1 //===----- ARMCodeGenPrepare.cpp ------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This pass inserts intrinsics to handle small types that would otherwise be
11 /// promoted during legalization. Here we can manually promote types or insert
12 /// intrinsics which can handle narrow types that aren't supported by the
15 //===----------------------------------------------------------------------===//
18 #include "ARMSubtarget.h"
19 #include "ARMTargetMachine.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/TargetPassConfig.h"
23 #include "llvm/IR/Attributes.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/IR/Verifier.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/CommandLine.h"
39 #define DEBUG_TYPE "arm-codegenprepare"
44 DisableCGP("arm-disable-cgp", cl::Hidden
, cl::init(true),
45 cl::desc("Disable ARM specific CodeGenPrepare pass"));
48 EnableDSP("arm-enable-scalar-dsp", cl::Hidden
, cl::init(false),
49 cl::desc("Use DSP instructions for scalar operations"));
52 EnableDSPWithImms("arm-enable-scalar-dsp-imms", cl::Hidden
, cl::init(false),
53 cl::desc("Use DSP instructions for scalar operations\
54 with immediate operands"));
56 // The goal of this pass is to enable more efficient code generation for
57 // operations on narrow types (i.e. types with < 32-bits) and this is a
58 // motivating IR code example:
60 // define hidden i32 @cmp(i8 zeroext) {
61 // %2 = add i8 %0, -49
62 // %3 = icmp ult i8 %2, 3
66 // The issue here is that i8 is type-legalized to i32 because i8 is not a
67 // legal type. Thus, arithmetic is done in integer-precision, but then the
68 // byte value is masked out as follows:
70 // t19: i32 = add t4, Constant:i32<-49>
71 // t24: i32 = and t19, Constant:i32<255>
73 // Consequently, we generate code like this:
79 // This shows that masking out the byte value results in generation of
80 // the UXTB instruction. This is not optimal as r0 already contains the byte
81 // value we need, and so instead we can just generate:
86 // We achieve this by type promoting the IR to i32 like so for this example:
88 // define i32 @cmp(i8 zeroext %c) {
89 // %0 = zext i8 %c to i32
90 // %c.off = add i32 %0, -49
91 // %1 = icmp ult i32 %c.off, 3
95 // For this to be valid and legal, we need to prove that the i32 add is
96 // producing the same value as the i8 addition, and that e.g. no overflow
99 // A brief sketch of the algorithm and some terminology.
100 // We pattern match interesting IR patterns:
101 // - which have "sources": instructions producing narrow values (i8, i16), and
102 // - they have "sinks": instructions consuming these narrow values.
104 // We collect all instruction connecting sources and sinks in a worklist, so
105 // that we can mutate these instruction and perform type promotion when it is
110 SmallPtrSet
<Value
*, 8> NewInsts
;
111 SmallPtrSet
<Instruction
*, 4> InstsToRemove
;
112 DenseMap
<Value
*, SmallVector
<Type
*, 4>> TruncTysMap
;
113 SmallPtrSet
<Value
*, 8> Promoted
;
116 // The type we promote to: always i32
117 IntegerType
*ExtTy
= nullptr;
118 // The type of the value that the search began from, either i8 or i16.
119 // This defines the max range of the values that we allow in the promoted
121 IntegerType
*OrigTy
= nullptr;
122 SetVector
<Value
*> *Visited
;
123 SmallPtrSetImpl
<Value
*> *Sources
;
124 SmallPtrSetImpl
<Instruction
*> *Sinks
;
125 SmallPtrSetImpl
<Instruction
*> *SafeToPromote
;
126 SmallPtrSetImpl
<Instruction
*> *SafeWrap
;
128 void ReplaceAllUsersOfWith(Value
*From
, Value
*To
);
129 void PrepareWrappingAdds(void);
130 void ExtendSources(void);
131 void ConvertTruncs(void);
132 void PromoteTree(void);
133 void TruncateSinks(void);
137 IRPromoter(Module
*M
) : M(M
), Ctx(M
->getContext()),
138 ExtTy(Type::getInt32Ty(Ctx
)) { }
141 void Mutate(Type
*OrigTy
,
142 SetVector
<Value
*> &Visited
,
143 SmallPtrSetImpl
<Value
*> &Sources
,
144 SmallPtrSetImpl
<Instruction
*> &Sinks
,
145 SmallPtrSetImpl
<Instruction
*> &SafeToPromote
,
146 SmallPtrSetImpl
<Instruction
*> &SafeWrap
);
149 class ARMCodeGenPrepare
: public FunctionPass
{
150 const ARMSubtarget
*ST
= nullptr;
151 IRPromoter
*Promoter
= nullptr;
152 std::set
<Value
*> AllVisited
;
153 SmallPtrSet
<Instruction
*, 8> SafeToPromote
;
154 SmallPtrSet
<Instruction
*, 4> SafeWrap
;
156 bool isSafeWrap(Instruction
*I
);
157 bool isSupportedValue(Value
*V
);
158 bool isLegalToPromote(Value
*V
);
159 bool TryToPromote(Value
*V
);
163 static unsigned TypeSize
;
164 Type
*OrigTy
= nullptr;
166 ARMCodeGenPrepare() : FunctionPass(ID
) {}
168 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
169 AU
.addRequired
<TargetPassConfig
>();
172 StringRef
getPassName() const override
{ return "ARM IR optimizations"; }
174 bool doInitialization(Module
&M
) override
;
175 bool runOnFunction(Function
&F
) override
;
176 bool doFinalization(Module
&M
) override
;
181 static bool GenerateSignBits(Value
*V
) {
182 if (!isa
<Instruction
>(V
))
185 unsigned Opc
= cast
<Instruction
>(V
)->getOpcode();
186 return Opc
== Instruction::AShr
|| Opc
== Instruction::SDiv
||
187 Opc
== Instruction::SRem
|| Opc
== Instruction::SExt
;
190 static bool EqualTypeSize(Value
*V
) {
191 return V
->getType()->getScalarSizeInBits() == ARMCodeGenPrepare::TypeSize
;
194 static bool LessOrEqualTypeSize(Value
*V
) {
195 return V
->getType()->getScalarSizeInBits() <= ARMCodeGenPrepare::TypeSize
;
198 static bool GreaterThanTypeSize(Value
*V
) {
199 return V
->getType()->getScalarSizeInBits() > ARMCodeGenPrepare::TypeSize
;
202 static bool LessThanTypeSize(Value
*V
) {
203 return V
->getType()->getScalarSizeInBits() < ARMCodeGenPrepare::TypeSize
;
206 /// Some instructions can use 8- and 16-bit operands, and we don't need to
207 /// promote anything larger. We disallow booleans to make life easier when
208 /// dealing with icmps but allow any other integer that is <= 16 bits. Void
209 /// types are accepted so we can handle switches.
210 static bool isSupportedType(Value
*V
) {
211 Type
*Ty
= V
->getType();
213 // Allow voids and pointers, these won't be promoted.
214 if (Ty
->isVoidTy() || Ty
->isPointerTy())
217 if (auto *Ld
= dyn_cast
<LoadInst
>(V
))
218 Ty
= cast
<PointerType
>(Ld
->getPointerOperandType())->getElementType();
220 if (!isa
<IntegerType
>(Ty
) ||
221 cast
<IntegerType
>(V
->getType())->getBitWidth() == 1)
224 return LessOrEqualTypeSize(V
);
227 /// Return true if the given value is a source in the use-def chain, producing
228 /// a narrow 'TypeSize' value. These values will be zext to start the promotion
229 /// of the tree to i32. We guarantee that these won't populate the upper bits
230 /// of the register. ZExt on the loads will be free, and the same for call
231 /// return values because we only accept ones that guarantee a zeroext ret val.
232 /// Many arguments will have the zeroext attribute too, so those would be free
234 static bool isSource(Value
*V
) {
235 if (!isa
<IntegerType
>(V
->getType()))
238 // TODO Allow zext to be sources.
239 if (isa
<Argument
>(V
))
241 else if (isa
<LoadInst
>(V
))
243 else if (isa
<BitCastInst
>(V
))
245 else if (auto *Call
= dyn_cast
<CallInst
>(V
))
246 return Call
->hasRetAttr(Attribute::AttrKind::ZExt
);
247 else if (auto *Trunc
= dyn_cast
<TruncInst
>(V
))
248 return EqualTypeSize(Trunc
);
252 /// Return true if V will require any promoted values to be truncated for the
253 /// the IR to remain valid. We can't mutate the value type of these
255 static bool isSink(Value
*V
) {
256 // TODO The truncate also isn't actually necessary because we would already
257 // proved that the data value is kept within the range of the original data
261 // - points where the value in the register is being observed, such as an
262 // icmp, switch or store.
263 // - points where value types have to match, such as calls and returns.
264 // - zext are included to ease the transformation and are generally removed
266 if (auto *Store
= dyn_cast
<StoreInst
>(V
))
267 return LessOrEqualTypeSize(Store
->getValueOperand());
268 if (auto *Return
= dyn_cast
<ReturnInst
>(V
))
269 return LessOrEqualTypeSize(Return
->getReturnValue());
270 if (auto *ZExt
= dyn_cast
<ZExtInst
>(V
))
271 return GreaterThanTypeSize(ZExt
);
272 if (auto *Switch
= dyn_cast
<SwitchInst
>(V
))
273 return LessThanTypeSize(Switch
->getCondition());
274 if (auto *ICmp
= dyn_cast
<ICmpInst
>(V
))
275 return ICmp
->isSigned() || LessThanTypeSize(ICmp
->getOperand(0));
277 return isa
<CallInst
>(V
);
280 /// Return whether this instruction can safely wrap.
281 bool ARMCodeGenPrepare::isSafeWrap(Instruction
*I
) {
282 // We can support a, potentially, wrapping instruction (I) if:
283 // - It is only used by an unsigned icmp.
284 // - The icmp uses a constant.
285 // - The wrapping value (I) is decreasing, i.e would underflow - wrapping
286 // around zero to become a larger number than before.
287 // - The wrapping instruction (I) also uses a constant.
289 // We can then use the two constants to calculate whether the result would
290 // wrap in respect to itself in the original bitwidth. If it doesn't wrap,
291 // just underflows the range, the icmp would give the same result whether the
292 // result has been truncated or not. We calculate this by:
293 // - Zero extending both constants, if needed, to 32-bits.
294 // - Take the absolute value of I's constant, adding this to the icmp const.
295 // - Check that this value is not out of range for small type. If it is, it
296 // means that it has underflowed enough to wrap around the icmp constant.
300 // %sub = sub i8 %a, 2
301 // %cmp = icmp ule i8 %sub, 254
303 // If %a = 0, %sub = -2 == FE == 254
304 // But if this is evalulated as a i32
305 // %sub = -2 == FF FF FF FE == 4294967294
306 // So the unsigned compares (i8 and i32) would not yield the same result.
308 // Another way to look at it is:
312 // And we can't represent 256 in the i8 format, so we don't support it.
317 // %cmp = icmp ule i8 %sub, 254
319 // If %a = 0, %sub = -1 == FF == 255
321 // %sub = -1 == FF FF FF FF == 4294967295
323 // In this case, the unsigned compare results would be the same and this
324 // would also be true for ult, uge and ugt:
325 // - (255 < 254) == (0xFFFFFFFF < 254) == false
326 // - (255 <= 254) == (0xFFFFFFFF <= 254) == false
327 // - (255 > 254) == (0xFFFFFFFF > 254) == true
328 // - (255 >= 254) == (0xFFFFFFFF >= 254) == true
330 // To demonstrate why we can't handle increasing values:
332 // %add = add i8 %a, 2
333 // %cmp = icmp ult i8 %add, 127
335 // If %a = 254, %add = 256 == (i8 1)
339 // (1 < 127) != (256 < 127)
341 unsigned Opc
= I
->getOpcode();
342 if (Opc
!= Instruction::Add
&& Opc
!= Instruction::Sub
)
345 if (!I
->hasOneUse() ||
346 !isa
<ICmpInst
>(*I
->user_begin()) ||
347 !isa
<ConstantInt
>(I
->getOperand(1)))
350 ConstantInt
*OverflowConst
= cast
<ConstantInt
>(I
->getOperand(1));
351 bool NegImm
= OverflowConst
->isNegative();
352 bool IsDecreasing
= ((Opc
== Instruction::Sub
) && !NegImm
) ||
353 ((Opc
== Instruction::Add
) && NegImm
);
357 // Don't support an icmp that deals with sign bits.
358 auto *CI
= cast
<ICmpInst
>(*I
->user_begin());
359 if (CI
->isSigned() || CI
->isEquality())
362 ConstantInt
*ICmpConst
= nullptr;
363 if (auto *Const
= dyn_cast
<ConstantInt
>(CI
->getOperand(0)))
365 else if (auto *Const
= dyn_cast
<ConstantInt
>(CI
->getOperand(1)))
370 // Now check that the result can't wrap on itself.
371 APInt Total
= ICmpConst
->getValue().getBitWidth() < 32 ?
372 ICmpConst
->getValue().zext(32) : ICmpConst
->getValue();
374 Total
+= OverflowConst
->getValue().getBitWidth() < 32 ?
375 OverflowConst
->getValue().abs().zext(32) : OverflowConst
->getValue().abs();
377 APInt Max
= APInt::getAllOnesValue(ARMCodeGenPrepare::TypeSize
);
379 if (Total
.getBitWidth() > Max
.getBitWidth()) {
380 if (Total
.ugt(Max
.zext(Total
.getBitWidth())))
382 } else if (Max
.getBitWidth() > Total
.getBitWidth()) {
383 if (Total
.zext(Max
.getBitWidth()).ugt(Max
))
385 } else if (Total
.ugt(Max
))
388 LLVM_DEBUG(dbgs() << "ARM CGP: Allowing safe overflow for " << *I
<< "\n");
393 static bool shouldPromote(Value
*V
) {
394 if (!isa
<IntegerType
>(V
->getType()) || isSink(V
))
400 auto *I
= dyn_cast
<Instruction
>(V
);
404 if (isa
<ICmpInst
>(I
))
410 /// Return whether we can safely mutate V's type to ExtTy without having to be
411 /// concerned with zero extending or truncation.
412 static bool isPromotedResultSafe(Value
*V
) {
413 if (GenerateSignBits(V
))
416 if (!isa
<Instruction
>(V
))
419 if (!isa
<OverflowingBinaryOperator
>(V
))
422 return cast
<Instruction
>(V
)->hasNoUnsignedWrap();
425 /// Return the intrinsic for the instruction that can perform the same
426 /// operation but on a narrow type. This is using the parallel dsp intrinsics
427 /// on scalar values.
428 static Intrinsic::ID
getNarrowIntrinsic(Instruction
*I
) {
429 // Whether we use the signed or unsigned versions of these intrinsics
430 // doesn't matter because we're not using the GE bits that they set in
432 switch(I
->getOpcode()) {
435 case Instruction::Add
:
436 return ARMCodeGenPrepare::TypeSize
== 16 ? Intrinsic::arm_uadd16
:
437 Intrinsic::arm_uadd8
;
438 case Instruction::Sub
:
439 return ARMCodeGenPrepare::TypeSize
== 16 ? Intrinsic::arm_usub16
:
440 Intrinsic::arm_usub8
;
442 llvm_unreachable("unhandled opcode for narrow intrinsic");
445 void IRPromoter::ReplaceAllUsersOfWith(Value
*From
, Value
*To
) {
446 SmallVector
<Instruction
*, 4> Users
;
447 Instruction
*InstTo
= dyn_cast
<Instruction
>(To
);
448 bool ReplacedAll
= true;
450 LLVM_DEBUG(dbgs() << "ARM CGP: Replacing " << *From
<< " with " << *To
453 for (Use
&U
: From
->uses()) {
454 auto *User
= cast
<Instruction
>(U
.getUser());
455 if (InstTo
&& User
->isIdenticalTo(InstTo
)) {
459 Users
.push_back(User
);
462 for (auto *U
: Users
)
463 U
->replaceUsesOfWith(From
, To
);
466 if (auto *I
= dyn_cast
<Instruction
>(From
))
467 InstsToRemove
.insert(I
);
470 void IRPromoter::PrepareWrappingAdds() {
471 LLVM_DEBUG(dbgs() << "ARM CGP: Prepare underflowing adds.\n");
472 IRBuilder
<> Builder
{Ctx
};
474 // For adds that safely wrap and use a negative immediate as operand 1, we
475 // create an equivalent instruction using a positive immediate.
476 // That positive immediate can then be zext along with all the other
478 for (auto *I
: *SafeWrap
) {
479 if (I
->getOpcode() != Instruction::Add
)
482 LLVM_DEBUG(dbgs() << "ARM CGP: Adjusting " << *I
<< "\n");
483 assert((isa
<ConstantInt
>(I
->getOperand(1)) &&
484 cast
<ConstantInt
>(I
->getOperand(1))->isNegative()) &&
485 "Wrapping should have a negative immediate as the second operand");
487 auto Const
= cast
<ConstantInt
>(I
->getOperand(1));
488 auto *NewConst
= ConstantInt::get(Ctx
, Const
->getValue().abs());
489 Builder
.SetInsertPoint(I
);
490 Value
*NewVal
= Builder
.CreateSub(I
->getOperand(0), NewConst
);
491 if (auto *NewInst
= dyn_cast
<Instruction
>(NewVal
)) {
492 NewInst
->copyIRFlags(I
);
493 NewInsts
.insert(NewInst
);
495 InstsToRemove
.insert(I
);
496 I
->replaceAllUsesWith(NewVal
);
497 LLVM_DEBUG(dbgs() << "ARM CGP: New equivalent: " << *NewVal
<< "\n");
499 for (auto *I
: NewInsts
)
503 void IRPromoter::ExtendSources() {
504 IRBuilder
<> Builder
{Ctx
};
506 auto InsertZExt
= [&](Value
*V
, Instruction
*InsertPt
) {
507 assert(V
->getType() != ExtTy
&& "zext already extends to i32");
508 LLVM_DEBUG(dbgs() << "ARM CGP: Inserting ZExt for " << *V
<< "\n");
509 Builder
.SetInsertPoint(InsertPt
);
510 if (auto *I
= dyn_cast
<Instruction
>(V
))
511 Builder
.SetCurrentDebugLocation(I
->getDebugLoc());
513 Value
*ZExt
= Builder
.CreateZExt(V
, ExtTy
);
514 if (auto *I
= dyn_cast
<Instruction
>(ZExt
)) {
515 if (isa
<Argument
>(V
))
516 I
->moveBefore(InsertPt
);
518 I
->moveAfter(InsertPt
);
522 ReplaceAllUsersOfWith(V
, ZExt
);
525 // Now, insert extending instructions between the sources and their users.
526 LLVM_DEBUG(dbgs() << "ARM CGP: Promoting sources:\n");
527 for (auto V
: *Sources
) {
528 LLVM_DEBUG(dbgs() << " - " << *V
<< "\n");
529 if (auto *I
= dyn_cast
<Instruction
>(V
))
531 else if (auto *Arg
= dyn_cast
<Argument
>(V
)) {
532 BasicBlock
&BB
= Arg
->getParent()->front();
533 InsertZExt(Arg
, &*BB
.getFirstInsertionPt());
535 llvm_unreachable("unhandled source that needs extending");
541 void IRPromoter::PromoteTree() {
542 LLVM_DEBUG(dbgs() << "ARM CGP: Mutating the tree..\n");
544 IRBuilder
<> Builder
{Ctx
};
546 // Mutate the types of the instructions within the tree. Here we handle
547 // constant operands.
548 for (auto *V
: *Visited
) {
549 if (Sources
->count(V
))
552 auto *I
= cast
<Instruction
>(V
);
556 for (unsigned i
= 0, e
= I
->getNumOperands(); i
< e
; ++i
) {
557 Value
*Op
= I
->getOperand(i
);
558 if ((Op
->getType() == ExtTy
) || !isa
<IntegerType
>(Op
->getType()))
561 if (auto *Const
= dyn_cast
<ConstantInt
>(Op
)) {
562 Constant
*NewConst
= ConstantExpr::getZExt(Const
, ExtTy
);
563 I
->setOperand(i
, NewConst
);
564 } else if (isa
<UndefValue
>(Op
))
565 I
->setOperand(i
, UndefValue::get(ExtTy
));
568 if (shouldPromote(I
)) {
569 I
->mutateType(ExtTy
);
574 // Finally, any instructions that should be promoted but haven't yet been,
575 // need to be handled using intrinsics.
576 for (auto *V
: *Visited
) {
577 auto *I
= dyn_cast
<Instruction
>(V
);
581 if (Sources
->count(I
) || Sinks
->count(I
))
584 if (!shouldPromote(I
) || SafeToPromote
->count(I
) || NewInsts
.count(I
))
587 assert(EnableDSP
&& "DSP intrinisc insertion not enabled!");
589 // Replace unsafe instructions with appropriate intrinsic calls.
590 LLVM_DEBUG(dbgs() << "ARM CGP: Inserting DSP intrinsic for "
593 Intrinsic::getDeclaration(M
, getNarrowIntrinsic(I
));
594 Builder
.SetInsertPoint(I
);
595 Builder
.SetCurrentDebugLocation(I
->getDebugLoc());
596 Value
*Args
[] = { I
->getOperand(0), I
->getOperand(1) };
597 CallInst
*Call
= Builder
.CreateCall(DSPInst
, Args
);
598 NewInsts
.insert(Call
);
599 ReplaceAllUsersOfWith(I
, Call
);
603 void IRPromoter::TruncateSinks() {
604 LLVM_DEBUG(dbgs() << "ARM CGP: Fixing up the sinks:\n");
606 IRBuilder
<> Builder
{Ctx
};
608 auto InsertTrunc
= [&](Value
*V
, Type
*TruncTy
) -> Instruction
* {
609 if (!isa
<Instruction
>(V
) || !isa
<IntegerType
>(V
->getType()))
612 if ((!Promoted
.count(V
) && !NewInsts
.count(V
)) || Sources
->count(V
))
615 LLVM_DEBUG(dbgs() << "ARM CGP: Creating " << *TruncTy
<< " Trunc for "
617 Builder
.SetInsertPoint(cast
<Instruction
>(V
));
618 auto *Trunc
= dyn_cast
<Instruction
>(Builder
.CreateTrunc(V
, TruncTy
));
620 NewInsts
.insert(Trunc
);
624 // Fix up any stores or returns that use the results of the promoted
626 for (auto I
: *Sinks
) {
627 LLVM_DEBUG(dbgs() << "ARM CGP: For Sink: " << *I
<< "\n");
629 // Handle calls separately as we need to iterate over arg operands.
630 if (auto *Call
= dyn_cast
<CallInst
>(I
)) {
631 for (unsigned i
= 0; i
< Call
->getNumArgOperands(); ++i
) {
632 Value
*Arg
= Call
->getArgOperand(i
);
633 Type
*Ty
= TruncTysMap
[Call
][i
];
634 if (Instruction
*Trunc
= InsertTrunc(Arg
, Ty
)) {
635 Trunc
->moveBefore(Call
);
636 Call
->setArgOperand(i
, Trunc
);
642 // Special case switches because we need to truncate the condition.
643 if (auto *Switch
= dyn_cast
<SwitchInst
>(I
)) {
644 Type
*Ty
= TruncTysMap
[Switch
][0];
645 if (Instruction
*Trunc
= InsertTrunc(Switch
->getCondition(), Ty
)) {
646 Trunc
->moveBefore(Switch
);
647 Switch
->setCondition(Trunc
);
652 // Now handle the others.
653 for (unsigned i
= 0; i
< I
->getNumOperands(); ++i
) {
654 Type
*Ty
= TruncTysMap
[I
][i
];
655 if (Instruction
*Trunc
= InsertTrunc(I
->getOperand(i
), Ty
)) {
656 Trunc
->moveBefore(I
);
657 I
->setOperand(i
, Trunc
);
663 void IRPromoter::Cleanup() {
664 LLVM_DEBUG(dbgs() << "ARM CGP: Cleanup..\n");
665 // Some zexts will now have become redundant, along with their trunc
666 // operands, so remove them
667 for (auto V
: *Visited
) {
668 if (!isa
<ZExtInst
>(V
))
671 auto ZExt
= cast
<ZExtInst
>(V
);
672 if (ZExt
->getDestTy() != ExtTy
)
675 Value
*Src
= ZExt
->getOperand(0);
676 if (ZExt
->getSrcTy() == ZExt
->getDestTy()) {
677 LLVM_DEBUG(dbgs() << "ARM CGP: Removing unnecessary cast: " << *ZExt
679 ReplaceAllUsersOfWith(ZExt
, Src
);
683 // Unless they produce a value that is narrower than ExtTy, we can
684 // replace the result of the zext with the input of a newly inserted
686 if (NewInsts
.count(Src
) && isa
<TruncInst
>(Src
) &&
687 Src
->getType() == OrigTy
) {
688 auto *Trunc
= cast
<TruncInst
>(Src
);
689 assert(Trunc
->getOperand(0)->getType() == ExtTy
&&
690 "expected inserted trunc to be operating on i32");
691 ReplaceAllUsersOfWith(ZExt
, Trunc
->getOperand(0));
695 for (auto *I
: InstsToRemove
) {
696 LLVM_DEBUG(dbgs() << "ARM CGP: Removing " << *I
<< "\n");
697 I
->dropAllReferences();
698 I
->eraseFromParent();
701 InstsToRemove
.clear();
705 SafeToPromote
->clear();
709 void IRPromoter::ConvertTruncs() {
710 LLVM_DEBUG(dbgs() << "ARM CGP: Converting truncs..\n");
711 IRBuilder
<> Builder
{Ctx
};
713 for (auto *V
: *Visited
) {
714 if (!isa
<TruncInst
>(V
) || Sources
->count(V
))
717 auto *Trunc
= cast
<TruncInst
>(V
);
718 Builder
.SetInsertPoint(Trunc
);
719 IntegerType
*SrcTy
= cast
<IntegerType
>(Trunc
->getOperand(0)->getType());
720 IntegerType
*DestTy
= cast
<IntegerType
>(TruncTysMap
[Trunc
][0]);
722 unsigned NumBits
= DestTy
->getScalarSizeInBits();
724 ConstantInt::get(SrcTy
, APInt::getMaxValue(NumBits
).getZExtValue());
725 Value
*Masked
= Builder
.CreateAnd(Trunc
->getOperand(0), Mask
);
727 if (auto *I
= dyn_cast
<Instruction
>(Masked
))
730 ReplaceAllUsersOfWith(Trunc
, Masked
);
734 void IRPromoter::Mutate(Type
*OrigTy
,
735 SetVector
<Value
*> &Visited
,
736 SmallPtrSetImpl
<Value
*> &Sources
,
737 SmallPtrSetImpl
<Instruction
*> &Sinks
,
738 SmallPtrSetImpl
<Instruction
*> &SafeToPromote
,
739 SmallPtrSetImpl
<Instruction
*> &SafeWrap
) {
740 LLVM_DEBUG(dbgs() << "ARM CGP: Promoting use-def chains to from "
741 << ARMCodeGenPrepare::TypeSize
<< " to 32-bits\n");
743 assert(isa
<IntegerType
>(OrigTy
) && "expected integer type");
744 this->OrigTy
= cast
<IntegerType
>(OrigTy
);
745 assert(OrigTy
->getPrimitiveSizeInBits() < ExtTy
->getPrimitiveSizeInBits() &&
746 "original type not smaller than extended type");
748 this->Visited
= &Visited
;
749 this->Sources
= &Sources
;
750 this->Sinks
= &Sinks
;
751 this->SafeToPromote
= &SafeToPromote
;
752 this->SafeWrap
= &SafeWrap
;
754 // Cache original types of the values that will likely need truncating
755 for (auto *I
: Sinks
) {
756 if (auto *Call
= dyn_cast
<CallInst
>(I
)) {
757 for (unsigned i
= 0; i
< Call
->getNumArgOperands(); ++i
) {
758 Value
*Arg
= Call
->getArgOperand(i
);
759 TruncTysMap
[Call
].push_back(Arg
->getType());
761 } else if (auto *Switch
= dyn_cast
<SwitchInst
>(I
))
762 TruncTysMap
[I
].push_back(Switch
->getCondition()->getType());
764 for (unsigned i
= 0; i
< I
->getNumOperands(); ++i
)
765 TruncTysMap
[I
].push_back(I
->getOperand(i
)->getType());
768 for (auto *V
: Visited
) {
769 if (!isa
<TruncInst
>(V
) || Sources
.count(V
))
771 auto *Trunc
= cast
<TruncInst
>(V
);
772 TruncTysMap
[Trunc
].push_back(Trunc
->getDestTy());
775 // Convert adds using negative immediates to equivalent instructions that use
776 // positive constants.
777 PrepareWrappingAdds();
779 // Insert zext instructions between sources and their users.
782 // Promote visited instructions, mutating their types in place. Also insert
783 // DSP intrinsics, if enabled, for adds and subs which would be unsafe to
787 // Convert any truncs, that aren't sources, into AND masks.
790 // Insert trunc instructions for use by calls, stores etc...
793 // Finally, remove unecessary zexts and truncs, delete old instructions and
794 // clear the data structures.
797 LLVM_DEBUG(dbgs() << "ARM CGP: Mutation complete\n");
800 /// We accept most instructions, as well as Arguments and ConstantInsts. We
801 /// Disallow casts other than zext and truncs and only allow calls if their
802 /// return value is zeroext. We don't allow opcodes that can introduce sign
804 bool ARMCodeGenPrepare::isSupportedValue(Value
*V
) {
805 if (auto *I
= dyn_cast
<Instruction
>(V
)) {
806 switch (I
->getOpcode()) {
808 return isa
<BinaryOperator
>(I
) && isSupportedType(I
) &&
809 !GenerateSignBits(I
);
810 case Instruction::GetElementPtr
:
811 case Instruction::Store
:
812 case Instruction::Br
:
813 case Instruction::Switch
:
815 case Instruction::PHI
:
816 case Instruction::Select
:
817 case Instruction::Ret
:
818 case Instruction::Load
:
819 case Instruction::Trunc
:
820 case Instruction::BitCast
:
821 return isSupportedType(I
);
822 case Instruction::ZExt
:
823 return isSupportedType(I
->getOperand(0));
824 case Instruction::ICmp
:
825 // Now that we allow small types than TypeSize, only allow icmp of
826 // TypeSize because they will require a trunc to be legalised.
827 // TODO: Allow icmp of smaller types, and calculate at the end
828 // whether the transform would be beneficial.
829 if (isa
<PointerType
>(I
->getOperand(0)->getType()))
831 return EqualTypeSize(I
->getOperand(0));
832 case Instruction::Call
: {
833 // Special cases for calls as we need to check for zeroext
834 // TODO We should accept calls even if they don't have zeroext, as they
835 // can still be sinks.
836 auto *Call
= cast
<CallInst
>(I
);
837 return isSupportedType(Call
) &&
838 Call
->hasRetAttr(Attribute::AttrKind::ZExt
);
841 } else if (isa
<Constant
>(V
) && !isa
<ConstantExpr
>(V
)) {
842 return isSupportedType(V
);
843 } else if (isa
<Argument
>(V
))
844 return isSupportedType(V
);
846 return isa
<BasicBlock
>(V
);
849 /// Check that the type of V would be promoted and that the original type is
850 /// smaller than the targeted promoted type. Check that we're not trying to
851 /// promote something larger than our base 'TypeSize' type.
852 bool ARMCodeGenPrepare::isLegalToPromote(Value
*V
) {
854 auto *I
= dyn_cast
<Instruction
>(V
);
858 if (SafeToPromote
.count(I
))
861 if (isPromotedResultSafe(V
) || isSafeWrap(I
)) {
862 SafeToPromote
.insert(I
);
866 if (I
->getOpcode() != Instruction::Add
&& I
->getOpcode() != Instruction::Sub
)
869 // If promotion is not safe, can we use a DSP instruction to natively
870 // handle the narrow type?
871 if (!ST
->hasDSP() || !EnableDSP
|| !isSupportedType(I
))
874 if (ST
->isThumb() && !ST
->hasThumb2())
878 // Would it be profitable? For Thumb code, these parallel DSP instructions
879 // are only Thumb-2, so we wouldn't be able to dual issue on Cortex-M33. For
880 // Cortex-A, specifically Cortex-A72, the latency is double and throughput is
881 // halved. They also do not take immediates as operands.
882 for (auto &Op
: I
->operands()) {
883 if (isa
<Constant
>(Op
)) {
884 if (!EnableDSPWithImms
)
888 LLVM_DEBUG(dbgs() << "ARM CGP: Will use an intrinsic for: " << *I
<< "\n");
892 bool ARMCodeGenPrepare::TryToPromote(Value
*V
) {
893 OrigTy
= V
->getType();
894 TypeSize
= OrigTy
->getPrimitiveSizeInBits();
895 if (TypeSize
> 16 || TypeSize
< 8)
898 SafeToPromote
.clear();
901 if (!isSupportedValue(V
) || !shouldPromote(V
) || !isLegalToPromote(V
))
904 LLVM_DEBUG(dbgs() << "ARM CGP: TryToPromote: " << *V
<< ", TypeSize = "
905 << TypeSize
<< "\n");
907 SetVector
<Value
*> WorkList
;
908 SmallPtrSet
<Value
*, 8> Sources
;
909 SmallPtrSet
<Instruction
*, 4> Sinks
;
910 SetVector
<Value
*> CurrentVisited
;
913 // Return true if V was added to the worklist as a supported instruction,
914 // if it was already visited, or if we don't need to explore it (e.g.
915 // pointer values and GEPs), and false otherwise.
916 auto AddLegalInst
= [&](Value
*V
) {
917 if (CurrentVisited
.count(V
))
920 // Ignore GEPs because they don't need promoting and the constant indices
921 // will prevent the transformation.
922 if (isa
<GetElementPtrInst
>(V
))
925 if (!isSupportedValue(V
) || (shouldPromote(V
) && !isLegalToPromote(V
))) {
926 LLVM_DEBUG(dbgs() << "ARM CGP: Can't handle: " << *V
<< "\n");
934 // Iterate through, and add to, a tree of operands and users in the use-def.
935 while (!WorkList
.empty()) {
936 Value
*V
= WorkList
.back();
938 if (CurrentVisited
.count(V
))
941 // Ignore non-instructions, other than arguments.
942 if (!isa
<Instruction
>(V
) && !isSource(V
))
945 // If we've already visited this value from somewhere, bail now because
946 // the tree has already been explored.
947 // TODO: This could limit the transform, ie if we try to promote something
948 // from an i8 and fail first, before trying an i16.
949 if (AllVisited
.count(V
))
952 CurrentVisited
.insert(V
);
953 AllVisited
.insert(V
);
955 // Calls can be both sources and sinks.
957 Sinks
.insert(cast
<Instruction
>(V
));
962 if (!isSink(V
) && !isSource(V
)) {
963 if (auto *I
= dyn_cast
<Instruction
>(V
)) {
964 // Visit operands of any instruction visited.
965 for (auto &U
: I
->operands()) {
966 if (!AddLegalInst(U
))
972 // Don't visit users of a node which isn't going to be mutated unless its a
974 if (isSource(V
) || shouldPromote(V
)) {
975 for (Use
&U
: V
->uses()) {
976 if (!AddLegalInst(U
.getUser()))
982 LLVM_DEBUG(dbgs() << "ARM CGP: Visited nodes:\n";
983 for (auto *I
: CurrentVisited
)
986 unsigned ToPromote
= 0;
987 for (auto *V
: CurrentVisited
) {
988 if (Sources
.count(V
))
990 if (Sinks
.count(cast
<Instruction
>(V
)))
998 Promoter
->Mutate(OrigTy
, CurrentVisited
, Sources
, Sinks
, SafeToPromote
,
1003 bool ARMCodeGenPrepare::doInitialization(Module
&M
) {
1004 Promoter
= new IRPromoter(&M
);
1008 bool ARMCodeGenPrepare::runOnFunction(Function
&F
) {
1009 if (skipFunction(F
) || DisableCGP
)
1012 auto *TPC
= &getAnalysis
<TargetPassConfig
>();
1016 const TargetMachine
&TM
= TPC
->getTM
<TargetMachine
>();
1017 ST
= &TM
.getSubtarget
<ARMSubtarget
>(F
);
1018 bool MadeChange
= false;
1019 LLVM_DEBUG(dbgs() << "ARM CGP: Running on " << F
.getName() << "\n");
1021 // Search up from icmps to try to promote their operands.
1022 for (BasicBlock
&BB
: F
) {
1023 auto &Insts
= BB
.getInstList();
1024 for (auto &I
: Insts
) {
1025 if (AllVisited
.count(&I
))
1028 if (isa
<ICmpInst
>(I
)) {
1029 auto &CI
= cast
<ICmpInst
>(I
);
1031 // Skip signed or pointer compares
1032 if (CI
.isSigned() || !isa
<IntegerType
>(CI
.getOperand(0)->getType()))
1035 LLVM_DEBUG(dbgs() << "ARM CGP: Searching from: " << CI
<< "\n");
1037 for (auto &Op
: CI
.operands()) {
1038 if (auto *I
= dyn_cast
<Instruction
>(Op
))
1039 MadeChange
|= TryToPromote(I
);
1043 LLVM_DEBUG(if (verifyFunction(F
, &dbgs())) {
1045 report_fatal_error("Broken function after type promotion");
1049 LLVM_DEBUG(dbgs() << "After ARMCodeGenPrepare: " << F
<< "\n");
1054 bool ARMCodeGenPrepare::doFinalization(Module
&M
) {
1059 INITIALIZE_PASS_BEGIN(ARMCodeGenPrepare
, DEBUG_TYPE
,
1060 "ARM IR optimizations", false, false)
1061 INITIALIZE_PASS_END(ARMCodeGenPrepare
, DEBUG_TYPE
, "ARM IR optimizations",
1064 char ARMCodeGenPrepare::ID
= 0;
1065 unsigned ARMCodeGenPrepare::TypeSize
= 0;
1067 FunctionPass
*llvm::createARMCodeGenPreparePass() {
1068 return new ARMCodeGenPrepare();