[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Target / AMDGPU / SIMachineScheduler.cpp
blobc072ba6b2d1c353012280a62286a22926649783f
1 //===-- SIMachineScheduler.cpp - SI Scheduler Interface -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// SI Machine Scheduler interface
12 //===----------------------------------------------------------------------===//
14 #include "SIMachineScheduler.h"
15 #include "AMDGPU.h"
16 #include "SIInstrInfo.h"
17 #include "SIRegisterInfo.h"
18 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/CodeGen/LiveInterval.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/MachineScheduler.h"
26 #include "llvm/CodeGen/RegisterPressure.h"
27 #include "llvm/CodeGen/SlotIndexes.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <map>
35 #include <set>
36 #include <utility>
37 #include <vector>
39 using namespace llvm;
41 #define DEBUG_TYPE "machine-scheduler"
43 // This scheduler implements a different scheduling algorithm than
44 // GenericScheduler.
46 // There are several specific architecture behaviours that can't be modelled
47 // for GenericScheduler:
48 // . When accessing the result of an SGPR load instruction, you have to wait
49 // for all the SGPR load instructions before your current instruction to
50 // have finished.
51 // . When accessing the result of an VGPR load instruction, you have to wait
52 // for all the VGPR load instructions previous to the VGPR load instruction
53 // you are interested in to finish.
54 // . The less the register pressure, the best load latencies are hidden
56 // Moreover some specifities (like the fact a lot of instructions in the shader
57 // have few dependencies) makes the generic scheduler have some unpredictable
58 // behaviours. For example when register pressure becomes high, it can either
59 // manage to prevent register pressure from going too high, or it can
60 // increase register pressure even more than if it hadn't taken register
61 // pressure into account.
63 // Also some other bad behaviours are generated, like loading at the beginning
64 // of the shader a constant in VGPR you won't need until the end of the shader.
66 // The scheduling problem for SI can distinguish three main parts:
67 // . Hiding high latencies (texture sampling, etc)
68 // . Hiding low latencies (SGPR constant loading, etc)
69 // . Keeping register usage low for better latency hiding and general
70 // performance
72 // Some other things can also affect performance, but are hard to predict
73 // (cache usage, the fact the HW can issue several instructions from different
74 // wavefronts if different types, etc)
76 // This scheduler tries to solve the scheduling problem by dividing it into
77 // simpler sub-problems. It divides the instructions into blocks, schedules
78 // locally inside the blocks where it takes care of low latencies, and then
79 // chooses the order of the blocks by taking care of high latencies.
80 // Dividing the instructions into blocks helps control keeping register
81 // usage low.
83 // First the instructions are put into blocks.
84 // We want the blocks help control register usage and hide high latencies
85 // later. To help control register usage, we typically want all local
86 // computations, when for example you create a result that can be comsummed
87 // right away, to be contained in a block. Block inputs and outputs would
88 // typically be important results that are needed in several locations of
89 // the shader. Since we do want blocks to help hide high latencies, we want
90 // the instructions inside the block to have a minimal set of dependencies
91 // on high latencies. It will make it easy to pick blocks to hide specific
92 // high latencies.
93 // The block creation algorithm is divided into several steps, and several
94 // variants can be tried during the scheduling process.
96 // Second the order of the instructions inside the blocks is chosen.
97 // At that step we do take into account only register usage and hiding
98 // low latency instructions
100 // Third the block order is chosen, there we try to hide high latencies
101 // and keep register usage low.
103 // After the third step, a pass is done to improve the hiding of low
104 // latencies.
106 // Actually when talking about 'low latency' or 'high latency' it includes
107 // both the latency to get the cache (or global mem) data go to the register,
108 // and the bandwidth limitations.
109 // Increasing the number of active wavefronts helps hide the former, but it
110 // doesn't solve the latter, thus why even if wavefront count is high, we have
111 // to try have as many instructions hiding high latencies as possible.
112 // The OpenCL doc says for example latency of 400 cycles for a global mem access,
113 // which is hidden by 10 instructions if the wavefront count is 10.
115 // Some figures taken from AMD docs:
116 // Both texture and constant L1 caches are 4-way associative with 64 bytes
117 // lines.
118 // Constant cache is shared with 4 CUs.
119 // For texture sampling, the address generation unit receives 4 texture
120 // addresses per cycle, thus we could expect texture sampling latency to be
121 // equivalent to 4 instructions in the very best case (a VGPR is 64 work items,
122 // instructions in a wavefront group are executed every 4 cycles),
123 // or 16 instructions if the other wavefronts associated to the 3 other VALUs
124 // of the CU do texture sampling too. (Don't take these figures too seriously,
125 // as I'm not 100% sure of the computation)
126 // Data exports should get similar latency.
127 // For constant loading, the cache is shader with 4 CUs.
128 // The doc says "a throughput of 16B/cycle for each of the 4 Compute Unit"
129 // I guess if the other CU don't read the cache, it can go up to 64B/cycle.
130 // It means a simple s_buffer_load should take one instruction to hide, as
131 // well as a s_buffer_loadx2 and potentially a s_buffer_loadx8 if on the same
132 // cache line.
134 // As of today the driver doesn't preload the constants in cache, thus the
135 // first loads get extra latency. The doc says global memory access can be
136 // 300-600 cycles. We do not specially take that into account when scheduling
137 // As we expect the driver to be able to preload the constants soon.
139 // common code //
141 #ifndef NDEBUG
143 static const char *getReasonStr(SIScheduleCandReason Reason) {
144 switch (Reason) {
145 case NoCand: return "NOCAND";
146 case RegUsage: return "REGUSAGE";
147 case Latency: return "LATENCY";
148 case Successor: return "SUCCESSOR";
149 case Depth: return "DEPTH";
150 case NodeOrder: return "ORDER";
152 llvm_unreachable("Unknown reason!");
155 #endif
157 namespace llvm {
158 namespace SISched {
159 static bool tryLess(int TryVal, int CandVal,
160 SISchedulerCandidate &TryCand,
161 SISchedulerCandidate &Cand,
162 SIScheduleCandReason Reason) {
163 if (TryVal < CandVal) {
164 TryCand.Reason = Reason;
165 return true;
167 if (TryVal > CandVal) {
168 if (Cand.Reason > Reason)
169 Cand.Reason = Reason;
170 return true;
172 Cand.setRepeat(Reason);
173 return false;
176 static bool tryGreater(int TryVal, int CandVal,
177 SISchedulerCandidate &TryCand,
178 SISchedulerCandidate &Cand,
179 SIScheduleCandReason Reason) {
180 if (TryVal > CandVal) {
181 TryCand.Reason = Reason;
182 return true;
184 if (TryVal < CandVal) {
185 if (Cand.Reason > Reason)
186 Cand.Reason = Reason;
187 return true;
189 Cand.setRepeat(Reason);
190 return false;
192 } // end namespace SISched
193 } // end namespace llvm
195 // SIScheduleBlock //
197 void SIScheduleBlock::addUnit(SUnit *SU) {
198 NodeNum2Index[SU->NodeNum] = SUnits.size();
199 SUnits.push_back(SU);
202 #ifndef NDEBUG
203 void SIScheduleBlock::traceCandidate(const SISchedCandidate &Cand) {
205 dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
206 dbgs() << '\n';
208 #endif
210 void SIScheduleBlock::tryCandidateTopDown(SISchedCandidate &Cand,
211 SISchedCandidate &TryCand) {
212 // Initialize the candidate if needed.
213 if (!Cand.isValid()) {
214 TryCand.Reason = NodeOrder;
215 return;
218 if (Cand.SGPRUsage > 60 &&
219 SISched::tryLess(TryCand.SGPRUsage, Cand.SGPRUsage,
220 TryCand, Cand, RegUsage))
221 return;
223 // Schedule low latency instructions as top as possible.
224 // Order of priority is:
225 // . Low latency instructions which do not depend on other low latency
226 // instructions we haven't waited for
227 // . Other instructions which do not depend on low latency instructions
228 // we haven't waited for
229 // . Low latencies
230 // . All other instructions
231 // Goal is to get: low latency instructions - independent instructions
232 // - (eventually some more low latency instructions)
233 // - instructions that depend on the first low latency instructions.
234 // If in the block there is a lot of constant loads, the SGPR usage
235 // could go quite high, thus above the arbitrary limit of 60 will encourage
236 // use the already loaded constants (in order to release some SGPRs) before
237 // loading more.
238 if (SISched::tryLess(TryCand.HasLowLatencyNonWaitedParent,
239 Cand.HasLowLatencyNonWaitedParent,
240 TryCand, Cand, SIScheduleCandReason::Depth))
241 return;
243 if (SISched::tryGreater(TryCand.IsLowLatency, Cand.IsLowLatency,
244 TryCand, Cand, SIScheduleCandReason::Depth))
245 return;
247 if (TryCand.IsLowLatency &&
248 SISched::tryLess(TryCand.LowLatencyOffset, Cand.LowLatencyOffset,
249 TryCand, Cand, SIScheduleCandReason::Depth))
250 return;
252 if (SISched::tryLess(TryCand.VGPRUsage, Cand.VGPRUsage,
253 TryCand, Cand, RegUsage))
254 return;
256 // Fall through to original instruction order.
257 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) {
258 TryCand.Reason = NodeOrder;
262 SUnit* SIScheduleBlock::pickNode() {
263 SISchedCandidate TopCand;
265 for (SUnit* SU : TopReadySUs) {
266 SISchedCandidate TryCand;
267 std::vector<unsigned> pressure;
268 std::vector<unsigned> MaxPressure;
269 // Predict register usage after this instruction.
270 TryCand.SU = SU;
271 TopRPTracker.getDownwardPressure(SU->getInstr(), pressure, MaxPressure);
272 TryCand.SGPRUsage = pressure[DAG->getSGPRSetID()];
273 TryCand.VGPRUsage = pressure[DAG->getVGPRSetID()];
274 TryCand.IsLowLatency = DAG->IsLowLatencySU[SU->NodeNum];
275 TryCand.LowLatencyOffset = DAG->LowLatencyOffset[SU->NodeNum];
276 TryCand.HasLowLatencyNonWaitedParent =
277 HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]];
278 tryCandidateTopDown(TopCand, TryCand);
279 if (TryCand.Reason != NoCand)
280 TopCand.setBest(TryCand);
283 return TopCand.SU;
287 // Schedule something valid.
288 void SIScheduleBlock::fastSchedule() {
289 TopReadySUs.clear();
290 if (Scheduled)
291 undoSchedule();
293 for (SUnit* SU : SUnits) {
294 if (!SU->NumPredsLeft)
295 TopReadySUs.push_back(SU);
298 while (!TopReadySUs.empty()) {
299 SUnit *SU = TopReadySUs[0];
300 ScheduledSUnits.push_back(SU);
301 nodeScheduled(SU);
304 Scheduled = true;
307 // Returns if the register was set between first and last.
308 static bool isDefBetween(unsigned Reg,
309 SlotIndex First, SlotIndex Last,
310 const MachineRegisterInfo *MRI,
311 const LiveIntervals *LIS) {
312 for (MachineRegisterInfo::def_instr_iterator
313 UI = MRI->def_instr_begin(Reg),
314 UE = MRI->def_instr_end(); UI != UE; ++UI) {
315 const MachineInstr* MI = &*UI;
316 if (MI->isDebugValue())
317 continue;
318 SlotIndex InstSlot = LIS->getInstructionIndex(*MI).getRegSlot();
319 if (InstSlot >= First && InstSlot <= Last)
320 return true;
322 return false;
325 void SIScheduleBlock::initRegPressure(MachineBasicBlock::iterator BeginBlock,
326 MachineBasicBlock::iterator EndBlock) {
327 IntervalPressure Pressure, BotPressure;
328 RegPressureTracker RPTracker(Pressure), BotRPTracker(BotPressure);
329 LiveIntervals *LIS = DAG->getLIS();
330 MachineRegisterInfo *MRI = DAG->getMRI();
331 DAG->initRPTracker(TopRPTracker);
332 DAG->initRPTracker(BotRPTracker);
333 DAG->initRPTracker(RPTracker);
335 // Goes though all SU. RPTracker captures what had to be alive for the SUs
336 // to execute, and what is still alive at the end.
337 for (SUnit* SU : ScheduledSUnits) {
338 RPTracker.setPos(SU->getInstr());
339 RPTracker.advance();
342 // Close the RPTracker to finalize live ins/outs.
343 RPTracker.closeRegion();
345 // Initialize the live ins and live outs.
346 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
347 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
349 // Do not Track Physical Registers, because it messes up.
350 for (const auto &RegMaskPair : RPTracker.getPressure().LiveInRegs) {
351 if (Register::isVirtualRegister(RegMaskPair.RegUnit))
352 LiveInRegs.insert(RegMaskPair.RegUnit);
354 LiveOutRegs.clear();
355 // There is several possibilities to distinguish:
356 // 1) Reg is not input to any instruction in the block, but is output of one
357 // 2) 1) + read in the block and not needed after it
358 // 3) 1) + read in the block but needed in another block
359 // 4) Reg is input of an instruction but another block will read it too
360 // 5) Reg is input of an instruction and then rewritten in the block.
361 // result is not read in the block (implies used in another block)
362 // 6) Reg is input of an instruction and then rewritten in the block.
363 // result is read in the block and not needed in another block
364 // 7) Reg is input of an instruction and then rewritten in the block.
365 // result is read in the block but also needed in another block
366 // LiveInRegs will contains all the regs in situation 4, 5, 6, 7
367 // We want LiveOutRegs to contain only Regs whose content will be read after
368 // in another block, and whose content was written in the current block,
369 // that is we want it to get 1, 3, 5, 7
370 // Since we made the MIs of a block to be packed all together before
371 // scheduling, then the LiveIntervals were correct, and the RPTracker was
372 // able to correctly handle 5 vs 6, 2 vs 3.
373 // (Note: This is not sufficient for RPTracker to not do mistakes for case 4)
374 // The RPTracker's LiveOutRegs has 1, 3, (some correct or incorrect)4, 5, 7
375 // Comparing to LiveInRegs is not sufficient to differenciate 4 vs 5, 7
376 // The use of findDefBetween removes the case 4.
377 for (const auto &RegMaskPair : RPTracker.getPressure().LiveOutRegs) {
378 unsigned Reg = RegMaskPair.RegUnit;
379 if (Register::isVirtualRegister(Reg) &&
380 isDefBetween(Reg, LIS->getInstructionIndex(*BeginBlock).getRegSlot(),
381 LIS->getInstructionIndex(*EndBlock).getRegSlot(), MRI,
382 LIS)) {
383 LiveOutRegs.insert(Reg);
387 // Pressure = sum_alive_registers register size
388 // Internally llvm will represent some registers as big 128 bits registers
389 // for example, but they actually correspond to 4 actual 32 bits registers.
390 // Thus Pressure is not equal to num_alive_registers * constant.
391 LiveInPressure = TopPressure.MaxSetPressure;
392 LiveOutPressure = BotPressure.MaxSetPressure;
394 // Prepares TopRPTracker for top down scheduling.
395 TopRPTracker.closeTop();
398 void SIScheduleBlock::schedule(MachineBasicBlock::iterator BeginBlock,
399 MachineBasicBlock::iterator EndBlock) {
400 if (!Scheduled)
401 fastSchedule();
403 // PreScheduling phase to set LiveIn and LiveOut.
404 initRegPressure(BeginBlock, EndBlock);
405 undoSchedule();
407 // Schedule for real now.
409 TopReadySUs.clear();
411 for (SUnit* SU : SUnits) {
412 if (!SU->NumPredsLeft)
413 TopReadySUs.push_back(SU);
416 while (!TopReadySUs.empty()) {
417 SUnit *SU = pickNode();
418 ScheduledSUnits.push_back(SU);
419 TopRPTracker.setPos(SU->getInstr());
420 TopRPTracker.advance();
421 nodeScheduled(SU);
424 // TODO: compute InternalAdditionnalPressure.
425 InternalAdditionnalPressure.resize(TopPressure.MaxSetPressure.size());
427 // Check everything is right.
428 #ifndef NDEBUG
429 assert(SUnits.size() == ScheduledSUnits.size() &&
430 TopReadySUs.empty());
431 for (SUnit* SU : SUnits) {
432 assert(SU->isScheduled &&
433 SU->NumPredsLeft == 0);
435 #endif
437 Scheduled = true;
440 void SIScheduleBlock::undoSchedule() {
441 for (SUnit* SU : SUnits) {
442 SU->isScheduled = false;
443 for (SDep& Succ : SU->Succs) {
444 if (BC->isSUInBlock(Succ.getSUnit(), ID))
445 undoReleaseSucc(SU, &Succ);
448 HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0);
449 ScheduledSUnits.clear();
450 Scheduled = false;
453 void SIScheduleBlock::undoReleaseSucc(SUnit *SU, SDep *SuccEdge) {
454 SUnit *SuccSU = SuccEdge->getSUnit();
456 if (SuccEdge->isWeak()) {
457 ++SuccSU->WeakPredsLeft;
458 return;
460 ++SuccSU->NumPredsLeft;
463 void SIScheduleBlock::releaseSucc(SUnit *SU, SDep *SuccEdge) {
464 SUnit *SuccSU = SuccEdge->getSUnit();
466 if (SuccEdge->isWeak()) {
467 --SuccSU->WeakPredsLeft;
468 return;
470 #ifndef NDEBUG
471 if (SuccSU->NumPredsLeft == 0) {
472 dbgs() << "*** Scheduling failed! ***\n";
473 DAG->dumpNode(*SuccSU);
474 dbgs() << " has been released too many times!\n";
475 llvm_unreachable(nullptr);
477 #endif
479 --SuccSU->NumPredsLeft;
482 /// Release Successors of the SU that are in the block or not.
483 void SIScheduleBlock::releaseSuccessors(SUnit *SU, bool InOrOutBlock) {
484 for (SDep& Succ : SU->Succs) {
485 SUnit *SuccSU = Succ.getSUnit();
487 if (SuccSU->NodeNum >= DAG->SUnits.size())
488 continue;
490 if (BC->isSUInBlock(SuccSU, ID) != InOrOutBlock)
491 continue;
493 releaseSucc(SU, &Succ);
494 if (SuccSU->NumPredsLeft == 0 && InOrOutBlock)
495 TopReadySUs.push_back(SuccSU);
499 void SIScheduleBlock::nodeScheduled(SUnit *SU) {
500 // Is in TopReadySUs
501 assert (!SU->NumPredsLeft);
502 std::vector<SUnit *>::iterator I = llvm::find(TopReadySUs, SU);
503 if (I == TopReadySUs.end()) {
504 dbgs() << "Data Structure Bug in SI Scheduler\n";
505 llvm_unreachable(nullptr);
507 TopReadySUs.erase(I);
509 releaseSuccessors(SU, true);
510 // Scheduling this node will trigger a wait,
511 // thus propagate to other instructions that they do not need to wait either.
512 if (HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]])
513 HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0);
515 if (DAG->IsLowLatencySU[SU->NodeNum]) {
516 for (SDep& Succ : SU->Succs) {
517 std::map<unsigned, unsigned>::iterator I =
518 NodeNum2Index.find(Succ.getSUnit()->NodeNum);
519 if (I != NodeNum2Index.end())
520 HasLowLatencyNonWaitedParent[I->second] = 1;
523 SU->isScheduled = true;
526 void SIScheduleBlock::finalizeUnits() {
527 // We remove links from outside blocks to enable scheduling inside the block.
528 for (SUnit* SU : SUnits) {
529 releaseSuccessors(SU, false);
530 if (DAG->IsHighLatencySU[SU->NodeNum])
531 HighLatencyBlock = true;
533 HasLowLatencyNonWaitedParent.resize(SUnits.size(), 0);
536 // we maintain ascending order of IDs
537 void SIScheduleBlock::addPred(SIScheduleBlock *Pred) {
538 unsigned PredID = Pred->getID();
540 // Check if not already predecessor.
541 for (SIScheduleBlock* P : Preds) {
542 if (PredID == P->getID())
543 return;
545 Preds.push_back(Pred);
547 assert(none_of(Succs,
548 [=](std::pair<SIScheduleBlock*,
549 SIScheduleBlockLinkKind> S) {
550 return PredID == S.first->getID();
551 }) &&
552 "Loop in the Block Graph!");
555 void SIScheduleBlock::addSucc(SIScheduleBlock *Succ,
556 SIScheduleBlockLinkKind Kind) {
557 unsigned SuccID = Succ->getID();
559 // Check if not already predecessor.
560 for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> &S : Succs) {
561 if (SuccID == S.first->getID()) {
562 if (S.second == SIScheduleBlockLinkKind::NoData &&
563 Kind == SIScheduleBlockLinkKind::Data)
564 S.second = Kind;
565 return;
568 if (Succ->isHighLatencyBlock())
569 ++NumHighLatencySuccessors;
570 Succs.push_back(std::make_pair(Succ, Kind));
572 assert(none_of(Preds,
573 [=](SIScheduleBlock *P) { return SuccID == P->getID(); }) &&
574 "Loop in the Block Graph!");
577 #ifndef NDEBUG
578 void SIScheduleBlock::printDebug(bool full) {
579 dbgs() << "Block (" << ID << ")\n";
580 if (!full)
581 return;
583 dbgs() << "\nContains High Latency Instruction: "
584 << HighLatencyBlock << '\n';
585 dbgs() << "\nDepends On:\n";
586 for (SIScheduleBlock* P : Preds) {
587 P->printDebug(false);
590 dbgs() << "\nSuccessors:\n";
591 for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> S : Succs) {
592 if (S.second == SIScheduleBlockLinkKind::Data)
593 dbgs() << "(Data Dep) ";
594 S.first->printDebug(false);
597 if (Scheduled) {
598 dbgs() << "LiveInPressure " << LiveInPressure[DAG->getSGPRSetID()] << ' '
599 << LiveInPressure[DAG->getVGPRSetID()] << '\n';
600 dbgs() << "LiveOutPressure " << LiveOutPressure[DAG->getSGPRSetID()] << ' '
601 << LiveOutPressure[DAG->getVGPRSetID()] << "\n\n";
602 dbgs() << "LiveIns:\n";
603 for (unsigned Reg : LiveInRegs)
604 dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
606 dbgs() << "\nLiveOuts:\n";
607 for (unsigned Reg : LiveOutRegs)
608 dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
611 dbgs() << "\nInstructions:\n";
612 if (!Scheduled) {
613 for (const SUnit* SU : SUnits)
614 DAG->dumpNode(*SU);
615 } else {
616 for (const SUnit* SU : SUnits)
617 DAG->dumpNode(*SU);
620 dbgs() << "///////////////////////\n";
622 #endif
624 // SIScheduleBlockCreator //
626 SIScheduleBlockCreator::SIScheduleBlockCreator(SIScheduleDAGMI *DAG) :
627 DAG(DAG) {
630 SIScheduleBlockCreator::~SIScheduleBlockCreator() = default;
632 SIScheduleBlocks
633 SIScheduleBlockCreator::getBlocks(SISchedulerBlockCreatorVariant BlockVariant) {
634 std::map<SISchedulerBlockCreatorVariant, SIScheduleBlocks>::iterator B =
635 Blocks.find(BlockVariant);
636 if (B == Blocks.end()) {
637 SIScheduleBlocks Res;
638 createBlocksForVariant(BlockVariant);
639 topologicalSort();
640 scheduleInsideBlocks();
641 fillStats();
642 Res.Blocks = CurrentBlocks;
643 Res.TopDownIndex2Block = TopDownIndex2Block;
644 Res.TopDownBlock2Index = TopDownBlock2Index;
645 Blocks[BlockVariant] = Res;
646 return Res;
647 } else {
648 return B->second;
652 bool SIScheduleBlockCreator::isSUInBlock(SUnit *SU, unsigned ID) {
653 if (SU->NodeNum >= DAG->SUnits.size())
654 return false;
655 return CurrentBlocks[Node2CurrentBlock[SU->NodeNum]]->getID() == ID;
658 void SIScheduleBlockCreator::colorHighLatenciesAlone() {
659 unsigned DAGSize = DAG->SUnits.size();
661 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
662 SUnit *SU = &DAG->SUnits[i];
663 if (DAG->IsHighLatencySU[SU->NodeNum]) {
664 CurrentColoring[SU->NodeNum] = NextReservedID++;
669 static bool
670 hasDataDependencyPred(const SUnit &SU, const SUnit &FromSU) {
671 for (const auto &PredDep : SU.Preds) {
672 if (PredDep.getSUnit() == &FromSU &&
673 PredDep.getKind() == llvm::SDep::Data)
674 return true;
676 return false;
679 void SIScheduleBlockCreator::colorHighLatenciesGroups() {
680 unsigned DAGSize = DAG->SUnits.size();
681 unsigned NumHighLatencies = 0;
682 unsigned GroupSize;
683 int Color = NextReservedID;
684 unsigned Count = 0;
685 std::set<unsigned> FormingGroup;
687 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
688 SUnit *SU = &DAG->SUnits[i];
689 if (DAG->IsHighLatencySU[SU->NodeNum])
690 ++NumHighLatencies;
693 if (NumHighLatencies == 0)
694 return;
696 if (NumHighLatencies <= 6)
697 GroupSize = 2;
698 else if (NumHighLatencies <= 12)
699 GroupSize = 3;
700 else
701 GroupSize = 4;
703 for (unsigned SUNum : DAG->TopDownIndex2SU) {
704 const SUnit &SU = DAG->SUnits[SUNum];
705 if (DAG->IsHighLatencySU[SU.NodeNum]) {
706 unsigned CompatibleGroup = true;
707 int ProposedColor = Color;
708 std::vector<int> AdditionalElements;
710 // We don't want to put in the same block
711 // two high latency instructions that depend
712 // on each other.
713 // One way would be to check canAddEdge
714 // in both directions, but that currently is not
715 // enough because there the high latency order is
716 // enforced (via links).
717 // Instead, look at the dependencies between the
718 // high latency instructions and deduce if it is
719 // a data dependency or not.
720 for (unsigned j : FormingGroup) {
721 bool HasSubGraph;
722 std::vector<int> SubGraph;
723 // By construction (topological order), if SU and
724 // DAG->SUnits[j] are linked, DAG->SUnits[j] is neccessary
725 // in the parent graph of SU.
726 #ifndef NDEBUG
727 SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j],
728 HasSubGraph);
729 assert(!HasSubGraph);
730 #endif
731 SubGraph = DAG->GetTopo()->GetSubGraph(DAG->SUnits[j], SU,
732 HasSubGraph);
733 if (!HasSubGraph)
734 continue; // No dependencies between each other
735 else if (SubGraph.size() > 5) {
736 // Too many elements would be required to be added to the block.
737 CompatibleGroup = false;
738 break;
740 else {
741 // Check the type of dependency
742 for (unsigned k : SubGraph) {
743 // If in the path to join the two instructions,
744 // there is another high latency instruction,
745 // or instructions colored for another block
746 // abort the merge.
747 if (DAG->IsHighLatencySU[k] ||
748 (CurrentColoring[k] != ProposedColor &&
749 CurrentColoring[k] != 0)) {
750 CompatibleGroup = false;
751 break;
753 // If one of the SU in the subgraph depends on the result of SU j,
754 // there'll be a data dependency.
755 if (hasDataDependencyPred(DAG->SUnits[k], DAG->SUnits[j])) {
756 CompatibleGroup = false;
757 break;
760 if (!CompatibleGroup)
761 break;
762 // Same check for the SU
763 if (hasDataDependencyPred(SU, DAG->SUnits[j])) {
764 CompatibleGroup = false;
765 break;
767 // Add all the required instructions to the block
768 // These cannot live in another block (because they
769 // depend (order dependency) on one of the
770 // instruction in the block, and are required for the
771 // high latency instruction we add.
772 AdditionalElements.insert(AdditionalElements.end(),
773 SubGraph.begin(), SubGraph.end());
776 if (CompatibleGroup) {
777 FormingGroup.insert(SU.NodeNum);
778 for (unsigned j : AdditionalElements)
779 CurrentColoring[j] = ProposedColor;
780 CurrentColoring[SU.NodeNum] = ProposedColor;
781 ++Count;
783 // Found one incompatible instruction,
784 // or has filled a big enough group.
785 // -> start a new one.
786 if (!CompatibleGroup) {
787 FormingGroup.clear();
788 Color = ++NextReservedID;
789 ProposedColor = Color;
790 FormingGroup.insert(SU.NodeNum);
791 CurrentColoring[SU.NodeNum] = ProposedColor;
792 Count = 0;
793 } else if (Count == GroupSize) {
794 FormingGroup.clear();
795 Color = ++NextReservedID;
796 ProposedColor = Color;
797 Count = 0;
803 void SIScheduleBlockCreator::colorComputeReservedDependencies() {
804 unsigned DAGSize = DAG->SUnits.size();
805 std::map<std::set<unsigned>, unsigned> ColorCombinations;
807 CurrentTopDownReservedDependencyColoring.clear();
808 CurrentBottomUpReservedDependencyColoring.clear();
810 CurrentTopDownReservedDependencyColoring.resize(DAGSize, 0);
811 CurrentBottomUpReservedDependencyColoring.resize(DAGSize, 0);
813 // Traverse TopDown, and give different colors to SUs depending
814 // on which combination of High Latencies they depend on.
816 for (unsigned SUNum : DAG->TopDownIndex2SU) {
817 SUnit *SU = &DAG->SUnits[SUNum];
818 std::set<unsigned> SUColors;
820 // Already given.
821 if (CurrentColoring[SU->NodeNum]) {
822 CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
823 CurrentColoring[SU->NodeNum];
824 continue;
827 for (SDep& PredDep : SU->Preds) {
828 SUnit *Pred = PredDep.getSUnit();
829 if (PredDep.isWeak() || Pred->NodeNum >= DAGSize)
830 continue;
831 if (CurrentTopDownReservedDependencyColoring[Pred->NodeNum] > 0)
832 SUColors.insert(CurrentTopDownReservedDependencyColoring[Pred->NodeNum]);
834 // Color 0 by default.
835 if (SUColors.empty())
836 continue;
837 // Same color than parents.
838 if (SUColors.size() == 1 && *SUColors.begin() > DAGSize)
839 CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
840 *SUColors.begin();
841 else {
842 std::map<std::set<unsigned>, unsigned>::iterator Pos =
843 ColorCombinations.find(SUColors);
844 if (Pos != ColorCombinations.end()) {
845 CurrentTopDownReservedDependencyColoring[SU->NodeNum] = Pos->second;
846 } else {
847 CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
848 NextNonReservedID;
849 ColorCombinations[SUColors] = NextNonReservedID++;
854 ColorCombinations.clear();
856 // Same as before, but BottomUp.
858 for (unsigned SUNum : DAG->BottomUpIndex2SU) {
859 SUnit *SU = &DAG->SUnits[SUNum];
860 std::set<unsigned> SUColors;
862 // Already given.
863 if (CurrentColoring[SU->NodeNum]) {
864 CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
865 CurrentColoring[SU->NodeNum];
866 continue;
869 for (SDep& SuccDep : SU->Succs) {
870 SUnit *Succ = SuccDep.getSUnit();
871 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
872 continue;
873 if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0)
874 SUColors.insert(CurrentBottomUpReservedDependencyColoring[Succ->NodeNum]);
876 // Keep color 0.
877 if (SUColors.empty())
878 continue;
879 // Same color than parents.
880 if (SUColors.size() == 1 && *SUColors.begin() > DAGSize)
881 CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
882 *SUColors.begin();
883 else {
884 std::map<std::set<unsigned>, unsigned>::iterator Pos =
885 ColorCombinations.find(SUColors);
886 if (Pos != ColorCombinations.end()) {
887 CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = Pos->second;
888 } else {
889 CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
890 NextNonReservedID;
891 ColorCombinations[SUColors] = NextNonReservedID++;
897 void SIScheduleBlockCreator::colorAccordingToReservedDependencies() {
898 unsigned DAGSize = DAG->SUnits.size();
899 std::map<std::pair<unsigned, unsigned>, unsigned> ColorCombinations;
901 // Every combination of colors given by the top down
902 // and bottom up Reserved node dependency
904 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
905 SUnit *SU = &DAG->SUnits[i];
906 std::pair<unsigned, unsigned> SUColors;
908 // High latency instructions: already given.
909 if (CurrentColoring[SU->NodeNum])
910 continue;
912 SUColors.first = CurrentTopDownReservedDependencyColoring[SU->NodeNum];
913 SUColors.second = CurrentBottomUpReservedDependencyColoring[SU->NodeNum];
915 std::map<std::pair<unsigned, unsigned>, unsigned>::iterator Pos =
916 ColorCombinations.find(SUColors);
917 if (Pos != ColorCombinations.end()) {
918 CurrentColoring[SU->NodeNum] = Pos->second;
919 } else {
920 CurrentColoring[SU->NodeNum] = NextNonReservedID;
921 ColorCombinations[SUColors] = NextNonReservedID++;
926 void SIScheduleBlockCreator::colorEndsAccordingToDependencies() {
927 unsigned DAGSize = DAG->SUnits.size();
928 std::vector<int> PendingColoring = CurrentColoring;
930 assert(DAGSize >= 1 &&
931 CurrentBottomUpReservedDependencyColoring.size() == DAGSize &&
932 CurrentTopDownReservedDependencyColoring.size() == DAGSize);
933 // If there is no reserved block at all, do nothing. We don't want
934 // everything in one block.
935 if (*std::max_element(CurrentBottomUpReservedDependencyColoring.begin(),
936 CurrentBottomUpReservedDependencyColoring.end()) == 0 &&
937 *std::max_element(CurrentTopDownReservedDependencyColoring.begin(),
938 CurrentTopDownReservedDependencyColoring.end()) == 0)
939 return;
941 for (unsigned SUNum : DAG->BottomUpIndex2SU) {
942 SUnit *SU = &DAG->SUnits[SUNum];
943 std::set<unsigned> SUColors;
944 std::set<unsigned> SUColorsPending;
946 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
947 continue;
949 if (CurrentBottomUpReservedDependencyColoring[SU->NodeNum] > 0 ||
950 CurrentTopDownReservedDependencyColoring[SU->NodeNum] > 0)
951 continue;
953 for (SDep& SuccDep : SU->Succs) {
954 SUnit *Succ = SuccDep.getSUnit();
955 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
956 continue;
957 if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0 ||
958 CurrentTopDownReservedDependencyColoring[Succ->NodeNum] > 0)
959 SUColors.insert(CurrentColoring[Succ->NodeNum]);
960 SUColorsPending.insert(PendingColoring[Succ->NodeNum]);
962 // If there is only one child/parent block, and that block
963 // is not among the ones we are removing in this path, then
964 // merge the instruction to that block
965 if (SUColors.size() == 1 && SUColorsPending.size() == 1)
966 PendingColoring[SU->NodeNum] = *SUColors.begin();
967 else // TODO: Attribute new colors depending on color
968 // combination of children.
969 PendingColoring[SU->NodeNum] = NextNonReservedID++;
971 CurrentColoring = PendingColoring;
975 void SIScheduleBlockCreator::colorForceConsecutiveOrderInGroup() {
976 unsigned DAGSize = DAG->SUnits.size();
977 unsigned PreviousColor;
978 std::set<unsigned> SeenColors;
980 if (DAGSize <= 1)
981 return;
983 PreviousColor = CurrentColoring[0];
985 for (unsigned i = 1, e = DAGSize; i != e; ++i) {
986 SUnit *SU = &DAG->SUnits[i];
987 unsigned CurrentColor = CurrentColoring[i];
988 unsigned PreviousColorSave = PreviousColor;
989 assert(i == SU->NodeNum);
991 if (CurrentColor != PreviousColor)
992 SeenColors.insert(PreviousColor);
993 PreviousColor = CurrentColor;
995 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
996 continue;
998 if (SeenColors.find(CurrentColor) == SeenColors.end())
999 continue;
1001 if (PreviousColorSave != CurrentColor)
1002 CurrentColoring[i] = NextNonReservedID++;
1003 else
1004 CurrentColoring[i] = CurrentColoring[i-1];
1008 void SIScheduleBlockCreator::colorMergeConstantLoadsNextGroup() {
1009 unsigned DAGSize = DAG->SUnits.size();
1011 for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1012 SUnit *SU = &DAG->SUnits[SUNum];
1013 std::set<unsigned> SUColors;
1015 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
1016 continue;
1018 // No predecessor: Vgpr constant loading.
1019 // Low latency instructions usually have a predecessor (the address)
1020 if (SU->Preds.size() > 0 && !DAG->IsLowLatencySU[SU->NodeNum])
1021 continue;
1023 for (SDep& SuccDep : SU->Succs) {
1024 SUnit *Succ = SuccDep.getSUnit();
1025 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1026 continue;
1027 SUColors.insert(CurrentColoring[Succ->NodeNum]);
1029 if (SUColors.size() == 1)
1030 CurrentColoring[SU->NodeNum] = *SUColors.begin();
1034 void SIScheduleBlockCreator::colorMergeIfPossibleNextGroup() {
1035 unsigned DAGSize = DAG->SUnits.size();
1037 for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1038 SUnit *SU = &DAG->SUnits[SUNum];
1039 std::set<unsigned> SUColors;
1041 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
1042 continue;
1044 for (SDep& SuccDep : SU->Succs) {
1045 SUnit *Succ = SuccDep.getSUnit();
1046 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1047 continue;
1048 SUColors.insert(CurrentColoring[Succ->NodeNum]);
1050 if (SUColors.size() == 1)
1051 CurrentColoring[SU->NodeNum] = *SUColors.begin();
1055 void SIScheduleBlockCreator::colorMergeIfPossibleNextGroupOnlyForReserved() {
1056 unsigned DAGSize = DAG->SUnits.size();
1058 for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1059 SUnit *SU = &DAG->SUnits[SUNum];
1060 std::set<unsigned> SUColors;
1062 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
1063 continue;
1065 for (SDep& SuccDep : SU->Succs) {
1066 SUnit *Succ = SuccDep.getSUnit();
1067 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1068 continue;
1069 SUColors.insert(CurrentColoring[Succ->NodeNum]);
1071 if (SUColors.size() == 1 && *SUColors.begin() <= DAGSize)
1072 CurrentColoring[SU->NodeNum] = *SUColors.begin();
1076 void SIScheduleBlockCreator::colorMergeIfPossibleSmallGroupsToNextGroup() {
1077 unsigned DAGSize = DAG->SUnits.size();
1078 std::map<unsigned, unsigned> ColorCount;
1080 for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1081 SUnit *SU = &DAG->SUnits[SUNum];
1082 unsigned color = CurrentColoring[SU->NodeNum];
1083 ++ColorCount[color];
1086 for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1087 SUnit *SU = &DAG->SUnits[SUNum];
1088 unsigned color = CurrentColoring[SU->NodeNum];
1089 std::set<unsigned> SUColors;
1091 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
1092 continue;
1094 if (ColorCount[color] > 1)
1095 continue;
1097 for (SDep& SuccDep : SU->Succs) {
1098 SUnit *Succ = SuccDep.getSUnit();
1099 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1100 continue;
1101 SUColors.insert(CurrentColoring[Succ->NodeNum]);
1103 if (SUColors.size() == 1 && *SUColors.begin() != color) {
1104 --ColorCount[color];
1105 CurrentColoring[SU->NodeNum] = *SUColors.begin();
1106 ++ColorCount[*SUColors.begin()];
1111 void SIScheduleBlockCreator::cutHugeBlocks() {
1112 // TODO
1115 void SIScheduleBlockCreator::regroupNoUserInstructions() {
1116 unsigned DAGSize = DAG->SUnits.size();
1117 int GroupID = NextNonReservedID++;
1119 for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1120 SUnit *SU = &DAG->SUnits[SUNum];
1121 bool hasSuccessor = false;
1123 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
1124 continue;
1126 for (SDep& SuccDep : SU->Succs) {
1127 SUnit *Succ = SuccDep.getSUnit();
1128 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1129 continue;
1130 hasSuccessor = true;
1132 if (!hasSuccessor)
1133 CurrentColoring[SU->NodeNum] = GroupID;
1137 void SIScheduleBlockCreator::colorExports() {
1138 unsigned ExportColor = NextNonReservedID++;
1139 SmallVector<unsigned, 8> ExpGroup;
1141 // Put all exports together in a block.
1142 // The block will naturally end up being scheduled last,
1143 // thus putting exports at the end of the schedule, which
1144 // is better for performance.
1145 // However we must ensure, for safety, the exports can be put
1146 // together in the same block without any other instruction.
1147 // This could happen, for example, when scheduling after regalloc
1148 // if reloading a spilled register from memory using the same
1149 // register than used in a previous export.
1150 // If that happens, do not regroup the exports.
1151 for (unsigned SUNum : DAG->TopDownIndex2SU) {
1152 const SUnit &SU = DAG->SUnits[SUNum];
1153 if (SIInstrInfo::isEXP(*SU.getInstr())) {
1154 // Check the EXP can be added to the group safely,
1155 // ie without needing any other instruction.
1156 // The EXP is allowed to depend on other EXP
1157 // (they will be in the same group).
1158 for (unsigned j : ExpGroup) {
1159 bool HasSubGraph;
1160 std::vector<int> SubGraph;
1161 // By construction (topological order), if SU and
1162 // DAG->SUnits[j] are linked, DAG->SUnits[j] is neccessary
1163 // in the parent graph of SU.
1164 #ifndef NDEBUG
1165 SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j],
1166 HasSubGraph);
1167 assert(!HasSubGraph);
1168 #endif
1169 SubGraph = DAG->GetTopo()->GetSubGraph(DAG->SUnits[j], SU,
1170 HasSubGraph);
1171 if (!HasSubGraph)
1172 continue; // No dependencies between each other
1174 // SubGraph contains all the instructions required
1175 // between EXP SUnits[j] and EXP SU.
1176 for (unsigned k : SubGraph) {
1177 if (!SIInstrInfo::isEXP(*DAG->SUnits[k].getInstr()))
1178 // Other instructions than EXP would be required in the group.
1179 // Abort the groupping.
1180 return;
1184 ExpGroup.push_back(SUNum);
1188 // The group can be formed. Give the color.
1189 for (unsigned j : ExpGroup)
1190 CurrentColoring[j] = ExportColor;
1193 void SIScheduleBlockCreator::createBlocksForVariant(SISchedulerBlockCreatorVariant BlockVariant) {
1194 unsigned DAGSize = DAG->SUnits.size();
1195 std::map<unsigned,unsigned> RealID;
1197 CurrentBlocks.clear();
1198 CurrentColoring.clear();
1199 CurrentColoring.resize(DAGSize, 0);
1200 Node2CurrentBlock.clear();
1202 // Restore links previous scheduling variant has overridden.
1203 DAG->restoreSULinksLeft();
1205 NextReservedID = 1;
1206 NextNonReservedID = DAGSize + 1;
1208 LLVM_DEBUG(dbgs() << "Coloring the graph\n");
1210 if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesGrouped)
1211 colorHighLatenciesGroups();
1212 else
1213 colorHighLatenciesAlone();
1214 colorComputeReservedDependencies();
1215 colorAccordingToReservedDependencies();
1216 colorEndsAccordingToDependencies();
1217 if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesAlonePlusConsecutive)
1218 colorForceConsecutiveOrderInGroup();
1219 regroupNoUserInstructions();
1220 colorMergeConstantLoadsNextGroup();
1221 colorMergeIfPossibleNextGroupOnlyForReserved();
1222 colorExports();
1224 // Put SUs of same color into same block
1225 Node2CurrentBlock.resize(DAGSize, -1);
1226 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1227 SUnit *SU = &DAG->SUnits[i];
1228 unsigned Color = CurrentColoring[SU->NodeNum];
1229 if (RealID.find(Color) == RealID.end()) {
1230 int ID = CurrentBlocks.size();
1231 BlockPtrs.push_back(std::make_unique<SIScheduleBlock>(DAG, this, ID));
1232 CurrentBlocks.push_back(BlockPtrs.rbegin()->get());
1233 RealID[Color] = ID;
1235 CurrentBlocks[RealID[Color]]->addUnit(SU);
1236 Node2CurrentBlock[SU->NodeNum] = RealID[Color];
1239 // Build dependencies between blocks.
1240 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1241 SUnit *SU = &DAG->SUnits[i];
1242 int SUID = Node2CurrentBlock[i];
1243 for (SDep& SuccDep : SU->Succs) {
1244 SUnit *Succ = SuccDep.getSUnit();
1245 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1246 continue;
1247 if (Node2CurrentBlock[Succ->NodeNum] != SUID)
1248 CurrentBlocks[SUID]->addSucc(CurrentBlocks[Node2CurrentBlock[Succ->NodeNum]],
1249 SuccDep.isCtrl() ? NoData : Data);
1251 for (SDep& PredDep : SU->Preds) {
1252 SUnit *Pred = PredDep.getSUnit();
1253 if (PredDep.isWeak() || Pred->NodeNum >= DAGSize)
1254 continue;
1255 if (Node2CurrentBlock[Pred->NodeNum] != SUID)
1256 CurrentBlocks[SUID]->addPred(CurrentBlocks[Node2CurrentBlock[Pred->NodeNum]]);
1260 // Free root and leafs of all blocks to enable scheduling inside them.
1261 for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
1262 SIScheduleBlock *Block = CurrentBlocks[i];
1263 Block->finalizeUnits();
1265 LLVM_DEBUG(dbgs() << "Blocks created:\n\n";
1266 for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
1267 SIScheduleBlock *Block = CurrentBlocks[i];
1268 Block->printDebug(true);
1272 // Two functions taken from Codegen/MachineScheduler.cpp
1274 /// Non-const version.
1275 static MachineBasicBlock::iterator
1276 nextIfDebug(MachineBasicBlock::iterator I,
1277 MachineBasicBlock::const_iterator End) {
1278 for (; I != End; ++I) {
1279 if (!I->isDebugInstr())
1280 break;
1282 return I;
1285 void SIScheduleBlockCreator::topologicalSort() {
1286 unsigned DAGSize = CurrentBlocks.size();
1287 std::vector<int> WorkList;
1289 LLVM_DEBUG(dbgs() << "Topological Sort\n");
1291 WorkList.reserve(DAGSize);
1292 TopDownIndex2Block.resize(DAGSize);
1293 TopDownBlock2Index.resize(DAGSize);
1294 BottomUpIndex2Block.resize(DAGSize);
1296 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1297 SIScheduleBlock *Block = CurrentBlocks[i];
1298 unsigned Degree = Block->getSuccs().size();
1299 TopDownBlock2Index[i] = Degree;
1300 if (Degree == 0) {
1301 WorkList.push_back(i);
1305 int Id = DAGSize;
1306 while (!WorkList.empty()) {
1307 int i = WorkList.back();
1308 SIScheduleBlock *Block = CurrentBlocks[i];
1309 WorkList.pop_back();
1310 TopDownBlock2Index[i] = --Id;
1311 TopDownIndex2Block[Id] = i;
1312 for (SIScheduleBlock* Pred : Block->getPreds()) {
1313 if (!--TopDownBlock2Index[Pred->getID()])
1314 WorkList.push_back(Pred->getID());
1318 #ifndef NDEBUG
1319 // Check correctness of the ordering.
1320 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1321 SIScheduleBlock *Block = CurrentBlocks[i];
1322 for (SIScheduleBlock* Pred : Block->getPreds()) {
1323 assert(TopDownBlock2Index[i] > TopDownBlock2Index[Pred->getID()] &&
1324 "Wrong Top Down topological sorting");
1327 #endif
1329 BottomUpIndex2Block = std::vector<int>(TopDownIndex2Block.rbegin(),
1330 TopDownIndex2Block.rend());
1333 void SIScheduleBlockCreator::scheduleInsideBlocks() {
1334 unsigned DAGSize = CurrentBlocks.size();
1336 LLVM_DEBUG(dbgs() << "\nScheduling Blocks\n\n");
1338 // We do schedule a valid scheduling such that a Block corresponds
1339 // to a range of instructions.
1340 LLVM_DEBUG(dbgs() << "First phase: Fast scheduling for Reg Liveness\n");
1341 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1342 SIScheduleBlock *Block = CurrentBlocks[i];
1343 Block->fastSchedule();
1346 // Note: the following code, and the part restoring previous position
1347 // is by far the most expensive operation of the Scheduler.
1349 // Do not update CurrentTop.
1350 MachineBasicBlock::iterator CurrentTopFastSched = DAG->getCurrentTop();
1351 std::vector<MachineBasicBlock::iterator> PosOld;
1352 std::vector<MachineBasicBlock::iterator> PosNew;
1353 PosOld.reserve(DAG->SUnits.size());
1354 PosNew.reserve(DAG->SUnits.size());
1356 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1357 int BlockIndice = TopDownIndex2Block[i];
1358 SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
1359 std::vector<SUnit*> SUs = Block->getScheduledUnits();
1361 for (SUnit* SU : SUs) {
1362 MachineInstr *MI = SU->getInstr();
1363 MachineBasicBlock::iterator Pos = MI;
1364 PosOld.push_back(Pos);
1365 if (&*CurrentTopFastSched == MI) {
1366 PosNew.push_back(Pos);
1367 CurrentTopFastSched = nextIfDebug(++CurrentTopFastSched,
1368 DAG->getCurrentBottom());
1369 } else {
1370 // Update the instruction stream.
1371 DAG->getBB()->splice(CurrentTopFastSched, DAG->getBB(), MI);
1373 // Update LiveIntervals.
1374 // Note: Moving all instructions and calling handleMove every time
1375 // is the most cpu intensive operation of the scheduler.
1376 // It would gain a lot if there was a way to recompute the
1377 // LiveIntervals for the entire scheduling region.
1378 DAG->getLIS()->handleMove(*MI, /*UpdateFlags=*/true);
1379 PosNew.push_back(CurrentTopFastSched);
1384 // Now we have Block of SUs == Block of MI.
1385 // We do the final schedule for the instructions inside the block.
1386 // The property that all the SUs of the Block are grouped together as MI
1387 // is used for correct reg usage tracking.
1388 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1389 SIScheduleBlock *Block = CurrentBlocks[i];
1390 std::vector<SUnit*> SUs = Block->getScheduledUnits();
1391 Block->schedule((*SUs.begin())->getInstr(), (*SUs.rbegin())->getInstr());
1394 LLVM_DEBUG(dbgs() << "Restoring MI Pos\n");
1395 // Restore old ordering (which prevents a LIS->handleMove bug).
1396 for (unsigned i = PosOld.size(), e = 0; i != e; --i) {
1397 MachineBasicBlock::iterator POld = PosOld[i-1];
1398 MachineBasicBlock::iterator PNew = PosNew[i-1];
1399 if (PNew != POld) {
1400 // Update the instruction stream.
1401 DAG->getBB()->splice(POld, DAG->getBB(), PNew);
1403 // Update LiveIntervals.
1404 DAG->getLIS()->handleMove(*POld, /*UpdateFlags=*/true);
1408 LLVM_DEBUG(for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
1409 SIScheduleBlock *Block = CurrentBlocks[i];
1410 Block->printDebug(true);
1414 void SIScheduleBlockCreator::fillStats() {
1415 unsigned DAGSize = CurrentBlocks.size();
1417 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1418 int BlockIndice = TopDownIndex2Block[i];
1419 SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
1420 if (Block->getPreds().empty())
1421 Block->Depth = 0;
1422 else {
1423 unsigned Depth = 0;
1424 for (SIScheduleBlock *Pred : Block->getPreds()) {
1425 if (Depth < Pred->Depth + Pred->getCost())
1426 Depth = Pred->Depth + Pred->getCost();
1428 Block->Depth = Depth;
1432 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1433 int BlockIndice = BottomUpIndex2Block[i];
1434 SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
1435 if (Block->getSuccs().empty())
1436 Block->Height = 0;
1437 else {
1438 unsigned Height = 0;
1439 for (const auto &Succ : Block->getSuccs())
1440 Height = std::max(Height, Succ.first->Height + Succ.first->getCost());
1441 Block->Height = Height;
1446 // SIScheduleBlockScheduler //
1448 SIScheduleBlockScheduler::SIScheduleBlockScheduler(SIScheduleDAGMI *DAG,
1449 SISchedulerBlockSchedulerVariant Variant,
1450 SIScheduleBlocks BlocksStruct) :
1451 DAG(DAG), Variant(Variant), Blocks(BlocksStruct.Blocks),
1452 LastPosWaitedHighLatency(0), NumBlockScheduled(0), VregCurrentUsage(0),
1453 SregCurrentUsage(0), maxVregUsage(0), maxSregUsage(0) {
1455 // Fill the usage of every output
1456 // Warning: while by construction we always have a link between two blocks
1457 // when one needs a result from the other, the number of users of an output
1458 // is not the sum of child blocks having as input the same virtual register.
1459 // Here is an example. A produces x and y. B eats x and produces x'.
1460 // C eats x' and y. The register coalescer may have attributed the same
1461 // virtual register to x and x'.
1462 // To count accurately, we do a topological sort. In case the register is
1463 // found for several parents, we increment the usage of the one with the
1464 // highest topological index.
1465 LiveOutRegsNumUsages.resize(Blocks.size());
1466 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1467 SIScheduleBlock *Block = Blocks[i];
1468 for (unsigned Reg : Block->getInRegs()) {
1469 bool Found = false;
1470 int topoInd = -1;
1471 for (SIScheduleBlock* Pred: Block->getPreds()) {
1472 std::set<unsigned> PredOutRegs = Pred->getOutRegs();
1473 std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg);
1475 if (RegPos != PredOutRegs.end()) {
1476 Found = true;
1477 if (topoInd < BlocksStruct.TopDownBlock2Index[Pred->getID()]) {
1478 topoInd = BlocksStruct.TopDownBlock2Index[Pred->getID()];
1483 if (!Found)
1484 continue;
1486 int PredID = BlocksStruct.TopDownIndex2Block[topoInd];
1487 ++LiveOutRegsNumUsages[PredID][Reg];
1491 LastPosHighLatencyParentScheduled.resize(Blocks.size(), 0);
1492 BlockNumPredsLeft.resize(Blocks.size());
1493 BlockNumSuccsLeft.resize(Blocks.size());
1495 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1496 SIScheduleBlock *Block = Blocks[i];
1497 BlockNumPredsLeft[i] = Block->getPreds().size();
1498 BlockNumSuccsLeft[i] = Block->getSuccs().size();
1501 #ifndef NDEBUG
1502 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1503 SIScheduleBlock *Block = Blocks[i];
1504 assert(Block->getID() == i);
1506 #endif
1508 std::set<unsigned> InRegs = DAG->getInRegs();
1509 addLiveRegs(InRegs);
1511 // Increase LiveOutRegsNumUsages for blocks
1512 // producing registers consumed in another
1513 // scheduling region.
1514 for (unsigned Reg : DAG->getOutRegs()) {
1515 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1516 // Do reverse traversal
1517 int ID = BlocksStruct.TopDownIndex2Block[Blocks.size()-1-i];
1518 SIScheduleBlock *Block = Blocks[ID];
1519 const std::set<unsigned> &OutRegs = Block->getOutRegs();
1521 if (OutRegs.find(Reg) == OutRegs.end())
1522 continue;
1524 ++LiveOutRegsNumUsages[ID][Reg];
1525 break;
1529 // Fill LiveRegsConsumers for regs that were already
1530 // defined before scheduling.
1531 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1532 SIScheduleBlock *Block = Blocks[i];
1533 for (unsigned Reg : Block->getInRegs()) {
1534 bool Found = false;
1535 for (SIScheduleBlock* Pred: Block->getPreds()) {
1536 std::set<unsigned> PredOutRegs = Pred->getOutRegs();
1537 std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg);
1539 if (RegPos != PredOutRegs.end()) {
1540 Found = true;
1541 break;
1545 if (!Found)
1546 ++LiveRegsConsumers[Reg];
1550 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1551 SIScheduleBlock *Block = Blocks[i];
1552 if (BlockNumPredsLeft[i] == 0) {
1553 ReadyBlocks.push_back(Block);
1557 while (SIScheduleBlock *Block = pickBlock()) {
1558 BlocksScheduled.push_back(Block);
1559 blockScheduled(Block);
1562 LLVM_DEBUG(dbgs() << "Block Order:"; for (SIScheduleBlock *Block
1563 : BlocksScheduled) {
1564 dbgs() << ' ' << Block->getID();
1565 } dbgs() << '\n';);
1568 bool SIScheduleBlockScheduler::tryCandidateLatency(SIBlockSchedCandidate &Cand,
1569 SIBlockSchedCandidate &TryCand) {
1570 if (!Cand.isValid()) {
1571 TryCand.Reason = NodeOrder;
1572 return true;
1575 // Try to hide high latencies.
1576 if (SISched::tryLess(TryCand.LastPosHighLatParentScheduled,
1577 Cand.LastPosHighLatParentScheduled, TryCand, Cand, Latency))
1578 return true;
1579 // Schedule high latencies early so you can hide them better.
1580 if (SISched::tryGreater(TryCand.IsHighLatency, Cand.IsHighLatency,
1581 TryCand, Cand, Latency))
1582 return true;
1583 if (TryCand.IsHighLatency && SISched::tryGreater(TryCand.Height, Cand.Height,
1584 TryCand, Cand, Depth))
1585 return true;
1586 if (SISched::tryGreater(TryCand.NumHighLatencySuccessors,
1587 Cand.NumHighLatencySuccessors,
1588 TryCand, Cand, Successor))
1589 return true;
1590 return false;
1593 bool SIScheduleBlockScheduler::tryCandidateRegUsage(SIBlockSchedCandidate &Cand,
1594 SIBlockSchedCandidate &TryCand) {
1595 if (!Cand.isValid()) {
1596 TryCand.Reason = NodeOrder;
1597 return true;
1600 if (SISched::tryLess(TryCand.VGPRUsageDiff > 0, Cand.VGPRUsageDiff > 0,
1601 TryCand, Cand, RegUsage))
1602 return true;
1603 if (SISched::tryGreater(TryCand.NumSuccessors > 0,
1604 Cand.NumSuccessors > 0,
1605 TryCand, Cand, Successor))
1606 return true;
1607 if (SISched::tryGreater(TryCand.Height, Cand.Height, TryCand, Cand, Depth))
1608 return true;
1609 if (SISched::tryLess(TryCand.VGPRUsageDiff, Cand.VGPRUsageDiff,
1610 TryCand, Cand, RegUsage))
1611 return true;
1612 return false;
1615 SIScheduleBlock *SIScheduleBlockScheduler::pickBlock() {
1616 SIBlockSchedCandidate Cand;
1617 std::vector<SIScheduleBlock*>::iterator Best;
1618 SIScheduleBlock *Block;
1619 if (ReadyBlocks.empty())
1620 return nullptr;
1622 DAG->fillVgprSgprCost(LiveRegs.begin(), LiveRegs.end(),
1623 VregCurrentUsage, SregCurrentUsage);
1624 if (VregCurrentUsage > maxVregUsage)
1625 maxVregUsage = VregCurrentUsage;
1626 if (SregCurrentUsage > maxSregUsage)
1627 maxSregUsage = SregCurrentUsage;
1628 LLVM_DEBUG(dbgs() << "Picking New Blocks\n"; dbgs() << "Available: ";
1629 for (SIScheduleBlock *Block
1630 : ReadyBlocks) dbgs()
1631 << Block->getID() << ' ';
1632 dbgs() << "\nCurrent Live:\n";
1633 for (unsigned Reg
1634 : LiveRegs) dbgs()
1635 << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
1636 dbgs() << '\n';
1637 dbgs() << "Current VGPRs: " << VregCurrentUsage << '\n';
1638 dbgs() << "Current SGPRs: " << SregCurrentUsage << '\n';);
1640 Cand.Block = nullptr;
1641 for (std::vector<SIScheduleBlock*>::iterator I = ReadyBlocks.begin(),
1642 E = ReadyBlocks.end(); I != E; ++I) {
1643 SIBlockSchedCandidate TryCand;
1644 TryCand.Block = *I;
1645 TryCand.IsHighLatency = TryCand.Block->isHighLatencyBlock();
1646 TryCand.VGPRUsageDiff =
1647 checkRegUsageImpact(TryCand.Block->getInRegs(),
1648 TryCand.Block->getOutRegs())[DAG->getVGPRSetID()];
1649 TryCand.NumSuccessors = TryCand.Block->getSuccs().size();
1650 TryCand.NumHighLatencySuccessors =
1651 TryCand.Block->getNumHighLatencySuccessors();
1652 TryCand.LastPosHighLatParentScheduled =
1653 (unsigned int) std::max<int> (0,
1654 LastPosHighLatencyParentScheduled[TryCand.Block->getID()] -
1655 LastPosWaitedHighLatency);
1656 TryCand.Height = TryCand.Block->Height;
1657 // Try not to increase VGPR usage too much, else we may spill.
1658 if (VregCurrentUsage > 120 ||
1659 Variant != SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage) {
1660 if (!tryCandidateRegUsage(Cand, TryCand) &&
1661 Variant != SISchedulerBlockSchedulerVariant::BlockRegUsage)
1662 tryCandidateLatency(Cand, TryCand);
1663 } else {
1664 if (!tryCandidateLatency(Cand, TryCand))
1665 tryCandidateRegUsage(Cand, TryCand);
1667 if (TryCand.Reason != NoCand) {
1668 Cand.setBest(TryCand);
1669 Best = I;
1670 LLVM_DEBUG(dbgs() << "Best Current Choice: " << Cand.Block->getID() << ' '
1671 << getReasonStr(Cand.Reason) << '\n');
1675 LLVM_DEBUG(dbgs() << "Picking: " << Cand.Block->getID() << '\n';
1676 dbgs() << "Is a block with high latency instruction: "
1677 << (Cand.IsHighLatency ? "yes\n" : "no\n");
1678 dbgs() << "Position of last high latency dependency: "
1679 << Cand.LastPosHighLatParentScheduled << '\n';
1680 dbgs() << "VGPRUsageDiff: " << Cand.VGPRUsageDiff << '\n';
1681 dbgs() << '\n';);
1683 Block = Cand.Block;
1684 ReadyBlocks.erase(Best);
1685 return Block;
1688 // Tracking of currently alive registers to determine VGPR Usage.
1690 void SIScheduleBlockScheduler::addLiveRegs(std::set<unsigned> &Regs) {
1691 for (unsigned Reg : Regs) {
1692 // For now only track virtual registers.
1693 if (!Register::isVirtualRegister(Reg))
1694 continue;
1695 // If not already in the live set, then add it.
1696 (void) LiveRegs.insert(Reg);
1700 void SIScheduleBlockScheduler::decreaseLiveRegs(SIScheduleBlock *Block,
1701 std::set<unsigned> &Regs) {
1702 for (unsigned Reg : Regs) {
1703 // For now only track virtual registers.
1704 std::set<unsigned>::iterator Pos = LiveRegs.find(Reg);
1705 assert (Pos != LiveRegs.end() && // Reg must be live.
1706 LiveRegsConsumers.find(Reg) != LiveRegsConsumers.end() &&
1707 LiveRegsConsumers[Reg] >= 1);
1708 --LiveRegsConsumers[Reg];
1709 if (LiveRegsConsumers[Reg] == 0)
1710 LiveRegs.erase(Pos);
1714 void SIScheduleBlockScheduler::releaseBlockSuccs(SIScheduleBlock *Parent) {
1715 for (const auto &Block : Parent->getSuccs()) {
1716 if (--BlockNumPredsLeft[Block.first->getID()] == 0)
1717 ReadyBlocks.push_back(Block.first);
1719 if (Parent->isHighLatencyBlock() &&
1720 Block.second == SIScheduleBlockLinkKind::Data)
1721 LastPosHighLatencyParentScheduled[Block.first->getID()] = NumBlockScheduled;
1725 void SIScheduleBlockScheduler::blockScheduled(SIScheduleBlock *Block) {
1726 decreaseLiveRegs(Block, Block->getInRegs());
1727 addLiveRegs(Block->getOutRegs());
1728 releaseBlockSuccs(Block);
1729 for (std::map<unsigned, unsigned>::iterator RegI =
1730 LiveOutRegsNumUsages[Block->getID()].begin(),
1731 E = LiveOutRegsNumUsages[Block->getID()].end(); RegI != E; ++RegI) {
1732 std::pair<unsigned, unsigned> RegP = *RegI;
1733 // We produce this register, thus it must not be previously alive.
1734 assert(LiveRegsConsumers.find(RegP.first) == LiveRegsConsumers.end() ||
1735 LiveRegsConsumers[RegP.first] == 0);
1736 LiveRegsConsumers[RegP.first] += RegP.second;
1738 if (LastPosHighLatencyParentScheduled[Block->getID()] >
1739 (unsigned)LastPosWaitedHighLatency)
1740 LastPosWaitedHighLatency =
1741 LastPosHighLatencyParentScheduled[Block->getID()];
1742 ++NumBlockScheduled;
1745 std::vector<int>
1746 SIScheduleBlockScheduler::checkRegUsageImpact(std::set<unsigned> &InRegs,
1747 std::set<unsigned> &OutRegs) {
1748 std::vector<int> DiffSetPressure;
1749 DiffSetPressure.assign(DAG->getTRI()->getNumRegPressureSets(), 0);
1751 for (unsigned Reg : InRegs) {
1752 // For now only track virtual registers.
1753 if (!Register::isVirtualRegister(Reg))
1754 continue;
1755 if (LiveRegsConsumers[Reg] > 1)
1756 continue;
1757 PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg);
1758 for (; PSetI.isValid(); ++PSetI) {
1759 DiffSetPressure[*PSetI] -= PSetI.getWeight();
1763 for (unsigned Reg : OutRegs) {
1764 // For now only track virtual registers.
1765 if (!Register::isVirtualRegister(Reg))
1766 continue;
1767 PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg);
1768 for (; PSetI.isValid(); ++PSetI) {
1769 DiffSetPressure[*PSetI] += PSetI.getWeight();
1773 return DiffSetPressure;
1776 // SIScheduler //
1778 struct SIScheduleBlockResult
1779 SIScheduler::scheduleVariant(SISchedulerBlockCreatorVariant BlockVariant,
1780 SISchedulerBlockSchedulerVariant ScheduleVariant) {
1781 SIScheduleBlocks Blocks = BlockCreator.getBlocks(BlockVariant);
1782 SIScheduleBlockScheduler Scheduler(DAG, ScheduleVariant, Blocks);
1783 std::vector<SIScheduleBlock*> ScheduledBlocks;
1784 struct SIScheduleBlockResult Res;
1786 ScheduledBlocks = Scheduler.getBlocks();
1788 for (unsigned b = 0; b < ScheduledBlocks.size(); ++b) {
1789 SIScheduleBlock *Block = ScheduledBlocks[b];
1790 std::vector<SUnit*> SUs = Block->getScheduledUnits();
1792 for (SUnit* SU : SUs)
1793 Res.SUs.push_back(SU->NodeNum);
1796 Res.MaxSGPRUsage = Scheduler.getSGPRUsage();
1797 Res.MaxVGPRUsage = Scheduler.getVGPRUsage();
1798 return Res;
1801 // SIScheduleDAGMI //
1803 SIScheduleDAGMI::SIScheduleDAGMI(MachineSchedContext *C) :
1804 ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C)) {
1805 SITII = static_cast<const SIInstrInfo*>(TII);
1806 SITRI = static_cast<const SIRegisterInfo*>(TRI);
1808 VGPRSetID = SITRI->getVGPRPressureSet();
1809 SGPRSetID = SITRI->getSGPRPressureSet();
1812 SIScheduleDAGMI::~SIScheduleDAGMI() = default;
1814 // Code adapted from scheduleDAG.cpp
1815 // Does a topological sort over the SUs.
1816 // Both TopDown and BottomUp
1817 void SIScheduleDAGMI::topologicalSort() {
1818 Topo.InitDAGTopologicalSorting();
1820 TopDownIndex2SU = std::vector<int>(Topo.begin(), Topo.end());
1821 BottomUpIndex2SU = std::vector<int>(Topo.rbegin(), Topo.rend());
1824 // Move low latencies further from their user without
1825 // increasing SGPR usage (in general)
1826 // This is to be replaced by a better pass that would
1827 // take into account SGPR usage (based on VGPR Usage
1828 // and the corresponding wavefront count), that would
1829 // try to merge groups of loads if it make sense, etc
1830 void SIScheduleDAGMI::moveLowLatencies() {
1831 unsigned DAGSize = SUnits.size();
1832 int LastLowLatencyUser = -1;
1833 int LastLowLatencyPos = -1;
1835 for (unsigned i = 0, e = ScheduledSUnits.size(); i != e; ++i) {
1836 SUnit *SU = &SUnits[ScheduledSUnits[i]];
1837 bool IsLowLatencyUser = false;
1838 unsigned MinPos = 0;
1840 for (SDep& PredDep : SU->Preds) {
1841 SUnit *Pred = PredDep.getSUnit();
1842 if (SITII->isLowLatencyInstruction(*Pred->getInstr())) {
1843 IsLowLatencyUser = true;
1845 if (Pred->NodeNum >= DAGSize)
1846 continue;
1847 unsigned PredPos = ScheduledSUnitsInv[Pred->NodeNum];
1848 if (PredPos >= MinPos)
1849 MinPos = PredPos + 1;
1852 if (SITII->isLowLatencyInstruction(*SU->getInstr())) {
1853 unsigned BestPos = LastLowLatencyUser + 1;
1854 if ((int)BestPos <= LastLowLatencyPos)
1855 BestPos = LastLowLatencyPos + 1;
1856 if (BestPos < MinPos)
1857 BestPos = MinPos;
1858 if (BestPos < i) {
1859 for (unsigned u = i; u > BestPos; --u) {
1860 ++ScheduledSUnitsInv[ScheduledSUnits[u-1]];
1861 ScheduledSUnits[u] = ScheduledSUnits[u-1];
1863 ScheduledSUnits[BestPos] = SU->NodeNum;
1864 ScheduledSUnitsInv[SU->NodeNum] = BestPos;
1866 LastLowLatencyPos = BestPos;
1867 if (IsLowLatencyUser)
1868 LastLowLatencyUser = BestPos;
1869 } else if (IsLowLatencyUser) {
1870 LastLowLatencyUser = i;
1871 // Moves COPY instructions on which depends
1872 // the low latency instructions too.
1873 } else if (SU->getInstr()->getOpcode() == AMDGPU::COPY) {
1874 bool CopyForLowLat = false;
1875 for (SDep& SuccDep : SU->Succs) {
1876 SUnit *Succ = SuccDep.getSUnit();
1877 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1878 continue;
1879 if (SITII->isLowLatencyInstruction(*Succ->getInstr())) {
1880 CopyForLowLat = true;
1883 if (!CopyForLowLat)
1884 continue;
1885 if (MinPos < i) {
1886 for (unsigned u = i; u > MinPos; --u) {
1887 ++ScheduledSUnitsInv[ScheduledSUnits[u-1]];
1888 ScheduledSUnits[u] = ScheduledSUnits[u-1];
1890 ScheduledSUnits[MinPos] = SU->NodeNum;
1891 ScheduledSUnitsInv[SU->NodeNum] = MinPos;
1897 void SIScheduleDAGMI::restoreSULinksLeft() {
1898 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1899 SUnits[i].isScheduled = false;
1900 SUnits[i].WeakPredsLeft = SUnitsLinksBackup[i].WeakPredsLeft;
1901 SUnits[i].NumPredsLeft = SUnitsLinksBackup[i].NumPredsLeft;
1902 SUnits[i].WeakSuccsLeft = SUnitsLinksBackup[i].WeakSuccsLeft;
1903 SUnits[i].NumSuccsLeft = SUnitsLinksBackup[i].NumSuccsLeft;
1907 // Return the Vgpr and Sgpr usage corresponding to some virtual registers.
1908 template<typename _Iterator> void
1909 SIScheduleDAGMI::fillVgprSgprCost(_Iterator First, _Iterator End,
1910 unsigned &VgprUsage, unsigned &SgprUsage) {
1911 VgprUsage = 0;
1912 SgprUsage = 0;
1913 for (_Iterator RegI = First; RegI != End; ++RegI) {
1914 unsigned Reg = *RegI;
1915 // For now only track virtual registers
1916 if (!Register::isVirtualRegister(Reg))
1917 continue;
1918 PSetIterator PSetI = MRI.getPressureSets(Reg);
1919 for (; PSetI.isValid(); ++PSetI) {
1920 if (*PSetI == VGPRSetID)
1921 VgprUsage += PSetI.getWeight();
1922 else if (*PSetI == SGPRSetID)
1923 SgprUsage += PSetI.getWeight();
1928 void SIScheduleDAGMI::schedule()
1930 SmallVector<SUnit*, 8> TopRoots, BotRoots;
1931 SIScheduleBlockResult Best, Temp;
1932 LLVM_DEBUG(dbgs() << "Preparing Scheduling\n");
1934 buildDAGWithRegPressure();
1935 LLVM_DEBUG(dump());
1937 topologicalSort();
1938 findRootsAndBiasEdges(TopRoots, BotRoots);
1939 // We reuse several ScheduleDAGMI and ScheduleDAGMILive
1940 // functions, but to make them happy we must initialize
1941 // the default Scheduler implementation (even if we do not
1942 // run it)
1943 SchedImpl->initialize(this);
1944 initQueues(TopRoots, BotRoots);
1946 // Fill some stats to help scheduling.
1948 SUnitsLinksBackup = SUnits;
1949 IsLowLatencySU.clear();
1950 LowLatencyOffset.clear();
1951 IsHighLatencySU.clear();
1953 IsLowLatencySU.resize(SUnits.size(), 0);
1954 LowLatencyOffset.resize(SUnits.size(), 0);
1955 IsHighLatencySU.resize(SUnits.size(), 0);
1957 for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) {
1958 SUnit *SU = &SUnits[i];
1959 const MachineOperand *BaseLatOp;
1960 int64_t OffLatReg;
1961 if (SITII->isLowLatencyInstruction(*SU->getInstr())) {
1962 IsLowLatencySU[i] = 1;
1963 if (SITII->getMemOperandWithOffset(*SU->getInstr(), BaseLatOp, OffLatReg,
1964 TRI))
1965 LowLatencyOffset[i] = OffLatReg;
1966 } else if (SITII->isHighLatencyInstruction(*SU->getInstr()))
1967 IsHighLatencySU[i] = 1;
1970 SIScheduler Scheduler(this);
1971 Best = Scheduler.scheduleVariant(SISchedulerBlockCreatorVariant::LatenciesAlone,
1972 SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage);
1974 // if VGPR usage is extremely high, try other good performing variants
1975 // which could lead to lower VGPR usage
1976 if (Best.MaxVGPRUsage > 180) {
1977 static const std::pair<SISchedulerBlockCreatorVariant,
1978 SISchedulerBlockSchedulerVariant>
1979 Variants[] = {
1980 { LatenciesAlone, BlockRegUsageLatency },
1981 // { LatenciesAlone, BlockRegUsage },
1982 { LatenciesGrouped, BlockLatencyRegUsage },
1983 // { LatenciesGrouped, BlockRegUsageLatency },
1984 // { LatenciesGrouped, BlockRegUsage },
1985 { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage },
1986 // { LatenciesAlonePlusConsecutive, BlockRegUsageLatency },
1987 // { LatenciesAlonePlusConsecutive, BlockRegUsage }
1989 for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) {
1990 Temp = Scheduler.scheduleVariant(v.first, v.second);
1991 if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage)
1992 Best = Temp;
1995 // if VGPR usage is still extremely high, we may spill. Try other variants
1996 // which are less performing, but that could lead to lower VGPR usage.
1997 if (Best.MaxVGPRUsage > 200) {
1998 static const std::pair<SISchedulerBlockCreatorVariant,
1999 SISchedulerBlockSchedulerVariant>
2000 Variants[] = {
2001 // { LatenciesAlone, BlockRegUsageLatency },
2002 { LatenciesAlone, BlockRegUsage },
2003 // { LatenciesGrouped, BlockLatencyRegUsage },
2004 { LatenciesGrouped, BlockRegUsageLatency },
2005 { LatenciesGrouped, BlockRegUsage },
2006 // { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage },
2007 { LatenciesAlonePlusConsecutive, BlockRegUsageLatency },
2008 { LatenciesAlonePlusConsecutive, BlockRegUsage }
2010 for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) {
2011 Temp = Scheduler.scheduleVariant(v.first, v.second);
2012 if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage)
2013 Best = Temp;
2017 ScheduledSUnits = Best.SUs;
2018 ScheduledSUnitsInv.resize(SUnits.size());
2020 for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) {
2021 ScheduledSUnitsInv[ScheduledSUnits[i]] = i;
2024 moveLowLatencies();
2026 // Tell the outside world about the result of the scheduling.
2028 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
2029 TopRPTracker.setPos(CurrentTop);
2031 for (std::vector<unsigned>::iterator I = ScheduledSUnits.begin(),
2032 E = ScheduledSUnits.end(); I != E; ++I) {
2033 SUnit *SU = &SUnits[*I];
2035 scheduleMI(SU, true);
2037 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
2038 << *SU->getInstr());
2041 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
2043 placeDebugValues();
2045 LLVM_DEBUG({
2046 dbgs() << "*** Final schedule for "
2047 << printMBBReference(*begin()->getParent()) << " ***\n";
2048 dumpSchedule();
2049 dbgs() << '\n';