track other uses of the registers we want to rewrite.
643 // FIXME: We could extend to handle the non-kill cases for more coverage.
644 if (MI
->getOperand(3).isKill()) {
646 LLVM_DEBUG(dbgs() << "Instruction was successfully added to chain.\n");
647 ActiveChains
[AccumReg
]->add(MI
, Idx
, getColor(DestReg
));
648 // Handle cases where the destination is not the same as the accumulator.
649 if (DestReg
!= AccumReg
) {
650 ActiveChains
[DestReg
] = ActiveChains
[AccumReg
];
651 ActiveChains
.erase(AccumReg
);
657 dbgs() << "Cannot add to chain because accumulator operand wasn't "
658 << "marked <kill>!\n");
659 maybeKillChain(MI
->getOperand(3), Idx
, ActiveChains
);
662 LLVM_DEBUG(dbgs() << "Creating new chain for dest register "
663 << printReg(DestReg
, TRI
) << "\n");
664 auto G
= std::make_unique
<Chain
>(MI
, Idx
, getColor(DestReg
));
665 ActiveChains
[DestReg
] = G
.get();
666 AllChains
.push_back(std::move(G
));
670 // Non-MUL or MLA instruction. Invalidate any chain in the uses or defs
672 for (auto &I
: MI
->uses())
673 maybeKillChain(I
, Idx
, ActiveChains
);
674 for (auto &I
: MI
->defs())
675 maybeKillChain(I
, Idx
, ActiveChains
);
680 void AArch64A57FPLoadBalancing::
681 maybeKillChain(MachineOperand
&MO
, unsigned Idx
,
682 std::map
<unsigned, Chain
*> &ActiveChains
) {
683 // Given an operand and the set of active chains (keyed by register),
684 // determine if a chain should be ended and remove from ActiveChains.
685 MachineInstr
*MI
= MO
.getParent();
689 // If this is a KILL of a current chain, record it.
690 if (MO
.isKill() && ActiveChains
.find(MO
.getReg()) != ActiveChains
.end()) {
691 LLVM_DEBUG(dbgs() << "Kill seen for chain " << printReg(MO
.getReg(), TRI
)
693 ActiveChains
[MO
.getReg()]->setKill(MI
, Idx
, /*Immutable=*/MO
.isTied());
695 ActiveChains
.erase(MO
.getReg());
697 } else if (MO
.isRegMask()) {
699 for (auto I
= ActiveChains
.begin(), E
= ActiveChains
.end();
701 if (MO
.clobbersPhysReg(I
->first
)) {
702 LLVM_DEBUG(dbgs() << "Kill (regmask) seen for chain "
703 << printReg(I
->first
, TRI
) << "\n");
704 I
->second
->setKill(MI
, Idx
, /*Immutable=*/true);
705 ActiveChains
.erase(I
++);
713 Color
AArch64A57FPLoadBalancing::getColor(unsigned Reg
) {
714 if ((TRI
->getEncodingValue(Reg
) % 2) == 0)
720 // Factory function used by AArch64TargetMachine to add the pass to the passmanager.
721 FunctionPass
*llvm::createAArch64A57FPLoadBalancing() {
722 return new AArch64A57FPLoadBalancing();