[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Target / PowerPC / PPCVSXSwapRemoval.cpp
blobc3729da0b07b86c0b4523689e9dba3e0e83fc2e5
1 //===----------- PPCVSXSwapRemoval.cpp - Remove VSX LE Swaps -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===---------------------------------------------------------------------===//
8 //
9 // This pass analyzes vector computations and removes unnecessary
10 // doubleword swaps (xxswapd instructions). This pass is performed
11 // only for little-endian VSX code generation.
13 // For this specific case, loads and stores of v4i32, v4f32, v2i64,
14 // and v2f64 vectors are inefficient. These are implemented using
15 // the lxvd2x and stxvd2x instructions, which invert the order of
16 // doublewords in a vector register. Thus code generation inserts
17 // an xxswapd after each such load, and prior to each such store.
19 // The extra xxswapd instructions reduce performance. The purpose
20 // of this pass is to reduce the number of xxswapd instructions
21 // required for correctness.
23 // The primary insight is that much code that operates on vectors
24 // does not care about the relative order of elements in a register,
25 // so long as the correct memory order is preserved. If we have a
26 // computation where all input values are provided by lxvd2x/xxswapd,
27 // all outputs are stored using xxswapd/lxvd2x, and all intermediate
28 // computations are lane-insensitive (independent of element order),
29 // then all the xxswapd instructions associated with the loads and
30 // stores may be removed without changing observable semantics.
32 // This pass uses standard equivalence class infrastructure to create
33 // maximal webs of computations fitting the above description. Each
34 // such web is then optimized by removing its unnecessary xxswapd
35 // instructions.
37 // There are some lane-sensitive operations for which we can still
38 // permit the optimization, provided we modify those operations
39 // accordingly. Such operations are identified as using "special
40 // handling" within this module.
42 //===---------------------------------------------------------------------===//
44 #include "PPC.h"
45 #include "PPCInstrBuilder.h"
46 #include "PPCInstrInfo.h"
47 #include "PPCTargetMachine.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/EquivalenceClasses.h"
50 #include "llvm/CodeGen/MachineFunctionPass.h"
51 #include "llvm/CodeGen/MachineInstrBuilder.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/Config/llvm-config.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/Format.h"
56 #include "llvm/Support/raw_ostream.h"
58 using namespace llvm;
60 #define DEBUG_TYPE "ppc-vsx-swaps"
62 namespace {
64 // A PPCVSXSwapEntry is created for each machine instruction that
65 // is relevant to a vector computation.
66 struct PPCVSXSwapEntry {
67 // Pointer to the instruction.
68 MachineInstr *VSEMI;
70 // Unique ID (position in the swap vector).
71 int VSEId;
73 // Attributes of this node.
74 unsigned int IsLoad : 1;
75 unsigned int IsStore : 1;
76 unsigned int IsSwap : 1;
77 unsigned int MentionsPhysVR : 1;
78 unsigned int IsSwappable : 1;
79 unsigned int MentionsPartialVR : 1;
80 unsigned int SpecialHandling : 3;
81 unsigned int WebRejected : 1;
82 unsigned int WillRemove : 1;
85 enum SHValues {
86 SH_NONE = 0,
87 SH_EXTRACT,
88 SH_INSERT,
89 SH_NOSWAP_LD,
90 SH_NOSWAP_ST,
91 SH_SPLAT,
92 SH_XXPERMDI,
93 SH_COPYWIDEN
96 struct PPCVSXSwapRemoval : public MachineFunctionPass {
98 static char ID;
99 const PPCInstrInfo *TII;
100 MachineFunction *MF;
101 MachineRegisterInfo *MRI;
103 // Swap entries are allocated in a vector for better performance.
104 std::vector<PPCVSXSwapEntry> SwapVector;
106 // A mapping is maintained between machine instructions and
107 // their swap entries. The key is the address of the MI.
108 DenseMap<MachineInstr*, int> SwapMap;
110 // Equivalence classes are used to gather webs of related computation.
111 // Swap entries are represented by their VSEId fields.
112 EquivalenceClasses<int> *EC;
114 PPCVSXSwapRemoval() : MachineFunctionPass(ID) {
115 initializePPCVSXSwapRemovalPass(*PassRegistry::getPassRegistry());
118 private:
119 // Initialize data structures.
120 void initialize(MachineFunction &MFParm);
122 // Walk the machine instructions to gather vector usage information.
123 // Return true iff vector mentions are present.
124 bool gatherVectorInstructions();
126 // Add an entry to the swap vector and swap map.
127 int addSwapEntry(MachineInstr *MI, PPCVSXSwapEntry &SwapEntry);
129 // Hunt backwards through COPY and SUBREG_TO_REG chains for a
130 // source register. VecIdx indicates the swap vector entry to
131 // mark as mentioning a physical register if the search leads
132 // to one.
133 unsigned lookThruCopyLike(unsigned SrcReg, unsigned VecIdx);
135 // Generate equivalence classes for related computations (webs).
136 void formWebs();
138 // Analyze webs and determine those that cannot be optimized.
139 void recordUnoptimizableWebs();
141 // Record which swap instructions can be safely removed.
142 void markSwapsForRemoval();
144 // Remove swaps and update other instructions requiring special
145 // handling. Return true iff any changes are made.
146 bool removeSwaps();
148 // Insert a swap instruction from SrcReg to DstReg at the given
149 // InsertPoint.
150 void insertSwap(MachineInstr *MI, MachineBasicBlock::iterator InsertPoint,
151 unsigned DstReg, unsigned SrcReg);
153 // Update instructions requiring special handling.
154 void handleSpecialSwappables(int EntryIdx);
156 // Dump a description of the entries in the swap vector.
157 void dumpSwapVector();
159 // Return true iff the given register is in the given class.
160 bool isRegInClass(unsigned Reg, const TargetRegisterClass *RC) {
161 if (Register::isVirtualRegister(Reg))
162 return RC->hasSubClassEq(MRI->getRegClass(Reg));
163 return RC->contains(Reg);
166 // Return true iff the given register is a full vector register.
167 bool isVecReg(unsigned Reg) {
168 return (isRegInClass(Reg, &PPC::VSRCRegClass) ||
169 isRegInClass(Reg, &PPC::VRRCRegClass));
172 // Return true iff the given register is a partial vector register.
173 bool isScalarVecReg(unsigned Reg) {
174 return (isRegInClass(Reg, &PPC::VSFRCRegClass) ||
175 isRegInClass(Reg, &PPC::VSSRCRegClass));
178 // Return true iff the given register mentions all or part of a
179 // vector register. Also sets Partial to true if the mention
180 // is for just the floating-point register overlap of the register.
181 bool isAnyVecReg(unsigned Reg, bool &Partial) {
182 if (isScalarVecReg(Reg))
183 Partial = true;
184 return isScalarVecReg(Reg) || isVecReg(Reg);
187 public:
188 // Main entry point for this pass.
189 bool runOnMachineFunction(MachineFunction &MF) override {
190 if (skipFunction(MF.getFunction()))
191 return false;
193 // If we don't have VSX on the subtarget, don't do anything.
194 // Also, on Power 9 the load and store ops preserve element order and so
195 // the swaps are not required.
196 const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
197 if (!STI.hasVSX() || !STI.needsSwapsForVSXMemOps())
198 return false;
200 bool Changed = false;
201 initialize(MF);
203 if (gatherVectorInstructions()) {
204 formWebs();
205 recordUnoptimizableWebs();
206 markSwapsForRemoval();
207 Changed = removeSwaps();
210 // FIXME: See the allocation of EC in initialize().
211 delete EC;
212 return Changed;
216 // Initialize data structures for this pass. In particular, clear the
217 // swap vector and allocate the equivalence class mapping before
218 // processing each function.
219 void PPCVSXSwapRemoval::initialize(MachineFunction &MFParm) {
220 MF = &MFParm;
221 MRI = &MF->getRegInfo();
222 TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
224 // An initial vector size of 256 appears to work well in practice.
225 // Small/medium functions with vector content tend not to incur a
226 // reallocation at this size. Three of the vector tests in
227 // projects/test-suite reallocate, which seems like a reasonable rate.
228 const int InitialVectorSize(256);
229 SwapVector.clear();
230 SwapVector.reserve(InitialVectorSize);
232 // FIXME: Currently we allocate EC each time because we don't have
233 // access to the set representation on which to call clear(). Should
234 // consider adding a clear() method to the EquivalenceClasses class.
235 EC = new EquivalenceClasses<int>;
238 // Create an entry in the swap vector for each instruction that mentions
239 // a full vector register, recording various characteristics of the
240 // instructions there.
241 bool PPCVSXSwapRemoval::gatherVectorInstructions() {
242 bool RelevantFunction = false;
244 for (MachineBasicBlock &MBB : *MF) {
245 for (MachineInstr &MI : MBB) {
247 if (MI.isDebugInstr())
248 continue;
250 bool RelevantInstr = false;
251 bool Partial = false;
253 for (const MachineOperand &MO : MI.operands()) {
254 if (!MO.isReg())
255 continue;
256 Register Reg = MO.getReg();
257 if (isAnyVecReg(Reg, Partial)) {
258 RelevantInstr = true;
259 break;
263 if (!RelevantInstr)
264 continue;
266 RelevantFunction = true;
268 // Create a SwapEntry initialized to zeros, then fill in the
269 // instruction and ID fields before pushing it to the back
270 // of the swap vector.
271 PPCVSXSwapEntry SwapEntry{};
272 int VecIdx = addSwapEntry(&MI, SwapEntry);
274 switch(MI.getOpcode()) {
275 default:
276 // Unless noted otherwise, an instruction is considered
277 // safe for the optimization. There are a large number of
278 // such true-SIMD instructions (all vector math, logical,
279 // select, compare, etc.). However, if the instruction
280 // mentions a partial vector register and does not have
281 // special handling defined, it is not swappable.
282 if (Partial)
283 SwapVector[VecIdx].MentionsPartialVR = 1;
284 else
285 SwapVector[VecIdx].IsSwappable = 1;
286 break;
287 case PPC::XXPERMDI: {
288 // This is a swap if it is of the form XXPERMDI t, s, s, 2.
289 // Unfortunately, MachineCSE ignores COPY and SUBREG_TO_REG, so we
290 // can also see XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), 2,
291 // for example. We have to look through chains of COPY and
292 // SUBREG_TO_REG to find the real source value for comparison.
293 // If the real source value is a physical register, then mark the
294 // XXPERMDI as mentioning a physical register.
295 int immed = MI.getOperand(3).getImm();
296 if (immed == 2) {
297 unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(),
298 VecIdx);
299 unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(),
300 VecIdx);
301 if (trueReg1 == trueReg2)
302 SwapVector[VecIdx].IsSwap = 1;
303 else {
304 // We can still handle these if the two registers are not
305 // identical, by adjusting the form of the XXPERMDI.
306 SwapVector[VecIdx].IsSwappable = 1;
307 SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
309 // This is a doubleword splat if it is of the form
310 // XXPERMDI t, s, s, 0 or XXPERMDI t, s, s, 3. As above we
311 // must look through chains of copy-likes to find the source
312 // register. We turn off the marking for mention of a physical
313 // register, because splatting it is safe; the optimization
314 // will not swap the value in the physical register. Whether
315 // or not the two input registers are identical, we can handle
316 // these by adjusting the form of the XXPERMDI.
317 } else if (immed == 0 || immed == 3) {
319 SwapVector[VecIdx].IsSwappable = 1;
320 SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
322 unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(),
323 VecIdx);
324 unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(),
325 VecIdx);
326 if (trueReg1 == trueReg2)
327 SwapVector[VecIdx].MentionsPhysVR = 0;
329 } else {
330 // We can still handle these by adjusting the form of the XXPERMDI.
331 SwapVector[VecIdx].IsSwappable = 1;
332 SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
334 break;
336 case PPC::LVX:
337 // Non-permuting loads are currently unsafe. We can use special
338 // handling for this in the future. By not marking these as
339 // IsSwap, we ensure computations containing them will be rejected
340 // for now.
341 SwapVector[VecIdx].IsLoad = 1;
342 break;
343 case PPC::LXVD2X:
344 case PPC::LXVW4X:
345 // Permuting loads are marked as both load and swap, and are
346 // safe for optimization.
347 SwapVector[VecIdx].IsLoad = 1;
348 SwapVector[VecIdx].IsSwap = 1;
349 break;
350 case PPC::LXSDX:
351 case PPC::LXSSPX:
352 case PPC::XFLOADf64:
353 case PPC::XFLOADf32:
354 // A load of a floating-point value into the high-order half of
355 // a vector register is safe, provided that we introduce a swap
356 // following the load, which will be done by the SUBREG_TO_REG
357 // support. So just mark these as safe.
358 SwapVector[VecIdx].IsLoad = 1;
359 SwapVector[VecIdx].IsSwappable = 1;
360 break;
361 case PPC::STVX:
362 // Non-permuting stores are currently unsafe. We can use special
363 // handling for this in the future. By not marking these as
364 // IsSwap, we ensure computations containing them will be rejected
365 // for now.
366 SwapVector[VecIdx].IsStore = 1;
367 break;
368 case PPC::STXVD2X:
369 case PPC::STXVW4X:
370 // Permuting stores are marked as both store and swap, and are
371 // safe for optimization.
372 SwapVector[VecIdx].IsStore = 1;
373 SwapVector[VecIdx].IsSwap = 1;
374 break;
375 case PPC::COPY:
376 // These are fine provided they are moving between full vector
377 // register classes.
378 if (isVecReg(MI.getOperand(0).getReg()) &&
379 isVecReg(MI.getOperand(1).getReg()))
380 SwapVector[VecIdx].IsSwappable = 1;
381 // If we have a copy from one scalar floating-point register
382 // to another, we can accept this even if it is a physical
383 // register. The only way this gets involved is if it feeds
384 // a SUBREG_TO_REG, which is handled by introducing a swap.
385 else if (isScalarVecReg(MI.getOperand(0).getReg()) &&
386 isScalarVecReg(MI.getOperand(1).getReg()))
387 SwapVector[VecIdx].IsSwappable = 1;
388 break;
389 case PPC::SUBREG_TO_REG: {
390 // These are fine provided they are moving between full vector
391 // register classes. If they are moving from a scalar
392 // floating-point class to a vector class, we can handle those
393 // as well, provided we introduce a swap. It is generally the
394 // case that we will introduce fewer swaps than we remove, but
395 // (FIXME) a cost model could be used. However, introduced
396 // swaps could potentially be CSEd, so this is not trivial.
397 if (isVecReg(MI.getOperand(0).getReg()) &&
398 isVecReg(MI.getOperand(2).getReg()))
399 SwapVector[VecIdx].IsSwappable = 1;
400 else if (isVecReg(MI.getOperand(0).getReg()) &&
401 isScalarVecReg(MI.getOperand(2).getReg())) {
402 SwapVector[VecIdx].IsSwappable = 1;
403 SwapVector[VecIdx].SpecialHandling = SHValues::SH_COPYWIDEN;
405 break;
407 case PPC::VSPLTB:
408 case PPC::VSPLTH:
409 case PPC::VSPLTW:
410 case PPC::XXSPLTW:
411 // Splats are lane-sensitive, but we can use special handling
412 // to adjust the source lane for the splat.
413 SwapVector[VecIdx].IsSwappable = 1;
414 SwapVector[VecIdx].SpecialHandling = SHValues::SH_SPLAT;
415 break;
416 // The presence of the following lane-sensitive operations in a
417 // web will kill the optimization, at least for now. For these
418 // we do nothing, causing the optimization to fail.
419 // FIXME: Some of these could be permitted with special handling,
420 // and will be phased in as time permits.
421 // FIXME: There is no simple and maintainable way to express a set
422 // of opcodes having a common attribute in TableGen. Should this
423 // change, this is a prime candidate to use such a mechanism.
424 case PPC::INLINEASM:
425 case PPC::INLINEASM_BR:
426 case PPC::EXTRACT_SUBREG:
427 case PPC::INSERT_SUBREG:
428 case PPC::COPY_TO_REGCLASS:
429 case PPC::LVEBX:
430 case PPC::LVEHX:
431 case PPC::LVEWX:
432 case PPC::LVSL:
433 case PPC::LVSR:
434 case PPC::LVXL:
435 case PPC::STVEBX:
436 case PPC::STVEHX:
437 case PPC::STVEWX:
438 case PPC::STVXL:
439 // We can handle STXSDX and STXSSPX similarly to LXSDX and LXSSPX,
440 // by adding special handling for narrowing copies as well as
441 // widening ones. However, I've experimented with this, and in
442 // practice we currently do not appear to use STXSDX fed by
443 // a narrowing copy from a full vector register. Since I can't
444 // generate any useful test cases, I've left this alone for now.
445 case PPC::STXSDX:
446 case PPC::STXSSPX:
447 case PPC::VCIPHER:
448 case PPC::VCIPHERLAST:
449 case PPC::VMRGHB:
450 case PPC::VMRGHH:
451 case PPC::VMRGHW:
452 case PPC::VMRGLB:
453 case PPC::VMRGLH:
454 case PPC::VMRGLW:
455 case PPC::VMULESB:
456 case PPC::VMULESH:
457 case PPC::VMULESW:
458 case PPC::VMULEUB:
459 case PPC::VMULEUH:
460 case PPC::VMULEUW:
461 case PPC::VMULOSB:
462 case PPC::VMULOSH:
463 case PPC::VMULOSW:
464 case PPC::VMULOUB:
465 case PPC::VMULOUH:
466 case PPC::VMULOUW:
467 case PPC::VNCIPHER:
468 case PPC::VNCIPHERLAST:
469 case PPC::VPERM:
470 case PPC::VPERMXOR:
471 case PPC::VPKPX:
472 case PPC::VPKSHSS:
473 case PPC::VPKSHUS:
474 case PPC::VPKSDSS:
475 case PPC::VPKSDUS:
476 case PPC::VPKSWSS:
477 case PPC::VPKSWUS:
478 case PPC::VPKUDUM:
479 case PPC::VPKUDUS:
480 case PPC::VPKUHUM:
481 case PPC::VPKUHUS:
482 case PPC::VPKUWUM:
483 case PPC::VPKUWUS:
484 case PPC::VPMSUMB:
485 case PPC::VPMSUMD:
486 case PPC::VPMSUMH:
487 case PPC::VPMSUMW:
488 case PPC::VRLB:
489 case PPC::VRLD:
490 case PPC::VRLH:
491 case PPC::VRLW:
492 case PPC::VSBOX:
493 case PPC::VSHASIGMAD:
494 case PPC::VSHASIGMAW:
495 case PPC::VSL:
496 case PPC::VSLDOI:
497 case PPC::VSLO:
498 case PPC::VSR:
499 case PPC::VSRO:
500 case PPC::VSUM2SWS:
501 case PPC::VSUM4SBS:
502 case PPC::VSUM4SHS:
503 case PPC::VSUM4UBS:
504 case PPC::VSUMSWS:
505 case PPC::VUPKHPX:
506 case PPC::VUPKHSB:
507 case PPC::VUPKHSH:
508 case PPC::VUPKHSW:
509 case PPC::VUPKLPX:
510 case PPC::VUPKLSB:
511 case PPC::VUPKLSH:
512 case PPC::VUPKLSW:
513 case PPC::XXMRGHW:
514 case PPC::XXMRGLW:
515 // XXSLDWI could be replaced by a general permute with one of three
516 // permute control vectors (for shift values 1, 2, 3). However,
517 // VPERM has a more restrictive register class.
518 case PPC::XXSLDWI:
519 case PPC::XSCVDPSPN:
520 case PPC::XSCVSPDPN:
521 break;
526 if (RelevantFunction) {
527 LLVM_DEBUG(dbgs() << "Swap vector when first built\n\n");
528 LLVM_DEBUG(dumpSwapVector());
531 return RelevantFunction;
534 // Add an entry to the swap vector and swap map, and make a
535 // singleton equivalence class for the entry.
536 int PPCVSXSwapRemoval::addSwapEntry(MachineInstr *MI,
537 PPCVSXSwapEntry& SwapEntry) {
538 SwapEntry.VSEMI = MI;
539 SwapEntry.VSEId = SwapVector.size();
540 SwapVector.push_back(SwapEntry);
541 EC->insert(SwapEntry.VSEId);
542 SwapMap[MI] = SwapEntry.VSEId;
543 return SwapEntry.VSEId;
546 // This is used to find the "true" source register for an
547 // XXPERMDI instruction, since MachineCSE does not handle the
548 // "copy-like" operations (Copy and SubregToReg). Returns
549 // the original SrcReg unless it is the target of a copy-like
550 // operation, in which case we chain backwards through all
551 // such operations to the ultimate source register. If a
552 // physical register is encountered, we stop the search and
553 // flag the swap entry indicated by VecIdx (the original
554 // XXPERMDI) as mentioning a physical register.
555 unsigned PPCVSXSwapRemoval::lookThruCopyLike(unsigned SrcReg,
556 unsigned VecIdx) {
557 MachineInstr *MI = MRI->getVRegDef(SrcReg);
558 if (!MI->isCopyLike())
559 return SrcReg;
561 unsigned CopySrcReg;
562 if (MI->isCopy())
563 CopySrcReg = MI->getOperand(1).getReg();
564 else {
565 assert(MI->isSubregToReg() && "bad opcode for lookThruCopyLike");
566 CopySrcReg = MI->getOperand(2).getReg();
569 if (!Register::isVirtualRegister(CopySrcReg)) {
570 if (!isScalarVecReg(CopySrcReg))
571 SwapVector[VecIdx].MentionsPhysVR = 1;
572 return CopySrcReg;
575 return lookThruCopyLike(CopySrcReg, VecIdx);
578 // Generate equivalence classes for related computations (webs) by
579 // def-use relationships of virtual registers. Mention of a physical
580 // register terminates the generation of equivalence classes as this
581 // indicates a use of a parameter, definition of a return value, use
582 // of a value returned from a call, or definition of a parameter to a
583 // call. Computations with physical register mentions are flagged
584 // as such so their containing webs will not be optimized.
585 void PPCVSXSwapRemoval::formWebs() {
587 LLVM_DEBUG(dbgs() << "\n*** Forming webs for swap removal ***\n\n");
589 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
591 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
593 LLVM_DEBUG(dbgs() << "\n" << SwapVector[EntryIdx].VSEId << " ");
594 LLVM_DEBUG(MI->dump());
596 // It's sufficient to walk vector uses and join them to their unique
597 // definitions. In addition, check full vector register operands
598 // for physical regs. We exclude partial-vector register operands
599 // because we can handle them if copied to a full vector.
600 for (const MachineOperand &MO : MI->operands()) {
601 if (!MO.isReg())
602 continue;
604 Register Reg = MO.getReg();
605 if (!isVecReg(Reg) && !isScalarVecReg(Reg))
606 continue;
608 if (!Register::isVirtualRegister(Reg)) {
609 if (!(MI->isCopy() && isScalarVecReg(Reg)))
610 SwapVector[EntryIdx].MentionsPhysVR = 1;
611 continue;
614 if (!MO.isUse())
615 continue;
617 MachineInstr* DefMI = MRI->getVRegDef(Reg);
618 assert(SwapMap.find(DefMI) != SwapMap.end() &&
619 "Inconsistency: def of vector reg not found in swap map!");
620 int DefIdx = SwapMap[DefMI];
621 (void)EC->unionSets(SwapVector[DefIdx].VSEId,
622 SwapVector[EntryIdx].VSEId);
624 LLVM_DEBUG(dbgs() << format("Unioning %d with %d\n",
625 SwapVector[DefIdx].VSEId,
626 SwapVector[EntryIdx].VSEId));
627 LLVM_DEBUG(dbgs() << " Def: ");
628 LLVM_DEBUG(DefMI->dump());
633 // Walk the swap vector entries looking for conditions that prevent their
634 // containing computations from being optimized. When such conditions are
635 // found, mark the representative of the computation's equivalence class
636 // as rejected.
637 void PPCVSXSwapRemoval::recordUnoptimizableWebs() {
639 LLVM_DEBUG(dbgs() << "\n*** Rejecting webs for swap removal ***\n\n");
641 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
642 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
644 // If representative is already rejected, don't waste further time.
645 if (SwapVector[Repr].WebRejected)
646 continue;
648 // Reject webs containing mentions of physical or partial registers, or
649 // containing operations that we don't know how to handle in a lane-
650 // permuted region.
651 if (SwapVector[EntryIdx].MentionsPhysVR ||
652 SwapVector[EntryIdx].MentionsPartialVR ||
653 !(SwapVector[EntryIdx].IsSwappable || SwapVector[EntryIdx].IsSwap)) {
655 SwapVector[Repr].WebRejected = 1;
657 LLVM_DEBUG(
658 dbgs() << format("Web %d rejected for physreg, partial reg, or not "
659 "swap[pable]\n",
660 Repr));
661 LLVM_DEBUG(dbgs() << " in " << EntryIdx << ": ");
662 LLVM_DEBUG(SwapVector[EntryIdx].VSEMI->dump());
663 LLVM_DEBUG(dbgs() << "\n");
666 // Reject webs than contain swapping loads that feed something other
667 // than a swap instruction.
668 else if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) {
669 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
670 Register DefReg = MI->getOperand(0).getReg();
672 // We skip debug instructions in the analysis. (Note that debug
673 // location information is still maintained by this optimization
674 // because it remains on the LXVD2X and STXVD2X instructions after
675 // the XXPERMDIs are removed.)
676 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
677 int UseIdx = SwapMap[&UseMI];
679 if (!SwapVector[UseIdx].IsSwap || SwapVector[UseIdx].IsLoad ||
680 SwapVector[UseIdx].IsStore) {
682 SwapVector[Repr].WebRejected = 1;
684 LLVM_DEBUG(dbgs() << format(
685 "Web %d rejected for load not feeding swap\n", Repr));
686 LLVM_DEBUG(dbgs() << " def " << EntryIdx << ": ");
687 LLVM_DEBUG(MI->dump());
688 LLVM_DEBUG(dbgs() << " use " << UseIdx << ": ");
689 LLVM_DEBUG(UseMI.dump());
690 LLVM_DEBUG(dbgs() << "\n");
694 // Reject webs that contain swapping stores that are fed by something
695 // other than a swap instruction.
696 } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) {
697 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
698 Register UseReg = MI->getOperand(0).getReg();
699 MachineInstr *DefMI = MRI->getVRegDef(UseReg);
700 Register DefReg = DefMI->getOperand(0).getReg();
701 int DefIdx = SwapMap[DefMI];
703 if (!SwapVector[DefIdx].IsSwap || SwapVector[DefIdx].IsLoad ||
704 SwapVector[DefIdx].IsStore) {
706 SwapVector[Repr].WebRejected = 1;
708 LLVM_DEBUG(dbgs() << format(
709 "Web %d rejected for store not fed by swap\n", Repr));
710 LLVM_DEBUG(dbgs() << " def " << DefIdx << ": ");
711 LLVM_DEBUG(DefMI->dump());
712 LLVM_DEBUG(dbgs() << " use " << EntryIdx << ": ");
713 LLVM_DEBUG(MI->dump());
714 LLVM_DEBUG(dbgs() << "\n");
717 // Ensure all uses of the register defined by DefMI feed store
718 // instructions
719 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
720 int UseIdx = SwapMap[&UseMI];
722 if (SwapVector[UseIdx].VSEMI->getOpcode() != MI->getOpcode()) {
723 SwapVector[Repr].WebRejected = 1;
725 LLVM_DEBUG(
726 dbgs() << format(
727 "Web %d rejected for swap not feeding only stores\n", Repr));
728 LLVM_DEBUG(dbgs() << " def "
729 << " : ");
730 LLVM_DEBUG(DefMI->dump());
731 LLVM_DEBUG(dbgs() << " use " << UseIdx << ": ");
732 LLVM_DEBUG(SwapVector[UseIdx].VSEMI->dump());
733 LLVM_DEBUG(dbgs() << "\n");
739 LLVM_DEBUG(dbgs() << "Swap vector after web analysis:\n\n");
740 LLVM_DEBUG(dumpSwapVector());
743 // Walk the swap vector entries looking for swaps fed by permuting loads
744 // and swaps that feed permuting stores. If the containing computation
745 // has not been marked rejected, mark each such swap for removal.
746 // (Removal is delayed in case optimization has disturbed the pattern,
747 // such that multiple loads feed the same swap, etc.)
748 void PPCVSXSwapRemoval::markSwapsForRemoval() {
750 LLVM_DEBUG(dbgs() << "\n*** Marking swaps for removal ***\n\n");
752 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
754 if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) {
755 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
757 if (!SwapVector[Repr].WebRejected) {
758 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
759 Register DefReg = MI->getOperand(0).getReg();
761 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
762 int UseIdx = SwapMap[&UseMI];
763 SwapVector[UseIdx].WillRemove = 1;
765 LLVM_DEBUG(dbgs() << "Marking swap fed by load for removal: ");
766 LLVM_DEBUG(UseMI.dump());
770 } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) {
771 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
773 if (!SwapVector[Repr].WebRejected) {
774 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
775 Register UseReg = MI->getOperand(0).getReg();
776 MachineInstr *DefMI = MRI->getVRegDef(UseReg);
777 int DefIdx = SwapMap[DefMI];
778 SwapVector[DefIdx].WillRemove = 1;
780 LLVM_DEBUG(dbgs() << "Marking swap feeding store for removal: ");
781 LLVM_DEBUG(DefMI->dump());
784 } else if (SwapVector[EntryIdx].IsSwappable &&
785 SwapVector[EntryIdx].SpecialHandling != 0) {
786 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
788 if (!SwapVector[Repr].WebRejected)
789 handleSpecialSwappables(EntryIdx);
794 // Create an xxswapd instruction and insert it prior to the given point.
795 // MI is used to determine basic block and debug loc information.
796 // FIXME: When inserting a swap, we should check whether SrcReg is
797 // defined by another swap: SrcReg = XXPERMDI Reg, Reg, 2; If so,
798 // then instead we should generate a copy from Reg to DstReg.
799 void PPCVSXSwapRemoval::insertSwap(MachineInstr *MI,
800 MachineBasicBlock::iterator InsertPoint,
801 unsigned DstReg, unsigned SrcReg) {
802 BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
803 TII->get(PPC::XXPERMDI), DstReg)
804 .addReg(SrcReg)
805 .addReg(SrcReg)
806 .addImm(2);
809 // The identified swap entry requires special handling to allow its
810 // containing computation to be optimized. Perform that handling
811 // here.
812 // FIXME: Additional opportunities will be phased in with subsequent
813 // patches.
814 void PPCVSXSwapRemoval::handleSpecialSwappables(int EntryIdx) {
815 switch (SwapVector[EntryIdx].SpecialHandling) {
817 default:
818 llvm_unreachable("Unexpected special handling type");
820 // For splats based on an index into a vector, add N/2 modulo N
821 // to the index, where N is the number of vector elements.
822 case SHValues::SH_SPLAT: {
823 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
824 unsigned NElts;
826 LLVM_DEBUG(dbgs() << "Changing splat: ");
827 LLVM_DEBUG(MI->dump());
829 switch (MI->getOpcode()) {
830 default:
831 llvm_unreachable("Unexpected splat opcode");
832 case PPC::VSPLTB: NElts = 16; break;
833 case PPC::VSPLTH: NElts = 8; break;
834 case PPC::VSPLTW:
835 case PPC::XXSPLTW: NElts = 4; break;
838 unsigned EltNo;
839 if (MI->getOpcode() == PPC::XXSPLTW)
840 EltNo = MI->getOperand(2).getImm();
841 else
842 EltNo = MI->getOperand(1).getImm();
844 EltNo = (EltNo + NElts / 2) % NElts;
845 if (MI->getOpcode() == PPC::XXSPLTW)
846 MI->getOperand(2).setImm(EltNo);
847 else
848 MI->getOperand(1).setImm(EltNo);
850 LLVM_DEBUG(dbgs() << " Into: ");
851 LLVM_DEBUG(MI->dump());
852 break;
855 // For an XXPERMDI that isn't handled otherwise, we need to
856 // reverse the order of the operands. If the selector operand
857 // has a value of 0 or 3, we need to change it to 3 or 0,
858 // respectively. Otherwise we should leave it alone. (This
859 // is equivalent to reversing the two bits of the selector
860 // operand and complementing the result.)
861 case SHValues::SH_XXPERMDI: {
862 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
864 LLVM_DEBUG(dbgs() << "Changing XXPERMDI: ");
865 LLVM_DEBUG(MI->dump());
867 unsigned Selector = MI->getOperand(3).getImm();
868 if (Selector == 0 || Selector == 3)
869 Selector = 3 - Selector;
870 MI->getOperand(3).setImm(Selector);
872 Register Reg1 = MI->getOperand(1).getReg();
873 Register Reg2 = MI->getOperand(2).getReg();
874 MI->getOperand(1).setReg(Reg2);
875 MI->getOperand(2).setReg(Reg1);
877 // We also need to swap kill flag associated with the register.
878 bool IsKill1 = MI->getOperand(1).isKill();
879 bool IsKill2 = MI->getOperand(2).isKill();
880 MI->getOperand(1).setIsKill(IsKill2);
881 MI->getOperand(2).setIsKill(IsKill1);
883 LLVM_DEBUG(dbgs() << " Into: ");
884 LLVM_DEBUG(MI->dump());
885 break;
888 // For a copy from a scalar floating-point register to a vector
889 // register, removing swaps will leave the copied value in the
890 // wrong lane. Insert a swap following the copy to fix this.
891 case SHValues::SH_COPYWIDEN: {
892 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
894 LLVM_DEBUG(dbgs() << "Changing SUBREG_TO_REG: ");
895 LLVM_DEBUG(MI->dump());
897 Register DstReg = MI->getOperand(0).getReg();
898 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
899 Register NewVReg = MRI->createVirtualRegister(DstRC);
901 MI->getOperand(0).setReg(NewVReg);
902 LLVM_DEBUG(dbgs() << " Into: ");
903 LLVM_DEBUG(MI->dump());
905 auto InsertPoint = ++MachineBasicBlock::iterator(MI);
907 // Note that an XXPERMDI requires a VSRC, so if the SUBREG_TO_REG
908 // is copying to a VRRC, we need to be careful to avoid a register
909 // assignment problem. In this case we must copy from VRRC to VSRC
910 // prior to the swap, and from VSRC to VRRC following the swap.
911 // Coalescing will usually remove all this mess.
912 if (DstRC == &PPC::VRRCRegClass) {
913 Register VSRCTmp1 = MRI->createVirtualRegister(&PPC::VSRCRegClass);
914 Register VSRCTmp2 = MRI->createVirtualRegister(&PPC::VSRCRegClass);
916 BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
917 TII->get(PPC::COPY), VSRCTmp1)
918 .addReg(NewVReg);
919 LLVM_DEBUG(std::prev(InsertPoint)->dump());
921 insertSwap(MI, InsertPoint, VSRCTmp2, VSRCTmp1);
922 LLVM_DEBUG(std::prev(InsertPoint)->dump());
924 BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
925 TII->get(PPC::COPY), DstReg)
926 .addReg(VSRCTmp2);
927 LLVM_DEBUG(std::prev(InsertPoint)->dump());
929 } else {
930 insertSwap(MI, InsertPoint, DstReg, NewVReg);
931 LLVM_DEBUG(std::prev(InsertPoint)->dump());
933 break;
938 // Walk the swap vector and replace each entry marked for removal with
939 // a copy operation.
940 bool PPCVSXSwapRemoval::removeSwaps() {
942 LLVM_DEBUG(dbgs() << "\n*** Removing swaps ***\n\n");
944 bool Changed = false;
946 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
947 if (SwapVector[EntryIdx].WillRemove) {
948 Changed = true;
949 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
950 MachineBasicBlock *MBB = MI->getParent();
951 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(TargetOpcode::COPY),
952 MI->getOperand(0).getReg())
953 .add(MI->getOperand(1));
955 LLVM_DEBUG(dbgs() << format("Replaced %d with copy: ",
956 SwapVector[EntryIdx].VSEId));
957 LLVM_DEBUG(MI->dump());
959 MI->eraseFromParent();
963 return Changed;
966 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
967 // For debug purposes, dump the contents of the swap vector.
968 LLVM_DUMP_METHOD void PPCVSXSwapRemoval::dumpSwapVector() {
970 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
972 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
973 int ID = SwapVector[EntryIdx].VSEId;
975 dbgs() << format("%6d", ID);
976 dbgs() << format("%6d", EC->getLeaderValue(ID));
977 dbgs() << format(" %bb.%3d", MI->getParent()->getNumber());
978 dbgs() << format(" %14s ", TII->getName(MI->getOpcode()).str().c_str());
980 if (SwapVector[EntryIdx].IsLoad)
981 dbgs() << "load ";
982 if (SwapVector[EntryIdx].IsStore)
983 dbgs() << "store ";
984 if (SwapVector[EntryIdx].IsSwap)
985 dbgs() << "swap ";
986 if (SwapVector[EntryIdx].MentionsPhysVR)
987 dbgs() << "physreg ";
988 if (SwapVector[EntryIdx].MentionsPartialVR)
989 dbgs() << "partialreg ";
991 if (SwapVector[EntryIdx].IsSwappable) {
992 dbgs() << "swappable ";
993 switch(SwapVector[EntryIdx].SpecialHandling) {
994 default:
995 dbgs() << "special:**unknown**";
996 break;
997 case SH_NONE:
998 break;
999 case SH_EXTRACT:
1000 dbgs() << "special:extract ";
1001 break;
1002 case SH_INSERT:
1003 dbgs() << "special:insert ";
1004 break;
1005 case SH_NOSWAP_LD:
1006 dbgs() << "special:load ";
1007 break;
1008 case SH_NOSWAP_ST:
1009 dbgs() << "special:store ";
1010 break;
1011 case SH_SPLAT:
1012 dbgs() << "special:splat ";
1013 break;
1014 case SH_XXPERMDI:
1015 dbgs() << "special:xxpermdi ";
1016 break;
1017 case SH_COPYWIDEN:
1018 dbgs() << "special:copywiden ";
1019 break;
1023 if (SwapVector[EntryIdx].WebRejected)
1024 dbgs() << "rejected ";
1025 if (SwapVector[EntryIdx].WillRemove)
1026 dbgs() << "remove ";
1028 dbgs() << "\n";
1030 // For no-asserts builds.
1031 (void)MI;
1032 (void)ID;
1035 dbgs() << "\n";
1037 #endif
1039 } // end default namespace
1041 INITIALIZE_PASS_BEGIN(PPCVSXSwapRemoval, DEBUG_TYPE,
1042 "PowerPC VSX Swap Removal", false, false)
1043 INITIALIZE_PASS_END(PPCVSXSwapRemoval, DEBUG_TYPE,
1044 "PowerPC VSX Swap Removal", false, false)
1046 char PPCVSXSwapRemoval::ID = 0;
1047 FunctionPass*
1048 llvm::createPPCVSXSwapRemovalPass() { return new PPCVSXSwapRemoval(); }