[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Target / ARM / ARMAsmPrinter.cpp
blobc8c91e53c44e109e3ebdf4d751cdaafbc28ad7f7
1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a printer that converts from our internal representation
10 // of machine-dependent LLVM code to GAS-format ARM assembly language.
12 //===----------------------------------------------------------------------===//
14 #include "ARMAsmPrinter.h"
15 #include "ARM.h"
16 #include "ARMConstantPoolValue.h"
17 #include "ARMMachineFunctionInfo.h"
18 #include "ARMTargetMachine.h"
19 #include "ARMTargetObjectFile.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMInstPrinter.h"
22 #include "MCTargetDesc/ARMMCExpr.h"
23 #include "TargetInfo/ARMTargetInfo.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/BinaryFormat/COFF.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineJumpTableInfo.h"
29 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Mangler.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/MC/MCAsmInfo.h"
36 #include "llvm/MC/MCAssembler.h"
37 #include "llvm/MC/MCContext.h"
38 #include "llvm/MC/MCELFStreamer.h"
39 #include "llvm/MC/MCInst.h"
40 #include "llvm/MC/MCInstBuilder.h"
41 #include "llvm/MC/MCObjectStreamer.h"
42 #include "llvm/MC/MCStreamer.h"
43 #include "llvm/MC/MCSymbol.h"
44 #include "llvm/Support/ARMBuildAttributes.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/TargetParser.h"
48 #include "llvm/Support/TargetRegistry.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Target/TargetMachine.h"
51 using namespace llvm;
53 #define DEBUG_TYPE "asm-printer"
55 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM,
56 std::unique_ptr<MCStreamer> Streamer)
57 : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr),
58 InConstantPool(false), OptimizationGoals(-1) {}
60 void ARMAsmPrinter::EmitFunctionBodyEnd() {
61 // Make sure to terminate any constant pools that were at the end
62 // of the function.
63 if (!InConstantPool)
64 return;
65 InConstantPool = false;
66 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
69 void ARMAsmPrinter::EmitFunctionEntryLabel() {
70 if (AFI->isThumbFunction()) {
71 OutStreamer->EmitAssemblerFlag(MCAF_Code16);
72 OutStreamer->EmitThumbFunc(CurrentFnSym);
73 } else {
74 OutStreamer->EmitAssemblerFlag(MCAF_Code32);
76 OutStreamer->EmitLabel(CurrentFnSym);
79 void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) {
80 uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType());
81 assert(Size && "C++ constructor pointer had zero size!");
83 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
84 assert(GV && "C++ constructor pointer was not a GlobalValue!");
86 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV,
87 ARMII::MO_NO_FLAG),
88 (Subtarget->isTargetELF()
89 ? MCSymbolRefExpr::VK_ARM_TARGET1
90 : MCSymbolRefExpr::VK_None),
91 OutContext);
93 OutStreamer->EmitValue(E, Size);
96 void ARMAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
97 if (PromotedGlobals.count(GV))
98 // The global was promoted into a constant pool. It should not be emitted.
99 return;
100 AsmPrinter::EmitGlobalVariable(GV);
103 /// runOnMachineFunction - This uses the EmitInstruction()
104 /// method to print assembly for each instruction.
106 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
107 AFI = MF.getInfo<ARMFunctionInfo>();
108 MCP = MF.getConstantPool();
109 Subtarget = &MF.getSubtarget<ARMSubtarget>();
111 SetupMachineFunction(MF);
112 const Function &F = MF.getFunction();
113 const TargetMachine& TM = MF.getTarget();
115 // Collect all globals that had their storage promoted to a constant pool.
116 // Functions are emitted before variables, so this accumulates promoted
117 // globals from all functions in PromotedGlobals.
118 for (auto *GV : AFI->getGlobalsPromotedToConstantPool())
119 PromotedGlobals.insert(GV);
121 // Calculate this function's optimization goal.
122 unsigned OptimizationGoal;
123 if (F.hasOptNone())
124 // For best debugging illusion, speed and small size sacrificed
125 OptimizationGoal = 6;
126 else if (F.hasMinSize())
127 // Aggressively for small size, speed and debug illusion sacrificed
128 OptimizationGoal = 4;
129 else if (F.hasOptSize())
130 // For small size, but speed and debugging illusion preserved
131 OptimizationGoal = 3;
132 else if (TM.getOptLevel() == CodeGenOpt::Aggressive)
133 // Aggressively for speed, small size and debug illusion sacrificed
134 OptimizationGoal = 2;
135 else if (TM.getOptLevel() > CodeGenOpt::None)
136 // For speed, but small size and good debug illusion preserved
137 OptimizationGoal = 1;
138 else // TM.getOptLevel() == CodeGenOpt::None
139 // For good debugging, but speed and small size preserved
140 OptimizationGoal = 5;
142 // Combine a new optimization goal with existing ones.
143 if (OptimizationGoals == -1) // uninitialized goals
144 OptimizationGoals = OptimizationGoal;
145 else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals
146 OptimizationGoals = 0;
148 if (Subtarget->isTargetCOFF()) {
149 bool Internal = F.hasInternalLinkage();
150 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC
151 : COFF::IMAGE_SYM_CLASS_EXTERNAL;
152 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT;
154 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym);
155 OutStreamer->EmitCOFFSymbolStorageClass(Scl);
156 OutStreamer->EmitCOFFSymbolType(Type);
157 OutStreamer->EndCOFFSymbolDef();
160 // Emit the rest of the function body.
161 EmitFunctionBody();
163 // Emit the XRay table for this function.
164 emitXRayTable();
166 // If we need V4T thumb mode Register Indirect Jump pads, emit them.
167 // These are created per function, rather than per TU, since it's
168 // relatively easy to exceed the thumb branch range within a TU.
169 if (! ThumbIndirectPads.empty()) {
170 OutStreamer->EmitAssemblerFlag(MCAF_Code16);
171 EmitAlignment(Align(2));
172 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) {
173 OutStreamer->EmitLabel(TIP.second);
174 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
175 .addReg(TIP.first)
176 // Add predicate operands.
177 .addImm(ARMCC::AL)
178 .addReg(0));
180 ThumbIndirectPads.clear();
183 // We didn't modify anything.
184 return false;
187 void ARMAsmPrinter::PrintSymbolOperand(const MachineOperand &MO,
188 raw_ostream &O) {
189 assert(MO.isGlobal() && "caller should check MO.isGlobal");
190 unsigned TF = MO.getTargetFlags();
191 if (TF & ARMII::MO_LO16)
192 O << ":lower16:";
193 else if (TF & ARMII::MO_HI16)
194 O << ":upper16:";
195 GetARMGVSymbol(MO.getGlobal(), TF)->print(O, MAI);
196 printOffset(MO.getOffset(), O);
199 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
200 raw_ostream &O) {
201 const MachineOperand &MO = MI->getOperand(OpNum);
203 switch (MO.getType()) {
204 default: llvm_unreachable("<unknown operand type>");
205 case MachineOperand::MO_Register: {
206 Register Reg = MO.getReg();
207 assert(Register::isPhysicalRegister(Reg));
208 assert(!MO.getSubReg() && "Subregs should be eliminated!");
209 if(ARM::GPRPairRegClass.contains(Reg)) {
210 const MachineFunction &MF = *MI->getParent()->getParent();
211 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
212 Reg = TRI->getSubReg(Reg, ARM::gsub_0);
214 O << ARMInstPrinter::getRegisterName(Reg);
215 break;
217 case MachineOperand::MO_Immediate: {
218 O << '#';
219 unsigned TF = MO.getTargetFlags();
220 if (TF == ARMII::MO_LO16)
221 O << ":lower16:";
222 else if (TF == ARMII::MO_HI16)
223 O << ":upper16:";
224 O << MO.getImm();
225 break;
227 case MachineOperand::MO_MachineBasicBlock:
228 MO.getMBB()->getSymbol()->print(O, MAI);
229 return;
230 case MachineOperand::MO_GlobalAddress: {
231 PrintSymbolOperand(MO, O);
232 break;
234 case MachineOperand::MO_ConstantPoolIndex:
235 if (Subtarget->genExecuteOnly())
236 llvm_unreachable("execute-only should not generate constant pools");
237 GetCPISymbol(MO.getIndex())->print(O, MAI);
238 break;
242 MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const {
243 // The AsmPrinter::GetCPISymbol superclass method tries to use CPID as
244 // indexes in MachineConstantPool, which isn't in sync with indexes used here.
245 const DataLayout &DL = getDataLayout();
246 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
247 "CPI" + Twine(getFunctionNumber()) + "_" +
248 Twine(CPID));
251 //===--------------------------------------------------------------------===//
253 MCSymbol *ARMAsmPrinter::
254 GetARMJTIPICJumpTableLabel(unsigned uid) const {
255 const DataLayout &DL = getDataLayout();
256 SmallString<60> Name;
257 raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI"
258 << getFunctionNumber() << '_' << uid;
259 return OutContext.getOrCreateSymbol(Name);
262 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
263 const char *ExtraCode, raw_ostream &O) {
264 // Does this asm operand have a single letter operand modifier?
265 if (ExtraCode && ExtraCode[0]) {
266 if (ExtraCode[1] != 0) return true; // Unknown modifier.
268 switch (ExtraCode[0]) {
269 default:
270 // See if this is a generic print operand
271 return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O);
272 case 'P': // Print a VFP double precision register.
273 case 'q': // Print a NEON quad precision register.
274 printOperand(MI, OpNum, O);
275 return false;
276 case 'y': // Print a VFP single precision register as indexed double.
277 if (MI->getOperand(OpNum).isReg()) {
278 Register Reg = MI->getOperand(OpNum).getReg();
279 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
280 // Find the 'd' register that has this 's' register as a sub-register,
281 // and determine the lane number.
282 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
283 if (!ARM::DPRRegClass.contains(*SR))
284 continue;
285 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg;
286 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]");
287 return false;
290 return true;
291 case 'B': // Bitwise inverse of integer or symbol without a preceding #.
292 if (!MI->getOperand(OpNum).isImm())
293 return true;
294 O << ~(MI->getOperand(OpNum).getImm());
295 return false;
296 case 'L': // The low 16 bits of an immediate constant.
297 if (!MI->getOperand(OpNum).isImm())
298 return true;
299 O << (MI->getOperand(OpNum).getImm() & 0xffff);
300 return false;
301 case 'M': { // A register range suitable for LDM/STM.
302 if (!MI->getOperand(OpNum).isReg())
303 return true;
304 const MachineOperand &MO = MI->getOperand(OpNum);
305 Register RegBegin = MO.getReg();
306 // This takes advantage of the 2 operand-ness of ldm/stm and that we've
307 // already got the operands in registers that are operands to the
308 // inline asm statement.
309 O << "{";
310 if (ARM::GPRPairRegClass.contains(RegBegin)) {
311 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
312 Register Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0);
313 O << ARMInstPrinter::getRegisterName(Reg0) << ", ";
314 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1);
316 O << ARMInstPrinter::getRegisterName(RegBegin);
318 // FIXME: The register allocator not only may not have given us the
319 // registers in sequence, but may not be in ascending registers. This
320 // will require changes in the register allocator that'll need to be
321 // propagated down here if the operands change.
322 unsigned RegOps = OpNum + 1;
323 while (MI->getOperand(RegOps).isReg()) {
324 O << ", "
325 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
326 RegOps++;
329 O << "}";
331 return false;
333 case 'R': // The most significant register of a pair.
334 case 'Q': { // The least significant register of a pair.
335 if (OpNum == 0)
336 return true;
337 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
338 if (!FlagsOP.isImm())
339 return true;
340 unsigned Flags = FlagsOP.getImm();
342 // This operand may not be the one that actually provides the register. If
343 // it's tied to a previous one then we should refer instead to that one
344 // for registers and their classes.
345 unsigned TiedIdx;
346 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) {
347 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) {
348 unsigned OpFlags = MI->getOperand(OpNum).getImm();
349 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
351 Flags = MI->getOperand(OpNum).getImm();
353 // Later code expects OpNum to be pointing at the register rather than
354 // the flags.
355 OpNum += 1;
358 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
359 unsigned RC;
360 bool FirstHalf;
361 const ARMBaseTargetMachine &ATM =
362 static_cast<const ARMBaseTargetMachine &>(TM);
364 // 'Q' should correspond to the low order register and 'R' to the high
365 // order register. Whether this corresponds to the upper or lower half
366 // depends on the endianess mode.
367 if (ExtraCode[0] == 'Q')
368 FirstHalf = ATM.isLittleEndian();
369 else
370 // ExtraCode[0] == 'R'.
371 FirstHalf = !ATM.isLittleEndian();
372 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
373 if (InlineAsm::hasRegClassConstraint(Flags, RC) &&
374 ARM::GPRPairRegClass.hasSubClassEq(TRI->getRegClass(RC))) {
375 if (NumVals != 1)
376 return true;
377 const MachineOperand &MO = MI->getOperand(OpNum);
378 if (!MO.isReg())
379 return true;
380 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
381 Register Reg =
382 TRI->getSubReg(MO.getReg(), FirstHalf ? ARM::gsub_0 : ARM::gsub_1);
383 O << ARMInstPrinter::getRegisterName(Reg);
384 return false;
386 if (NumVals != 2)
387 return true;
388 unsigned RegOp = FirstHalf ? OpNum : OpNum + 1;
389 if (RegOp >= MI->getNumOperands())
390 return true;
391 const MachineOperand &MO = MI->getOperand(RegOp);
392 if (!MO.isReg())
393 return true;
394 Register Reg = MO.getReg();
395 O << ARMInstPrinter::getRegisterName(Reg);
396 return false;
399 case 'e': // The low doubleword register of a NEON quad register.
400 case 'f': { // The high doubleword register of a NEON quad register.
401 if (!MI->getOperand(OpNum).isReg())
402 return true;
403 Register Reg = MI->getOperand(OpNum).getReg();
404 if (!ARM::QPRRegClass.contains(Reg))
405 return true;
406 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
407 Register SubReg =
408 TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? ARM::dsub_0 : ARM::dsub_1);
409 O << ARMInstPrinter::getRegisterName(SubReg);
410 return false;
413 // This modifier is not yet supported.
414 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
415 return true;
416 case 'H': { // The highest-numbered register of a pair.
417 const MachineOperand &MO = MI->getOperand(OpNum);
418 if (!MO.isReg())
419 return true;
420 const MachineFunction &MF = *MI->getParent()->getParent();
421 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
422 Register Reg = MO.getReg();
423 if(!ARM::GPRPairRegClass.contains(Reg))
424 return false;
425 Reg = TRI->getSubReg(Reg, ARM::gsub_1);
426 O << ARMInstPrinter::getRegisterName(Reg);
427 return false;
432 printOperand(MI, OpNum, O);
433 return false;
436 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
437 unsigned OpNum, const char *ExtraCode,
438 raw_ostream &O) {
439 // Does this asm operand have a single letter operand modifier?
440 if (ExtraCode && ExtraCode[0]) {
441 if (ExtraCode[1] != 0) return true; // Unknown modifier.
443 switch (ExtraCode[0]) {
444 case 'A': // A memory operand for a VLD1/VST1 instruction.
445 default: return true; // Unknown modifier.
446 case 'm': // The base register of a memory operand.
447 if (!MI->getOperand(OpNum).isReg())
448 return true;
449 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
450 return false;
454 const MachineOperand &MO = MI->getOperand(OpNum);
455 assert(MO.isReg() && "unexpected inline asm memory operand");
456 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
457 return false;
460 static bool isThumb(const MCSubtargetInfo& STI) {
461 return STI.getFeatureBits()[ARM::ModeThumb];
464 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
465 const MCSubtargetInfo *EndInfo) const {
466 // If either end mode is unknown (EndInfo == NULL) or different than
467 // the start mode, then restore the start mode.
468 const bool WasThumb = isThumb(StartInfo);
469 if (!EndInfo || WasThumb != isThumb(*EndInfo)) {
470 OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32);
474 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
475 const Triple &TT = TM.getTargetTriple();
476 // Use unified assembler syntax.
477 OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified);
479 // Emit ARM Build Attributes
480 if (TT.isOSBinFormatELF())
481 emitAttributes();
483 // Use the triple's architecture and subarchitecture to determine
484 // if we're thumb for the purposes of the top level code16 assembler
485 // flag.
486 if (!M.getModuleInlineAsm().empty() && TT.isThumb())
487 OutStreamer->EmitAssemblerFlag(MCAF_Code16);
490 static void
491 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel,
492 MachineModuleInfoImpl::StubValueTy &MCSym) {
493 // L_foo$stub:
494 OutStreamer.EmitLabel(StubLabel);
495 // .indirect_symbol _foo
496 OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol);
498 if (MCSym.getInt())
499 // External to current translation unit.
500 OutStreamer.EmitIntValue(0, 4/*size*/);
501 else
502 // Internal to current translation unit.
504 // When we place the LSDA into the TEXT section, the type info
505 // pointers need to be indirect and pc-rel. We accomplish this by
506 // using NLPs; however, sometimes the types are local to the file.
507 // We need to fill in the value for the NLP in those cases.
508 OutStreamer.EmitValue(
509 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()),
510 4 /*size*/);
514 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
515 const Triple &TT = TM.getTargetTriple();
516 if (TT.isOSBinFormatMachO()) {
517 // All darwin targets use mach-o.
518 const TargetLoweringObjectFileMachO &TLOFMacho =
519 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
520 MachineModuleInfoMachO &MMIMacho =
521 MMI->getObjFileInfo<MachineModuleInfoMachO>();
523 // Output non-lazy-pointers for external and common global variables.
524 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
526 if (!Stubs.empty()) {
527 // Switch with ".non_lazy_symbol_pointer" directive.
528 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
529 EmitAlignment(Align(4));
531 for (auto &Stub : Stubs)
532 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
534 Stubs.clear();
535 OutStreamer->AddBlankLine();
538 Stubs = MMIMacho.GetThreadLocalGVStubList();
539 if (!Stubs.empty()) {
540 // Switch with ".non_lazy_symbol_pointer" directive.
541 OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection());
542 EmitAlignment(Align(4));
544 for (auto &Stub : Stubs)
545 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
547 Stubs.clear();
548 OutStreamer->AddBlankLine();
551 // Funny Darwin hack: This flag tells the linker that no global symbols
552 // contain code that falls through to other global symbols (e.g. the obvious
553 // implementation of multiple entry points). If this doesn't occur, the
554 // linker can safely perform dead code stripping. Since LLVM never
555 // generates code that does this, it is always safe to set.
556 OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
559 // The last attribute to be emitted is ABI_optimization_goals
560 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
561 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
563 if (OptimizationGoals > 0 &&
564 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
565 Subtarget->isTargetMuslAEABI()))
566 ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals);
567 OptimizationGoals = -1;
569 ATS.finishAttributeSection();
572 //===----------------------------------------------------------------------===//
573 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile()
574 // FIXME:
575 // The following seem like one-off assembler flags, but they actually need
576 // to appear in the .ARM.attributes section in ELF.
577 // Instead of subclassing the MCELFStreamer, we do the work here.
579 // Returns true if all functions have the same function attribute value.
580 // It also returns true when the module has no functions.
581 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr,
582 StringRef Value) {
583 return !any_of(M, [&](const Function &F) {
584 return F.getFnAttribute(Attr).getValueAsString() != Value;
588 void ARMAsmPrinter::emitAttributes() {
589 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
590 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
592 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09");
594 ATS.switchVendor("aeabi");
596 // Compute ARM ELF Attributes based on the default subtarget that
597 // we'd have constructed. The existing ARM behavior isn't LTO clean
598 // anyhow.
599 // FIXME: For ifunc related functions we could iterate over and look
600 // for a feature string that doesn't match the default one.
601 const Triple &TT = TM.getTargetTriple();
602 StringRef CPU = TM.getTargetCPU();
603 StringRef FS = TM.getTargetFeatureString();
604 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
605 if (!FS.empty()) {
606 if (!ArchFS.empty())
607 ArchFS = (Twine(ArchFS) + "," + FS).str();
608 else
609 ArchFS = FS;
611 const ARMBaseTargetMachine &ATM =
612 static_cast<const ARMBaseTargetMachine &>(TM);
613 const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian());
615 // Emit build attributes for the available hardware.
616 ATS.emitTargetAttributes(STI);
618 // RW data addressing.
619 if (isPositionIndependent()) {
620 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
621 ARMBuildAttrs::AddressRWPCRel);
622 } else if (STI.isRWPI()) {
623 // RWPI specific attributes.
624 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
625 ARMBuildAttrs::AddressRWSBRel);
628 // RO data addressing.
629 if (isPositionIndependent() || STI.isROPI()) {
630 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data,
631 ARMBuildAttrs::AddressROPCRel);
634 // GOT use.
635 if (isPositionIndependent()) {
636 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
637 ARMBuildAttrs::AddressGOT);
638 } else {
639 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
640 ARMBuildAttrs::AddressDirect);
643 // Set FP Denormals.
644 if (checkFunctionsAttributeConsistency(*MMI->getModule(),
645 "denormal-fp-math",
646 "preserve-sign") ||
647 TM.Options.FPDenormalMode == FPDenormal::PreserveSign)
648 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
649 ARMBuildAttrs::PreserveFPSign);
650 else if (checkFunctionsAttributeConsistency(*MMI->getModule(),
651 "denormal-fp-math",
652 "positive-zero") ||
653 TM.Options.FPDenormalMode == FPDenormal::PositiveZero)
654 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
655 ARMBuildAttrs::PositiveZero);
656 else if (!TM.Options.UnsafeFPMath)
657 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
658 ARMBuildAttrs::IEEEDenormals);
659 else {
660 if (!STI.hasVFP2Base()) {
661 // When the target doesn't have an FPU (by design or
662 // intention), the assumptions made on the software support
663 // mirror that of the equivalent hardware support *if it
664 // existed*. For v7 and better we indicate that denormals are
665 // flushed preserving sign, and for V6 we indicate that
666 // denormals are flushed to positive zero.
667 if (STI.hasV7Ops())
668 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
669 ARMBuildAttrs::PreserveFPSign);
670 } else if (STI.hasVFP3Base()) {
671 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is,
672 // the sign bit of the zero matches the sign bit of the input or
673 // result that is being flushed to zero.
674 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
675 ARMBuildAttrs::PreserveFPSign);
677 // For VFPv2 implementations it is implementation defined as
678 // to whether denormals are flushed to positive zero or to
679 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically
680 // LLVM has chosen to flush this to positive zero (most likely for
681 // GCC compatibility), so that's the chosen value here (the
682 // absence of its emission implies zero).
685 // Set FP exceptions and rounding
686 if (checkFunctionsAttributeConsistency(*MMI->getModule(),
687 "no-trapping-math", "true") ||
688 TM.Options.NoTrappingFPMath)
689 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions,
690 ARMBuildAttrs::Not_Allowed);
691 else if (!TM.Options.UnsafeFPMath) {
692 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed);
694 // If the user has permitted this code to choose the IEEE 754
695 // rounding at run-time, emit the rounding attribute.
696 if (TM.Options.HonorSignDependentRoundingFPMathOption)
697 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed);
700 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the
701 // equivalent of GCC's -ffinite-math-only flag.
702 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
703 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
704 ARMBuildAttrs::Allowed);
705 else
706 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
707 ARMBuildAttrs::AllowIEEE754);
709 // FIXME: add more flags to ARMBuildAttributes.h
710 // 8-bytes alignment stuff.
711 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1);
712 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1);
714 // Hard float. Use both S and D registers and conform to AAPCS-VFP.
715 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard)
716 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS);
718 // FIXME: To support emitting this build attribute as GCC does, the
719 // -mfp16-format option and associated plumbing must be
720 // supported. For now the __fp16 type is exposed by default, so this
721 // attribute should be emitted with value 1.
722 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format,
723 ARMBuildAttrs::FP16FormatIEEE);
725 if (MMI) {
726 if (const Module *SourceModule = MMI->getModule()) {
727 // ABI_PCS_wchar_t to indicate wchar_t width
728 // FIXME: There is no way to emit value 0 (wchar_t prohibited).
729 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>(
730 SourceModule->getModuleFlag("wchar_size"))) {
731 int WCharWidth = WCharWidthValue->getZExtValue();
732 assert((WCharWidth == 2 || WCharWidth == 4) &&
733 "wchar_t width must be 2 or 4 bytes");
734 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth);
737 // ABI_enum_size to indicate enum width
738 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3
739 // (all enums contain a value needing 32 bits to encode).
740 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>(
741 SourceModule->getModuleFlag("min_enum_size"))) {
742 int EnumWidth = EnumWidthValue->getZExtValue();
743 assert((EnumWidth == 1 || EnumWidth == 4) &&
744 "Minimum enum width must be 1 or 4 bytes");
745 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2;
746 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr);
751 // We currently do not support using R9 as the TLS pointer.
752 if (STI.isRWPI())
753 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
754 ARMBuildAttrs::R9IsSB);
755 else if (STI.isR9Reserved())
756 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
757 ARMBuildAttrs::R9Reserved);
758 else
759 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
760 ARMBuildAttrs::R9IsGPR);
763 //===----------------------------------------------------------------------===//
765 static MCSymbol *getBFLabel(StringRef Prefix, unsigned FunctionNumber,
766 unsigned LabelId, MCContext &Ctx) {
768 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix)
769 + "BF" + Twine(FunctionNumber) + "_" + Twine(LabelId));
770 return Label;
773 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber,
774 unsigned LabelId, MCContext &Ctx) {
776 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix)
777 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
778 return Label;
781 static MCSymbolRefExpr::VariantKind
782 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
783 switch (Modifier) {
784 case ARMCP::no_modifier:
785 return MCSymbolRefExpr::VK_None;
786 case ARMCP::TLSGD:
787 return MCSymbolRefExpr::VK_TLSGD;
788 case ARMCP::TPOFF:
789 return MCSymbolRefExpr::VK_TPOFF;
790 case ARMCP::GOTTPOFF:
791 return MCSymbolRefExpr::VK_GOTTPOFF;
792 case ARMCP::SBREL:
793 return MCSymbolRefExpr::VK_ARM_SBREL;
794 case ARMCP::GOT_PREL:
795 return MCSymbolRefExpr::VK_ARM_GOT_PREL;
796 case ARMCP::SECREL:
797 return MCSymbolRefExpr::VK_SECREL;
799 llvm_unreachable("Invalid ARMCPModifier!");
802 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV,
803 unsigned char TargetFlags) {
804 if (Subtarget->isTargetMachO()) {
805 bool IsIndirect =
806 (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV);
808 if (!IsIndirect)
809 return getSymbol(GV);
811 // FIXME: Remove this when Darwin transition to @GOT like syntax.
812 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
813 MachineModuleInfoMachO &MMIMachO =
814 MMI->getObjFileInfo<MachineModuleInfoMachO>();
815 MachineModuleInfoImpl::StubValueTy &StubSym =
816 GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym)
817 : MMIMachO.getGVStubEntry(MCSym);
819 if (!StubSym.getPointer())
820 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV),
821 !GV->hasInternalLinkage());
822 return MCSym;
823 } else if (Subtarget->isTargetCOFF()) {
824 assert(Subtarget->isTargetWindows() &&
825 "Windows is the only supported COFF target");
827 bool IsIndirect =
828 (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB));
829 if (!IsIndirect)
830 return getSymbol(GV);
832 SmallString<128> Name;
833 if (TargetFlags & ARMII::MO_DLLIMPORT)
834 Name = "__imp_";
835 else if (TargetFlags & ARMII::MO_COFFSTUB)
836 Name = ".refptr.";
837 getNameWithPrefix(Name, GV);
839 MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name);
841 if (TargetFlags & ARMII::MO_COFFSTUB) {
842 MachineModuleInfoCOFF &MMICOFF =
843 MMI->getObjFileInfo<MachineModuleInfoCOFF>();
844 MachineModuleInfoImpl::StubValueTy &StubSym =
845 MMICOFF.getGVStubEntry(MCSym);
847 if (!StubSym.getPointer())
848 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true);
851 return MCSym;
852 } else if (Subtarget->isTargetELF()) {
853 return getSymbol(GV);
855 llvm_unreachable("unexpected target");
858 void ARMAsmPrinter::
859 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
860 const DataLayout &DL = getDataLayout();
861 int Size = DL.getTypeAllocSize(MCPV->getType());
863 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
865 if (ACPV->isPromotedGlobal()) {
866 // This constant pool entry is actually a global whose storage has been
867 // promoted into the constant pool. This global may be referenced still
868 // by debug information, and due to the way AsmPrinter is set up, the debug
869 // info is immutable by the time we decide to promote globals to constant
870 // pools. Because of this, we need to ensure we emit a symbol for the global
871 // with private linkage (the default) so debug info can refer to it.
873 // However, if this global is promoted into several functions we must ensure
874 // we don't try and emit duplicate symbols!
875 auto *ACPC = cast<ARMConstantPoolConstant>(ACPV);
876 for (const auto *GV : ACPC->promotedGlobals()) {
877 if (!EmittedPromotedGlobalLabels.count(GV)) {
878 MCSymbol *GVSym = getSymbol(GV);
879 OutStreamer->EmitLabel(GVSym);
880 EmittedPromotedGlobalLabels.insert(GV);
883 return EmitGlobalConstant(DL, ACPC->getPromotedGlobalInit());
886 MCSymbol *MCSym;
887 if (ACPV->isLSDA()) {
888 MCSym = getCurExceptionSym();
889 } else if (ACPV->isBlockAddress()) {
890 const BlockAddress *BA =
891 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress();
892 MCSym = GetBlockAddressSymbol(BA);
893 } else if (ACPV->isGlobalValue()) {
894 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
896 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so
897 // flag the global as MO_NONLAZY.
898 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0;
899 MCSym = GetARMGVSymbol(GV, TF);
900 } else if (ACPV->isMachineBasicBlock()) {
901 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB();
902 MCSym = MBB->getSymbol();
903 } else {
904 assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
905 auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
906 MCSym = GetExternalSymbolSymbol(Sym);
909 // Create an MCSymbol for the reference.
910 const MCExpr *Expr =
911 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()),
912 OutContext);
914 if (ACPV->getPCAdjustment()) {
915 MCSymbol *PCLabel =
916 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
917 ACPV->getLabelId(), OutContext);
918 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext);
919 PCRelExpr =
920 MCBinaryExpr::createAdd(PCRelExpr,
921 MCConstantExpr::create(ACPV->getPCAdjustment(),
922 OutContext),
923 OutContext);
924 if (ACPV->mustAddCurrentAddress()) {
925 // We want "(<expr> - .)", but MC doesn't have a concept of the '.'
926 // label, so just emit a local label end reference that instead.
927 MCSymbol *DotSym = OutContext.createTempSymbol();
928 OutStreamer->EmitLabel(DotSym);
929 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
930 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext);
932 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext);
934 OutStreamer->EmitValue(Expr, Size);
937 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) {
938 const MachineOperand &MO1 = MI->getOperand(1);
939 unsigned JTI = MO1.getIndex();
941 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
942 // ARM mode tables.
943 EmitAlignment(Align(4));
945 // Emit a label for the jump table.
946 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
947 OutStreamer->EmitLabel(JTISymbol);
949 // Mark the jump table as data-in-code.
950 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
952 // Emit each entry of the table.
953 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
954 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
955 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
957 for (MachineBasicBlock *MBB : JTBBs) {
958 // Construct an MCExpr for the entry. We want a value of the form:
959 // (BasicBlockAddr - TableBeginAddr)
961 // For example, a table with entries jumping to basic blocks BB0 and BB1
962 // would look like:
963 // LJTI_0_0:
964 // .word (LBB0 - LJTI_0_0)
965 // .word (LBB1 - LJTI_0_0)
966 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
968 if (isPositionIndependent() || Subtarget->isROPI())
969 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol,
970 OutContext),
971 OutContext);
972 // If we're generating a table of Thumb addresses in static relocation
973 // model, we need to add one to keep interworking correctly.
974 else if (AFI->isThumbFunction())
975 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext),
976 OutContext);
977 OutStreamer->EmitValue(Expr, 4);
979 // Mark the end of jump table data-in-code region.
980 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
983 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) {
984 const MachineOperand &MO1 = MI->getOperand(1);
985 unsigned JTI = MO1.getIndex();
987 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
988 // ARM mode tables.
989 EmitAlignment(Align(4));
991 // Emit a label for the jump table.
992 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
993 OutStreamer->EmitLabel(JTISymbol);
995 // Emit each entry of the table.
996 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
997 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
998 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1000 for (MachineBasicBlock *MBB : JTBBs) {
1001 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
1002 OutContext);
1003 // If this isn't a TBB or TBH, the entries are direct branch instructions.
1004 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B)
1005 .addExpr(MBBSymbolExpr)
1006 .addImm(ARMCC::AL)
1007 .addReg(0));
1011 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI,
1012 unsigned OffsetWidth) {
1013 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width");
1014 const MachineOperand &MO1 = MI->getOperand(1);
1015 unsigned JTI = MO1.getIndex();
1017 if (Subtarget->isThumb1Only())
1018 EmitAlignment(Align(4));
1020 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
1021 OutStreamer->EmitLabel(JTISymbol);
1023 // Emit each entry of the table.
1024 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1025 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1026 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1028 // Mark the jump table as data-in-code.
1029 OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8
1030 : MCDR_DataRegionJT16);
1032 for (auto MBB : JTBBs) {
1033 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
1034 OutContext);
1035 // Otherwise it's an offset from the dispatch instruction. Construct an
1036 // MCExpr for the entry. We want a value of the form:
1037 // (BasicBlockAddr - TBBInstAddr + 4) / 2
1039 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1
1040 // would look like:
1041 // LJTI_0_0:
1042 // .byte (LBB0 - (LCPI0_0 + 4)) / 2
1043 // .byte (LBB1 - (LCPI0_0 + 4)) / 2
1044 // where LCPI0_0 is a label defined just before the TBB instruction using
1045 // this table.
1046 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm());
1047 const MCExpr *Expr = MCBinaryExpr::createAdd(
1048 MCSymbolRefExpr::create(TBInstPC, OutContext),
1049 MCConstantExpr::create(4, OutContext), OutContext);
1050 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext);
1051 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext),
1052 OutContext);
1053 OutStreamer->EmitValue(Expr, OffsetWidth);
1055 // Mark the end of jump table data-in-code region. 32-bit offsets use
1056 // actual branch instructions here, so we don't mark those as a data-region
1057 // at all.
1058 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1060 // Make sure the next instruction is 2-byte aligned.
1061 EmitAlignment(Align(2));
1064 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
1065 assert(MI->getFlag(MachineInstr::FrameSetup) &&
1066 "Only instruction which are involved into frame setup code are allowed");
1068 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
1069 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1070 const MachineFunction &MF = *MI->getParent()->getParent();
1071 const TargetRegisterInfo *TargetRegInfo =
1072 MF.getSubtarget().getRegisterInfo();
1073 const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo();
1075 Register FramePtr = TargetRegInfo->getFrameRegister(MF);
1076 unsigned Opc = MI->getOpcode();
1077 unsigned SrcReg, DstReg;
1079 if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) {
1080 // Two special cases:
1081 // 1) tPUSH does not have src/dst regs.
1082 // 2) for Thumb1 code we sometimes materialize the constant via constpool
1083 // load. Yes, this is pretty fragile, but for now I don't see better
1084 // way... :(
1085 SrcReg = DstReg = ARM::SP;
1086 } else {
1087 SrcReg = MI->getOperand(1).getReg();
1088 DstReg = MI->getOperand(0).getReg();
1091 // Try to figure out the unwinding opcode out of src / dst regs.
1092 if (MI->mayStore()) {
1093 // Register saves.
1094 assert(DstReg == ARM::SP &&
1095 "Only stack pointer as a destination reg is supported");
1097 SmallVector<unsigned, 4> RegList;
1098 // Skip src & dst reg, and pred ops.
1099 unsigned StartOp = 2 + 2;
1100 // Use all the operands.
1101 unsigned NumOffset = 0;
1102 // Amount of SP adjustment folded into a push.
1103 unsigned Pad = 0;
1105 switch (Opc) {
1106 default:
1107 MI->print(errs());
1108 llvm_unreachable("Unsupported opcode for unwinding information");
1109 case ARM::tPUSH:
1110 // Special case here: no src & dst reg, but two extra imp ops.
1111 StartOp = 2; NumOffset = 2;
1112 LLVM_FALLTHROUGH;
1113 case ARM::STMDB_UPD:
1114 case ARM::t2STMDB_UPD:
1115 case ARM::VSTMDDB_UPD:
1116 assert(SrcReg == ARM::SP &&
1117 "Only stack pointer as a source reg is supported");
1118 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
1119 i != NumOps; ++i) {
1120 const MachineOperand &MO = MI->getOperand(i);
1121 // Actually, there should never be any impdef stuff here. Skip it
1122 // temporary to workaround PR11902.
1123 if (MO.isImplicit())
1124 continue;
1125 // Registers, pushed as a part of folding an SP update into the
1126 // push instruction are marked as undef and should not be
1127 // restored when unwinding, because the function can modify the
1128 // corresponding stack slots.
1129 if (MO.isUndef()) {
1130 assert(RegList.empty() &&
1131 "Pad registers must come before restored ones");
1132 unsigned Width =
1133 TargetRegInfo->getRegSizeInBits(MO.getReg(), MachineRegInfo) / 8;
1134 Pad += Width;
1135 continue;
1137 // Check for registers that are remapped (for a Thumb1 prologue that
1138 // saves high registers).
1139 Register Reg = MO.getReg();
1140 if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(Reg))
1141 Reg = RemappedReg;
1142 RegList.push_back(Reg);
1144 break;
1145 case ARM::STR_PRE_IMM:
1146 case ARM::STR_PRE_REG:
1147 case ARM::t2STR_PRE:
1148 assert(MI->getOperand(2).getReg() == ARM::SP &&
1149 "Only stack pointer as a source reg is supported");
1150 RegList.push_back(SrcReg);
1151 break;
1153 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
1154 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
1155 // Account for the SP adjustment, folded into the push.
1156 if (Pad)
1157 ATS.emitPad(Pad);
1159 } else {
1160 // Changes of stack / frame pointer.
1161 if (SrcReg == ARM::SP) {
1162 int64_t Offset = 0;
1163 switch (Opc) {
1164 default:
1165 MI->print(errs());
1166 llvm_unreachable("Unsupported opcode for unwinding information");
1167 case ARM::MOVr:
1168 case ARM::tMOVr:
1169 Offset = 0;
1170 break;
1171 case ARM::ADDri:
1172 case ARM::t2ADDri:
1173 Offset = -MI->getOperand(2).getImm();
1174 break;
1175 case ARM::SUBri:
1176 case ARM::t2SUBri:
1177 Offset = MI->getOperand(2).getImm();
1178 break;
1179 case ARM::tSUBspi:
1180 Offset = MI->getOperand(2).getImm()*4;
1181 break;
1182 case ARM::tADDspi:
1183 case ARM::tADDrSPi:
1184 Offset = -MI->getOperand(2).getImm()*4;
1185 break;
1186 case ARM::tLDRpci: {
1187 // Grab the constpool index and check, whether it corresponds to
1188 // original or cloned constpool entry.
1189 unsigned CPI = MI->getOperand(1).getIndex();
1190 const MachineConstantPool *MCP = MF.getConstantPool();
1191 if (CPI >= MCP->getConstants().size())
1192 CPI = AFI->getOriginalCPIdx(CPI);
1193 assert(CPI != -1U && "Invalid constpool index");
1195 // Derive the actual offset.
1196 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
1197 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
1198 // FIXME: Check for user, it should be "add" instruction!
1199 Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
1200 break;
1204 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
1205 if (DstReg == FramePtr && FramePtr != ARM::SP)
1206 // Set-up of the frame pointer. Positive values correspond to "add"
1207 // instruction.
1208 ATS.emitSetFP(FramePtr, ARM::SP, -Offset);
1209 else if (DstReg == ARM::SP) {
1210 // Change of SP by an offset. Positive values correspond to "sub"
1211 // instruction.
1212 ATS.emitPad(Offset);
1213 } else {
1214 // Move of SP to a register. Positive values correspond to an "add"
1215 // instruction.
1216 ATS.emitMovSP(DstReg, -Offset);
1219 } else if (DstReg == ARM::SP) {
1220 MI->print(errs());
1221 llvm_unreachable("Unsupported opcode for unwinding information");
1222 } else if (Opc == ARM::tMOVr) {
1223 // If a Thumb1 function spills r8-r11, we copy the values to low
1224 // registers before pushing them. Record the copy so we can emit the
1225 // correct ".save" later.
1226 AFI->EHPrologueRemappedRegs[DstReg] = SrcReg;
1227 } else {
1228 MI->print(errs());
1229 llvm_unreachable("Unsupported opcode for unwinding information");
1234 // Simple pseudo-instructions have their lowering (with expansion to real
1235 // instructions) auto-generated.
1236 #include "ARMGenMCPseudoLowering.inc"
1238 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
1239 const DataLayout &DL = getDataLayout();
1240 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
1241 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1243 const MachineFunction &MF = *MI->getParent()->getParent();
1244 const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
1245 unsigned FramePtr = STI.useR7AsFramePointer() ? ARM::R7 : ARM::R11;
1247 // If we just ended a constant pool, mark it as such.
1248 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
1249 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1250 InConstantPool = false;
1253 // Emit unwinding stuff for frame-related instructions
1254 if (Subtarget->isTargetEHABICompatible() &&
1255 MI->getFlag(MachineInstr::FrameSetup))
1256 EmitUnwindingInstruction(MI);
1258 // Do any auto-generated pseudo lowerings.
1259 if (emitPseudoExpansionLowering(*OutStreamer, MI))
1260 return;
1262 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
1263 "Pseudo flag setting opcode should be expanded early");
1265 // Check for manual lowerings.
1266 unsigned Opc = MI->getOpcode();
1267 switch (Opc) {
1268 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass");
1269 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing");
1270 case ARM::LEApcrel:
1271 case ARM::tLEApcrel:
1272 case ARM::t2LEApcrel: {
1273 // FIXME: Need to also handle globals and externals
1274 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex());
1275 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
1276 ARM::t2LEApcrel ? ARM::t2ADR
1277 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
1278 : ARM::ADR))
1279 .addReg(MI->getOperand(0).getReg())
1280 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext))
1281 // Add predicate operands.
1282 .addImm(MI->getOperand(2).getImm())
1283 .addReg(MI->getOperand(3).getReg()));
1284 return;
1286 case ARM::LEApcrelJT:
1287 case ARM::tLEApcrelJT:
1288 case ARM::t2LEApcrelJT: {
1289 MCSymbol *JTIPICSymbol =
1290 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex());
1291 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
1292 ARM::t2LEApcrelJT ? ARM::t2ADR
1293 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
1294 : ARM::ADR))
1295 .addReg(MI->getOperand(0).getReg())
1296 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext))
1297 // Add predicate operands.
1298 .addImm(MI->getOperand(2).getImm())
1299 .addReg(MI->getOperand(3).getReg()));
1300 return;
1302 // Darwin call instructions are just normal call instructions with different
1303 // clobber semantics (they clobber R9).
1304 case ARM::BX_CALL: {
1305 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1306 .addReg(ARM::LR)
1307 .addReg(ARM::PC)
1308 // Add predicate operands.
1309 .addImm(ARMCC::AL)
1310 .addReg(0)
1311 // Add 's' bit operand (always reg0 for this)
1312 .addReg(0));
1314 assert(Subtarget->hasV4TOps());
1315 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
1316 .addReg(MI->getOperand(0).getReg()));
1317 return;
1319 case ARM::tBX_CALL: {
1320 if (Subtarget->hasV5TOps())
1321 llvm_unreachable("Expected BLX to be selected for v5t+");
1323 // On ARM v4t, when doing a call from thumb mode, we need to ensure
1324 // that the saved lr has its LSB set correctly (the arch doesn't
1325 // have blx).
1326 // So here we generate a bl to a small jump pad that does bx rN.
1327 // The jump pads are emitted after the function body.
1329 Register TReg = MI->getOperand(0).getReg();
1330 MCSymbol *TRegSym = nullptr;
1331 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) {
1332 if (TIP.first == TReg) {
1333 TRegSym = TIP.second;
1334 break;
1338 if (!TRegSym) {
1339 TRegSym = OutContext.createTempSymbol();
1340 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym));
1343 // Create a link-saving branch to the Reg Indirect Jump Pad.
1344 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL)
1345 // Predicate comes first here.
1346 .addImm(ARMCC::AL).addReg(0)
1347 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext)));
1348 return;
1350 case ARM::BMOVPCRX_CALL: {
1351 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1352 .addReg(ARM::LR)
1353 .addReg(ARM::PC)
1354 // Add predicate operands.
1355 .addImm(ARMCC::AL)
1356 .addReg(0)
1357 // Add 's' bit operand (always reg0 for this)
1358 .addReg(0));
1360 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1361 .addReg(ARM::PC)
1362 .addReg(MI->getOperand(0).getReg())
1363 // Add predicate operands.
1364 .addImm(ARMCC::AL)
1365 .addReg(0)
1366 // Add 's' bit operand (always reg0 for this)
1367 .addReg(0));
1368 return;
1370 case ARM::BMOVPCB_CALL: {
1371 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1372 .addReg(ARM::LR)
1373 .addReg(ARM::PC)
1374 // Add predicate operands.
1375 .addImm(ARMCC::AL)
1376 .addReg(0)
1377 // Add 's' bit operand (always reg0 for this)
1378 .addReg(0));
1380 const MachineOperand &Op = MI->getOperand(0);
1381 const GlobalValue *GV = Op.getGlobal();
1382 const unsigned TF = Op.getTargetFlags();
1383 MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1384 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1385 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc)
1386 .addExpr(GVSymExpr)
1387 // Add predicate operands.
1388 .addImm(ARMCC::AL)
1389 .addReg(0));
1390 return;
1392 case ARM::MOVi16_ga_pcrel:
1393 case ARM::t2MOVi16_ga_pcrel: {
1394 MCInst TmpInst;
1395 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
1396 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1398 unsigned TF = MI->getOperand(1).getTargetFlags();
1399 const GlobalValue *GV = MI->getOperand(1).getGlobal();
1400 MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1401 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1403 MCSymbol *LabelSym =
1404 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1405 MI->getOperand(2).getImm(), OutContext);
1406 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1407 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
1408 const MCExpr *PCRelExpr =
1409 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr,
1410 MCBinaryExpr::createAdd(LabelSymExpr,
1411 MCConstantExpr::create(PCAdj, OutContext),
1412 OutContext), OutContext), OutContext);
1413 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1415 // Add predicate operands.
1416 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1417 TmpInst.addOperand(MCOperand::createReg(0));
1418 // Add 's' bit operand (always reg0 for this)
1419 TmpInst.addOperand(MCOperand::createReg(0));
1420 EmitToStreamer(*OutStreamer, TmpInst);
1421 return;
1423 case ARM::MOVTi16_ga_pcrel:
1424 case ARM::t2MOVTi16_ga_pcrel: {
1425 MCInst TmpInst;
1426 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
1427 ? ARM::MOVTi16 : ARM::t2MOVTi16);
1428 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1429 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1431 unsigned TF = MI->getOperand(2).getTargetFlags();
1432 const GlobalValue *GV = MI->getOperand(2).getGlobal();
1433 MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1434 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1436 MCSymbol *LabelSym =
1437 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1438 MI->getOperand(3).getImm(), OutContext);
1439 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1440 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
1441 const MCExpr *PCRelExpr =
1442 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr,
1443 MCBinaryExpr::createAdd(LabelSymExpr,
1444 MCConstantExpr::create(PCAdj, OutContext),
1445 OutContext), OutContext), OutContext);
1446 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1447 // Add predicate operands.
1448 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1449 TmpInst.addOperand(MCOperand::createReg(0));
1450 // Add 's' bit operand (always reg0 for this)
1451 TmpInst.addOperand(MCOperand::createReg(0));
1452 EmitToStreamer(*OutStreamer, TmpInst);
1453 return;
1455 case ARM::t2BFi:
1456 case ARM::t2BFic:
1457 case ARM::t2BFLi:
1458 case ARM::t2BFr:
1459 case ARM::t2BFLr: {
1460 // This is a Branch Future instruction.
1462 const MCExpr *BranchLabel = MCSymbolRefExpr::create(
1463 getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1464 MI->getOperand(0).getIndex(), OutContext),
1465 OutContext);
1467 auto MCInst = MCInstBuilder(Opc).addExpr(BranchLabel);
1468 if (MI->getOperand(1).isReg()) {
1469 // For BFr/BFLr
1470 MCInst.addReg(MI->getOperand(1).getReg());
1471 } else {
1472 // For BFi/BFLi/BFic
1473 const MCExpr *BranchTarget;
1474 if (MI->getOperand(1).isMBB())
1475 BranchTarget = MCSymbolRefExpr::create(
1476 MI->getOperand(1).getMBB()->getSymbol(), OutContext);
1477 else if (MI->getOperand(1).isGlobal()) {
1478 const GlobalValue *GV = MI->getOperand(1).getGlobal();
1479 BranchTarget = MCSymbolRefExpr::create(
1480 GetARMGVSymbol(GV, MI->getOperand(1).getTargetFlags()), OutContext);
1481 } else if (MI->getOperand(1).isSymbol()) {
1482 BranchTarget = MCSymbolRefExpr::create(
1483 GetExternalSymbolSymbol(MI->getOperand(1).getSymbolName()),
1484 OutContext);
1485 } else
1486 llvm_unreachable("Unhandled operand kind in Branch Future instruction");
1488 MCInst.addExpr(BranchTarget);
1491 if (Opc == ARM::t2BFic) {
1492 const MCExpr *ElseLabel = MCSymbolRefExpr::create(
1493 getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1494 MI->getOperand(2).getIndex(), OutContext),
1495 OutContext);
1496 MCInst.addExpr(ElseLabel);
1497 MCInst.addImm(MI->getOperand(3).getImm());
1498 } else {
1499 MCInst.addImm(MI->getOperand(2).getImm())
1500 .addReg(MI->getOperand(3).getReg());
1503 EmitToStreamer(*OutStreamer, MCInst);
1504 return;
1506 case ARM::t2BF_LabelPseudo: {
1507 // This is a pseudo op for a label used by a branch future instruction
1509 // Emit the label.
1510 OutStreamer->EmitLabel(getBFLabel(DL.getPrivateGlobalPrefix(),
1511 getFunctionNumber(),
1512 MI->getOperand(0).getIndex(), OutContext));
1513 return;
1515 case ARM::tPICADD: {
1516 // This is a pseudo op for a label + instruction sequence, which looks like:
1517 // LPC0:
1518 // add r0, pc
1519 // This adds the address of LPC0 to r0.
1521 // Emit the label.
1522 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1523 getFunctionNumber(),
1524 MI->getOperand(2).getImm(), OutContext));
1526 // Form and emit the add.
1527 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1528 .addReg(MI->getOperand(0).getReg())
1529 .addReg(MI->getOperand(0).getReg())
1530 .addReg(ARM::PC)
1531 // Add predicate operands.
1532 .addImm(ARMCC::AL)
1533 .addReg(0));
1534 return;
1536 case ARM::PICADD: {
1537 // This is a pseudo op for a label + instruction sequence, which looks like:
1538 // LPC0:
1539 // add r0, pc, r0
1540 // This adds the address of LPC0 to r0.
1542 // Emit the label.
1543 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1544 getFunctionNumber(),
1545 MI->getOperand(2).getImm(), OutContext));
1547 // Form and emit the add.
1548 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
1549 .addReg(MI->getOperand(0).getReg())
1550 .addReg(ARM::PC)
1551 .addReg(MI->getOperand(1).getReg())
1552 // Add predicate operands.
1553 .addImm(MI->getOperand(3).getImm())
1554 .addReg(MI->getOperand(4).getReg())
1555 // Add 's' bit operand (always reg0 for this)
1556 .addReg(0));
1557 return;
1559 case ARM::PICSTR:
1560 case ARM::PICSTRB:
1561 case ARM::PICSTRH:
1562 case ARM::PICLDR:
1563 case ARM::PICLDRB:
1564 case ARM::PICLDRH:
1565 case ARM::PICLDRSB:
1566 case ARM::PICLDRSH: {
1567 // This is a pseudo op for a label + instruction sequence, which looks like:
1568 // LPC0:
1569 // OP r0, [pc, r0]
1570 // The LCP0 label is referenced by a constant pool entry in order to get
1571 // a PC-relative address at the ldr instruction.
1573 // Emit the label.
1574 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1575 getFunctionNumber(),
1576 MI->getOperand(2).getImm(), OutContext));
1578 // Form and emit the load
1579 unsigned Opcode;
1580 switch (MI->getOpcode()) {
1581 default:
1582 llvm_unreachable("Unexpected opcode!");
1583 case ARM::PICSTR: Opcode = ARM::STRrs; break;
1584 case ARM::PICSTRB: Opcode = ARM::STRBrs; break;
1585 case ARM::PICSTRH: Opcode = ARM::STRH; break;
1586 case ARM::PICLDR: Opcode = ARM::LDRrs; break;
1587 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break;
1588 case ARM::PICLDRH: Opcode = ARM::LDRH; break;
1589 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
1590 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
1592 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode)
1593 .addReg(MI->getOperand(0).getReg())
1594 .addReg(ARM::PC)
1595 .addReg(MI->getOperand(1).getReg())
1596 .addImm(0)
1597 // Add predicate operands.
1598 .addImm(MI->getOperand(3).getImm())
1599 .addReg(MI->getOperand(4).getReg()));
1601 return;
1603 case ARM::CONSTPOOL_ENTRY: {
1604 if (Subtarget->genExecuteOnly())
1605 llvm_unreachable("execute-only should not generate constant pools");
1607 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
1608 /// in the function. The first operand is the ID# for this instruction, the
1609 /// second is the index into the MachineConstantPool that this is, the third
1610 /// is the size in bytes of this constant pool entry.
1611 /// The required alignment is specified on the basic block holding this MI.
1612 unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
1613 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
1615 // If this is the first entry of the pool, mark it.
1616 if (!InConstantPool) {
1617 OutStreamer->EmitDataRegion(MCDR_DataRegion);
1618 InConstantPool = true;
1621 OutStreamer->EmitLabel(GetCPISymbol(LabelId));
1623 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
1624 if (MCPE.isMachineConstantPoolEntry())
1625 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
1626 else
1627 EmitGlobalConstant(DL, MCPE.Val.ConstVal);
1628 return;
1630 case ARM::JUMPTABLE_ADDRS:
1631 EmitJumpTableAddrs(MI);
1632 return;
1633 case ARM::JUMPTABLE_INSTS:
1634 EmitJumpTableInsts(MI);
1635 return;
1636 case ARM::JUMPTABLE_TBB:
1637 case ARM::JUMPTABLE_TBH:
1638 EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2);
1639 return;
1640 case ARM::t2BR_JT: {
1641 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1642 .addReg(ARM::PC)
1643 .addReg(MI->getOperand(0).getReg())
1644 // Add predicate operands.
1645 .addImm(ARMCC::AL)
1646 .addReg(0));
1647 return;
1649 case ARM::t2TBB_JT:
1650 case ARM::t2TBH_JT: {
1651 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH;
1652 // Lower and emit the PC label, then the instruction itself.
1653 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
1654 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1655 .addReg(MI->getOperand(0).getReg())
1656 .addReg(MI->getOperand(1).getReg())
1657 // Add predicate operands.
1658 .addImm(ARMCC::AL)
1659 .addReg(0));
1660 return;
1662 case ARM::tTBB_JT:
1663 case ARM::tTBH_JT: {
1665 bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT;
1666 Register Base = MI->getOperand(0).getReg();
1667 Register Idx = MI->getOperand(1).getReg();
1668 assert(MI->getOperand(1).isKill() && "We need the index register as scratch!");
1670 // Multiply up idx if necessary.
1671 if (!Is8Bit)
1672 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri)
1673 .addReg(Idx)
1674 .addReg(ARM::CPSR)
1675 .addReg(Idx)
1676 .addImm(1)
1677 // Add predicate operands.
1678 .addImm(ARMCC::AL)
1679 .addReg(0));
1681 if (Base == ARM::PC) {
1682 // TBB [base, idx] =
1683 // ADDS idx, idx, base
1684 // LDRB idx, [idx, #4] ; or LDRH if TBH
1685 // LSLS idx, #1
1686 // ADDS pc, pc, idx
1688 // When using PC as the base, it's important that there is no padding
1689 // between the last ADDS and the start of the jump table. The jump table
1690 // is 4-byte aligned, so we ensure we're 4 byte aligned here too.
1692 // FIXME: Ideally we could vary the LDRB index based on the padding
1693 // between the sequence and jump table, however that relies on MCExprs
1694 // for load indexes which are currently not supported.
1695 OutStreamer->EmitCodeAlignment(4);
1696 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1697 .addReg(Idx)
1698 .addReg(Idx)
1699 .addReg(Base)
1700 // Add predicate operands.
1701 .addImm(ARMCC::AL)
1702 .addReg(0));
1704 unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi;
1705 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1706 .addReg(Idx)
1707 .addReg(Idx)
1708 .addImm(Is8Bit ? 4 : 2)
1709 // Add predicate operands.
1710 .addImm(ARMCC::AL)
1711 .addReg(0));
1712 } else {
1713 // TBB [base, idx] =
1714 // LDRB idx, [base, idx] ; or LDRH if TBH
1715 // LSLS idx, #1
1716 // ADDS pc, pc, idx
1718 unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr;
1719 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1720 .addReg(Idx)
1721 .addReg(Base)
1722 .addReg(Idx)
1723 // Add predicate operands.
1724 .addImm(ARMCC::AL)
1725 .addReg(0));
1728 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri)
1729 .addReg(Idx)
1730 .addReg(ARM::CPSR)
1731 .addReg(Idx)
1732 .addImm(1)
1733 // Add predicate operands.
1734 .addImm(ARMCC::AL)
1735 .addReg(0));
1737 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
1738 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1739 .addReg(ARM::PC)
1740 .addReg(ARM::PC)
1741 .addReg(Idx)
1742 // Add predicate operands.
1743 .addImm(ARMCC::AL)
1744 .addReg(0));
1745 return;
1747 case ARM::tBR_JTr:
1748 case ARM::BR_JTr: {
1749 // mov pc, target
1750 MCInst TmpInst;
1751 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
1752 ARM::MOVr : ARM::tMOVr;
1753 TmpInst.setOpcode(Opc);
1754 TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1755 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1756 // Add predicate operands.
1757 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1758 TmpInst.addOperand(MCOperand::createReg(0));
1759 // Add 's' bit operand (always reg0 for this)
1760 if (Opc == ARM::MOVr)
1761 TmpInst.addOperand(MCOperand::createReg(0));
1762 EmitToStreamer(*OutStreamer, TmpInst);
1763 return;
1765 case ARM::BR_JTm_i12: {
1766 // ldr pc, target
1767 MCInst TmpInst;
1768 TmpInst.setOpcode(ARM::LDRi12);
1769 TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1770 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1771 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
1772 // Add predicate operands.
1773 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1774 TmpInst.addOperand(MCOperand::createReg(0));
1775 EmitToStreamer(*OutStreamer, TmpInst);
1776 return;
1778 case ARM::BR_JTm_rs: {
1779 // ldr pc, target
1780 MCInst TmpInst;
1781 TmpInst.setOpcode(ARM::LDRrs);
1782 TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1783 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1784 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1785 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
1786 // Add predicate operands.
1787 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1788 TmpInst.addOperand(MCOperand::createReg(0));
1789 EmitToStreamer(*OutStreamer, TmpInst);
1790 return;
1792 case ARM::BR_JTadd: {
1793 // add pc, target, idx
1794 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
1795 .addReg(ARM::PC)
1796 .addReg(MI->getOperand(0).getReg())
1797 .addReg(MI->getOperand(1).getReg())
1798 // Add predicate operands.
1799 .addImm(ARMCC::AL)
1800 .addReg(0)
1801 // Add 's' bit operand (always reg0 for this)
1802 .addReg(0));
1803 return;
1805 case ARM::SPACE:
1806 OutStreamer->EmitZeros(MI->getOperand(1).getImm());
1807 return;
1808 case ARM::TRAP: {
1809 // Non-Darwin binutils don't yet support the "trap" mnemonic.
1810 // FIXME: Remove this special case when they do.
1811 if (!Subtarget->isTargetMachO()) {
1812 uint32_t Val = 0xe7ffdefeUL;
1813 OutStreamer->AddComment("trap");
1814 ATS.emitInst(Val);
1815 return;
1817 break;
1819 case ARM::TRAPNaCl: {
1820 uint32_t Val = 0xe7fedef0UL;
1821 OutStreamer->AddComment("trap");
1822 ATS.emitInst(Val);
1823 return;
1825 case ARM::tTRAP: {
1826 // Non-Darwin binutils don't yet support the "trap" mnemonic.
1827 // FIXME: Remove this special case when they do.
1828 if (!Subtarget->isTargetMachO()) {
1829 uint16_t Val = 0xdefe;
1830 OutStreamer->AddComment("trap");
1831 ATS.emitInst(Val, 'n');
1832 return;
1834 break;
1836 case ARM::t2Int_eh_sjlj_setjmp:
1837 case ARM::t2Int_eh_sjlj_setjmp_nofp:
1838 case ARM::tInt_eh_sjlj_setjmp: {
1839 // Two incoming args: GPR:$src, GPR:$val
1840 // mov $val, pc
1841 // adds $val, #7
1842 // str $val, [$src, #4]
1843 // movs r0, #0
1844 // b LSJLJEH
1845 // movs r0, #1
1846 // LSJLJEH:
1847 Register SrcReg = MI->getOperand(0).getReg();
1848 Register ValReg = MI->getOperand(1).getReg();
1849 MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true);
1850 OutStreamer->AddComment("eh_setjmp begin");
1851 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1852 .addReg(ValReg)
1853 .addReg(ARM::PC)
1854 // Predicate.
1855 .addImm(ARMCC::AL)
1856 .addReg(0));
1858 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3)
1859 .addReg(ValReg)
1860 // 's' bit operand
1861 .addReg(ARM::CPSR)
1862 .addReg(ValReg)
1863 .addImm(7)
1864 // Predicate.
1865 .addImm(ARMCC::AL)
1866 .addReg(0));
1868 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi)
1869 .addReg(ValReg)
1870 .addReg(SrcReg)
1871 // The offset immediate is #4. The operand value is scaled by 4 for the
1872 // tSTR instruction.
1873 .addImm(1)
1874 // Predicate.
1875 .addImm(ARMCC::AL)
1876 .addReg(0));
1878 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
1879 .addReg(ARM::R0)
1880 .addReg(ARM::CPSR)
1881 .addImm(0)
1882 // Predicate.
1883 .addImm(ARMCC::AL)
1884 .addReg(0));
1886 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext);
1887 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB)
1888 .addExpr(SymbolExpr)
1889 .addImm(ARMCC::AL)
1890 .addReg(0));
1892 OutStreamer->AddComment("eh_setjmp end");
1893 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
1894 .addReg(ARM::R0)
1895 .addReg(ARM::CPSR)
1896 .addImm(1)
1897 // Predicate.
1898 .addImm(ARMCC::AL)
1899 .addReg(0));
1901 OutStreamer->EmitLabel(Label);
1902 return;
1905 case ARM::Int_eh_sjlj_setjmp_nofp:
1906 case ARM::Int_eh_sjlj_setjmp: {
1907 // Two incoming args: GPR:$src, GPR:$val
1908 // add $val, pc, #8
1909 // str $val, [$src, #+4]
1910 // mov r0, #0
1911 // add pc, pc, #0
1912 // mov r0, #1
1913 Register SrcReg = MI->getOperand(0).getReg();
1914 Register ValReg = MI->getOperand(1).getReg();
1916 OutStreamer->AddComment("eh_setjmp begin");
1917 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
1918 .addReg(ValReg)
1919 .addReg(ARM::PC)
1920 .addImm(8)
1921 // Predicate.
1922 .addImm(ARMCC::AL)
1923 .addReg(0)
1924 // 's' bit operand (always reg0 for this).
1925 .addReg(0));
1927 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12)
1928 .addReg(ValReg)
1929 .addReg(SrcReg)
1930 .addImm(4)
1931 // Predicate.
1932 .addImm(ARMCC::AL)
1933 .addReg(0));
1935 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
1936 .addReg(ARM::R0)
1937 .addImm(0)
1938 // Predicate.
1939 .addImm(ARMCC::AL)
1940 .addReg(0)
1941 // 's' bit operand (always reg0 for this).
1942 .addReg(0));
1944 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
1945 .addReg(ARM::PC)
1946 .addReg(ARM::PC)
1947 .addImm(0)
1948 // Predicate.
1949 .addImm(ARMCC::AL)
1950 .addReg(0)
1951 // 's' bit operand (always reg0 for this).
1952 .addReg(0));
1954 OutStreamer->AddComment("eh_setjmp end");
1955 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
1956 .addReg(ARM::R0)
1957 .addImm(1)
1958 // Predicate.
1959 .addImm(ARMCC::AL)
1960 .addReg(0)
1961 // 's' bit operand (always reg0 for this).
1962 .addReg(0));
1963 return;
1965 case ARM::Int_eh_sjlj_longjmp: {
1966 // ldr sp, [$src, #8]
1967 // ldr $scratch, [$src, #4]
1968 // ldr r7, [$src]
1969 // bx $scratch
1970 Register SrcReg = MI->getOperand(0).getReg();
1971 Register ScratchReg = MI->getOperand(1).getReg();
1972 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1973 .addReg(ARM::SP)
1974 .addReg(SrcReg)
1975 .addImm(8)
1976 // Predicate.
1977 .addImm(ARMCC::AL)
1978 .addReg(0));
1980 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1981 .addReg(ScratchReg)
1982 .addReg(SrcReg)
1983 .addImm(4)
1984 // Predicate.
1985 .addImm(ARMCC::AL)
1986 .addReg(0));
1988 if (STI.isTargetDarwin() || STI.isTargetWindows()) {
1989 // These platforms always use the same frame register
1990 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1991 .addReg(FramePtr)
1992 .addReg(SrcReg)
1993 .addImm(0)
1994 // Predicate.
1995 .addImm(ARMCC::AL)
1996 .addReg(0));
1997 } else {
1998 // If the calling code might use either R7 or R11 as
1999 // frame pointer register, restore it into both.
2000 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
2001 .addReg(ARM::R7)
2002 .addReg(SrcReg)
2003 .addImm(0)
2004 // Predicate.
2005 .addImm(ARMCC::AL)
2006 .addReg(0));
2007 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
2008 .addReg(ARM::R11)
2009 .addReg(SrcReg)
2010 .addImm(0)
2011 // Predicate.
2012 .addImm(ARMCC::AL)
2013 .addReg(0));
2016 assert(Subtarget->hasV4TOps());
2017 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
2018 .addReg(ScratchReg)
2019 // Predicate.
2020 .addImm(ARMCC::AL)
2021 .addReg(0));
2022 return;
2024 case ARM::tInt_eh_sjlj_longjmp: {
2025 // ldr $scratch, [$src, #8]
2026 // mov sp, $scratch
2027 // ldr $scratch, [$src, #4]
2028 // ldr r7, [$src]
2029 // bx $scratch
2030 Register SrcReg = MI->getOperand(0).getReg();
2031 Register ScratchReg = MI->getOperand(1).getReg();
2033 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
2034 .addReg(ScratchReg)
2035 .addReg(SrcReg)
2036 // The offset immediate is #8. The operand value is scaled by 4 for the
2037 // tLDR instruction.
2038 .addImm(2)
2039 // Predicate.
2040 .addImm(ARMCC::AL)
2041 .addReg(0));
2043 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
2044 .addReg(ARM::SP)
2045 .addReg(ScratchReg)
2046 // Predicate.
2047 .addImm(ARMCC::AL)
2048 .addReg(0));
2050 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
2051 .addReg(ScratchReg)
2052 .addReg(SrcReg)
2053 .addImm(1)
2054 // Predicate.
2055 .addImm(ARMCC::AL)
2056 .addReg(0));
2058 if (STI.isTargetDarwin() || STI.isTargetWindows()) {
2059 // These platforms always use the same frame register
2060 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
2061 .addReg(FramePtr)
2062 .addReg(SrcReg)
2063 .addImm(0)
2064 // Predicate.
2065 .addImm(ARMCC::AL)
2066 .addReg(0));
2067 } else {
2068 // If the calling code might use either R7 or R11 as
2069 // frame pointer register, restore it into both.
2070 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
2071 .addReg(ARM::R7)
2072 .addReg(SrcReg)
2073 .addImm(0)
2074 // Predicate.
2075 .addImm(ARMCC::AL)
2076 .addReg(0));
2077 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
2078 .addReg(ARM::R11)
2079 .addReg(SrcReg)
2080 .addImm(0)
2081 // Predicate.
2082 .addImm(ARMCC::AL)
2083 .addReg(0));
2086 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
2087 .addReg(ScratchReg)
2088 // Predicate.
2089 .addImm(ARMCC::AL)
2090 .addReg(0));
2091 return;
2093 case ARM::tInt_WIN_eh_sjlj_longjmp: {
2094 // ldr.w r11, [$src, #0]
2095 // ldr.w sp, [$src, #8]
2096 // ldr.w pc, [$src, #4]
2098 Register SrcReg = MI->getOperand(0).getReg();
2100 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2101 .addReg(ARM::R11)
2102 .addReg(SrcReg)
2103 .addImm(0)
2104 // Predicate
2105 .addImm(ARMCC::AL)
2106 .addReg(0));
2107 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2108 .addReg(ARM::SP)
2109 .addReg(SrcReg)
2110 .addImm(8)
2111 // Predicate
2112 .addImm(ARMCC::AL)
2113 .addReg(0));
2114 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2115 .addReg(ARM::PC)
2116 .addReg(SrcReg)
2117 .addImm(4)
2118 // Predicate
2119 .addImm(ARMCC::AL)
2120 .addReg(0));
2121 return;
2123 case ARM::PATCHABLE_FUNCTION_ENTER:
2124 LowerPATCHABLE_FUNCTION_ENTER(*MI);
2125 return;
2126 case ARM::PATCHABLE_FUNCTION_EXIT:
2127 LowerPATCHABLE_FUNCTION_EXIT(*MI);
2128 return;
2129 case ARM::PATCHABLE_TAIL_CALL:
2130 LowerPATCHABLE_TAIL_CALL(*MI);
2131 return;
2134 MCInst TmpInst;
2135 LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
2137 EmitToStreamer(*OutStreamer, TmpInst);
2140 //===----------------------------------------------------------------------===//
2141 // Target Registry Stuff
2142 //===----------------------------------------------------------------------===//
2144 // Force static initialization.
2145 extern "C" void LLVMInitializeARMAsmPrinter() {
2146 RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget());
2147 RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget());
2148 RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget());
2149 RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget());