1 //===-- AArch64AdvSIMDScalar.cpp - Replace dead defs w/ zero reg --===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
8 // When profitable, replace GPR targeting i64 instructions with their
9 // AdvSIMD scalar equivalents. Generally speaking, "profitable" is defined
10 // as minimizing the number of cross-class register copies.
11 //===----------------------------------------------------------------------===//
13 //===----------------------------------------------------------------------===//
14 // TODO: Graph based predicate heuristics.
15 // Walking the instruction list linearly will get many, perhaps most, of
16 // the cases, but to do a truly thorough job of this, we need a more
17 // wholistic approach.
19 // This optimization is very similar in spirit to the register allocator's
20 // spill placement, only here we're determining where to place cross-class
21 // register copies rather than spills. As such, a similar approach is
24 // We want to build up a set of graphs of all instructions which are candidates
25 // for transformation along with instructions which generate their inputs and
26 // consume their outputs. For each edge in the graph, we assign a weight
27 // based on whether there is a copy required there (weight zero if not) and
28 // the block frequency of the block containing the defining or using
29 // instruction, whichever is less. Our optimization is then a graph problem
30 // to minimize the total weight of all the graphs, then transform instructions
31 // and add or remove copy instructions as called for to implement the
33 //===----------------------------------------------------------------------===//
36 #include "AArch64InstrInfo.h"
37 #include "AArch64RegisterInfo.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineInstr.h"
42 #include "llvm/CodeGen/MachineInstrBuilder.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
49 #define DEBUG_TYPE "aarch64-simd-scalar"
51 // Allow forcing all i64 operations with equivalent SIMD instructions to use
52 // them. For stress-testing the transformation function.
54 TransformAll("aarch64-simd-scalar-force-all",
55 cl::desc("Force use of AdvSIMD scalar instructions everywhere"),
56 cl::init(false), cl::Hidden
);
58 STATISTIC(NumScalarInsnsUsed
, "Number of scalar instructions used");
59 STATISTIC(NumCopiesDeleted
, "Number of cross-class copies deleted");
60 STATISTIC(NumCopiesInserted
, "Number of cross-class copies inserted");
62 #define AARCH64_ADVSIMD_NAME "AdvSIMD Scalar Operation Optimization"
65 class AArch64AdvSIMDScalar
: public MachineFunctionPass
{
66 MachineRegisterInfo
*MRI
;
67 const TargetInstrInfo
*TII
;
70 // isProfitableToTransform - Predicate function to determine whether an
71 // instruction should be transformed to its equivalent AdvSIMD scalar
72 // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
73 bool isProfitableToTransform(const MachineInstr
&MI
) const;
75 // transformInstruction - Perform the transformation of an instruction
76 // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
77 // to be the correct register class, minimizing cross-class copies.
78 void transformInstruction(MachineInstr
&MI
);
80 // processMachineBasicBlock - Main optimzation loop.
81 bool processMachineBasicBlock(MachineBasicBlock
*MBB
);
84 static char ID
; // Pass identification, replacement for typeid.
85 explicit AArch64AdvSIMDScalar() : MachineFunctionPass(ID
) {
86 initializeAArch64AdvSIMDScalarPass(*PassRegistry::getPassRegistry());
89 bool runOnMachineFunction(MachineFunction
&F
) override
;
91 StringRef
getPassName() const override
{ return AARCH64_ADVSIMD_NAME
; }
93 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
95 MachineFunctionPass::getAnalysisUsage(AU
);
98 char AArch64AdvSIMDScalar::ID
= 0;
99 } // end anonymous namespace
101 INITIALIZE_PASS(AArch64AdvSIMDScalar
, "aarch64-simd-scalar",
102 AARCH64_ADVSIMD_NAME
, false, false)
104 static bool isGPR64(unsigned Reg
, unsigned SubReg
,
105 const MachineRegisterInfo
*MRI
) {
108 if (Register::isVirtualRegister(Reg
))
109 return MRI
->getRegClass(Reg
)->hasSuperClassEq(&AArch64::GPR64RegClass
);
110 return AArch64::GPR64RegClass
.contains(Reg
);
113 static bool isFPR64(unsigned Reg
, unsigned SubReg
,
114 const MachineRegisterInfo
*MRI
) {
115 if (Register::isVirtualRegister(Reg
))
116 return (MRI
->getRegClass(Reg
)->hasSuperClassEq(&AArch64::FPR64RegClass
) &&
118 (MRI
->getRegClass(Reg
)->hasSuperClassEq(&AArch64::FPR128RegClass
) &&
119 SubReg
== AArch64::dsub
);
120 // Physical register references just check the register class directly.
121 return (AArch64::FPR64RegClass
.contains(Reg
) && SubReg
== 0) ||
122 (AArch64::FPR128RegClass
.contains(Reg
) && SubReg
== AArch64::dsub
);
125 // getSrcFromCopy - Get the original source register for a GPR64 <--> FPR64
126 // copy instruction. Return zero_reg if the instruction is not a copy.
127 static MachineOperand
*getSrcFromCopy(MachineInstr
*MI
,
128 const MachineRegisterInfo
*MRI
,
131 // The "FMOV Xd, Dn" instruction is the typical form.
132 if (MI
->getOpcode() == AArch64::FMOVDXr
||
133 MI
->getOpcode() == AArch64::FMOVXDr
)
134 return &MI
->getOperand(1);
135 // A lane zero extract "UMOV.d Xd, Vn[0]" is equivalent. We shouldn't see
136 // these at this stage, but it's easy to check for.
137 if (MI
->getOpcode() == AArch64::UMOVvi64
&& MI
->getOperand(2).getImm() == 0) {
138 SubReg
= AArch64::dsub
;
139 return &MI
->getOperand(1);
141 // Or just a plain COPY instruction. This can be directly to/from FPR64,
142 // or it can be a dsub subreg reference to an FPR128.
143 if (MI
->getOpcode() == AArch64::COPY
) {
144 if (isFPR64(MI
->getOperand(0).getReg(), MI
->getOperand(0).getSubReg(),
146 isGPR64(MI
->getOperand(1).getReg(), MI
->getOperand(1).getSubReg(), MRI
))
147 return &MI
->getOperand(1);
148 if (isGPR64(MI
->getOperand(0).getReg(), MI
->getOperand(0).getSubReg(),
150 isFPR64(MI
->getOperand(1).getReg(), MI
->getOperand(1).getSubReg(),
152 SubReg
= MI
->getOperand(1).getSubReg();
153 return &MI
->getOperand(1);
157 // Otherwise, this is some other kind of instruction.
161 // getTransformOpcode - For any opcode for which there is an AdvSIMD equivalent
162 // that we're considering transforming to, return that AdvSIMD opcode. For all
163 // others, return the original opcode.
164 static unsigned getTransformOpcode(unsigned Opc
) {
168 // FIXME: Lots more possibilities.
169 case AArch64::ADDXrr
:
170 return AArch64::ADDv1i64
;
171 case AArch64::SUBXrr
:
172 return AArch64::SUBv1i64
;
173 case AArch64::ANDXrr
:
174 return AArch64::ANDv8i8
;
175 case AArch64::EORXrr
:
176 return AArch64::EORv8i8
;
177 case AArch64::ORRXrr
:
178 return AArch64::ORRv8i8
;
180 // No AdvSIMD equivalent, so just return the original opcode.
184 static bool isTransformable(const MachineInstr
&MI
) {
185 unsigned Opc
= MI
.getOpcode();
186 return Opc
!= getTransformOpcode(Opc
);
189 // isProfitableToTransform - Predicate function to determine whether an
190 // instruction should be transformed to its equivalent AdvSIMD scalar
191 // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
192 bool AArch64AdvSIMDScalar::isProfitableToTransform(
193 const MachineInstr
&MI
) const {
194 // If this instruction isn't eligible to be transformed (no SIMD equivalent),
195 // early exit since that's the common case.
196 if (!isTransformable(MI
))
199 // Count the number of copies we'll need to add and approximate the number
200 // of copies that a transform will enable us to remove.
201 unsigned NumNewCopies
= 3;
202 unsigned NumRemovableCopies
= 0;
204 Register OrigSrc0
= MI
.getOperand(1).getReg();
205 Register OrigSrc1
= MI
.getOperand(2).getReg();
208 if (!MRI
->def_empty(OrigSrc0
)) {
209 MachineRegisterInfo::def_instr_iterator Def
=
210 MRI
->def_instr_begin(OrigSrc0
);
211 assert(std::next(Def
) == MRI
->def_instr_end() && "Multiple def in SSA!");
212 MachineOperand
*MOSrc0
= getSrcFromCopy(&*Def
, MRI
, SubReg0
);
213 // If the source was from a copy, we don't need to insert a new copy.
216 // If there are no other users of the original source, we can delete
218 if (MOSrc0
&& MRI
->hasOneNonDBGUse(OrigSrc0
))
219 ++NumRemovableCopies
;
221 if (!MRI
->def_empty(OrigSrc1
)) {
222 MachineRegisterInfo::def_instr_iterator Def
=
223 MRI
->def_instr_begin(OrigSrc1
);
224 assert(std::next(Def
) == MRI
->def_instr_end() && "Multiple def in SSA!");
225 MachineOperand
*MOSrc1
= getSrcFromCopy(&*Def
, MRI
, SubReg1
);
228 // If there are no other users of the original source, we can delete
230 if (MOSrc1
&& MRI
->hasOneNonDBGUse(OrigSrc1
))
231 ++NumRemovableCopies
;
234 // If any of the uses of the original instructions is a cross class copy,
235 // that's a copy that will be removable if we transform. Likewise, if
236 // any of the uses is a transformable instruction, it's likely the tranforms
237 // will chain, enabling us to save a copy there, too. This is an aggressive
238 // heuristic that approximates the graph based cost analysis described above.
239 Register Dst
= MI
.getOperand(0).getReg();
240 bool AllUsesAreCopies
= true;
241 for (MachineRegisterInfo::use_instr_nodbg_iterator
242 Use
= MRI
->use_instr_nodbg_begin(Dst
),
243 E
= MRI
->use_instr_nodbg_end();
246 if (getSrcFromCopy(&*Use
, MRI
, SubReg
) || isTransformable(*Use
))
247 ++NumRemovableCopies
;
248 // If the use is an INSERT_SUBREG, that's still something that can
249 // directly use the FPR64, so we don't invalidate AllUsesAreCopies. It's
250 // preferable to have it use the FPR64 in most cases, as if the source
251 // vector is an IMPLICIT_DEF, the INSERT_SUBREG just goes away entirely.
252 // Ditto for a lane insert.
253 else if (Use
->getOpcode() == AArch64::INSERT_SUBREG
||
254 Use
->getOpcode() == AArch64::INSvi64gpr
)
257 AllUsesAreCopies
= false;
259 // If all of the uses of the original destination register are copies to
260 // FPR64, then we won't end up having a new copy back to GPR64 either.
261 if (AllUsesAreCopies
)
264 // If a transform will not increase the number of cross-class copies required,
266 if (NumNewCopies
<= NumRemovableCopies
)
269 // Finally, even if we otherwise wouldn't transform, check if we're forcing
270 // transformation of everything.
274 static MachineInstr
*insertCopy(const TargetInstrInfo
*TII
, MachineInstr
&MI
,
275 unsigned Dst
, unsigned Src
, bool IsKill
) {
276 MachineInstrBuilder MIB
= BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(),
277 TII
->get(AArch64::COPY
), Dst
)
278 .addReg(Src
, getKillRegState(IsKill
));
279 LLVM_DEBUG(dbgs() << " adding copy: " << *MIB
);
284 // transformInstruction - Perform the transformation of an instruction
285 // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
286 // to be the correct register class, minimizing cross-class copies.
287 void AArch64AdvSIMDScalar::transformInstruction(MachineInstr
&MI
) {
288 LLVM_DEBUG(dbgs() << "Scalar transform: " << MI
);
290 MachineBasicBlock
*MBB
= MI
.getParent();
291 unsigned OldOpc
= MI
.getOpcode();
292 unsigned NewOpc
= getTransformOpcode(OldOpc
);
293 assert(OldOpc
!= NewOpc
&& "transform an instruction to itself?!");
295 // Check if we need a copy for the source registers.
296 Register OrigSrc0
= MI
.getOperand(1).getReg();
297 Register OrigSrc1
= MI
.getOperand(2).getReg();
298 unsigned Src0
= 0, SubReg0
;
299 unsigned Src1
= 0, SubReg1
;
300 bool KillSrc0
= false, KillSrc1
= false;
301 if (!MRI
->def_empty(OrigSrc0
)) {
302 MachineRegisterInfo::def_instr_iterator Def
=
303 MRI
->def_instr_begin(OrigSrc0
);
304 assert(std::next(Def
) == MRI
->def_instr_end() && "Multiple def in SSA!");
305 MachineOperand
*MOSrc0
= getSrcFromCopy(&*Def
, MRI
, SubReg0
);
306 // If there are no other users of the original source, we can delete
309 Src0
= MOSrc0
->getReg();
310 KillSrc0
= MOSrc0
->isKill();
311 // Src0 is going to be reused, thus, it cannot be killed anymore.
312 MOSrc0
->setIsKill(false);
313 if (MRI
->hasOneNonDBGUse(OrigSrc0
)) {
314 assert(MOSrc0
&& "Can't delete copy w/o a valid original source!");
315 Def
->eraseFromParent();
320 if (!MRI
->def_empty(OrigSrc1
)) {
321 MachineRegisterInfo::def_instr_iterator Def
=
322 MRI
->def_instr_begin(OrigSrc1
);
323 assert(std::next(Def
) == MRI
->def_instr_end() && "Multiple def in SSA!");
324 MachineOperand
*MOSrc1
= getSrcFromCopy(&*Def
, MRI
, SubReg1
);
325 // If there are no other users of the original source, we can delete
328 Src1
= MOSrc1
->getReg();
329 KillSrc1
= MOSrc1
->isKill();
330 // Src0 is going to be reused, thus, it cannot be killed anymore.
331 MOSrc1
->setIsKill(false);
332 if (MRI
->hasOneNonDBGUse(OrigSrc1
)) {
333 assert(MOSrc1
&& "Can't delete copy w/o a valid original source!");
334 Def
->eraseFromParent();
339 // If we weren't able to reference the original source directly, create a
343 Src0
= MRI
->createVirtualRegister(&AArch64::FPR64RegClass
);
344 insertCopy(TII
, MI
, Src0
, OrigSrc0
, KillSrc0
);
349 Src1
= MRI
->createVirtualRegister(&AArch64::FPR64RegClass
);
350 insertCopy(TII
, MI
, Src1
, OrigSrc1
, KillSrc1
);
354 // Create a vreg for the destination.
355 // FIXME: No need to do this if the ultimate user expects an FPR64.
356 // Check for that and avoid the copy if possible.
357 Register Dst
= MRI
->createVirtualRegister(&AArch64::FPR64RegClass
);
359 // For now, all of the new instructions have the same simple three-register
360 // form, so no need to special case based on what instruction we're
362 BuildMI(*MBB
, MI
, MI
.getDebugLoc(), TII
->get(NewOpc
), Dst
)
363 .addReg(Src0
, getKillRegState(KillSrc0
), SubReg0
)
364 .addReg(Src1
, getKillRegState(KillSrc1
), SubReg1
);
366 // Now copy the result back out to a GPR.
367 // FIXME: Try to avoid this if all uses could actually just use the FPR64
369 insertCopy(TII
, MI
, MI
.getOperand(0).getReg(), Dst
, true);
371 // Erase the old instruction.
372 MI
.eraseFromParent();
374 ++NumScalarInsnsUsed
;
377 // processMachineBasicBlock - Main optimzation loop.
378 bool AArch64AdvSIMDScalar::processMachineBasicBlock(MachineBasicBlock
*MBB
) {
379 bool Changed
= false;
380 for (MachineBasicBlock::iterator I
= MBB
->begin(), E
= MBB
->end(); I
!= E
;) {
381 MachineInstr
&MI
= *I
++;
382 if (isProfitableToTransform(MI
)) {
383 transformInstruction(MI
);
390 // runOnMachineFunction - Pass entry point from PassManager.
391 bool AArch64AdvSIMDScalar::runOnMachineFunction(MachineFunction
&mf
) {
392 bool Changed
= false;
393 LLVM_DEBUG(dbgs() << "***** AArch64AdvSIMDScalar *****\n");
395 if (skipFunction(mf
.getFunction()))
398 MRI
= &mf
.getRegInfo();
399 TII
= mf
.getSubtarget().getInstrInfo();
401 // Just check things on a one-block-at-a-time basis.
402 for (MachineFunction::iterator I
= mf
.begin(), E
= mf
.end(); I
!= E
; ++I
)
403 if (processMachineBasicBlock(&*I
))
408 // createAArch64AdvSIMDScalar - Factory function used by AArch64TargetMachine
409 // to add the pass to the PassManager.
410 FunctionPass
*llvm::createAArch64AdvSIMDScalar() {
411 return new AArch64AdvSIMDScalar();