[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Target / AMDGPU / R600ISelLowering.cpp
blob659458b0b752d1279b73aab58233f42ff14de80c
1 //===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for R600
12 //===----------------------------------------------------------------------===//
14 #include "R600ISelLowering.h"
15 #include "AMDGPUFrameLowering.h"
16 #include "AMDGPUSubtarget.h"
17 #include "R600Defines.h"
18 #include "R600FrameLowering.h"
19 #include "R600InstrInfo.h"
20 #include "R600MachineFunctionInfo.h"
21 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
22 #include "Utils/AMDGPUBaseInfo.h"
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/CodeGen/CallingConvLower.h"
29 #include "llvm/CodeGen/DAGCombine.h"
30 #include "llvm/CodeGen/ISDOpcodes.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/SelectionDAG.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <utility>
49 #include <vector>
51 using namespace llvm;
53 #include "R600GenCallingConv.inc"
55 R600TargetLowering::R600TargetLowering(const TargetMachine &TM,
56 const R600Subtarget &STI)
57 : AMDGPUTargetLowering(TM, STI), Subtarget(&STI), Gen(STI.getGeneration()) {
58 addRegisterClass(MVT::f32, &R600::R600_Reg32RegClass);
59 addRegisterClass(MVT::i32, &R600::R600_Reg32RegClass);
60 addRegisterClass(MVT::v2f32, &R600::R600_Reg64RegClass);
61 addRegisterClass(MVT::v2i32, &R600::R600_Reg64RegClass);
62 addRegisterClass(MVT::v4f32, &R600::R600_Reg128RegClass);
63 addRegisterClass(MVT::v4i32, &R600::R600_Reg128RegClass);
65 computeRegisterProperties(Subtarget->getRegisterInfo());
67 // Legalize loads and stores to the private address space.
68 setOperationAction(ISD::LOAD, MVT::i32, Custom);
69 setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
70 setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
72 // EXTLOAD should be the same as ZEXTLOAD. It is legal for some address
73 // spaces, so it is custom lowered to handle those where it isn't.
74 for (MVT VT : MVT::integer_valuetypes()) {
75 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
76 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Custom);
77 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Custom);
79 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
80 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Custom);
81 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Custom);
83 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
84 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Custom);
85 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Custom);
88 // Workaround for LegalizeDAG asserting on expansion of i1 vector loads.
89 setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
90 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
91 setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
93 setLoadExtAction(ISD::EXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
94 setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
95 setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
97 setOperationAction(ISD::STORE, MVT::i8, Custom);
98 setOperationAction(ISD::STORE, MVT::i32, Custom);
99 setOperationAction(ISD::STORE, MVT::v2i32, Custom);
100 setOperationAction(ISD::STORE, MVT::v4i32, Custom);
102 setTruncStoreAction(MVT::i32, MVT::i8, Custom);
103 setTruncStoreAction(MVT::i32, MVT::i16, Custom);
104 // We need to include these since trunc STORES to PRIVATE need
105 // special handling to accommodate RMW
106 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
107 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Custom);
108 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Custom);
109 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Custom);
110 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Custom);
111 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
112 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
113 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Custom);
114 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Custom);
115 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Custom);
117 // Workaround for LegalizeDAG asserting on expansion of i1 vector stores.
118 setTruncStoreAction(MVT::v2i32, MVT::v2i1, Expand);
119 setTruncStoreAction(MVT::v4i32, MVT::v4i1, Expand);
121 // Set condition code actions
122 setCondCodeAction(ISD::SETO, MVT::f32, Expand);
123 setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
124 setCondCodeAction(ISD::SETLT, MVT::f32, Expand);
125 setCondCodeAction(ISD::SETLE, MVT::f32, Expand);
126 setCondCodeAction(ISD::SETOLT, MVT::f32, Expand);
127 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
128 setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
129 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
130 setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
131 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
132 setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
133 setCondCodeAction(ISD::SETULE, MVT::f32, Expand);
135 setCondCodeAction(ISD::SETLE, MVT::i32, Expand);
136 setCondCodeAction(ISD::SETLT, MVT::i32, Expand);
137 setCondCodeAction(ISD::SETULE, MVT::i32, Expand);
138 setCondCodeAction(ISD::SETULT, MVT::i32, Expand);
140 setOperationAction(ISD::FCOS, MVT::f32, Custom);
141 setOperationAction(ISD::FSIN, MVT::f32, Custom);
143 setOperationAction(ISD::SETCC, MVT::v4i32, Expand);
144 setOperationAction(ISD::SETCC, MVT::v2i32, Expand);
146 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
147 setOperationAction(ISD::BR_CC, MVT::f32, Expand);
148 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
150 setOperationAction(ISD::FSUB, MVT::f32, Expand);
152 setOperationAction(ISD::FCEIL, MVT::f64, Custom);
153 setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
154 setOperationAction(ISD::FRINT, MVT::f64, Custom);
155 setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
157 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
158 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
160 setOperationAction(ISD::SETCC, MVT::i32, Expand);
161 setOperationAction(ISD::SETCC, MVT::f32, Expand);
162 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Custom);
163 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Custom);
164 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
165 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
167 setOperationAction(ISD::SELECT, MVT::i32, Expand);
168 setOperationAction(ISD::SELECT, MVT::f32, Expand);
169 setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
170 setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
172 // ADD, SUB overflow.
173 // TODO: turn these into Legal?
174 if (Subtarget->hasCARRY())
175 setOperationAction(ISD::UADDO, MVT::i32, Custom);
177 if (Subtarget->hasBORROW())
178 setOperationAction(ISD::USUBO, MVT::i32, Custom);
180 // Expand sign extension of vectors
181 if (!Subtarget->hasBFE())
182 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
184 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Expand);
185 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Expand);
187 if (!Subtarget->hasBFE())
188 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
189 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Expand);
190 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Expand);
192 if (!Subtarget->hasBFE())
193 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Expand);
195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Expand);
197 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
198 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Expand);
199 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Expand);
201 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Expand);
203 setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
205 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Custom);
206 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f32, Custom);
207 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
208 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
210 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i32, Custom);
211 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f32, Custom);
212 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
213 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
215 // We don't have 64-bit shifts. Thus we need either SHX i64 or SHX_PARTS i32
216 // to be Legal/Custom in order to avoid library calls.
217 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
218 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
219 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
221 if (!Subtarget->hasFMA()) {
222 setOperationAction(ISD::FMA, MVT::f32, Expand);
223 setOperationAction(ISD::FMA, MVT::f64, Expand);
226 // FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we
227 // need it for R600.
228 if (!Subtarget->hasFP32Denormals())
229 setOperationAction(ISD::FMAD, MVT::f32, Legal);
231 if (!Subtarget->hasBFI()) {
232 // fcopysign can be done in a single instruction with BFI.
233 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
234 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
237 if (!Subtarget->hasBCNT(32))
238 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
240 if (!Subtarget->hasBCNT(64))
241 setOperationAction(ISD::CTPOP, MVT::i64, Expand);
243 if (Subtarget->hasFFBH())
244 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
246 if (Subtarget->hasFFBL())
247 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
249 // FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we
250 // need it for R600.
251 if (Subtarget->hasBFE())
252 setHasExtractBitsInsn(true);
254 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
256 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
257 for (MVT VT : ScalarIntVTs) {
258 setOperationAction(ISD::ADDC, VT, Expand);
259 setOperationAction(ISD::SUBC, VT, Expand);
260 setOperationAction(ISD::ADDE, VT, Expand);
261 setOperationAction(ISD::SUBE, VT, Expand);
264 // LLVM will expand these to atomic_cmp_swap(0)
265 // and atomic_swap, respectively.
266 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand);
267 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
269 // We need to custom lower some of the intrinsics
270 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
271 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
273 setSchedulingPreference(Sched::Source);
275 setTargetDAGCombine(ISD::FP_ROUND);
276 setTargetDAGCombine(ISD::FP_TO_SINT);
277 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
278 setTargetDAGCombine(ISD::SELECT_CC);
279 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
280 setTargetDAGCombine(ISD::LOAD);
283 static inline bool isEOP(MachineBasicBlock::iterator I) {
284 if (std::next(I) == I->getParent()->end())
285 return false;
286 return std::next(I)->getOpcode() == R600::RETURN;
289 MachineBasicBlock *
290 R600TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
291 MachineBasicBlock *BB) const {
292 MachineFunction *MF = BB->getParent();
293 MachineRegisterInfo &MRI = MF->getRegInfo();
294 MachineBasicBlock::iterator I = MI;
295 const R600InstrInfo *TII = Subtarget->getInstrInfo();
297 switch (MI.getOpcode()) {
298 default:
299 // Replace LDS_*_RET instruction that don't have any uses with the
300 // equivalent LDS_*_NORET instruction.
301 if (TII->isLDSRetInstr(MI.getOpcode())) {
302 int DstIdx = TII->getOperandIdx(MI.getOpcode(), R600::OpName::dst);
303 assert(DstIdx != -1);
304 MachineInstrBuilder NewMI;
305 // FIXME: getLDSNoRetOp method only handles LDS_1A1D LDS ops. Add
306 // LDS_1A2D support and remove this special case.
307 if (!MRI.use_empty(MI.getOperand(DstIdx).getReg()) ||
308 MI.getOpcode() == R600::LDS_CMPST_RET)
309 return BB;
311 NewMI = BuildMI(*BB, I, BB->findDebugLoc(I),
312 TII->get(R600::getLDSNoRetOp(MI.getOpcode())));
313 for (unsigned i = 1, e = MI.getNumOperands(); i < e; ++i) {
314 NewMI.add(MI.getOperand(i));
316 } else {
317 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
319 break;
321 case R600::FABS_R600: {
322 MachineInstr *NewMI = TII->buildDefaultInstruction(
323 *BB, I, R600::MOV, MI.getOperand(0).getReg(),
324 MI.getOperand(1).getReg());
325 TII->addFlag(*NewMI, 0, MO_FLAG_ABS);
326 break;
329 case R600::FNEG_R600: {
330 MachineInstr *NewMI = TII->buildDefaultInstruction(
331 *BB, I, R600::MOV, MI.getOperand(0).getReg(),
332 MI.getOperand(1).getReg());
333 TII->addFlag(*NewMI, 0, MO_FLAG_NEG);
334 break;
337 case R600::MASK_WRITE: {
338 Register maskedRegister = MI.getOperand(0).getReg();
339 assert(Register::isVirtualRegister(maskedRegister));
340 MachineInstr * defInstr = MRI.getVRegDef(maskedRegister);
341 TII->addFlag(*defInstr, 0, MO_FLAG_MASK);
342 break;
345 case R600::MOV_IMM_F32:
346 TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(), MI.getOperand(1)
347 .getFPImm()
348 ->getValueAPF()
349 .bitcastToAPInt()
350 .getZExtValue());
351 break;
353 case R600::MOV_IMM_I32:
354 TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(),
355 MI.getOperand(1).getImm());
356 break;
358 case R600::MOV_IMM_GLOBAL_ADDR: {
359 //TODO: Perhaps combine this instruction with the next if possible
360 auto MIB = TII->buildDefaultInstruction(
361 *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_LITERAL_X);
362 int Idx = TII->getOperandIdx(*MIB, R600::OpName::literal);
363 //TODO: Ugh this is rather ugly
364 MIB->getOperand(Idx) = MI.getOperand(1);
365 break;
368 case R600::CONST_COPY: {
369 MachineInstr *NewMI = TII->buildDefaultInstruction(
370 *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_CONST);
371 TII->setImmOperand(*NewMI, R600::OpName::src0_sel,
372 MI.getOperand(1).getImm());
373 break;
376 case R600::RAT_WRITE_CACHELESS_32_eg:
377 case R600::RAT_WRITE_CACHELESS_64_eg:
378 case R600::RAT_WRITE_CACHELESS_128_eg:
379 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
380 .add(MI.getOperand(0))
381 .add(MI.getOperand(1))
382 .addImm(isEOP(I)); // Set End of program bit
383 break;
385 case R600::RAT_STORE_TYPED_eg:
386 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
387 .add(MI.getOperand(0))
388 .add(MI.getOperand(1))
389 .add(MI.getOperand(2))
390 .addImm(isEOP(I)); // Set End of program bit
391 break;
393 case R600::BRANCH:
394 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP))
395 .add(MI.getOperand(0));
396 break;
398 case R600::BRANCH_COND_f32: {
399 MachineInstr *NewMI =
400 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
401 R600::PREDICATE_BIT)
402 .add(MI.getOperand(1))
403 .addImm(R600::PRED_SETNE)
404 .addImm(0); // Flags
405 TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
406 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
407 .add(MI.getOperand(0))
408 .addReg(R600::PREDICATE_BIT, RegState::Kill);
409 break;
412 case R600::BRANCH_COND_i32: {
413 MachineInstr *NewMI =
414 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
415 R600::PREDICATE_BIT)
416 .add(MI.getOperand(1))
417 .addImm(R600::PRED_SETNE_INT)
418 .addImm(0); // Flags
419 TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
420 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
421 .add(MI.getOperand(0))
422 .addReg(R600::PREDICATE_BIT, RegState::Kill);
423 break;
426 case R600::EG_ExportSwz:
427 case R600::R600_ExportSwz: {
428 // Instruction is left unmodified if its not the last one of its type
429 bool isLastInstructionOfItsType = true;
430 unsigned InstExportType = MI.getOperand(1).getImm();
431 for (MachineBasicBlock::iterator NextExportInst = std::next(I),
432 EndBlock = BB->end(); NextExportInst != EndBlock;
433 NextExportInst = std::next(NextExportInst)) {
434 if (NextExportInst->getOpcode() == R600::EG_ExportSwz ||
435 NextExportInst->getOpcode() == R600::R600_ExportSwz) {
436 unsigned CurrentInstExportType = NextExportInst->getOperand(1)
437 .getImm();
438 if (CurrentInstExportType == InstExportType) {
439 isLastInstructionOfItsType = false;
440 break;
444 bool EOP = isEOP(I);
445 if (!EOP && !isLastInstructionOfItsType)
446 return BB;
447 unsigned CfInst = (MI.getOpcode() == R600::EG_ExportSwz) ? 84 : 40;
448 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
449 .add(MI.getOperand(0))
450 .add(MI.getOperand(1))
451 .add(MI.getOperand(2))
452 .add(MI.getOperand(3))
453 .add(MI.getOperand(4))
454 .add(MI.getOperand(5))
455 .add(MI.getOperand(6))
456 .addImm(CfInst)
457 .addImm(EOP);
458 break;
460 case R600::RETURN: {
461 return BB;
465 MI.eraseFromParent();
466 return BB;
469 //===----------------------------------------------------------------------===//
470 // Custom DAG Lowering Operations
471 //===----------------------------------------------------------------------===//
473 SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
474 MachineFunction &MF = DAG.getMachineFunction();
475 R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
476 switch (Op.getOpcode()) {
477 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
478 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
479 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
480 case ISD::SHL_PARTS: return LowerSHLParts(Op, DAG);
481 case ISD::SRA_PARTS:
482 case ISD::SRL_PARTS: return LowerSRXParts(Op, DAG);
483 case ISD::UADDO: return LowerUADDSUBO(Op, DAG, ISD::ADD, AMDGPUISD::CARRY);
484 case ISD::USUBO: return LowerUADDSUBO(Op, DAG, ISD::SUB, AMDGPUISD::BORROW);
485 case ISD::FCOS:
486 case ISD::FSIN: return LowerTrig(Op, DAG);
487 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
488 case ISD::STORE: return LowerSTORE(Op, DAG);
489 case ISD::LOAD: {
490 SDValue Result = LowerLOAD(Op, DAG);
491 assert((!Result.getNode() ||
492 Result.getNode()->getNumValues() == 2) &&
493 "Load should return a value and a chain");
494 return Result;
497 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
498 case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG);
499 case ISD::FrameIndex: return lowerFrameIndex(Op, DAG);
500 case ISD::INTRINSIC_VOID: {
501 SDValue Chain = Op.getOperand(0);
502 unsigned IntrinsicID =
503 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
504 switch (IntrinsicID) {
505 case Intrinsic::r600_store_swizzle: {
506 SDLoc DL(Op);
507 const SDValue Args[8] = {
508 Chain,
509 Op.getOperand(2), // Export Value
510 Op.getOperand(3), // ArrayBase
511 Op.getOperand(4), // Type
512 DAG.getConstant(0, DL, MVT::i32), // SWZ_X
513 DAG.getConstant(1, DL, MVT::i32), // SWZ_Y
514 DAG.getConstant(2, DL, MVT::i32), // SWZ_Z
515 DAG.getConstant(3, DL, MVT::i32) // SWZ_W
517 return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, Op.getValueType(), Args);
520 // default for switch(IntrinsicID)
521 default: break;
523 // break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode())
524 break;
526 case ISD::INTRINSIC_WO_CHAIN: {
527 unsigned IntrinsicID =
528 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
529 EVT VT = Op.getValueType();
530 SDLoc DL(Op);
531 switch (IntrinsicID) {
532 case Intrinsic::r600_tex:
533 case Intrinsic::r600_texc: {
534 unsigned TextureOp;
535 switch (IntrinsicID) {
536 case Intrinsic::r600_tex:
537 TextureOp = 0;
538 break;
539 case Intrinsic::r600_texc:
540 TextureOp = 1;
541 break;
542 default:
543 llvm_unreachable("unhandled texture operation");
546 SDValue TexArgs[19] = {
547 DAG.getConstant(TextureOp, DL, MVT::i32),
548 Op.getOperand(1),
549 DAG.getConstant(0, DL, MVT::i32),
550 DAG.getConstant(1, DL, MVT::i32),
551 DAG.getConstant(2, DL, MVT::i32),
552 DAG.getConstant(3, DL, MVT::i32),
553 Op.getOperand(2),
554 Op.getOperand(3),
555 Op.getOperand(4),
556 DAG.getConstant(0, DL, MVT::i32),
557 DAG.getConstant(1, DL, MVT::i32),
558 DAG.getConstant(2, DL, MVT::i32),
559 DAG.getConstant(3, DL, MVT::i32),
560 Op.getOperand(5),
561 Op.getOperand(6),
562 Op.getOperand(7),
563 Op.getOperand(8),
564 Op.getOperand(9),
565 Op.getOperand(10)
567 return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, MVT::v4f32, TexArgs);
569 case Intrinsic::r600_dot4: {
570 SDValue Args[8] = {
571 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
572 DAG.getConstant(0, DL, MVT::i32)),
573 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
574 DAG.getConstant(0, DL, MVT::i32)),
575 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
576 DAG.getConstant(1, DL, MVT::i32)),
577 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
578 DAG.getConstant(1, DL, MVT::i32)),
579 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
580 DAG.getConstant(2, DL, MVT::i32)),
581 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
582 DAG.getConstant(2, DL, MVT::i32)),
583 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
584 DAG.getConstant(3, DL, MVT::i32)),
585 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
586 DAG.getConstant(3, DL, MVT::i32))
588 return DAG.getNode(AMDGPUISD::DOT4, DL, MVT::f32, Args);
591 case Intrinsic::r600_implicitarg_ptr: {
592 MVT PtrVT = getPointerTy(DAG.getDataLayout(), AMDGPUAS::PARAM_I_ADDRESS);
593 uint32_t ByteOffset = getImplicitParameterOffset(MF, FIRST_IMPLICIT);
594 return DAG.getConstant(ByteOffset, DL, PtrVT);
596 case Intrinsic::r600_read_ngroups_x:
597 return LowerImplicitParameter(DAG, VT, DL, 0);
598 case Intrinsic::r600_read_ngroups_y:
599 return LowerImplicitParameter(DAG, VT, DL, 1);
600 case Intrinsic::r600_read_ngroups_z:
601 return LowerImplicitParameter(DAG, VT, DL, 2);
602 case Intrinsic::r600_read_global_size_x:
603 return LowerImplicitParameter(DAG, VT, DL, 3);
604 case Intrinsic::r600_read_global_size_y:
605 return LowerImplicitParameter(DAG, VT, DL, 4);
606 case Intrinsic::r600_read_global_size_z:
607 return LowerImplicitParameter(DAG, VT, DL, 5);
608 case Intrinsic::r600_read_local_size_x:
609 return LowerImplicitParameter(DAG, VT, DL, 6);
610 case Intrinsic::r600_read_local_size_y:
611 return LowerImplicitParameter(DAG, VT, DL, 7);
612 case Intrinsic::r600_read_local_size_z:
613 return LowerImplicitParameter(DAG, VT, DL, 8);
615 case Intrinsic::r600_read_tgid_x:
616 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
617 R600::T1_X, VT);
618 case Intrinsic::r600_read_tgid_y:
619 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
620 R600::T1_Y, VT);
621 case Intrinsic::r600_read_tgid_z:
622 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
623 R600::T1_Z, VT);
624 case Intrinsic::r600_read_tidig_x:
625 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
626 R600::T0_X, VT);
627 case Intrinsic::r600_read_tidig_y:
628 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
629 R600::T0_Y, VT);
630 case Intrinsic::r600_read_tidig_z:
631 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
632 R600::T0_Z, VT);
634 case Intrinsic::r600_recipsqrt_ieee:
635 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
637 case Intrinsic::r600_recipsqrt_clamped:
638 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
639 default:
640 return Op;
643 // break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode())
644 break;
646 } // end switch(Op.getOpcode())
647 return SDValue();
650 void R600TargetLowering::ReplaceNodeResults(SDNode *N,
651 SmallVectorImpl<SDValue> &Results,
652 SelectionDAG &DAG) const {
653 switch (N->getOpcode()) {
654 default:
655 AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG);
656 return;
657 case ISD::FP_TO_UINT:
658 if (N->getValueType(0) == MVT::i1) {
659 Results.push_back(lowerFP_TO_UINT(N->getOperand(0), DAG));
660 return;
662 // Since we don't care about out of bounds values we can use FP_TO_SINT for
663 // uints too. The DAGLegalizer code for uint considers some extra cases
664 // which are not necessary here.
665 LLVM_FALLTHROUGH;
666 case ISD::FP_TO_SINT: {
667 if (N->getValueType(0) == MVT::i1) {
668 Results.push_back(lowerFP_TO_SINT(N->getOperand(0), DAG));
669 return;
672 SDValue Result;
673 if (expandFP_TO_SINT(N, Result, DAG))
674 Results.push_back(Result);
675 return;
677 case ISD::SDIVREM: {
678 SDValue Op = SDValue(N, 1);
679 SDValue RES = LowerSDIVREM(Op, DAG);
680 Results.push_back(RES);
681 Results.push_back(RES.getValue(1));
682 break;
684 case ISD::UDIVREM: {
685 SDValue Op = SDValue(N, 0);
686 LowerUDIVREM64(Op, DAG, Results);
687 break;
692 SDValue R600TargetLowering::vectorToVerticalVector(SelectionDAG &DAG,
693 SDValue Vector) const {
694 SDLoc DL(Vector);
695 EVT VecVT = Vector.getValueType();
696 EVT EltVT = VecVT.getVectorElementType();
697 SmallVector<SDValue, 8> Args;
699 for (unsigned i = 0, e = VecVT.getVectorNumElements(); i != e; ++i) {
700 Args.push_back(DAG.getNode(
701 ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vector,
702 DAG.getConstant(i, DL, getVectorIdxTy(DAG.getDataLayout()))));
705 return DAG.getNode(AMDGPUISD::BUILD_VERTICAL_VECTOR, DL, VecVT, Args);
708 SDValue R600TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
709 SelectionDAG &DAG) const {
710 SDLoc DL(Op);
711 SDValue Vector = Op.getOperand(0);
712 SDValue Index = Op.getOperand(1);
714 if (isa<ConstantSDNode>(Index) ||
715 Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
716 return Op;
718 Vector = vectorToVerticalVector(DAG, Vector);
719 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(),
720 Vector, Index);
723 SDValue R600TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
724 SelectionDAG &DAG) const {
725 SDLoc DL(Op);
726 SDValue Vector = Op.getOperand(0);
727 SDValue Value = Op.getOperand(1);
728 SDValue Index = Op.getOperand(2);
730 if (isa<ConstantSDNode>(Index) ||
731 Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
732 return Op;
734 Vector = vectorToVerticalVector(DAG, Vector);
735 SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, Op.getValueType(),
736 Vector, Value, Index);
737 return vectorToVerticalVector(DAG, Insert);
740 SDValue R600TargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
741 SDValue Op,
742 SelectionDAG &DAG) const {
743 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
744 if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
745 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
747 const DataLayout &DL = DAG.getDataLayout();
748 const GlobalValue *GV = GSD->getGlobal();
749 MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
751 SDValue GA = DAG.getTargetGlobalAddress(GV, SDLoc(GSD), ConstPtrVT);
752 return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, SDLoc(GSD), ConstPtrVT, GA);
755 SDValue R600TargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
756 // On hw >= R700, COS/SIN input must be between -1. and 1.
757 // Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5)
758 EVT VT = Op.getValueType();
759 SDValue Arg = Op.getOperand(0);
760 SDLoc DL(Op);
762 // TODO: Should this propagate fast-math-flags?
763 SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
764 DAG.getNode(ISD::FADD, DL, VT,
765 DAG.getNode(ISD::FMUL, DL, VT, Arg,
766 DAG.getConstantFP(0.15915494309, DL, MVT::f32)),
767 DAG.getConstantFP(0.5, DL, MVT::f32)));
768 unsigned TrigNode;
769 switch (Op.getOpcode()) {
770 case ISD::FCOS:
771 TrigNode = AMDGPUISD::COS_HW;
772 break;
773 case ISD::FSIN:
774 TrigNode = AMDGPUISD::SIN_HW;
775 break;
776 default:
777 llvm_unreachable("Wrong trig opcode");
779 SDValue TrigVal = DAG.getNode(TrigNode, DL, VT,
780 DAG.getNode(ISD::FADD, DL, VT, FractPart,
781 DAG.getConstantFP(-0.5, DL, MVT::f32)));
782 if (Gen >= AMDGPUSubtarget::R700)
783 return TrigVal;
784 // On R600 hw, COS/SIN input must be between -Pi and Pi.
785 return DAG.getNode(ISD::FMUL, DL, VT, TrigVal,
786 DAG.getConstantFP(numbers::pif, DL, MVT::f32));
789 SDValue R600TargetLowering::LowerSHLParts(SDValue Op, SelectionDAG &DAG) const {
790 SDLoc DL(Op);
791 EVT VT = Op.getValueType();
793 SDValue Lo = Op.getOperand(0);
794 SDValue Hi = Op.getOperand(1);
795 SDValue Shift = Op.getOperand(2);
796 SDValue Zero = DAG.getConstant(0, DL, VT);
797 SDValue One = DAG.getConstant(1, DL, VT);
799 SDValue Width = DAG.getConstant(VT.getSizeInBits(), DL, VT);
800 SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
801 SDValue BigShift = DAG.getNode(ISD::SUB, DL, VT, Shift, Width);
802 SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift);
804 // The dance around Width1 is necessary for 0 special case.
805 // Without it the CompShift might be 32, producing incorrect results in
806 // Overflow. So we do the shift in two steps, the alternative is to
807 // add a conditional to filter the special case.
809 SDValue Overflow = DAG.getNode(ISD::SRL, DL, VT, Lo, CompShift);
810 Overflow = DAG.getNode(ISD::SRL, DL, VT, Overflow, One);
812 SDValue HiSmall = DAG.getNode(ISD::SHL, DL, VT, Hi, Shift);
813 HiSmall = DAG.getNode(ISD::OR, DL, VT, HiSmall, Overflow);
814 SDValue LoSmall = DAG.getNode(ISD::SHL, DL, VT, Lo, Shift);
816 SDValue HiBig = DAG.getNode(ISD::SHL, DL, VT, Lo, BigShift);
817 SDValue LoBig = Zero;
819 Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT);
820 Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT);
822 return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi);
825 SDValue R600TargetLowering::LowerSRXParts(SDValue Op, SelectionDAG &DAG) const {
826 SDLoc DL(Op);
827 EVT VT = Op.getValueType();
829 SDValue Lo = Op.getOperand(0);
830 SDValue Hi = Op.getOperand(1);
831 SDValue Shift = Op.getOperand(2);
832 SDValue Zero = DAG.getConstant(0, DL, VT);
833 SDValue One = DAG.getConstant(1, DL, VT);
835 const bool SRA = Op.getOpcode() == ISD::SRA_PARTS;
837 SDValue Width = DAG.getConstant(VT.getSizeInBits(), DL, VT);
838 SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
839 SDValue BigShift = DAG.getNode(ISD::SUB, DL, VT, Shift, Width);
840 SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift);
842 // The dance around Width1 is necessary for 0 special case.
843 // Without it the CompShift might be 32, producing incorrect results in
844 // Overflow. So we do the shift in two steps, the alternative is to
845 // add a conditional to filter the special case.
847 SDValue Overflow = DAG.getNode(ISD::SHL, DL, VT, Hi, CompShift);
848 Overflow = DAG.getNode(ISD::SHL, DL, VT, Overflow, One);
850 SDValue HiSmall = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, Shift);
851 SDValue LoSmall = DAG.getNode(ISD::SRL, DL, VT, Lo, Shift);
852 LoSmall = DAG.getNode(ISD::OR, DL, VT, LoSmall, Overflow);
854 SDValue LoBig = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, BigShift);
855 SDValue HiBig = SRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, Width1) : Zero;
857 Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT);
858 Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT);
860 return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi);
863 SDValue R600TargetLowering::LowerUADDSUBO(SDValue Op, SelectionDAG &DAG,
864 unsigned mainop, unsigned ovf) const {
865 SDLoc DL(Op);
866 EVT VT = Op.getValueType();
868 SDValue Lo = Op.getOperand(0);
869 SDValue Hi = Op.getOperand(1);
871 SDValue OVF = DAG.getNode(ovf, DL, VT, Lo, Hi);
872 // Extend sign.
873 OVF = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, OVF,
874 DAG.getValueType(MVT::i1));
876 SDValue Res = DAG.getNode(mainop, DL, VT, Lo, Hi);
878 return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT, VT), Res, OVF);
881 SDValue R600TargetLowering::lowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const {
882 SDLoc DL(Op);
883 return DAG.getNode(
884 ISD::SETCC,
886 MVT::i1,
887 Op, DAG.getConstantFP(1.0f, DL, MVT::f32),
888 DAG.getCondCode(ISD::SETEQ));
891 SDValue R600TargetLowering::lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const {
892 SDLoc DL(Op);
893 return DAG.getNode(
894 ISD::SETCC,
896 MVT::i1,
897 Op, DAG.getConstantFP(-1.0f, DL, MVT::f32),
898 DAG.getCondCode(ISD::SETEQ));
901 SDValue R600TargetLowering::LowerImplicitParameter(SelectionDAG &DAG, EVT VT,
902 const SDLoc &DL,
903 unsigned DwordOffset) const {
904 unsigned ByteOffset = DwordOffset * 4;
905 PointerType * PtrType = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
906 AMDGPUAS::PARAM_I_ADDRESS);
908 // We shouldn't be using an offset wider than 16-bits for implicit parameters.
909 assert(isInt<16>(ByteOffset));
911 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
912 DAG.getConstant(ByteOffset, DL, MVT::i32), // PTR
913 MachinePointerInfo(ConstantPointerNull::get(PtrType)));
916 bool R600TargetLowering::isZero(SDValue Op) const {
917 if(ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) {
918 return Cst->isNullValue();
919 } else if(ConstantFPSDNode *CstFP = dyn_cast<ConstantFPSDNode>(Op)){
920 return CstFP->isZero();
921 } else {
922 return false;
926 bool R600TargetLowering::isHWTrueValue(SDValue Op) const {
927 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
928 return CFP->isExactlyValue(1.0);
930 return isAllOnesConstant(Op);
933 bool R600TargetLowering::isHWFalseValue(SDValue Op) const {
934 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
935 return CFP->getValueAPF().isZero();
937 return isNullConstant(Op);
940 SDValue R600TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
941 SDLoc DL(Op);
942 EVT VT = Op.getValueType();
944 SDValue LHS = Op.getOperand(0);
945 SDValue RHS = Op.getOperand(1);
946 SDValue True = Op.getOperand(2);
947 SDValue False = Op.getOperand(3);
948 SDValue CC = Op.getOperand(4);
949 SDValue Temp;
951 if (VT == MVT::f32) {
952 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
953 SDValue MinMax = combineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI);
954 if (MinMax)
955 return MinMax;
958 // LHS and RHS are guaranteed to be the same value type
959 EVT CompareVT = LHS.getValueType();
961 // Check if we can lower this to a native operation.
963 // Try to lower to a SET* instruction:
965 // SET* can match the following patterns:
967 // select_cc f32, f32, -1, 0, cc_supported
968 // select_cc f32, f32, 1.0f, 0.0f, cc_supported
969 // select_cc i32, i32, -1, 0, cc_supported
972 // Move hardware True/False values to the correct operand.
973 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
974 ISD::CondCode InverseCC =
975 ISD::getSetCCInverse(CCOpcode, CompareVT == MVT::i32);
976 if (isHWTrueValue(False) && isHWFalseValue(True)) {
977 if (isCondCodeLegal(InverseCC, CompareVT.getSimpleVT())) {
978 std::swap(False, True);
979 CC = DAG.getCondCode(InverseCC);
980 } else {
981 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InverseCC);
982 if (isCondCodeLegal(SwapInvCC, CompareVT.getSimpleVT())) {
983 std::swap(False, True);
984 std::swap(LHS, RHS);
985 CC = DAG.getCondCode(SwapInvCC);
990 if (isHWTrueValue(True) && isHWFalseValue(False) &&
991 (CompareVT == VT || VT == MVT::i32)) {
992 // This can be matched by a SET* instruction.
993 return DAG.getNode(ISD::SELECT_CC, DL, VT, LHS, RHS, True, False, CC);
996 // Try to lower to a CND* instruction:
998 // CND* can match the following patterns:
1000 // select_cc f32, 0.0, f32, f32, cc_supported
1001 // select_cc f32, 0.0, i32, i32, cc_supported
1002 // select_cc i32, 0, f32, f32, cc_supported
1003 // select_cc i32, 0, i32, i32, cc_supported
1006 // Try to move the zero value to the RHS
1007 if (isZero(LHS)) {
1008 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1009 // Try swapping the operands
1010 ISD::CondCode CCSwapped = ISD::getSetCCSwappedOperands(CCOpcode);
1011 if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
1012 std::swap(LHS, RHS);
1013 CC = DAG.getCondCode(CCSwapped);
1014 } else {
1015 // Try inverting the conditon and then swapping the operands
1016 ISD::CondCode CCInv = ISD::getSetCCInverse(CCOpcode, CompareVT.isInteger());
1017 CCSwapped = ISD::getSetCCSwappedOperands(CCInv);
1018 if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
1019 std::swap(True, False);
1020 std::swap(LHS, RHS);
1021 CC = DAG.getCondCode(CCSwapped);
1025 if (isZero(RHS)) {
1026 SDValue Cond = LHS;
1027 SDValue Zero = RHS;
1028 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1029 if (CompareVT != VT) {
1030 // Bitcast True / False to the correct types. This will end up being
1031 // a nop, but it allows us to define only a single pattern in the
1032 // .TD files for each CND* instruction rather than having to have
1033 // one pattern for integer True/False and one for fp True/False
1034 True = DAG.getNode(ISD::BITCAST, DL, CompareVT, True);
1035 False = DAG.getNode(ISD::BITCAST, DL, CompareVT, False);
1038 switch (CCOpcode) {
1039 case ISD::SETONE:
1040 case ISD::SETUNE:
1041 case ISD::SETNE:
1042 CCOpcode = ISD::getSetCCInverse(CCOpcode, CompareVT == MVT::i32);
1043 Temp = True;
1044 True = False;
1045 False = Temp;
1046 break;
1047 default:
1048 break;
1050 SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, CompareVT,
1051 Cond, Zero,
1052 True, False,
1053 DAG.getCondCode(CCOpcode));
1054 return DAG.getNode(ISD::BITCAST, DL, VT, SelectNode);
1057 // If we make it this for it means we have no native instructions to handle
1058 // this SELECT_CC, so we must lower it.
1059 SDValue HWTrue, HWFalse;
1061 if (CompareVT == MVT::f32) {
1062 HWTrue = DAG.getConstantFP(1.0f, DL, CompareVT);
1063 HWFalse = DAG.getConstantFP(0.0f, DL, CompareVT);
1064 } else if (CompareVT == MVT::i32) {
1065 HWTrue = DAG.getConstant(-1, DL, CompareVT);
1066 HWFalse = DAG.getConstant(0, DL, CompareVT);
1068 else {
1069 llvm_unreachable("Unhandled value type in LowerSELECT_CC");
1072 // Lower this unsupported SELECT_CC into a combination of two supported
1073 // SELECT_CC operations.
1074 SDValue Cond = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, LHS, RHS, HWTrue, HWFalse, CC);
1076 return DAG.getNode(ISD::SELECT_CC, DL, VT,
1077 Cond, HWFalse,
1078 True, False,
1079 DAG.getCondCode(ISD::SETNE));
1082 /// LLVM generates byte-addressed pointers. For indirect addressing, we need to
1083 /// convert these pointers to a register index. Each register holds
1084 /// 16 bytes, (4 x 32bit sub-register), but we need to take into account the
1085 /// \p StackWidth, which tells us how many of the 4 sub-registrers will be used
1086 /// for indirect addressing.
1087 SDValue R600TargetLowering::stackPtrToRegIndex(SDValue Ptr,
1088 unsigned StackWidth,
1089 SelectionDAG &DAG) const {
1090 unsigned SRLPad;
1091 switch(StackWidth) {
1092 case 1:
1093 SRLPad = 2;
1094 break;
1095 case 2:
1096 SRLPad = 3;
1097 break;
1098 case 4:
1099 SRLPad = 4;
1100 break;
1101 default: llvm_unreachable("Invalid stack width");
1104 SDLoc DL(Ptr);
1105 return DAG.getNode(ISD::SRL, DL, Ptr.getValueType(), Ptr,
1106 DAG.getConstant(SRLPad, DL, MVT::i32));
1109 void R600TargetLowering::getStackAddress(unsigned StackWidth,
1110 unsigned ElemIdx,
1111 unsigned &Channel,
1112 unsigned &PtrIncr) const {
1113 switch (StackWidth) {
1114 default:
1115 case 1:
1116 Channel = 0;
1117 if (ElemIdx > 0) {
1118 PtrIncr = 1;
1119 } else {
1120 PtrIncr = 0;
1122 break;
1123 case 2:
1124 Channel = ElemIdx % 2;
1125 if (ElemIdx == 2) {
1126 PtrIncr = 1;
1127 } else {
1128 PtrIncr = 0;
1130 break;
1131 case 4:
1132 Channel = ElemIdx;
1133 PtrIncr = 0;
1134 break;
1138 SDValue R600TargetLowering::lowerPrivateTruncStore(StoreSDNode *Store,
1139 SelectionDAG &DAG) const {
1140 SDLoc DL(Store);
1141 //TODO: Who creates the i8 stores?
1142 assert(Store->isTruncatingStore()
1143 || Store->getValue().getValueType() == MVT::i8);
1144 assert(Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS);
1146 SDValue Mask;
1147 if (Store->getMemoryVT() == MVT::i8) {
1148 assert(Store->getAlignment() >= 1);
1149 Mask = DAG.getConstant(0xff, DL, MVT::i32);
1150 } else if (Store->getMemoryVT() == MVT::i16) {
1151 assert(Store->getAlignment() >= 2);
1152 Mask = DAG.getConstant(0xffff, DL, MVT::i32);
1153 } else {
1154 llvm_unreachable("Unsupported private trunc store");
1157 SDValue OldChain = Store->getChain();
1158 bool VectorTrunc = (OldChain.getOpcode() == AMDGPUISD::DUMMY_CHAIN);
1159 // Skip dummy
1160 SDValue Chain = VectorTrunc ? OldChain->getOperand(0) : OldChain;
1161 SDValue BasePtr = Store->getBasePtr();
1162 SDValue Offset = Store->getOffset();
1163 EVT MemVT = Store->getMemoryVT();
1165 SDValue LoadPtr = BasePtr;
1166 if (!Offset.isUndef()) {
1167 LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1170 // Get dword location
1171 // TODO: this should be eliminated by the future SHR ptr, 2
1172 SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1173 DAG.getConstant(0xfffffffc, DL, MVT::i32));
1175 // Load dword
1176 // TODO: can we be smarter about machine pointer info?
1177 MachinePointerInfo PtrInfo(UndefValue::get(
1178 Type::getInt32PtrTy(*DAG.getContext(), AMDGPUAS::PRIVATE_ADDRESS)));
1179 SDValue Dst = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1181 Chain = Dst.getValue(1);
1183 // Get offset in dword
1184 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1185 DAG.getConstant(0x3, DL, MVT::i32));
1187 // Convert byte offset to bit shift
1188 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1189 DAG.getConstant(3, DL, MVT::i32));
1191 // TODO: Contrary to the name of the functiom,
1192 // it also handles sub i32 non-truncating stores (like i1)
1193 SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
1194 Store->getValue());
1196 // Mask the value to the right type
1197 SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
1199 // Shift the value in place
1200 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
1201 MaskedValue, ShiftAmt);
1203 // Shift the mask in place
1204 SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, Mask, ShiftAmt);
1206 // Invert the mask. NOTE: if we had native ROL instructions we could
1207 // use inverted mask
1208 DstMask = DAG.getNOT(DL, DstMask, MVT::i32);
1210 // Cleanup the target bits
1211 Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
1213 // Add the new bits
1214 SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
1216 // Store dword
1217 // TODO: Can we be smarter about MachinePointerInfo?
1218 SDValue NewStore = DAG.getStore(Chain, DL, Value, Ptr, PtrInfo);
1220 // If we are part of expanded vector, make our neighbors depend on this store
1221 if (VectorTrunc) {
1222 // Make all other vector elements depend on this store
1223 Chain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, NewStore);
1224 DAG.ReplaceAllUsesOfValueWith(OldChain, Chain);
1226 return NewStore;
1229 SDValue R600TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1230 StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
1231 unsigned AS = StoreNode->getAddressSpace();
1233 SDValue Chain = StoreNode->getChain();
1234 SDValue Ptr = StoreNode->getBasePtr();
1235 SDValue Value = StoreNode->getValue();
1237 EVT VT = Value.getValueType();
1238 EVT MemVT = StoreNode->getMemoryVT();
1239 EVT PtrVT = Ptr.getValueType();
1241 SDLoc DL(Op);
1243 const bool TruncatingStore = StoreNode->isTruncatingStore();
1245 // Neither LOCAL nor PRIVATE can do vectors at the moment
1246 if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS ||
1247 TruncatingStore) &&
1248 VT.isVector()) {
1249 if ((AS == AMDGPUAS::PRIVATE_ADDRESS) && TruncatingStore) {
1250 // Add an extra level of chain to isolate this vector
1251 SDValue NewChain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, Chain);
1252 // TODO: can the chain be replaced without creating a new store?
1253 SDValue NewStore = DAG.getTruncStore(
1254 NewChain, DL, Value, Ptr, StoreNode->getPointerInfo(),
1255 MemVT, StoreNode->getAlignment(),
1256 StoreNode->getMemOperand()->getFlags(), StoreNode->getAAInfo());
1257 StoreNode = cast<StoreSDNode>(NewStore);
1260 return scalarizeVectorStore(StoreNode, DAG);
1263 unsigned Align = StoreNode->getAlignment();
1264 if (Align < MemVT.getStoreSize() &&
1265 !allowsMisalignedMemoryAccesses(
1266 MemVT, AS, Align, StoreNode->getMemOperand()->getFlags(), nullptr)) {
1267 return expandUnalignedStore(StoreNode, DAG);
1270 SDValue DWordAddr = DAG.getNode(ISD::SRL, DL, PtrVT, Ptr,
1271 DAG.getConstant(2, DL, PtrVT));
1273 if (AS == AMDGPUAS::GLOBAL_ADDRESS) {
1274 // It is beneficial to create MSKOR here instead of combiner to avoid
1275 // artificial dependencies introduced by RMW
1276 if (TruncatingStore) {
1277 assert(VT.bitsLE(MVT::i32));
1278 SDValue MaskConstant;
1279 if (MemVT == MVT::i8) {
1280 MaskConstant = DAG.getConstant(0xFF, DL, MVT::i32);
1281 } else {
1282 assert(MemVT == MVT::i16);
1283 assert(StoreNode->getAlignment() >= 2);
1284 MaskConstant = DAG.getConstant(0xFFFF, DL, MVT::i32);
1287 SDValue ByteIndex = DAG.getNode(ISD::AND, DL, PtrVT, Ptr,
1288 DAG.getConstant(0x00000003, DL, PtrVT));
1289 SDValue BitShift = DAG.getNode(ISD::SHL, DL, VT, ByteIndex,
1290 DAG.getConstant(3, DL, VT));
1292 // Put the mask in correct place
1293 SDValue Mask = DAG.getNode(ISD::SHL, DL, VT, MaskConstant, BitShift);
1295 // Put the value bits in correct place
1296 SDValue TruncValue = DAG.getNode(ISD::AND, DL, VT, Value, MaskConstant);
1297 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, VT, TruncValue, BitShift);
1299 // XXX: If we add a 64-bit ZW register class, then we could use a 2 x i32
1300 // vector instead.
1301 SDValue Src[4] = {
1302 ShiftedValue,
1303 DAG.getConstant(0, DL, MVT::i32),
1304 DAG.getConstant(0, DL, MVT::i32),
1305 Mask
1307 SDValue Input = DAG.getBuildVector(MVT::v4i32, DL, Src);
1308 SDValue Args[3] = { Chain, Input, DWordAddr };
1309 return DAG.getMemIntrinsicNode(AMDGPUISD::STORE_MSKOR, DL,
1310 Op->getVTList(), Args, MemVT,
1311 StoreNode->getMemOperand());
1312 } else if (Ptr->getOpcode() != AMDGPUISD::DWORDADDR && VT.bitsGE(MVT::i32)) {
1313 // Convert pointer from byte address to dword address.
1314 Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1316 if (StoreNode->isIndexed()) {
1317 llvm_unreachable("Indexed stores not supported yet");
1318 } else {
1319 Chain = DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1321 return Chain;
1325 // GLOBAL_ADDRESS has been handled above, LOCAL_ADDRESS allows all sizes
1326 if (AS != AMDGPUAS::PRIVATE_ADDRESS)
1327 return SDValue();
1329 if (MemVT.bitsLT(MVT::i32))
1330 return lowerPrivateTruncStore(StoreNode, DAG);
1332 // Standard i32+ store, tag it with DWORDADDR to note that the address
1333 // has been shifted
1334 if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1335 Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1336 return DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1339 // Tagged i32+ stores will be matched by patterns
1340 return SDValue();
1343 // return (512 + (kc_bank << 12)
1344 static int
1345 ConstantAddressBlock(unsigned AddressSpace) {
1346 switch (AddressSpace) {
1347 case AMDGPUAS::CONSTANT_BUFFER_0:
1348 return 512;
1349 case AMDGPUAS::CONSTANT_BUFFER_1:
1350 return 512 + 4096;
1351 case AMDGPUAS::CONSTANT_BUFFER_2:
1352 return 512 + 4096 * 2;
1353 case AMDGPUAS::CONSTANT_BUFFER_3:
1354 return 512 + 4096 * 3;
1355 case AMDGPUAS::CONSTANT_BUFFER_4:
1356 return 512 + 4096 * 4;
1357 case AMDGPUAS::CONSTANT_BUFFER_5:
1358 return 512 + 4096 * 5;
1359 case AMDGPUAS::CONSTANT_BUFFER_6:
1360 return 512 + 4096 * 6;
1361 case AMDGPUAS::CONSTANT_BUFFER_7:
1362 return 512 + 4096 * 7;
1363 case AMDGPUAS::CONSTANT_BUFFER_8:
1364 return 512 + 4096 * 8;
1365 case AMDGPUAS::CONSTANT_BUFFER_9:
1366 return 512 + 4096 * 9;
1367 case AMDGPUAS::CONSTANT_BUFFER_10:
1368 return 512 + 4096 * 10;
1369 case AMDGPUAS::CONSTANT_BUFFER_11:
1370 return 512 + 4096 * 11;
1371 case AMDGPUAS::CONSTANT_BUFFER_12:
1372 return 512 + 4096 * 12;
1373 case AMDGPUAS::CONSTANT_BUFFER_13:
1374 return 512 + 4096 * 13;
1375 case AMDGPUAS::CONSTANT_BUFFER_14:
1376 return 512 + 4096 * 14;
1377 case AMDGPUAS::CONSTANT_BUFFER_15:
1378 return 512 + 4096 * 15;
1379 default:
1380 return -1;
1384 SDValue R600TargetLowering::lowerPrivateExtLoad(SDValue Op,
1385 SelectionDAG &DAG) const {
1386 SDLoc DL(Op);
1387 LoadSDNode *Load = cast<LoadSDNode>(Op);
1388 ISD::LoadExtType ExtType = Load->getExtensionType();
1389 EVT MemVT = Load->getMemoryVT();
1390 assert(Load->getAlignment() >= MemVT.getStoreSize());
1392 SDValue BasePtr = Load->getBasePtr();
1393 SDValue Chain = Load->getChain();
1394 SDValue Offset = Load->getOffset();
1396 SDValue LoadPtr = BasePtr;
1397 if (!Offset.isUndef()) {
1398 LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1401 // Get dword location
1402 // NOTE: this should be eliminated by the future SHR ptr, 2
1403 SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1404 DAG.getConstant(0xfffffffc, DL, MVT::i32));
1406 // Load dword
1407 // TODO: can we be smarter about machine pointer info?
1408 MachinePointerInfo PtrInfo(UndefValue::get(
1409 Type::getInt32PtrTy(*DAG.getContext(), AMDGPUAS::PRIVATE_ADDRESS)));
1410 SDValue Read = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1412 // Get offset within the register.
1413 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
1414 LoadPtr, DAG.getConstant(0x3, DL, MVT::i32));
1416 // Bit offset of target byte (byteIdx * 8).
1417 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1418 DAG.getConstant(3, DL, MVT::i32));
1420 // Shift to the right.
1421 SDValue Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Read, ShiftAmt);
1423 // Eliminate the upper bits by setting them to ...
1424 EVT MemEltVT = MemVT.getScalarType();
1426 if (ExtType == ISD::SEXTLOAD) { // ... ones.
1427 SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
1428 Ret = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode);
1429 } else { // ... or zeros.
1430 Ret = DAG.getZeroExtendInReg(Ret, DL, MemEltVT);
1433 SDValue Ops[] = {
1434 Ret,
1435 Read.getValue(1) // This should be our output chain
1438 return DAG.getMergeValues(Ops, DL);
1441 SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1442 LoadSDNode *LoadNode = cast<LoadSDNode>(Op);
1443 unsigned AS = LoadNode->getAddressSpace();
1444 EVT MemVT = LoadNode->getMemoryVT();
1445 ISD::LoadExtType ExtType = LoadNode->getExtensionType();
1447 if (AS == AMDGPUAS::PRIVATE_ADDRESS &&
1448 ExtType != ISD::NON_EXTLOAD && MemVT.bitsLT(MVT::i32)) {
1449 return lowerPrivateExtLoad(Op, DAG);
1452 SDLoc DL(Op);
1453 EVT VT = Op.getValueType();
1454 SDValue Chain = LoadNode->getChain();
1455 SDValue Ptr = LoadNode->getBasePtr();
1457 if ((LoadNode->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1458 LoadNode->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) &&
1459 VT.isVector()) {
1460 return scalarizeVectorLoad(LoadNode, DAG);
1463 // This is still used for explicit load from addrspace(8)
1464 int ConstantBlock = ConstantAddressBlock(LoadNode->getAddressSpace());
1465 if (ConstantBlock > -1 &&
1466 ((LoadNode->getExtensionType() == ISD::NON_EXTLOAD) ||
1467 (LoadNode->getExtensionType() == ISD::ZEXTLOAD))) {
1468 SDValue Result;
1469 if (isa<Constant>(LoadNode->getMemOperand()->getValue()) ||
1470 isa<ConstantSDNode>(Ptr)) {
1471 return constBufferLoad(LoadNode, LoadNode->getAddressSpace(), DAG);
1472 } else {
1473 //TODO: Does this even work?
1474 // non-constant ptr can't be folded, keeps it as a v4f32 load
1475 Result = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::v4i32,
1476 DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr,
1477 DAG.getConstant(4, DL, MVT::i32)),
1478 DAG.getConstant(LoadNode->getAddressSpace() -
1479 AMDGPUAS::CONSTANT_BUFFER_0, DL, MVT::i32)
1483 if (!VT.isVector()) {
1484 Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1485 DAG.getConstant(0, DL, MVT::i32));
1488 SDValue MergedValues[2] = {
1489 Result,
1490 Chain
1492 return DAG.getMergeValues(MergedValues, DL);
1495 // For most operations returning SDValue() will result in the node being
1496 // expanded by the DAG Legalizer. This is not the case for ISD::LOAD, so we
1497 // need to manually expand loads that may be legal in some address spaces and
1498 // illegal in others. SEXT loads from CONSTANT_BUFFER_0 are supported for
1499 // compute shaders, since the data is sign extended when it is uploaded to the
1500 // buffer. However SEXT loads from other address spaces are not supported, so
1501 // we need to expand them here.
1502 if (LoadNode->getExtensionType() == ISD::SEXTLOAD) {
1503 EVT MemVT = LoadNode->getMemoryVT();
1504 assert(!MemVT.isVector() && (MemVT == MVT::i16 || MemVT == MVT::i8));
1505 SDValue NewLoad = DAG.getExtLoad(
1506 ISD::EXTLOAD, DL, VT, Chain, Ptr, LoadNode->getPointerInfo(), MemVT,
1507 LoadNode->getAlignment(), LoadNode->getMemOperand()->getFlags());
1508 SDValue Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, NewLoad,
1509 DAG.getValueType(MemVT));
1511 SDValue MergedValues[2] = { Res, Chain };
1512 return DAG.getMergeValues(MergedValues, DL);
1515 if (LoadNode->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) {
1516 return SDValue();
1519 // DWORDADDR ISD marks already shifted address
1520 if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1521 assert(VT == MVT::i32);
1522 Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, DAG.getConstant(2, DL, MVT::i32));
1523 Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, MVT::i32, Ptr);
1524 return DAG.getLoad(MVT::i32, DL, Chain, Ptr, LoadNode->getMemOperand());
1526 return SDValue();
1529 SDValue R600TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1530 SDValue Chain = Op.getOperand(0);
1531 SDValue Cond = Op.getOperand(1);
1532 SDValue Jump = Op.getOperand(2);
1534 return DAG.getNode(AMDGPUISD::BRANCH_COND, SDLoc(Op), Op.getValueType(),
1535 Chain, Jump, Cond);
1538 SDValue R600TargetLowering::lowerFrameIndex(SDValue Op,
1539 SelectionDAG &DAG) const {
1540 MachineFunction &MF = DAG.getMachineFunction();
1541 const R600FrameLowering *TFL = Subtarget->getFrameLowering();
1543 FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
1545 unsigned FrameIndex = FIN->getIndex();
1546 unsigned IgnoredFrameReg;
1547 unsigned Offset =
1548 TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg);
1549 return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op),
1550 Op.getValueType());
1553 CCAssignFn *R600TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1554 bool IsVarArg) const {
1555 switch (CC) {
1556 case CallingConv::AMDGPU_KERNEL:
1557 case CallingConv::SPIR_KERNEL:
1558 case CallingConv::C:
1559 case CallingConv::Fast:
1560 case CallingConv::Cold:
1561 llvm_unreachable("kernels should not be handled here");
1562 case CallingConv::AMDGPU_VS:
1563 case CallingConv::AMDGPU_GS:
1564 case CallingConv::AMDGPU_PS:
1565 case CallingConv::AMDGPU_CS:
1566 case CallingConv::AMDGPU_HS:
1567 case CallingConv::AMDGPU_ES:
1568 case CallingConv::AMDGPU_LS:
1569 return CC_R600;
1570 default:
1571 report_fatal_error("Unsupported calling convention.");
1575 /// XXX Only kernel functions are supported, so we can assume for now that
1576 /// every function is a kernel function, but in the future we should use
1577 /// separate calling conventions for kernel and non-kernel functions.
1578 SDValue R600TargetLowering::LowerFormalArguments(
1579 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1580 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1581 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1582 SmallVector<CCValAssign, 16> ArgLocs;
1583 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1584 *DAG.getContext());
1585 MachineFunction &MF = DAG.getMachineFunction();
1586 SmallVector<ISD::InputArg, 8> LocalIns;
1588 if (AMDGPU::isShader(CallConv)) {
1589 CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
1590 } else {
1591 analyzeFormalArgumentsCompute(CCInfo, Ins);
1594 for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
1595 CCValAssign &VA = ArgLocs[i];
1596 const ISD::InputArg &In = Ins[i];
1597 EVT VT = In.VT;
1598 EVT MemVT = VA.getLocVT();
1599 if (!VT.isVector() && MemVT.isVector()) {
1600 // Get load source type if scalarized.
1601 MemVT = MemVT.getVectorElementType();
1604 if (AMDGPU::isShader(CallConv)) {
1605 unsigned Reg = MF.addLiveIn(VA.getLocReg(), &R600::R600_Reg128RegClass);
1606 SDValue Register = DAG.getCopyFromReg(Chain, DL, Reg, VT);
1607 InVals.push_back(Register);
1608 continue;
1611 PointerType *PtrTy = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
1612 AMDGPUAS::PARAM_I_ADDRESS);
1614 // i64 isn't a legal type, so the register type used ends up as i32, which
1615 // isn't expected here. It attempts to create this sextload, but it ends up
1616 // being invalid. Somehow this seems to work with i64 arguments, but breaks
1617 // for <1 x i64>.
1619 // The first 36 bytes of the input buffer contains information about
1620 // thread group and global sizes.
1621 ISD::LoadExtType Ext = ISD::NON_EXTLOAD;
1622 if (MemVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) {
1623 // FIXME: This should really check the extload type, but the handling of
1624 // extload vector parameters seems to be broken.
1626 // Ext = In.Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
1627 Ext = ISD::SEXTLOAD;
1630 // Compute the offset from the value.
1631 // XXX - I think PartOffset should give you this, but it seems to give the
1632 // size of the register which isn't useful.
1634 unsigned ValBase = ArgLocs[In.getOrigArgIndex()].getLocMemOffset();
1635 unsigned PartOffset = VA.getLocMemOffset();
1636 unsigned Alignment = MinAlign(VT.getStoreSize(), PartOffset);
1638 MachinePointerInfo PtrInfo(UndefValue::get(PtrTy), PartOffset - ValBase);
1639 SDValue Arg = DAG.getLoad(
1640 ISD::UNINDEXED, Ext, VT, DL, Chain,
1641 DAG.getConstant(PartOffset, DL, MVT::i32), DAG.getUNDEF(MVT::i32),
1642 PtrInfo,
1643 MemVT, Alignment, MachineMemOperand::MONonTemporal |
1644 MachineMemOperand::MODereferenceable |
1645 MachineMemOperand::MOInvariant);
1647 InVals.push_back(Arg);
1649 return Chain;
1652 EVT R600TargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1653 EVT VT) const {
1654 if (!VT.isVector())
1655 return MVT::i32;
1656 return VT.changeVectorElementTypeToInteger();
1659 bool R600TargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1660 const SelectionDAG &DAG) const {
1661 // Local and Private addresses do not handle vectors. Limit to i32
1662 if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS)) {
1663 return (MemVT.getSizeInBits() <= 32);
1665 return true;
1668 bool R600TargetLowering::allowsMisalignedMemoryAccesses(
1669 EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags,
1670 bool *IsFast) const {
1671 if (IsFast)
1672 *IsFast = false;
1674 if (!VT.isSimple() || VT == MVT::Other)
1675 return false;
1677 if (VT.bitsLT(MVT::i32))
1678 return false;
1680 // TODO: This is a rough estimate.
1681 if (IsFast)
1682 *IsFast = true;
1684 return VT.bitsGT(MVT::i32) && Align % 4 == 0;
1687 static SDValue CompactSwizzlableVector(
1688 SelectionDAG &DAG, SDValue VectorEntry,
1689 DenseMap<unsigned, unsigned> &RemapSwizzle) {
1690 assert(RemapSwizzle.empty());
1692 SDLoc DL(VectorEntry);
1693 EVT EltTy = VectorEntry.getValueType().getVectorElementType();
1695 SDValue NewBldVec[4];
1696 for (unsigned i = 0; i < 4; i++)
1697 NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry,
1698 DAG.getIntPtrConstant(i, DL));
1700 for (unsigned i = 0; i < 4; i++) {
1701 if (NewBldVec[i].isUndef())
1702 // We mask write here to teach later passes that the ith element of this
1703 // vector is undef. Thus we can use it to reduce 128 bits reg usage,
1704 // break false dependencies and additionnaly make assembly easier to read.
1705 RemapSwizzle[i] = 7; // SEL_MASK_WRITE
1706 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(NewBldVec[i])) {
1707 if (C->isZero()) {
1708 RemapSwizzle[i] = 4; // SEL_0
1709 NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1710 } else if (C->isExactlyValue(1.0)) {
1711 RemapSwizzle[i] = 5; // SEL_1
1712 NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1716 if (NewBldVec[i].isUndef())
1717 continue;
1718 // Fix spurious warning with gcc 7.3 -O3
1719 // warning: array subscript is above array bounds [-Warray-bounds]
1720 // if (NewBldVec[i] == NewBldVec[j]) {
1721 // ~~~~~~~~~~~^
1722 if (i >= 4)
1723 continue;
1724 for (unsigned j = 0; j < i; j++) {
1725 if (NewBldVec[i] == NewBldVec[j]) {
1726 NewBldVec[i] = DAG.getUNDEF(NewBldVec[i].getValueType());
1727 RemapSwizzle[i] = j;
1728 break;
1733 return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1734 NewBldVec);
1737 static SDValue ReorganizeVector(SelectionDAG &DAG, SDValue VectorEntry,
1738 DenseMap<unsigned, unsigned> &RemapSwizzle) {
1739 assert(RemapSwizzle.empty());
1741 SDLoc DL(VectorEntry);
1742 EVT EltTy = VectorEntry.getValueType().getVectorElementType();
1744 SDValue NewBldVec[4];
1745 bool isUnmovable[4] = {false, false, false, false};
1746 for (unsigned i = 0; i < 4; i++)
1747 NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry,
1748 DAG.getIntPtrConstant(i, DL));
1750 for (unsigned i = 0; i < 4; i++) {
1751 RemapSwizzle[i] = i;
1752 if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1753 unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
1754 ->getZExtValue();
1755 if (i == Idx)
1756 isUnmovable[Idx] = true;
1760 for (unsigned i = 0; i < 4; i++) {
1761 if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1762 unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
1763 ->getZExtValue();
1764 if (isUnmovable[Idx])
1765 continue;
1766 // Swap i and Idx
1767 std::swap(NewBldVec[Idx], NewBldVec[i]);
1768 std::swap(RemapSwizzle[i], RemapSwizzle[Idx]);
1769 break;
1773 return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1774 NewBldVec);
1777 SDValue R600TargetLowering::OptimizeSwizzle(SDValue BuildVector, SDValue Swz[4],
1778 SelectionDAG &DAG,
1779 const SDLoc &DL) const {
1780 // Old -> New swizzle values
1781 DenseMap<unsigned, unsigned> SwizzleRemap;
1783 BuildVector = CompactSwizzlableVector(DAG, BuildVector, SwizzleRemap);
1784 for (unsigned i = 0; i < 4; i++) {
1785 unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue();
1786 if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
1787 Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
1790 SwizzleRemap.clear();
1791 BuildVector = ReorganizeVector(DAG, BuildVector, SwizzleRemap);
1792 for (unsigned i = 0; i < 4; i++) {
1793 unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue();
1794 if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
1795 Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
1798 return BuildVector;
1801 SDValue R600TargetLowering::constBufferLoad(LoadSDNode *LoadNode, int Block,
1802 SelectionDAG &DAG) const {
1803 SDLoc DL(LoadNode);
1804 EVT VT = LoadNode->getValueType(0);
1805 SDValue Chain = LoadNode->getChain();
1806 SDValue Ptr = LoadNode->getBasePtr();
1807 assert (isa<ConstantSDNode>(Ptr));
1809 //TODO: Support smaller loads
1810 if (LoadNode->getMemoryVT().getScalarType() != MVT::i32 || !ISD::isNON_EXTLoad(LoadNode))
1811 return SDValue();
1813 if (LoadNode->getAlignment() < 4)
1814 return SDValue();
1816 int ConstantBlock = ConstantAddressBlock(Block);
1818 SDValue Slots[4];
1819 for (unsigned i = 0; i < 4; i++) {
1820 // We want Const position encoded with the following formula :
1821 // (((512 + (kc_bank << 12) + const_index) << 2) + chan)
1822 // const_index is Ptr computed by llvm using an alignment of 16.
1823 // Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and
1824 // then div by 4 at the ISel step
1825 SDValue NewPtr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
1826 DAG.getConstant(4 * i + ConstantBlock * 16, DL, MVT::i32));
1827 Slots[i] = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::i32, NewPtr);
1829 EVT NewVT = MVT::v4i32;
1830 unsigned NumElements = 4;
1831 if (VT.isVector()) {
1832 NewVT = VT;
1833 NumElements = VT.getVectorNumElements();
1835 SDValue Result = DAG.getBuildVector(NewVT, DL, makeArrayRef(Slots, NumElements));
1836 if (!VT.isVector()) {
1837 Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1838 DAG.getConstant(0, DL, MVT::i32));
1840 SDValue MergedValues[2] = {
1841 Result,
1842 Chain
1844 return DAG.getMergeValues(MergedValues, DL);
1847 //===----------------------------------------------------------------------===//
1848 // Custom DAG Optimizations
1849 //===----------------------------------------------------------------------===//
1851 SDValue R600TargetLowering::PerformDAGCombine(SDNode *N,
1852 DAGCombinerInfo &DCI) const {
1853 SelectionDAG &DAG = DCI.DAG;
1854 SDLoc DL(N);
1856 switch (N->getOpcode()) {
1857 // (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a)
1858 case ISD::FP_ROUND: {
1859 SDValue Arg = N->getOperand(0);
1860 if (Arg.getOpcode() == ISD::UINT_TO_FP && Arg.getValueType() == MVT::f64) {
1861 return DAG.getNode(ISD::UINT_TO_FP, DL, N->getValueType(0),
1862 Arg.getOperand(0));
1864 break;
1867 // (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) ->
1868 // (i32 select_cc f32, f32, -1, 0 cc)
1870 // Mesa's GLSL frontend generates the above pattern a lot and we can lower
1871 // this to one of the SET*_DX10 instructions.
1872 case ISD::FP_TO_SINT: {
1873 SDValue FNeg = N->getOperand(0);
1874 if (FNeg.getOpcode() != ISD::FNEG) {
1875 return SDValue();
1877 SDValue SelectCC = FNeg.getOperand(0);
1878 if (SelectCC.getOpcode() != ISD::SELECT_CC ||
1879 SelectCC.getOperand(0).getValueType() != MVT::f32 || // LHS
1880 SelectCC.getOperand(2).getValueType() != MVT::f32 || // True
1881 !isHWTrueValue(SelectCC.getOperand(2)) ||
1882 !isHWFalseValue(SelectCC.getOperand(3))) {
1883 return SDValue();
1886 return DAG.getNode(ISD::SELECT_CC, DL, N->getValueType(0),
1887 SelectCC.getOperand(0), // LHS
1888 SelectCC.getOperand(1), // RHS
1889 DAG.getConstant(-1, DL, MVT::i32), // True
1890 DAG.getConstant(0, DL, MVT::i32), // False
1891 SelectCC.getOperand(4)); // CC
1893 break;
1896 // insert_vector_elt (build_vector elt0, ... , eltN), NewEltIdx, idx
1897 // => build_vector elt0, ... , NewEltIdx, ... , eltN
1898 case ISD::INSERT_VECTOR_ELT: {
1899 SDValue InVec = N->getOperand(0);
1900 SDValue InVal = N->getOperand(1);
1901 SDValue EltNo = N->getOperand(2);
1903 // If the inserted element is an UNDEF, just use the input vector.
1904 if (InVal.isUndef())
1905 return InVec;
1907 EVT VT = InVec.getValueType();
1909 // If we can't generate a legal BUILD_VECTOR, exit
1910 if (!isOperationLegal(ISD::BUILD_VECTOR, VT))
1911 return SDValue();
1913 // Check that we know which element is being inserted
1914 if (!isa<ConstantSDNode>(EltNo))
1915 return SDValue();
1916 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
1918 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
1919 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the
1920 // vector elements.
1921 SmallVector<SDValue, 8> Ops;
1922 if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
1923 Ops.append(InVec.getNode()->op_begin(),
1924 InVec.getNode()->op_end());
1925 } else if (InVec.isUndef()) {
1926 unsigned NElts = VT.getVectorNumElements();
1927 Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
1928 } else {
1929 return SDValue();
1932 // Insert the element
1933 if (Elt < Ops.size()) {
1934 // All the operands of BUILD_VECTOR must have the same type;
1935 // we enforce that here.
1936 EVT OpVT = Ops[0].getValueType();
1937 if (InVal.getValueType() != OpVT)
1938 InVal = OpVT.bitsGT(InVal.getValueType()) ?
1939 DAG.getNode(ISD::ANY_EXTEND, DL, OpVT, InVal) :
1940 DAG.getNode(ISD::TRUNCATE, DL, OpVT, InVal);
1941 Ops[Elt] = InVal;
1944 // Return the new vector
1945 return DAG.getBuildVector(VT, DL, Ops);
1948 // Extract_vec (Build_vector) generated by custom lowering
1949 // also needs to be customly combined
1950 case ISD::EXTRACT_VECTOR_ELT: {
1951 SDValue Arg = N->getOperand(0);
1952 if (Arg.getOpcode() == ISD::BUILD_VECTOR) {
1953 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1954 unsigned Element = Const->getZExtValue();
1955 return Arg->getOperand(Element);
1958 if (Arg.getOpcode() == ISD::BITCAST &&
1959 Arg.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
1960 (Arg.getOperand(0).getValueType().getVectorNumElements() ==
1961 Arg.getValueType().getVectorNumElements())) {
1962 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1963 unsigned Element = Const->getZExtValue();
1964 return DAG.getNode(ISD::BITCAST, DL, N->getVTList(),
1965 Arg->getOperand(0).getOperand(Element));
1968 break;
1971 case ISD::SELECT_CC: {
1972 // Try common optimizations
1973 if (SDValue Ret = AMDGPUTargetLowering::PerformDAGCombine(N, DCI))
1974 return Ret;
1976 // fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq ->
1977 // selectcc x, y, a, b, inv(cc)
1979 // fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne ->
1980 // selectcc x, y, a, b, cc
1981 SDValue LHS = N->getOperand(0);
1982 if (LHS.getOpcode() != ISD::SELECT_CC) {
1983 return SDValue();
1986 SDValue RHS = N->getOperand(1);
1987 SDValue True = N->getOperand(2);
1988 SDValue False = N->getOperand(3);
1989 ISD::CondCode NCC = cast<CondCodeSDNode>(N->getOperand(4))->get();
1991 if (LHS.getOperand(2).getNode() != True.getNode() ||
1992 LHS.getOperand(3).getNode() != False.getNode() ||
1993 RHS.getNode() != False.getNode()) {
1994 return SDValue();
1997 switch (NCC) {
1998 default: return SDValue();
1999 case ISD::SETNE: return LHS;
2000 case ISD::SETEQ: {
2001 ISD::CondCode LHSCC = cast<CondCodeSDNode>(LHS.getOperand(4))->get();
2002 LHSCC = ISD::getSetCCInverse(LHSCC,
2003 LHS.getOperand(0).getValueType().isInteger());
2004 if (DCI.isBeforeLegalizeOps() ||
2005 isCondCodeLegal(LHSCC, LHS.getOperand(0).getSimpleValueType()))
2006 return DAG.getSelectCC(DL,
2007 LHS.getOperand(0),
2008 LHS.getOperand(1),
2009 LHS.getOperand(2),
2010 LHS.getOperand(3),
2011 LHSCC);
2012 break;
2015 return SDValue();
2018 case AMDGPUISD::R600_EXPORT: {
2019 SDValue Arg = N->getOperand(1);
2020 if (Arg.getOpcode() != ISD::BUILD_VECTOR)
2021 break;
2023 SDValue NewArgs[8] = {
2024 N->getOperand(0), // Chain
2025 SDValue(),
2026 N->getOperand(2), // ArrayBase
2027 N->getOperand(3), // Type
2028 N->getOperand(4), // SWZ_X
2029 N->getOperand(5), // SWZ_Y
2030 N->getOperand(6), // SWZ_Z
2031 N->getOperand(7) // SWZ_W
2033 NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[4], DAG, DL);
2034 return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, N->getVTList(), NewArgs);
2036 case AMDGPUISD::TEXTURE_FETCH: {
2037 SDValue Arg = N->getOperand(1);
2038 if (Arg.getOpcode() != ISD::BUILD_VECTOR)
2039 break;
2041 SDValue NewArgs[19] = {
2042 N->getOperand(0),
2043 N->getOperand(1),
2044 N->getOperand(2),
2045 N->getOperand(3),
2046 N->getOperand(4),
2047 N->getOperand(5),
2048 N->getOperand(6),
2049 N->getOperand(7),
2050 N->getOperand(8),
2051 N->getOperand(9),
2052 N->getOperand(10),
2053 N->getOperand(11),
2054 N->getOperand(12),
2055 N->getOperand(13),
2056 N->getOperand(14),
2057 N->getOperand(15),
2058 N->getOperand(16),
2059 N->getOperand(17),
2060 N->getOperand(18),
2062 NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[2], DAG, DL);
2063 return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, N->getVTList(), NewArgs);
2066 case ISD::LOAD: {
2067 LoadSDNode *LoadNode = cast<LoadSDNode>(N);
2068 SDValue Ptr = LoadNode->getBasePtr();
2069 if (LoadNode->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS &&
2070 isa<ConstantSDNode>(Ptr))
2071 return constBufferLoad(LoadNode, AMDGPUAS::CONSTANT_BUFFER_0, DAG);
2072 break;
2075 default: break;
2078 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
2081 bool R600TargetLowering::FoldOperand(SDNode *ParentNode, unsigned SrcIdx,
2082 SDValue &Src, SDValue &Neg, SDValue &Abs,
2083 SDValue &Sel, SDValue &Imm,
2084 SelectionDAG &DAG) const {
2085 const R600InstrInfo *TII = Subtarget->getInstrInfo();
2086 if (!Src.isMachineOpcode())
2087 return false;
2089 switch (Src.getMachineOpcode()) {
2090 case R600::FNEG_R600:
2091 if (!Neg.getNode())
2092 return false;
2093 Src = Src.getOperand(0);
2094 Neg = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
2095 return true;
2096 case R600::FABS_R600:
2097 if (!Abs.getNode())
2098 return false;
2099 Src = Src.getOperand(0);
2100 Abs = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
2101 return true;
2102 case R600::CONST_COPY: {
2103 unsigned Opcode = ParentNode->getMachineOpcode();
2104 bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2106 if (!Sel.getNode())
2107 return false;
2109 SDValue CstOffset = Src.getOperand(0);
2110 if (ParentNode->getValueType(0).isVector())
2111 return false;
2113 // Gather constants values
2114 int SrcIndices[] = {
2115 TII->getOperandIdx(Opcode, R600::OpName::src0),
2116 TII->getOperandIdx(Opcode, R600::OpName::src1),
2117 TII->getOperandIdx(Opcode, R600::OpName::src2),
2118 TII->getOperandIdx(Opcode, R600::OpName::src0_X),
2119 TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
2120 TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
2121 TII->getOperandIdx(Opcode, R600::OpName::src0_W),
2122 TII->getOperandIdx(Opcode, R600::OpName::src1_X),
2123 TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
2124 TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
2125 TII->getOperandIdx(Opcode, R600::OpName::src1_W)
2127 std::vector<unsigned> Consts;
2128 for (int OtherSrcIdx : SrcIndices) {
2129 int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx);
2130 if (OtherSrcIdx < 0 || OtherSelIdx < 0)
2131 continue;
2132 if (HasDst) {
2133 OtherSrcIdx--;
2134 OtherSelIdx--;
2136 if (RegisterSDNode *Reg =
2137 dyn_cast<RegisterSDNode>(ParentNode->getOperand(OtherSrcIdx))) {
2138 if (Reg->getReg() == R600::ALU_CONST) {
2139 ConstantSDNode *Cst
2140 = cast<ConstantSDNode>(ParentNode->getOperand(OtherSelIdx));
2141 Consts.push_back(Cst->getZExtValue());
2146 ConstantSDNode *Cst = cast<ConstantSDNode>(CstOffset);
2147 Consts.push_back(Cst->getZExtValue());
2148 if (!TII->fitsConstReadLimitations(Consts)) {
2149 return false;
2152 Sel = CstOffset;
2153 Src = DAG.getRegister(R600::ALU_CONST, MVT::f32);
2154 return true;
2156 case R600::MOV_IMM_GLOBAL_ADDR:
2157 // Check if the Imm slot is used. Taken from below.
2158 if (cast<ConstantSDNode>(Imm)->getZExtValue())
2159 return false;
2160 Imm = Src.getOperand(0);
2161 Src = DAG.getRegister(R600::ALU_LITERAL_X, MVT::i32);
2162 return true;
2163 case R600::MOV_IMM_I32:
2164 case R600::MOV_IMM_F32: {
2165 unsigned ImmReg = R600::ALU_LITERAL_X;
2166 uint64_t ImmValue = 0;
2168 if (Src.getMachineOpcode() == R600::MOV_IMM_F32) {
2169 ConstantFPSDNode *FPC = dyn_cast<ConstantFPSDNode>(Src.getOperand(0));
2170 float FloatValue = FPC->getValueAPF().convertToFloat();
2171 if (FloatValue == 0.0) {
2172 ImmReg = R600::ZERO;
2173 } else if (FloatValue == 0.5) {
2174 ImmReg = R600::HALF;
2175 } else if (FloatValue == 1.0) {
2176 ImmReg = R600::ONE;
2177 } else {
2178 ImmValue = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
2180 } else {
2181 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src.getOperand(0));
2182 uint64_t Value = C->getZExtValue();
2183 if (Value == 0) {
2184 ImmReg = R600::ZERO;
2185 } else if (Value == 1) {
2186 ImmReg = R600::ONE_INT;
2187 } else {
2188 ImmValue = Value;
2192 // Check that we aren't already using an immediate.
2193 // XXX: It's possible for an instruction to have more than one
2194 // immediate operand, but this is not supported yet.
2195 if (ImmReg == R600::ALU_LITERAL_X) {
2196 if (!Imm.getNode())
2197 return false;
2198 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Imm);
2199 assert(C);
2200 if (C->getZExtValue())
2201 return false;
2202 Imm = DAG.getTargetConstant(ImmValue, SDLoc(ParentNode), MVT::i32);
2204 Src = DAG.getRegister(ImmReg, MVT::i32);
2205 return true;
2207 default:
2208 return false;
2212 /// Fold the instructions after selecting them
2213 SDNode *R600TargetLowering::PostISelFolding(MachineSDNode *Node,
2214 SelectionDAG &DAG) const {
2215 const R600InstrInfo *TII = Subtarget->getInstrInfo();
2216 if (!Node->isMachineOpcode())
2217 return Node;
2219 unsigned Opcode = Node->getMachineOpcode();
2220 SDValue FakeOp;
2222 std::vector<SDValue> Ops(Node->op_begin(), Node->op_end());
2224 if (Opcode == R600::DOT_4) {
2225 int OperandIdx[] = {
2226 TII->getOperandIdx(Opcode, R600::OpName::src0_X),
2227 TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
2228 TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
2229 TII->getOperandIdx(Opcode, R600::OpName::src0_W),
2230 TII->getOperandIdx(Opcode, R600::OpName::src1_X),
2231 TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
2232 TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
2233 TII->getOperandIdx(Opcode, R600::OpName::src1_W)
2235 int NegIdx[] = {
2236 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_X),
2237 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Y),
2238 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Z),
2239 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_W),
2240 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_X),
2241 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Y),
2242 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Z),
2243 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_W)
2245 int AbsIdx[] = {
2246 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_X),
2247 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Y),
2248 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Z),
2249 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_W),
2250 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_X),
2251 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Y),
2252 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Z),
2253 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_W)
2255 for (unsigned i = 0; i < 8; i++) {
2256 if (OperandIdx[i] < 0)
2257 return Node;
2258 SDValue &Src = Ops[OperandIdx[i] - 1];
2259 SDValue &Neg = Ops[NegIdx[i] - 1];
2260 SDValue &Abs = Ops[AbsIdx[i] - 1];
2261 bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2262 int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2263 if (HasDst)
2264 SelIdx--;
2265 SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2266 if (FoldOperand(Node, i, Src, Neg, Abs, Sel, FakeOp, DAG))
2267 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2269 } else if (Opcode == R600::REG_SEQUENCE) {
2270 for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) {
2271 SDValue &Src = Ops[i];
2272 if (FoldOperand(Node, i, Src, FakeOp, FakeOp, FakeOp, FakeOp, DAG))
2273 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2275 } else {
2276 if (!TII->hasInstrModifiers(Opcode))
2277 return Node;
2278 int OperandIdx[] = {
2279 TII->getOperandIdx(Opcode, R600::OpName::src0),
2280 TII->getOperandIdx(Opcode, R600::OpName::src1),
2281 TII->getOperandIdx(Opcode, R600::OpName::src2)
2283 int NegIdx[] = {
2284 TII->getOperandIdx(Opcode, R600::OpName::src0_neg),
2285 TII->getOperandIdx(Opcode, R600::OpName::src1_neg),
2286 TII->getOperandIdx(Opcode, R600::OpName::src2_neg)
2288 int AbsIdx[] = {
2289 TII->getOperandIdx(Opcode, R600::OpName::src0_abs),
2290 TII->getOperandIdx(Opcode, R600::OpName::src1_abs),
2293 for (unsigned i = 0; i < 3; i++) {
2294 if (OperandIdx[i] < 0)
2295 return Node;
2296 SDValue &Src = Ops[OperandIdx[i] - 1];
2297 SDValue &Neg = Ops[NegIdx[i] - 1];
2298 SDValue FakeAbs;
2299 SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs;
2300 bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2301 int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2302 int ImmIdx = TII->getOperandIdx(Opcode, R600::OpName::literal);
2303 if (HasDst) {
2304 SelIdx--;
2305 ImmIdx--;
2307 SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2308 SDValue &Imm = Ops[ImmIdx];
2309 if (FoldOperand(Node, i, Src, Neg, Abs, Sel, Imm, DAG))
2310 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2314 return Node;