[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Target / AMDGPU / AMDGPUISelDAGToDAG.cpp
blobf330bd7ebcdd25ca7bdaebe4dd873f95ccfe2c06
1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //==-----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines an instruction selector for the AMDGPU target.
12 //===----------------------------------------------------------------------===//
14 #include "AMDGPU.h"
15 #include "AMDGPUArgumentUsageInfo.h"
16 #include "AMDGPUISelLowering.h" // For AMDGPUISD
17 #include "AMDGPUInstrInfo.h"
18 #include "AMDGPUPerfHintAnalysis.h"
19 #include "AMDGPURegisterInfo.h"
20 #include "AMDGPUSubtarget.h"
21 #include "AMDGPUTargetMachine.h"
22 #include "SIDefines.h"
23 #include "SIISelLowering.h"
24 #include "SIInstrInfo.h"
25 #include "SIMachineFunctionInfo.h"
26 #include "SIRegisterInfo.h"
27 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/CodeGen/FunctionLoweringInfo.h"
34 #include "llvm/CodeGen/ISDOpcodes.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/SelectionDAG.h"
38 #include "llvm/CodeGen/SelectionDAGISel.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #ifdef EXPENSIVE_CHECKS
43 #include "llvm/IR/Dominators.h"
44 #endif
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/MC/MCInstrDesc.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CodeGen.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/MachineValueType.h"
51 #include "llvm/Support/MathExtras.h"
52 #include <cassert>
53 #include <cstdint>
54 #include <new>
55 #include <vector>
57 #define DEBUG_TYPE "isel"
59 using namespace llvm;
61 namespace llvm {
63 class R600InstrInfo;
65 } // end namespace llvm
67 //===----------------------------------------------------------------------===//
68 // Instruction Selector Implementation
69 //===----------------------------------------------------------------------===//
71 namespace {
73 static bool isNullConstantOrUndef(SDValue V) {
74 if (V.isUndef())
75 return true;
77 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
78 return Const != nullptr && Const->isNullValue();
81 static bool getConstantValue(SDValue N, uint32_t &Out) {
82 // This is only used for packed vectors, where ussing 0 for undef should
83 // always be good.
84 if (N.isUndef()) {
85 Out = 0;
86 return true;
89 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) {
90 Out = C->getAPIntValue().getSExtValue();
91 return true;
94 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) {
95 Out = C->getValueAPF().bitcastToAPInt().getSExtValue();
96 return true;
99 return false;
102 // TODO: Handle undef as zero
103 static SDNode *packConstantV2I16(const SDNode *N, SelectionDAG &DAG,
104 bool Negate = false) {
105 assert(N->getOpcode() == ISD::BUILD_VECTOR && N->getNumOperands() == 2);
106 uint32_t LHSVal, RHSVal;
107 if (getConstantValue(N->getOperand(0), LHSVal) &&
108 getConstantValue(N->getOperand(1), RHSVal)) {
109 SDLoc SL(N);
110 uint32_t K = Negate ?
111 (-LHSVal & 0xffff) | (-RHSVal << 16) :
112 (LHSVal & 0xffff) | (RHSVal << 16);
113 return DAG.getMachineNode(AMDGPU::S_MOV_B32, SL, N->getValueType(0),
114 DAG.getTargetConstant(K, SL, MVT::i32));
117 return nullptr;
120 static SDNode *packNegConstantV2I16(const SDNode *N, SelectionDAG &DAG) {
121 return packConstantV2I16(N, DAG, true);
124 /// AMDGPU specific code to select AMDGPU machine instructions for
125 /// SelectionDAG operations.
126 class AMDGPUDAGToDAGISel : public SelectionDAGISel {
127 // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can
128 // make the right decision when generating code for different targets.
129 const GCNSubtarget *Subtarget;
130 bool EnableLateStructurizeCFG;
132 public:
133 explicit AMDGPUDAGToDAGISel(TargetMachine *TM = nullptr,
134 CodeGenOpt::Level OptLevel = CodeGenOpt::Default)
135 : SelectionDAGISel(*TM, OptLevel) {
136 EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG;
138 ~AMDGPUDAGToDAGISel() override = default;
140 void getAnalysisUsage(AnalysisUsage &AU) const override {
141 AU.addRequired<AMDGPUArgumentUsageInfo>();
142 AU.addRequired<LegacyDivergenceAnalysis>();
143 #ifdef EXPENSIVE_CHECKS
144 AU.addRequired<DominatorTreeWrapperPass>();
145 AU.addRequired<LoopInfoWrapperPass>();
146 #endif
147 SelectionDAGISel::getAnalysisUsage(AU);
150 bool matchLoadD16FromBuildVector(SDNode *N) const;
152 bool runOnMachineFunction(MachineFunction &MF) override;
153 void PreprocessISelDAG() override;
154 void Select(SDNode *N) override;
155 StringRef getPassName() const override;
156 void PostprocessISelDAG() override;
158 protected:
159 void SelectBuildVector(SDNode *N, unsigned RegClassID);
161 private:
162 std::pair<SDValue, SDValue> foldFrameIndex(SDValue N) const;
163 bool isNoNanSrc(SDValue N) const;
164 bool isInlineImmediate(const SDNode *N, bool Negated = false) const;
165 bool isNegInlineImmediate(const SDNode *N) const {
166 return isInlineImmediate(N, true);
169 bool isVGPRImm(const SDNode *N) const;
170 bool isUniformLoad(const SDNode *N) const;
171 bool isUniformBr(const SDNode *N) const;
173 MachineSDNode *buildSMovImm64(SDLoc &DL, uint64_t Val, EVT VT) const;
175 SDNode *glueCopyToOp(SDNode *N, SDValue NewChain, SDValue Glue) const;
176 SDNode *glueCopyToM0(SDNode *N, SDValue Val) const;
177 SDNode *glueCopyToM0LDSInit(SDNode *N) const;
179 const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const;
180 virtual bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset);
181 virtual bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset);
182 bool isDSOffsetLegal(SDValue Base, unsigned Offset,
183 unsigned OffsetBits) const;
184 bool SelectDS1Addr1Offset(SDValue Ptr, SDValue &Base, SDValue &Offset) const;
185 bool SelectDS64Bit4ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0,
186 SDValue &Offset1) const;
187 bool SelectMUBUF(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
188 SDValue &SOffset, SDValue &Offset, SDValue &Offen,
189 SDValue &Idxen, SDValue &Addr64, SDValue &GLC, SDValue &SLC,
190 SDValue &TFE, SDValue &DLC, SDValue &SWZ) const;
191 bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
192 SDValue &SOffset, SDValue &Offset, SDValue &GLC,
193 SDValue &SLC, SDValue &TFE, SDValue &DLC,
194 SDValue &SWZ) const;
195 bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
196 SDValue &VAddr, SDValue &SOffset, SDValue &Offset,
197 SDValue &SLC) const;
198 bool SelectMUBUFScratchOffen(SDNode *Parent,
199 SDValue Addr, SDValue &RSrc, SDValue &VAddr,
200 SDValue &SOffset, SDValue &ImmOffset) const;
201 bool SelectMUBUFScratchOffset(SDNode *Parent,
202 SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
203 SDValue &Offset) const;
205 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &SOffset,
206 SDValue &Offset, SDValue &GLC, SDValue &SLC,
207 SDValue &TFE, SDValue &DLC, SDValue &SWZ) const;
208 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
209 SDValue &Offset, SDValue &SLC) const;
210 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
211 SDValue &Offset) const;
213 template <bool IsSigned>
214 bool SelectFlatOffset(SDNode *N, SDValue Addr, SDValue &VAddr,
215 SDValue &Offset, SDValue &SLC) const;
216 bool SelectFlatAtomic(SDNode *N, SDValue Addr, SDValue &VAddr,
217 SDValue &Offset, SDValue &SLC) const;
218 bool SelectFlatAtomicSigned(SDNode *N, SDValue Addr, SDValue &VAddr,
219 SDValue &Offset, SDValue &SLC) const;
221 bool SelectSMRDOffset(SDValue ByteOffsetNode, SDValue &Offset,
222 bool &Imm) const;
223 SDValue Expand32BitAddress(SDValue Addr) const;
224 bool SelectSMRD(SDValue Addr, SDValue &SBase, SDValue &Offset,
225 bool &Imm) const;
226 bool SelectSMRDImm(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
227 bool SelectSMRDImm32(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
228 bool SelectSMRDSgpr(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
229 bool SelectSMRDBufferImm(SDValue Addr, SDValue &Offset) const;
230 bool SelectSMRDBufferImm32(SDValue Addr, SDValue &Offset) const;
231 bool SelectMOVRELOffset(SDValue Index, SDValue &Base, SDValue &Offset) const;
233 bool SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, SDValue &SrcMods) const;
234 bool SelectVOP3Mods_f32(SDValue In, SDValue &Src, SDValue &SrcMods) const;
235 bool SelectVOP3ModsImpl(SDValue In, SDValue &Src, unsigned &SrcMods) const;
236 bool SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
237 bool SelectVOP3NoMods(SDValue In, SDValue &Src) const;
238 bool SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods,
239 SDValue &Clamp, SDValue &Omod) const;
240 bool SelectVOP3NoMods0(SDValue In, SDValue &Src, SDValue &SrcMods,
241 SDValue &Clamp, SDValue &Omod) const;
243 bool SelectVOP3Mods0Clamp0OMod(SDValue In, SDValue &Src, SDValue &SrcMods,
244 SDValue &Clamp,
245 SDValue &Omod) const;
247 bool SelectVOP3OMods(SDValue In, SDValue &Src,
248 SDValue &Clamp, SDValue &Omod) const;
250 bool SelectVOP3PMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
251 bool SelectVOP3PMods0(SDValue In, SDValue &Src, SDValue &SrcMods,
252 SDValue &Clamp) const;
254 bool SelectVOP3OpSel(SDValue In, SDValue &Src, SDValue &SrcMods) const;
255 bool SelectVOP3OpSel0(SDValue In, SDValue &Src, SDValue &SrcMods,
256 SDValue &Clamp) const;
258 bool SelectVOP3OpSelMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
259 bool SelectVOP3OpSelMods0(SDValue In, SDValue &Src, SDValue &SrcMods,
260 SDValue &Clamp) const;
261 bool SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, unsigned &Mods) const;
262 bool SelectVOP3PMadMixMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
264 SDValue getHi16Elt(SDValue In) const;
266 SDValue getMaterializedScalarImm32(int64_t Val, const SDLoc &DL) const;
268 void SelectADD_SUB_I64(SDNode *N);
269 void SelectAddcSubb(SDNode *N);
270 void SelectUADDO_USUBO(SDNode *N);
271 void SelectDIV_SCALE(SDNode *N);
272 void SelectDIV_FMAS(SDNode *N);
273 void SelectMAD_64_32(SDNode *N);
274 void SelectFMA_W_CHAIN(SDNode *N);
275 void SelectFMUL_W_CHAIN(SDNode *N);
277 SDNode *getS_BFE(unsigned Opcode, const SDLoc &DL, SDValue Val,
278 uint32_t Offset, uint32_t Width);
279 void SelectS_BFEFromShifts(SDNode *N);
280 void SelectS_BFE(SDNode *N);
281 bool isCBranchSCC(const SDNode *N) const;
282 void SelectBRCOND(SDNode *N);
283 void SelectFMAD_FMA(SDNode *N);
284 void SelectATOMIC_CMP_SWAP(SDNode *N);
285 void SelectDSAppendConsume(SDNode *N, unsigned IntrID);
286 void SelectDS_GWS(SDNode *N, unsigned IntrID);
287 void SelectINTRINSIC_W_CHAIN(SDNode *N);
288 void SelectINTRINSIC_WO_CHAIN(SDNode *N);
289 void SelectINTRINSIC_VOID(SDNode *N);
291 protected:
292 // Include the pieces autogenerated from the target description.
293 #include "AMDGPUGenDAGISel.inc"
296 class R600DAGToDAGISel : public AMDGPUDAGToDAGISel {
297 const R600Subtarget *Subtarget;
299 bool isConstantLoad(const MemSDNode *N, int cbID) const;
300 bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr);
301 bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg,
302 SDValue& Offset);
303 public:
304 explicit R600DAGToDAGISel(TargetMachine *TM, CodeGenOpt::Level OptLevel) :
305 AMDGPUDAGToDAGISel(TM, OptLevel) {}
307 void Select(SDNode *N) override;
309 bool SelectADDRIndirect(SDValue Addr, SDValue &Base,
310 SDValue &Offset) override;
311 bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
312 SDValue &Offset) override;
314 bool runOnMachineFunction(MachineFunction &MF) override;
316 void PreprocessISelDAG() override {}
318 protected:
319 // Include the pieces autogenerated from the target description.
320 #include "R600GenDAGISel.inc"
323 static SDValue stripBitcast(SDValue Val) {
324 return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val;
327 // Figure out if this is really an extract of the high 16-bits of a dword.
328 static bool isExtractHiElt(SDValue In, SDValue &Out) {
329 In = stripBitcast(In);
330 if (In.getOpcode() != ISD::TRUNCATE)
331 return false;
333 SDValue Srl = In.getOperand(0);
334 if (Srl.getOpcode() == ISD::SRL) {
335 if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
336 if (ShiftAmt->getZExtValue() == 16) {
337 Out = stripBitcast(Srl.getOperand(0));
338 return true;
343 return false;
346 // Look through operations that obscure just looking at the low 16-bits of the
347 // same register.
348 static SDValue stripExtractLoElt(SDValue In) {
349 if (In.getOpcode() == ISD::TRUNCATE) {
350 SDValue Src = In.getOperand(0);
351 if (Src.getValueType().getSizeInBits() == 32)
352 return stripBitcast(Src);
355 return In;
358 } // end anonymous namespace
360 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel",
361 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
362 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo)
363 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis)
364 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
365 #ifdef EXPENSIVE_CHECKS
366 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
367 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
368 #endif
369 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel",
370 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
372 /// This pass converts a legalized DAG into a AMDGPU-specific
373 // DAG, ready for instruction scheduling.
374 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM,
375 CodeGenOpt::Level OptLevel) {
376 return new AMDGPUDAGToDAGISel(TM, OptLevel);
379 /// This pass converts a legalized DAG into a R600-specific
380 // DAG, ready for instruction scheduling.
381 FunctionPass *llvm::createR600ISelDag(TargetMachine *TM,
382 CodeGenOpt::Level OptLevel) {
383 return new R600DAGToDAGISel(TM, OptLevel);
386 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
387 #ifdef EXPENSIVE_CHECKS
388 DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
389 LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
390 for (auto &L : LI->getLoopsInPreorder()) {
391 assert(L->isLCSSAForm(DT));
393 #endif
394 Subtarget = &MF.getSubtarget<GCNSubtarget>();
395 return SelectionDAGISel::runOnMachineFunction(MF);
398 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const {
399 assert(Subtarget->d16PreservesUnusedBits());
400 MVT VT = N->getValueType(0).getSimpleVT();
401 if (VT != MVT::v2i16 && VT != MVT::v2f16)
402 return false;
404 SDValue Lo = N->getOperand(0);
405 SDValue Hi = N->getOperand(1);
407 LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi));
409 // build_vector lo, (load ptr) -> load_d16_hi ptr, lo
410 // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo
411 // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo
413 // Need to check for possible indirect dependencies on the other half of the
414 // vector to avoid introducing a cycle.
415 if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) {
416 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
418 SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo);
419 SDValue Ops[] = {
420 LdHi->getChain(), LdHi->getBasePtr(), TiedIn
423 unsigned LoadOp = AMDGPUISD::LOAD_D16_HI;
424 if (LdHi->getMemoryVT() == MVT::i8) {
425 LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ?
426 AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8;
427 } else {
428 assert(LdHi->getMemoryVT() == MVT::i16);
431 SDValue NewLoadHi =
432 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList,
433 Ops, LdHi->getMemoryVT(),
434 LdHi->getMemOperand());
436 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi);
437 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1));
438 return true;
441 // build_vector (load ptr), hi -> load_d16_lo ptr, hi
442 // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi
443 // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi
444 LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo));
445 if (LdLo && Lo.hasOneUse()) {
446 SDValue TiedIn = getHi16Elt(Hi);
447 if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode()))
448 return false;
450 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
451 unsigned LoadOp = AMDGPUISD::LOAD_D16_LO;
452 if (LdLo->getMemoryVT() == MVT::i8) {
453 LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ?
454 AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8;
455 } else {
456 assert(LdLo->getMemoryVT() == MVT::i16);
459 TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn);
461 SDValue Ops[] = {
462 LdLo->getChain(), LdLo->getBasePtr(), TiedIn
465 SDValue NewLoadLo =
466 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList,
467 Ops, LdLo->getMemoryVT(),
468 LdLo->getMemOperand());
470 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo);
471 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1));
472 return true;
475 return false;
478 void AMDGPUDAGToDAGISel::PreprocessISelDAG() {
479 if (!Subtarget->d16PreservesUnusedBits())
480 return;
482 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
484 bool MadeChange = false;
485 while (Position != CurDAG->allnodes_begin()) {
486 SDNode *N = &*--Position;
487 if (N->use_empty())
488 continue;
490 switch (N->getOpcode()) {
491 case ISD::BUILD_VECTOR:
492 MadeChange |= matchLoadD16FromBuildVector(N);
493 break;
494 default:
495 break;
499 if (MadeChange) {
500 CurDAG->RemoveDeadNodes();
501 LLVM_DEBUG(dbgs() << "After PreProcess:\n";
502 CurDAG->dump(););
506 bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const {
507 if (TM.Options.NoNaNsFPMath)
508 return true;
510 // TODO: Move into isKnownNeverNaN
511 if (N->getFlags().isDefined())
512 return N->getFlags().hasNoNaNs();
514 return CurDAG->isKnownNeverNaN(N);
517 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N,
518 bool Negated) const {
519 if (N->isUndef())
520 return true;
522 const SIInstrInfo *TII = Subtarget->getInstrInfo();
523 if (Negated) {
524 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
525 return TII->isInlineConstant(-C->getAPIntValue());
527 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
528 return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt());
530 } else {
531 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
532 return TII->isInlineConstant(C->getAPIntValue());
534 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
535 return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt());
538 return false;
541 /// Determine the register class for \p OpNo
542 /// \returns The register class of the virtual register that will be used for
543 /// the given operand number \OpNo or NULL if the register class cannot be
544 /// determined.
545 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N,
546 unsigned OpNo) const {
547 if (!N->isMachineOpcode()) {
548 if (N->getOpcode() == ISD::CopyToReg) {
549 unsigned Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
550 if (Register::isVirtualRegister(Reg)) {
551 MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo();
552 return MRI.getRegClass(Reg);
555 const SIRegisterInfo *TRI
556 = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo();
557 return TRI->getPhysRegClass(Reg);
560 return nullptr;
563 switch (N->getMachineOpcode()) {
564 default: {
565 const MCInstrDesc &Desc =
566 Subtarget->getInstrInfo()->get(N->getMachineOpcode());
567 unsigned OpIdx = Desc.getNumDefs() + OpNo;
568 if (OpIdx >= Desc.getNumOperands())
569 return nullptr;
570 int RegClass = Desc.OpInfo[OpIdx].RegClass;
571 if (RegClass == -1)
572 return nullptr;
574 return Subtarget->getRegisterInfo()->getRegClass(RegClass);
576 case AMDGPU::REG_SEQUENCE: {
577 unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
578 const TargetRegisterClass *SuperRC =
579 Subtarget->getRegisterInfo()->getRegClass(RCID);
581 SDValue SubRegOp = N->getOperand(OpNo + 1);
582 unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue();
583 return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC,
584 SubRegIdx);
589 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain,
590 SDValue Glue) const {
591 SmallVector <SDValue, 8> Ops;
592 Ops.push_back(NewChain); // Replace the chain.
593 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
594 Ops.push_back(N->getOperand(i));
596 Ops.push_back(Glue);
597 return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops);
600 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const {
601 const SITargetLowering& Lowering =
602 *static_cast<const SITargetLowering*>(getTargetLowering());
604 assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain");
606 SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val);
607 return glueCopyToOp(N, M0, M0.getValue(1));
610 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const {
611 unsigned AS = cast<MemSDNode>(N)->getAddressSpace();
612 if (AS == AMDGPUAS::LOCAL_ADDRESS) {
613 if (Subtarget->ldsRequiresM0Init())
614 return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32));
615 } else if (AS == AMDGPUAS::REGION_ADDRESS) {
616 MachineFunction &MF = CurDAG->getMachineFunction();
617 unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize();
618 return
619 glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32));
621 return N;
624 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm,
625 EVT VT) const {
626 SDNode *Lo = CurDAG->getMachineNode(
627 AMDGPU::S_MOV_B32, DL, MVT::i32,
628 CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32));
629 SDNode *Hi =
630 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32,
631 CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32));
632 const SDValue Ops[] = {
633 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
634 SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
635 SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)};
637 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops);
640 static unsigned selectSGPRVectorRegClassID(unsigned NumVectorElts) {
641 switch (NumVectorElts) {
642 case 1:
643 return AMDGPU::SReg_32RegClassID;
644 case 2:
645 return AMDGPU::SReg_64RegClassID;
646 case 3:
647 return AMDGPU::SGPR_96RegClassID;
648 case 4:
649 return AMDGPU::SGPR_128RegClassID;
650 case 5:
651 return AMDGPU::SGPR_160RegClassID;
652 case 8:
653 return AMDGPU::SReg_256RegClassID;
654 case 16:
655 return AMDGPU::SReg_512RegClassID;
656 case 32:
657 return AMDGPU::SReg_1024RegClassID;
660 llvm_unreachable("invalid vector size");
663 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) {
664 EVT VT = N->getValueType(0);
665 unsigned NumVectorElts = VT.getVectorNumElements();
666 EVT EltVT = VT.getVectorElementType();
667 SDLoc DL(N);
668 SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
670 if (NumVectorElts == 1) {
671 CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0),
672 RegClass);
673 return;
676 assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not "
677 "supported yet");
678 // 32 = Max Num Vector Elements
679 // 2 = 2 REG_SEQUENCE operands per element (value, subreg index)
680 // 1 = Vector Register Class
681 SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1);
683 RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
684 bool IsRegSeq = true;
685 unsigned NOps = N->getNumOperands();
686 for (unsigned i = 0; i < NOps; i++) {
687 // XXX: Why is this here?
688 if (isa<RegisterSDNode>(N->getOperand(i))) {
689 IsRegSeq = false;
690 break;
692 unsigned Sub = AMDGPURegisterInfo::getSubRegFromChannel(i);
693 RegSeqArgs[1 + (2 * i)] = N->getOperand(i);
694 RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32);
696 if (NOps != NumVectorElts) {
697 // Fill in the missing undef elements if this was a scalar_to_vector.
698 assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts);
699 MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
700 DL, EltVT);
701 for (unsigned i = NOps; i < NumVectorElts; ++i) {
702 unsigned Sub = AMDGPURegisterInfo::getSubRegFromChannel(i);
703 RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0);
704 RegSeqArgs[1 + (2 * i) + 1] =
705 CurDAG->getTargetConstant(Sub, DL, MVT::i32);
709 if (!IsRegSeq)
710 SelectCode(N);
711 CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs);
714 void AMDGPUDAGToDAGISel::Select(SDNode *N) {
715 unsigned int Opc = N->getOpcode();
716 if (N->isMachineOpcode()) {
717 N->setNodeId(-1);
718 return; // Already selected.
721 // isa<MemSDNode> almost works but is slightly too permissive for some DS
722 // intrinsics.
723 if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) ||
724 (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC ||
725 Opc == ISD::ATOMIC_LOAD_FADD ||
726 Opc == AMDGPUISD::ATOMIC_LOAD_FMIN ||
727 Opc == AMDGPUISD::ATOMIC_LOAD_FMAX)) {
728 N = glueCopyToM0LDSInit(N);
729 SelectCode(N);
730 return;
733 switch (Opc) {
734 default:
735 break;
736 // We are selecting i64 ADD here instead of custom lower it during
737 // DAG legalization, so we can fold some i64 ADDs used for address
738 // calculation into the LOAD and STORE instructions.
739 case ISD::ADDC:
740 case ISD::ADDE:
741 case ISD::SUBC:
742 case ISD::SUBE: {
743 if (N->getValueType(0) != MVT::i64)
744 break;
746 SelectADD_SUB_I64(N);
747 return;
749 case ISD::ADDCARRY:
750 case ISD::SUBCARRY:
751 if (N->getValueType(0) != MVT::i32)
752 break;
754 SelectAddcSubb(N);
755 return;
756 case ISD::UADDO:
757 case ISD::USUBO: {
758 SelectUADDO_USUBO(N);
759 return;
761 case AMDGPUISD::FMUL_W_CHAIN: {
762 SelectFMUL_W_CHAIN(N);
763 return;
765 case AMDGPUISD::FMA_W_CHAIN: {
766 SelectFMA_W_CHAIN(N);
767 return;
770 case ISD::SCALAR_TO_VECTOR:
771 case ISD::BUILD_VECTOR: {
772 EVT VT = N->getValueType(0);
773 unsigned NumVectorElts = VT.getVectorNumElements();
774 if (VT.getScalarSizeInBits() == 16) {
775 if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) {
776 if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) {
777 ReplaceNode(N, Packed);
778 return;
782 break;
785 assert(VT.getVectorElementType().bitsEq(MVT::i32));
786 unsigned RegClassID = selectSGPRVectorRegClassID(NumVectorElts);
787 SelectBuildVector(N, RegClassID);
788 return;
790 case ISD::BUILD_PAIR: {
791 SDValue RC, SubReg0, SubReg1;
792 SDLoc DL(N);
793 if (N->getValueType(0) == MVT::i128) {
794 RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32);
795 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32);
796 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32);
797 } else if (N->getValueType(0) == MVT::i64) {
798 RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32);
799 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
800 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
801 } else {
802 llvm_unreachable("Unhandled value type for BUILD_PAIR");
804 const SDValue Ops[] = { RC, N->getOperand(0), SubReg0,
805 N->getOperand(1), SubReg1 };
806 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL,
807 N->getValueType(0), Ops));
808 return;
811 case ISD::Constant:
812 case ISD::ConstantFP: {
813 if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N))
814 break;
816 uint64_t Imm;
817 if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N))
818 Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue();
819 else {
820 ConstantSDNode *C = cast<ConstantSDNode>(N);
821 Imm = C->getZExtValue();
824 SDLoc DL(N);
825 ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0)));
826 return;
828 case AMDGPUISD::BFE_I32:
829 case AMDGPUISD::BFE_U32: {
830 // There is a scalar version available, but unlike the vector version which
831 // has a separate operand for the offset and width, the scalar version packs
832 // the width and offset into a single operand. Try to move to the scalar
833 // version if the offsets are constant, so that we can try to keep extended
834 // loads of kernel arguments in SGPRs.
836 // TODO: Technically we could try to pattern match scalar bitshifts of
837 // dynamic values, but it's probably not useful.
838 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
839 if (!Offset)
840 break;
842 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
843 if (!Width)
844 break;
846 bool Signed = Opc == AMDGPUISD::BFE_I32;
848 uint32_t OffsetVal = Offset->getZExtValue();
849 uint32_t WidthVal = Width->getZExtValue();
851 ReplaceNode(N, getS_BFE(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32,
852 SDLoc(N), N->getOperand(0), OffsetVal, WidthVal));
853 return;
855 case AMDGPUISD::DIV_SCALE: {
856 SelectDIV_SCALE(N);
857 return;
859 case AMDGPUISD::DIV_FMAS: {
860 SelectDIV_FMAS(N);
861 return;
863 case AMDGPUISD::MAD_I64_I32:
864 case AMDGPUISD::MAD_U64_U32: {
865 SelectMAD_64_32(N);
866 return;
868 case ISD::CopyToReg: {
869 const SITargetLowering& Lowering =
870 *static_cast<const SITargetLowering*>(getTargetLowering());
871 N = Lowering.legalizeTargetIndependentNode(N, *CurDAG);
872 break;
874 case ISD::AND:
875 case ISD::SRL:
876 case ISD::SRA:
877 case ISD::SIGN_EXTEND_INREG:
878 if (N->getValueType(0) != MVT::i32)
879 break;
881 SelectS_BFE(N);
882 return;
883 case ISD::BRCOND:
884 SelectBRCOND(N);
885 return;
886 case ISD::FMAD:
887 case ISD::FMA:
888 SelectFMAD_FMA(N);
889 return;
890 case AMDGPUISD::ATOMIC_CMP_SWAP:
891 SelectATOMIC_CMP_SWAP(N);
892 return;
893 case AMDGPUISD::CVT_PKRTZ_F16_F32:
894 case AMDGPUISD::CVT_PKNORM_I16_F32:
895 case AMDGPUISD::CVT_PKNORM_U16_F32:
896 case AMDGPUISD::CVT_PK_U16_U32:
897 case AMDGPUISD::CVT_PK_I16_I32: {
898 // Hack around using a legal type if f16 is illegal.
899 if (N->getValueType(0) == MVT::i32) {
900 MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16;
901 N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT),
902 { N->getOperand(0), N->getOperand(1) });
903 SelectCode(N);
904 return;
907 break;
909 case ISD::INTRINSIC_W_CHAIN: {
910 SelectINTRINSIC_W_CHAIN(N);
911 return;
913 case ISD::INTRINSIC_WO_CHAIN: {
914 SelectINTRINSIC_WO_CHAIN(N);
915 return;
917 case ISD::INTRINSIC_VOID: {
918 SelectINTRINSIC_VOID(N);
919 return;
923 SelectCode(N);
926 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const {
927 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
928 const Instruction *Term = BB->getTerminator();
929 return Term->getMetadata("amdgpu.uniform") ||
930 Term->getMetadata("structurizecfg.uniform");
933 StringRef AMDGPUDAGToDAGISel::getPassName() const {
934 return "AMDGPU DAG->DAG Pattern Instruction Selection";
937 //===----------------------------------------------------------------------===//
938 // Complex Patterns
939 //===----------------------------------------------------------------------===//
941 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
942 SDValue &Offset) {
943 return false;
946 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
947 SDValue &Offset) {
948 ConstantSDNode *C;
949 SDLoc DL(Addr);
951 if ((C = dyn_cast<ConstantSDNode>(Addr))) {
952 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
953 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
954 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
955 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
956 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
957 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
958 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
959 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
960 Base = Addr.getOperand(0);
961 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
962 } else {
963 Base = Addr;
964 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
967 return true;
970 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val,
971 const SDLoc &DL) const {
972 SDNode *Mov = CurDAG->getMachineNode(
973 AMDGPU::S_MOV_B32, DL, MVT::i32,
974 CurDAG->getTargetConstant(Val, DL, MVT::i32));
975 return SDValue(Mov, 0);
978 // FIXME: Should only handle addcarry/subcarry
979 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) {
980 SDLoc DL(N);
981 SDValue LHS = N->getOperand(0);
982 SDValue RHS = N->getOperand(1);
984 unsigned Opcode = N->getOpcode();
985 bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE);
986 bool ProduceCarry =
987 ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC;
988 bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE;
990 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
991 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
993 SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
994 DL, MVT::i32, LHS, Sub0);
995 SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
996 DL, MVT::i32, LHS, Sub1);
998 SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
999 DL, MVT::i32, RHS, Sub0);
1000 SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1001 DL, MVT::i32, RHS, Sub1);
1003 SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue);
1005 unsigned Opc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
1006 unsigned CarryOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
1008 SDNode *AddLo;
1009 if (!ConsumeCarry) {
1010 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) };
1011 AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args);
1012 } else {
1013 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) };
1014 AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args);
1016 SDValue AddHiArgs[] = {
1017 SDValue(Hi0, 0),
1018 SDValue(Hi1, 0),
1019 SDValue(AddLo, 1)
1021 SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs);
1023 SDValue RegSequenceArgs[] = {
1024 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
1025 SDValue(AddLo,0),
1026 Sub0,
1027 SDValue(AddHi,0),
1028 Sub1,
1030 SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
1031 MVT::i64, RegSequenceArgs);
1033 if (ProduceCarry) {
1034 // Replace the carry-use
1035 ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1));
1038 // Replace the remaining uses.
1039 ReplaceNode(N, RegSequence);
1042 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) {
1043 SDLoc DL(N);
1044 SDValue LHS = N->getOperand(0);
1045 SDValue RHS = N->getOperand(1);
1046 SDValue CI = N->getOperand(2);
1048 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64
1049 : AMDGPU::V_SUBB_U32_e64;
1050 CurDAG->SelectNodeTo(
1051 N, Opc, N->getVTList(),
1052 {LHS, RHS, CI, CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
1055 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) {
1056 // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned
1057 // carry out despite the _i32 name. These were renamed in VI to _U32.
1058 // FIXME: We should probably rename the opcodes here.
1059 unsigned Opc = N->getOpcode() == ISD::UADDO ?
1060 AMDGPU::V_ADD_I32_e64 : AMDGPU::V_SUB_I32_e64;
1062 CurDAG->SelectNodeTo(
1063 N, Opc, N->getVTList(),
1064 {N->getOperand(0), N->getOperand(1),
1065 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
1068 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) {
1069 SDLoc SL(N);
1070 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod
1071 SDValue Ops[10];
1073 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]);
1074 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
1075 SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]);
1076 Ops[8] = N->getOperand(0);
1077 Ops[9] = N->getOperand(4);
1079 CurDAG->SelectNodeTo(N, AMDGPU::V_FMA_F32, N->getVTList(), Ops);
1082 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) {
1083 SDLoc SL(N);
1084 // src0_modifiers, src0, src1_modifiers, src1, clamp, omod
1085 SDValue Ops[8];
1087 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]);
1088 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
1089 Ops[6] = N->getOperand(0);
1090 Ops[7] = N->getOperand(3);
1092 CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops);
1095 // We need to handle this here because tablegen doesn't support matching
1096 // instructions with multiple outputs.
1097 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) {
1098 SDLoc SL(N);
1099 EVT VT = N->getValueType(0);
1101 assert(VT == MVT::f32 || VT == MVT::f64);
1103 unsigned Opc
1104 = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64 : AMDGPU::V_DIV_SCALE_F32;
1106 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2) };
1107 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1110 void AMDGPUDAGToDAGISel::SelectDIV_FMAS(SDNode *N) {
1111 const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget);
1112 const SIRegisterInfo *TRI = ST->getRegisterInfo();
1114 SDLoc SL(N);
1115 EVT VT = N->getValueType(0);
1117 assert(VT == MVT::f32 || VT == MVT::f64);
1119 unsigned Opc
1120 = (VT == MVT::f64) ? AMDGPU::V_DIV_FMAS_F64 : AMDGPU::V_DIV_FMAS_F32;
1122 SDValue CarryIn = N->getOperand(3);
1123 // V_DIV_FMAS implicitly reads VCC.
1124 SDValue VCC = CurDAG->getCopyToReg(CurDAG->getEntryNode(), SL,
1125 TRI->getVCC(), CarryIn, SDValue());
1127 SDValue Ops[10];
1129 SelectVOP3Mods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]);
1130 SelectVOP3Mods(N->getOperand(1), Ops[3], Ops[2]);
1131 SelectVOP3Mods(N->getOperand(2), Ops[5], Ops[4]);
1133 Ops[8] = VCC;
1134 Ops[9] = VCC.getValue(1);
1136 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1139 // We need to handle this here because tablegen doesn't support matching
1140 // instructions with multiple outputs.
1141 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) {
1142 SDLoc SL(N);
1143 bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32;
1144 unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32 : AMDGPU::V_MAD_U64_U32;
1146 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1);
1147 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
1148 Clamp };
1149 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1152 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset,
1153 unsigned OffsetBits) const {
1154 if ((OffsetBits == 16 && !isUInt<16>(Offset)) ||
1155 (OffsetBits == 8 && !isUInt<8>(Offset)))
1156 return false;
1158 if (Subtarget->hasUsableDSOffset() ||
1159 Subtarget->unsafeDSOffsetFoldingEnabled())
1160 return true;
1162 // On Southern Islands instruction with a negative base value and an offset
1163 // don't seem to work.
1164 return CurDAG->SignBitIsZero(Base);
1167 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base,
1168 SDValue &Offset) const {
1169 SDLoc DL(Addr);
1170 if (CurDAG->isBaseWithConstantOffset(Addr)) {
1171 SDValue N0 = Addr.getOperand(0);
1172 SDValue N1 = Addr.getOperand(1);
1173 ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1174 if (isDSOffsetLegal(N0, C1->getSExtValue(), 16)) {
1175 // (add n0, c0)
1176 Base = N0;
1177 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1178 return true;
1180 } else if (Addr.getOpcode() == ISD::SUB) {
1181 // sub C, x -> add (sub 0, x), C
1182 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
1183 int64_t ByteOffset = C->getSExtValue();
1184 if (isUInt<16>(ByteOffset)) {
1185 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1187 // XXX - This is kind of hacky. Create a dummy sub node so we can check
1188 // the known bits in isDSOffsetLegal. We need to emit the selected node
1189 // here, so this is thrown away.
1190 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
1191 Zero, Addr.getOperand(1));
1193 if (isDSOffsetLegal(Sub, ByteOffset, 16)) {
1194 SmallVector<SDValue, 3> Opnds;
1195 Opnds.push_back(Zero);
1196 Opnds.push_back(Addr.getOperand(1));
1198 // FIXME: Select to VOP3 version for with-carry.
1199 unsigned SubOp = AMDGPU::V_SUB_I32_e32;
1200 if (Subtarget->hasAddNoCarry()) {
1201 SubOp = AMDGPU::V_SUB_U32_e64;
1202 Opnds.push_back(
1203 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
1206 MachineSDNode *MachineSub =
1207 CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds);
1209 Base = SDValue(MachineSub, 0);
1210 Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16);
1211 return true;
1215 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1216 // If we have a constant address, prefer to put the constant into the
1217 // offset. This can save moves to load the constant address since multiple
1218 // operations can share the zero base address register, and enables merging
1219 // into read2 / write2 instructions.
1221 SDLoc DL(Addr);
1223 if (isUInt<16>(CAddr->getZExtValue())) {
1224 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1225 MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1226 DL, MVT::i32, Zero);
1227 Base = SDValue(MovZero, 0);
1228 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
1229 return true;
1233 // default case
1234 Base = Addr;
1235 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16);
1236 return true;
1239 // TODO: If offset is too big, put low 16-bit into offset.
1240 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base,
1241 SDValue &Offset0,
1242 SDValue &Offset1) const {
1243 SDLoc DL(Addr);
1245 if (CurDAG->isBaseWithConstantOffset(Addr)) {
1246 SDValue N0 = Addr.getOperand(0);
1247 SDValue N1 = Addr.getOperand(1);
1248 ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1249 unsigned DWordOffset0 = C1->getZExtValue() / 4;
1250 unsigned DWordOffset1 = DWordOffset0 + 1;
1251 // (add n0, c0)
1252 if (isDSOffsetLegal(N0, DWordOffset1, 8)) {
1253 Base = N0;
1254 Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
1255 Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
1256 return true;
1258 } else if (Addr.getOpcode() == ISD::SUB) {
1259 // sub C, x -> add (sub 0, x), C
1260 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
1261 unsigned DWordOffset0 = C->getZExtValue() / 4;
1262 unsigned DWordOffset1 = DWordOffset0 + 1;
1264 if (isUInt<8>(DWordOffset0)) {
1265 SDLoc DL(Addr);
1266 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1268 // XXX - This is kind of hacky. Create a dummy sub node so we can check
1269 // the known bits in isDSOffsetLegal. We need to emit the selected node
1270 // here, so this is thrown away.
1271 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
1272 Zero, Addr.getOperand(1));
1274 if (isDSOffsetLegal(Sub, DWordOffset1, 8)) {
1275 SmallVector<SDValue, 3> Opnds;
1276 Opnds.push_back(Zero);
1277 Opnds.push_back(Addr.getOperand(1));
1278 unsigned SubOp = AMDGPU::V_SUB_I32_e32;
1279 if (Subtarget->hasAddNoCarry()) {
1280 SubOp = AMDGPU::V_SUB_U32_e64;
1281 Opnds.push_back(
1282 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
1285 MachineSDNode *MachineSub
1286 = CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds);
1288 Base = SDValue(MachineSub, 0);
1289 Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
1290 Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
1291 return true;
1295 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1296 unsigned DWordOffset0 = CAddr->getZExtValue() / 4;
1297 unsigned DWordOffset1 = DWordOffset0 + 1;
1298 assert(4 * DWordOffset0 == CAddr->getZExtValue());
1300 if (isUInt<8>(DWordOffset0) && isUInt<8>(DWordOffset1)) {
1301 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1302 MachineSDNode *MovZero
1303 = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1304 DL, MVT::i32, Zero);
1305 Base = SDValue(MovZero, 0);
1306 Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
1307 Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
1308 return true;
1312 // default case
1314 Base = Addr;
1315 Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8);
1316 Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8);
1317 return true;
1320 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr,
1321 SDValue &VAddr, SDValue &SOffset,
1322 SDValue &Offset, SDValue &Offen,
1323 SDValue &Idxen, SDValue &Addr64,
1324 SDValue &GLC, SDValue &SLC,
1325 SDValue &TFE, SDValue &DLC,
1326 SDValue &SWZ) const {
1327 // Subtarget prefers to use flat instruction
1328 if (Subtarget->useFlatForGlobal())
1329 return false;
1331 SDLoc DL(Addr);
1333 if (!GLC.getNode())
1334 GLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
1335 if (!SLC.getNode())
1336 SLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
1337 TFE = CurDAG->getTargetConstant(0, DL, MVT::i1);
1338 DLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
1339 SWZ = CurDAG->getTargetConstant(0, DL, MVT::i1);
1341 Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1342 Offen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1343 Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1);
1344 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1346 ConstantSDNode *C1 = nullptr;
1347 SDValue N0 = Addr;
1348 if (CurDAG->isBaseWithConstantOffset(Addr)) {
1349 C1 = cast<ConstantSDNode>(Addr.getOperand(1));
1350 if (isUInt<32>(C1->getZExtValue()))
1351 N0 = Addr.getOperand(0);
1352 else
1353 C1 = nullptr;
1356 if (N0.getOpcode() == ISD::ADD) {
1357 // (add N2, N3) -> addr64, or
1358 // (add (add N2, N3), C1) -> addr64
1359 SDValue N2 = N0.getOperand(0);
1360 SDValue N3 = N0.getOperand(1);
1361 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1363 if (N2->isDivergent()) {
1364 if (N3->isDivergent()) {
1365 // Both N2 and N3 are divergent. Use N0 (the result of the add) as the
1366 // addr64, and construct the resource from a 0 address.
1367 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1368 VAddr = N0;
1369 } else {
1370 // N2 is divergent, N3 is not.
1371 Ptr = N3;
1372 VAddr = N2;
1374 } else {
1375 // N2 is not divergent.
1376 Ptr = N2;
1377 VAddr = N3;
1379 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1380 } else if (N0->isDivergent()) {
1381 // N0 is divergent. Use it as the addr64, and construct the resource from a
1382 // 0 address.
1383 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1384 VAddr = N0;
1385 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1386 } else {
1387 // N0 -> offset, or
1388 // (N0 + C1) -> offset
1389 VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32);
1390 Ptr = N0;
1393 if (!C1) {
1394 // No offset.
1395 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1396 return true;
1399 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) {
1400 // Legal offset for instruction.
1401 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1402 return true;
1405 // Illegal offset, store it in soffset.
1406 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1407 SOffset =
1408 SDValue(CurDAG->getMachineNode(
1409 AMDGPU::S_MOV_B32, DL, MVT::i32,
1410 CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)),
1412 return true;
1415 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
1416 SDValue &VAddr, SDValue &SOffset,
1417 SDValue &Offset, SDValue &GLC,
1418 SDValue &SLC, SDValue &TFE,
1419 SDValue &DLC, SDValue &SWZ) const {
1420 SDValue Ptr, Offen, Idxen, Addr64;
1422 // addr64 bit was removed for volcanic islands.
1423 if (!Subtarget->hasAddr64())
1424 return false;
1426 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
1427 GLC, SLC, TFE, DLC, SWZ))
1428 return false;
1430 ConstantSDNode *C = cast<ConstantSDNode>(Addr64);
1431 if (C->getSExtValue()) {
1432 SDLoc DL(Addr);
1434 const SITargetLowering& Lowering =
1435 *static_cast<const SITargetLowering*>(getTargetLowering());
1437 SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0);
1438 return true;
1441 return false;
1444 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
1445 SDValue &VAddr, SDValue &SOffset,
1446 SDValue &Offset,
1447 SDValue &SLC) const {
1448 SLC = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i1);
1449 SDValue GLC, TFE, DLC, SWZ;
1451 return SelectMUBUFAddr64(Addr, SRsrc, VAddr, SOffset, Offset, GLC, SLC, TFE, DLC, SWZ);
1454 static bool isStackPtrRelative(const MachinePointerInfo &PtrInfo) {
1455 auto PSV = PtrInfo.V.dyn_cast<const PseudoSourceValue *>();
1456 return PSV && PSV->isStack();
1459 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const {
1460 const MachineFunction &MF = CurDAG->getMachineFunction();
1461 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1463 if (auto FI = dyn_cast<FrameIndexSDNode>(N)) {
1464 SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(),
1465 FI->getValueType(0));
1467 // If we can resolve this to a frame index access, this will be relative to
1468 // either the stack or frame pointer SGPR.
1469 return std::make_pair(
1470 TFI, CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32));
1473 // If we don't know this private access is a local stack object, it needs to
1474 // be relative to the entry point's scratch wave offset register.
1475 return std::make_pair(N, CurDAG->getRegister(Info->getScratchWaveOffsetReg(),
1476 MVT::i32));
1479 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent,
1480 SDValue Addr, SDValue &Rsrc,
1481 SDValue &VAddr, SDValue &SOffset,
1482 SDValue &ImmOffset) const {
1484 SDLoc DL(Addr);
1485 MachineFunction &MF = CurDAG->getMachineFunction();
1486 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1488 Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1490 if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1491 unsigned Imm = CAddr->getZExtValue();
1493 SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32);
1494 MachineSDNode *MovHighBits = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1495 DL, MVT::i32, HighBits);
1496 VAddr = SDValue(MovHighBits, 0);
1498 // In a call sequence, stores to the argument stack area are relative to the
1499 // stack pointer.
1500 const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo();
1501 unsigned SOffsetReg = isStackPtrRelative(PtrInfo) ?
1502 Info->getStackPtrOffsetReg() : Info->getScratchWaveOffsetReg();
1504 SOffset = CurDAG->getRegister(SOffsetReg, MVT::i32);
1505 ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16);
1506 return true;
1509 if (CurDAG->isBaseWithConstantOffset(Addr)) {
1510 // (add n0, c1)
1512 SDValue N0 = Addr.getOperand(0);
1513 SDValue N1 = Addr.getOperand(1);
1515 // Offsets in vaddr must be positive if range checking is enabled.
1517 // The total computation of vaddr + soffset + offset must not overflow. If
1518 // vaddr is negative, even if offset is 0 the sgpr offset add will end up
1519 // overflowing.
1521 // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would
1522 // always perform a range check. If a negative vaddr base index was used,
1523 // this would fail the range check. The overall address computation would
1524 // compute a valid address, but this doesn't happen due to the range
1525 // check. For out-of-bounds MUBUF loads, a 0 is returned.
1527 // Therefore it should be safe to fold any VGPR offset on gfx9 into the
1528 // MUBUF vaddr, but not on older subtargets which can only do this if the
1529 // sign bit is known 0.
1530 ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1531 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) &&
1532 (!Subtarget->privateMemoryResourceIsRangeChecked() ||
1533 CurDAG->SignBitIsZero(N0))) {
1534 std::tie(VAddr, SOffset) = foldFrameIndex(N0);
1535 ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1536 return true;
1540 // (node)
1541 std::tie(VAddr, SOffset) = foldFrameIndex(Addr);
1542 ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1543 return true;
1546 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent,
1547 SDValue Addr,
1548 SDValue &SRsrc,
1549 SDValue &SOffset,
1550 SDValue &Offset) const {
1551 ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr);
1552 if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue()))
1553 return false;
1555 SDLoc DL(Addr);
1556 MachineFunction &MF = CurDAG->getMachineFunction();
1557 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1559 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1561 const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo();
1562 unsigned SOffsetReg = isStackPtrRelative(PtrInfo) ?
1563 Info->getStackPtrOffsetReg() : Info->getScratchWaveOffsetReg();
1565 // FIXME: Get from MachinePointerInfo? We should only be using the frame
1566 // offset if we know this is in a call sequence.
1567 SOffset = CurDAG->getRegister(SOffsetReg, MVT::i32);
1569 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
1570 return true;
1573 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1574 SDValue &SOffset, SDValue &Offset,
1575 SDValue &GLC, SDValue &SLC,
1576 SDValue &TFE, SDValue &DLC,
1577 SDValue &SWZ) const {
1578 SDValue Ptr, VAddr, Offen, Idxen, Addr64;
1579 const SIInstrInfo *TII =
1580 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
1582 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
1583 GLC, SLC, TFE, DLC, SWZ))
1584 return false;
1586 if (!cast<ConstantSDNode>(Offen)->getSExtValue() &&
1587 !cast<ConstantSDNode>(Idxen)->getSExtValue() &&
1588 !cast<ConstantSDNode>(Addr64)->getSExtValue()) {
1589 uint64_t Rsrc = TII->getDefaultRsrcDataFormat() |
1590 APInt::getAllOnesValue(32).getZExtValue(); // Size
1591 SDLoc DL(Addr);
1593 const SITargetLowering& Lowering =
1594 *static_cast<const SITargetLowering*>(getTargetLowering());
1596 SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0);
1597 return true;
1599 return false;
1602 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1603 SDValue &Soffset, SDValue &Offset
1604 ) const {
1605 SDValue GLC, SLC, TFE, DLC, SWZ;
1607 return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ);
1609 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1610 SDValue &Soffset, SDValue &Offset,
1611 SDValue &SLC) const {
1612 SDValue GLC, TFE, DLC, SWZ;
1614 return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ);
1617 // Find a load or store from corresponding pattern root.
1618 // Roots may be build_vector, bitconvert or their combinations.
1619 static MemSDNode* findMemSDNode(SDNode *N) {
1620 N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode();
1621 if (MemSDNode *MN = dyn_cast<MemSDNode>(N))
1622 return MN;
1623 assert(isa<BuildVectorSDNode>(N));
1624 for (SDValue V : N->op_values())
1625 if (MemSDNode *MN =
1626 dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V)))
1627 return MN;
1628 llvm_unreachable("cannot find MemSDNode in the pattern!");
1631 template <bool IsSigned>
1632 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N,
1633 SDValue Addr,
1634 SDValue &VAddr,
1635 SDValue &Offset,
1636 SDValue &SLC) const {
1637 int64_t OffsetVal = 0;
1639 if (Subtarget->hasFlatInstOffsets() &&
1640 (!Subtarget->hasFlatSegmentOffsetBug() ||
1641 findMemSDNode(N)->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS) &&
1642 CurDAG->isBaseWithConstantOffset(Addr)) {
1643 SDValue N0 = Addr.getOperand(0);
1644 SDValue N1 = Addr.getOperand(1);
1645 uint64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue();
1647 const SIInstrInfo *TII = Subtarget->getInstrInfo();
1648 unsigned AS = findMemSDNode(N)->getAddressSpace();
1649 if (TII->isLegalFLATOffset(COffsetVal, AS, IsSigned)) {
1650 Addr = N0;
1651 OffsetVal = COffsetVal;
1652 } else {
1653 // If the offset doesn't fit, put the low bits into the offset field and
1654 // add the rest.
1656 SDLoc DL(N);
1657 uint64_t ImmField;
1658 const unsigned NumBits = TII->getNumFlatOffsetBits(AS, IsSigned);
1659 if (IsSigned) {
1660 ImmField = SignExtend64(COffsetVal, NumBits);
1662 // Don't use a negative offset field if the base offset is positive.
1663 // Since the scheduler currently relies on the offset field, doing so
1664 // could result in strange scheduling decisions.
1666 // TODO: Should we not do this in the opposite direction as well?
1667 if (static_cast<int64_t>(COffsetVal) > 0) {
1668 if (static_cast<int64_t>(ImmField) < 0) {
1669 const uint64_t OffsetMask = maskTrailingOnes<uint64_t>(NumBits - 1);
1670 ImmField = COffsetVal & OffsetMask;
1673 } else {
1674 // TODO: Should we do this for a negative offset?
1675 const uint64_t OffsetMask = maskTrailingOnes<uint64_t>(NumBits);
1676 ImmField = COffsetVal & OffsetMask;
1679 uint64_t RemainderOffset = COffsetVal - ImmField;
1681 assert(TII->isLegalFLATOffset(ImmField, AS, IsSigned));
1682 assert(RemainderOffset + ImmField == COffsetVal);
1684 OffsetVal = ImmField;
1686 // TODO: Should this try to use a scalar add pseudo if the base address is
1687 // uniform and saddr is usable?
1688 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
1689 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
1691 SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1692 DL, MVT::i32, N0, Sub0);
1693 SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1694 DL, MVT::i32, N0, Sub1);
1696 SDValue AddOffsetLo
1697 = getMaterializedScalarImm32(Lo_32(RemainderOffset), DL);
1698 SDValue AddOffsetHi
1699 = getMaterializedScalarImm32(Hi_32(RemainderOffset), DL);
1701 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1);
1702 SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
1704 SDNode *Add = CurDAG->getMachineNode(
1705 AMDGPU::V_ADD_I32_e64, DL, VTs,
1706 {AddOffsetLo, SDValue(N0Lo, 0), Clamp});
1708 SDNode *Addc = CurDAG->getMachineNode(
1709 AMDGPU::V_ADDC_U32_e64, DL, VTs,
1710 {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp});
1712 SDValue RegSequenceArgs[] = {
1713 CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32),
1714 SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1
1717 Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
1718 MVT::i64, RegSequenceArgs), 0);
1722 VAddr = Addr;
1723 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16);
1724 SLC = CurDAG->getTargetConstant(0, SDLoc(), MVT::i1);
1725 return true;
1728 bool AMDGPUDAGToDAGISel::SelectFlatAtomic(SDNode *N,
1729 SDValue Addr,
1730 SDValue &VAddr,
1731 SDValue &Offset,
1732 SDValue &SLC) const {
1733 return SelectFlatOffset<false>(N, Addr, VAddr, Offset, SLC);
1736 bool AMDGPUDAGToDAGISel::SelectFlatAtomicSigned(SDNode *N,
1737 SDValue Addr,
1738 SDValue &VAddr,
1739 SDValue &Offset,
1740 SDValue &SLC) const {
1741 return SelectFlatOffset<true>(N, Addr, VAddr, Offset, SLC);
1744 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode,
1745 SDValue &Offset, bool &Imm) const {
1747 // FIXME: Handle non-constant offsets.
1748 ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode);
1749 if (!C)
1750 return false;
1752 SDLoc SL(ByteOffsetNode);
1753 GCNSubtarget::Generation Gen = Subtarget->getGeneration();
1754 int64_t ByteOffset = C->getSExtValue();
1755 int64_t EncodedOffset = AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset);
1757 if (AMDGPU::isLegalSMRDImmOffset(*Subtarget, ByteOffset)) {
1758 Offset = CurDAG->getTargetConstant(EncodedOffset, SL, MVT::i32);
1759 Imm = true;
1760 return true;
1763 if (!isUInt<32>(EncodedOffset) || !isUInt<32>(ByteOffset))
1764 return false;
1766 if (Gen == AMDGPUSubtarget::SEA_ISLANDS && isUInt<32>(EncodedOffset)) {
1767 // 32-bit Immediates are supported on Sea Islands.
1768 Offset = CurDAG->getTargetConstant(EncodedOffset, SL, MVT::i32);
1769 } else {
1770 SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32);
1771 Offset = SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32,
1772 C32Bit), 0);
1774 Imm = false;
1775 return true;
1778 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const {
1779 if (Addr.getValueType() != MVT::i32)
1780 return Addr;
1782 // Zero-extend a 32-bit address.
1783 SDLoc SL(Addr);
1785 const MachineFunction &MF = CurDAG->getMachineFunction();
1786 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1787 unsigned AddrHiVal = Info->get32BitAddressHighBits();
1788 SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32);
1790 const SDValue Ops[] = {
1791 CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32),
1792 Addr,
1793 CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32),
1794 SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi),
1796 CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32),
1799 return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64,
1800 Ops), 0);
1803 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase,
1804 SDValue &Offset, bool &Imm) const {
1805 SDLoc SL(Addr);
1807 // A 32-bit (address + offset) should not cause unsigned 32-bit integer
1808 // wraparound, because s_load instructions perform the addition in 64 bits.
1809 if ((Addr.getValueType() != MVT::i32 ||
1810 Addr->getFlags().hasNoUnsignedWrap()) &&
1811 CurDAG->isBaseWithConstantOffset(Addr)) {
1812 SDValue N0 = Addr.getOperand(0);
1813 SDValue N1 = Addr.getOperand(1);
1815 if (SelectSMRDOffset(N1, Offset, Imm)) {
1816 SBase = Expand32BitAddress(N0);
1817 return true;
1820 SBase = Expand32BitAddress(Addr);
1821 Offset = CurDAG->getTargetConstant(0, SL, MVT::i32);
1822 Imm = true;
1823 return true;
1826 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase,
1827 SDValue &Offset) const {
1828 bool Imm;
1829 return SelectSMRD(Addr, SBase, Offset, Imm) && Imm;
1832 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase,
1833 SDValue &Offset) const {
1835 if (Subtarget->getGeneration() != AMDGPUSubtarget::SEA_ISLANDS)
1836 return false;
1838 bool Imm;
1839 if (!SelectSMRD(Addr, SBase, Offset, Imm))
1840 return false;
1842 return !Imm && isa<ConstantSDNode>(Offset);
1845 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase,
1846 SDValue &Offset) const {
1847 bool Imm;
1848 return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm &&
1849 !isa<ConstantSDNode>(Offset);
1852 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr,
1853 SDValue &Offset) const {
1854 bool Imm;
1855 return SelectSMRDOffset(Addr, Offset, Imm) && Imm;
1858 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr,
1859 SDValue &Offset) const {
1860 if (Subtarget->getGeneration() != AMDGPUSubtarget::SEA_ISLANDS)
1861 return false;
1863 bool Imm;
1864 if (!SelectSMRDOffset(Addr, Offset, Imm))
1865 return false;
1867 return !Imm && isa<ConstantSDNode>(Offset);
1870 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index,
1871 SDValue &Base,
1872 SDValue &Offset) const {
1873 SDLoc DL(Index);
1875 if (CurDAG->isBaseWithConstantOffset(Index)) {
1876 SDValue N0 = Index.getOperand(0);
1877 SDValue N1 = Index.getOperand(1);
1878 ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1880 // (add n0, c0)
1881 // Don't peel off the offset (c0) if doing so could possibly lead
1882 // the base (n0) to be negative.
1883 if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0)) {
1884 Base = N0;
1885 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32);
1886 return true;
1890 if (isa<ConstantSDNode>(Index))
1891 return false;
1893 Base = Index;
1894 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1895 return true;
1898 SDNode *AMDGPUDAGToDAGISel::getS_BFE(unsigned Opcode, const SDLoc &DL,
1899 SDValue Val, uint32_t Offset,
1900 uint32_t Width) {
1901 // Transformation function, pack the offset and width of a BFE into
1902 // the format expected by the S_BFE_I32 / S_BFE_U32. In the second
1903 // source, bits [5:0] contain the offset and bits [22:16] the width.
1904 uint32_t PackedVal = Offset | (Width << 16);
1905 SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32);
1907 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst);
1910 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) {
1911 // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c)
1912 // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c)
1913 // Predicate: 0 < b <= c < 32
1915 const SDValue &Shl = N->getOperand(0);
1916 ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1));
1917 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1919 if (B && C) {
1920 uint32_t BVal = B->getZExtValue();
1921 uint32_t CVal = C->getZExtValue();
1923 if (0 < BVal && BVal <= CVal && CVal < 32) {
1924 bool Signed = N->getOpcode() == ISD::SRA;
1925 unsigned Opcode = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32;
1927 ReplaceNode(N, getS_BFE(Opcode, SDLoc(N), Shl.getOperand(0), CVal - BVal,
1928 32 - CVal));
1929 return;
1932 SelectCode(N);
1935 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) {
1936 switch (N->getOpcode()) {
1937 case ISD::AND:
1938 if (N->getOperand(0).getOpcode() == ISD::SRL) {
1939 // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)"
1940 // Predicate: isMask(mask)
1941 const SDValue &Srl = N->getOperand(0);
1942 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1));
1943 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
1945 if (Shift && Mask) {
1946 uint32_t ShiftVal = Shift->getZExtValue();
1947 uint32_t MaskVal = Mask->getZExtValue();
1949 if (isMask_32(MaskVal)) {
1950 uint32_t WidthVal = countPopulation(MaskVal);
1952 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N),
1953 Srl.getOperand(0), ShiftVal, WidthVal));
1954 return;
1958 break;
1959 case ISD::SRL:
1960 if (N->getOperand(0).getOpcode() == ISD::AND) {
1961 // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)"
1962 // Predicate: isMask(mask >> b)
1963 const SDValue &And = N->getOperand(0);
1964 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1));
1965 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1));
1967 if (Shift && Mask) {
1968 uint32_t ShiftVal = Shift->getZExtValue();
1969 uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal;
1971 if (isMask_32(MaskVal)) {
1972 uint32_t WidthVal = countPopulation(MaskVal);
1974 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N),
1975 And.getOperand(0), ShiftVal, WidthVal));
1976 return;
1979 } else if (N->getOperand(0).getOpcode() == ISD::SHL) {
1980 SelectS_BFEFromShifts(N);
1981 return;
1983 break;
1984 case ISD::SRA:
1985 if (N->getOperand(0).getOpcode() == ISD::SHL) {
1986 SelectS_BFEFromShifts(N);
1987 return;
1989 break;
1991 case ISD::SIGN_EXTEND_INREG: {
1992 // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8
1993 SDValue Src = N->getOperand(0);
1994 if (Src.getOpcode() != ISD::SRL)
1995 break;
1997 const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
1998 if (!Amt)
1999 break;
2001 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
2002 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_I32, SDLoc(N), Src.getOperand(0),
2003 Amt->getZExtValue(), Width));
2004 return;
2008 SelectCode(N);
2011 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const {
2012 assert(N->getOpcode() == ISD::BRCOND);
2013 if (!N->hasOneUse())
2014 return false;
2016 SDValue Cond = N->getOperand(1);
2017 if (Cond.getOpcode() == ISD::CopyToReg)
2018 Cond = Cond.getOperand(2);
2020 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse())
2021 return false;
2023 MVT VT = Cond.getOperand(0).getSimpleValueType();
2024 if (VT == MVT::i32)
2025 return true;
2027 if (VT == MVT::i64) {
2028 auto ST = static_cast<const GCNSubtarget *>(Subtarget);
2030 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
2031 return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64();
2034 return false;
2037 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) {
2038 SDValue Cond = N->getOperand(1);
2040 if (Cond.isUndef()) {
2041 CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other,
2042 N->getOperand(2), N->getOperand(0));
2043 return;
2046 const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget);
2047 const SIRegisterInfo *TRI = ST->getRegisterInfo();
2049 bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N);
2050 unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ;
2051 unsigned CondReg = UseSCCBr ? (unsigned)AMDGPU::SCC : TRI->getVCC();
2052 SDLoc SL(N);
2054 if (!UseSCCBr) {
2055 // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not
2056 // analyzed what generates the vcc value, so we do not know whether vcc
2057 // bits for disabled lanes are 0. Thus we need to mask out bits for
2058 // disabled lanes.
2060 // For the case that we select S_CBRANCH_SCC1 and it gets
2061 // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls
2062 // SIInstrInfo::moveToVALU which inserts the S_AND).
2064 // We could add an analysis of what generates the vcc value here and omit
2065 // the S_AND when is unnecessary. But it would be better to add a separate
2066 // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it
2067 // catches both cases.
2068 Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32
2069 : AMDGPU::S_AND_B64,
2070 SL, MVT::i1,
2071 CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO
2072 : AMDGPU::EXEC,
2073 MVT::i1),
2074 Cond),
2078 SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond);
2079 CurDAG->SelectNodeTo(N, BrOp, MVT::Other,
2080 N->getOperand(2), // Basic Block
2081 VCC.getValue(0));
2084 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) {
2085 MVT VT = N->getSimpleValueType(0);
2086 bool IsFMA = N->getOpcode() == ISD::FMA;
2087 if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() &&
2088 !Subtarget->hasFmaMixInsts()) ||
2089 ((IsFMA && Subtarget->hasMadMixInsts()) ||
2090 (!IsFMA && Subtarget->hasFmaMixInsts()))) {
2091 SelectCode(N);
2092 return;
2095 SDValue Src0 = N->getOperand(0);
2096 SDValue Src1 = N->getOperand(1);
2097 SDValue Src2 = N->getOperand(2);
2098 unsigned Src0Mods, Src1Mods, Src2Mods;
2100 // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand
2101 // using the conversion from f16.
2102 bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods);
2103 bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods);
2104 bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods);
2106 assert((IsFMA || !Subtarget->hasFP32Denormals()) &&
2107 "fmad selected with denormals enabled");
2108 // TODO: We can select this with f32 denormals enabled if all the sources are
2109 // converted from f16 (in which case fmad isn't legal).
2111 if (Sel0 || Sel1 || Sel2) {
2112 // For dummy operands.
2113 SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
2114 SDValue Ops[] = {
2115 CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0,
2116 CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1,
2117 CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2,
2118 CurDAG->getTargetConstant(0, SDLoc(), MVT::i1),
2119 Zero, Zero
2122 CurDAG->SelectNodeTo(N,
2123 IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32,
2124 MVT::f32, Ops);
2125 } else {
2126 SelectCode(N);
2130 // This is here because there isn't a way to use the generated sub0_sub1 as the
2131 // subreg index to EXTRACT_SUBREG in tablegen.
2132 void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) {
2133 MemSDNode *Mem = cast<MemSDNode>(N);
2134 unsigned AS = Mem->getAddressSpace();
2135 if (AS == AMDGPUAS::FLAT_ADDRESS) {
2136 SelectCode(N);
2137 return;
2140 MVT VT = N->getSimpleValueType(0);
2141 bool Is32 = (VT == MVT::i32);
2142 SDLoc SL(N);
2144 MachineSDNode *CmpSwap = nullptr;
2145 if (Subtarget->hasAddr64()) {
2146 SDValue SRsrc, VAddr, SOffset, Offset, SLC;
2148 if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset, SLC)) {
2149 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN :
2150 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN;
2151 SDValue CmpVal = Mem->getOperand(2);
2153 // XXX - Do we care about glue operands?
2155 SDValue Ops[] = {
2156 CmpVal, VAddr, SRsrc, SOffset, Offset, SLC, Mem->getChain()
2159 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
2163 if (!CmpSwap) {
2164 SDValue SRsrc, SOffset, Offset, SLC;
2165 if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset, SLC)) {
2166 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN :
2167 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN;
2169 SDValue CmpVal = Mem->getOperand(2);
2170 SDValue Ops[] = {
2171 CmpVal, SRsrc, SOffset, Offset, SLC, Mem->getChain()
2174 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
2178 if (!CmpSwap) {
2179 SelectCode(N);
2180 return;
2183 MachineMemOperand *MMO = Mem->getMemOperand();
2184 CurDAG->setNodeMemRefs(CmpSwap, {MMO});
2186 unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1;
2187 SDValue Extract
2188 = CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0));
2190 ReplaceUses(SDValue(N, 0), Extract);
2191 ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1));
2192 CurDAG->RemoveDeadNode(N);
2195 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) {
2196 // The address is assumed to be uniform, so if it ends up in a VGPR, it will
2197 // be copied to an SGPR with readfirstlane.
2198 unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ?
2199 AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME;
2201 SDValue Chain = N->getOperand(0);
2202 SDValue Ptr = N->getOperand(2);
2203 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2204 MachineMemOperand *MMO = M->getMemOperand();
2205 bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS;
2207 SDValue Offset;
2208 if (CurDAG->isBaseWithConstantOffset(Ptr)) {
2209 SDValue PtrBase = Ptr.getOperand(0);
2210 SDValue PtrOffset = Ptr.getOperand(1);
2212 const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue();
2213 if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue(), 16)) {
2214 N = glueCopyToM0(N, PtrBase);
2215 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32);
2219 if (!Offset) {
2220 N = glueCopyToM0(N, Ptr);
2221 Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
2224 SDValue Ops[] = {
2225 Offset,
2226 CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32),
2227 Chain,
2228 N->getOperand(N->getNumOperands() - 1) // New glue
2231 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2232 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2235 static unsigned gwsIntrinToOpcode(unsigned IntrID) {
2236 switch (IntrID) {
2237 case Intrinsic::amdgcn_ds_gws_init:
2238 return AMDGPU::DS_GWS_INIT;
2239 case Intrinsic::amdgcn_ds_gws_barrier:
2240 return AMDGPU::DS_GWS_BARRIER;
2241 case Intrinsic::amdgcn_ds_gws_sema_v:
2242 return AMDGPU::DS_GWS_SEMA_V;
2243 case Intrinsic::amdgcn_ds_gws_sema_br:
2244 return AMDGPU::DS_GWS_SEMA_BR;
2245 case Intrinsic::amdgcn_ds_gws_sema_p:
2246 return AMDGPU::DS_GWS_SEMA_P;
2247 case Intrinsic::amdgcn_ds_gws_sema_release_all:
2248 return AMDGPU::DS_GWS_SEMA_RELEASE_ALL;
2249 default:
2250 llvm_unreachable("not a gws intrinsic");
2254 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) {
2255 if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all &&
2256 !Subtarget->hasGWSSemaReleaseAll()) {
2257 // Let this error.
2258 SelectCode(N);
2259 return;
2262 // Chain, intrinsic ID, vsrc, offset
2263 const bool HasVSrc = N->getNumOperands() == 4;
2264 assert(HasVSrc || N->getNumOperands() == 3);
2266 SDLoc SL(N);
2267 SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2);
2268 int ImmOffset = 0;
2269 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2270 MachineMemOperand *MMO = M->getMemOperand();
2272 // Don't worry if the offset ends up in a VGPR. Only one lane will have
2273 // effect, so SIFixSGPRCopies will validly insert readfirstlane.
2275 // The resource id offset is computed as (<isa opaque base> + M0[21:16] +
2276 // offset field) % 64. Some versions of the programming guide omit the m0
2277 // part, or claim it's from offset 0.
2278 if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) {
2279 // If we have a constant offset, try to use the 0 in m0 as the base.
2280 // TODO: Look into changing the default m0 initialization value. If the
2281 // default -1 only set the low 16-bits, we could leave it as-is and add 1 to
2282 // the immediate offset.
2283 glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32));
2284 ImmOffset = ConstOffset->getZExtValue();
2285 } else {
2286 if (CurDAG->isBaseWithConstantOffset(BaseOffset)) {
2287 ImmOffset = BaseOffset.getConstantOperandVal(1);
2288 BaseOffset = BaseOffset.getOperand(0);
2291 // Prefer to do the shift in an SGPR since it should be possible to use m0
2292 // as the result directly. If it's already an SGPR, it will be eliminated
2293 // later.
2294 SDNode *SGPROffset
2295 = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32,
2296 BaseOffset);
2297 // Shift to offset in m0
2298 SDNode *M0Base
2299 = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32,
2300 SDValue(SGPROffset, 0),
2301 CurDAG->getTargetConstant(16, SL, MVT::i32));
2302 glueCopyToM0(N, SDValue(M0Base, 0));
2305 SDValue Chain = N->getOperand(0);
2306 SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32);
2308 // TODO: Can this just be removed from the instruction?
2309 SDValue GDS = CurDAG->getTargetConstant(1, SL, MVT::i1);
2311 const unsigned Opc = gwsIntrinToOpcode(IntrID);
2312 SmallVector<SDValue, 5> Ops;
2313 if (HasVSrc)
2314 Ops.push_back(N->getOperand(2));
2315 Ops.push_back(OffsetField);
2316 Ops.push_back(GDS);
2317 Ops.push_back(Chain);
2319 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2320 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2323 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) {
2324 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2325 switch (IntrID) {
2326 case Intrinsic::amdgcn_ds_append:
2327 case Intrinsic::amdgcn_ds_consume: {
2328 if (N->getValueType(0) != MVT::i32)
2329 break;
2330 SelectDSAppendConsume(N, IntrID);
2331 return;
2335 SelectCode(N);
2338 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) {
2339 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
2340 unsigned Opcode;
2341 switch (IntrID) {
2342 case Intrinsic::amdgcn_wqm:
2343 Opcode = AMDGPU::WQM;
2344 break;
2345 case Intrinsic::amdgcn_softwqm:
2346 Opcode = AMDGPU::SOFT_WQM;
2347 break;
2348 case Intrinsic::amdgcn_wwm:
2349 Opcode = AMDGPU::WWM;
2350 break;
2351 default:
2352 SelectCode(N);
2353 return;
2356 SDValue Src = N->getOperand(1);
2357 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src});
2360 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) {
2361 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2362 switch (IntrID) {
2363 case Intrinsic::amdgcn_ds_gws_init:
2364 case Intrinsic::amdgcn_ds_gws_barrier:
2365 case Intrinsic::amdgcn_ds_gws_sema_v:
2366 case Intrinsic::amdgcn_ds_gws_sema_br:
2367 case Intrinsic::amdgcn_ds_gws_sema_p:
2368 case Intrinsic::amdgcn_ds_gws_sema_release_all:
2369 SelectDS_GWS(N, IntrID);
2370 return;
2371 default:
2372 break;
2375 SelectCode(N);
2378 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src,
2379 unsigned &Mods) const {
2380 Mods = 0;
2381 Src = In;
2383 if (Src.getOpcode() == ISD::FNEG) {
2384 Mods |= SISrcMods::NEG;
2385 Src = Src.getOperand(0);
2388 if (Src.getOpcode() == ISD::FABS) {
2389 Mods |= SISrcMods::ABS;
2390 Src = Src.getOperand(0);
2393 return true;
2396 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src,
2397 SDValue &SrcMods) const {
2398 unsigned Mods;
2399 if (SelectVOP3ModsImpl(In, Src, Mods)) {
2400 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2401 return true;
2404 return false;
2407 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src,
2408 SDValue &SrcMods) const {
2409 SelectVOP3Mods(In, Src, SrcMods);
2410 return isNoNanSrc(Src);
2413 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_f32(SDValue In, SDValue &Src,
2414 SDValue &SrcMods) const {
2415 if (In.getValueType() == MVT::f32)
2416 return SelectVOP3Mods(In, Src, SrcMods);
2417 Src = In;
2418 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);;
2419 return true;
2422 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const {
2423 if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG)
2424 return false;
2426 Src = In;
2427 return true;
2430 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src,
2431 SDValue &SrcMods, SDValue &Clamp,
2432 SDValue &Omod) const {
2433 SDLoc DL(In);
2434 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2435 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2437 return SelectVOP3Mods(In, Src, SrcMods);
2440 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0Clamp0OMod(SDValue In, SDValue &Src,
2441 SDValue &SrcMods,
2442 SDValue &Clamp,
2443 SDValue &Omod) const {
2444 Clamp = Omod = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);
2445 return SelectVOP3Mods(In, Src, SrcMods);
2448 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src,
2449 SDValue &Clamp, SDValue &Omod) const {
2450 Src = In;
2452 SDLoc DL(In);
2453 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2454 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2456 return true;
2459 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src,
2460 SDValue &SrcMods) const {
2461 unsigned Mods = 0;
2462 Src = In;
2464 if (Src.getOpcode() == ISD::FNEG) {
2465 Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI);
2466 Src = Src.getOperand(0);
2469 if (Src.getOpcode() == ISD::BUILD_VECTOR) {
2470 unsigned VecMods = Mods;
2472 SDValue Lo = stripBitcast(Src.getOperand(0));
2473 SDValue Hi = stripBitcast(Src.getOperand(1));
2475 if (Lo.getOpcode() == ISD::FNEG) {
2476 Lo = stripBitcast(Lo.getOperand(0));
2477 Mods ^= SISrcMods::NEG;
2480 if (Hi.getOpcode() == ISD::FNEG) {
2481 Hi = stripBitcast(Hi.getOperand(0));
2482 Mods ^= SISrcMods::NEG_HI;
2485 if (isExtractHiElt(Lo, Lo))
2486 Mods |= SISrcMods::OP_SEL_0;
2488 if (isExtractHiElt(Hi, Hi))
2489 Mods |= SISrcMods::OP_SEL_1;
2491 Lo = stripExtractLoElt(Lo);
2492 Hi = stripExtractLoElt(Hi);
2494 if (Lo == Hi && !isInlineImmediate(Lo.getNode())) {
2495 // Really a scalar input. Just select from the low half of the register to
2496 // avoid packing.
2498 Src = Lo;
2499 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2500 return true;
2503 Mods = VecMods;
2506 // Packed instructions do not have abs modifiers.
2507 Mods |= SISrcMods::OP_SEL_1;
2509 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2510 return true;
2513 bool AMDGPUDAGToDAGISel::SelectVOP3PMods0(SDValue In, SDValue &Src,
2514 SDValue &SrcMods,
2515 SDValue &Clamp) const {
2516 SDLoc SL(In);
2518 // FIXME: Handle clamp and op_sel
2519 Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32);
2521 return SelectVOP3PMods(In, Src, SrcMods);
2524 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src,
2525 SDValue &SrcMods) const {
2526 Src = In;
2527 // FIXME: Handle op_sel
2528 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);
2529 return true;
2532 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel0(SDValue In, SDValue &Src,
2533 SDValue &SrcMods,
2534 SDValue &Clamp) const {
2535 SDLoc SL(In);
2537 // FIXME: Handle clamp
2538 Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32);
2540 return SelectVOP3OpSel(In, Src, SrcMods);
2543 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src,
2544 SDValue &SrcMods) const {
2545 // FIXME: Handle op_sel
2546 return SelectVOP3Mods(In, Src, SrcMods);
2549 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods0(SDValue In, SDValue &Src,
2550 SDValue &SrcMods,
2551 SDValue &Clamp) const {
2552 SDLoc SL(In);
2554 // FIXME: Handle clamp
2555 Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32);
2557 return SelectVOP3OpSelMods(In, Src, SrcMods);
2560 // The return value is not whether the match is possible (which it always is),
2561 // but whether or not it a conversion is really used.
2562 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src,
2563 unsigned &Mods) const {
2564 Mods = 0;
2565 SelectVOP3ModsImpl(In, Src, Mods);
2567 if (Src.getOpcode() == ISD::FP_EXTEND) {
2568 Src = Src.getOperand(0);
2569 assert(Src.getValueType() == MVT::f16);
2570 Src = stripBitcast(Src);
2572 // Be careful about folding modifiers if we already have an abs. fneg is
2573 // applied last, so we don't want to apply an earlier fneg.
2574 if ((Mods & SISrcMods::ABS) == 0) {
2575 unsigned ModsTmp;
2576 SelectVOP3ModsImpl(Src, Src, ModsTmp);
2578 if ((ModsTmp & SISrcMods::NEG) != 0)
2579 Mods ^= SISrcMods::NEG;
2581 if ((ModsTmp & SISrcMods::ABS) != 0)
2582 Mods |= SISrcMods::ABS;
2585 // op_sel/op_sel_hi decide the source type and source.
2586 // If the source's op_sel_hi is set, it indicates to do a conversion from fp16.
2587 // If the sources's op_sel is set, it picks the high half of the source
2588 // register.
2590 Mods |= SISrcMods::OP_SEL_1;
2591 if (isExtractHiElt(Src, Src)) {
2592 Mods |= SISrcMods::OP_SEL_0;
2594 // TODO: Should we try to look for neg/abs here?
2597 return true;
2600 return false;
2603 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src,
2604 SDValue &SrcMods) const {
2605 unsigned Mods = 0;
2606 SelectVOP3PMadMixModsImpl(In, Src, Mods);
2607 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2608 return true;
2611 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const {
2612 if (In.isUndef())
2613 return CurDAG->getUNDEF(MVT::i32);
2615 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) {
2616 SDLoc SL(In);
2617 return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32);
2620 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) {
2621 SDLoc SL(In);
2622 return CurDAG->getConstant(
2623 C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32);
2626 SDValue Src;
2627 if (isExtractHiElt(In, Src))
2628 return Src;
2630 return SDValue();
2633 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const {
2634 assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn);
2636 const SIRegisterInfo *SIRI =
2637 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
2638 const SIInstrInfo * SII =
2639 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2641 unsigned Limit = 0;
2642 bool AllUsesAcceptSReg = true;
2643 for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end();
2644 Limit < 10 && U != E; ++U, ++Limit) {
2645 const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo());
2647 // If the register class is unknown, it could be an unknown
2648 // register class that needs to be an SGPR, e.g. an inline asm
2649 // constraint
2650 if (!RC || SIRI->isSGPRClass(RC))
2651 return false;
2653 if (RC != &AMDGPU::VS_32RegClass) {
2654 AllUsesAcceptSReg = false;
2655 SDNode * User = *U;
2656 if (User->isMachineOpcode()) {
2657 unsigned Opc = User->getMachineOpcode();
2658 MCInstrDesc Desc = SII->get(Opc);
2659 if (Desc.isCommutable()) {
2660 unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo();
2661 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
2662 if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) {
2663 unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs();
2664 const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo);
2665 if (CommutedRC == &AMDGPU::VS_32RegClass)
2666 AllUsesAcceptSReg = true;
2670 // If "AllUsesAcceptSReg == false" so far we haven't suceeded
2671 // commuting current user. This means have at least one use
2672 // that strictly require VGPR. Thus, we will not attempt to commute
2673 // other user instructions.
2674 if (!AllUsesAcceptSReg)
2675 break;
2678 return !AllUsesAcceptSReg && (Limit < 10);
2681 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const {
2682 auto Ld = cast<LoadSDNode>(N);
2684 return Ld->getAlignment() >= 4 &&
2688 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
2689 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT
2692 !N->isDivergent()
2696 Subtarget->getScalarizeGlobalBehavior() &&
2697 Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS &&
2698 !Ld->isVolatile() &&
2699 !N->isDivergent() &&
2700 static_cast<const SITargetLowering *>(
2701 getTargetLowering())->isMemOpHasNoClobberedMemOperand(N)
2706 void AMDGPUDAGToDAGISel::PostprocessISelDAG() {
2707 const AMDGPUTargetLowering& Lowering =
2708 *static_cast<const AMDGPUTargetLowering*>(getTargetLowering());
2709 bool IsModified = false;
2710 do {
2711 IsModified = false;
2713 // Go over all selected nodes and try to fold them a bit more
2714 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin();
2715 while (Position != CurDAG->allnodes_end()) {
2716 SDNode *Node = &*Position++;
2717 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node);
2718 if (!MachineNode)
2719 continue;
2721 SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG);
2722 if (ResNode != Node) {
2723 if (ResNode)
2724 ReplaceUses(Node, ResNode);
2725 IsModified = true;
2728 CurDAG->RemoveDeadNodes();
2729 } while (IsModified);
2732 bool R600DAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
2733 Subtarget = &MF.getSubtarget<R600Subtarget>();
2734 return SelectionDAGISel::runOnMachineFunction(MF);
2737 bool R600DAGToDAGISel::isConstantLoad(const MemSDNode *N, int CbId) const {
2738 if (!N->readMem())
2739 return false;
2740 if (CbId == -1)
2741 return N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
2742 N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
2744 return N->getAddressSpace() == AMDGPUAS::CONSTANT_BUFFER_0 + CbId;
2747 bool R600DAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr,
2748 SDValue& IntPtr) {
2749 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) {
2750 IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, SDLoc(Addr),
2751 true);
2752 return true;
2754 return false;
2757 bool R600DAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr,
2758 SDValue& BaseReg, SDValue &Offset) {
2759 if (!isa<ConstantSDNode>(Addr)) {
2760 BaseReg = Addr;
2761 Offset = CurDAG->getIntPtrConstant(0, SDLoc(Addr), true);
2762 return true;
2764 return false;
2767 void R600DAGToDAGISel::Select(SDNode *N) {
2768 unsigned int Opc = N->getOpcode();
2769 if (N->isMachineOpcode()) {
2770 N->setNodeId(-1);
2771 return; // Already selected.
2774 switch (Opc) {
2775 default: break;
2776 case AMDGPUISD::BUILD_VERTICAL_VECTOR:
2777 case ISD::SCALAR_TO_VECTOR:
2778 case ISD::BUILD_VECTOR: {
2779 EVT VT = N->getValueType(0);
2780 unsigned NumVectorElts = VT.getVectorNumElements();
2781 unsigned RegClassID;
2782 // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG
2783 // that adds a 128 bits reg copy when going through TwoAddressInstructions
2784 // pass. We want to avoid 128 bits copies as much as possible because they
2785 // can't be bundled by our scheduler.
2786 switch(NumVectorElts) {
2787 case 2: RegClassID = R600::R600_Reg64RegClassID; break;
2788 case 4:
2789 if (Opc == AMDGPUISD::BUILD_VERTICAL_VECTOR)
2790 RegClassID = R600::R600_Reg128VerticalRegClassID;
2791 else
2792 RegClassID = R600::R600_Reg128RegClassID;
2793 break;
2794 default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR");
2796 SelectBuildVector(N, RegClassID);
2797 return;
2801 SelectCode(N);
2804 bool R600DAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
2805 SDValue &Offset) {
2806 ConstantSDNode *C;
2807 SDLoc DL(Addr);
2809 if ((C = dyn_cast<ConstantSDNode>(Addr))) {
2810 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
2811 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
2812 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
2813 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
2814 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
2815 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
2816 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
2817 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
2818 Base = Addr.getOperand(0);
2819 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
2820 } else {
2821 Base = Addr;
2822 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
2825 return true;
2828 bool R600DAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
2829 SDValue &Offset) {
2830 ConstantSDNode *IMMOffset;
2832 if (Addr.getOpcode() == ISD::ADD
2833 && (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))
2834 && isInt<16>(IMMOffset->getZExtValue())) {
2836 Base = Addr.getOperand(0);
2837 Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr),
2838 MVT::i32);
2839 return true;
2840 // If the pointer address is constant, we can move it to the offset field.
2841 } else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr))
2842 && isInt<16>(IMMOffset->getZExtValue())) {
2843 Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
2844 SDLoc(CurDAG->getEntryNode()),
2845 R600::ZERO, MVT::i32);
2846 Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr),
2847 MVT::i32);
2848 return true;
2851 // Default case, no offset
2852 Base = Addr;
2853 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32);
2854 return true;