[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Target / AMDGPU / SIFoldOperands.cpp
blob4eac031687605a41960f93fcf804f75812a72e7e
1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 /// \file
8 //===----------------------------------------------------------------------===//
9 //
11 #include "AMDGPU.h"
12 #include "AMDGPUSubtarget.h"
13 #include "SIInstrInfo.h"
14 #include "SIMachineFunctionInfo.h"
15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
16 #include "llvm/ADT/DepthFirstIterator.h"
17 #include "llvm/CodeGen/LiveIntervals.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include "llvm/Target/TargetMachine.h"
25 #define DEBUG_TYPE "si-fold-operands"
26 using namespace llvm;
28 namespace {
30 struct FoldCandidate {
31 MachineInstr *UseMI;
32 union {
33 MachineOperand *OpToFold;
34 uint64_t ImmToFold;
35 int FrameIndexToFold;
37 int ShrinkOpcode;
38 unsigned char UseOpNo;
39 MachineOperand::MachineOperandType Kind;
40 bool Commuted;
42 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp,
43 bool Commuted_ = false,
44 int ShrinkOp = -1) :
45 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo),
46 Kind(FoldOp->getType()),
47 Commuted(Commuted_) {
48 if (FoldOp->isImm()) {
49 ImmToFold = FoldOp->getImm();
50 } else if (FoldOp->isFI()) {
51 FrameIndexToFold = FoldOp->getIndex();
52 } else {
53 assert(FoldOp->isReg() || FoldOp->isGlobal());
54 OpToFold = FoldOp;
58 bool isFI() const {
59 return Kind == MachineOperand::MO_FrameIndex;
62 bool isImm() const {
63 return Kind == MachineOperand::MO_Immediate;
66 bool isReg() const {
67 return Kind == MachineOperand::MO_Register;
70 bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; }
72 bool isCommuted() const {
73 return Commuted;
76 bool needsShrink() const {
77 return ShrinkOpcode != -1;
80 int getShrinkOpcode() const {
81 return ShrinkOpcode;
85 class SIFoldOperands : public MachineFunctionPass {
86 public:
87 static char ID;
88 MachineRegisterInfo *MRI;
89 const SIInstrInfo *TII;
90 const SIRegisterInfo *TRI;
91 const GCNSubtarget *ST;
92 const SIMachineFunctionInfo *MFI;
94 void foldOperand(MachineOperand &OpToFold,
95 MachineInstr *UseMI,
96 int UseOpIdx,
97 SmallVectorImpl<FoldCandidate> &FoldList,
98 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const;
100 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const;
102 const MachineOperand *isClamp(const MachineInstr &MI) const;
103 bool tryFoldClamp(MachineInstr &MI);
105 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const;
106 bool tryFoldOMod(MachineInstr &MI);
108 public:
109 SIFoldOperands() : MachineFunctionPass(ID) {
110 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
113 bool runOnMachineFunction(MachineFunction &MF) override;
115 StringRef getPassName() const override { return "SI Fold Operands"; }
117 void getAnalysisUsage(AnalysisUsage &AU) const override {
118 AU.setPreservesCFG();
119 MachineFunctionPass::getAnalysisUsage(AU);
123 } // End anonymous namespace.
125 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE,
126 "SI Fold Operands", false, false)
128 char SIFoldOperands::ID = 0;
130 char &llvm::SIFoldOperandsID = SIFoldOperands::ID;
132 // Wrapper around isInlineConstant that understands special cases when
133 // instruction types are replaced during operand folding.
134 static bool isInlineConstantIfFolded(const SIInstrInfo *TII,
135 const MachineInstr &UseMI,
136 unsigned OpNo,
137 const MachineOperand &OpToFold) {
138 if (TII->isInlineConstant(UseMI, OpNo, OpToFold))
139 return true;
141 unsigned Opc = UseMI.getOpcode();
142 switch (Opc) {
143 case AMDGPU::V_MAC_F32_e64:
144 case AMDGPU::V_MAC_F16_e64:
145 case AMDGPU::V_FMAC_F32_e64:
146 case AMDGPU::V_FMAC_F16_e64: {
147 // Special case for mac. Since this is replaced with mad when folded into
148 // src2, we need to check the legality for the final instruction.
149 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
150 if (static_cast<int>(OpNo) == Src2Idx) {
151 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64 ||
152 Opc == AMDGPU::V_FMAC_F16_e64;
153 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64 ||
154 Opc == AMDGPU::V_FMAC_F32_e64;
156 unsigned Opc = IsFMA ?
157 (IsF32 ? AMDGPU::V_FMA_F32 : AMDGPU::V_FMA_F16_gfx9) :
158 (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16);
159 const MCInstrDesc &MadDesc = TII->get(Opc);
160 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType);
162 return false;
164 default:
165 return false;
169 // TODO: Add heuristic that the frame index might not fit in the addressing mode
170 // immediate offset to avoid materializing in loops.
171 static bool frameIndexMayFold(const SIInstrInfo *TII,
172 const MachineInstr &UseMI,
173 int OpNo,
174 const MachineOperand &OpToFold) {
175 return OpToFold.isFI() &&
176 (TII->isMUBUF(UseMI) || TII->isFLATScratch(UseMI)) &&
177 OpNo == AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), AMDGPU::OpName::vaddr);
180 FunctionPass *llvm::createSIFoldOperandsPass() {
181 return new SIFoldOperands();
184 static bool updateOperand(FoldCandidate &Fold,
185 const SIInstrInfo &TII,
186 const TargetRegisterInfo &TRI,
187 const GCNSubtarget &ST) {
188 MachineInstr *MI = Fold.UseMI;
189 MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
190 assert(Old.isReg());
192 if (Fold.isImm()) {
193 if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked &&
194 !(MI->getDesc().TSFlags & SIInstrFlags::IsMAI) &&
195 AMDGPU::isInlinableLiteralV216(static_cast<uint16_t>(Fold.ImmToFold),
196 ST.hasInv2PiInlineImm())) {
197 // Set op_sel/op_sel_hi on this operand or bail out if op_sel is
198 // already set.
199 unsigned Opcode = MI->getOpcode();
200 int OpNo = MI->getOperandNo(&Old);
201 int ModIdx = -1;
202 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0))
203 ModIdx = AMDGPU::OpName::src0_modifiers;
204 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1))
205 ModIdx = AMDGPU::OpName::src1_modifiers;
206 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2))
207 ModIdx = AMDGPU::OpName::src2_modifiers;
208 assert(ModIdx != -1);
209 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx);
210 MachineOperand &Mod = MI->getOperand(ModIdx);
211 unsigned Val = Mod.getImm();
212 if ((Val & SISrcMods::OP_SEL_0) || !(Val & SISrcMods::OP_SEL_1))
213 return false;
214 // Only apply the following transformation if that operand requries
215 // a packed immediate.
216 switch (TII.get(Opcode).OpInfo[OpNo].OperandType) {
217 case AMDGPU::OPERAND_REG_IMM_V2FP16:
218 case AMDGPU::OPERAND_REG_IMM_V2INT16:
219 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
220 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
221 // If upper part is all zero we do not need op_sel_hi.
222 if (!isUInt<16>(Fold.ImmToFold)) {
223 if (!(Fold.ImmToFold & 0xffff)) {
224 Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0);
225 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
226 Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff);
227 return true;
229 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
230 Old.ChangeToImmediate(Fold.ImmToFold & 0xffff);
231 return true;
233 break;
234 default:
235 break;
240 if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) {
241 MachineBasicBlock *MBB = MI->getParent();
242 auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI, 16);
243 if (Liveness != MachineBasicBlock::LQR_Dead) {
244 LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n");
245 return false;
248 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
249 int Op32 = Fold.getShrinkOpcode();
250 MachineOperand &Dst0 = MI->getOperand(0);
251 MachineOperand &Dst1 = MI->getOperand(1);
252 assert(Dst0.isDef() && Dst1.isDef());
254 bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg());
256 const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg());
257 Register NewReg0 = MRI.createVirtualRegister(Dst0RC);
259 MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32);
261 if (HaveNonDbgCarryUse) {
262 BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg())
263 .addReg(AMDGPU::VCC, RegState::Kill);
266 // Keep the old instruction around to avoid breaking iterators, but
267 // replace it with a dummy instruction to remove uses.
269 // FIXME: We should not invert how this pass looks at operands to avoid
270 // this. Should track set of foldable movs instead of looking for uses
271 // when looking at a use.
272 Dst0.setReg(NewReg0);
273 for (unsigned I = MI->getNumOperands() - 1; I > 0; --I)
274 MI->RemoveOperand(I);
275 MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF));
277 if (Fold.isCommuted())
278 TII.commuteInstruction(*Inst32, false);
279 return true;
282 assert(!Fold.needsShrink() && "not handled");
284 if (Fold.isImm()) {
285 Old.ChangeToImmediate(Fold.ImmToFold);
286 return true;
289 if (Fold.isGlobal()) {
290 Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(),
291 Fold.OpToFold->getTargetFlags());
292 return true;
295 if (Fold.isFI()) {
296 Old.ChangeToFrameIndex(Fold.FrameIndexToFold);
297 return true;
300 MachineOperand *New = Fold.OpToFold;
301 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI);
302 Old.setIsUndef(New->isUndef());
303 return true;
306 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,
307 const MachineInstr *MI) {
308 for (auto Candidate : FoldList) {
309 if (Candidate.UseMI == MI)
310 return true;
312 return false;
315 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
316 MachineInstr *MI, unsigned OpNo,
317 MachineOperand *OpToFold,
318 const SIInstrInfo *TII) {
319 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) {
320 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2
321 unsigned Opc = MI->getOpcode();
322 if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 ||
323 Opc == AMDGPU::V_FMAC_F32_e64 || Opc == AMDGPU::V_FMAC_F16_e64) &&
324 (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) {
325 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64 ||
326 Opc == AMDGPU::V_FMAC_F16_e64;
327 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64 ||
328 Opc == AMDGPU::V_FMAC_F32_e64;
329 unsigned NewOpc = IsFMA ?
330 (IsF32 ? AMDGPU::V_FMA_F32 : AMDGPU::V_FMA_F16_gfx9) :
331 (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16);
333 // Check if changing this to a v_mad_{f16, f32} instruction will allow us
334 // to fold the operand.
335 MI->setDesc(TII->get(NewOpc));
336 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII);
337 if (FoldAsMAD) {
338 MI->untieRegOperand(OpNo);
339 return true;
341 MI->setDesc(TII->get(Opc));
344 // Special case for s_setreg_b32
345 if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) {
346 MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32));
347 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold));
348 return true;
351 // If we are already folding into another operand of MI, then
352 // we can't commute the instruction, otherwise we risk making the
353 // other fold illegal.
354 if (isUseMIInFoldList(FoldList, MI))
355 return false;
357 unsigned CommuteOpNo = OpNo;
359 // Operand is not legal, so try to commute the instruction to
360 // see if this makes it possible to fold.
361 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex;
362 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
363 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1);
365 if (CanCommute) {
366 if (CommuteIdx0 == OpNo)
367 CommuteOpNo = CommuteIdx1;
368 else if (CommuteIdx1 == OpNo)
369 CommuteOpNo = CommuteIdx0;
373 // One of operands might be an Imm operand, and OpNo may refer to it after
374 // the call of commuteInstruction() below. Such situations are avoided
375 // here explicitly as OpNo must be a register operand to be a candidate
376 // for memory folding.
377 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() ||
378 !MI->getOperand(CommuteIdx1).isReg()))
379 return false;
381 if (!CanCommute ||
382 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1))
383 return false;
385 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) {
386 if ((Opc == AMDGPU::V_ADD_I32_e64 ||
387 Opc == AMDGPU::V_SUB_I32_e64 ||
388 Opc == AMDGPU::V_SUBREV_I32_e64) && // FIXME
389 (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) {
390 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
392 // Verify the other operand is a VGPR, otherwise we would violate the
393 // constant bus restriction.
394 unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0;
395 MachineOperand &OtherOp = MI->getOperand(OtherIdx);
396 if (!OtherOp.isReg() ||
397 !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg()))
398 return false;
400 assert(MI->getOperand(1).isDef());
402 // Make sure to get the 32-bit version of the commuted opcode.
403 unsigned MaybeCommutedOpc = MI->getOpcode();
404 int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc);
406 FoldList.push_back(FoldCandidate(MI, CommuteOpNo, OpToFold, true,
407 Op32));
408 return true;
411 TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1);
412 return false;
415 FoldList.push_back(FoldCandidate(MI, CommuteOpNo, OpToFold, true));
416 return true;
419 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold));
420 return true;
423 // If the use operand doesn't care about the value, this may be an operand only
424 // used for register indexing, in which case it is unsafe to fold.
425 static bool isUseSafeToFold(const SIInstrInfo *TII,
426 const MachineInstr &MI,
427 const MachineOperand &UseMO) {
428 return !UseMO.isUndef() && !TII->isSDWA(MI);
429 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg());
432 static bool tryToFoldACImm(const SIInstrInfo *TII,
433 const MachineOperand &OpToFold,
434 MachineInstr *UseMI,
435 unsigned UseOpIdx,
436 SmallVectorImpl<FoldCandidate> &FoldList) {
437 const MCInstrDesc &Desc = UseMI->getDesc();
438 const MCOperandInfo *OpInfo = Desc.OpInfo;
439 if (!OpInfo || UseOpIdx >= Desc.getNumOperands())
440 return false;
442 uint8_t OpTy = OpInfo[UseOpIdx].OperandType;
443 if (OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST ||
444 OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST)
445 return false;
447 if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) &&
448 TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) {
449 UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm());
450 return true;
453 if (!OpToFold.isReg())
454 return false;
456 Register UseReg = OpToFold.getReg();
457 if (!Register::isVirtualRegister(UseReg))
458 return false;
460 if (llvm::find_if(FoldList, [UseMI](const FoldCandidate &FC) {
461 return FC.UseMI == UseMI; }) != FoldList.end())
462 return false;
464 MachineRegisterInfo &MRI = UseMI->getParent()->getParent()->getRegInfo();
465 const MachineInstr *Def = MRI.getUniqueVRegDef(UseReg);
466 if (!Def || !Def->isRegSequence())
467 return false;
469 int64_t Imm;
470 MachineOperand *Op;
471 for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) {
472 const MachineOperand &Sub = Def->getOperand(I);
473 if (!Sub.isReg() || Sub.getSubReg())
474 return false;
475 MachineInstr *SubDef = MRI.getUniqueVRegDef(Sub.getReg());
476 while (SubDef && !SubDef->isMoveImmediate() &&
477 !SubDef->getOperand(1).isImm() && TII->isFoldableCopy(*SubDef))
478 SubDef = MRI.getUniqueVRegDef(SubDef->getOperand(1).getReg());
479 if (!SubDef || !SubDef->isMoveImmediate() || !SubDef->getOperand(1).isImm())
480 return false;
481 Op = &SubDef->getOperand(1);
482 auto SubImm = Op->getImm();
483 if (I == 1) {
484 if (!TII->isInlineConstant(SubDef->getOperand(1), OpTy))
485 return false;
487 Imm = SubImm;
488 continue;
490 if (Imm != SubImm)
491 return false; // Can only fold splat constants
494 if (!TII->isOperandLegal(*UseMI, UseOpIdx, Op))
495 return false;
497 FoldList.push_back(FoldCandidate(UseMI, UseOpIdx, Op));
498 return true;
501 void SIFoldOperands::foldOperand(
502 MachineOperand &OpToFold,
503 MachineInstr *UseMI,
504 int UseOpIdx,
505 SmallVectorImpl<FoldCandidate> &FoldList,
506 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const {
507 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
509 if (!isUseSafeToFold(TII, *UseMI, UseOp))
510 return;
512 // FIXME: Fold operands with subregs.
513 if (UseOp.isReg() && OpToFold.isReg()) {
514 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister)
515 return;
517 // Don't fold subregister extracts into tied operands, only if it is a full
518 // copy since a subregister use tied to a full register def doesn't really
519 // make sense. e.g. don't fold:
521 // %1 = COPY %0:sub1
522 // %2<tied3> = V_MAC_{F16, F32} %3, %4, %1<tied0>
524 // into
525 // %2<tied3> = V_MAC_{F16, F32} %3, %4, %0:sub1<tied0>
526 if (UseOp.isTied() && OpToFold.getSubReg() != AMDGPU::NoSubRegister)
527 return;
530 // Special case for REG_SEQUENCE: We can't fold literals into
531 // REG_SEQUENCE instructions, so we have to fold them into the
532 // uses of REG_SEQUENCE.
533 if (UseMI->isRegSequence()) {
534 Register RegSeqDstReg = UseMI->getOperand(0).getReg();
535 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm();
537 MachineRegisterInfo::use_iterator Next;
538 for (MachineRegisterInfo::use_iterator
539 RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end();
540 RSUse != RSE; RSUse = Next) {
541 Next = std::next(RSUse);
543 MachineInstr *RSUseMI = RSUse->getParent();
545 if (tryToFoldACImm(TII, UseMI->getOperand(0), RSUseMI,
546 RSUse.getOperandNo(), FoldList))
547 continue;
549 if (RSUse->getSubReg() != RegSeqDstSubReg)
550 continue;
552 foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList,
553 CopiesToReplace);
556 return;
559 if (tryToFoldACImm(TII, OpToFold, UseMI, UseOpIdx, FoldList))
560 return;
562 if (frameIndexMayFold(TII, *UseMI, UseOpIdx, OpToFold)) {
563 // Sanity check that this is a stack access.
564 // FIXME: Should probably use stack pseudos before frame lowering.
565 MachineOperand *SOff = TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset);
566 if (!SOff->isReg() || (SOff->getReg() != MFI->getScratchWaveOffsetReg() &&
567 SOff->getReg() != MFI->getStackPtrOffsetReg()))
568 return;
570 if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() !=
571 MFI->getScratchRSrcReg())
572 return;
574 // A frame index will resolve to a positive constant, so it should always be
575 // safe to fold the addressing mode, even pre-GFX9.
576 UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex());
577 SOff->setReg(MFI->getStackPtrOffsetReg());
578 return;
581 bool FoldingImmLike =
582 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
584 if (FoldingImmLike && UseMI->isCopy()) {
585 Register DestReg = UseMI->getOperand(0).getReg();
587 // Don't fold into a copy to a physical register. Doing so would interfere
588 // with the register coalescer's logic which would avoid redundant
589 // initalizations.
590 if (DestReg.isPhysical())
591 return;
593 const TargetRegisterClass *DestRC = MRI->getRegClass(DestReg);
595 Register SrcReg = UseMI->getOperand(1).getReg();
596 if (SrcReg.isVirtual()) { // XXX - This can be an assert?
597 const TargetRegisterClass * SrcRC = MRI->getRegClass(SrcReg);
598 if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) {
599 MachineRegisterInfo::use_iterator NextUse;
600 SmallVector<FoldCandidate, 4> CopyUses;
601 for (MachineRegisterInfo::use_iterator
602 Use = MRI->use_begin(DestReg), E = MRI->use_end();
603 Use != E; Use = NextUse) {
604 NextUse = std::next(Use);
605 FoldCandidate FC = FoldCandidate(Use->getParent(),
606 Use.getOperandNo(), &UseMI->getOperand(1));
607 CopyUses.push_back(FC);
609 for (auto & F : CopyUses) {
610 foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo,
611 FoldList, CopiesToReplace);
616 if (DestRC == &AMDGPU::AGPR_32RegClass &&
617 TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
618 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32));
619 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
620 CopiesToReplace.push_back(UseMI);
621 return;
624 // In order to fold immediates into copies, we need to change the
625 // copy to a MOV.
627 unsigned MovOp = TII->getMovOpcode(DestRC);
628 if (MovOp == AMDGPU::COPY)
629 return;
631 UseMI->setDesc(TII->get(MovOp));
632 MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin();
633 MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end();
634 while (ImpOpI != ImpOpE) {
635 MachineInstr::mop_iterator Tmp = ImpOpI;
636 ImpOpI++;
637 UseMI->RemoveOperand(UseMI->getOperandNo(Tmp));
639 CopiesToReplace.push_back(UseMI);
640 } else {
641 if (UseMI->isCopy() && OpToFold.isReg() &&
642 Register::isVirtualRegister(UseMI->getOperand(0).getReg()) &&
643 TRI->isVectorRegister(*MRI, UseMI->getOperand(0).getReg()) &&
644 TRI->isVectorRegister(*MRI, UseMI->getOperand(1).getReg()) &&
645 !UseMI->getOperand(1).getSubReg()) {
646 unsigned Size = TII->getOpSize(*UseMI, 1);
647 UseMI->getOperand(1).setReg(OpToFold.getReg());
648 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
649 UseMI->getOperand(1).setIsKill(false);
650 CopiesToReplace.push_back(UseMI);
651 OpToFold.setIsKill(false);
652 if (Size != 4)
653 return;
654 if (TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) &&
655 TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg()))
656 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32));
657 else if (TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) &&
658 TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg()))
659 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32));
660 return;
663 unsigned UseOpc = UseMI->getOpcode();
664 if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 ||
665 (UseOpc == AMDGPU::V_READLANE_B32 &&
666 (int)UseOpIdx ==
667 AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) {
668 // %vgpr = V_MOV_B32 imm
669 // %sgpr = V_READFIRSTLANE_B32 %vgpr
670 // =>
671 // %sgpr = S_MOV_B32 imm
672 if (FoldingImmLike) {
673 if (execMayBeModifiedBeforeUse(*MRI,
674 UseMI->getOperand(UseOpIdx).getReg(),
675 *OpToFold.getParent(),
676 *UseMI))
677 return;
679 UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32));
681 // FIXME: ChangeToImmediate should clear subreg
682 UseMI->getOperand(1).setSubReg(0);
683 if (OpToFold.isImm())
684 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
685 else
686 UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex());
687 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane)
688 return;
691 if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) {
692 if (execMayBeModifiedBeforeUse(*MRI,
693 UseMI->getOperand(UseOpIdx).getReg(),
694 *OpToFold.getParent(),
695 *UseMI))
696 return;
698 // %vgpr = COPY %sgpr0
699 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr
700 // =>
701 // %sgpr1 = COPY %sgpr0
702 UseMI->setDesc(TII->get(AMDGPU::COPY));
703 UseMI->getOperand(1).setReg(OpToFold.getReg());
704 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
705 UseMI->getOperand(1).setIsKill(false);
706 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane)
707 return;
711 const MCInstrDesc &UseDesc = UseMI->getDesc();
713 // Don't fold into target independent nodes. Target independent opcodes
714 // don't have defined register classes.
715 if (UseDesc.isVariadic() ||
716 UseOp.isImplicit() ||
717 UseDesc.OpInfo[UseOpIdx].RegClass == -1)
718 return;
721 if (!FoldingImmLike) {
722 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
724 // FIXME: We could try to change the instruction from 64-bit to 32-bit
725 // to enable more folding opportunites. The shrink operands pass
726 // already does this.
727 return;
731 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc();
732 const TargetRegisterClass *FoldRC =
733 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass);
735 // Split 64-bit constants into 32-bits for folding.
736 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) {
737 Register UseReg = UseOp.getReg();
738 const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg);
740 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64)
741 return;
743 APInt Imm(64, OpToFold.getImm());
744 if (UseOp.getSubReg() == AMDGPU::sub0) {
745 Imm = Imm.getLoBits(32);
746 } else {
747 assert(UseOp.getSubReg() == AMDGPU::sub1);
748 Imm = Imm.getHiBits(32);
751 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
752 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII);
753 return;
758 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
761 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result,
762 uint32_t LHS, uint32_t RHS) {
763 switch (Opcode) {
764 case AMDGPU::V_AND_B32_e64:
765 case AMDGPU::V_AND_B32_e32:
766 case AMDGPU::S_AND_B32:
767 Result = LHS & RHS;
768 return true;
769 case AMDGPU::V_OR_B32_e64:
770 case AMDGPU::V_OR_B32_e32:
771 case AMDGPU::S_OR_B32:
772 Result = LHS | RHS;
773 return true;
774 case AMDGPU::V_XOR_B32_e64:
775 case AMDGPU::V_XOR_B32_e32:
776 case AMDGPU::S_XOR_B32:
777 Result = LHS ^ RHS;
778 return true;
779 case AMDGPU::V_LSHL_B32_e64:
780 case AMDGPU::V_LSHL_B32_e32:
781 case AMDGPU::S_LSHL_B32:
782 // The instruction ignores the high bits for out of bounds shifts.
783 Result = LHS << (RHS & 31);
784 return true;
785 case AMDGPU::V_LSHLREV_B32_e64:
786 case AMDGPU::V_LSHLREV_B32_e32:
787 Result = RHS << (LHS & 31);
788 return true;
789 case AMDGPU::V_LSHR_B32_e64:
790 case AMDGPU::V_LSHR_B32_e32:
791 case AMDGPU::S_LSHR_B32:
792 Result = LHS >> (RHS & 31);
793 return true;
794 case AMDGPU::V_LSHRREV_B32_e64:
795 case AMDGPU::V_LSHRREV_B32_e32:
796 Result = RHS >> (LHS & 31);
797 return true;
798 case AMDGPU::V_ASHR_I32_e64:
799 case AMDGPU::V_ASHR_I32_e32:
800 case AMDGPU::S_ASHR_I32:
801 Result = static_cast<int32_t>(LHS) >> (RHS & 31);
802 return true;
803 case AMDGPU::V_ASHRREV_I32_e64:
804 case AMDGPU::V_ASHRREV_I32_e32:
805 Result = static_cast<int32_t>(RHS) >> (LHS & 31);
806 return true;
807 default:
808 return false;
812 static unsigned getMovOpc(bool IsScalar) {
813 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
816 /// Remove any leftover implicit operands from mutating the instruction. e.g.
817 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def
818 /// anymore.
819 static void stripExtraCopyOperands(MachineInstr &MI) {
820 const MCInstrDesc &Desc = MI.getDesc();
821 unsigned NumOps = Desc.getNumOperands() +
822 Desc.getNumImplicitUses() +
823 Desc.getNumImplicitDefs();
825 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I)
826 MI.RemoveOperand(I);
829 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) {
830 MI.setDesc(NewDesc);
831 stripExtraCopyOperands(MI);
834 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI,
835 MachineOperand &Op) {
836 if (Op.isReg()) {
837 // If this has a subregister, it obviously is a register source.
838 if (Op.getSubReg() != AMDGPU::NoSubRegister ||
839 !Register::isVirtualRegister(Op.getReg()))
840 return &Op;
842 MachineInstr *Def = MRI.getVRegDef(Op.getReg());
843 if (Def && Def->isMoveImmediate()) {
844 MachineOperand &ImmSrc = Def->getOperand(1);
845 if (ImmSrc.isImm())
846 return &ImmSrc;
850 return &Op;
853 // Try to simplify operations with a constant that may appear after instruction
854 // selection.
855 // TODO: See if a frame index with a fixed offset can fold.
856 static bool tryConstantFoldOp(MachineRegisterInfo &MRI,
857 const SIInstrInfo *TII,
858 MachineInstr *MI,
859 MachineOperand *ImmOp) {
860 unsigned Opc = MI->getOpcode();
861 if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 ||
862 Opc == AMDGPU::S_NOT_B32) {
863 MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm());
864 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32)));
865 return true;
868 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
869 if (Src1Idx == -1)
870 return false;
872 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
873 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx));
874 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx));
876 if (!Src0->isImm() && !Src1->isImm())
877 return false;
879 if (MI->getOpcode() == AMDGPU::V_LSHL_OR_B32) {
880 if (Src0->isImm() && Src0->getImm() == 0) {
881 // v_lshl_or_b32 0, X, Y -> copy Y
882 // v_lshl_or_b32 0, X, K -> v_mov_b32 K
883 bool UseCopy = TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->isReg();
884 MI->RemoveOperand(Src1Idx);
885 MI->RemoveOperand(Src0Idx);
887 MI->setDesc(TII->get(UseCopy ? AMDGPU::COPY : AMDGPU::V_MOV_B32_e32));
888 return true;
892 // and k0, k1 -> v_mov_b32 (k0 & k1)
893 // or k0, k1 -> v_mov_b32 (k0 | k1)
894 // xor k0, k1 -> v_mov_b32 (k0 ^ k1)
895 if (Src0->isImm() && Src1->isImm()) {
896 int32_t NewImm;
897 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm()))
898 return false;
900 const SIRegisterInfo &TRI = TII->getRegisterInfo();
901 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg());
903 // Be careful to change the right operand, src0 may belong to a different
904 // instruction.
905 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm);
906 MI->RemoveOperand(Src1Idx);
907 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR)));
908 return true;
911 if (!MI->isCommutable())
912 return false;
914 if (Src0->isImm() && !Src1->isImm()) {
915 std::swap(Src0, Src1);
916 std::swap(Src0Idx, Src1Idx);
919 int32_t Src1Val = static_cast<int32_t>(Src1->getImm());
920 if (Opc == AMDGPU::V_OR_B32_e64 ||
921 Opc == AMDGPU::V_OR_B32_e32 ||
922 Opc == AMDGPU::S_OR_B32) {
923 if (Src1Val == 0) {
924 // y = or x, 0 => y = copy x
925 MI->RemoveOperand(Src1Idx);
926 mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
927 } else if (Src1Val == -1) {
928 // y = or x, -1 => y = v_mov_b32 -1
929 MI->RemoveOperand(Src1Idx);
930 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32)));
931 } else
932 return false;
934 return true;
937 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 ||
938 MI->getOpcode() == AMDGPU::V_AND_B32_e32 ||
939 MI->getOpcode() == AMDGPU::S_AND_B32) {
940 if (Src1Val == 0) {
941 // y = and x, 0 => y = v_mov_b32 0
942 MI->RemoveOperand(Src0Idx);
943 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32)));
944 } else if (Src1Val == -1) {
945 // y = and x, -1 => y = copy x
946 MI->RemoveOperand(Src1Idx);
947 mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
948 stripExtraCopyOperands(*MI);
949 } else
950 return false;
952 return true;
955 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 ||
956 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 ||
957 MI->getOpcode() == AMDGPU::S_XOR_B32) {
958 if (Src1Val == 0) {
959 // y = xor x, 0 => y = copy x
960 MI->RemoveOperand(Src1Idx);
961 mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
962 return true;
966 return false;
969 // Try to fold an instruction into a simpler one
970 static bool tryFoldInst(const SIInstrInfo *TII,
971 MachineInstr *MI) {
972 unsigned Opc = MI->getOpcode();
974 if (Opc == AMDGPU::V_CNDMASK_B32_e32 ||
975 Opc == AMDGPU::V_CNDMASK_B32_e64 ||
976 Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) {
977 const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0);
978 const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1);
979 int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers);
980 int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers);
981 if (Src1->isIdenticalTo(*Src0) &&
982 (Src1ModIdx == -1 || !MI->getOperand(Src1ModIdx).getImm()) &&
983 (Src0ModIdx == -1 || !MI->getOperand(Src0ModIdx).getImm())) {
984 LLVM_DEBUG(dbgs() << "Folded " << *MI << " into ");
985 auto &NewDesc =
986 TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false));
987 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
988 if (Src2Idx != -1)
989 MI->RemoveOperand(Src2Idx);
990 MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1));
991 if (Src1ModIdx != -1)
992 MI->RemoveOperand(Src1ModIdx);
993 if (Src0ModIdx != -1)
994 MI->RemoveOperand(Src0ModIdx);
995 mutateCopyOp(*MI, NewDesc);
996 LLVM_DEBUG(dbgs() << *MI << '\n');
997 return true;
1001 return false;
1004 void SIFoldOperands::foldInstOperand(MachineInstr &MI,
1005 MachineOperand &OpToFold) const {
1006 // We need mutate the operands of new mov instructions to add implicit
1007 // uses of EXEC, but adding them invalidates the use_iterator, so defer
1008 // this.
1009 SmallVector<MachineInstr *, 4> CopiesToReplace;
1010 SmallVector<FoldCandidate, 4> FoldList;
1011 MachineOperand &Dst = MI.getOperand(0);
1013 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
1014 if (FoldingImm) {
1015 unsigned NumLiteralUses = 0;
1016 MachineOperand *NonInlineUse = nullptr;
1017 int NonInlineUseOpNo = -1;
1019 MachineRegisterInfo::use_iterator NextUse;
1020 for (MachineRegisterInfo::use_iterator
1021 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
1022 Use != E; Use = NextUse) {
1023 NextUse = std::next(Use);
1024 MachineInstr *UseMI = Use->getParent();
1025 unsigned OpNo = Use.getOperandNo();
1027 // Folding the immediate may reveal operations that can be constant
1028 // folded or replaced with a copy. This can happen for example after
1029 // frame indices are lowered to constants or from splitting 64-bit
1030 // constants.
1032 // We may also encounter cases where one or both operands are
1033 // immediates materialized into a register, which would ordinarily not
1034 // be folded due to multiple uses or operand constraints.
1036 if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) {
1037 LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n');
1039 // Some constant folding cases change the same immediate's use to a new
1040 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user
1041 // again. The same constant folded instruction could also have a second
1042 // use operand.
1043 NextUse = MRI->use_begin(Dst.getReg());
1044 FoldList.clear();
1045 continue;
1048 // Try to fold any inline immediate uses, and then only fold other
1049 // constants if they have one use.
1051 // The legality of the inline immediate must be checked based on the use
1052 // operand, not the defining instruction, because 32-bit instructions
1053 // with 32-bit inline immediate sources may be used to materialize
1054 // constants used in 16-bit operands.
1056 // e.g. it is unsafe to fold:
1057 // s_mov_b32 s0, 1.0 // materializes 0x3f800000
1058 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00
1060 // Folding immediates with more than one use will increase program size.
1061 // FIXME: This will also reduce register usage, which may be better
1062 // in some cases. A better heuristic is needed.
1063 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) {
1064 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace);
1065 } else if (frameIndexMayFold(TII, *UseMI, OpNo, OpToFold)) {
1066 foldOperand(OpToFold, UseMI, OpNo, FoldList,
1067 CopiesToReplace);
1068 } else {
1069 if (++NumLiteralUses == 1) {
1070 NonInlineUse = &*Use;
1071 NonInlineUseOpNo = OpNo;
1076 if (NumLiteralUses == 1) {
1077 MachineInstr *UseMI = NonInlineUse->getParent();
1078 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace);
1080 } else {
1081 // Folding register.
1082 SmallVector <MachineRegisterInfo::use_iterator, 4> UsesToProcess;
1083 for (MachineRegisterInfo::use_iterator
1084 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
1085 Use != E; ++Use) {
1086 UsesToProcess.push_back(Use);
1088 for (auto U : UsesToProcess) {
1089 MachineInstr *UseMI = U->getParent();
1091 foldOperand(OpToFold, UseMI, U.getOperandNo(),
1092 FoldList, CopiesToReplace);
1096 MachineFunction *MF = MI.getParent()->getParent();
1097 // Make sure we add EXEC uses to any new v_mov instructions created.
1098 for (MachineInstr *Copy : CopiesToReplace)
1099 Copy->addImplicitDefUseOperands(*MF);
1101 for (FoldCandidate &Fold : FoldList) {
1102 if (Fold.isReg() && Register::isVirtualRegister(Fold.OpToFold->getReg())) {
1103 Register Reg = Fold.OpToFold->getReg();
1104 MachineInstr *DefMI = Fold.OpToFold->getParent();
1105 if (DefMI->readsRegister(AMDGPU::EXEC, TRI) &&
1106 execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI))
1107 continue;
1109 if (updateOperand(Fold, *TII, *TRI, *ST)) {
1110 // Clear kill flags.
1111 if (Fold.isReg()) {
1112 assert(Fold.OpToFold && Fold.OpToFold->isReg());
1113 // FIXME: Probably shouldn't bother trying to fold if not an
1114 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
1115 // copies.
1116 MRI->clearKillFlags(Fold.OpToFold->getReg());
1118 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo "
1119 << static_cast<int>(Fold.UseOpNo) << " of "
1120 << *Fold.UseMI << '\n');
1121 tryFoldInst(TII, Fold.UseMI);
1122 } else if (Fold.isCommuted()) {
1123 // Restoring instruction's original operand order if fold has failed.
1124 TII->commuteInstruction(*Fold.UseMI, false);
1129 // Clamp patterns are canonically selected to v_max_* instructions, so only
1130 // handle them.
1131 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const {
1132 unsigned Op = MI.getOpcode();
1133 switch (Op) {
1134 case AMDGPU::V_MAX_F32_e64:
1135 case AMDGPU::V_MAX_F16_e64:
1136 case AMDGPU::V_MAX_F64:
1137 case AMDGPU::V_PK_MAX_F16: {
1138 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm())
1139 return nullptr;
1141 // Make sure sources are identical.
1142 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1143 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1144 if (!Src0->isReg() || !Src1->isReg() ||
1145 Src0->getReg() != Src1->getReg() ||
1146 Src0->getSubReg() != Src1->getSubReg() ||
1147 Src0->getSubReg() != AMDGPU::NoSubRegister)
1148 return nullptr;
1150 // Can't fold up if we have modifiers.
1151 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
1152 return nullptr;
1154 unsigned Src0Mods
1155 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm();
1156 unsigned Src1Mods
1157 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm();
1159 // Having a 0 op_sel_hi would require swizzling the output in the source
1160 // instruction, which we can't do.
1161 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1
1162 : 0u;
1163 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods)
1164 return nullptr;
1165 return Src0;
1167 default:
1168 return nullptr;
1172 // We obviously have multiple uses in a clamp since the register is used twice
1173 // in the same instruction.
1174 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) {
1175 int Count = 0;
1176 for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
1177 I != E; ++I) {
1178 if (++Count > 1)
1179 return false;
1182 return true;
1185 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel.
1186 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) {
1187 const MachineOperand *ClampSrc = isClamp(MI);
1188 if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg()))
1189 return false;
1191 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg());
1193 // The type of clamp must be compatible.
1194 if (TII->getClampMask(*Def) != TII->getClampMask(MI))
1195 return false;
1197 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp);
1198 if (!DefClamp)
1199 return false;
1201 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def
1202 << '\n');
1204 // Clamp is applied after omod, so it is OK if omod is set.
1205 DefClamp->setImm(1);
1206 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
1207 MI.eraseFromParent();
1208 return true;
1211 static int getOModValue(unsigned Opc, int64_t Val) {
1212 switch (Opc) {
1213 case AMDGPU::V_MUL_F32_e64: {
1214 switch (static_cast<uint32_t>(Val)) {
1215 case 0x3f000000: // 0.5
1216 return SIOutMods::DIV2;
1217 case 0x40000000: // 2.0
1218 return SIOutMods::MUL2;
1219 case 0x40800000: // 4.0
1220 return SIOutMods::MUL4;
1221 default:
1222 return SIOutMods::NONE;
1225 case AMDGPU::V_MUL_F16_e64: {
1226 switch (static_cast<uint16_t>(Val)) {
1227 case 0x3800: // 0.5
1228 return SIOutMods::DIV2;
1229 case 0x4000: // 2.0
1230 return SIOutMods::MUL2;
1231 case 0x4400: // 4.0
1232 return SIOutMods::MUL4;
1233 default:
1234 return SIOutMods::NONE;
1237 default:
1238 llvm_unreachable("invalid mul opcode");
1242 // FIXME: Does this really not support denormals with f16?
1243 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not
1244 // handled, so will anything other than that break?
1245 std::pair<const MachineOperand *, int>
1246 SIFoldOperands::isOMod(const MachineInstr &MI) const {
1247 unsigned Op = MI.getOpcode();
1248 switch (Op) {
1249 case AMDGPU::V_MUL_F32_e64:
1250 case AMDGPU::V_MUL_F16_e64: {
1251 // If output denormals are enabled, omod is ignored.
1252 if ((Op == AMDGPU::V_MUL_F32_e64 && ST->hasFP32Denormals()) ||
1253 (Op == AMDGPU::V_MUL_F16_e64 && ST->hasFP16Denormals()))
1254 return std::make_pair(nullptr, SIOutMods::NONE);
1256 const MachineOperand *RegOp = nullptr;
1257 const MachineOperand *ImmOp = nullptr;
1258 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1259 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1260 if (Src0->isImm()) {
1261 ImmOp = Src0;
1262 RegOp = Src1;
1263 } else if (Src1->isImm()) {
1264 ImmOp = Src1;
1265 RegOp = Src0;
1266 } else
1267 return std::make_pair(nullptr, SIOutMods::NONE);
1269 int OMod = getOModValue(Op, ImmOp->getImm());
1270 if (OMod == SIOutMods::NONE ||
1271 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
1272 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
1273 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) ||
1274 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp))
1275 return std::make_pair(nullptr, SIOutMods::NONE);
1277 return std::make_pair(RegOp, OMod);
1279 case AMDGPU::V_ADD_F32_e64:
1280 case AMDGPU::V_ADD_F16_e64: {
1281 // If output denormals are enabled, omod is ignored.
1282 if ((Op == AMDGPU::V_ADD_F32_e64 && ST->hasFP32Denormals()) ||
1283 (Op == AMDGPU::V_ADD_F16_e64 && ST->hasFP16Denormals()))
1284 return std::make_pair(nullptr, SIOutMods::NONE);
1286 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x
1287 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1288 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1290 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() &&
1291 Src0->getSubReg() == Src1->getSubReg() &&
1292 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) &&
1293 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) &&
1294 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) &&
1295 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
1296 return std::make_pair(Src0, SIOutMods::MUL2);
1298 return std::make_pair(nullptr, SIOutMods::NONE);
1300 default:
1301 return std::make_pair(nullptr, SIOutMods::NONE);
1305 // FIXME: Does this need to check IEEE bit on function?
1306 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) {
1307 const MachineOperand *RegOp;
1308 int OMod;
1309 std::tie(RegOp, OMod) = isOMod(MI);
1310 if (OMod == SIOutMods::NONE || !RegOp->isReg() ||
1311 RegOp->getSubReg() != AMDGPU::NoSubRegister ||
1312 !hasOneNonDBGUseInst(*MRI, RegOp->getReg()))
1313 return false;
1315 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg());
1316 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod);
1317 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE)
1318 return false;
1320 // Clamp is applied after omod. If the source already has clamp set, don't
1321 // fold it.
1322 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp))
1323 return false;
1325 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n');
1327 DefOMod->setImm(OMod);
1328 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
1329 MI.eraseFromParent();
1330 return true;
1333 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
1334 if (skipFunction(MF.getFunction()))
1335 return false;
1337 MRI = &MF.getRegInfo();
1338 ST = &MF.getSubtarget<GCNSubtarget>();
1339 TII = ST->getInstrInfo();
1340 TRI = &TII->getRegisterInfo();
1341 MFI = MF.getInfo<SIMachineFunctionInfo>();
1343 // omod is ignored by hardware if IEEE bit is enabled. omod also does not
1344 // correctly handle signed zeros.
1346 // FIXME: Also need to check strictfp
1347 bool IsIEEEMode = MFI->getMode().IEEE;
1348 bool HasNSZ = MFI->hasNoSignedZerosFPMath();
1350 for (MachineBasicBlock *MBB : depth_first(&MF)) {
1351 MachineBasicBlock::iterator I, Next;
1353 MachineOperand *CurrentKnownM0Val = nullptr;
1354 for (I = MBB->begin(); I != MBB->end(); I = Next) {
1355 Next = std::next(I);
1356 MachineInstr &MI = *I;
1358 tryFoldInst(TII, &MI);
1360 if (!TII->isFoldableCopy(MI)) {
1361 // TODO: Omod might be OK if there is NSZ only on the source
1362 // instruction, and not the omod multiply.
1363 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) ||
1364 !tryFoldOMod(MI))
1365 tryFoldClamp(MI);
1367 // Saw an unknown clobber of m0, so we no longer know what it is.
1368 if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI))
1369 CurrentKnownM0Val = nullptr;
1370 continue;
1373 // Specially track simple redefs of m0 to the same value in a block, so we
1374 // can erase the later ones.
1375 if (MI.getOperand(0).getReg() == AMDGPU::M0) {
1376 MachineOperand &NewM0Val = MI.getOperand(1);
1377 if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) {
1378 MI.eraseFromParent();
1379 continue;
1382 // We aren't tracking other physical registers
1383 CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) ?
1384 nullptr : &NewM0Val;
1385 continue;
1388 MachineOperand &OpToFold = MI.getOperand(1);
1389 bool FoldingImm =
1390 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
1392 // FIXME: We could also be folding things like TargetIndexes.
1393 if (!FoldingImm && !OpToFold.isReg())
1394 continue;
1396 if (OpToFold.isReg() && !Register::isVirtualRegister(OpToFold.getReg()))
1397 continue;
1399 // Prevent folding operands backwards in the function. For example,
1400 // the COPY opcode must not be replaced by 1 in this example:
1402 // %3 = COPY %vgpr0; VGPR_32:%3
1403 // ...
1404 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec
1405 MachineOperand &Dst = MI.getOperand(0);
1406 if (Dst.isReg() && !Register::isVirtualRegister(Dst.getReg()))
1407 continue;
1409 foldInstOperand(MI, OpToFold);
1412 return false;