[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Target / SystemZ / SystemZISelLowering.h
blob23cdcc72bc42f6ef93eea72ba6e0e9a7fc7dc7f8
1 //===-- SystemZISelLowering.h - SystemZ DAG lowering interface --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that SystemZ uses to lower LLVM code into a
10 // selection DAG.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
15 #define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
17 #include "SystemZ.h"
18 #include "SystemZInstrInfo.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetLowering.h"
23 namespace llvm {
24 namespace SystemZISD {
25 enum NodeType : unsigned {
26 FIRST_NUMBER = ISD::BUILTIN_OP_END,
28 // Return with a flag operand. Operand 0 is the chain operand.
29 RET_FLAG,
31 // Calls a function. Operand 0 is the chain operand and operand 1
32 // is the target address. The arguments start at operand 2.
33 // There is an optional glue operand at the end.
34 CALL,
35 SIBCALL,
37 // TLS calls. Like regular calls, except operand 1 is the TLS symbol.
38 // (The call target is implicitly __tls_get_offset.)
39 TLS_GDCALL,
40 TLS_LDCALL,
42 // Wraps a TargetGlobalAddress that should be loaded using PC-relative
43 // accesses (LARL). Operand 0 is the address.
44 PCREL_WRAPPER,
46 // Used in cases where an offset is applied to a TargetGlobalAddress.
47 // Operand 0 is the full TargetGlobalAddress and operand 1 is a
48 // PCREL_WRAPPER for an anchor point. This is used so that we can
49 // cheaply refer to either the full address or the anchor point
50 // as a register base.
51 PCREL_OFFSET,
53 // Integer absolute.
54 IABS,
56 // Integer comparisons. There are three operands: the two values
57 // to compare, and an integer of type SystemZICMP.
58 ICMP,
60 // Floating-point comparisons. The two operands are the values to compare.
61 FCMP,
63 // Test under mask. The first operand is ANDed with the second operand
64 // and the condition codes are set on the result. The third operand is
65 // a boolean that is true if the condition codes need to distinguish
66 // between CCMASK_TM_MIXED_MSB_0 and CCMASK_TM_MIXED_MSB_1 (which the
67 // register forms do but the memory forms don't).
68 TM,
70 // Branches if a condition is true. Operand 0 is the chain operand;
71 // operand 1 is the 4-bit condition-code mask, with bit N in
72 // big-endian order meaning "branch if CC=N"; operand 2 is the
73 // target block and operand 3 is the flag operand.
74 BR_CCMASK,
76 // Selects between operand 0 and operand 1. Operand 2 is the
77 // mask of condition-code values for which operand 0 should be
78 // chosen over operand 1; it has the same form as BR_CCMASK.
79 // Operand 3 is the flag operand.
80 SELECT_CCMASK,
82 // Evaluates to the gap between the stack pointer and the
83 // base of the dynamically-allocatable area.
84 ADJDYNALLOC,
86 // Count number of bits set in operand 0 per byte.
87 POPCNT,
89 // Wrappers around the ISD opcodes of the same name. The output is GR128.
90 // Input operands may be GR64 or GR32, depending on the instruction.
91 SMUL_LOHI,
92 UMUL_LOHI,
93 SDIVREM,
94 UDIVREM,
96 // Add/subtract with overflow/carry. These have the same operands as
97 // the corresponding standard operations, except with the carry flag
98 // replaced by a condition code value.
99 SADDO, SSUBO, UADDO, USUBO, ADDCARRY, SUBCARRY,
101 // Set the condition code from a boolean value in operand 0.
102 // Operand 1 is a mask of all condition-code values that may result of this
103 // operation, operand 2 is a mask of condition-code values that may result
104 // if the boolean is true.
105 // Note that this operation is always optimized away, we will never
106 // generate any code for it.
107 GET_CCMASK,
109 // Use a series of MVCs to copy bytes from one memory location to another.
110 // The operands are:
111 // - the target address
112 // - the source address
113 // - the constant length
115 // This isn't a memory opcode because we'd need to attach two
116 // MachineMemOperands rather than one.
117 MVC,
119 // Like MVC, but implemented as a loop that handles X*256 bytes
120 // followed by straight-line code to handle the rest (if any).
121 // The value of X is passed as an additional operand.
122 MVC_LOOP,
124 // Similar to MVC and MVC_LOOP, but for logic operations (AND, OR, XOR).
126 NC_LOOP,
128 OC_LOOP,
130 XC_LOOP,
132 // Use CLC to compare two blocks of memory, with the same comments
133 // as for MVC and MVC_LOOP.
134 CLC,
135 CLC_LOOP,
137 // Use an MVST-based sequence to implement stpcpy().
138 STPCPY,
140 // Use a CLST-based sequence to implement strcmp(). The two input operands
141 // are the addresses of the strings to compare.
142 STRCMP,
144 // Use an SRST-based sequence to search a block of memory. The first
145 // operand is the end address, the second is the start, and the third
146 // is the character to search for. CC is set to 1 on success and 2
147 // on failure.
148 SEARCH_STRING,
150 // Store the CC value in bits 29 and 28 of an integer.
151 IPM,
153 // Compiler barrier only; generate a no-op.
154 MEMBARRIER,
156 // Transaction begin. The first operand is the chain, the second
157 // the TDB pointer, and the third the immediate control field.
158 // Returns CC value and chain.
159 TBEGIN,
160 TBEGIN_NOFLOAT,
162 // Transaction end. Just the chain operand. Returns CC value and chain.
163 TEND,
165 // Create a vector constant by filling byte N of the result with bit
166 // 15-N of the single operand.
167 BYTE_MASK,
169 // Create a vector constant by replicating an element-sized RISBG-style mask.
170 // The first operand specifies the starting set bit and the second operand
171 // specifies the ending set bit. Both operands count from the MSB of the
172 // element.
173 ROTATE_MASK,
175 // Replicate a GPR scalar value into all elements of a vector.
176 REPLICATE,
178 // Create a vector from two i64 GPRs.
179 JOIN_DWORDS,
181 // Replicate one element of a vector into all elements. The first operand
182 // is the vector and the second is the index of the element to replicate.
183 SPLAT,
185 // Interleave elements from the high half of operand 0 and the high half
186 // of operand 1.
187 MERGE_HIGH,
189 // Likewise for the low halves.
190 MERGE_LOW,
192 // Concatenate the vectors in the first two operands, shift them left
193 // by the third operand, and take the first half of the result.
194 SHL_DOUBLE,
196 // Take one element of the first v2i64 operand and the one element of
197 // the second v2i64 operand and concatenate them to form a v2i64 result.
198 // The third operand is a 4-bit value of the form 0A0B, where A and B
199 // are the element selectors for the first operand and second operands
200 // respectively.
201 PERMUTE_DWORDS,
203 // Perform a general vector permute on vector operands 0 and 1.
204 // Each byte of operand 2 controls the corresponding byte of the result,
205 // in the same way as a byte-level VECTOR_SHUFFLE mask.
206 PERMUTE,
208 // Pack vector operands 0 and 1 into a single vector with half-sized elements.
209 PACK,
211 // Likewise, but saturate the result and set CC. PACKS_CC does signed
212 // saturation and PACKLS_CC does unsigned saturation.
213 PACKS_CC,
214 PACKLS_CC,
216 // Unpack the first half of vector operand 0 into double-sized elements.
217 // UNPACK_HIGH sign-extends and UNPACKL_HIGH zero-extends.
218 UNPACK_HIGH,
219 UNPACKL_HIGH,
221 // Likewise for the second half.
222 UNPACK_LOW,
223 UNPACKL_LOW,
225 // Shift each element of vector operand 0 by the number of bits specified
226 // by scalar operand 1.
227 VSHL_BY_SCALAR,
228 VSRL_BY_SCALAR,
229 VSRA_BY_SCALAR,
231 // For each element of the output type, sum across all sub-elements of
232 // operand 0 belonging to the corresponding element, and add in the
233 // rightmost sub-element of the corresponding element of operand 1.
234 VSUM,
236 // Compare integer vector operands 0 and 1 to produce the usual 0/-1
237 // vector result. VICMPE is for equality, VICMPH for "signed greater than"
238 // and VICMPHL for "unsigned greater than".
239 VICMPE,
240 VICMPH,
241 VICMPHL,
243 // Likewise, but also set the condition codes on the result.
244 VICMPES,
245 VICMPHS,
246 VICMPHLS,
248 // Compare floating-point vector operands 0 and 1 to preoduce the usual 0/-1
249 // vector result. VFCMPE is for "ordered and equal", VFCMPH for "ordered and
250 // greater than" and VFCMPHE for "ordered and greater than or equal to".
251 VFCMPE,
252 VFCMPH,
253 VFCMPHE,
255 // Likewise, but also set the condition codes on the result.
256 VFCMPES,
257 VFCMPHS,
258 VFCMPHES,
260 // Test floating-point data class for vectors.
261 VFTCI,
263 // Extend the even f32 elements of vector operand 0 to produce a vector
264 // of f64 elements.
265 VEXTEND,
267 // Round the f64 elements of vector operand 0 to f32s and store them in the
268 // even elements of the result.
269 VROUND,
271 // AND the two vector operands together and set CC based on the result.
272 VTM,
274 // String operations that set CC as a side-effect.
275 VFAE_CC,
276 VFAEZ_CC,
277 VFEE_CC,
278 VFEEZ_CC,
279 VFENE_CC,
280 VFENEZ_CC,
281 VISTR_CC,
282 VSTRC_CC,
283 VSTRCZ_CC,
284 VSTRS_CC,
285 VSTRSZ_CC,
287 // Test Data Class.
289 // Operand 0: the value to test
290 // Operand 1: the bit mask
291 TDC,
293 // Wrappers around the inner loop of an 8- or 16-bit ATOMIC_SWAP or
294 // ATOMIC_LOAD_<op>.
296 // Operand 0: the address of the containing 32-bit-aligned field
297 // Operand 1: the second operand of <op>, in the high bits of an i32
298 // for everything except ATOMIC_SWAPW
299 // Operand 2: how many bits to rotate the i32 left to bring the first
300 // operand into the high bits
301 // Operand 3: the negative of operand 2, for rotating the other way
302 // Operand 4: the width of the field in bits (8 or 16)
303 ATOMIC_SWAPW = ISD::FIRST_TARGET_MEMORY_OPCODE,
304 ATOMIC_LOADW_ADD,
305 ATOMIC_LOADW_SUB,
306 ATOMIC_LOADW_AND,
307 ATOMIC_LOADW_OR,
308 ATOMIC_LOADW_XOR,
309 ATOMIC_LOADW_NAND,
310 ATOMIC_LOADW_MIN,
311 ATOMIC_LOADW_MAX,
312 ATOMIC_LOADW_UMIN,
313 ATOMIC_LOADW_UMAX,
315 // A wrapper around the inner loop of an ATOMIC_CMP_SWAP.
317 // Operand 0: the address of the containing 32-bit-aligned field
318 // Operand 1: the compare value, in the low bits of an i32
319 // Operand 2: the swap value, in the low bits of an i32
320 // Operand 3: how many bits to rotate the i32 left to bring the first
321 // operand into the high bits
322 // Operand 4: the negative of operand 2, for rotating the other way
323 // Operand 5: the width of the field in bits (8 or 16)
324 ATOMIC_CMP_SWAPW,
326 // Atomic compare-and-swap returning CC value.
327 // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
328 ATOMIC_CMP_SWAP,
330 // 128-bit atomic load.
331 // Val, OUTCHAIN = ATOMIC_LOAD_128(INCHAIN, ptr)
332 ATOMIC_LOAD_128,
334 // 128-bit atomic store.
335 // OUTCHAIN = ATOMIC_STORE_128(INCHAIN, val, ptr)
336 ATOMIC_STORE_128,
338 // 128-bit atomic compare-and-swap.
339 // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
340 ATOMIC_CMP_SWAP_128,
342 // Byte swapping load/store. Same operands as regular load/store.
343 LRV, STRV,
345 // Element swapping load/store. Same operands as regular load/store.
346 VLER, VSTER,
348 // Prefetch from the second operand using the 4-bit control code in
349 // the first operand. The code is 1 for a load prefetch and 2 for
350 // a store prefetch.
351 PREFETCH
354 // Return true if OPCODE is some kind of PC-relative address.
355 inline bool isPCREL(unsigned Opcode) {
356 return Opcode == PCREL_WRAPPER || Opcode == PCREL_OFFSET;
358 } // end namespace SystemZISD
360 namespace SystemZICMP {
361 // Describes whether an integer comparison needs to be signed or unsigned,
362 // or whether either type is OK.
363 enum {
364 Any,
365 UnsignedOnly,
366 SignedOnly
368 } // end namespace SystemZICMP
370 class SystemZSubtarget;
371 class SystemZTargetMachine;
373 class SystemZTargetLowering : public TargetLowering {
374 public:
375 explicit SystemZTargetLowering(const TargetMachine &TM,
376 const SystemZSubtarget &STI);
378 // Override TargetLowering.
379 MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
380 return MVT::i32;
382 MVT getVectorIdxTy(const DataLayout &DL) const override {
383 // Only the lower 12 bits of an element index are used, so we don't
384 // want to clobber the upper 32 bits of a GPR unnecessarily.
385 return MVT::i32;
387 TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT)
388 const override {
389 // Widen subvectors to the full width rather than promoting integer
390 // elements. This is better because:
392 // (a) it means that we can handle the ABI for passing and returning
393 // sub-128 vectors without having to handle them as legal types.
395 // (b) we don't have instructions to extend on load and truncate on store,
396 // so promoting the integers is less efficient.
398 // (c) there are no multiplication instructions for the widest integer
399 // type (v2i64).
400 if (VT.getScalarSizeInBits() % 8 == 0)
401 return TypeWidenVector;
402 return TargetLoweringBase::getPreferredVectorAction(VT);
404 bool isCheapToSpeculateCtlz() const override { return true; }
405 EVT getSetCCResultType(const DataLayout &DL, LLVMContext &,
406 EVT) const override;
407 bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
408 bool isFPImmLegal(const APFloat &Imm, EVT VT,
409 bool ForCodeSize) const override;
410 bool isLegalICmpImmediate(int64_t Imm) const override;
411 bool isLegalAddImmediate(int64_t Imm) const override;
412 bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty,
413 unsigned AS,
414 Instruction *I = nullptr) const override;
415 bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS,
416 unsigned Align,
417 MachineMemOperand::Flags Flags,
418 bool *Fast) const override;
419 bool isTruncateFree(Type *, Type *) const override;
420 bool isTruncateFree(EVT, EVT) const override;
421 const char *getTargetNodeName(unsigned Opcode) const override;
422 std::pair<unsigned, const TargetRegisterClass *>
423 getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
424 StringRef Constraint, MVT VT) const override;
425 TargetLowering::ConstraintType
426 getConstraintType(StringRef Constraint) const override;
427 TargetLowering::ConstraintWeight
428 getSingleConstraintMatchWeight(AsmOperandInfo &info,
429 const char *constraint) const override;
430 void LowerAsmOperandForConstraint(SDValue Op,
431 std::string &Constraint,
432 std::vector<SDValue> &Ops,
433 SelectionDAG &DAG) const override;
435 unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
436 if (ConstraintCode.size() == 1) {
437 switch(ConstraintCode[0]) {
438 default:
439 break;
440 case 'o':
441 return InlineAsm::Constraint_o;
442 case 'Q':
443 return InlineAsm::Constraint_Q;
444 case 'R':
445 return InlineAsm::Constraint_R;
446 case 'S':
447 return InlineAsm::Constraint_S;
448 case 'T':
449 return InlineAsm::Constraint_T;
452 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
455 /// If a physical register, this returns the register that receives the
456 /// exception address on entry to an EH pad.
457 unsigned
458 getExceptionPointerRegister(const Constant *PersonalityFn) const override {
459 return SystemZ::R6D;
462 /// If a physical register, this returns the register that receives the
463 /// exception typeid on entry to a landing pad.
464 unsigned
465 getExceptionSelectorRegister(const Constant *PersonalityFn) const override {
466 return SystemZ::R7D;
469 /// Override to support customized stack guard loading.
470 bool useLoadStackGuardNode() const override {
471 return true;
473 void insertSSPDeclarations(Module &M) const override {
476 MachineBasicBlock *
477 EmitInstrWithCustomInserter(MachineInstr &MI,
478 MachineBasicBlock *BB) const override;
479 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
480 void LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results,
481 SelectionDAG &DAG) const override;
482 void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
483 SelectionDAG &DAG) const override;
484 const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
485 bool allowTruncateForTailCall(Type *, Type *) const override;
486 bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
487 SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv,
488 bool isVarArg,
489 const SmallVectorImpl<ISD::InputArg> &Ins,
490 const SDLoc &DL, SelectionDAG &DAG,
491 SmallVectorImpl<SDValue> &InVals) const override;
492 SDValue LowerCall(CallLoweringInfo &CLI,
493 SmallVectorImpl<SDValue> &InVals) const override;
495 bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
496 bool isVarArg,
497 const SmallVectorImpl<ISD::OutputArg> &Outs,
498 LLVMContext &Context) const override;
499 SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
500 const SmallVectorImpl<ISD::OutputArg> &Outs,
501 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
502 SelectionDAG &DAG) const override;
503 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
505 /// Determine which of the bits specified in Mask are known to be either
506 /// zero or one and return them in the KnownZero/KnownOne bitsets.
507 void computeKnownBitsForTargetNode(const SDValue Op,
508 KnownBits &Known,
509 const APInt &DemandedElts,
510 const SelectionDAG &DAG,
511 unsigned Depth = 0) const override;
513 /// Determine the number of bits in the operation that are sign bits.
514 unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
515 const APInt &DemandedElts,
516 const SelectionDAG &DAG,
517 unsigned Depth) const override;
519 ISD::NodeType getExtendForAtomicOps() const override {
520 return ISD::ANY_EXTEND;
523 bool supportSwiftError() const override {
524 return true;
527 private:
528 const SystemZSubtarget &Subtarget;
530 // Implement LowerOperation for individual opcodes.
531 SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
532 const SDLoc &DL, EVT VT,
533 SDValue CmpOp0, SDValue CmpOp1) const;
534 SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL,
535 EVT VT, ISD::CondCode CC,
536 SDValue CmpOp0, SDValue CmpOp1) const;
537 SDValue lowerSETCC(SDValue Op, SelectionDAG &DAG) const;
538 SDValue lowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
539 SDValue lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
540 SDValue lowerGlobalAddress(GlobalAddressSDNode *Node,
541 SelectionDAG &DAG) const;
542 SDValue lowerTLSGetOffset(GlobalAddressSDNode *Node,
543 SelectionDAG &DAG, unsigned Opcode,
544 SDValue GOTOffset) const;
545 SDValue lowerThreadPointer(const SDLoc &DL, SelectionDAG &DAG) const;
546 SDValue lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
547 SelectionDAG &DAG) const;
548 SDValue lowerBlockAddress(BlockAddressSDNode *Node,
549 SelectionDAG &DAG) const;
550 SDValue lowerJumpTable(JumpTableSDNode *JT, SelectionDAG &DAG) const;
551 SDValue lowerConstantPool(ConstantPoolSDNode *CP, SelectionDAG &DAG) const;
552 SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
553 SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
554 SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const;
555 SDValue lowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
556 SDValue lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
557 SDValue lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
558 SDValue lowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
559 SDValue lowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
560 SDValue lowerSDIVREM(SDValue Op, SelectionDAG &DAG) const;
561 SDValue lowerUDIVREM(SDValue Op, SelectionDAG &DAG) const;
562 SDValue lowerXALUO(SDValue Op, SelectionDAG &DAG) const;
563 SDValue lowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) const;
564 SDValue lowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
565 SDValue lowerOR(SDValue Op, SelectionDAG &DAG) const;
566 SDValue lowerCTPOP(SDValue Op, SelectionDAG &DAG) const;
567 SDValue lowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const;
568 SDValue lowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const;
569 SDValue lowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const;
570 SDValue lowerATOMIC_LOAD_OP(SDValue Op, SelectionDAG &DAG,
571 unsigned Opcode) const;
572 SDValue lowerATOMIC_LOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
573 SDValue lowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
574 SDValue lowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const;
575 SDValue lowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
576 SDValue lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const;
577 SDValue lowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const;
578 SDValue lowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
579 bool isVectorElementLoad(SDValue Op) const;
580 SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
581 SmallVectorImpl<SDValue> &Elems) const;
582 SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
583 SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
584 SDValue lowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
585 SDValue lowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
586 SDValue lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
587 SDValue lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
588 unsigned UnpackHigh) const;
589 SDValue lowerShift(SDValue Op, SelectionDAG &DAG, unsigned ByScalar) const;
591 bool canTreatAsByteVector(EVT VT) const;
592 SDValue combineExtract(const SDLoc &DL, EVT ElemVT, EVT VecVT, SDValue OrigOp,
593 unsigned Index, DAGCombinerInfo &DCI,
594 bool Force) const;
595 SDValue combineTruncateExtract(const SDLoc &DL, EVT TruncVT, SDValue Op,
596 DAGCombinerInfo &DCI) const;
597 SDValue combineZERO_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
598 SDValue combineSIGN_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
599 SDValue combineSIGN_EXTEND_INREG(SDNode *N, DAGCombinerInfo &DCI) const;
600 SDValue combineMERGE(SDNode *N, DAGCombinerInfo &DCI) const;
601 bool canLoadStoreByteSwapped(EVT VT) const;
602 SDValue combineLOAD(SDNode *N, DAGCombinerInfo &DCI) const;
603 SDValue combineSTORE(SDNode *N, DAGCombinerInfo &DCI) const;
604 SDValue combineVECTOR_SHUFFLE(SDNode *N, DAGCombinerInfo &DCI) const;
605 SDValue combineEXTRACT_VECTOR_ELT(SDNode *N, DAGCombinerInfo &DCI) const;
606 SDValue combineJOIN_DWORDS(SDNode *N, DAGCombinerInfo &DCI) const;
607 SDValue combineFP_ROUND(SDNode *N, DAGCombinerInfo &DCI) const;
608 SDValue combineFP_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
609 SDValue combineBSWAP(SDNode *N, DAGCombinerInfo &DCI) const;
610 SDValue combineBR_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
611 SDValue combineSELECT_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
612 SDValue combineGET_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
613 SDValue combineIntDIVREM(SDNode *N, DAGCombinerInfo &DCI) const;
615 SDValue unwrapAddress(SDValue N) const override;
617 // If the last instruction before MBBI in MBB was some form of COMPARE,
618 // try to replace it with a COMPARE AND BRANCH just before MBBI.
619 // CCMask and Target are the BRC-like operands for the branch.
620 // Return true if the change was made.
621 bool convertPrevCompareToBranch(MachineBasicBlock *MBB,
622 MachineBasicBlock::iterator MBBI,
623 unsigned CCMask,
624 MachineBasicBlock *Target) const;
626 // Implement EmitInstrWithCustomInserter for individual operation types.
627 MachineBasicBlock *emitSelect(MachineInstr &MI, MachineBasicBlock *BB) const;
628 MachineBasicBlock *emitCondStore(MachineInstr &MI, MachineBasicBlock *BB,
629 unsigned StoreOpcode, unsigned STOCOpcode,
630 bool Invert) const;
631 MachineBasicBlock *emitPair128(MachineInstr &MI,
632 MachineBasicBlock *MBB) const;
633 MachineBasicBlock *emitExt128(MachineInstr &MI, MachineBasicBlock *MBB,
634 bool ClearEven) const;
635 MachineBasicBlock *emitAtomicLoadBinary(MachineInstr &MI,
636 MachineBasicBlock *BB,
637 unsigned BinOpcode, unsigned BitSize,
638 bool Invert = false) const;
639 MachineBasicBlock *emitAtomicLoadMinMax(MachineInstr &MI,
640 MachineBasicBlock *MBB,
641 unsigned CompareOpcode,
642 unsigned KeepOldMask,
643 unsigned BitSize) const;
644 MachineBasicBlock *emitAtomicCmpSwapW(MachineInstr &MI,
645 MachineBasicBlock *BB) const;
646 MachineBasicBlock *emitMemMemWrapper(MachineInstr &MI, MachineBasicBlock *BB,
647 unsigned Opcode) const;
648 MachineBasicBlock *emitStringWrapper(MachineInstr &MI, MachineBasicBlock *BB,
649 unsigned Opcode) const;
650 MachineBasicBlock *emitTransactionBegin(MachineInstr &MI,
651 MachineBasicBlock *MBB,
652 unsigned Opcode, bool NoFloat) const;
653 MachineBasicBlock *emitLoadAndTestCmp0(MachineInstr &MI,
654 MachineBasicBlock *MBB,
655 unsigned Opcode) const;
657 MachineMemOperand::Flags getMMOFlags(const Instruction &I) const override;
658 const TargetRegisterClass *getRepRegClassFor(MVT VT) const override;
661 struct SystemZVectorConstantInfo {
662 private:
663 APInt IntBits; // The 128 bits as an integer.
664 APInt SplatBits; // Smallest splat value.
665 APInt SplatUndef; // Bits correspoding to undef operands of the BVN.
666 unsigned SplatBitSize = 0;
667 bool isFP128 = false;
669 public:
670 unsigned Opcode = 0;
671 SmallVector<unsigned, 2> OpVals;
672 MVT VecVT;
673 SystemZVectorConstantInfo(APFloat FPImm);
674 SystemZVectorConstantInfo(BuildVectorSDNode *BVN);
675 bool isVectorConstantLegal(const SystemZSubtarget &Subtarget);
678 } // end namespace llvm
680 #endif