[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Target / X86 / X86OptimizeLEAs.cpp
blob1aee01563c4b02cfd7447eaef9b734fc0904d8e8
1 //===- X86OptimizeLEAs.cpp - optimize usage of LEA instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the pass that performs some optimizations with LEA
10 // instructions in order to improve performance and code size.
11 // Currently, it does two things:
12 // 1) If there are two LEA instructions calculating addresses which only differ
13 // by displacement inside a basic block, one of them is removed.
14 // 2) Address calculations in load and store instructions are replaced by
15 // existing LEA def registers where possible.
17 //===----------------------------------------------------------------------===//
19 #include "MCTargetDesc/X86BaseInfo.h"
20 #include "X86.h"
21 #include "X86InstrInfo.h"
22 #include "X86Subtarget.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/DenseMapInfo.h"
25 #include "llvm/ADT/Hashing.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/MC/MCInstrDesc.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <cassert>
47 #include <cstdint>
48 #include <iterator>
50 using namespace llvm;
52 #define DEBUG_TYPE "x86-optimize-LEAs"
54 static cl::opt<bool>
55 DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden,
56 cl::desc("X86: Disable LEA optimizations."),
57 cl::init(false));
59 STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions");
60 STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed");
62 /// Returns true if two machine operands are identical and they are not
63 /// physical registers.
64 static inline bool isIdenticalOp(const MachineOperand &MO1,
65 const MachineOperand &MO2);
67 /// Returns true if two address displacement operands are of the same
68 /// type and use the same symbol/index/address regardless of the offset.
69 static bool isSimilarDispOp(const MachineOperand &MO1,
70 const MachineOperand &MO2);
72 /// Returns true if the instruction is LEA.
73 static inline bool isLEA(const MachineInstr &MI);
75 namespace {
77 /// A key based on instruction's memory operands.
78 class MemOpKey {
79 public:
80 MemOpKey(const MachineOperand *Base, const MachineOperand *Scale,
81 const MachineOperand *Index, const MachineOperand *Segment,
82 const MachineOperand *Disp)
83 : Disp(Disp) {
84 Operands[0] = Base;
85 Operands[1] = Scale;
86 Operands[2] = Index;
87 Operands[3] = Segment;
90 bool operator==(const MemOpKey &Other) const {
91 // Addresses' bases, scales, indices and segments must be identical.
92 for (int i = 0; i < 4; ++i)
93 if (!isIdenticalOp(*Operands[i], *Other.Operands[i]))
94 return false;
96 // Addresses' displacements don't have to be exactly the same. It only
97 // matters that they use the same symbol/index/address. Immediates' or
98 // offsets' differences will be taken care of during instruction
99 // substitution.
100 return isSimilarDispOp(*Disp, *Other.Disp);
103 // Address' base, scale, index and segment operands.
104 const MachineOperand *Operands[4];
106 // Address' displacement operand.
107 const MachineOperand *Disp;
110 } // end anonymous namespace
112 /// Provide DenseMapInfo for MemOpKey.
113 namespace llvm {
115 template <> struct DenseMapInfo<MemOpKey> {
116 using PtrInfo = DenseMapInfo<const MachineOperand *>;
118 static inline MemOpKey getEmptyKey() {
119 return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
120 PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
121 PtrInfo::getEmptyKey());
124 static inline MemOpKey getTombstoneKey() {
125 return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
126 PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
127 PtrInfo::getTombstoneKey());
130 static unsigned getHashValue(const MemOpKey &Val) {
131 // Checking any field of MemOpKey is enough to determine if the key is
132 // empty or tombstone.
133 assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key");
134 assert(Val.Disp != PtrInfo::getTombstoneKey() &&
135 "Cannot hash the tombstone key");
137 hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1],
138 *Val.Operands[2], *Val.Operands[3]);
140 // If the address displacement is an immediate, it should not affect the
141 // hash so that memory operands which differ only be immediate displacement
142 // would have the same hash. If the address displacement is something else,
143 // we should reflect symbol/index/address in the hash.
144 switch (Val.Disp->getType()) {
145 case MachineOperand::MO_Immediate:
146 break;
147 case MachineOperand::MO_ConstantPoolIndex:
148 case MachineOperand::MO_JumpTableIndex:
149 Hash = hash_combine(Hash, Val.Disp->getIndex());
150 break;
151 case MachineOperand::MO_ExternalSymbol:
152 Hash = hash_combine(Hash, Val.Disp->getSymbolName());
153 break;
154 case MachineOperand::MO_GlobalAddress:
155 Hash = hash_combine(Hash, Val.Disp->getGlobal());
156 break;
157 case MachineOperand::MO_BlockAddress:
158 Hash = hash_combine(Hash, Val.Disp->getBlockAddress());
159 break;
160 case MachineOperand::MO_MCSymbol:
161 Hash = hash_combine(Hash, Val.Disp->getMCSymbol());
162 break;
163 case MachineOperand::MO_MachineBasicBlock:
164 Hash = hash_combine(Hash, Val.Disp->getMBB());
165 break;
166 default:
167 llvm_unreachable("Invalid address displacement operand");
170 return (unsigned)Hash;
173 static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) {
174 // Checking any field of MemOpKey is enough to determine if the key is
175 // empty or tombstone.
176 if (RHS.Disp == PtrInfo::getEmptyKey())
177 return LHS.Disp == PtrInfo::getEmptyKey();
178 if (RHS.Disp == PtrInfo::getTombstoneKey())
179 return LHS.Disp == PtrInfo::getTombstoneKey();
180 return LHS == RHS;
184 } // end namespace llvm
186 /// Returns a hash table key based on memory operands of \p MI. The
187 /// number of the first memory operand of \p MI is specified through \p N.
188 static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) {
189 assert((isLEA(MI) || MI.mayLoadOrStore()) &&
190 "The instruction must be a LEA, a load or a store");
191 return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg),
192 &MI.getOperand(N + X86::AddrScaleAmt),
193 &MI.getOperand(N + X86::AddrIndexReg),
194 &MI.getOperand(N + X86::AddrSegmentReg),
195 &MI.getOperand(N + X86::AddrDisp));
198 static inline bool isIdenticalOp(const MachineOperand &MO1,
199 const MachineOperand &MO2) {
200 return MO1.isIdenticalTo(MO2) &&
201 (!MO1.isReg() || !Register::isPhysicalRegister(MO1.getReg()));
204 #ifndef NDEBUG
205 static bool isValidDispOp(const MachineOperand &MO) {
206 return MO.isImm() || MO.isCPI() || MO.isJTI() || MO.isSymbol() ||
207 MO.isGlobal() || MO.isBlockAddress() || MO.isMCSymbol() || MO.isMBB();
209 #endif
211 static bool isSimilarDispOp(const MachineOperand &MO1,
212 const MachineOperand &MO2) {
213 assert(isValidDispOp(MO1) && isValidDispOp(MO2) &&
214 "Address displacement operand is not valid");
215 return (MO1.isImm() && MO2.isImm()) ||
216 (MO1.isCPI() && MO2.isCPI() && MO1.getIndex() == MO2.getIndex()) ||
217 (MO1.isJTI() && MO2.isJTI() && MO1.getIndex() == MO2.getIndex()) ||
218 (MO1.isSymbol() && MO2.isSymbol() &&
219 MO1.getSymbolName() == MO2.getSymbolName()) ||
220 (MO1.isGlobal() && MO2.isGlobal() &&
221 MO1.getGlobal() == MO2.getGlobal()) ||
222 (MO1.isBlockAddress() && MO2.isBlockAddress() &&
223 MO1.getBlockAddress() == MO2.getBlockAddress()) ||
224 (MO1.isMCSymbol() && MO2.isMCSymbol() &&
225 MO1.getMCSymbol() == MO2.getMCSymbol()) ||
226 (MO1.isMBB() && MO2.isMBB() && MO1.getMBB() == MO2.getMBB());
229 static inline bool isLEA(const MachineInstr &MI) {
230 unsigned Opcode = MI.getOpcode();
231 return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
232 Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
235 namespace {
237 class X86OptimizeLEAPass : public MachineFunctionPass {
238 public:
239 X86OptimizeLEAPass() : MachineFunctionPass(ID) {}
241 StringRef getPassName() const override { return "X86 LEA Optimize"; }
243 /// Loop over all of the basic blocks, replacing address
244 /// calculations in load and store instructions, if it's already
245 /// been calculated by LEA. Also, remove redundant LEAs.
246 bool runOnMachineFunction(MachineFunction &MF) override;
248 static char ID;
250 private:
251 using MemOpMap = DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>>;
253 /// Returns a distance between two instructions inside one basic block.
254 /// Negative result means, that instructions occur in reverse order.
255 int calcInstrDist(const MachineInstr &First, const MachineInstr &Last);
257 /// Choose the best \p LEA instruction from the \p List to replace
258 /// address calculation in \p MI instruction. Return the address displacement
259 /// and the distance between \p MI and the chosen \p BestLEA in
260 /// \p AddrDispShift and \p Dist.
261 bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
262 const MachineInstr &MI, MachineInstr *&BestLEA,
263 int64_t &AddrDispShift, int &Dist);
265 /// Returns the difference between addresses' displacements of \p MI1
266 /// and \p MI2. The numbers of the first memory operands for the instructions
267 /// are specified through \p N1 and \p N2.
268 int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1,
269 const MachineInstr &MI2, unsigned N2) const;
271 /// Returns true if the \p Last LEA instruction can be replaced by the
272 /// \p First. The difference between displacements of the addresses calculated
273 /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper
274 /// replacement of the \p Last LEA's uses with the \p First's def register.
275 bool isReplaceable(const MachineInstr &First, const MachineInstr &Last,
276 int64_t &AddrDispShift) const;
278 /// Find all LEA instructions in the basic block. Also, assign position
279 /// numbers to all instructions in the basic block to speed up calculation of
280 /// distance between them.
281 void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs);
283 /// Removes redundant address calculations.
284 bool removeRedundantAddrCalc(MemOpMap &LEAs);
286 /// Replace debug value MI with a new debug value instruction using register
287 /// VReg with an appropriate offset and DIExpression to incorporate the
288 /// address displacement AddrDispShift. Return new debug value instruction.
289 MachineInstr *replaceDebugValue(MachineInstr &MI, unsigned VReg,
290 int64_t AddrDispShift);
292 /// Removes LEAs which calculate similar addresses.
293 bool removeRedundantLEAs(MemOpMap &LEAs);
295 DenseMap<const MachineInstr *, unsigned> InstrPos;
297 MachineRegisterInfo *MRI;
298 const X86InstrInfo *TII;
299 const X86RegisterInfo *TRI;
302 } // end anonymous namespace
304 char X86OptimizeLEAPass::ID = 0;
306 FunctionPass *llvm::createX86OptimizeLEAs() { return new X86OptimizeLEAPass(); }
307 INITIALIZE_PASS(X86OptimizeLEAPass, DEBUG_TYPE, "X86 optimize LEA pass", false,
308 false)
310 int X86OptimizeLEAPass::calcInstrDist(const MachineInstr &First,
311 const MachineInstr &Last) {
312 // Both instructions must be in the same basic block and they must be
313 // presented in InstrPos.
314 assert(Last.getParent() == First.getParent() &&
315 "Instructions are in different basic blocks");
316 assert(InstrPos.find(&First) != InstrPos.end() &&
317 InstrPos.find(&Last) != InstrPos.end() &&
318 "Instructions' positions are undefined");
320 return InstrPos[&Last] - InstrPos[&First];
323 // Find the best LEA instruction in the List to replace address recalculation in
324 // MI. Such LEA must meet these requirements:
325 // 1) The address calculated by the LEA differs only by the displacement from
326 // the address used in MI.
327 // 2) The register class of the definition of the LEA is compatible with the
328 // register class of the address base register of MI.
329 // 3) Displacement of the new memory operand should fit in 1 byte if possible.
330 // 4) The LEA should be as close to MI as possible, and prior to it if
331 // possible.
332 bool X86OptimizeLEAPass::chooseBestLEA(
333 const SmallVectorImpl<MachineInstr *> &List, const MachineInstr &MI,
334 MachineInstr *&BestLEA, int64_t &AddrDispShift, int &Dist) {
335 const MachineFunction *MF = MI.getParent()->getParent();
336 const MCInstrDesc &Desc = MI.getDesc();
337 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags) +
338 X86II::getOperandBias(Desc);
340 BestLEA = nullptr;
342 // Loop over all LEA instructions.
343 for (auto DefMI : List) {
344 // Get new address displacement.
345 int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1);
347 // Make sure address displacement fits 4 bytes.
348 if (!isInt<32>(AddrDispShiftTemp))
349 continue;
351 // Check that LEA def register can be used as MI address base. Some
352 // instructions can use a limited set of registers as address base, for
353 // example MOV8mr_NOREX. We could constrain the register class of the LEA
354 // def to suit MI, however since this case is very rare and hard to
355 // reproduce in a test it's just more reliable to skip the LEA.
356 if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) !=
357 MRI->getRegClass(DefMI->getOperand(0).getReg()))
358 continue;
360 // Choose the closest LEA instruction from the list, prior to MI if
361 // possible. Note that we took into account resulting address displacement
362 // as well. Also note that the list is sorted by the order in which the LEAs
363 // occur, so the break condition is pretty simple.
364 int DistTemp = calcInstrDist(*DefMI, MI);
365 assert(DistTemp != 0 &&
366 "The distance between two different instructions cannot be zero");
367 if (DistTemp > 0 || BestLEA == nullptr) {
368 // Do not update return LEA, if the current one provides a displacement
369 // which fits in 1 byte, while the new candidate does not.
370 if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) &&
371 isInt<8>(AddrDispShift))
372 continue;
374 BestLEA = DefMI;
375 AddrDispShift = AddrDispShiftTemp;
376 Dist = DistTemp;
379 // FIXME: Maybe we should not always stop at the first LEA after MI.
380 if (DistTemp < 0)
381 break;
384 return BestLEA != nullptr;
387 // Get the difference between the addresses' displacements of the two
388 // instructions \p MI1 and \p MI2. The numbers of the first memory operands are
389 // passed through \p N1 and \p N2.
390 int64_t X86OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1,
391 unsigned N1,
392 const MachineInstr &MI2,
393 unsigned N2) const {
394 const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp);
395 const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp);
397 assert(isSimilarDispOp(Op1, Op2) &&
398 "Address displacement operands are not compatible");
400 // After the assert above we can be sure that both operands are of the same
401 // valid type and use the same symbol/index/address, thus displacement shift
402 // calculation is rather simple.
403 if (Op1.isJTI())
404 return 0;
405 return Op1.isImm() ? Op1.getImm() - Op2.getImm()
406 : Op1.getOffset() - Op2.getOffset();
409 // Check that the Last LEA can be replaced by the First LEA. To be so,
410 // these requirements must be met:
411 // 1) Addresses calculated by LEAs differ only by displacement.
412 // 2) Def registers of LEAs belong to the same class.
413 // 3) All uses of the Last LEA def register are replaceable, thus the
414 // register is used only as address base.
415 bool X86OptimizeLEAPass::isReplaceable(const MachineInstr &First,
416 const MachineInstr &Last,
417 int64_t &AddrDispShift) const {
418 assert(isLEA(First) && isLEA(Last) &&
419 "The function works only with LEA instructions");
421 // Make sure that LEA def registers belong to the same class. There may be
422 // instructions (like MOV8mr_NOREX) which allow a limited set of registers to
423 // be used as their operands, so we must be sure that replacing one LEA
424 // with another won't lead to putting a wrong register in the instruction.
425 if (MRI->getRegClass(First.getOperand(0).getReg()) !=
426 MRI->getRegClass(Last.getOperand(0).getReg()))
427 return false;
429 // Get new address displacement.
430 AddrDispShift = getAddrDispShift(Last, 1, First, 1);
432 // Loop over all uses of the Last LEA to check that its def register is
433 // used only as address base for memory accesses. If so, it can be
434 // replaced, otherwise - no.
435 for (auto &MO : MRI->use_nodbg_operands(Last.getOperand(0).getReg())) {
436 MachineInstr &MI = *MO.getParent();
438 // Get the number of the first memory operand.
439 const MCInstrDesc &Desc = MI.getDesc();
440 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
442 // If the use instruction has no memory operand - the LEA is not
443 // replaceable.
444 if (MemOpNo < 0)
445 return false;
447 MemOpNo += X86II::getOperandBias(Desc);
449 // If the address base of the use instruction is not the LEA def register -
450 // the LEA is not replaceable.
451 if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO))
452 return false;
454 // If the LEA def register is used as any other operand of the use
455 // instruction - the LEA is not replaceable.
456 for (unsigned i = 0; i < MI.getNumOperands(); i++)
457 if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) &&
458 isIdenticalOp(MI.getOperand(i), MO))
459 return false;
461 // Check that the new address displacement will fit 4 bytes.
462 if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() &&
463 !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() +
464 AddrDispShift))
465 return false;
468 return true;
471 void X86OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB,
472 MemOpMap &LEAs) {
473 unsigned Pos = 0;
474 for (auto &MI : MBB) {
475 // Assign the position number to the instruction. Note that we are going to
476 // move some instructions during the optimization however there will never
477 // be a need to move two instructions before any selected instruction. So to
478 // avoid multiple positions' updates during moves we just increase position
479 // counter by two leaving a free space for instructions which will be moved.
480 InstrPos[&MI] = Pos += 2;
482 if (isLEA(MI))
483 LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI));
487 // Try to find load and store instructions which recalculate addresses already
488 // calculated by some LEA and replace their memory operands with its def
489 // register.
490 bool X86OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) {
491 bool Changed = false;
493 assert(!LEAs.empty());
494 MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent();
496 // Process all instructions in basic block.
497 for (auto I = MBB->begin(), E = MBB->end(); I != E;) {
498 MachineInstr &MI = *I++;
500 // Instruction must be load or store.
501 if (!MI.mayLoadOrStore())
502 continue;
504 // Get the number of the first memory operand.
505 const MCInstrDesc &Desc = MI.getDesc();
506 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
508 // If instruction has no memory operand - skip it.
509 if (MemOpNo < 0)
510 continue;
512 MemOpNo += X86II::getOperandBias(Desc);
514 // Do not call chooseBestLEA if there was no matching LEA
515 auto Insns = LEAs.find(getMemOpKey(MI, MemOpNo));
516 if (Insns == LEAs.end())
517 continue;
519 // Get the best LEA instruction to replace address calculation.
520 MachineInstr *DefMI;
521 int64_t AddrDispShift;
522 int Dist;
523 if (!chooseBestLEA(Insns->second, MI, DefMI, AddrDispShift, Dist))
524 continue;
526 // If LEA occurs before current instruction, we can freely replace
527 // the instruction. If LEA occurs after, we can lift LEA above the
528 // instruction and this way to be able to replace it. Since LEA and the
529 // instruction have similar memory operands (thus, the same def
530 // instructions for these operands), we can always do that, without
531 // worries of using registers before their defs.
532 if (Dist < 0) {
533 DefMI->removeFromParent();
534 MBB->insert(MachineBasicBlock::iterator(&MI), DefMI);
535 InstrPos[DefMI] = InstrPos[&MI] - 1;
537 // Make sure the instructions' position numbers are sane.
538 assert(((InstrPos[DefMI] == 1 &&
539 MachineBasicBlock::iterator(DefMI) == MBB->begin()) ||
540 InstrPos[DefMI] >
541 InstrPos[&*std::prev(MachineBasicBlock::iterator(DefMI))]) &&
542 "Instruction positioning is broken");
545 // Since we can possibly extend register lifetime, clear kill flags.
546 MRI->clearKillFlags(DefMI->getOperand(0).getReg());
548 ++NumSubstLEAs;
549 LLVM_DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump(););
551 // Change instruction operands.
552 MI.getOperand(MemOpNo + X86::AddrBaseReg)
553 .ChangeToRegister(DefMI->getOperand(0).getReg(), false);
554 MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1);
555 MI.getOperand(MemOpNo + X86::AddrIndexReg)
556 .ChangeToRegister(X86::NoRegister, false);
557 MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift);
558 MI.getOperand(MemOpNo + X86::AddrSegmentReg)
559 .ChangeToRegister(X86::NoRegister, false);
561 LLVM_DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump(););
563 Changed = true;
566 return Changed;
569 MachineInstr *X86OptimizeLEAPass::replaceDebugValue(MachineInstr &MI,
570 unsigned VReg,
571 int64_t AddrDispShift) {
572 DIExpression *Expr = const_cast<DIExpression *>(MI.getDebugExpression());
573 if (AddrDispShift != 0)
574 Expr = DIExpression::prepend(Expr, DIExpression::StackValue, AddrDispShift);
576 // Replace DBG_VALUE instruction with modified version.
577 MachineBasicBlock *MBB = MI.getParent();
578 DebugLoc DL = MI.getDebugLoc();
579 bool IsIndirect = MI.isIndirectDebugValue();
580 const MDNode *Var = MI.getDebugVariable();
581 if (IsIndirect)
582 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
583 return BuildMI(*MBB, MBB->erase(&MI), DL, TII->get(TargetOpcode::DBG_VALUE),
584 IsIndirect, VReg, Var, Expr);
587 // Try to find similar LEAs in the list and replace one with another.
588 bool X86OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) {
589 bool Changed = false;
591 // Loop over all entries in the table.
592 for (auto &E : LEAs) {
593 auto &List = E.second;
595 // Loop over all LEA pairs.
596 auto I1 = List.begin();
597 while (I1 != List.end()) {
598 MachineInstr &First = **I1;
599 auto I2 = std::next(I1);
600 while (I2 != List.end()) {
601 MachineInstr &Last = **I2;
602 int64_t AddrDispShift;
604 // LEAs should be in occurrence order in the list, so we can freely
605 // replace later LEAs with earlier ones.
606 assert(calcInstrDist(First, Last) > 0 &&
607 "LEAs must be in occurrence order in the list");
609 // Check that the Last LEA instruction can be replaced by the First.
610 if (!isReplaceable(First, Last, AddrDispShift)) {
611 ++I2;
612 continue;
615 // Loop over all uses of the Last LEA and update their operands. Note
616 // that the correctness of this has already been checked in the
617 // isReplaceable function.
618 Register FirstVReg = First.getOperand(0).getReg();
619 Register LastVReg = Last.getOperand(0).getReg();
620 for (auto UI = MRI->use_begin(LastVReg), UE = MRI->use_end();
621 UI != UE;) {
622 MachineOperand &MO = *UI++;
623 MachineInstr &MI = *MO.getParent();
625 if (MI.isDebugValue()) {
626 // Replace DBG_VALUE instruction with modified version using the
627 // register from the replacing LEA and the address displacement
628 // between the LEA instructions.
629 replaceDebugValue(MI, FirstVReg, AddrDispShift);
630 continue;
633 // Get the number of the first memory operand.
634 const MCInstrDesc &Desc = MI.getDesc();
635 int MemOpNo =
636 X86II::getMemoryOperandNo(Desc.TSFlags) +
637 X86II::getOperandBias(Desc);
639 // Update address base.
640 MO.setReg(FirstVReg);
642 // Update address disp.
643 MachineOperand &Op = MI.getOperand(MemOpNo + X86::AddrDisp);
644 if (Op.isImm())
645 Op.setImm(Op.getImm() + AddrDispShift);
646 else if (!Op.isJTI())
647 Op.setOffset(Op.getOffset() + AddrDispShift);
650 // Since we can possibly extend register lifetime, clear kill flags.
651 MRI->clearKillFlags(FirstVReg);
653 ++NumRedundantLEAs;
654 LLVM_DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: ";
655 Last.dump(););
657 // By this moment, all of the Last LEA's uses must be replaced. So we
658 // can freely remove it.
659 assert(MRI->use_empty(LastVReg) &&
660 "The LEA's def register must have no uses");
661 Last.eraseFromParent();
663 // Erase removed LEA from the list.
664 I2 = List.erase(I2);
666 Changed = true;
668 ++I1;
672 return Changed;
675 bool X86OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) {
676 bool Changed = false;
678 if (DisableX86LEAOpt || skipFunction(MF.getFunction()))
679 return false;
681 MRI = &MF.getRegInfo();
682 TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
683 TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
685 // Process all basic blocks.
686 for (auto &MBB : MF) {
687 MemOpMap LEAs;
688 InstrPos.clear();
690 // Find all LEA instructions in basic block.
691 findLEAs(MBB, LEAs);
693 // If current basic block has no LEAs, move on to the next one.
694 if (LEAs.empty())
695 continue;
697 // Remove redundant LEA instructions.
698 Changed |= removeRedundantLEAs(LEAs);
700 // Remove redundant address calculations. Do it only for -Os/-Oz since only
701 // a code size gain is expected from this part of the pass.
702 if (MF.getFunction().hasOptSize())
703 Changed |= removeRedundantAddrCalc(LEAs);
706 return Changed;