[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Target / AMDGPU / AMDGPUTargetTransformInfo.cpp
blob616196ad5ba37c3f22f85cf1ea9818bb0bf42990
1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 // This file implements a TargetTransformInfo analysis pass specific to the
11 // AMDGPU target machine. It uses the target's detailed information to provide
12 // more precise answers to certain TTI queries, while letting the target
13 // independent and default TTI implementations handle the rest.
15 //===----------------------------------------------------------------------===//
17 #include "AMDGPUTargetTransformInfo.h"
18 #include "AMDGPUSubtarget.h"
19 #include "Utils/AMDGPUBaseInfo.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/CodeGen/ISDOpcodes.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CallingConv.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/IR/PatternMatch.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/MC/SubtargetFeature.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MachineValueType.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetMachine.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <limits>
51 #include <utility>
53 using namespace llvm;
55 #define DEBUG_TYPE "AMDGPUtti"
57 static cl::opt<unsigned> UnrollThresholdPrivate(
58 "amdgpu-unroll-threshold-private",
59 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
60 cl::init(2000), cl::Hidden);
62 static cl::opt<unsigned> UnrollThresholdLocal(
63 "amdgpu-unroll-threshold-local",
64 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
65 cl::init(1000), cl::Hidden);
67 static cl::opt<unsigned> UnrollThresholdIf(
68 "amdgpu-unroll-threshold-if",
69 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
70 cl::init(150), cl::Hidden);
72 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
73 unsigned Depth = 0) {
74 const Instruction *I = dyn_cast<Instruction>(Cond);
75 if (!I)
76 return false;
78 for (const Value *V : I->operand_values()) {
79 if (!L->contains(I))
80 continue;
81 if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
82 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
83 return SubLoop->contains(PHI); }))
84 return true;
85 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
86 return true;
88 return false;
91 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
92 TTI::UnrollingPreferences &UP) {
93 UP.Threshold = 300; // Twice the default.
94 UP.MaxCount = std::numeric_limits<unsigned>::max();
95 UP.Partial = true;
97 // TODO: Do we want runtime unrolling?
99 // Maximum alloca size than can fit registers. Reserve 16 registers.
100 const unsigned MaxAlloca = (256 - 16) * 4;
101 unsigned ThresholdPrivate = UnrollThresholdPrivate;
102 unsigned ThresholdLocal = UnrollThresholdLocal;
103 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
104 for (const BasicBlock *BB : L->getBlocks()) {
105 const DataLayout &DL = BB->getModule()->getDataLayout();
106 unsigned LocalGEPsSeen = 0;
108 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
109 return SubLoop->contains(BB); }))
110 continue; // Block belongs to an inner loop.
112 for (const Instruction &I : *BB) {
113 // Unroll a loop which contains an "if" statement whose condition
114 // defined by a PHI belonging to the loop. This may help to eliminate
115 // if region and potentially even PHI itself, saving on both divergence
116 // and registers used for the PHI.
117 // Add a small bonus for each of such "if" statements.
118 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
119 if (UP.Threshold < MaxBoost && Br->isConditional()) {
120 BasicBlock *Succ0 = Br->getSuccessor(0);
121 BasicBlock *Succ1 = Br->getSuccessor(1);
122 if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) ||
123 (L->contains(Succ1) && L->isLoopExiting(Succ1)))
124 continue;
125 if (dependsOnLocalPhi(L, Br->getCondition())) {
126 UP.Threshold += UnrollThresholdIf;
127 LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
128 << " for loop:\n"
129 << *L << " due to " << *Br << '\n');
130 if (UP.Threshold >= MaxBoost)
131 return;
134 continue;
137 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
138 if (!GEP)
139 continue;
141 unsigned AS = GEP->getAddressSpace();
142 unsigned Threshold = 0;
143 if (AS == AMDGPUAS::PRIVATE_ADDRESS)
144 Threshold = ThresholdPrivate;
145 else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS)
146 Threshold = ThresholdLocal;
147 else
148 continue;
150 if (UP.Threshold >= Threshold)
151 continue;
153 if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
154 const Value *Ptr = GEP->getPointerOperand();
155 const AllocaInst *Alloca =
156 dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL));
157 if (!Alloca || !Alloca->isStaticAlloca())
158 continue;
159 Type *Ty = Alloca->getAllocatedType();
160 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
161 if (AllocaSize > MaxAlloca)
162 continue;
163 } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
164 AS == AMDGPUAS::REGION_ADDRESS) {
165 LocalGEPsSeen++;
166 // Inhibit unroll for local memory if we have seen addressing not to
167 // a variable, most likely we will be unable to combine it.
168 // Do not unroll too deep inner loops for local memory to give a chance
169 // to unroll an outer loop for a more important reason.
170 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
171 (!isa<GlobalVariable>(GEP->getPointerOperand()) &&
172 !isa<Argument>(GEP->getPointerOperand())))
173 continue;
176 // Check if GEP depends on a value defined by this loop itself.
177 bool HasLoopDef = false;
178 for (const Value *Op : GEP->operands()) {
179 const Instruction *Inst = dyn_cast<Instruction>(Op);
180 if (!Inst || L->isLoopInvariant(Op))
181 continue;
183 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
184 return SubLoop->contains(Inst); }))
185 continue;
186 HasLoopDef = true;
187 break;
189 if (!HasLoopDef)
190 continue;
192 // We want to do whatever we can to limit the number of alloca
193 // instructions that make it through to the code generator. allocas
194 // require us to use indirect addressing, which is slow and prone to
195 // compiler bugs. If this loop does an address calculation on an
196 // alloca ptr, then we want to use a higher than normal loop unroll
197 // threshold. This will give SROA a better chance to eliminate these
198 // allocas.
200 // We also want to have more unrolling for local memory to let ds
201 // instructions with different offsets combine.
203 // Don't use the maximum allowed value here as it will make some
204 // programs way too big.
205 UP.Threshold = Threshold;
206 LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
207 << " for loop:\n"
208 << *L << " due to " << *GEP << '\n');
209 if (UP.Threshold >= MaxBoost)
210 return;
215 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
216 // The concept of vector registers doesn't really exist. Some packed vector
217 // operations operate on the normal 32-bit registers.
218 return 256;
221 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const {
222 // This is really the number of registers to fill when vectorizing /
223 // interleaving loops, so we lie to avoid trying to use all registers.
224 return getHardwareNumberOfRegisters(Vec) >> 3;
227 unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const {
228 return 32;
231 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
232 return 32;
235 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
236 unsigned ChainSizeInBytes,
237 VectorType *VecTy) const {
238 unsigned VecRegBitWidth = VF * LoadSize;
239 if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
240 // TODO: Support element-size less than 32bit?
241 return 128 / LoadSize;
243 return VF;
246 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
247 unsigned ChainSizeInBytes,
248 VectorType *VecTy) const {
249 unsigned VecRegBitWidth = VF * StoreSize;
250 if (VecRegBitWidth > 128)
251 return 128 / StoreSize;
253 return VF;
256 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
257 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
258 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
259 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
260 AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) {
261 return 512;
264 if (AddrSpace == AMDGPUAS::FLAT_ADDRESS ||
265 AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
266 AddrSpace == AMDGPUAS::REGION_ADDRESS)
267 return 128;
269 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
270 return 8 * ST->getMaxPrivateElementSize();
272 llvm_unreachable("unhandled address space");
275 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
276 unsigned Alignment,
277 unsigned AddrSpace) const {
278 // We allow vectorization of flat stores, even though we may need to decompose
279 // them later if they may access private memory. We don't have enough context
280 // here, and legalization can handle it.
281 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
282 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
283 ChainSizeInBytes <= ST->getMaxPrivateElementSize();
285 return true;
288 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
289 unsigned Alignment,
290 unsigned AddrSpace) const {
291 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
294 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
295 unsigned Alignment,
296 unsigned AddrSpace) const {
297 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
300 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) {
301 // Disable unrolling if the loop is not vectorized.
302 // TODO: Enable this again.
303 if (VF == 1)
304 return 1;
306 return 8;
309 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
310 MemIntrinsicInfo &Info) const {
311 switch (Inst->getIntrinsicID()) {
312 case Intrinsic::amdgcn_atomic_inc:
313 case Intrinsic::amdgcn_atomic_dec:
314 case Intrinsic::amdgcn_ds_ordered_add:
315 case Intrinsic::amdgcn_ds_ordered_swap:
316 case Intrinsic::amdgcn_ds_fadd:
317 case Intrinsic::amdgcn_ds_fmin:
318 case Intrinsic::amdgcn_ds_fmax: {
319 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
320 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
321 if (!Ordering || !Volatile)
322 return false; // Invalid.
324 unsigned OrderingVal = Ordering->getZExtValue();
325 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
326 return false;
328 Info.PtrVal = Inst->getArgOperand(0);
329 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
330 Info.ReadMem = true;
331 Info.WriteMem = true;
332 Info.IsVolatile = !Volatile->isNullValue();
333 return true;
335 default:
336 return false;
340 int GCNTTIImpl::getArithmeticInstrCost(
341 unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
342 TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
343 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args ) {
344 EVT OrigTy = TLI->getValueType(DL, Ty);
345 if (!OrigTy.isSimple()) {
346 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
347 Opd1PropInfo, Opd2PropInfo);
350 // Legalize the type.
351 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
352 int ISD = TLI->InstructionOpcodeToISD(Opcode);
354 // Because we don't have any legal vector operations, but the legal types, we
355 // need to account for split vectors.
356 unsigned NElts = LT.second.isVector() ?
357 LT.second.getVectorNumElements() : 1;
359 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
361 switch (ISD) {
362 case ISD::SHL:
363 case ISD::SRL:
364 case ISD::SRA:
365 if (SLT == MVT::i64)
366 return get64BitInstrCost() * LT.first * NElts;
368 // i32
369 return getFullRateInstrCost() * LT.first * NElts;
370 case ISD::ADD:
371 case ISD::SUB:
372 case ISD::AND:
373 case ISD::OR:
374 case ISD::XOR:
375 if (SLT == MVT::i64){
376 // and, or and xor are typically split into 2 VALU instructions.
377 return 2 * getFullRateInstrCost() * LT.first * NElts;
380 return LT.first * NElts * getFullRateInstrCost();
381 case ISD::MUL: {
382 const int QuarterRateCost = getQuarterRateInstrCost();
383 if (SLT == MVT::i64) {
384 const int FullRateCost = getFullRateInstrCost();
385 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
388 // i32
389 return QuarterRateCost * NElts * LT.first;
391 case ISD::FADD:
392 case ISD::FSUB:
393 case ISD::FMUL:
394 if (SLT == MVT::f64)
395 return LT.first * NElts * get64BitInstrCost();
397 if (SLT == MVT::f32 || SLT == MVT::f16)
398 return LT.first * NElts * getFullRateInstrCost();
399 break;
400 case ISD::FDIV:
401 case ISD::FREM:
402 // FIXME: frem should be handled separately. The fdiv in it is most of it,
403 // but the current lowering is also not entirely correct.
404 if (SLT == MVT::f64) {
405 int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost();
406 // Add cost of workaround.
407 if (!ST->hasUsableDivScaleConditionOutput())
408 Cost += 3 * getFullRateInstrCost();
410 return LT.first * Cost * NElts;
413 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
414 // TODO: This is more complicated, unsafe flags etc.
415 if ((SLT == MVT::f32 && !ST->hasFP32Denormals()) ||
416 (SLT == MVT::f16 && ST->has16BitInsts())) {
417 return LT.first * getQuarterRateInstrCost() * NElts;
421 if (SLT == MVT::f16 && ST->has16BitInsts()) {
422 // 2 x v_cvt_f32_f16
423 // f32 rcp
424 // f32 fmul
425 // v_cvt_f16_f32
426 // f16 div_fixup
427 int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost();
428 return LT.first * Cost * NElts;
431 if (SLT == MVT::f32 || SLT == MVT::f16) {
432 int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost();
434 if (!ST->hasFP32Denormals()) {
435 // FP mode switches.
436 Cost += 2 * getFullRateInstrCost();
439 return LT.first * NElts * Cost;
441 break;
442 default:
443 break;
446 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
447 Opd1PropInfo, Opd2PropInfo);
450 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode) {
451 // XXX - For some reason this isn't called for switch.
452 switch (Opcode) {
453 case Instruction::Br:
454 case Instruction::Ret:
455 return 10;
456 default:
457 return BaseT::getCFInstrCost(Opcode);
461 int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *Ty,
462 bool IsPairwise) {
463 EVT OrigTy = TLI->getValueType(DL, Ty);
465 // Computes cost on targets that have packed math instructions(which support
466 // 16-bit types only).
467 if (IsPairwise ||
468 !ST->hasVOP3PInsts() ||
469 OrigTy.getScalarSizeInBits() != 16)
470 return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise);
472 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
473 return LT.first * getFullRateInstrCost();
476 int GCNTTIImpl::getMinMaxReductionCost(Type *Ty, Type *CondTy,
477 bool IsPairwise,
478 bool IsUnsigned) {
479 EVT OrigTy = TLI->getValueType(DL, Ty);
481 // Computes cost on targets that have packed math instructions(which support
482 // 16-bit types only).
483 if (IsPairwise ||
484 !ST->hasVOP3PInsts() ||
485 OrigTy.getScalarSizeInBits() != 16)
486 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned);
488 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
489 return LT.first * getHalfRateInstrCost();
492 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
493 unsigned Index) {
494 switch (Opcode) {
495 case Instruction::ExtractElement:
496 case Instruction::InsertElement: {
497 unsigned EltSize
498 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
499 if (EltSize < 32) {
500 if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
501 return 0;
502 return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
505 // Extracts are just reads of a subregister, so are free. Inserts are
506 // considered free because we don't want to have any cost for scalarizing
507 // operations, and we don't have to copy into a different register class.
509 // Dynamic indexing isn't free and is best avoided.
510 return Index == ~0u ? 2 : 0;
512 default:
513 return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
519 static bool isArgPassedInSGPR(const Argument *A) {
520 const Function *F = A->getParent();
522 // Arguments to compute shaders are never a source of divergence.
523 CallingConv::ID CC = F->getCallingConv();
524 switch (CC) {
525 case CallingConv::AMDGPU_KERNEL:
526 case CallingConv::SPIR_KERNEL:
527 return true;
528 case CallingConv::AMDGPU_VS:
529 case CallingConv::AMDGPU_LS:
530 case CallingConv::AMDGPU_HS:
531 case CallingConv::AMDGPU_ES:
532 case CallingConv::AMDGPU_GS:
533 case CallingConv::AMDGPU_PS:
534 case CallingConv::AMDGPU_CS:
535 // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
536 // Everything else is in VGPRs.
537 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
538 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
539 default:
540 // TODO: Should calls support inreg for SGPR inputs?
541 return false;
545 /// \returns true if the result of the value could potentially be
546 /// different across workitems in a wavefront.
547 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
548 if (const Argument *A = dyn_cast<Argument>(V))
549 return !isArgPassedInSGPR(A);
551 // Loads from the private and flat address spaces are divergent, because
552 // threads can execute the load instruction with the same inputs and get
553 // different results.
555 // All other loads are not divergent, because if threads issue loads with the
556 // same arguments, they will always get the same result.
557 if (const LoadInst *Load = dyn_cast<LoadInst>(V))
558 return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
559 Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
561 // Atomics are divergent because they are executed sequentially: when an
562 // atomic operation refers to the same address in each thread, then each
563 // thread after the first sees the value written by the previous thread as
564 // original value.
565 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
566 return true;
568 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
569 return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
571 // Assume all function calls are a source of divergence.
572 if (isa<CallInst>(V) || isa<InvokeInst>(V))
573 return true;
575 return false;
578 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
579 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
580 switch (Intrinsic->getIntrinsicID()) {
581 default:
582 return false;
583 case Intrinsic::amdgcn_readfirstlane:
584 case Intrinsic::amdgcn_readlane:
585 case Intrinsic::amdgcn_icmp:
586 case Intrinsic::amdgcn_fcmp:
587 return true;
590 return false;
593 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
594 Intrinsic::ID IID) const {
595 switch (IID) {
596 case Intrinsic::amdgcn_atomic_inc:
597 case Intrinsic::amdgcn_atomic_dec:
598 case Intrinsic::amdgcn_ds_fadd:
599 case Intrinsic::amdgcn_ds_fmin:
600 case Intrinsic::amdgcn_ds_fmax:
601 case Intrinsic::amdgcn_is_shared:
602 case Intrinsic::amdgcn_is_private:
603 OpIndexes.push_back(0);
604 return true;
605 default:
606 return false;
610 bool GCNTTIImpl::rewriteIntrinsicWithAddressSpace(
611 IntrinsicInst *II, Value *OldV, Value *NewV) const {
612 auto IntrID = II->getIntrinsicID();
613 switch (IntrID) {
614 case Intrinsic::amdgcn_atomic_inc:
615 case Intrinsic::amdgcn_atomic_dec:
616 case Intrinsic::amdgcn_ds_fadd:
617 case Intrinsic::amdgcn_ds_fmin:
618 case Intrinsic::amdgcn_ds_fmax: {
619 const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4));
620 if (!IsVolatile->isZero())
621 return false;
622 Module *M = II->getParent()->getParent()->getParent();
623 Type *DestTy = II->getType();
624 Type *SrcTy = NewV->getType();
625 Function *NewDecl =
626 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
627 II->setArgOperand(0, NewV);
628 II->setCalledFunction(NewDecl);
629 return true;
631 case Intrinsic::amdgcn_is_shared:
632 case Intrinsic::amdgcn_is_private: {
633 unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ?
634 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
635 unsigned NewAS = NewV->getType()->getPointerAddressSpace();
636 LLVMContext &Ctx = NewV->getType()->getContext();
637 ConstantInt *NewVal = (TrueAS == NewAS) ?
638 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
639 II->replaceAllUsesWith(NewVal);
640 II->eraseFromParent();
641 return true;
643 default:
644 return false;
648 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
649 Type *SubTp) {
650 if (ST->hasVOP3PInsts()) {
651 VectorType *VT = cast<VectorType>(Tp);
652 if (VT->getNumElements() == 2 &&
653 DL.getTypeSizeInBits(VT->getElementType()) == 16) {
654 // With op_sel VOP3P instructions freely can access the low half or high
655 // half of a register, so any swizzle is free.
657 switch (Kind) {
658 case TTI::SK_Broadcast:
659 case TTI::SK_Reverse:
660 case TTI::SK_PermuteSingleSrc:
661 return 0;
662 default:
663 break;
668 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
671 bool GCNTTIImpl::areInlineCompatible(const Function *Caller,
672 const Function *Callee) const {
673 const TargetMachine &TM = getTLI()->getTargetMachine();
674 const FeatureBitset &CallerBits =
675 TM.getSubtargetImpl(*Caller)->getFeatureBits();
676 const FeatureBitset &CalleeBits =
677 TM.getSubtargetImpl(*Callee)->getFeatureBits();
679 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
680 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
681 if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
682 return false;
684 // FIXME: dx10_clamp can just take the caller setting, but there seems to be
685 // no way to support merge for backend defined attributes.
686 AMDGPU::SIModeRegisterDefaults CallerMode(*Caller);
687 AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee);
688 return CallerMode.isInlineCompatible(CalleeMode);
691 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
692 TTI::UnrollingPreferences &UP) {
693 CommonTTI.getUnrollingPreferences(L, SE, UP);
696 unsigned GCNTTIImpl::getUserCost(const User *U,
697 ArrayRef<const Value *> Operands) {
698 // Estimate extractelement elimination
699 if (const ExtractElementInst *EE = dyn_cast<ExtractElementInst>(U)) {
700 ConstantInt *CI = dyn_cast<ConstantInt>(EE->getOperand(1));
701 unsigned Idx = -1;
702 if (CI)
703 Idx = CI->getZExtValue();
704 return getVectorInstrCost(EE->getOpcode(), EE->getOperand(0)->getType(),
705 Idx);
708 // Estimate insertelement elimination
709 if (const InsertElementInst *IE = dyn_cast<InsertElementInst>(U)) {
710 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
711 unsigned Idx = -1;
712 if (CI)
713 Idx = CI->getZExtValue();
714 return getVectorInstrCost(IE->getOpcode(), IE->getType(), Idx);
717 // Estimate different intrinsics, e.g. llvm.fabs
718 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
719 SmallVector<Value *, 4> Args(II->arg_operands());
720 FastMathFlags FMF;
721 if (auto *FPMO = dyn_cast<FPMathOperator>(II))
722 FMF = FPMO->getFastMathFlags();
723 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), Args,
724 FMF);
726 return BaseT::getUserCost(U, Operands);
729 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
730 return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
733 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const {
734 return getHardwareNumberOfRegisters(Vec);
737 unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const {
738 return 32;
741 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const {
742 return 32;
745 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
746 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
747 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS)
748 return 128;
749 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
750 AddrSpace == AMDGPUAS::REGION_ADDRESS)
751 return 64;
752 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
753 return 32;
755 if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS ||
756 AddrSpace == AMDGPUAS::PARAM_I_ADDRESS ||
757 (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 &&
758 AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15)))
759 return 128;
760 llvm_unreachable("unhandled address space");
763 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
764 unsigned Alignment,
765 unsigned AddrSpace) const {
766 // We allow vectorization of flat stores, even though we may need to decompose
767 // them later if they may access private memory. We don't have enough context
768 // here, and legalization can handle it.
769 return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS);
772 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
773 unsigned Alignment,
774 unsigned AddrSpace) const {
775 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
778 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
779 unsigned Alignment,
780 unsigned AddrSpace) const {
781 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
784 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) {
785 // Disable unrolling if the loop is not vectorized.
786 // TODO: Enable this again.
787 if (VF == 1)
788 return 1;
790 return 8;
793 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode) {
794 // XXX - For some reason this isn't called for switch.
795 switch (Opcode) {
796 case Instruction::Br:
797 case Instruction::Ret:
798 return 10;
799 default:
800 return BaseT::getCFInstrCost(Opcode);
804 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
805 unsigned Index) {
806 switch (Opcode) {
807 case Instruction::ExtractElement:
808 case Instruction::InsertElement: {
809 unsigned EltSize
810 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
811 if (EltSize < 32) {
812 return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
815 // Extracts are just reads of a subregister, so are free. Inserts are
816 // considered free because we don't want to have any cost for scalarizing
817 // operations, and we don't have to copy into a different register class.
819 // Dynamic indexing isn't free and is best avoided.
820 return Index == ~0u ? 2 : 0;
822 default:
823 return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
827 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
828 TTI::UnrollingPreferences &UP) {
829 CommonTTI.getUnrollingPreferences(L, SE, UP);