[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Transforms / IPO / GlobalOpt.cpp
blob819715b9f8dacff258028e19f79c06803d56ee6e
1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms simple global variables that never have their address
10 // taken. If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/BinaryFormat/Dwarf.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CallSite.h"
33 #include "llvm/IR/CallingConv.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GetElementPtrTypeIterator.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/Operator.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Use.h"
53 #include "llvm/IR/User.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/ValueHandle.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/AtomicOrdering.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/IPO.h"
65 #include "llvm/Transforms/Utils/CtorUtils.h"
66 #include "llvm/Transforms/Utils/Evaluator.h"
67 #include "llvm/Transforms/Utils/GlobalStatus.h"
68 #include <cassert>
69 #include <cstdint>
70 #include <utility>
71 #include <vector>
73 using namespace llvm;
75 #define DEBUG_TYPE "globalopt"
77 STATISTIC(NumMarked , "Number of globals marked constant");
78 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr");
79 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars");
80 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd");
81 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
82 STATISTIC(NumDeleted , "Number of globals deleted");
83 STATISTIC(NumGlobUses , "Number of global uses devirtualized");
84 STATISTIC(NumLocalized , "Number of globals localized");
85 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans");
86 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc");
87 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
88 STATISTIC(NumNestRemoved , "Number of nest attributes removed");
89 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
90 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
91 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
92 STATISTIC(NumInternalFunc, "Number of internal functions");
93 STATISTIC(NumColdCC, "Number of functions marked coldcc");
95 static cl::opt<bool>
96 EnableColdCCStressTest("enable-coldcc-stress-test",
97 cl::desc("Enable stress test of coldcc by adding "
98 "calling conv to all internal functions."),
99 cl::init(false), cl::Hidden);
101 static cl::opt<int> ColdCCRelFreq(
102 "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
103 cl::desc(
104 "Maximum block frequency, expressed as a percentage of caller's "
105 "entry frequency, for a call site to be considered cold for enabling"
106 "coldcc"));
108 /// Is this global variable possibly used by a leak checker as a root? If so,
109 /// we might not really want to eliminate the stores to it.
110 static bool isLeakCheckerRoot(GlobalVariable *GV) {
111 // A global variable is a root if it is a pointer, or could plausibly contain
112 // a pointer. There are two challenges; one is that we could have a struct
113 // the has an inner member which is a pointer. We recurse through the type to
114 // detect these (up to a point). The other is that we may actually be a union
115 // of a pointer and another type, and so our LLVM type is an integer which
116 // gets converted into a pointer, or our type is an [i8 x #] with a pointer
117 // potentially contained here.
119 if (GV->hasPrivateLinkage())
120 return false;
122 SmallVector<Type *, 4> Types;
123 Types.push_back(GV->getValueType());
125 unsigned Limit = 20;
126 do {
127 Type *Ty = Types.pop_back_val();
128 switch (Ty->getTypeID()) {
129 default: break;
130 case Type::PointerTyID: return true;
131 case Type::ArrayTyID:
132 case Type::VectorTyID: {
133 SequentialType *STy = cast<SequentialType>(Ty);
134 Types.push_back(STy->getElementType());
135 break;
137 case Type::StructTyID: {
138 StructType *STy = cast<StructType>(Ty);
139 if (STy->isOpaque()) return true;
140 for (StructType::element_iterator I = STy->element_begin(),
141 E = STy->element_end(); I != E; ++I) {
142 Type *InnerTy = *I;
143 if (isa<PointerType>(InnerTy)) return true;
144 if (isa<CompositeType>(InnerTy))
145 Types.push_back(InnerTy);
147 break;
150 if (--Limit == 0) return true;
151 } while (!Types.empty());
152 return false;
155 /// Given a value that is stored to a global but never read, determine whether
156 /// it's safe to remove the store and the chain of computation that feeds the
157 /// store.
158 static bool IsSafeComputationToRemove(
159 Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
160 do {
161 if (isa<Constant>(V))
162 return true;
163 if (!V->hasOneUse())
164 return false;
165 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
166 isa<GlobalValue>(V))
167 return false;
168 if (isAllocationFn(V, GetTLI))
169 return true;
171 Instruction *I = cast<Instruction>(V);
172 if (I->mayHaveSideEffects())
173 return false;
174 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
175 if (!GEP->hasAllConstantIndices())
176 return false;
177 } else if (I->getNumOperands() != 1) {
178 return false;
181 V = I->getOperand(0);
182 } while (true);
185 /// This GV is a pointer root. Loop over all users of the global and clean up
186 /// any that obviously don't assign the global a value that isn't dynamically
187 /// allocated.
188 static bool
189 CleanupPointerRootUsers(GlobalVariable *GV,
190 function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
191 // A brief explanation of leak checkers. The goal is to find bugs where
192 // pointers are forgotten, causing an accumulating growth in memory
193 // usage over time. The common strategy for leak checkers is to whitelist the
194 // memory pointed to by globals at exit. This is popular because it also
195 // solves another problem where the main thread of a C++ program may shut down
196 // before other threads that are still expecting to use those globals. To
197 // handle that case, we expect the program may create a singleton and never
198 // destroy it.
200 bool Changed = false;
202 // If Dead[n].first is the only use of a malloc result, we can delete its
203 // chain of computation and the store to the global in Dead[n].second.
204 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
206 // Constants can't be pointers to dynamically allocated memory.
207 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
208 UI != E;) {
209 User *U = *UI++;
210 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
211 Value *V = SI->getValueOperand();
212 if (isa<Constant>(V)) {
213 Changed = true;
214 SI->eraseFromParent();
215 } else if (Instruction *I = dyn_cast<Instruction>(V)) {
216 if (I->hasOneUse())
217 Dead.push_back(std::make_pair(I, SI));
219 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
220 if (isa<Constant>(MSI->getValue())) {
221 Changed = true;
222 MSI->eraseFromParent();
223 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
224 if (I->hasOneUse())
225 Dead.push_back(std::make_pair(I, MSI));
227 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
228 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
229 if (MemSrc && MemSrc->isConstant()) {
230 Changed = true;
231 MTI->eraseFromParent();
232 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
233 if (I->hasOneUse())
234 Dead.push_back(std::make_pair(I, MTI));
236 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
237 if (CE->use_empty()) {
238 CE->destroyConstant();
239 Changed = true;
241 } else if (Constant *C = dyn_cast<Constant>(U)) {
242 if (isSafeToDestroyConstant(C)) {
243 C->destroyConstant();
244 // This could have invalidated UI, start over from scratch.
245 Dead.clear();
246 CleanupPointerRootUsers(GV, GetTLI);
247 return true;
252 for (int i = 0, e = Dead.size(); i != e; ++i) {
253 if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) {
254 Dead[i].second->eraseFromParent();
255 Instruction *I = Dead[i].first;
256 do {
257 if (isAllocationFn(I, GetTLI))
258 break;
259 Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
260 if (!J)
261 break;
262 I->eraseFromParent();
263 I = J;
264 } while (true);
265 I->eraseFromParent();
269 return Changed;
272 /// We just marked GV constant. Loop over all users of the global, cleaning up
273 /// the obvious ones. This is largely just a quick scan over the use list to
274 /// clean up the easy and obvious cruft. This returns true if it made a change.
275 static bool CleanupConstantGlobalUsers(
276 Value *V, Constant *Init, const DataLayout &DL,
277 function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
278 bool Changed = false;
279 // Note that we need to use a weak value handle for the worklist items. When
280 // we delete a constant array, we may also be holding pointer to one of its
281 // elements (or an element of one of its elements if we're dealing with an
282 // array of arrays) in the worklist.
283 SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end());
284 while (!WorkList.empty()) {
285 Value *UV = WorkList.pop_back_val();
286 if (!UV)
287 continue;
289 User *U = cast<User>(UV);
291 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
292 if (Init) {
293 // Replace the load with the initializer.
294 LI->replaceAllUsesWith(Init);
295 LI->eraseFromParent();
296 Changed = true;
298 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
299 // Store must be unreachable or storing Init into the global.
300 SI->eraseFromParent();
301 Changed = true;
302 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
303 if (CE->getOpcode() == Instruction::GetElementPtr) {
304 Constant *SubInit = nullptr;
305 if (Init)
306 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
307 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, GetTLI);
308 } else if ((CE->getOpcode() == Instruction::BitCast &&
309 CE->getType()->isPointerTy()) ||
310 CE->getOpcode() == Instruction::AddrSpaceCast) {
311 // Pointer cast, delete any stores and memsets to the global.
312 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, GetTLI);
315 if (CE->use_empty()) {
316 CE->destroyConstant();
317 Changed = true;
319 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
320 // Do not transform "gepinst (gep constexpr (GV))" here, because forming
321 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
322 // and will invalidate our notion of what Init is.
323 Constant *SubInit = nullptr;
324 if (!isa<ConstantExpr>(GEP->getOperand(0))) {
325 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
326 ConstantFoldInstruction(GEP, DL, &GetTLI(*GEP->getFunction())));
327 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
328 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
330 // If the initializer is an all-null value and we have an inbounds GEP,
331 // we already know what the result of any load from that GEP is.
332 // TODO: Handle splats.
333 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
334 SubInit = Constant::getNullValue(GEP->getResultElementType());
336 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, GetTLI);
338 if (GEP->use_empty()) {
339 GEP->eraseFromParent();
340 Changed = true;
342 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
343 if (MI->getRawDest() == V) {
344 MI->eraseFromParent();
345 Changed = true;
348 } else if (Constant *C = dyn_cast<Constant>(U)) {
349 // If we have a chain of dead constantexprs or other things dangling from
350 // us, and if they are all dead, nuke them without remorse.
351 if (isSafeToDestroyConstant(C)) {
352 C->destroyConstant();
353 CleanupConstantGlobalUsers(V, Init, DL, GetTLI);
354 return true;
358 return Changed;
361 static bool isSafeSROAElementUse(Value *V);
363 /// Return true if the specified GEP is a safe user of a derived
364 /// expression from a global that we want to SROA.
365 static bool isSafeSROAGEP(User *U) {
366 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we
367 // don't like < 3 operand CE's, and we don't like non-constant integer
368 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some
369 // value of C.
370 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
371 !cast<Constant>(U->getOperand(1))->isNullValue())
372 return false;
374 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
375 ++GEPI; // Skip over the pointer index.
377 // For all other level we require that the indices are constant and inrange.
378 // In particular, consider: A[0][i]. We cannot know that the user isn't doing
379 // invalid things like allowing i to index an out-of-range subscript that
380 // accesses A[1]. This can also happen between different members of a struct
381 // in llvm IR.
382 for (; GEPI != E; ++GEPI) {
383 if (GEPI.isStruct())
384 continue;
386 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
387 if (!IdxVal || (GEPI.isBoundedSequential() &&
388 IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
389 return false;
392 return llvm::all_of(U->users(),
393 [](User *UU) { return isSafeSROAElementUse(UU); });
396 /// Return true if the specified instruction is a safe user of a derived
397 /// expression from a global that we want to SROA.
398 static bool isSafeSROAElementUse(Value *V) {
399 // We might have a dead and dangling constant hanging off of here.
400 if (Constant *C = dyn_cast<Constant>(V))
401 return isSafeToDestroyConstant(C);
403 Instruction *I = dyn_cast<Instruction>(V);
404 if (!I) return false;
406 // Loads are ok.
407 if (isa<LoadInst>(I)) return true;
409 // Stores *to* the pointer are ok.
410 if (StoreInst *SI = dyn_cast<StoreInst>(I))
411 return SI->getOperand(0) != V;
413 // Otherwise, it must be a GEP. Check it and its users are safe to SRA.
414 return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I);
417 /// Look at all uses of the global and decide whether it is safe for us to
418 /// perform this transformation.
419 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
420 for (User *U : GV->users()) {
421 // The user of the global must be a GEP Inst or a ConstantExpr GEP.
422 if (!isa<GetElementPtrInst>(U) &&
423 (!isa<ConstantExpr>(U) ||
424 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
425 return false;
427 // Check the gep and it's users are safe to SRA
428 if (!isSafeSROAGEP(U))
429 return false;
432 return true;
435 /// Copy over the debug info for a variable to its SRA replacements.
436 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
437 uint64_t FragmentOffsetInBits,
438 uint64_t FragmentSizeInBits,
439 unsigned NumElements) {
440 SmallVector<DIGlobalVariableExpression *, 1> GVs;
441 GV->getDebugInfo(GVs);
442 for (auto *GVE : GVs) {
443 DIVariable *Var = GVE->getVariable();
444 DIExpression *Expr = GVE->getExpression();
445 if (NumElements > 1) {
446 if (auto E = DIExpression::createFragmentExpression(
447 Expr, FragmentOffsetInBits, FragmentSizeInBits))
448 Expr = *E;
449 else
450 return;
452 auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
453 NGV->addDebugInfo(NGVE);
457 /// Perform scalar replacement of aggregates on the specified global variable.
458 /// This opens the door for other optimizations by exposing the behavior of the
459 /// program in a more fine-grained way. We have determined that this
460 /// transformation is safe already. We return the first global variable we
461 /// insert so that the caller can reprocess it.
462 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
463 // Make sure this global only has simple uses that we can SRA.
464 if (!GlobalUsersSafeToSRA(GV))
465 return nullptr;
467 assert(GV->hasLocalLinkage());
468 Constant *Init = GV->getInitializer();
469 Type *Ty = Init->getType();
471 std::vector<GlobalVariable *> NewGlobals;
472 Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
474 // Get the alignment of the global, either explicit or target-specific.
475 unsigned StartAlignment = GV->getAlignment();
476 if (StartAlignment == 0)
477 StartAlignment = DL.getABITypeAlignment(GV->getType());
479 if (StructType *STy = dyn_cast<StructType>(Ty)) {
480 unsigned NumElements = STy->getNumElements();
481 NewGlobals.reserve(NumElements);
482 const StructLayout &Layout = *DL.getStructLayout(STy);
483 for (unsigned i = 0, e = NumElements; i != e; ++i) {
484 Constant *In = Init->getAggregateElement(i);
485 assert(In && "Couldn't get element of initializer?");
486 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
487 GlobalVariable::InternalLinkage,
488 In, GV->getName()+"."+Twine(i),
489 GV->getThreadLocalMode(),
490 GV->getType()->getAddressSpace());
491 NGV->setExternallyInitialized(GV->isExternallyInitialized());
492 NGV->copyAttributesFrom(GV);
493 Globals.push_back(NGV);
494 NewGlobals.push_back(NGV);
496 // Calculate the known alignment of the field. If the original aggregate
497 // had 256 byte alignment for example, something might depend on that:
498 // propagate info to each field.
499 uint64_t FieldOffset = Layout.getElementOffset(i);
500 Align NewAlign(MinAlign(StartAlignment, FieldOffset));
501 if (NewAlign > Align(DL.getABITypeAlignment(STy->getElementType(i))))
502 NGV->setAlignment(NewAlign);
504 // Copy over the debug info for the variable.
505 uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType());
506 uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(i);
507 transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, NumElements);
509 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
510 unsigned NumElements = STy->getNumElements();
511 if (NumElements > 16 && GV->hasNUsesOrMore(16))
512 return nullptr; // It's not worth it.
513 NewGlobals.reserve(NumElements);
514 auto ElTy = STy->getElementType();
515 uint64_t EltSize = DL.getTypeAllocSize(ElTy);
516 Align EltAlign(DL.getABITypeAlignment(ElTy));
517 uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);
518 for (unsigned i = 0, e = NumElements; i != e; ++i) {
519 Constant *In = Init->getAggregateElement(i);
520 assert(In && "Couldn't get element of initializer?");
522 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
523 GlobalVariable::InternalLinkage,
524 In, GV->getName()+"."+Twine(i),
525 GV->getThreadLocalMode(),
526 GV->getType()->getAddressSpace());
527 NGV->setExternallyInitialized(GV->isExternallyInitialized());
528 NGV->copyAttributesFrom(GV);
529 Globals.push_back(NGV);
530 NewGlobals.push_back(NGV);
532 // Calculate the known alignment of the field. If the original aggregate
533 // had 256 byte alignment for example, something might depend on that:
534 // propagate info to each field.
535 Align NewAlign(MinAlign(StartAlignment, EltSize * i));
536 if (NewAlign > EltAlign)
537 NGV->setAlignment(NewAlign);
538 transferSRADebugInfo(GV, NGV, FragmentSizeInBits * i, FragmentSizeInBits,
539 NumElements);
543 if (NewGlobals.empty())
544 return nullptr;
546 LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
548 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
550 // Loop over all of the uses of the global, replacing the constantexpr geps,
551 // with smaller constantexpr geps or direct references.
552 while (!GV->use_empty()) {
553 User *GEP = GV->user_back();
554 assert(((isa<ConstantExpr>(GEP) &&
555 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
556 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
558 // Ignore the 1th operand, which has to be zero or else the program is quite
559 // broken (undefined). Get the 2nd operand, which is the structure or array
560 // index.
561 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
562 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
564 Value *NewPtr = NewGlobals[Val];
565 Type *NewTy = NewGlobals[Val]->getValueType();
567 // Form a shorter GEP if needed.
568 if (GEP->getNumOperands() > 3) {
569 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
570 SmallVector<Constant*, 8> Idxs;
571 Idxs.push_back(NullInt);
572 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
573 Idxs.push_back(CE->getOperand(i));
574 NewPtr =
575 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
576 } else {
577 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
578 SmallVector<Value*, 8> Idxs;
579 Idxs.push_back(NullInt);
580 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
581 Idxs.push_back(GEPI->getOperand(i));
582 NewPtr = GetElementPtrInst::Create(
583 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI);
586 GEP->replaceAllUsesWith(NewPtr);
588 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
589 GEPI->eraseFromParent();
590 else
591 cast<ConstantExpr>(GEP)->destroyConstant();
594 // Delete the old global, now that it is dead.
595 Globals.erase(GV);
596 ++NumSRA;
598 // Loop over the new globals array deleting any globals that are obviously
599 // dead. This can arise due to scalarization of a structure or an array that
600 // has elements that are dead.
601 unsigned FirstGlobal = 0;
602 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
603 if (NewGlobals[i]->use_empty()) {
604 Globals.erase(NewGlobals[i]);
605 if (FirstGlobal == i) ++FirstGlobal;
608 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
611 /// Return true if all users of the specified value will trap if the value is
612 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid
613 /// reprocessing them.
614 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
615 SmallPtrSetImpl<const PHINode*> &PHIs) {
616 for (const User *U : V->users()) {
617 if (const Instruction *I = dyn_cast<Instruction>(U)) {
618 // If null pointer is considered valid, then all uses are non-trapping.
619 // Non address-space 0 globals have already been pruned by the caller.
620 if (NullPointerIsDefined(I->getFunction()))
621 return false;
623 if (isa<LoadInst>(U)) {
624 // Will trap.
625 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
626 if (SI->getOperand(0) == V) {
627 //cerr << "NONTRAPPING USE: " << *U;
628 return false; // Storing the value.
630 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
631 if (CI->getCalledValue() != V) {
632 //cerr << "NONTRAPPING USE: " << *U;
633 return false; // Not calling the ptr
635 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
636 if (II->getCalledValue() != V) {
637 //cerr << "NONTRAPPING USE: " << *U;
638 return false; // Not calling the ptr
640 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
641 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
642 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
643 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
644 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
645 // If we've already seen this phi node, ignore it, it has already been
646 // checked.
647 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
648 return false;
649 } else if (isa<ICmpInst>(U) &&
650 isa<ConstantPointerNull>(U->getOperand(1))) {
651 // Ignore icmp X, null
652 } else {
653 //cerr << "NONTRAPPING USE: " << *U;
654 return false;
657 return true;
660 /// Return true if all uses of any loads from GV will trap if the loaded value
661 /// is null. Note that this also permits comparisons of the loaded value
662 /// against null, as a special case.
663 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
664 for (const User *U : GV->users())
665 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
666 SmallPtrSet<const PHINode*, 8> PHIs;
667 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
668 return false;
669 } else if (isa<StoreInst>(U)) {
670 // Ignore stores to the global.
671 } else {
672 // We don't know or understand this user, bail out.
673 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
674 return false;
676 return true;
679 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
680 bool Changed = false;
681 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
682 Instruction *I = cast<Instruction>(*UI++);
683 // Uses are non-trapping if null pointer is considered valid.
684 // Non address-space 0 globals are already pruned by the caller.
685 if (NullPointerIsDefined(I->getFunction()))
686 return false;
687 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
688 LI->setOperand(0, NewV);
689 Changed = true;
690 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
691 if (SI->getOperand(1) == V) {
692 SI->setOperand(1, NewV);
693 Changed = true;
695 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
696 CallSite CS(I);
697 if (CS.getCalledValue() == V) {
698 // Calling through the pointer! Turn into a direct call, but be careful
699 // that the pointer is not also being passed as an argument.
700 CS.setCalledFunction(NewV);
701 Changed = true;
702 bool PassedAsArg = false;
703 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
704 if (CS.getArgument(i) == V) {
705 PassedAsArg = true;
706 CS.setArgument(i, NewV);
709 if (PassedAsArg) {
710 // Being passed as an argument also. Be careful to not invalidate UI!
711 UI = V->user_begin();
714 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
715 Changed |= OptimizeAwayTrappingUsesOfValue(CI,
716 ConstantExpr::getCast(CI->getOpcode(),
717 NewV, CI->getType()));
718 if (CI->use_empty()) {
719 Changed = true;
720 CI->eraseFromParent();
722 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
723 // Should handle GEP here.
724 SmallVector<Constant*, 8> Idxs;
725 Idxs.reserve(GEPI->getNumOperands()-1);
726 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
727 i != e; ++i)
728 if (Constant *C = dyn_cast<Constant>(*i))
729 Idxs.push_back(C);
730 else
731 break;
732 if (Idxs.size() == GEPI->getNumOperands()-1)
733 Changed |= OptimizeAwayTrappingUsesOfValue(
734 GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
735 NewV, Idxs));
736 if (GEPI->use_empty()) {
737 Changed = true;
738 GEPI->eraseFromParent();
743 return Changed;
746 /// The specified global has only one non-null value stored into it. If there
747 /// are uses of the loaded value that would trap if the loaded value is
748 /// dynamically null, then we know that they cannot be reachable with a null
749 /// optimize away the load.
750 static bool OptimizeAwayTrappingUsesOfLoads(
751 GlobalVariable *GV, Constant *LV, const DataLayout &DL,
752 function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
753 bool Changed = false;
755 // Keep track of whether we are able to remove all the uses of the global
756 // other than the store that defines it.
757 bool AllNonStoreUsesGone = true;
759 // Replace all uses of loads with uses of uses of the stored value.
760 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
761 User *GlobalUser = *GUI++;
762 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
763 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
764 // If we were able to delete all uses of the loads
765 if (LI->use_empty()) {
766 LI->eraseFromParent();
767 Changed = true;
768 } else {
769 AllNonStoreUsesGone = false;
771 } else if (isa<StoreInst>(GlobalUser)) {
772 // Ignore the store that stores "LV" to the global.
773 assert(GlobalUser->getOperand(1) == GV &&
774 "Must be storing *to* the global");
775 } else {
776 AllNonStoreUsesGone = false;
778 // If we get here we could have other crazy uses that are transitively
779 // loaded.
780 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
781 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
782 isa<BitCastInst>(GlobalUser) ||
783 isa<GetElementPtrInst>(GlobalUser)) &&
784 "Only expect load and stores!");
788 if (Changed) {
789 LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
790 << "\n");
791 ++NumGlobUses;
794 // If we nuked all of the loads, then none of the stores are needed either,
795 // nor is the global.
796 if (AllNonStoreUsesGone) {
797 if (isLeakCheckerRoot(GV)) {
798 Changed |= CleanupPointerRootUsers(GV, GetTLI);
799 } else {
800 Changed = true;
801 CleanupConstantGlobalUsers(GV, nullptr, DL, GetTLI);
803 if (GV->use_empty()) {
804 LLVM_DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n");
805 Changed = true;
806 GV->eraseFromParent();
807 ++NumDeleted;
810 return Changed;
813 /// Walk the use list of V, constant folding all of the instructions that are
814 /// foldable.
815 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
816 TargetLibraryInfo *TLI) {
817 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
818 if (Instruction *I = dyn_cast<Instruction>(*UI++))
819 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
820 I->replaceAllUsesWith(NewC);
822 // Advance UI to the next non-I use to avoid invalidating it!
823 // Instructions could multiply use V.
824 while (UI != E && *UI == I)
825 ++UI;
826 if (isInstructionTriviallyDead(I, TLI))
827 I->eraseFromParent();
831 /// This function takes the specified global variable, and transforms the
832 /// program as if it always contained the result of the specified malloc.
833 /// Because it is always the result of the specified malloc, there is no reason
834 /// to actually DO the malloc. Instead, turn the malloc into a global, and any
835 /// loads of GV as uses of the new global.
836 static GlobalVariable *
837 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
838 ConstantInt *NElements, const DataLayout &DL,
839 TargetLibraryInfo *TLI) {
840 LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI
841 << '\n');
843 Type *GlobalType;
844 if (NElements->getZExtValue() == 1)
845 GlobalType = AllocTy;
846 else
847 // If we have an array allocation, the global variable is of an array.
848 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
850 // Create the new global variable. The contents of the malloc'd memory is
851 // undefined, so initialize with an undef value.
852 GlobalVariable *NewGV = new GlobalVariable(
853 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
854 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
855 GV->getThreadLocalMode());
857 // If there are bitcast users of the malloc (which is typical, usually we have
858 // a malloc + bitcast) then replace them with uses of the new global. Update
859 // other users to use the global as well.
860 BitCastInst *TheBC = nullptr;
861 while (!CI->use_empty()) {
862 Instruction *User = cast<Instruction>(CI->user_back());
863 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
864 if (BCI->getType() == NewGV->getType()) {
865 BCI->replaceAllUsesWith(NewGV);
866 BCI->eraseFromParent();
867 } else {
868 BCI->setOperand(0, NewGV);
870 } else {
871 if (!TheBC)
872 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
873 User->replaceUsesOfWith(CI, TheBC);
877 Constant *RepValue = NewGV;
878 if (NewGV->getType() != GV->getValueType())
879 RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
881 // If there is a comparison against null, we will insert a global bool to
882 // keep track of whether the global was initialized yet or not.
883 GlobalVariable *InitBool =
884 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
885 GlobalValue::InternalLinkage,
886 ConstantInt::getFalse(GV->getContext()),
887 GV->getName()+".init", GV->getThreadLocalMode());
888 bool InitBoolUsed = false;
890 // Loop over all uses of GV, processing them in turn.
891 while (!GV->use_empty()) {
892 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
893 // The global is initialized when the store to it occurs.
894 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false,
895 None, SI->getOrdering(), SI->getSyncScopeID(), SI);
896 SI->eraseFromParent();
897 continue;
900 LoadInst *LI = cast<LoadInst>(GV->user_back());
901 while (!LI->use_empty()) {
902 Use &LoadUse = *LI->use_begin();
903 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
904 if (!ICI) {
905 LoadUse = RepValue;
906 continue;
909 // Replace the cmp X, 0 with a use of the bool value.
910 // Sink the load to where the compare was, if atomic rules allow us to.
911 Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
912 InitBool->getName() + ".val", false, None,
913 LI->getOrdering(), LI->getSyncScopeID(),
914 LI->isUnordered() ? (Instruction *)ICI : LI);
915 InitBoolUsed = true;
916 switch (ICI->getPredicate()) {
917 default: llvm_unreachable("Unknown ICmp Predicate!");
918 case ICmpInst::ICMP_ULT:
919 case ICmpInst::ICMP_SLT: // X < null -> always false
920 LV = ConstantInt::getFalse(GV->getContext());
921 break;
922 case ICmpInst::ICMP_ULE:
923 case ICmpInst::ICMP_SLE:
924 case ICmpInst::ICMP_EQ:
925 LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
926 break;
927 case ICmpInst::ICMP_NE:
928 case ICmpInst::ICMP_UGE:
929 case ICmpInst::ICMP_SGE:
930 case ICmpInst::ICMP_UGT:
931 case ICmpInst::ICMP_SGT:
932 break; // no change.
934 ICI->replaceAllUsesWith(LV);
935 ICI->eraseFromParent();
937 LI->eraseFromParent();
940 // If the initialization boolean was used, insert it, otherwise delete it.
941 if (!InitBoolUsed) {
942 while (!InitBool->use_empty()) // Delete initializations
943 cast<StoreInst>(InitBool->user_back())->eraseFromParent();
944 delete InitBool;
945 } else
946 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
948 // Now the GV is dead, nuke it and the malloc..
949 GV->eraseFromParent();
950 CI->eraseFromParent();
952 // To further other optimizations, loop over all users of NewGV and try to
953 // constant prop them. This will promote GEP instructions with constant
954 // indices into GEP constant-exprs, which will allow global-opt to hack on it.
955 ConstantPropUsersOf(NewGV, DL, TLI);
956 if (RepValue != NewGV)
957 ConstantPropUsersOf(RepValue, DL, TLI);
959 return NewGV;
962 /// Scan the use-list of V checking to make sure that there are no complex uses
963 /// of V. We permit simple things like dereferencing the pointer, but not
964 /// storing through the address, unless it is to the specified global.
965 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
966 const GlobalVariable *GV,
967 SmallPtrSetImpl<const PHINode*> &PHIs) {
968 for (const User *U : V->users()) {
969 const Instruction *Inst = cast<Instruction>(U);
971 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
972 continue; // Fine, ignore.
975 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
976 if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
977 return false; // Storing the pointer itself... bad.
978 continue; // Otherwise, storing through it, or storing into GV... fine.
981 // Must index into the array and into the struct.
982 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
983 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
984 return false;
985 continue;
988 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
989 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI
990 // cycles.
991 if (PHIs.insert(PN).second)
992 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
993 return false;
994 continue;
997 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
998 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
999 return false;
1000 continue;
1003 return false;
1005 return true;
1008 /// The Alloc pointer is stored into GV somewhere. Transform all uses of the
1009 /// allocation into loads from the global and uses of the resultant pointer.
1010 /// Further, delete the store into GV. This assumes that these value pass the
1011 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1012 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1013 GlobalVariable *GV) {
1014 while (!Alloc->use_empty()) {
1015 Instruction *U = cast<Instruction>(*Alloc->user_begin());
1016 Instruction *InsertPt = U;
1017 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1018 // If this is the store of the allocation into the global, remove it.
1019 if (SI->getOperand(1) == GV) {
1020 SI->eraseFromParent();
1021 continue;
1023 } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1024 // Insert the load in the corresponding predecessor, not right before the
1025 // PHI.
1026 InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
1027 } else if (isa<BitCastInst>(U)) {
1028 // Must be bitcast between the malloc and store to initialize the global.
1029 ReplaceUsesOfMallocWithGlobal(U, GV);
1030 U->eraseFromParent();
1031 continue;
1032 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1033 // If this is a "GEP bitcast" and the user is a store to the global, then
1034 // just process it as a bitcast.
1035 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1036 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1037 if (SI->getOperand(1) == GV) {
1038 // Must be bitcast GEP between the malloc and store to initialize
1039 // the global.
1040 ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1041 GEPI->eraseFromParent();
1042 continue;
1046 // Insert a load from the global, and use it instead of the malloc.
1047 Value *NL =
1048 new LoadInst(GV->getValueType(), GV, GV->getName() + ".val", InsertPt);
1049 U->replaceUsesOfWith(Alloc, NL);
1053 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to
1054 /// perform heap SRA on. This permits GEP's that index through the array and
1055 /// struct field, icmps of null, and PHIs.
1056 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1057 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1058 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
1059 // We permit two users of the load: setcc comparing against the null
1060 // pointer, and a getelementptr of a specific form.
1061 for (const User *U : V->users()) {
1062 const Instruction *UI = cast<Instruction>(U);
1064 // Comparison against null is ok.
1065 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1066 if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1067 return false;
1068 continue;
1071 // getelementptr is also ok, but only a simple form.
1072 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1073 // Must index into the array and into the struct.
1074 if (GEPI->getNumOperands() < 3)
1075 return false;
1077 // Otherwise the GEP is ok.
1078 continue;
1081 if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1082 if (!LoadUsingPHIsPerLoad.insert(PN).second)
1083 // This means some phi nodes are dependent on each other.
1084 // Avoid infinite looping!
1085 return false;
1086 if (!LoadUsingPHIs.insert(PN).second)
1087 // If we have already analyzed this PHI, then it is safe.
1088 continue;
1090 // Make sure all uses of the PHI are simple enough to transform.
1091 if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1092 LoadUsingPHIs, LoadUsingPHIsPerLoad))
1093 return false;
1095 continue;
1098 // Otherwise we don't know what this is, not ok.
1099 return false;
1102 return true;
1105 /// If all users of values loaded from GV are simple enough to perform HeapSRA,
1106 /// return true.
1107 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1108 Instruction *StoredVal) {
1109 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1110 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1111 for (const User *U : GV->users())
1112 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1113 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1114 LoadUsingPHIsPerLoad))
1115 return false;
1116 LoadUsingPHIsPerLoad.clear();
1119 // If we reach here, we know that all uses of the loads and transitive uses
1120 // (through PHI nodes) are simple enough to transform. However, we don't know
1121 // that all inputs the to the PHI nodes are in the same equivalence sets.
1122 // Check to verify that all operands of the PHIs are either PHIS that can be
1123 // transformed, loads from GV, or MI itself.
1124 for (const PHINode *PN : LoadUsingPHIs) {
1125 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1126 Value *InVal = PN->getIncomingValue(op);
1128 // PHI of the stored value itself is ok.
1129 if (InVal == StoredVal) continue;
1131 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1132 // One of the PHIs in our set is (optimistically) ok.
1133 if (LoadUsingPHIs.count(InPN))
1134 continue;
1135 return false;
1138 // Load from GV is ok.
1139 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1140 if (LI->getOperand(0) == GV)
1141 continue;
1143 // UNDEF? NULL?
1145 // Anything else is rejected.
1146 return false;
1150 return true;
1153 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1154 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1155 std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1156 std::vector<Value *> &FieldVals = InsertedScalarizedValues[V];
1158 if (FieldNo >= FieldVals.size())
1159 FieldVals.resize(FieldNo+1);
1161 // If we already have this value, just reuse the previously scalarized
1162 // version.
1163 if (Value *FieldVal = FieldVals[FieldNo])
1164 return FieldVal;
1166 // Depending on what instruction this is, we have several cases.
1167 Value *Result;
1168 if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1169 // This is a scalarized version of the load from the global. Just create
1170 // a new Load of the scalarized global.
1171 Value *V = GetHeapSROAValue(LI->getOperand(0), FieldNo,
1172 InsertedScalarizedValues, PHIsToRewrite);
1173 Result = new LoadInst(V->getType()->getPointerElementType(), V,
1174 LI->getName() + ".f" + Twine(FieldNo), LI);
1175 } else {
1176 PHINode *PN = cast<PHINode>(V);
1177 // PN's type is pointer to struct. Make a new PHI of pointer to struct
1178 // field.
1180 PointerType *PTy = cast<PointerType>(PN->getType());
1181 StructType *ST = cast<StructType>(PTy->getElementType());
1183 unsigned AS = PTy->getAddressSpace();
1184 PHINode *NewPN =
1185 PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1186 PN->getNumIncomingValues(),
1187 PN->getName()+".f"+Twine(FieldNo), PN);
1188 Result = NewPN;
1189 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1192 return FieldVals[FieldNo] = Result;
1195 /// Given a load instruction and a value derived from the load, rewrite the
1196 /// derived value to use the HeapSRoA'd load.
1197 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1198 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1199 std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1200 // If this is a comparison against null, handle it.
1201 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1202 assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1203 // If we have a setcc of the loaded pointer, we can use a setcc of any
1204 // field.
1205 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1206 InsertedScalarizedValues, PHIsToRewrite);
1208 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1209 Constant::getNullValue(NPtr->getType()),
1210 SCI->getName());
1211 SCI->replaceAllUsesWith(New);
1212 SCI->eraseFromParent();
1213 return;
1216 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1217 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1218 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1219 && "Unexpected GEPI!");
1221 // Load the pointer for this field.
1222 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1223 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1224 InsertedScalarizedValues, PHIsToRewrite);
1226 // Create the new GEP idx vector.
1227 SmallVector<Value*, 8> GEPIdx;
1228 GEPIdx.push_back(GEPI->getOperand(1));
1229 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1231 Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
1232 GEPI->getName(), GEPI);
1233 GEPI->replaceAllUsesWith(NGEPI);
1234 GEPI->eraseFromParent();
1235 return;
1238 // Recursively transform the users of PHI nodes. This will lazily create the
1239 // PHIs that are needed for individual elements. Keep track of what PHIs we
1240 // see in InsertedScalarizedValues so that we don't get infinite loops (very
1241 // antisocial). If the PHI is already in InsertedScalarizedValues, it has
1242 // already been seen first by another load, so its uses have already been
1243 // processed.
1244 PHINode *PN = cast<PHINode>(LoadUser);
1245 if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1246 std::vector<Value *>())).second)
1247 return;
1249 // If this is the first time we've seen this PHI, recursively process all
1250 // users.
1251 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1252 Instruction *User = cast<Instruction>(*UI++);
1253 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1257 /// We are performing Heap SRoA on a global. Ptr is a value loaded from the
1258 /// global. Eliminate all uses of Ptr, making them use FieldGlobals instead.
1259 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1260 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1261 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1262 std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) {
1263 for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1264 Instruction *User = cast<Instruction>(*UI++);
1265 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1268 if (Load->use_empty()) {
1269 Load->eraseFromParent();
1270 InsertedScalarizedValues.erase(Load);
1274 /// CI is an allocation of an array of structures. Break it up into multiple
1275 /// allocations of arrays of the fields.
1276 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1277 Value *NElems, const DataLayout &DL,
1278 const TargetLibraryInfo *TLI) {
1279 LLVM_DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI
1280 << '\n');
1281 Type *MAT = getMallocAllocatedType(CI, TLI);
1282 StructType *STy = cast<StructType>(MAT);
1284 // There is guaranteed to be at least one use of the malloc (storing
1285 // it into GV). If there are other uses, change them to be uses of
1286 // the global to simplify later code. This also deletes the store
1287 // into GV.
1288 ReplaceUsesOfMallocWithGlobal(CI, GV);
1290 // Okay, at this point, there are no users of the malloc. Insert N
1291 // new mallocs at the same place as CI, and N globals.
1292 std::vector<Value *> FieldGlobals;
1293 std::vector<Value *> FieldMallocs;
1295 SmallVector<OperandBundleDef, 1> OpBundles;
1296 CI->getOperandBundlesAsDefs(OpBundles);
1298 unsigned AS = GV->getType()->getPointerAddressSpace();
1299 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1300 Type *FieldTy = STy->getElementType(FieldNo);
1301 PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1303 GlobalVariable *NGV = new GlobalVariable(
1304 *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
1305 Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
1306 nullptr, GV->getThreadLocalMode());
1307 NGV->copyAttributesFrom(GV);
1308 FieldGlobals.push_back(NGV);
1310 unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
1311 if (StructType *ST = dyn_cast<StructType>(FieldTy))
1312 TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
1313 Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1314 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1315 ConstantInt::get(IntPtrTy, TypeSize),
1316 NElems, OpBundles, nullptr,
1317 CI->getName() + ".f" + Twine(FieldNo));
1318 FieldMallocs.push_back(NMI);
1319 new StoreInst(NMI, NGV, CI);
1322 // The tricky aspect of this transformation is handling the case when malloc
1323 // fails. In the original code, malloc failing would set the result pointer
1324 // of malloc to null. In this case, some mallocs could succeed and others
1325 // could fail. As such, we emit code that looks like this:
1326 // F0 = malloc(field0)
1327 // F1 = malloc(field1)
1328 // F2 = malloc(field2)
1329 // if (F0 == 0 || F1 == 0 || F2 == 0) {
1330 // if (F0) { free(F0); F0 = 0; }
1331 // if (F1) { free(F1); F1 = 0; }
1332 // if (F2) { free(F2); F2 = 0; }
1333 // }
1334 // The malloc can also fail if its argument is too large.
1335 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1336 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1337 ConstantZero, "isneg");
1338 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1339 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1340 Constant::getNullValue(FieldMallocs[i]->getType()),
1341 "isnull");
1342 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1345 // Split the basic block at the old malloc.
1346 BasicBlock *OrigBB = CI->getParent();
1347 BasicBlock *ContBB =
1348 OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
1350 // Create the block to check the first condition. Put all these blocks at the
1351 // end of the function as they are unlikely to be executed.
1352 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1353 "malloc_ret_null",
1354 OrigBB->getParent());
1356 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1357 // branch on RunningOr.
1358 OrigBB->getTerminator()->eraseFromParent();
1359 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1361 // Within the NullPtrBlock, we need to emit a comparison and branch for each
1362 // pointer, because some may be null while others are not.
1363 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1364 Value *GVVal =
1365 new LoadInst(cast<GlobalVariable>(FieldGlobals[i])->getValueType(),
1366 FieldGlobals[i], "tmp", NullPtrBlock);
1367 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1368 Constant::getNullValue(GVVal->getType()));
1369 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1370 OrigBB->getParent());
1371 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1372 OrigBB->getParent());
1373 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1374 Cmp, NullPtrBlock);
1376 // Fill in FreeBlock.
1377 CallInst::CreateFree(GVVal, OpBundles, BI);
1378 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1379 FreeBlock);
1380 BranchInst::Create(NextBlock, FreeBlock);
1382 NullPtrBlock = NextBlock;
1385 BranchInst::Create(ContBB, NullPtrBlock);
1387 // CI is no longer needed, remove it.
1388 CI->eraseFromParent();
1390 /// As we process loads, if we can't immediately update all uses of the load,
1391 /// keep track of what scalarized loads are inserted for a given load.
1392 DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues;
1393 InsertedScalarizedValues[GV] = FieldGlobals;
1395 std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite;
1397 // Okay, the malloc site is completely handled. All of the uses of GV are now
1398 // loads, and all uses of those loads are simple. Rewrite them to use loads
1399 // of the per-field globals instead.
1400 for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1401 Instruction *User = cast<Instruction>(*UI++);
1403 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1404 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1405 continue;
1408 // Must be a store of null.
1409 StoreInst *SI = cast<StoreInst>(User);
1410 assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1411 "Unexpected heap-sra user!");
1413 // Insert a store of null into each global.
1414 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1415 Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
1416 Constant *Null = Constant::getNullValue(ValTy);
1417 new StoreInst(Null, FieldGlobals[i], SI);
1419 // Erase the original store.
1420 SI->eraseFromParent();
1423 // While we have PHIs that are interesting to rewrite, do it.
1424 while (!PHIsToRewrite.empty()) {
1425 PHINode *PN = PHIsToRewrite.back().first;
1426 unsigned FieldNo = PHIsToRewrite.back().second;
1427 PHIsToRewrite.pop_back();
1428 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1429 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1431 // Add all the incoming values. This can materialize more phis.
1432 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1433 Value *InVal = PN->getIncomingValue(i);
1434 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1435 PHIsToRewrite);
1436 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1440 // Drop all inter-phi links and any loads that made it this far.
1441 for (DenseMap<Value *, std::vector<Value *>>::iterator
1442 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1443 I != E; ++I) {
1444 if (PHINode *PN = dyn_cast<PHINode>(I->first))
1445 PN->dropAllReferences();
1446 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1447 LI->dropAllReferences();
1450 // Delete all the phis and loads now that inter-references are dead.
1451 for (DenseMap<Value *, std::vector<Value *>>::iterator
1452 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1453 I != E; ++I) {
1454 if (PHINode *PN = dyn_cast<PHINode>(I->first))
1455 PN->eraseFromParent();
1456 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1457 LI->eraseFromParent();
1460 // The old global is now dead, remove it.
1461 GV->eraseFromParent();
1463 ++NumHeapSRA;
1464 return cast<GlobalVariable>(FieldGlobals[0]);
1467 /// This function is called when we see a pointer global variable with a single
1468 /// value stored it that is a malloc or cast of malloc.
1469 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1470 Type *AllocTy,
1471 AtomicOrdering Ordering,
1472 const DataLayout &DL,
1473 TargetLibraryInfo *TLI) {
1474 // If this is a malloc of an abstract type, don't touch it.
1475 if (!AllocTy->isSized())
1476 return false;
1478 // We can't optimize this global unless all uses of it are *known* to be
1479 // of the malloc value, not of the null initializer value (consider a use
1480 // that compares the global's value against zero to see if the malloc has
1481 // been reached). To do this, we check to see if all uses of the global
1482 // would trap if the global were null: this proves that they must all
1483 // happen after the malloc.
1484 if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1485 return false;
1487 // We can't optimize this if the malloc itself is used in a complex way,
1488 // for example, being stored into multiple globals. This allows the
1489 // malloc to be stored into the specified global, loaded icmp'd, and
1490 // GEP'd. These are all things we could transform to using the global
1491 // for.
1492 SmallPtrSet<const PHINode*, 8> PHIs;
1493 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1494 return false;
1496 // If we have a global that is only initialized with a fixed size malloc,
1497 // transform the program to use global memory instead of malloc'd memory.
1498 // This eliminates dynamic allocation, avoids an indirection accessing the
1499 // data, and exposes the resultant global to further GlobalOpt.
1500 // We cannot optimize the malloc if we cannot determine malloc array size.
1501 Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1502 if (!NElems)
1503 return false;
1505 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1506 // Restrict this transformation to only working on small allocations
1507 // (2048 bytes currently), as we don't want to introduce a 16M global or
1508 // something.
1509 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1510 OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1511 return true;
1514 // If the allocation is an array of structures, consider transforming this
1515 // into multiple malloc'd arrays, one for each field. This is basically
1516 // SRoA for malloc'd memory.
1518 if (Ordering != AtomicOrdering::NotAtomic)
1519 return false;
1521 // If this is an allocation of a fixed size array of structs, analyze as a
1522 // variable size array. malloc [100 x struct],1 -> malloc struct, 100
1523 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1524 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1525 AllocTy = AT->getElementType();
1527 StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1528 if (!AllocSTy)
1529 return false;
1531 // This the structure has an unreasonable number of fields, leave it
1532 // alone.
1533 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1534 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1536 // If this is a fixed size array, transform the Malloc to be an alloc of
1537 // structs. malloc [100 x struct],1 -> malloc struct, 100
1538 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1539 Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1540 unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
1541 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1542 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1543 SmallVector<OperandBundleDef, 1> OpBundles;
1544 CI->getOperandBundlesAsDefs(OpBundles);
1545 Instruction *Malloc =
1546 CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements,
1547 OpBundles, nullptr, CI->getName());
1548 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1549 CI->replaceAllUsesWith(Cast);
1550 CI->eraseFromParent();
1551 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1552 CI = cast<CallInst>(BCI->getOperand(0));
1553 else
1554 CI = cast<CallInst>(Malloc);
1557 PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
1558 TLI);
1559 return true;
1562 return false;
1565 // Try to optimize globals based on the knowledge that only one value (besides
1566 // its initializer) is ever stored to the global.
1567 static bool
1568 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1569 AtomicOrdering Ordering, const DataLayout &DL,
1570 function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1571 // Ignore no-op GEPs and bitcasts.
1572 StoredOnceVal = StoredOnceVal->stripPointerCasts();
1574 // If we are dealing with a pointer global that is initialized to null and
1575 // only has one (non-null) value stored into it, then we can optimize any
1576 // users of the loaded value (often calls and loads) that would trap if the
1577 // value was null.
1578 if (GV->getInitializer()->getType()->isPointerTy() &&
1579 GV->getInitializer()->isNullValue() &&
1580 !NullPointerIsDefined(
1581 nullptr /* F */,
1582 GV->getInitializer()->getType()->getPointerAddressSpace())) {
1583 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1584 if (GV->getInitializer()->getType() != SOVC->getType())
1585 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1587 // Optimize away any trapping uses of the loaded value.
1588 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI))
1589 return true;
1590 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) {
1591 auto *TLI = &GetTLI(*CI->getFunction());
1592 Type *MallocType = getMallocAllocatedType(CI, TLI);
1593 if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1594 Ordering, DL, TLI))
1595 return true;
1599 return false;
1602 /// At this point, we have learned that the only two values ever stored into GV
1603 /// are its initializer and OtherVal. See if we can shrink the global into a
1604 /// boolean and select between the two values whenever it is used. This exposes
1605 /// the values to other scalar optimizations.
1606 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1607 Type *GVElType = GV->getValueType();
1609 // If GVElType is already i1, it is already shrunk. If the type of the GV is
1610 // an FP value, pointer or vector, don't do this optimization because a select
1611 // between them is very expensive and unlikely to lead to later
1612 // simplification. In these cases, we typically end up with "cond ? v1 : v2"
1613 // where v1 and v2 both require constant pool loads, a big loss.
1614 if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1615 GVElType->isFloatingPointTy() ||
1616 GVElType->isPointerTy() || GVElType->isVectorTy())
1617 return false;
1619 // Walk the use list of the global seeing if all the uses are load or store.
1620 // If there is anything else, bail out.
1621 for (User *U : GV->users())
1622 if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1623 return false;
1625 LLVM_DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n");
1627 // Create the new global, initializing it to false.
1628 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1629 false,
1630 GlobalValue::InternalLinkage,
1631 ConstantInt::getFalse(GV->getContext()),
1632 GV->getName()+".b",
1633 GV->getThreadLocalMode(),
1634 GV->getType()->getAddressSpace());
1635 NewGV->copyAttributesFrom(GV);
1636 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1638 Constant *InitVal = GV->getInitializer();
1639 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1640 "No reason to shrink to bool!");
1642 SmallVector<DIGlobalVariableExpression *, 1> GVs;
1643 GV->getDebugInfo(GVs);
1645 // If initialized to zero and storing one into the global, we can use a cast
1646 // instead of a select to synthesize the desired value.
1647 bool IsOneZero = false;
1648 bool EmitOneOrZero = true;
1649 auto *CI = dyn_cast<ConstantInt>(OtherVal);
1650 if (CI && CI->getValue().getActiveBits() <= 64) {
1651 IsOneZero = InitVal->isNullValue() && CI->isOne();
1653 auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
1654 if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
1655 uint64_t ValInit = CIInit->getZExtValue();
1656 uint64_t ValOther = CI->getZExtValue();
1657 uint64_t ValMinus = ValOther - ValInit;
1659 for(auto *GVe : GVs){
1660 DIGlobalVariable *DGV = GVe->getVariable();
1661 DIExpression *E = GVe->getExpression();
1662 const DataLayout &DL = GV->getParent()->getDataLayout();
1663 unsigned SizeInOctets =
1664 DL.getTypeAllocSizeInBits(NewGV->getType()->getElementType()) / 8;
1666 // It is expected that the address of global optimized variable is on
1667 // top of the stack. After optimization, value of that variable will
1668 // be ether 0 for initial value or 1 for other value. The following
1669 // expression should return constant integer value depending on the
1670 // value at global object address:
1671 // val * (ValOther - ValInit) + ValInit:
1672 // DW_OP_deref DW_OP_constu <ValMinus>
1673 // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1674 SmallVector<uint64_t, 12> Ops = {
1675 dwarf::DW_OP_deref_size, SizeInOctets,
1676 dwarf::DW_OP_constu, ValMinus,
1677 dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
1678 dwarf::DW_OP_plus};
1679 bool WithStackValue = true;
1680 E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
1681 DIGlobalVariableExpression *DGVE =
1682 DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1683 NewGV->addDebugInfo(DGVE);
1685 EmitOneOrZero = false;
1689 if (EmitOneOrZero) {
1690 // FIXME: This will only emit address for debugger on which will
1691 // be written only 0 or 1.
1692 for(auto *GV : GVs)
1693 NewGV->addDebugInfo(GV);
1696 while (!GV->use_empty()) {
1697 Instruction *UI = cast<Instruction>(GV->user_back());
1698 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1699 // Change the store into a boolean store.
1700 bool StoringOther = SI->getOperand(0) == OtherVal;
1701 // Only do this if we weren't storing a loaded value.
1702 Value *StoreVal;
1703 if (StoringOther || SI->getOperand(0) == InitVal) {
1704 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1705 StoringOther);
1706 } else {
1707 // Otherwise, we are storing a previously loaded copy. To do this,
1708 // change the copy from copying the original value to just copying the
1709 // bool.
1710 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1712 // If we've already replaced the input, StoredVal will be a cast or
1713 // select instruction. If not, it will be a load of the original
1714 // global.
1715 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1716 assert(LI->getOperand(0) == GV && "Not a copy!");
1717 // Insert a new load, to preserve the saved value.
1718 StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
1719 LI->getName() + ".b", false, None,
1720 LI->getOrdering(), LI->getSyncScopeID(), LI);
1721 } else {
1722 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1723 "This is not a form that we understand!");
1724 StoreVal = StoredVal->getOperand(0);
1725 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1728 StoreInst *NSI =
1729 new StoreInst(StoreVal, NewGV, false, None, SI->getOrdering(),
1730 SI->getSyncScopeID(), SI);
1731 NSI->setDebugLoc(SI->getDebugLoc());
1732 } else {
1733 // Change the load into a load of bool then a select.
1734 LoadInst *LI = cast<LoadInst>(UI);
1735 LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV,
1736 LI->getName() + ".b", false, None,
1737 LI->getOrdering(), LI->getSyncScopeID(), LI);
1738 Instruction *NSI;
1739 if (IsOneZero)
1740 NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1741 else
1742 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1743 NSI->takeName(LI);
1744 // Since LI is split into two instructions, NLI and NSI both inherit the
1745 // same DebugLoc
1746 NLI->setDebugLoc(LI->getDebugLoc());
1747 NSI->setDebugLoc(LI->getDebugLoc());
1748 LI->replaceAllUsesWith(NSI);
1750 UI->eraseFromParent();
1753 // Retain the name of the old global variable. People who are debugging their
1754 // programs may expect these variables to be named the same.
1755 NewGV->takeName(GV);
1756 GV->eraseFromParent();
1757 return true;
1760 static bool deleteIfDead(
1761 GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1762 GV.removeDeadConstantUsers();
1764 if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1765 return false;
1767 if (const Comdat *C = GV.getComdat())
1768 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1769 return false;
1771 bool Dead;
1772 if (auto *F = dyn_cast<Function>(&GV))
1773 Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1774 else
1775 Dead = GV.use_empty();
1776 if (!Dead)
1777 return false;
1779 LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1780 GV.eraseFromParent();
1781 ++NumDeleted;
1782 return true;
1785 static bool isPointerValueDeadOnEntryToFunction(
1786 const Function *F, GlobalValue *GV,
1787 function_ref<DominatorTree &(Function &)> LookupDomTree) {
1788 // Find all uses of GV. We expect them all to be in F, and if we can't
1789 // identify any of the uses we bail out.
1791 // On each of these uses, identify if the memory that GV points to is
1792 // used/required/live at the start of the function. If it is not, for example
1793 // if the first thing the function does is store to the GV, the GV can
1794 // possibly be demoted.
1796 // We don't do an exhaustive search for memory operations - simply look
1797 // through bitcasts as they're quite common and benign.
1798 const DataLayout &DL = GV->getParent()->getDataLayout();
1799 SmallVector<LoadInst *, 4> Loads;
1800 SmallVector<StoreInst *, 4> Stores;
1801 for (auto *U : GV->users()) {
1802 if (Operator::getOpcode(U) == Instruction::BitCast) {
1803 for (auto *UU : U->users()) {
1804 if (auto *LI = dyn_cast<LoadInst>(UU))
1805 Loads.push_back(LI);
1806 else if (auto *SI = dyn_cast<StoreInst>(UU))
1807 Stores.push_back(SI);
1808 else
1809 return false;
1811 continue;
1814 Instruction *I = dyn_cast<Instruction>(U);
1815 if (!I)
1816 return false;
1817 assert(I->getParent()->getParent() == F);
1819 if (auto *LI = dyn_cast<LoadInst>(I))
1820 Loads.push_back(LI);
1821 else if (auto *SI = dyn_cast<StoreInst>(I))
1822 Stores.push_back(SI);
1823 else
1824 return false;
1827 // We have identified all uses of GV into loads and stores. Now check if all
1828 // of them are known not to depend on the value of the global at the function
1829 // entry point. We do this by ensuring that every load is dominated by at
1830 // least one store.
1831 auto &DT = LookupDomTree(*const_cast<Function *>(F));
1833 // The below check is quadratic. Check we're not going to do too many tests.
1834 // FIXME: Even though this will always have worst-case quadratic time, we
1835 // could put effort into minimizing the average time by putting stores that
1836 // have been shown to dominate at least one load at the beginning of the
1837 // Stores array, making subsequent dominance checks more likely to succeed
1838 // early.
1840 // The threshold here is fairly large because global->local demotion is a
1841 // very powerful optimization should it fire.
1842 const unsigned Threshold = 100;
1843 if (Loads.size() * Stores.size() > Threshold)
1844 return false;
1846 for (auto *L : Loads) {
1847 auto *LTy = L->getType();
1848 if (none_of(Stores, [&](const StoreInst *S) {
1849 auto *STy = S->getValueOperand()->getType();
1850 // The load is only dominated by the store if DomTree says so
1851 // and the number of bits loaded in L is less than or equal to
1852 // the number of bits stored in S.
1853 return DT.dominates(S, L) &&
1854 DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
1856 return false;
1858 // All loads have known dependences inside F, so the global can be localized.
1859 return true;
1862 /// C may have non-instruction users. Can all of those users be turned into
1863 /// instructions?
1864 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1865 // We don't do this exhaustively. The most common pattern that we really need
1866 // to care about is a constant GEP or constant bitcast - so just looking
1867 // through one single ConstantExpr.
1869 // The set of constants that this function returns true for must be able to be
1870 // handled by makeAllConstantUsesInstructions.
1871 for (auto *U : C->users()) {
1872 if (isa<Instruction>(U))
1873 continue;
1874 if (!isa<ConstantExpr>(U))
1875 // Non instruction, non-constantexpr user; cannot convert this.
1876 return false;
1877 for (auto *UU : U->users())
1878 if (!isa<Instruction>(UU))
1879 // A constantexpr used by another constant. We don't try and recurse any
1880 // further but just bail out at this point.
1881 return false;
1884 return true;
1887 /// C may have non-instruction users, and
1888 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1889 /// non-instruction users to instructions.
1890 static void makeAllConstantUsesInstructions(Constant *C) {
1891 SmallVector<ConstantExpr*,4> Users;
1892 for (auto *U : C->users()) {
1893 if (isa<ConstantExpr>(U))
1894 Users.push_back(cast<ConstantExpr>(U));
1895 else
1896 // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1897 // should not have returned true for C.
1898 assert(
1899 isa<Instruction>(U) &&
1900 "Can't transform non-constantexpr non-instruction to instruction!");
1903 SmallVector<Value*,4> UUsers;
1904 for (auto *U : Users) {
1905 UUsers.clear();
1906 for (auto *UU : U->users())
1907 UUsers.push_back(UU);
1908 for (auto *UU : UUsers) {
1909 Instruction *UI = cast<Instruction>(UU);
1910 Instruction *NewU = U->getAsInstruction();
1911 NewU->insertBefore(UI);
1912 UI->replaceUsesOfWith(U, NewU);
1914 // We've replaced all the uses, so destroy the constant. (destroyConstant
1915 // will update value handles and metadata.)
1916 U->destroyConstant();
1920 /// Analyze the specified global variable and optimize
1921 /// it if possible. If we make a change, return true.
1922 static bool
1923 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS,
1924 function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1925 function_ref<DominatorTree &(Function &)> LookupDomTree) {
1926 auto &DL = GV->getParent()->getDataLayout();
1927 // If this is a first class global and has only one accessing function and
1928 // this function is non-recursive, we replace the global with a local alloca
1929 // in this function.
1931 // NOTE: It doesn't make sense to promote non-single-value types since we
1932 // are just replacing static memory to stack memory.
1934 // If the global is in different address space, don't bring it to stack.
1935 if (!GS.HasMultipleAccessingFunctions &&
1936 GS.AccessingFunction &&
1937 GV->getValueType()->isSingleValueType() &&
1938 GV->getType()->getAddressSpace() == 0 &&
1939 !GV->isExternallyInitialized() &&
1940 allNonInstructionUsersCanBeMadeInstructions(GV) &&
1941 GS.AccessingFunction->doesNotRecurse() &&
1942 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1943 LookupDomTree)) {
1944 const DataLayout &DL = GV->getParent()->getDataLayout();
1946 LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1947 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1948 ->getEntryBlock().begin());
1949 Type *ElemTy = GV->getValueType();
1950 // FIXME: Pass Global's alignment when globals have alignment
1951 AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1952 GV->getName(), &FirstI);
1953 if (!isa<UndefValue>(GV->getInitializer()))
1954 new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1956 makeAllConstantUsesInstructions(GV);
1958 GV->replaceAllUsesWith(Alloca);
1959 GV->eraseFromParent();
1960 ++NumLocalized;
1961 return true;
1964 // If the global is never loaded (but may be stored to), it is dead.
1965 // Delete it now.
1966 if (!GS.IsLoaded) {
1967 LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1969 bool Changed;
1970 if (isLeakCheckerRoot(GV)) {
1971 // Delete any constant stores to the global.
1972 Changed = CleanupPointerRootUsers(GV, GetTLI);
1973 } else {
1974 // Delete any stores we can find to the global. We may not be able to
1975 // make it completely dead though.
1976 Changed =
1977 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
1980 // If the global is dead now, delete it.
1981 if (GV->use_empty()) {
1982 GV->eraseFromParent();
1983 ++NumDeleted;
1984 Changed = true;
1986 return Changed;
1989 if (GS.StoredType <= GlobalStatus::InitializerStored) {
1990 LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1992 // Don't actually mark a global constant if it's atomic because atomic loads
1993 // are implemented by a trivial cmpxchg in some edge-cases and that usually
1994 // requires write access to the variable even if it's not actually changed.
1995 if (GS.Ordering == AtomicOrdering::NotAtomic)
1996 GV->setConstant(true);
1998 // Clean up any obviously simplifiable users now.
1999 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
2001 // If the global is dead now, just nuke it.
2002 if (GV->use_empty()) {
2003 LLVM_DEBUG(dbgs() << " *** Marking constant allowed us to simplify "
2004 << "all users and delete global!\n");
2005 GV->eraseFromParent();
2006 ++NumDeleted;
2007 return true;
2010 // Fall through to the next check; see if we can optimize further.
2011 ++NumMarked;
2013 if (!GV->getInitializer()->getType()->isSingleValueType()) {
2014 const DataLayout &DL = GV->getParent()->getDataLayout();
2015 if (SRAGlobal(GV, DL))
2016 return true;
2018 if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
2019 // If the initial value for the global was an undef value, and if only
2020 // one other value was stored into it, we can just change the
2021 // initializer to be the stored value, then delete all stores to the
2022 // global. This allows us to mark it constant.
2023 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
2024 if (isa<UndefValue>(GV->getInitializer())) {
2025 // Change the initial value here.
2026 GV->setInitializer(SOVConstant);
2028 // Clean up any obviously simplifiable users now.
2029 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
2031 if (GV->use_empty()) {
2032 LLVM_DEBUG(dbgs() << " *** Substituting initializer allowed us to "
2033 << "simplify all users and delete global!\n");
2034 GV->eraseFromParent();
2035 ++NumDeleted;
2037 ++NumSubstitute;
2038 return true;
2041 // Try to optimize globals based on the knowledge that only one value
2042 // (besides its initializer) is ever stored to the global.
2043 if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL,
2044 GetTLI))
2045 return true;
2047 // Otherwise, if the global was not a boolean, we can shrink it to be a
2048 // boolean.
2049 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
2050 if (GS.Ordering == AtomicOrdering::NotAtomic) {
2051 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
2052 ++NumShrunkToBool;
2053 return true;
2059 return false;
2062 /// Analyze the specified global variable and optimize it if possible. If we
2063 /// make a change, return true.
2064 static bool
2065 processGlobal(GlobalValue &GV,
2066 function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2067 function_ref<DominatorTree &(Function &)> LookupDomTree) {
2068 if (GV.getName().startswith("llvm."))
2069 return false;
2071 GlobalStatus GS;
2073 if (GlobalStatus::analyzeGlobal(&GV, GS))
2074 return false;
2076 bool Changed = false;
2077 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
2078 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
2079 : GlobalValue::UnnamedAddr::Local;
2080 if (NewUnnamedAddr != GV.getUnnamedAddr()) {
2081 GV.setUnnamedAddr(NewUnnamedAddr);
2082 NumUnnamed++;
2083 Changed = true;
2087 // Do more involved optimizations if the global is internal.
2088 if (!GV.hasLocalLinkage())
2089 return Changed;
2091 auto *GVar = dyn_cast<GlobalVariable>(&GV);
2092 if (!GVar)
2093 return Changed;
2095 if (GVar->isConstant() || !GVar->hasInitializer())
2096 return Changed;
2098 return processInternalGlobal(GVar, GS, GetTLI, LookupDomTree) || Changed;
2101 /// Walk all of the direct calls of the specified function, changing them to
2102 /// FastCC.
2103 static void ChangeCalleesToFastCall(Function *F) {
2104 for (User *U : F->users()) {
2105 if (isa<BlockAddress>(U))
2106 continue;
2107 CallSite CS(cast<Instruction>(U));
2108 CS.setCallingConv(CallingConv::Fast);
2112 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
2113 Attribute::AttrKind A) {
2114 unsigned AttrIndex;
2115 if (Attrs.hasAttrSomewhere(A, &AttrIndex))
2116 return Attrs.removeAttribute(C, AttrIndex, A);
2117 return Attrs;
2120 static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
2121 F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
2122 for (User *U : F->users()) {
2123 if (isa<BlockAddress>(U))
2124 continue;
2125 CallSite CS(cast<Instruction>(U));
2126 CS.setAttributes(StripAttr(F->getContext(), CS.getAttributes(), A));
2130 /// Return true if this is a calling convention that we'd like to change. The
2131 /// idea here is that we don't want to mess with the convention if the user
2132 /// explicitly requested something with performance implications like coldcc,
2133 /// GHC, or anyregcc.
2134 static bool hasChangeableCC(Function *F) {
2135 CallingConv::ID CC = F->getCallingConv();
2137 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
2138 if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
2139 return false;
2141 // FIXME: Change CC for the whole chain of musttail calls when possible.
2143 // Can't change CC of the function that either has musttail calls, or is a
2144 // musttail callee itself
2145 for (User *U : F->users()) {
2146 if (isa<BlockAddress>(U))
2147 continue;
2148 CallInst* CI = dyn_cast<CallInst>(U);
2149 if (!CI)
2150 continue;
2152 if (CI->isMustTailCall())
2153 return false;
2156 for (BasicBlock &BB : *F)
2157 if (BB.getTerminatingMustTailCall())
2158 return false;
2160 return true;
2163 /// Return true if the block containing the call site has a BlockFrequency of
2164 /// less than ColdCCRelFreq% of the entry block.
2165 static bool isColdCallSite(CallSite CS, BlockFrequencyInfo &CallerBFI) {
2166 const BranchProbability ColdProb(ColdCCRelFreq, 100);
2167 auto CallSiteBB = CS.getInstruction()->getParent();
2168 auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
2169 auto CallerEntryFreq =
2170 CallerBFI.getBlockFreq(&(CS.getCaller()->getEntryBlock()));
2171 return CallSiteFreq < CallerEntryFreq * ColdProb;
2174 // This function checks if the input function F is cold at all call sites. It
2175 // also looks each call site's containing function, returning false if the
2176 // caller function contains other non cold calls. The input vector AllCallsCold
2177 // contains a list of functions that only have call sites in cold blocks.
2178 static bool
2179 isValidCandidateForColdCC(Function &F,
2180 function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2181 const std::vector<Function *> &AllCallsCold) {
2183 if (F.user_empty())
2184 return false;
2186 for (User *U : F.users()) {
2187 if (isa<BlockAddress>(U))
2188 continue;
2190 CallSite CS(cast<Instruction>(U));
2191 Function *CallerFunc = CS.getInstruction()->getParent()->getParent();
2192 BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
2193 if (!isColdCallSite(CS, CallerBFI))
2194 return false;
2195 auto It = std::find(AllCallsCold.begin(), AllCallsCold.end(), CallerFunc);
2196 if (It == AllCallsCold.end())
2197 return false;
2199 return true;
2202 static void changeCallSitesToColdCC(Function *F) {
2203 for (User *U : F->users()) {
2204 if (isa<BlockAddress>(U))
2205 continue;
2206 CallSite CS(cast<Instruction>(U));
2207 CS.setCallingConv(CallingConv::Cold);
2211 // This function iterates over all the call instructions in the input Function
2212 // and checks that all call sites are in cold blocks and are allowed to use the
2213 // coldcc calling convention.
2214 static bool
2215 hasOnlyColdCalls(Function &F,
2216 function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
2217 for (BasicBlock &BB : F) {
2218 for (Instruction &I : BB) {
2219 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2220 CallSite CS(cast<Instruction>(CI));
2221 // Skip over isline asm instructions since they aren't function calls.
2222 if (CI->isInlineAsm())
2223 continue;
2224 Function *CalledFn = CI->getCalledFunction();
2225 if (!CalledFn)
2226 return false;
2227 if (!CalledFn->hasLocalLinkage())
2228 return false;
2229 // Skip over instrinsics since they won't remain as function calls.
2230 if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
2231 continue;
2232 // Check if it's valid to use coldcc calling convention.
2233 if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
2234 CalledFn->hasAddressTaken())
2235 return false;
2236 BlockFrequencyInfo &CallerBFI = GetBFI(F);
2237 if (!isColdCallSite(CS, CallerBFI))
2238 return false;
2242 return true;
2245 static bool
2246 OptimizeFunctions(Module &M,
2247 function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2248 function_ref<TargetTransformInfo &(Function &)> GetTTI,
2249 function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2250 function_ref<DominatorTree &(Function &)> LookupDomTree,
2251 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2253 bool Changed = false;
2255 std::vector<Function *> AllCallsCold;
2256 for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) {
2257 Function *F = &*FI++;
2258 if (hasOnlyColdCalls(*F, GetBFI))
2259 AllCallsCold.push_back(F);
2262 // Optimize functions.
2263 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2264 Function *F = &*FI++;
2266 // Don't perform global opt pass on naked functions; we don't want fast
2267 // calling conventions for naked functions.
2268 if (F->hasFnAttribute(Attribute::Naked))
2269 continue;
2271 // Functions without names cannot be referenced outside this module.
2272 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
2273 F->setLinkage(GlobalValue::InternalLinkage);
2275 if (deleteIfDead(*F, NotDiscardableComdats)) {
2276 Changed = true;
2277 continue;
2280 // LLVM's definition of dominance allows instructions that are cyclic
2281 // in unreachable blocks, e.g.:
2282 // %pat = select i1 %condition, @global, i16* %pat
2283 // because any instruction dominates an instruction in a block that's
2284 // not reachable from entry.
2285 // So, remove unreachable blocks from the function, because a) there's
2286 // no point in analyzing them and b) GlobalOpt should otherwise grow
2287 // some more complicated logic to break these cycles.
2288 if (!F->isDeclaration()) {
2289 auto &DT = LookupDomTree(*F);
2290 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
2291 Changed |= removeUnreachableBlocks(*F, &DTU);
2294 Changed |= processGlobal(*F, GetTLI, LookupDomTree);
2296 if (!F->hasLocalLinkage())
2297 continue;
2299 // If we have an inalloca parameter that we can safely remove the
2300 // inalloca attribute from, do so. This unlocks optimizations that
2301 // wouldn't be safe in the presence of inalloca.
2302 // FIXME: We should also hoist alloca affected by this to the entry
2303 // block if possible.
2304 if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
2305 !F->hasAddressTaken()) {
2306 RemoveAttribute(F, Attribute::InAlloca);
2307 Changed = true;
2310 if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) {
2311 NumInternalFunc++;
2312 TargetTransformInfo &TTI = GetTTI(*F);
2313 // Change the calling convention to coldcc if either stress testing is
2314 // enabled or the target would like to use coldcc on functions which are
2315 // cold at all call sites and the callers contain no other non coldcc
2316 // calls.
2317 if (EnableColdCCStressTest ||
2318 (TTI.useColdCCForColdCall(*F) &&
2319 isValidCandidateForColdCC(*F, GetBFI, AllCallsCold))) {
2320 F->setCallingConv(CallingConv::Cold);
2321 changeCallSitesToColdCC(F);
2322 Changed = true;
2323 NumColdCC++;
2327 if (hasChangeableCC(F) && !F->isVarArg() &&
2328 !F->hasAddressTaken()) {
2329 // If this function has a calling convention worth changing, is not a
2330 // varargs function, and is only called directly, promote it to use the
2331 // Fast calling convention.
2332 F->setCallingConv(CallingConv::Fast);
2333 ChangeCalleesToFastCall(F);
2334 ++NumFastCallFns;
2335 Changed = true;
2338 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2339 !F->hasAddressTaken()) {
2340 // The function is not used by a trampoline intrinsic, so it is safe
2341 // to remove the 'nest' attribute.
2342 RemoveAttribute(F, Attribute::Nest);
2343 ++NumNestRemoved;
2344 Changed = true;
2347 return Changed;
2350 static bool
2351 OptimizeGlobalVars(Module &M,
2352 function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2353 function_ref<DominatorTree &(Function &)> LookupDomTree,
2354 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2355 bool Changed = false;
2357 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2358 GVI != E; ) {
2359 GlobalVariable *GV = &*GVI++;
2360 // Global variables without names cannot be referenced outside this module.
2361 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2362 GV->setLinkage(GlobalValue::InternalLinkage);
2363 // Simplify the initializer.
2364 if (GV->hasInitializer())
2365 if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
2366 auto &DL = M.getDataLayout();
2367 // TLI is not used in the case of a Constant, so use default nullptr
2368 // for that optional parameter, since we don't have a Function to
2369 // provide GetTLI anyway.
2370 Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr);
2371 if (New && New != C)
2372 GV->setInitializer(New);
2375 if (deleteIfDead(*GV, NotDiscardableComdats)) {
2376 Changed = true;
2377 continue;
2380 Changed |= processGlobal(*GV, GetTLI, LookupDomTree);
2382 return Changed;
2385 /// Evaluate a piece of a constantexpr store into a global initializer. This
2386 /// returns 'Init' modified to reflect 'Val' stored into it. At this point, the
2387 /// GEP operands of Addr [0, OpNo) have been stepped into.
2388 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2389 ConstantExpr *Addr, unsigned OpNo) {
2390 // Base case of the recursion.
2391 if (OpNo == Addr->getNumOperands()) {
2392 assert(Val->getType() == Init->getType() && "Type mismatch!");
2393 return Val;
2396 SmallVector<Constant*, 32> Elts;
2397 if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2398 // Break up the constant into its elements.
2399 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2400 Elts.push_back(Init->getAggregateElement(i));
2402 // Replace the element that we are supposed to.
2403 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2404 unsigned Idx = CU->getZExtValue();
2405 assert(Idx < STy->getNumElements() && "Struct index out of range!");
2406 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2408 // Return the modified struct.
2409 return ConstantStruct::get(STy, Elts);
2412 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2413 SequentialType *InitTy = cast<SequentialType>(Init->getType());
2414 uint64_t NumElts = InitTy->getNumElements();
2416 // Break up the array into elements.
2417 for (uint64_t i = 0, e = NumElts; i != e; ++i)
2418 Elts.push_back(Init->getAggregateElement(i));
2420 assert(CI->getZExtValue() < NumElts);
2421 Elts[CI->getZExtValue()] =
2422 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2424 if (Init->getType()->isArrayTy())
2425 return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2426 return ConstantVector::get(Elts);
2429 /// We have decided that Addr (which satisfies the predicate
2430 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen.
2431 static void CommitValueTo(Constant *Val, Constant *Addr) {
2432 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2433 assert(GV->hasInitializer());
2434 GV->setInitializer(Val);
2435 return;
2438 ConstantExpr *CE = cast<ConstantExpr>(Addr);
2439 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2440 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2443 /// Given a map of address -> value, where addresses are expected to be some form
2444 /// of either a global or a constant GEP, set the initializer for the address to
2445 /// be the value. This performs mostly the same function as CommitValueTo()
2446 /// and EvaluateStoreInto() but is optimized to be more efficient for the common
2447 /// case where the set of addresses are GEPs sharing the same underlying global,
2448 /// processing the GEPs in batches rather than individually.
2450 /// To give an example, consider the following C++ code adapted from the clang
2451 /// regression tests:
2452 /// struct S {
2453 /// int n = 10;
2454 /// int m = 2 * n;
2455 /// S(int a) : n(a) {}
2456 /// };
2458 /// template<typename T>
2459 /// struct U {
2460 /// T *r = &q;
2461 /// T q = 42;
2462 /// U *p = this;
2463 /// };
2465 /// U<S> e;
2467 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of
2468 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
2469 /// members. This batch algorithm will simply use general CommitValueTo() method
2470 /// to handle the complex nested S struct initialization of 'q', before
2471 /// processing the outermost members in a single batch. Using CommitValueTo() to
2472 /// handle member in the outer struct is inefficient when the struct/array is
2473 /// very large as we end up creating and destroy constant arrays for each
2474 /// initialization.
2475 /// For the above case, we expect the following IR to be generated:
2477 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
2478 /// %struct.S = type { i32, i32 }
2479 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
2480 /// i64 0, i32 1),
2481 /// %struct.S { i32 42, i32 84 }, %struct.U* @e }
2482 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
2483 /// constant expression, while the other two elements of @e are "simple".
2484 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
2485 SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs;
2486 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs;
2487 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs;
2488 SimpleCEs.reserve(Mem.size());
2490 for (const auto &I : Mem) {
2491 if (auto *GV = dyn_cast<GlobalVariable>(I.first)) {
2492 GVs.push_back(std::make_pair(GV, I.second));
2493 } else {
2494 ConstantExpr *GEP = cast<ConstantExpr>(I.first);
2495 // We don't handle the deeply recursive case using the batch method.
2496 if (GEP->getNumOperands() > 3)
2497 ComplexCEs.push_back(std::make_pair(GEP, I.second));
2498 else
2499 SimpleCEs.push_back(std::make_pair(GEP, I.second));
2503 // The algorithm below doesn't handle cases like nested structs, so use the
2504 // slower fully general method if we have to.
2505 for (auto ComplexCE : ComplexCEs)
2506 CommitValueTo(ComplexCE.second, ComplexCE.first);
2508 for (auto GVPair : GVs) {
2509 assert(GVPair.first->hasInitializer());
2510 GVPair.first->setInitializer(GVPair.second);
2513 if (SimpleCEs.empty())
2514 return;
2516 // We cache a single global's initializer elements in the case where the
2517 // subsequent address/val pair uses the same one. This avoids throwing away and
2518 // rebuilding the constant struct/vector/array just because one element is
2519 // modified at a time.
2520 SmallVector<Constant *, 32> Elts;
2521 Elts.reserve(SimpleCEs.size());
2522 GlobalVariable *CurrentGV = nullptr;
2524 auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) {
2525 Constant *Init = GV->getInitializer();
2526 Type *Ty = Init->getType();
2527 if (Update) {
2528 if (CurrentGV) {
2529 assert(CurrentGV && "Expected a GV to commit to!");
2530 Type *CurrentInitTy = CurrentGV->getInitializer()->getType();
2531 // We have a valid cache that needs to be committed.
2532 if (StructType *STy = dyn_cast<StructType>(CurrentInitTy))
2533 CurrentGV->setInitializer(ConstantStruct::get(STy, Elts));
2534 else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy))
2535 CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts));
2536 else
2537 CurrentGV->setInitializer(ConstantVector::get(Elts));
2539 if (CurrentGV == GV)
2540 return;
2541 // Need to clear and set up cache for new initializer.
2542 CurrentGV = GV;
2543 Elts.clear();
2544 unsigned NumElts;
2545 if (auto *STy = dyn_cast<StructType>(Ty))
2546 NumElts = STy->getNumElements();
2547 else
2548 NumElts = cast<SequentialType>(Ty)->getNumElements();
2549 for (unsigned i = 0, e = NumElts; i != e; ++i)
2550 Elts.push_back(Init->getAggregateElement(i));
2554 for (auto CEPair : SimpleCEs) {
2555 ConstantExpr *GEP = CEPair.first;
2556 Constant *Val = CEPair.second;
2558 GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0));
2559 commitAndSetupCache(GV, GV != CurrentGV);
2560 ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2));
2561 Elts[CI->getZExtValue()] = Val;
2563 // The last initializer in the list needs to be committed, others
2564 // will be committed on a new initializer being processed.
2565 commitAndSetupCache(CurrentGV, true);
2568 /// Evaluate static constructors in the function, if we can. Return true if we
2569 /// can, false otherwise.
2570 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2571 TargetLibraryInfo *TLI) {
2572 // Call the function.
2573 Evaluator Eval(DL, TLI);
2574 Constant *RetValDummy;
2575 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2576 SmallVector<Constant*, 0>());
2578 if (EvalSuccess) {
2579 ++NumCtorsEvaluated;
2581 // We succeeded at evaluation: commit the result.
2582 LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2583 << F->getName() << "' to "
2584 << Eval.getMutatedMemory().size() << " stores.\n");
2585 BatchCommitValueTo(Eval.getMutatedMemory());
2586 for (GlobalVariable *GV : Eval.getInvariants())
2587 GV->setConstant(true);
2590 return EvalSuccess;
2593 static int compareNames(Constant *const *A, Constant *const *B) {
2594 Value *AStripped = (*A)->stripPointerCasts();
2595 Value *BStripped = (*B)->stripPointerCasts();
2596 return AStripped->getName().compare(BStripped->getName());
2599 static void setUsedInitializer(GlobalVariable &V,
2600 const SmallPtrSetImpl<GlobalValue *> &Init) {
2601 if (Init.empty()) {
2602 V.eraseFromParent();
2603 return;
2606 // Type of pointer to the array of pointers.
2607 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2609 SmallVector<Constant *, 8> UsedArray;
2610 for (GlobalValue *GV : Init) {
2611 Constant *Cast
2612 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2613 UsedArray.push_back(Cast);
2615 // Sort to get deterministic order.
2616 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2617 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2619 Module *M = V.getParent();
2620 V.removeFromParent();
2621 GlobalVariable *NV =
2622 new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2623 ConstantArray::get(ATy, UsedArray), "");
2624 NV->takeName(&V);
2625 NV->setSection("llvm.metadata");
2626 delete &V;
2629 namespace {
2631 /// An easy to access representation of llvm.used and llvm.compiler.used.
2632 class LLVMUsed {
2633 SmallPtrSet<GlobalValue *, 8> Used;
2634 SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2635 GlobalVariable *UsedV;
2636 GlobalVariable *CompilerUsedV;
2638 public:
2639 LLVMUsed(Module &M) {
2640 UsedV = collectUsedGlobalVariables(M, Used, false);
2641 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2644 using iterator = SmallPtrSet<GlobalValue *, 8>::iterator;
2645 using used_iterator_range = iterator_range<iterator>;
2647 iterator usedBegin() { return Used.begin(); }
2648 iterator usedEnd() { return Used.end(); }
2650 used_iterator_range used() {
2651 return used_iterator_range(usedBegin(), usedEnd());
2654 iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2655 iterator compilerUsedEnd() { return CompilerUsed.end(); }
2657 used_iterator_range compilerUsed() {
2658 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2661 bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2663 bool compilerUsedCount(GlobalValue *GV) const {
2664 return CompilerUsed.count(GV);
2667 bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2668 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2669 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2671 bool compilerUsedInsert(GlobalValue *GV) {
2672 return CompilerUsed.insert(GV).second;
2675 void syncVariablesAndSets() {
2676 if (UsedV)
2677 setUsedInitializer(*UsedV, Used);
2678 if (CompilerUsedV)
2679 setUsedInitializer(*CompilerUsedV, CompilerUsed);
2683 } // end anonymous namespace
2685 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2686 if (GA.use_empty()) // No use at all.
2687 return false;
2689 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2690 "We should have removed the duplicated "
2691 "element from llvm.compiler.used");
2692 if (!GA.hasOneUse())
2693 // Strictly more than one use. So at least one is not in llvm.used and
2694 // llvm.compiler.used.
2695 return true;
2697 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2698 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2701 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2702 const LLVMUsed &U) {
2703 unsigned N = 2;
2704 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2705 "We should have removed the duplicated "
2706 "element from llvm.compiler.used");
2707 if (U.usedCount(&V) || U.compilerUsedCount(&V))
2708 ++N;
2709 return V.hasNUsesOrMore(N);
2712 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2713 if (!GA.hasLocalLinkage())
2714 return true;
2716 return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2719 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2720 bool &RenameTarget) {
2721 RenameTarget = false;
2722 bool Ret = false;
2723 if (hasUseOtherThanLLVMUsed(GA, U))
2724 Ret = true;
2726 // If the alias is externally visible, we may still be able to simplify it.
2727 if (!mayHaveOtherReferences(GA, U))
2728 return Ret;
2730 // If the aliasee has internal linkage, give it the name and linkage
2731 // of the alias, and delete the alias. This turns:
2732 // define internal ... @f(...)
2733 // @a = alias ... @f
2734 // into:
2735 // define ... @a(...)
2736 Constant *Aliasee = GA.getAliasee();
2737 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2738 if (!Target->hasLocalLinkage())
2739 return Ret;
2741 // Do not perform the transform if multiple aliases potentially target the
2742 // aliasee. This check also ensures that it is safe to replace the section
2743 // and other attributes of the aliasee with those of the alias.
2744 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2745 return Ret;
2747 RenameTarget = true;
2748 return true;
2751 static bool
2752 OptimizeGlobalAliases(Module &M,
2753 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2754 bool Changed = false;
2755 LLVMUsed Used(M);
2757 for (GlobalValue *GV : Used.used())
2758 Used.compilerUsedErase(GV);
2760 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2761 I != E;) {
2762 GlobalAlias *J = &*I++;
2764 // Aliases without names cannot be referenced outside this module.
2765 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2766 J->setLinkage(GlobalValue::InternalLinkage);
2768 if (deleteIfDead(*J, NotDiscardableComdats)) {
2769 Changed = true;
2770 continue;
2773 // If the alias can change at link time, nothing can be done - bail out.
2774 if (J->isInterposable())
2775 continue;
2777 Constant *Aliasee = J->getAliasee();
2778 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2779 // We can't trivially replace the alias with the aliasee if the aliasee is
2780 // non-trivial in some way.
2781 // TODO: Try to handle non-zero GEPs of local aliasees.
2782 if (!Target)
2783 continue;
2784 Target->removeDeadConstantUsers();
2786 // Make all users of the alias use the aliasee instead.
2787 bool RenameTarget;
2788 if (!hasUsesToReplace(*J, Used, RenameTarget))
2789 continue;
2791 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2792 ++NumAliasesResolved;
2793 Changed = true;
2795 if (RenameTarget) {
2796 // Give the aliasee the name, linkage and other attributes of the alias.
2797 Target->takeName(&*J);
2798 Target->setLinkage(J->getLinkage());
2799 Target->setDSOLocal(J->isDSOLocal());
2800 Target->setVisibility(J->getVisibility());
2801 Target->setDLLStorageClass(J->getDLLStorageClass());
2803 if (Used.usedErase(&*J))
2804 Used.usedInsert(Target);
2806 if (Used.compilerUsedErase(&*J))
2807 Used.compilerUsedInsert(Target);
2808 } else if (mayHaveOtherReferences(*J, Used))
2809 continue;
2811 // Delete the alias.
2812 M.getAliasList().erase(J);
2813 ++NumAliasesRemoved;
2814 Changed = true;
2817 Used.syncVariablesAndSets();
2819 return Changed;
2822 static Function *
2823 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
2824 // Hack to get a default TLI before we have actual Function.
2825 auto FuncIter = M.begin();
2826 if (FuncIter == M.end())
2827 return nullptr;
2828 auto *TLI = &GetTLI(*FuncIter);
2830 LibFunc F = LibFunc_cxa_atexit;
2831 if (!TLI->has(F))
2832 return nullptr;
2834 Function *Fn = M.getFunction(TLI->getName(F));
2835 if (!Fn)
2836 return nullptr;
2838 // Now get the actual TLI for Fn.
2839 TLI = &GetTLI(*Fn);
2841 // Make sure that the function has the correct prototype.
2842 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2843 return nullptr;
2845 return Fn;
2848 /// Returns whether the given function is an empty C++ destructor and can
2849 /// therefore be eliminated.
2850 /// Note that we assume that other optimization passes have already simplified
2851 /// the code so we simply check for 'ret'.
2852 static bool cxxDtorIsEmpty(const Function &Fn) {
2853 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2854 // nounwind, but that doesn't seem worth doing.
2855 if (Fn.isDeclaration())
2856 return false;
2858 for (auto &I : Fn.getEntryBlock()) {
2859 if (isa<DbgInfoIntrinsic>(I))
2860 continue;
2861 if (isa<ReturnInst>(I))
2862 return true;
2863 break;
2865 return false;
2868 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2869 /// Itanium C++ ABI p3.3.5:
2871 /// After constructing a global (or local static) object, that will require
2872 /// destruction on exit, a termination function is registered as follows:
2874 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2876 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2877 /// call f(p) when DSO d is unloaded, before all such termination calls
2878 /// registered before this one. It returns zero if registration is
2879 /// successful, nonzero on failure.
2881 // This pass will look for calls to __cxa_atexit where the function is trivial
2882 // and remove them.
2883 bool Changed = false;
2885 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
2886 I != E;) {
2887 // We're only interested in calls. Theoretically, we could handle invoke
2888 // instructions as well, but neither llvm-gcc nor clang generate invokes
2889 // to __cxa_atexit.
2890 CallInst *CI = dyn_cast<CallInst>(*I++);
2891 if (!CI)
2892 continue;
2894 Function *DtorFn =
2895 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2896 if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
2897 continue;
2899 // Just remove the call.
2900 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2901 CI->eraseFromParent();
2903 ++NumCXXDtorsRemoved;
2905 Changed |= true;
2908 return Changed;
2911 static bool optimizeGlobalsInModule(
2912 Module &M, const DataLayout &DL,
2913 function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2914 function_ref<TargetTransformInfo &(Function &)> GetTTI,
2915 function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2916 function_ref<DominatorTree &(Function &)> LookupDomTree) {
2917 SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
2918 bool Changed = false;
2919 bool LocalChange = true;
2920 while (LocalChange) {
2921 LocalChange = false;
2923 NotDiscardableComdats.clear();
2924 for (const GlobalVariable &GV : M.globals())
2925 if (const Comdat *C = GV.getComdat())
2926 if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2927 NotDiscardableComdats.insert(C);
2928 for (Function &F : M)
2929 if (const Comdat *C = F.getComdat())
2930 if (!F.isDefTriviallyDead())
2931 NotDiscardableComdats.insert(C);
2932 for (GlobalAlias &GA : M.aliases())
2933 if (const Comdat *C = GA.getComdat())
2934 if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2935 NotDiscardableComdats.insert(C);
2937 // Delete functions that are trivially dead, ccc -> fastcc
2938 LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree,
2939 NotDiscardableComdats);
2941 // Optimize global_ctors list.
2942 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2943 return EvaluateStaticConstructor(F, DL, &GetTLI(*F));
2946 // Optimize non-address-taken globals.
2947 LocalChange |=
2948 OptimizeGlobalVars(M, GetTLI, LookupDomTree, NotDiscardableComdats);
2950 // Resolve aliases, when possible.
2951 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2953 // Try to remove trivial global destructors if they are not removed
2954 // already.
2955 Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI);
2956 if (CXAAtExitFn)
2957 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2959 Changed |= LocalChange;
2962 // TODO: Move all global ctors functions to the end of the module for code
2963 // layout.
2965 return Changed;
2968 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2969 auto &DL = M.getDataLayout();
2970 auto &FAM =
2971 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2972 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2973 return FAM.getResult<DominatorTreeAnalysis>(F);
2975 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
2976 return FAM.getResult<TargetLibraryAnalysis>(F);
2978 auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
2979 return FAM.getResult<TargetIRAnalysis>(F);
2982 auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
2983 return FAM.getResult<BlockFrequencyAnalysis>(F);
2986 if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree))
2987 return PreservedAnalyses::all();
2988 return PreservedAnalyses::none();
2991 namespace {
2993 struct GlobalOptLegacyPass : public ModulePass {
2994 static char ID; // Pass identification, replacement for typeid
2996 GlobalOptLegacyPass() : ModulePass(ID) {
2997 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
3000 bool runOnModule(Module &M) override {
3001 if (skipModule(M))
3002 return false;
3004 auto &DL = M.getDataLayout();
3005 auto LookupDomTree = [this](Function &F) -> DominatorTree & {
3006 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
3008 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
3009 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3011 auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
3012 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3015 auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
3016 return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
3019 return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI,
3020 LookupDomTree);
3023 void getAnalysisUsage(AnalysisUsage &AU) const override {
3024 AU.addRequired<TargetLibraryInfoWrapperPass>();
3025 AU.addRequired<TargetTransformInfoWrapperPass>();
3026 AU.addRequired<DominatorTreeWrapperPass>();
3027 AU.addRequired<BlockFrequencyInfoWrapperPass>();
3031 } // end anonymous namespace
3033 char GlobalOptLegacyPass::ID = 0;
3035 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
3036 "Global Variable Optimizer", false, false)
3037 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3038 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3039 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
3040 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3041 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
3042 "Global Variable Optimizer", false, false)
3044 ModulePass *llvm::createGlobalOptimizerPass() {
3045 return new GlobalOptLegacyPass();