[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Target / Hexagon / HexagonTargetTransformInfo.cpp
blobddbc5543348d56bd6fbace3dd0d1880843eb6513
1 //===- HexagonTargetTransformInfo.cpp - Hexagon specific TTI pass ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 /// \file
8 /// This file implements a TargetTransformInfo analysis pass specific to the
9 /// Hexagon target machine. It uses the target's detailed information to provide
10 /// more precise answers to certain TTI queries, while letting the target
11 /// independent and default TTI implementations handle the rest.
12 ///
13 //===----------------------------------------------------------------------===//
15 #include "HexagonTargetTransformInfo.h"
16 #include "HexagonSubtarget.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/CodeGen/ValueTypes.h"
19 #include "llvm/IR/InstrTypes.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/User.h"
22 #include "llvm/Support/Casting.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Transforms/Utils/UnrollLoop.h"
26 using namespace llvm;
28 #define DEBUG_TYPE "hexagontti"
30 static cl::opt<bool> HexagonAutoHVX("hexagon-autohvx", cl::init(false),
31 cl::Hidden, cl::desc("Enable loop vectorizer for HVX"));
33 static cl::opt<bool> EmitLookupTables("hexagon-emit-lookup-tables",
34 cl::init(true), cl::Hidden,
35 cl::desc("Control lookup table emission on Hexagon target"));
37 // Constant "cost factor" to make floating point operations more expensive
38 // in terms of vectorization cost. This isn't the best way, but it should
39 // do. Ultimately, the cost should use cycles.
40 static const unsigned FloatFactor = 4;
42 bool HexagonTTIImpl::useHVX() const {
43 return ST.useHVXOps() && HexagonAutoHVX;
46 bool HexagonTTIImpl::isTypeForHVX(Type *VecTy) const {
47 assert(VecTy->isVectorTy());
48 if (cast<VectorType>(VecTy)->isScalable())
49 return false;
50 // Avoid types like <2 x i32*>.
51 if (!cast<VectorType>(VecTy)->getElementType()->isIntegerTy())
52 return false;
53 EVT VecVT = EVT::getEVT(VecTy);
54 if (!VecVT.isSimple() || VecVT.getSizeInBits() <= 64)
55 return false;
56 if (ST.isHVXVectorType(VecVT.getSimpleVT()))
57 return true;
58 auto Action = TLI.getPreferredVectorAction(VecVT.getSimpleVT());
59 return Action == TargetLoweringBase::TypeWidenVector;
62 unsigned HexagonTTIImpl::getTypeNumElements(Type *Ty) const {
63 if (Ty->isVectorTy())
64 return Ty->getVectorNumElements();
65 assert((Ty->isIntegerTy() || Ty->isFloatingPointTy()) &&
66 "Expecting scalar type");
67 return 1;
70 TargetTransformInfo::PopcntSupportKind
71 HexagonTTIImpl::getPopcntSupport(unsigned IntTyWidthInBit) const {
72 // Return fast hardware support as every input < 64 bits will be promoted
73 // to 64 bits.
74 return TargetTransformInfo::PSK_FastHardware;
77 // The Hexagon target can unroll loops with run-time trip counts.
78 void HexagonTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
79 TTI::UnrollingPreferences &UP) {
80 UP.Runtime = UP.Partial = true;
81 // Only try to peel innermost loops with small runtime trip counts.
82 if (L && L->empty() && canPeel(L) &&
83 SE.getSmallConstantTripCount(L) == 0 &&
84 SE.getSmallConstantMaxTripCount(L) > 0 &&
85 SE.getSmallConstantMaxTripCount(L) <= 5) {
86 UP.PeelCount = 2;
90 bool HexagonTTIImpl::shouldFavorPostInc() const {
91 return true;
94 /// --- Vector TTI begin ---
96 unsigned HexagonTTIImpl::getNumberOfRegisters(bool Vector) const {
97 if (Vector)
98 return useHVX() ? 32 : 0;
99 return 32;
102 unsigned HexagonTTIImpl::getMaxInterleaveFactor(unsigned VF) {
103 return useHVX() ? 2 : 0;
106 unsigned HexagonTTIImpl::getRegisterBitWidth(bool Vector) const {
107 return Vector ? getMinVectorRegisterBitWidth() : 32;
110 unsigned HexagonTTIImpl::getMinVectorRegisterBitWidth() const {
111 return useHVX() ? ST.getVectorLength()*8 : 0;
114 unsigned HexagonTTIImpl::getMinimumVF(unsigned ElemWidth) const {
115 return (8 * ST.getVectorLength()) / ElemWidth;
118 unsigned HexagonTTIImpl::getScalarizationOverhead(Type *Ty, bool Insert,
119 bool Extract) {
120 return BaseT::getScalarizationOverhead(Ty, Insert, Extract);
123 unsigned HexagonTTIImpl::getOperandsScalarizationOverhead(
124 ArrayRef<const Value*> Args, unsigned VF) {
125 return BaseT::getOperandsScalarizationOverhead(Args, VF);
128 unsigned HexagonTTIImpl::getCallInstrCost(Function *F, Type *RetTy,
129 ArrayRef<Type*> Tys) {
130 return BaseT::getCallInstrCost(F, RetTy, Tys);
133 unsigned HexagonTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
134 ArrayRef<Value*> Args, FastMathFlags FMF, unsigned VF) {
135 return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
138 unsigned HexagonTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
139 ArrayRef<Type*> Tys, FastMathFlags FMF,
140 unsigned ScalarizationCostPassed) {
141 if (ID == Intrinsic::bswap) {
142 std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, RetTy);
143 return LT.first + 2;
145 return BaseT::getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
146 ScalarizationCostPassed);
149 unsigned HexagonTTIImpl::getAddressComputationCost(Type *Tp,
150 ScalarEvolution *SE, const SCEV *S) {
151 return 0;
154 unsigned HexagonTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
155 unsigned Alignment, unsigned AddressSpace, const Instruction *I) {
156 assert(Opcode == Instruction::Load || Opcode == Instruction::Store);
157 if (Opcode == Instruction::Store)
158 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
160 if (Src->isVectorTy()) {
161 VectorType *VecTy = cast<VectorType>(Src);
162 unsigned VecWidth = VecTy->getBitWidth();
163 if (useHVX() && isTypeForHVX(VecTy)) {
164 unsigned RegWidth = getRegisterBitWidth(true);
165 assert(RegWidth && "Non-zero vector register width expected");
166 // Cost of HVX loads.
167 if (VecWidth % RegWidth == 0)
168 return VecWidth / RegWidth;
169 // Cost of constructing HVX vector from scalar loads.
170 Alignment = std::min(Alignment, RegWidth / 8);
171 unsigned AlignWidth = 8 * std::max(1u, Alignment);
172 unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
173 return 3 * NumLoads;
176 // Non-HVX vectors.
177 // Add extra cost for floating point types.
178 unsigned Cost = VecTy->getElementType()->isFloatingPointTy() ? FloatFactor
179 : 1;
180 Alignment = std::min(Alignment, 8u);
181 unsigned AlignWidth = 8 * std::max(1u, Alignment);
182 unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
183 if (Alignment == 4 || Alignment == 8)
184 return Cost * NumLoads;
185 // Loads of less than 32 bits will need extra inserts to compose a vector.
186 unsigned LogA = Log2_32(Alignment);
187 return (3 - LogA) * Cost * NumLoads;
190 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
193 unsigned HexagonTTIImpl::getMaskedMemoryOpCost(unsigned Opcode,
194 Type *Src, unsigned Alignment, unsigned AddressSpace) {
195 return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
198 unsigned HexagonTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
199 int Index, Type *SubTp) {
200 return 1;
203 unsigned HexagonTTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
204 Value *Ptr, bool VariableMask, unsigned Alignment) {
205 return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
206 Alignment);
209 unsigned HexagonTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode,
210 Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
211 unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond,
212 bool UseMaskForGaps) {
213 if (Indices.size() != Factor || UseMaskForCond || UseMaskForGaps)
214 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
215 Alignment, AddressSpace,
216 UseMaskForCond, UseMaskForGaps);
217 return getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace, nullptr);
220 unsigned HexagonTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
221 Type *CondTy, const Instruction *I) {
222 if (ValTy->isVectorTy()) {
223 std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, ValTy);
224 if (Opcode == Instruction::FCmp)
225 return LT.first + FloatFactor * getTypeNumElements(ValTy);
227 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
230 unsigned HexagonTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
231 TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info,
232 TTI::OperandValueProperties Opd1PropInfo,
233 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value*> Args) {
234 if (Ty->isVectorTy()) {
235 std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, Ty);
236 if (LT.second.isFloatingPoint())
237 return LT.first + FloatFactor * getTypeNumElements(Ty);
239 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
240 Opd1PropInfo, Opd2PropInfo, Args);
243 unsigned HexagonTTIImpl::getCastInstrCost(unsigned Opcode, Type *DstTy,
244 Type *SrcTy, const Instruction *I) {
245 if (SrcTy->isFPOrFPVectorTy() || DstTy->isFPOrFPVectorTy()) {
246 unsigned SrcN = SrcTy->isFPOrFPVectorTy() ? getTypeNumElements(SrcTy) : 0;
247 unsigned DstN = DstTy->isFPOrFPVectorTy() ? getTypeNumElements(DstTy) : 0;
249 std::pair<int, MVT> SrcLT = TLI.getTypeLegalizationCost(DL, SrcTy);
250 std::pair<int, MVT> DstLT = TLI.getTypeLegalizationCost(DL, DstTy);
251 return std::max(SrcLT.first, DstLT.first) + FloatFactor * (SrcN + DstN);
253 return 1;
256 unsigned HexagonTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
257 unsigned Index) {
258 Type *ElemTy = Val->isVectorTy() ? cast<VectorType>(Val)->getElementType()
259 : Val;
260 if (Opcode == Instruction::InsertElement) {
261 // Need two rotations for non-zero index.
262 unsigned Cost = (Index != 0) ? 2 : 0;
263 if (ElemTy->isIntegerTy(32))
264 return Cost;
265 // If it's not a 32-bit value, there will need to be an extract.
266 return Cost + getVectorInstrCost(Instruction::ExtractElement, Val, Index);
269 if (Opcode == Instruction::ExtractElement)
270 return 2;
272 return 1;
275 /// --- Vector TTI end ---
277 unsigned HexagonTTIImpl::getPrefetchDistance() const {
278 return ST.getL1PrefetchDistance();
281 unsigned HexagonTTIImpl::getCacheLineSize() const {
282 return ST.getL1CacheLineSize();
285 int HexagonTTIImpl::getUserCost(const User *U,
286 ArrayRef<const Value *> Operands) {
287 auto isCastFoldedIntoLoad = [this](const CastInst *CI) -> bool {
288 if (!CI->isIntegerCast())
289 return false;
290 // Only extensions from an integer type shorter than 32-bit to i32
291 // can be folded into the load.
292 const DataLayout &DL = getDataLayout();
293 unsigned SBW = DL.getTypeSizeInBits(CI->getSrcTy());
294 unsigned DBW = DL.getTypeSizeInBits(CI->getDestTy());
295 if (DBW != 32 || SBW >= DBW)
296 return false;
298 const LoadInst *LI = dyn_cast<const LoadInst>(CI->getOperand(0));
299 // Technically, this code could allow multiple uses of the load, and
300 // check if all the uses are the same extension operation, but this
301 // should be sufficient for most cases.
302 return LI && LI->hasOneUse();
305 if (const CastInst *CI = dyn_cast<const CastInst>(U))
306 if (isCastFoldedIntoLoad(CI))
307 return TargetTransformInfo::TCC_Free;
308 return BaseT::getUserCost(U, Operands);
311 bool HexagonTTIImpl::shouldBuildLookupTables() const {
312 return EmitLookupTables;