[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Target / X86 / Utils / X86ShuffleDecode.cpp
blob48fd3e0b7ab9f4b439e1365facc7c3b29add3543
1 //===-- X86ShuffleDecode.cpp - X86 shuffle decode logic -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Define several functions to decode x86 specific shuffle semantics into a
10 // generic vector mask.
12 //===----------------------------------------------------------------------===//
14 #include "X86ShuffleDecode.h"
15 #include "llvm/ADT/ArrayRef.h"
17 //===----------------------------------------------------------------------===//
18 // Vector Mask Decoding
19 //===----------------------------------------------------------------------===//
21 namespace llvm {
23 void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
24 // Defaults the copying the dest value.
25 ShuffleMask.push_back(0);
26 ShuffleMask.push_back(1);
27 ShuffleMask.push_back(2);
28 ShuffleMask.push_back(3);
30 // Decode the immediate.
31 unsigned ZMask = Imm & 15;
32 unsigned CountD = (Imm >> 4) & 3;
33 unsigned CountS = (Imm >> 6) & 3;
35 // CountS selects which input element to use.
36 unsigned InVal = 4 + CountS;
37 // CountD specifies which element of destination to update.
38 ShuffleMask[CountD] = InVal;
39 // ZMask zaps values, potentially overriding the CountD elt.
40 if (ZMask & 1) ShuffleMask[0] = SM_SentinelZero;
41 if (ZMask & 2) ShuffleMask[1] = SM_SentinelZero;
42 if (ZMask & 4) ShuffleMask[2] = SM_SentinelZero;
43 if (ZMask & 8) ShuffleMask[3] = SM_SentinelZero;
46 void DecodeInsertElementMask(unsigned NumElts, unsigned Idx, unsigned Len,
47 SmallVectorImpl<int> &ShuffleMask) {
48 assert((Idx + Len) <= NumElts && "Insertion out of range");
50 for (unsigned i = 0; i != NumElts; ++i)
51 ShuffleMask.push_back(i);
52 for (unsigned i = 0; i != Len; ++i)
53 ShuffleMask[Idx + i] = NumElts + i;
56 // <3,1> or <6,7,2,3>
57 void DecodeMOVHLPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) {
58 for (unsigned i = NElts / 2; i != NElts; ++i)
59 ShuffleMask.push_back(NElts + i);
61 for (unsigned i = NElts / 2; i != NElts; ++i)
62 ShuffleMask.push_back(i);
65 // <0,2> or <0,1,4,5>
66 void DecodeMOVLHPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) {
67 for (unsigned i = 0; i != NElts / 2; ++i)
68 ShuffleMask.push_back(i);
70 for (unsigned i = 0; i != NElts / 2; ++i)
71 ShuffleMask.push_back(NElts + i);
74 void DecodeMOVSLDUPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) {
75 for (int i = 0, e = NumElts / 2; i < e; ++i) {
76 ShuffleMask.push_back(2 * i);
77 ShuffleMask.push_back(2 * i);
81 void DecodeMOVSHDUPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) {
82 for (int i = 0, e = NumElts / 2; i < e; ++i) {
83 ShuffleMask.push_back(2 * i + 1);
84 ShuffleMask.push_back(2 * i + 1);
88 void DecodeMOVDDUPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) {
89 const unsigned NumLaneElts = 2;
91 for (unsigned l = 0; l < NumElts; l += NumLaneElts)
92 for (unsigned i = 0; i < NumLaneElts; ++i)
93 ShuffleMask.push_back(l);
96 void DecodePSLLDQMask(unsigned NumElts, unsigned Imm,
97 SmallVectorImpl<int> &ShuffleMask) {
98 const unsigned NumLaneElts = 16;
100 for (unsigned l = 0; l < NumElts; l += NumLaneElts)
101 for (unsigned i = 0; i < NumLaneElts; ++i) {
102 int M = SM_SentinelZero;
103 if (i >= Imm) M = i - Imm + l;
104 ShuffleMask.push_back(M);
108 void DecodePSRLDQMask(unsigned NumElts, unsigned Imm,
109 SmallVectorImpl<int> &ShuffleMask) {
110 const unsigned NumLaneElts = 16;
112 for (unsigned l = 0; l < NumElts; l += NumLaneElts)
113 for (unsigned i = 0; i < NumLaneElts; ++i) {
114 unsigned Base = i + Imm;
115 int M = Base + l;
116 if (Base >= NumLaneElts) M = SM_SentinelZero;
117 ShuffleMask.push_back(M);
121 void DecodePALIGNRMask(unsigned NumElts, unsigned Imm,
122 SmallVectorImpl<int> &ShuffleMask) {
123 const unsigned NumLaneElts = 16;
125 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
126 for (unsigned i = 0; i != NumLaneElts; ++i) {
127 unsigned Base = i + Imm;
128 // if i+imm is out of this lane then we actually need the other source
129 if (Base >= NumLaneElts) Base += NumElts - NumLaneElts;
130 ShuffleMask.push_back(Base + l);
135 void DecodeVALIGNMask(unsigned NumElts, unsigned Imm,
136 SmallVectorImpl<int> &ShuffleMask) {
137 // Not all bits of the immediate are used so mask it.
138 assert(isPowerOf2_32(NumElts) && "NumElts should be power of 2");
139 Imm = Imm & (NumElts - 1);
140 for (unsigned i = 0; i != NumElts; ++i)
141 ShuffleMask.push_back(i + Imm);
144 /// DecodePSHUFMask - This decodes the shuffle masks for pshufw, pshufd, and vpermilp*.
145 /// VT indicates the type of the vector allowing it to handle different
146 /// datatypes and vector widths.
147 void DecodePSHUFMask(unsigned NumElts, unsigned ScalarBits, unsigned Imm,
148 SmallVectorImpl<int> &ShuffleMask) {
149 unsigned Size = NumElts * ScalarBits;
150 unsigned NumLanes = Size / 128;
151 if (NumLanes == 0) NumLanes = 1; // Handle MMX
152 unsigned NumLaneElts = NumElts / NumLanes;
154 uint32_t SplatImm = (Imm & 0xff) * 0x01010101;
155 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
156 for (unsigned i = 0; i != NumLaneElts; ++i) {
157 ShuffleMask.push_back(SplatImm % NumLaneElts + l);
158 SplatImm /= NumLaneElts;
163 void DecodePSHUFHWMask(unsigned NumElts, unsigned Imm,
164 SmallVectorImpl<int> &ShuffleMask) {
165 for (unsigned l = 0; l != NumElts; l += 8) {
166 unsigned NewImm = Imm;
167 for (unsigned i = 0, e = 4; i != e; ++i) {
168 ShuffleMask.push_back(l + i);
170 for (unsigned i = 4, e = 8; i != e; ++i) {
171 ShuffleMask.push_back(l + 4 + (NewImm & 3));
172 NewImm >>= 2;
177 void DecodePSHUFLWMask(unsigned NumElts, unsigned Imm,
178 SmallVectorImpl<int> &ShuffleMask) {
179 for (unsigned l = 0; l != NumElts; l += 8) {
180 unsigned NewImm = Imm;
181 for (unsigned i = 0, e = 4; i != e; ++i) {
182 ShuffleMask.push_back(l + (NewImm & 3));
183 NewImm >>= 2;
185 for (unsigned i = 4, e = 8; i != e; ++i) {
186 ShuffleMask.push_back(l + i);
191 void DecodePSWAPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) {
192 unsigned NumHalfElts = NumElts / 2;
194 for (unsigned l = 0; l != NumHalfElts; ++l)
195 ShuffleMask.push_back(l + NumHalfElts);
196 for (unsigned h = 0; h != NumHalfElts; ++h)
197 ShuffleMask.push_back(h);
200 /// DecodeSHUFPMask - This decodes the shuffle masks for shufp*. VT indicates
201 /// the type of the vector allowing it to handle different datatypes and vector
202 /// widths.
203 void DecodeSHUFPMask(unsigned NumElts, unsigned ScalarBits,
204 unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
205 unsigned NumLaneElts = 128 / ScalarBits;
207 unsigned NewImm = Imm;
208 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
209 // each half of a lane comes from different source
210 for (unsigned s = 0; s != NumElts * 2; s += NumElts) {
211 for (unsigned i = 0; i != NumLaneElts / 2; ++i) {
212 ShuffleMask.push_back(NewImm % NumLaneElts + s + l);
213 NewImm /= NumLaneElts;
216 if (NumLaneElts == 4) NewImm = Imm; // reload imm
220 /// DecodeUNPCKHMask - This decodes the shuffle masks for unpckhps/unpckhpd
221 /// and punpckh*. VT indicates the type of the vector allowing it to handle
222 /// different datatypes and vector widths.
223 void DecodeUNPCKHMask(unsigned NumElts, unsigned ScalarBits,
224 SmallVectorImpl<int> &ShuffleMask) {
225 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
226 // independently on 128-bit lanes.
227 unsigned NumLanes = (NumElts * ScalarBits) / 128;
228 if (NumLanes == 0) NumLanes = 1; // Handle MMX
229 unsigned NumLaneElts = NumElts / NumLanes;
231 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
232 for (unsigned i = l + NumLaneElts / 2, e = l + NumLaneElts; i != e; ++i) {
233 ShuffleMask.push_back(i); // Reads from dest/src1
234 ShuffleMask.push_back(i + NumElts); // Reads from src/src2
239 /// DecodeUNPCKLMask - This decodes the shuffle masks for unpcklps/unpcklpd
240 /// and punpckl*. VT indicates the type of the vector allowing it to handle
241 /// different datatypes and vector widths.
242 void DecodeUNPCKLMask(unsigned NumElts, unsigned ScalarBits,
243 SmallVectorImpl<int> &ShuffleMask) {
244 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
245 // independently on 128-bit lanes.
246 unsigned NumLanes = (NumElts * ScalarBits) / 128;
247 if (NumLanes == 0 ) NumLanes = 1; // Handle MMX
248 unsigned NumLaneElts = NumElts / NumLanes;
250 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
251 for (unsigned i = l, e = l + NumLaneElts / 2; i != e; ++i) {
252 ShuffleMask.push_back(i); // Reads from dest/src1
253 ShuffleMask.push_back(i + NumElts); // Reads from src/src2
258 /// Decodes a broadcast of the first element of a vector.
259 void DecodeVectorBroadcast(unsigned NumElts,
260 SmallVectorImpl<int> &ShuffleMask) {
261 ShuffleMask.append(NumElts, 0);
264 /// Decodes a broadcast of a subvector to a larger vector type.
265 void DecodeSubVectorBroadcast(unsigned DstNumElts, unsigned SrcNumElts,
266 SmallVectorImpl<int> &ShuffleMask) {
267 unsigned Scale = DstNumElts / SrcNumElts;
269 for (unsigned i = 0; i != Scale; ++i)
270 for (unsigned j = 0; j != SrcNumElts; ++j)
271 ShuffleMask.push_back(j);
274 /// Decode a shuffle packed values at 128-bit granularity
275 /// (SHUFF32x4/SHUFF64x2/SHUFI32x4/SHUFI64x2)
276 /// immediate mask into a shuffle mask.
277 void decodeVSHUF64x2FamilyMask(unsigned NumElts, unsigned ScalarSize,
278 unsigned Imm,
279 SmallVectorImpl<int> &ShuffleMask) {
280 unsigned NumElementsInLane = 128 / ScalarSize;
281 unsigned NumLanes = NumElts / NumElementsInLane;
283 for (unsigned l = 0; l != NumElts; l += NumElementsInLane) {
284 unsigned Index = (Imm % NumLanes) * NumElementsInLane;
285 Imm /= NumLanes; // Discard the bits we just used.
286 // We actually need the other source.
287 if (l >= (NumElts / 2))
288 Index += NumElts;
289 for (unsigned i = 0; i != NumElementsInLane; ++i)
290 ShuffleMask.push_back(Index + i);
294 void DecodeVPERM2X128Mask(unsigned NumElts, unsigned Imm,
295 SmallVectorImpl<int> &ShuffleMask) {
296 unsigned HalfSize = NumElts / 2;
298 for (unsigned l = 0; l != 2; ++l) {
299 unsigned HalfMask = Imm >> (l * 4);
300 unsigned HalfBegin = (HalfMask & 0x3) * HalfSize;
301 for (unsigned i = HalfBegin, e = HalfBegin + HalfSize; i != e; ++i)
302 ShuffleMask.push_back((HalfMask & 8) ? SM_SentinelZero : (int)i);
306 void DecodePSHUFBMask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
307 SmallVectorImpl<int> &ShuffleMask) {
308 for (int i = 0, e = RawMask.size(); i < e; ++i) {
309 uint64_t M = RawMask[i];
310 if (UndefElts[i]) {
311 ShuffleMask.push_back(SM_SentinelUndef);
312 continue;
314 // For 256/512-bit vectors the base of the shuffle is the 128-bit
315 // subvector we're inside.
316 int Base = (i / 16) * 16;
317 // If the high bit (7) of the byte is set, the element is zeroed.
318 if (M & (1 << 7))
319 ShuffleMask.push_back(SM_SentinelZero);
320 else {
321 // Only the least significant 4 bits of the byte are used.
322 int Index = Base + (M & 0xf);
323 ShuffleMask.push_back(Index);
328 void DecodeBLENDMask(unsigned NumElts, unsigned Imm,
329 SmallVectorImpl<int> &ShuffleMask) {
330 for (unsigned i = 0; i < NumElts; ++i) {
331 // If there are more than 8 elements in the vector, then any immediate blend
332 // mask wraps around.
333 unsigned Bit = i % 8;
334 ShuffleMask.push_back(((Imm >> Bit) & 1) ? NumElts + i : i);
338 void DecodeVPPERMMask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
339 SmallVectorImpl<int> &ShuffleMask) {
340 assert(RawMask.size() == 16 && "Illegal VPPERM shuffle mask size");
342 // VPPERM Operation
343 // Bits[4:0] - Byte Index (0 - 31)
344 // Bits[7:5] - Permute Operation
346 // Permute Operation:
347 // 0 - Source byte (no logical operation).
348 // 1 - Invert source byte.
349 // 2 - Bit reverse of source byte.
350 // 3 - Bit reverse of inverted source byte.
351 // 4 - 00h (zero - fill).
352 // 5 - FFh (ones - fill).
353 // 6 - Most significant bit of source byte replicated in all bit positions.
354 // 7 - Invert most significant bit of source byte and replicate in all bit positions.
355 for (int i = 0, e = RawMask.size(); i < e; ++i) {
356 if (UndefElts[i]) {
357 ShuffleMask.push_back(SM_SentinelUndef);
358 continue;
361 uint64_t M = RawMask[i];
362 uint64_t PermuteOp = (M >> 5) & 0x7;
363 if (PermuteOp == 4) {
364 ShuffleMask.push_back(SM_SentinelZero);
365 continue;
367 if (PermuteOp != 0) {
368 ShuffleMask.clear();
369 return;
372 uint64_t Index = M & 0x1F;
373 ShuffleMask.push_back((int)Index);
377 /// DecodeVPERMMask - this decodes the shuffle masks for VPERMQ/VPERMPD.
378 void DecodeVPERMMask(unsigned NumElts, unsigned Imm,
379 SmallVectorImpl<int> &ShuffleMask) {
380 for (unsigned l = 0; l != NumElts; l += 4)
381 for (unsigned i = 0; i != 4; ++i)
382 ShuffleMask.push_back(l + ((Imm >> (2 * i)) & 3));
385 void DecodeZeroExtendMask(unsigned SrcScalarBits, unsigned DstScalarBits,
386 unsigned NumDstElts, bool IsAnyExtend,
387 SmallVectorImpl<int> &Mask) {
388 unsigned Scale = DstScalarBits / SrcScalarBits;
389 assert(SrcScalarBits < DstScalarBits &&
390 "Expected zero extension mask to increase scalar size");
392 for (unsigned i = 0; i != NumDstElts; i++) {
393 Mask.push_back(i);
394 for (unsigned j = 1; j != Scale; j++)
395 Mask.push_back(IsAnyExtend ? SM_SentinelUndef : SM_SentinelZero);
399 void DecodeZeroMoveLowMask(unsigned NumElts,
400 SmallVectorImpl<int> &ShuffleMask) {
401 ShuffleMask.push_back(0);
402 for (unsigned i = 1; i < NumElts; i++)
403 ShuffleMask.push_back(SM_SentinelZero);
406 void DecodeScalarMoveMask(unsigned NumElts, bool IsLoad,
407 SmallVectorImpl<int> &Mask) {
408 // First element comes from the first element of second source.
409 // Remaining elements: Load zero extends / Move copies from first source.
410 Mask.push_back(NumElts);
411 for (unsigned i = 1; i < NumElts; i++)
412 Mask.push_back(IsLoad ? static_cast<int>(SM_SentinelZero) : i);
415 void DecodeEXTRQIMask(unsigned NumElts, unsigned EltSize, int Len, int Idx,
416 SmallVectorImpl<int> &ShuffleMask) {
417 unsigned HalfElts = NumElts / 2;
419 // Only the bottom 6 bits are valid for each immediate.
420 Len &= 0x3F;
421 Idx &= 0x3F;
423 // We can only decode this bit extraction instruction as a shuffle if both the
424 // length and index work with whole elements.
425 if (0 != (Len % EltSize) || 0 != (Idx % EltSize))
426 return;
428 // A length of zero is equivalent to a bit length of 64.
429 if (Len == 0)
430 Len = 64;
432 // If the length + index exceeds the bottom 64 bits the result is undefined.
433 if ((Len + Idx) > 64) {
434 ShuffleMask.append(NumElts, SM_SentinelUndef);
435 return;
438 // Convert index and index to work with elements.
439 Len /= EltSize;
440 Idx /= EltSize;
442 // EXTRQ: Extract Len elements starting from Idx. Zero pad the remaining
443 // elements of the lower 64-bits. The upper 64-bits are undefined.
444 for (int i = 0; i != Len; ++i)
445 ShuffleMask.push_back(i + Idx);
446 for (int i = Len; i != (int)HalfElts; ++i)
447 ShuffleMask.push_back(SM_SentinelZero);
448 for (int i = HalfElts; i != (int)NumElts; ++i)
449 ShuffleMask.push_back(SM_SentinelUndef);
452 void DecodeINSERTQIMask(unsigned NumElts, unsigned EltSize, int Len, int Idx,
453 SmallVectorImpl<int> &ShuffleMask) {
454 unsigned HalfElts = NumElts / 2;
456 // Only the bottom 6 bits are valid for each immediate.
457 Len &= 0x3F;
458 Idx &= 0x3F;
460 // We can only decode this bit insertion instruction as a shuffle if both the
461 // length and index work with whole elements.
462 if (0 != (Len % EltSize) || 0 != (Idx % EltSize))
463 return;
465 // A length of zero is equivalent to a bit length of 64.
466 if (Len == 0)
467 Len = 64;
469 // If the length + index exceeds the bottom 64 bits the result is undefined.
470 if ((Len + Idx) > 64) {
471 ShuffleMask.append(NumElts, SM_SentinelUndef);
472 return;
475 // Convert index and index to work with elements.
476 Len /= EltSize;
477 Idx /= EltSize;
479 // INSERTQ: Extract lowest Len elements from lower half of second source and
480 // insert over first source starting at Idx element. The upper 64-bits are
481 // undefined.
482 for (int i = 0; i != Idx; ++i)
483 ShuffleMask.push_back(i);
484 for (int i = 0; i != Len; ++i)
485 ShuffleMask.push_back(i + NumElts);
486 for (int i = Idx + Len; i != (int)HalfElts; ++i)
487 ShuffleMask.push_back(i);
488 for (int i = HalfElts; i != (int)NumElts; ++i)
489 ShuffleMask.push_back(SM_SentinelUndef);
492 void DecodeVPERMILPMask(unsigned NumElts, unsigned ScalarBits,
493 ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
494 SmallVectorImpl<int> &ShuffleMask) {
495 unsigned VecSize = NumElts * ScalarBits;
496 unsigned NumLanes = VecSize / 128;
497 unsigned NumEltsPerLane = NumElts / NumLanes;
498 assert((VecSize == 128 || VecSize == 256 || VecSize == 512) &&
499 "Unexpected vector size");
500 assert((ScalarBits == 32 || ScalarBits == 64) && "Unexpected element size");
502 for (unsigned i = 0, e = RawMask.size(); i < e; ++i) {
503 if (UndefElts[i]) {
504 ShuffleMask.push_back(SM_SentinelUndef);
505 continue;
507 uint64_t M = RawMask[i];
508 M = (ScalarBits == 64 ? ((M >> 1) & 0x1) : (M & 0x3));
509 unsigned LaneOffset = i & ~(NumEltsPerLane - 1);
510 ShuffleMask.push_back((int)(LaneOffset + M));
514 void DecodeVPERMIL2PMask(unsigned NumElts, unsigned ScalarBits, unsigned M2Z,
515 ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
516 SmallVectorImpl<int> &ShuffleMask) {
517 unsigned VecSize = NumElts * ScalarBits;
518 unsigned NumLanes = VecSize / 128;
519 unsigned NumEltsPerLane = NumElts / NumLanes;
520 assert((VecSize == 128 || VecSize == 256) && "Unexpected vector size");
521 assert((ScalarBits == 32 || ScalarBits == 64) && "Unexpected element size");
522 assert((NumElts == RawMask.size()) && "Unexpected mask size");
524 for (unsigned i = 0, e = RawMask.size(); i < e; ++i) {
525 if (UndefElts[i]) {
526 ShuffleMask.push_back(SM_SentinelUndef);
527 continue;
530 // VPERMIL2 Operation.
531 // Bits[3] - Match Bit.
532 // Bits[2:1] - (Per Lane) PD Shuffle Mask.
533 // Bits[2:0] - (Per Lane) PS Shuffle Mask.
534 uint64_t Selector = RawMask[i];
535 unsigned MatchBit = (Selector >> 3) & 0x1;
537 // M2Z[0:1] MatchBit
538 // 0Xb X Source selected by Selector index.
539 // 10b 0 Source selected by Selector index.
540 // 10b 1 Zero.
541 // 11b 0 Zero.
542 // 11b 1 Source selected by Selector index.
543 if ((M2Z & 0x2) != 0 && MatchBit != (M2Z & 0x1)) {
544 ShuffleMask.push_back(SM_SentinelZero);
545 continue;
548 int Index = i & ~(NumEltsPerLane - 1);
549 if (ScalarBits == 64)
550 Index += (Selector >> 1) & 0x1;
551 else
552 Index += Selector & 0x3;
554 int Src = (Selector >> 2) & 0x1;
555 Index += Src * NumElts;
556 ShuffleMask.push_back(Index);
560 void DecodeVPERMVMask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
561 SmallVectorImpl<int> &ShuffleMask) {
562 uint64_t EltMaskSize = RawMask.size() - 1;
563 for (int i = 0, e = RawMask.size(); i != e; ++i) {
564 if (UndefElts[i]) {
565 ShuffleMask.push_back(SM_SentinelUndef);
566 continue;
568 uint64_t M = RawMask[i];
569 M &= EltMaskSize;
570 ShuffleMask.push_back((int)M);
574 void DecodeVPERMV3Mask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
575 SmallVectorImpl<int> &ShuffleMask) {
576 uint64_t EltMaskSize = (RawMask.size() * 2) - 1;
577 for (int i = 0, e = RawMask.size(); i != e; ++i) {
578 if (UndefElts[i]) {
579 ShuffleMask.push_back(SM_SentinelUndef);
580 continue;
582 uint64_t M = RawMask[i];
583 M &= EltMaskSize;
584 ShuffleMask.push_back((int)M);
588 } // llvm namespace