[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Target / X86 / X86FixupLEAs.cpp
blob543dc8b00fa058110ac8e8652adc99a773df8671
1 //===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the pass that finds instructions that can be
10 // re-written as LEA instructions in order to reduce pipeline delays.
11 // It replaces LEAs with ADD/INC/DEC when that is better for size/speed.
13 //===----------------------------------------------------------------------===//
15 #include "X86.h"
16 #include "X86InstrInfo.h"
17 #include "X86Subtarget.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/MachineFunctionPass.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/TargetSchedule.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25 using namespace llvm;
27 #define FIXUPLEA_DESC "X86 LEA Fixup"
28 #define FIXUPLEA_NAME "x86-fixup-LEAs"
30 #define DEBUG_TYPE FIXUPLEA_NAME
32 STATISTIC(NumLEAs, "Number of LEA instructions created");
34 namespace {
35 class FixupLEAPass : public MachineFunctionPass {
36 enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };
38 /// Given a machine register, look for the instruction
39 /// which writes it in the current basic block. If found,
40 /// try to replace it with an equivalent LEA instruction.
41 /// If replacement succeeds, then also process the newly created
42 /// instruction.
43 void seekLEAFixup(MachineOperand &p, MachineBasicBlock::iterator &I,
44 MachineBasicBlock &MBB);
46 /// Given a memory access or LEA instruction
47 /// whose address mode uses a base and/or index register, look for
48 /// an opportunity to replace the instruction which sets the base or index
49 /// register with an equivalent LEA instruction.
50 void processInstruction(MachineBasicBlock::iterator &I,
51 MachineBasicBlock &MBB);
53 /// Given a LEA instruction which is unprofitable
54 /// on SlowLEA targets try to replace it with an equivalent ADD instruction.
55 void processInstructionForSlowLEA(MachineBasicBlock::iterator &I,
56 MachineBasicBlock &MBB);
58 /// Given a LEA instruction which is unprofitable
59 /// on SNB+ try to replace it with other instructions.
60 /// According to Intel's Optimization Reference Manual:
61 /// " For LEA instructions with three source operands and some specific
62 /// situations, instruction latency has increased to 3 cycles, and must
63 /// dispatch via port 1:
64 /// - LEA that has all three source operands: base, index, and offset
65 /// - LEA that uses base and index registers where the base is EBP, RBP,
66 /// or R13
67 /// - LEA that uses RIP relative addressing mode
68 /// - LEA that uses 16-bit addressing mode "
69 /// This function currently handles the first 2 cases only.
70 void processInstrForSlow3OpLEA(MachineBasicBlock::iterator &I,
71 MachineBasicBlock &MBB, bool OptIncDec);
73 /// Look for LEAs that are really two address LEAs that we might be able to
74 /// turn into regular ADD instructions.
75 bool optTwoAddrLEA(MachineBasicBlock::iterator &I,
76 MachineBasicBlock &MBB, bool OptIncDec,
77 bool UseLEAForSP) const;
79 /// Determine if an instruction references a machine register
80 /// and, if so, whether it reads or writes the register.
81 RegUsageState usesRegister(MachineOperand &p, MachineBasicBlock::iterator I);
83 /// Step backwards through a basic block, looking
84 /// for an instruction which writes a register within
85 /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
86 MachineBasicBlock::iterator searchBackwards(MachineOperand &p,
87 MachineBasicBlock::iterator &I,
88 MachineBasicBlock &MBB);
90 /// if an instruction can be converted to an
91 /// equivalent LEA, insert the new instruction into the basic block
92 /// and return a pointer to it. Otherwise, return zero.
93 MachineInstr *postRAConvertToLEA(MachineBasicBlock &MBB,
94 MachineBasicBlock::iterator &MBBI) const;
96 public:
97 static char ID;
99 StringRef getPassName() const override { return FIXUPLEA_DESC; }
101 FixupLEAPass() : MachineFunctionPass(ID) { }
103 /// Loop over all of the basic blocks,
104 /// replacing instructions by equivalent LEA instructions
105 /// if needed and when possible.
106 bool runOnMachineFunction(MachineFunction &MF) override;
108 // This pass runs after regalloc and doesn't support VReg operands.
109 MachineFunctionProperties getRequiredProperties() const override {
110 return MachineFunctionProperties().set(
111 MachineFunctionProperties::Property::NoVRegs);
114 private:
115 TargetSchedModel TSM;
116 const X86InstrInfo *TII;
117 const X86RegisterInfo *TRI;
121 char FixupLEAPass::ID = 0;
123 INITIALIZE_PASS(FixupLEAPass, FIXUPLEA_NAME, FIXUPLEA_DESC, false, false)
125 MachineInstr *
126 FixupLEAPass::postRAConvertToLEA(MachineBasicBlock &MBB,
127 MachineBasicBlock::iterator &MBBI) const {
128 MachineInstr &MI = *MBBI;
129 switch (MI.getOpcode()) {
130 case X86::MOV32rr:
131 case X86::MOV64rr: {
132 const MachineOperand &Src = MI.getOperand(1);
133 const MachineOperand &Dest = MI.getOperand(0);
134 MachineInstr *NewMI =
135 BuildMI(MBB, MBBI, MI.getDebugLoc(),
136 TII->get(MI.getOpcode() == X86::MOV32rr ? X86::LEA32r
137 : X86::LEA64r))
138 .add(Dest)
139 .add(Src)
140 .addImm(1)
141 .addReg(0)
142 .addImm(0)
143 .addReg(0);
144 return NewMI;
148 if (!MI.isConvertibleTo3Addr())
149 return nullptr;
151 switch (MI.getOpcode()) {
152 default:
153 // Only convert instructions that we've verified are safe.
154 return nullptr;
155 case X86::ADD64ri32:
156 case X86::ADD64ri8:
157 case X86::ADD64ri32_DB:
158 case X86::ADD64ri8_DB:
159 case X86::ADD32ri:
160 case X86::ADD32ri8:
161 case X86::ADD32ri_DB:
162 case X86::ADD32ri8_DB:
163 if (!MI.getOperand(2).isImm()) {
164 // convertToThreeAddress will call getImm()
165 // which requires isImm() to be true
166 return nullptr;
168 break;
169 case X86::SHL64ri:
170 case X86::SHL32ri:
171 case X86::INC64r:
172 case X86::INC32r:
173 case X86::DEC64r:
174 case X86::DEC32r:
175 case X86::ADD64rr:
176 case X86::ADD64rr_DB:
177 case X86::ADD32rr:
178 case X86::ADD32rr_DB:
179 // These instructions are all fine to convert.
180 break;
182 MachineFunction::iterator MFI = MBB.getIterator();
183 return TII->convertToThreeAddress(MFI, MI, nullptr);
186 FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); }
188 static bool isLEA(unsigned Opcode) {
189 return Opcode == X86::LEA32r || Opcode == X86::LEA64r ||
190 Opcode == X86::LEA64_32r;
193 bool FixupLEAPass::runOnMachineFunction(MachineFunction &MF) {
194 if (skipFunction(MF.getFunction()))
195 return false;
197 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
198 bool IsSlowLEA = ST.slowLEA();
199 bool IsSlow3OpsLEA = ST.slow3OpsLEA();
200 bool LEAUsesAG = ST.LEAusesAG();
202 bool OptIncDec = !ST.slowIncDec() || MF.getFunction().hasOptSize();
203 bool UseLEAForSP = ST.useLeaForSP();
205 TSM.init(&ST);
206 TII = ST.getInstrInfo();
207 TRI = ST.getRegisterInfo();
209 LLVM_DEBUG(dbgs() << "Start X86FixupLEAs\n";);
210 for (MachineBasicBlock &MBB : MF) {
211 // First pass. Try to remove or optimize existing LEAs.
212 for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) {
213 if (!isLEA(I->getOpcode()))
214 continue;
216 if (optTwoAddrLEA(I, MBB, OptIncDec, UseLEAForSP))
217 continue;
219 if (IsSlowLEA)
220 processInstructionForSlowLEA(I, MBB);
221 else if (IsSlow3OpsLEA)
222 processInstrForSlow3OpLEA(I, MBB, OptIncDec);
225 // Second pass for creating LEAs. This may reverse some of the
226 // transformations above.
227 if (LEAUsesAG) {
228 for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I)
229 processInstruction(I, MBB);
233 LLVM_DEBUG(dbgs() << "End X86FixupLEAs\n";);
235 return true;
238 FixupLEAPass::RegUsageState
239 FixupLEAPass::usesRegister(MachineOperand &p, MachineBasicBlock::iterator I) {
240 RegUsageState RegUsage = RU_NotUsed;
241 MachineInstr &MI = *I;
243 for (unsigned i = 0; i < MI.getNumOperands(); ++i) {
244 MachineOperand &opnd = MI.getOperand(i);
245 if (opnd.isReg() && opnd.getReg() == p.getReg()) {
246 if (opnd.isDef())
247 return RU_Write;
248 RegUsage = RU_Read;
251 return RegUsage;
254 /// getPreviousInstr - Given a reference to an instruction in a basic
255 /// block, return a reference to the previous instruction in the block,
256 /// wrapping around to the last instruction of the block if the block
257 /// branches to itself.
258 static inline bool getPreviousInstr(MachineBasicBlock::iterator &I,
259 MachineBasicBlock &MBB) {
260 if (I == MBB.begin()) {
261 if (MBB.isPredecessor(&MBB)) {
262 I = --MBB.end();
263 return true;
264 } else
265 return false;
267 --I;
268 return true;
271 MachineBasicBlock::iterator
272 FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I,
273 MachineBasicBlock &MBB) {
274 int InstrDistance = 1;
275 MachineBasicBlock::iterator CurInst;
276 static const int INSTR_DISTANCE_THRESHOLD = 5;
278 CurInst = I;
279 bool Found;
280 Found = getPreviousInstr(CurInst, MBB);
281 while (Found && I != CurInst) {
282 if (CurInst->isCall() || CurInst->isInlineAsm())
283 break;
284 if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
285 break; // too far back to make a difference
286 if (usesRegister(p, CurInst) == RU_Write) {
287 return CurInst;
289 InstrDistance += TSM.computeInstrLatency(&*CurInst);
290 Found = getPreviousInstr(CurInst, MBB);
292 return MachineBasicBlock::iterator();
295 static inline bool isInefficientLEAReg(unsigned Reg) {
296 return Reg == X86::EBP || Reg == X86::RBP ||
297 Reg == X86::R13D || Reg == X86::R13;
300 /// Returns true if this LEA uses base an index registers, and the base register
301 /// is known to be inefficient for the subtarget.
302 // TODO: use a variant scheduling class to model the latency profile
303 // of LEA instructions, and implement this logic as a scheduling predicate.
304 static inline bool hasInefficientLEABaseReg(const MachineOperand &Base,
305 const MachineOperand &Index) {
306 return Base.isReg() && isInefficientLEAReg(Base.getReg()) && Index.isReg() &&
307 Index.getReg() != X86::NoRegister;
310 static inline bool hasLEAOffset(const MachineOperand &Offset) {
311 return (Offset.isImm() && Offset.getImm() != 0) || Offset.isGlobal();
314 static inline unsigned getADDrrFromLEA(unsigned LEAOpcode) {
315 switch (LEAOpcode) {
316 default:
317 llvm_unreachable("Unexpected LEA instruction");
318 case X86::LEA32r:
319 case X86::LEA64_32r:
320 return X86::ADD32rr;
321 case X86::LEA64r:
322 return X86::ADD64rr;
326 static inline unsigned getADDriFromLEA(unsigned LEAOpcode,
327 const MachineOperand &Offset) {
328 bool IsInt8 = Offset.isImm() && isInt<8>(Offset.getImm());
329 switch (LEAOpcode) {
330 default:
331 llvm_unreachable("Unexpected LEA instruction");
332 case X86::LEA32r:
333 case X86::LEA64_32r:
334 return IsInt8 ? X86::ADD32ri8 : X86::ADD32ri;
335 case X86::LEA64r:
336 return IsInt8 ? X86::ADD64ri8 : X86::ADD64ri32;
340 static inline unsigned getINCDECFromLEA(unsigned LEAOpcode, bool IsINC) {
341 switch (LEAOpcode) {
342 default:
343 llvm_unreachable("Unexpected LEA instruction");
344 case X86::LEA32r:
345 case X86::LEA64_32r:
346 return IsINC ? X86::INC32r : X86::DEC32r;
347 case X86::LEA64r:
348 return IsINC ? X86::INC64r : X86::DEC64r;
352 bool FixupLEAPass::optTwoAddrLEA(MachineBasicBlock::iterator &I,
353 MachineBasicBlock &MBB, bool OptIncDec,
354 bool UseLEAForSP) const {
355 MachineInstr &MI = *I;
357 const MachineOperand &Base = MI.getOperand(1 + X86::AddrBaseReg);
358 const MachineOperand &Scale = MI.getOperand(1 + X86::AddrScaleAmt);
359 const MachineOperand &Index = MI.getOperand(1 + X86::AddrIndexReg);
360 const MachineOperand &Disp = MI.getOperand(1 + X86::AddrDisp);
361 const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg);
363 if (Segment.getReg() != 0 || !Disp.isImm() || Scale.getImm() > 1 ||
364 !TII->isSafeToClobberEFLAGS(MBB, I))
365 return false;
367 Register DestReg = MI.getOperand(0).getReg();
368 Register BaseReg = Base.getReg();
369 Register IndexReg = Index.getReg();
371 // Don't change stack adjustment LEAs.
372 if (UseLEAForSP && (DestReg == X86::ESP || DestReg == X86::RSP))
373 return false;
375 // LEA64_32 has 64-bit operands but 32-bit result.
376 if (MI.getOpcode() == X86::LEA64_32r) {
377 if (BaseReg != 0)
378 BaseReg = TRI->getSubReg(BaseReg, X86::sub_32bit);
379 if (IndexReg != 0)
380 IndexReg = TRI->getSubReg(IndexReg, X86::sub_32bit);
383 MachineInstr *NewMI = nullptr;
385 // Look for lea(%reg1, %reg2), %reg1 or lea(%reg2, %reg1), %reg1
386 // which can be turned into add %reg2, %reg1
387 if (BaseReg != 0 && IndexReg != 0 && Disp.getImm() == 0 &&
388 (DestReg == BaseReg || DestReg == IndexReg)) {
389 unsigned NewOpcode = getADDrrFromLEA(MI.getOpcode());
390 if (DestReg != BaseReg)
391 std::swap(BaseReg, IndexReg);
393 if (MI.getOpcode() == X86::LEA64_32r) {
394 // TODO: Do we need the super register implicit use?
395 NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
396 .addReg(BaseReg).addReg(IndexReg)
397 .addReg(Base.getReg(), RegState::Implicit)
398 .addReg(Index.getReg(), RegState::Implicit);
399 } else {
400 NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
401 .addReg(BaseReg).addReg(IndexReg);
403 } else if (DestReg == BaseReg && IndexReg == 0) {
404 // This is an LEA with only a base register and a displacement,
405 // We can use ADDri or INC/DEC.
407 // Does this LEA have one these forms:
408 // lea %reg, 1(%reg)
409 // lea %reg, -1(%reg)
410 if (OptIncDec && (Disp.getImm() == 1 || Disp.getImm() == -1)) {
411 bool IsINC = Disp.getImm() == 1;
412 unsigned NewOpcode = getINCDECFromLEA(MI.getOpcode(), IsINC);
414 if (MI.getOpcode() == X86::LEA64_32r) {
415 // TODO: Do we need the super register implicit use?
416 NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
417 .addReg(BaseReg).addReg(Base.getReg(), RegState::Implicit);
418 } else {
419 NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
420 .addReg(BaseReg);
422 } else {
423 unsigned NewOpcode = getADDriFromLEA(MI.getOpcode(), Disp);
424 if (MI.getOpcode() == X86::LEA64_32r) {
425 // TODO: Do we need the super register implicit use?
426 NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
427 .addReg(BaseReg).addImm(Disp.getImm())
428 .addReg(Base.getReg(), RegState::Implicit);
429 } else {
430 NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
431 .addReg(BaseReg).addImm(Disp.getImm());
434 } else
435 return false;
437 MBB.erase(I);
438 I = NewMI;
439 return true;
442 void FixupLEAPass::processInstruction(MachineBasicBlock::iterator &I,
443 MachineBasicBlock &MBB) {
444 // Process a load, store, or LEA instruction.
445 MachineInstr &MI = *I;
446 const MCInstrDesc &Desc = MI.getDesc();
447 int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags);
448 if (AddrOffset >= 0) {
449 AddrOffset += X86II::getOperandBias(Desc);
450 MachineOperand &p = MI.getOperand(AddrOffset + X86::AddrBaseReg);
451 if (p.isReg() && p.getReg() != X86::ESP) {
452 seekLEAFixup(p, I, MBB);
454 MachineOperand &q = MI.getOperand(AddrOffset + X86::AddrIndexReg);
455 if (q.isReg() && q.getReg() != X86::ESP) {
456 seekLEAFixup(q, I, MBB);
461 void FixupLEAPass::seekLEAFixup(MachineOperand &p,
462 MachineBasicBlock::iterator &I,
463 MachineBasicBlock &MBB) {
464 MachineBasicBlock::iterator MBI = searchBackwards(p, I, MBB);
465 if (MBI != MachineBasicBlock::iterator()) {
466 MachineInstr *NewMI = postRAConvertToLEA(MBB, MBI);
467 if (NewMI) {
468 ++NumLEAs;
469 LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI->dump(););
470 // now to replace with an equivalent LEA...
471 LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI->dump(););
472 MBB.erase(MBI);
473 MachineBasicBlock::iterator J =
474 static_cast<MachineBasicBlock::iterator>(NewMI);
475 processInstruction(J, MBB);
480 void FixupLEAPass::processInstructionForSlowLEA(MachineBasicBlock::iterator &I,
481 MachineBasicBlock &MBB) {
482 MachineInstr &MI = *I;
483 const unsigned Opcode = MI.getOpcode();
485 const MachineOperand &Dst = MI.getOperand(0);
486 const MachineOperand &Base = MI.getOperand(1 + X86::AddrBaseReg);
487 const MachineOperand &Scale = MI.getOperand(1 + X86::AddrScaleAmt);
488 const MachineOperand &Index = MI.getOperand(1 + X86::AddrIndexReg);
489 const MachineOperand &Offset = MI.getOperand(1 + X86::AddrDisp);
490 const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg);
492 if (Segment.getReg() != 0 || !Offset.isImm() ||
493 !TII->isSafeToClobberEFLAGS(MBB, I))
494 return;
495 const Register DstR = Dst.getReg();
496 const Register SrcR1 = Base.getReg();
497 const Register SrcR2 = Index.getReg();
498 if ((SrcR1 == 0 || SrcR1 != DstR) && (SrcR2 == 0 || SrcR2 != DstR))
499 return;
500 if (Scale.getImm() > 1)
501 return;
502 LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump(););
503 LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";);
504 MachineInstr *NewMI = nullptr;
505 // Make ADD instruction for two registers writing to LEA's destination
506 if (SrcR1 != 0 && SrcR2 != 0) {
507 const MCInstrDesc &ADDrr = TII->get(getADDrrFromLEA(Opcode));
508 const MachineOperand &Src = SrcR1 == DstR ? Index : Base;
509 NewMI =
510 BuildMI(MBB, I, MI.getDebugLoc(), ADDrr, DstR).addReg(DstR).add(Src);
511 LLVM_DEBUG(NewMI->dump(););
513 // Make ADD instruction for immediate
514 if (Offset.getImm() != 0) {
515 const MCInstrDesc &ADDri =
516 TII->get(getADDriFromLEA(Opcode, Offset));
517 const MachineOperand &SrcR = SrcR1 == DstR ? Base : Index;
518 NewMI = BuildMI(MBB, I, MI.getDebugLoc(), ADDri, DstR)
519 .add(SrcR)
520 .addImm(Offset.getImm());
521 LLVM_DEBUG(NewMI->dump(););
523 if (NewMI) {
524 MBB.erase(I);
525 I = NewMI;
529 void FixupLEAPass::processInstrForSlow3OpLEA(MachineBasicBlock::iterator &I,
530 MachineBasicBlock &MBB,
531 bool OptIncDec) {
532 MachineInstr &MI = *I;
533 const unsigned LEAOpcode = MI.getOpcode();
535 const MachineOperand &Dest = MI.getOperand(0);
536 const MachineOperand &Base = MI.getOperand(1 + X86::AddrBaseReg);
537 const MachineOperand &Scale = MI.getOperand(1 + X86::AddrScaleAmt);
538 const MachineOperand &Index = MI.getOperand(1 + X86::AddrIndexReg);
539 const MachineOperand &Offset = MI.getOperand(1 + X86::AddrDisp);
540 const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg);
542 if (!(TII->isThreeOperandsLEA(MI) || hasInefficientLEABaseReg(Base, Index)) ||
543 !TII->isSafeToClobberEFLAGS(MBB, MI) ||
544 Segment.getReg() != X86::NoRegister)
545 return;
547 Register DestReg = Dest.getReg();
548 Register BaseReg = Base.getReg();
549 Register IndexReg = Index.getReg();
551 if (MI.getOpcode() == X86::LEA64_32r) {
552 if (BaseReg != 0)
553 BaseReg = TRI->getSubReg(BaseReg, X86::sub_32bit);
554 if (IndexReg != 0)
555 IndexReg = TRI->getSubReg(IndexReg, X86::sub_32bit);
558 bool IsScale1 = Scale.getImm() == 1;
559 bool IsInefficientBase = isInefficientLEAReg(BaseReg);
560 bool IsInefficientIndex = isInefficientLEAReg(IndexReg);
562 // Skip these cases since it takes more than 2 instructions
563 // to replace the LEA instruction.
564 if (IsInefficientBase && DestReg == BaseReg && !IsScale1)
565 return;
567 LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MI.dump(););
568 LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";);
570 MachineInstr *NewMI = nullptr;
572 // First try to replace LEA with one or two (for the 3-op LEA case)
573 // add instructions:
574 // 1.lea (%base,%index,1), %base => add %index,%base
575 // 2.lea (%base,%index,1), %index => add %base,%index
576 if (IsScale1 && (DestReg == BaseReg || DestReg == IndexReg)) {
577 unsigned NewOpc = getADDrrFromLEA(MI.getOpcode());
578 if (DestReg != BaseReg)
579 std::swap(BaseReg, IndexReg);
581 if (MI.getOpcode() == X86::LEA64_32r) {
582 // TODO: Do we need the super register implicit use?
583 NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
584 .addReg(BaseReg)
585 .addReg(IndexReg)
586 .addReg(Base.getReg(), RegState::Implicit)
587 .addReg(Index.getReg(), RegState::Implicit);
588 } else {
589 NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
590 .addReg(BaseReg)
591 .addReg(IndexReg);
593 } else if (!IsInefficientBase || (!IsInefficientIndex && IsScale1)) {
594 // If the base is inefficient try switching the index and base operands,
595 // otherwise just break the 3-Ops LEA inst into 2-Ops LEA + ADD instruction:
596 // lea offset(%base,%index,scale),%dst =>
597 // lea (%base,%index,scale); add offset,%dst
598 NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(LEAOpcode))
599 .add(Dest)
600 .add(IsInefficientBase ? Index : Base)
601 .add(Scale)
602 .add(IsInefficientBase ? Base : Index)
603 .addImm(0)
604 .add(Segment);
605 LLVM_DEBUG(NewMI->dump(););
608 // If either replacement succeeded above, add the offset if needed, then
609 // replace the instruction.
610 if (NewMI) {
611 // Create ADD instruction for the Offset in case of 3-Ops LEA.
612 if (hasLEAOffset(Offset)) {
613 if (OptIncDec && Offset.isImm() &&
614 (Offset.getImm() == 1 || Offset.getImm() == -1)) {
615 unsigned NewOpc =
616 getINCDECFromLEA(MI.getOpcode(), Offset.getImm() == 1);
617 NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
618 .addReg(DestReg);
619 LLVM_DEBUG(NewMI->dump(););
620 } else {
621 unsigned NewOpc = getADDriFromLEA(MI.getOpcode(), Offset);
622 NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
623 .addReg(DestReg)
624 .add(Offset);
625 LLVM_DEBUG(NewMI->dump(););
629 MBB.erase(I);
630 I = NewMI;
631 return;
634 // Handle the rest of the cases with inefficient base register:
635 assert(DestReg != BaseReg && "DestReg == BaseReg should be handled already!");
636 assert(IsInefficientBase && "efficient base should be handled already!");
638 // FIXME: Handle LEA64_32r.
639 if (LEAOpcode == X86::LEA64_32r)
640 return;
642 // lea (%base,%index,1), %dst => mov %base,%dst; add %index,%dst
643 if (IsScale1 && !hasLEAOffset(Offset)) {
644 bool BIK = Base.isKill() && BaseReg != IndexReg;
645 TII->copyPhysReg(MBB, MI, MI.getDebugLoc(), DestReg, BaseReg, BIK);
646 LLVM_DEBUG(MI.getPrevNode()->dump(););
648 unsigned NewOpc = getADDrrFromLEA(MI.getOpcode());
649 NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
650 .addReg(DestReg)
651 .add(Index);
652 LLVM_DEBUG(NewMI->dump(););
653 return;
656 // lea offset(%base,%index,scale), %dst =>
657 // lea offset( ,%index,scale), %dst; add %base,%dst
658 NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(LEAOpcode))
659 .add(Dest)
660 .addReg(0)
661 .add(Scale)
662 .add(Index)
663 .add(Offset)
664 .add(Segment);
665 LLVM_DEBUG(NewMI->dump(););
667 unsigned NewOpc = getADDrrFromLEA(MI.getOpcode());
668 NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
669 .addReg(DestReg)
670 .add(Base);
671 LLVM_DEBUG(NewMI->dump(););
673 MBB.erase(I);
674 I = NewMI;