[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Target / ARM / ARMCallingConv.cpp
blob92ebc542b423b2c01fce6defccb4cb065c34f6e6
1 //=== ARMCallingConv.cpp - ARM Custom CC Routines ---------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the custom routines for the ARM Calling Convention that
10 // aren't done by tablegen, and includes the table generated implementations.
12 //===----------------------------------------------------------------------===//
14 #include "ARM.h"
15 #include "ARMCallingConv.h"
16 #include "ARMSubtarget.h"
17 #include "ARMRegisterInfo.h"
18 using namespace llvm;
20 // APCS f64 is in register pairs, possibly split to stack
21 static bool f64AssignAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
22 CCValAssign::LocInfo &LocInfo,
23 CCState &State, bool CanFail) {
24 static const MCPhysReg RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
26 // Try to get the first register.
27 if (unsigned Reg = State.AllocateReg(RegList))
28 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
29 else {
30 // For the 2nd half of a v2f64, do not fail.
31 if (CanFail)
32 return false;
34 // Put the whole thing on the stack.
35 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
36 State.AllocateStack(8, 4),
37 LocVT, LocInfo));
38 return true;
41 // Try to get the second register.
42 if (unsigned Reg = State.AllocateReg(RegList))
43 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
44 else
45 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
46 State.AllocateStack(4, 4),
47 LocVT, LocInfo));
48 return true;
51 static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
52 CCValAssign::LocInfo &LocInfo,
53 ISD::ArgFlagsTy &ArgFlags,
54 CCState &State) {
55 if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
56 return false;
57 if (LocVT == MVT::v2f64 &&
58 !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
59 return false;
60 return true; // we handled it
63 // AAPCS f64 is in aligned register pairs
64 static bool f64AssignAAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
65 CCValAssign::LocInfo &LocInfo,
66 CCState &State, bool CanFail) {
67 static const MCPhysReg HiRegList[] = { ARM::R0, ARM::R2 };
68 static const MCPhysReg LoRegList[] = { ARM::R1, ARM::R3 };
69 static const MCPhysReg ShadowRegList[] = { ARM::R0, ARM::R1 };
70 static const MCPhysReg GPRArgRegs[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
72 unsigned Reg = State.AllocateReg(HiRegList, ShadowRegList);
73 if (Reg == 0) {
75 // If we had R3 unallocated only, now we still must to waste it.
76 Reg = State.AllocateReg(GPRArgRegs);
77 assert((!Reg || Reg == ARM::R3) && "Wrong GPRs usage for f64");
79 // For the 2nd half of a v2f64, do not just fail.
80 if (CanFail)
81 return false;
83 // Put the whole thing on the stack.
84 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
85 State.AllocateStack(8, 8),
86 LocVT, LocInfo));
87 return true;
90 unsigned i;
91 for (i = 0; i < 2; ++i)
92 if (HiRegList[i] == Reg)
93 break;
95 unsigned T = State.AllocateReg(LoRegList[i]);
96 (void)T;
97 assert(T == LoRegList[i] && "Could not allocate register");
99 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
100 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
101 LocVT, LocInfo));
102 return true;
105 static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
106 CCValAssign::LocInfo &LocInfo,
107 ISD::ArgFlagsTy &ArgFlags,
108 CCState &State) {
109 if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
110 return false;
111 if (LocVT == MVT::v2f64 &&
112 !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
113 return false;
114 return true; // we handled it
117 static bool f64RetAssign(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
118 CCValAssign::LocInfo &LocInfo, CCState &State) {
119 static const MCPhysReg HiRegList[] = { ARM::R0, ARM::R2 };
120 static const MCPhysReg LoRegList[] = { ARM::R1, ARM::R3 };
122 unsigned Reg = State.AllocateReg(HiRegList, LoRegList);
123 if (Reg == 0)
124 return false; // we didn't handle it
126 unsigned i;
127 for (i = 0; i < 2; ++i)
128 if (HiRegList[i] == Reg)
129 break;
131 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
132 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
133 LocVT, LocInfo));
134 return true;
137 static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
138 CCValAssign::LocInfo &LocInfo,
139 ISD::ArgFlagsTy &ArgFlags,
140 CCState &State) {
141 if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
142 return false;
143 if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
144 return false;
145 return true; // we handled it
148 static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
149 CCValAssign::LocInfo &LocInfo,
150 ISD::ArgFlagsTy &ArgFlags,
151 CCState &State) {
152 return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
153 State);
156 static const MCPhysReg RRegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
158 static const MCPhysReg SRegList[] = { ARM::S0, ARM::S1, ARM::S2, ARM::S3,
159 ARM::S4, ARM::S5, ARM::S6, ARM::S7,
160 ARM::S8, ARM::S9, ARM::S10, ARM::S11,
161 ARM::S12, ARM::S13, ARM::S14, ARM::S15 };
162 static const MCPhysReg DRegList[] = { ARM::D0, ARM::D1, ARM::D2, ARM::D3,
163 ARM::D4, ARM::D5, ARM::D6, ARM::D7 };
164 static const MCPhysReg QRegList[] = { ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3 };
167 // Allocate part of an AAPCS HFA or HVA. We assume that each member of the HA
168 // has InConsecutiveRegs set, and that the last member also has
169 // InConsecutiveRegsLast set. We must process all members of the HA before
170 // we can allocate it, as we need to know the total number of registers that
171 // will be needed in order to (attempt to) allocate a contiguous block.
172 static bool CC_ARM_AAPCS_Custom_Aggregate(unsigned &ValNo, MVT &ValVT,
173 MVT &LocVT,
174 CCValAssign::LocInfo &LocInfo,
175 ISD::ArgFlagsTy &ArgFlags,
176 CCState &State) {
177 SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs();
179 // AAPCS HFAs must have 1-4 elements, all of the same type
180 if (PendingMembers.size() > 0)
181 assert(PendingMembers[0].getLocVT() == LocVT);
183 // Add the argument to the list to be allocated once we know the size of the
184 // aggregate. Store the type's required alignmnent as extra info for later: in
185 // the [N x i64] case all trace has been removed by the time we actually get
186 // to do allocation.
187 PendingMembers.push_back(CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo,
188 ArgFlags.getOrigAlign()));
190 if (!ArgFlags.isInConsecutiveRegsLast())
191 return true;
193 // Try to allocate a contiguous block of registers, each of the correct
194 // size to hold one member.
195 auto &DL = State.getMachineFunction().getDataLayout();
196 unsigned StackAlign = DL.getStackAlignment().value();
197 unsigned Align = std::min(PendingMembers[0].getExtraInfo(), StackAlign);
199 ArrayRef<MCPhysReg> RegList;
200 switch (LocVT.SimpleTy) {
201 case MVT::i32: {
202 RegList = RRegList;
203 unsigned RegIdx = State.getFirstUnallocated(RegList);
205 // First consume all registers that would give an unaligned object. Whether
206 // we go on stack or in regs, no-one will be using them in future.
207 unsigned RegAlign = alignTo(Align, 4) / 4;
208 while (RegIdx % RegAlign != 0 && RegIdx < RegList.size())
209 State.AllocateReg(RegList[RegIdx++]);
211 break;
213 case MVT::f16:
214 case MVT::f32:
215 RegList = SRegList;
216 break;
217 case MVT::v4f16:
218 case MVT::f64:
219 RegList = DRegList;
220 break;
221 case MVT::v8f16:
222 case MVT::v2f64:
223 RegList = QRegList;
224 break;
225 default:
226 llvm_unreachable("Unexpected member type for block aggregate");
227 break;
230 unsigned RegResult = State.AllocateRegBlock(RegList, PendingMembers.size());
231 if (RegResult) {
232 for (SmallVectorImpl<CCValAssign>::iterator It = PendingMembers.begin();
233 It != PendingMembers.end(); ++It) {
234 It->convertToReg(RegResult);
235 State.addLoc(*It);
236 ++RegResult;
238 PendingMembers.clear();
239 return true;
242 // Register allocation failed, we'll be needing the stack
243 unsigned Size = LocVT.getSizeInBits() / 8;
244 if (LocVT == MVT::i32 && State.getNextStackOffset() == 0) {
245 // If nothing else has used the stack until this point, a non-HFA aggregate
246 // can be split between regs and stack.
247 unsigned RegIdx = State.getFirstUnallocated(RegList);
248 for (auto &It : PendingMembers) {
249 if (RegIdx >= RegList.size())
250 It.convertToMem(State.AllocateStack(Size, Size));
251 else
252 It.convertToReg(State.AllocateReg(RegList[RegIdx++]));
254 State.addLoc(It);
256 PendingMembers.clear();
257 return true;
258 } else if (LocVT != MVT::i32)
259 RegList = SRegList;
261 // Mark all regs as unavailable (AAPCS rule C.2.vfp for VFP, C.6 for core)
262 for (auto Reg : RegList)
263 State.AllocateReg(Reg);
265 // After the first item has been allocated, the rest are packed as tightly as
266 // possible. (E.g. an incoming i64 would have starting Align of 8, but we'll
267 // be allocating a bunch of i32 slots).
268 unsigned RestAlign = std::min(Align, Size);
270 for (auto &It : PendingMembers) {
271 It.convertToMem(State.AllocateStack(Size, Align));
272 State.addLoc(It);
273 Align = RestAlign;
276 // All pending members have now been allocated
277 PendingMembers.clear();
279 // This will be allocated by the last member of the aggregate
280 return true;
283 // Include the table generated calling convention implementations.
284 #include "ARMGenCallingConv.inc"