1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass implements whole program optimization of virtual calls in cases
10 // where we know (via !type metadata) that the list of callees is fixed. This
11 // includes the following:
12 // - Single implementation devirtualization: if a virtual call has a single
13 // possible callee, replace all calls with a direct call to that callee.
14 // - Virtual constant propagation: if the virtual function's return type is an
15 // integer <=64 bits and all possible callees are readnone, for each class and
16 // each list of constant arguments: evaluate the function, store the return
17 // value alongside the virtual table, and rewrite each virtual call as a load
18 // from the virtual table.
19 // - Uniform return value optimization: if the conditions for virtual constant
20 // propagation hold and each function returns the same constant value, replace
21 // each virtual call with that constant.
22 // - Unique return value optimization for i1 return values: if the conditions
23 // for virtual constant propagation hold and a single vtable's function
24 // returns 0, or a single vtable's function returns 1, replace each virtual
25 // call with a comparison of the vptr against that vtable's address.
27 // This pass is intended to be used during the regular and thin LTO pipelines:
29 // During regular LTO, the pass determines the best optimization for each
30 // virtual call and applies the resolutions directly to virtual calls that are
31 // eligible for virtual call optimization (i.e. calls that use either of the
32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
34 // During hybrid Regular/ThinLTO, the pass operates in two phases:
35 // - Export phase: this is run during the thin link over a single merged module
36 // that contains all vtables with !type metadata that participate in the link.
37 // The pass computes a resolution for each virtual call and stores it in the
38 // type identifier summary.
39 // - Import phase: this is run during the thin backends over the individual
40 // modules. The pass applies the resolutions previously computed during the
41 // import phase to each eligible virtual call.
43 // During ThinLTO, the pass operates in two phases:
44 // - Export phase: this is run during the thin link over the index which
45 // contains a summary of all vtables with !type metadata that participate in
46 // the link. It computes a resolution for each virtual call and stores it in
47 // the type identifier summary. Only single implementation devirtualization
49 // - Import phase: (same as with hybrid case above).
51 //===----------------------------------------------------------------------===//
53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/DenseMap.h"
56 #include "llvm/ADT/DenseMapInfo.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/MapVector.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/iterator_range.h"
61 #include "llvm/Analysis/AliasAnalysis.h"
62 #include "llvm/Analysis/BasicAliasAnalysis.h"
63 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
64 #include "llvm/Analysis/TypeMetadataUtils.h"
65 #include "llvm/IR/CallSite.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugLoc.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Dominators.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalVariable.h"
74 #include "llvm/IR/IRBuilder.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/Metadata.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/ModuleSummaryIndexYAML.h"
83 #include "llvm/Pass.h"
84 #include "llvm/PassRegistry.h"
85 #include "llvm/PassSupport.h"
86 #include "llvm/Support/Casting.h"
87 #include "llvm/Support/Error.h"
88 #include "llvm/Support/FileSystem.h"
89 #include "llvm/Support/MathExtras.h"
90 #include "llvm/Transforms/IPO.h"
91 #include "llvm/Transforms/IPO/FunctionAttrs.h"
92 #include "llvm/Transforms/Utils/Evaluator.h"
100 using namespace wholeprogramdevirt
;
102 #define DEBUG_TYPE "wholeprogramdevirt"
104 static cl::opt
<PassSummaryAction
> ClSummaryAction(
105 "wholeprogramdevirt-summary-action",
106 cl::desc("What to do with the summary when running this pass"),
107 cl::values(clEnumValN(PassSummaryAction::None
, "none", "Do nothing"),
108 clEnumValN(PassSummaryAction::Import
, "import",
109 "Import typeid resolutions from summary and globals"),
110 clEnumValN(PassSummaryAction::Export
, "export",
111 "Export typeid resolutions to summary and globals")),
114 static cl::opt
<std::string
> ClReadSummary(
115 "wholeprogramdevirt-read-summary",
116 cl::desc("Read summary from given YAML file before running pass"),
119 static cl::opt
<std::string
> ClWriteSummary(
120 "wholeprogramdevirt-write-summary",
121 cl::desc("Write summary to given YAML file after running pass"),
124 static cl::opt
<unsigned>
125 ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden
,
126 cl::init(10), cl::ZeroOrMore
,
127 cl::desc("Maximum number of call targets per "
128 "call site to enable branch funnels"));
131 PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden
,
132 cl::init(false), cl::ZeroOrMore
,
133 cl::desc("Print index-based devirtualization messages"));
135 // Find the minimum offset that we may store a value of size Size bits at. If
136 // IsAfter is set, look for an offset before the object, otherwise look for an
137 // offset after the object.
139 wholeprogramdevirt::findLowestOffset(ArrayRef
<VirtualCallTarget
> Targets
,
140 bool IsAfter
, uint64_t Size
) {
141 // Find a minimum offset taking into account only vtable sizes.
142 uint64_t MinByte
= 0;
143 for (const VirtualCallTarget
&Target
: Targets
) {
145 MinByte
= std::max(MinByte
, Target
.minAfterBytes());
147 MinByte
= std::max(MinByte
, Target
.minBeforeBytes());
150 // Build a vector of arrays of bytes covering, for each target, a slice of the
151 // used region (see AccumBitVector::BytesUsed in
152 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
153 // this aligns the used regions to start at MinByte.
155 // In this example, A, B and C are vtables, # is a byte already allocated for
156 // a virtual function pointer, AAAA... (etc.) are the used regions for the
157 // vtables and Offset(X) is the value computed for the Offset variable below
163 // A: ################AAAAAAAA|AAAAAAAA
164 // B: ########BBBBBBBBBBBBBBBB|BBBB
165 // C: ########################|CCCCCCCCCCCCCCCC
168 // This code produces the slices of A, B and C that appear after the divider
170 std::vector
<ArrayRef
<uint8_t>> Used
;
171 for (const VirtualCallTarget
&Target
: Targets
) {
172 ArrayRef
<uint8_t> VTUsed
= IsAfter
? Target
.TM
->Bits
->After
.BytesUsed
173 : Target
.TM
->Bits
->Before
.BytesUsed
;
174 uint64_t Offset
= IsAfter
? MinByte
- Target
.minAfterBytes()
175 : MinByte
- Target
.minBeforeBytes();
177 // Disregard used regions that are smaller than Offset. These are
178 // effectively all-free regions that do not need to be checked.
179 if (VTUsed
.size() > Offset
)
180 Used
.push_back(VTUsed
.slice(Offset
));
184 // Find a free bit in each member of Used.
185 for (unsigned I
= 0;; ++I
) {
186 uint8_t BitsUsed
= 0;
187 for (auto &&B
: Used
)
190 if (BitsUsed
!= 0xff)
191 return (MinByte
+ I
) * 8 +
192 countTrailingZeros(uint8_t(~BitsUsed
), ZB_Undefined
);
195 // Find a free (Size/8) byte region in each member of Used.
196 // FIXME: see if alignment helps.
197 for (unsigned I
= 0;; ++I
) {
198 for (auto &&B
: Used
) {
200 while ((I
+ Byte
) < B
.size() && Byte
< (Size
/ 8)) {
206 return (MinByte
+ I
) * 8;
212 void wholeprogramdevirt::setBeforeReturnValues(
213 MutableArrayRef
<VirtualCallTarget
> Targets
, uint64_t AllocBefore
,
214 unsigned BitWidth
, int64_t &OffsetByte
, uint64_t &OffsetBit
) {
216 OffsetByte
= -(AllocBefore
/ 8 + 1);
218 OffsetByte
= -((AllocBefore
+ 7) / 8 + (BitWidth
+ 7) / 8);
219 OffsetBit
= AllocBefore
% 8;
221 for (VirtualCallTarget
&Target
: Targets
) {
223 Target
.setBeforeBit(AllocBefore
);
225 Target
.setBeforeBytes(AllocBefore
, (BitWidth
+ 7) / 8);
229 void wholeprogramdevirt::setAfterReturnValues(
230 MutableArrayRef
<VirtualCallTarget
> Targets
, uint64_t AllocAfter
,
231 unsigned BitWidth
, int64_t &OffsetByte
, uint64_t &OffsetBit
) {
233 OffsetByte
= AllocAfter
/ 8;
235 OffsetByte
= (AllocAfter
+ 7) / 8;
236 OffsetBit
= AllocAfter
% 8;
238 for (VirtualCallTarget
&Target
: Targets
) {
240 Target
.setAfterBit(AllocAfter
);
242 Target
.setAfterBytes(AllocAfter
, (BitWidth
+ 7) / 8);
246 VirtualCallTarget::VirtualCallTarget(Function
*Fn
, const TypeMemberInfo
*TM
)
248 IsBigEndian(Fn
->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}
252 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
253 // tables, and the ByteOffset is the offset in bytes from the address point to
254 // the virtual function pointer.
260 } // end anonymous namespace
264 template <> struct DenseMapInfo
<VTableSlot
> {
265 static VTableSlot
getEmptyKey() {
266 return {DenseMapInfo
<Metadata
*>::getEmptyKey(),
267 DenseMapInfo
<uint64_t>::getEmptyKey()};
269 static VTableSlot
getTombstoneKey() {
270 return {DenseMapInfo
<Metadata
*>::getTombstoneKey(),
271 DenseMapInfo
<uint64_t>::getTombstoneKey()};
273 static unsigned getHashValue(const VTableSlot
&I
) {
274 return DenseMapInfo
<Metadata
*>::getHashValue(I
.TypeID
) ^
275 DenseMapInfo
<uint64_t>::getHashValue(I
.ByteOffset
);
277 static bool isEqual(const VTableSlot
&LHS
,
278 const VTableSlot
&RHS
) {
279 return LHS
.TypeID
== RHS
.TypeID
&& LHS
.ByteOffset
== RHS
.ByteOffset
;
283 template <> struct DenseMapInfo
<VTableSlotSummary
> {
284 static VTableSlotSummary
getEmptyKey() {
285 return {DenseMapInfo
<StringRef
>::getEmptyKey(),
286 DenseMapInfo
<uint64_t>::getEmptyKey()};
288 static VTableSlotSummary
getTombstoneKey() {
289 return {DenseMapInfo
<StringRef
>::getTombstoneKey(),
290 DenseMapInfo
<uint64_t>::getTombstoneKey()};
292 static unsigned getHashValue(const VTableSlotSummary
&I
) {
293 return DenseMapInfo
<StringRef
>::getHashValue(I
.TypeID
) ^
294 DenseMapInfo
<uint64_t>::getHashValue(I
.ByteOffset
);
296 static bool isEqual(const VTableSlotSummary
&LHS
,
297 const VTableSlotSummary
&RHS
) {
298 return LHS
.TypeID
== RHS
.TypeID
&& LHS
.ByteOffset
== RHS
.ByteOffset
;
302 } // end namespace llvm
306 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
307 // the indirect virtual call.
308 struct VirtualCallSite
{
312 // If non-null, this field points to the associated unsafe use count stored in
313 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
314 // of that field for details.
315 unsigned *NumUnsafeUses
;
318 emitRemark(const StringRef OptName
, const StringRef TargetName
,
319 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
) {
320 Function
*F
= CS
.getCaller();
321 DebugLoc DLoc
= CS
->getDebugLoc();
322 BasicBlock
*Block
= CS
.getParent();
325 OREGetter(F
).emit(OptimizationRemark(DEBUG_TYPE
, OptName
, DLoc
, Block
)
326 << NV("Optimization", OptName
)
327 << ": devirtualized a call to "
328 << NV("FunctionName", TargetName
));
331 void replaceAndErase(
332 const StringRef OptName
, const StringRef TargetName
, bool RemarksEnabled
,
333 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
,
336 emitRemark(OptName
, TargetName
, OREGetter
);
337 CS
->replaceAllUsesWith(New
);
338 if (auto II
= dyn_cast
<InvokeInst
>(CS
.getInstruction())) {
339 BranchInst::Create(II
->getNormalDest(), CS
.getInstruction());
340 II
->getUnwindDest()->removePredecessor(II
->getParent());
342 CS
->eraseFromParent();
343 // This use is no longer unsafe.
349 // Call site information collected for a specific VTableSlot and possibly a list
350 // of constant integer arguments. The grouping by arguments is handled by the
351 // VTableSlotInfo class.
352 struct CallSiteInfo
{
353 /// The set of call sites for this slot. Used during regular LTO and the
354 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
355 /// call sites that appear in the merged module itself); in each of these
356 /// cases we are directly operating on the call sites at the IR level.
357 std::vector
<VirtualCallSite
> CallSites
;
359 /// Whether all call sites represented by this CallSiteInfo, including those
360 /// in summaries, have been devirtualized. This starts off as true because a
361 /// default constructed CallSiteInfo represents no call sites.
362 bool AllCallSitesDevirted
= true;
364 // These fields are used during the export phase of ThinLTO and reflect
365 // information collected from function summaries.
367 /// Whether any function summary contains an llvm.assume(llvm.type.test) for
369 bool SummaryHasTypeTestAssumeUsers
= false;
371 /// CFI-specific: a vector containing the list of function summaries that use
372 /// the llvm.type.checked.load intrinsic and therefore will require
373 /// resolutions for llvm.type.test in order to implement CFI checks if
374 /// devirtualization was unsuccessful. If devirtualization was successful, the
375 /// pass will clear this vector by calling markDevirt(). If at the end of the
376 /// pass the vector is non-empty, we will need to add a use of llvm.type.test
377 /// to each of the function summaries in the vector.
378 std::vector
<FunctionSummary
*> SummaryTypeCheckedLoadUsers
;
379 std::vector
<FunctionSummary
*> SummaryTypeTestAssumeUsers
;
381 bool isExported() const {
382 return SummaryHasTypeTestAssumeUsers
||
383 !SummaryTypeCheckedLoadUsers
.empty();
386 void addSummaryTypeCheckedLoadUser(FunctionSummary
*FS
) {
387 SummaryTypeCheckedLoadUsers
.push_back(FS
);
388 AllCallSitesDevirted
= false;
391 void addSummaryTypeTestAssumeUser(FunctionSummary
*FS
) {
392 SummaryTypeTestAssumeUsers
.push_back(FS
);
393 SummaryHasTypeTestAssumeUsers
= true;
394 AllCallSitesDevirted
= false;
398 AllCallSitesDevirted
= true;
400 // As explained in the comment for SummaryTypeCheckedLoadUsers.
401 SummaryTypeCheckedLoadUsers
.clear();
405 // Call site information collected for a specific VTableSlot.
406 struct VTableSlotInfo
{
407 // The set of call sites which do not have all constant integer arguments
408 // (excluding "this").
411 // The set of call sites with all constant integer arguments (excluding
412 // "this"), grouped by argument list.
413 std::map
<std::vector
<uint64_t>, CallSiteInfo
> ConstCSInfo
;
415 void addCallSite(Value
*VTable
, CallSite CS
, unsigned *NumUnsafeUses
);
418 CallSiteInfo
&findCallSiteInfo(CallSite CS
);
421 CallSiteInfo
&VTableSlotInfo::findCallSiteInfo(CallSite CS
) {
422 std::vector
<uint64_t> Args
;
423 auto *CI
= dyn_cast
<IntegerType
>(CS
.getType());
424 if (!CI
|| CI
->getBitWidth() > 64 || CS
.arg_empty())
426 for (auto &&Arg
: make_range(CS
.arg_begin() + 1, CS
.arg_end())) {
427 auto *CI
= dyn_cast
<ConstantInt
>(Arg
);
428 if (!CI
|| CI
->getBitWidth() > 64)
430 Args
.push_back(CI
->getZExtValue());
432 return ConstCSInfo
[Args
];
435 void VTableSlotInfo::addCallSite(Value
*VTable
, CallSite CS
,
436 unsigned *NumUnsafeUses
) {
437 auto &CSI
= findCallSiteInfo(CS
);
438 CSI
.AllCallSitesDevirted
= false;
439 CSI
.CallSites
.push_back({VTable
, CS
, NumUnsafeUses
});
442 struct DevirtModule
{
444 function_ref
<AAResults
&(Function
&)> AARGetter
;
445 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
;
447 ModuleSummaryIndex
*ExportSummary
;
448 const ModuleSummaryIndex
*ImportSummary
;
451 PointerType
*Int8PtrTy
;
452 IntegerType
*Int32Ty
;
453 IntegerType
*Int64Ty
;
454 IntegerType
*IntPtrTy
;
457 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
;
459 MapVector
<VTableSlot
, VTableSlotInfo
> CallSlots
;
461 // This map keeps track of the number of "unsafe" uses of a loaded function
462 // pointer. The key is the associated llvm.type.test intrinsic call generated
463 // by this pass. An unsafe use is one that calls the loaded function pointer
464 // directly. Every time we eliminate an unsafe use (for example, by
465 // devirtualizing it or by applying virtual constant propagation), we
466 // decrement the value stored in this map. If a value reaches zero, we can
467 // eliminate the type check by RAUWing the associated llvm.type.test call with
469 std::map
<CallInst
*, unsigned> NumUnsafeUsesForTypeTest
;
471 DevirtModule(Module
&M
, function_ref
<AAResults
&(Function
&)> AARGetter
,
472 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
,
473 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
,
474 ModuleSummaryIndex
*ExportSummary
,
475 const ModuleSummaryIndex
*ImportSummary
)
476 : M(M
), AARGetter(AARGetter
), LookupDomTree(LookupDomTree
),
477 ExportSummary(ExportSummary
), ImportSummary(ImportSummary
),
478 Int8Ty(Type::getInt8Ty(M
.getContext())),
479 Int8PtrTy(Type::getInt8PtrTy(M
.getContext())),
480 Int32Ty(Type::getInt32Ty(M
.getContext())),
481 Int64Ty(Type::getInt64Ty(M
.getContext())),
482 IntPtrTy(M
.getDataLayout().getIntPtrType(M
.getContext(), 0)),
483 RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter
) {
484 assert(!(ExportSummary
&& ImportSummary
));
487 bool areRemarksEnabled();
489 void scanTypeTestUsers(Function
*TypeTestFunc
, Function
*AssumeFunc
);
490 void scanTypeCheckedLoadUsers(Function
*TypeCheckedLoadFunc
);
492 void buildTypeIdentifierMap(
493 std::vector
<VTableBits
> &Bits
,
494 DenseMap
<Metadata
*, std::set
<TypeMemberInfo
>> &TypeIdMap
);
496 tryFindVirtualCallTargets(std::vector
<VirtualCallTarget
> &TargetsForSlot
,
497 const std::set
<TypeMemberInfo
> &TypeMemberInfos
,
498 uint64_t ByteOffset
);
500 void applySingleImplDevirt(VTableSlotInfo
&SlotInfo
, Constant
*TheFn
,
502 bool trySingleImplDevirt(ModuleSummaryIndex
*ExportSummary
,
503 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
504 VTableSlotInfo
&SlotInfo
,
505 WholeProgramDevirtResolution
*Res
);
507 void applyICallBranchFunnel(VTableSlotInfo
&SlotInfo
, Constant
*JT
,
509 void tryICallBranchFunnel(MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
510 VTableSlotInfo
&SlotInfo
,
511 WholeProgramDevirtResolution
*Res
, VTableSlot Slot
);
513 bool tryEvaluateFunctionsWithArgs(
514 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
515 ArrayRef
<uint64_t> Args
);
517 void applyUniformRetValOpt(CallSiteInfo
&CSInfo
, StringRef FnName
,
519 bool tryUniformRetValOpt(MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
520 CallSiteInfo
&CSInfo
,
521 WholeProgramDevirtResolution::ByArg
*Res
);
523 // Returns the global symbol name that is used to export information about the
524 // given vtable slot and list of arguments.
525 std::string
getGlobalName(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
528 bool shouldExportConstantsAsAbsoluteSymbols();
530 // This function is called during the export phase to create a symbol
531 // definition containing information about the given vtable slot and list of
533 void exportGlobal(VTableSlot Slot
, ArrayRef
<uint64_t> Args
, StringRef Name
,
535 void exportConstant(VTableSlot Slot
, ArrayRef
<uint64_t> Args
, StringRef Name
,
536 uint32_t Const
, uint32_t &Storage
);
538 // This function is called during the import phase to create a reference to
539 // the symbol definition created during the export phase.
540 Constant
*importGlobal(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
542 Constant
*importConstant(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
543 StringRef Name
, IntegerType
*IntTy
,
546 Constant
*getMemberAddr(const TypeMemberInfo
*M
);
548 void applyUniqueRetValOpt(CallSiteInfo
&CSInfo
, StringRef FnName
, bool IsOne
,
549 Constant
*UniqueMemberAddr
);
550 bool tryUniqueRetValOpt(unsigned BitWidth
,
551 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
552 CallSiteInfo
&CSInfo
,
553 WholeProgramDevirtResolution::ByArg
*Res
,
554 VTableSlot Slot
, ArrayRef
<uint64_t> Args
);
556 void applyVirtualConstProp(CallSiteInfo
&CSInfo
, StringRef FnName
,
557 Constant
*Byte
, Constant
*Bit
);
558 bool tryVirtualConstProp(MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
559 VTableSlotInfo
&SlotInfo
,
560 WholeProgramDevirtResolution
*Res
, VTableSlot Slot
);
562 void rebuildGlobal(VTableBits
&B
);
564 // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
565 void importResolution(VTableSlot Slot
, VTableSlotInfo
&SlotInfo
);
567 // If we were able to eliminate all unsafe uses for a type checked load,
568 // eliminate the associated type tests by replacing them with true.
569 void removeRedundantTypeTests();
573 // Lower the module using the action and summary passed as command line
574 // arguments. For testing purposes only.
576 runForTesting(Module
&M
, function_ref
<AAResults
&(Function
&)> AARGetter
,
577 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
,
578 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
);
582 ModuleSummaryIndex
&ExportSummary
;
583 // The set in which to record GUIDs exported from their module by
584 // devirtualization, used by client to ensure they are not internalized.
585 std::set
<GlobalValue::GUID
> &ExportedGUIDs
;
586 // A map in which to record the information necessary to locate the WPD
587 // resolution for local targets in case they are exported by cross module
589 std::map
<ValueInfo
, std::vector
<VTableSlotSummary
>> &LocalWPDTargetsMap
;
591 MapVector
<VTableSlotSummary
, VTableSlotInfo
> CallSlots
;
594 ModuleSummaryIndex
&ExportSummary
,
595 std::set
<GlobalValue::GUID
> &ExportedGUIDs
,
596 std::map
<ValueInfo
, std::vector
<VTableSlotSummary
>> &LocalWPDTargetsMap
)
597 : ExportSummary(ExportSummary
), ExportedGUIDs(ExportedGUIDs
),
598 LocalWPDTargetsMap(LocalWPDTargetsMap
) {}
600 bool tryFindVirtualCallTargets(std::vector
<ValueInfo
> &TargetsForSlot
,
601 const TypeIdCompatibleVtableInfo TIdInfo
,
602 uint64_t ByteOffset
);
604 bool trySingleImplDevirt(MutableArrayRef
<ValueInfo
> TargetsForSlot
,
605 VTableSlotSummary
&SlotSummary
,
606 VTableSlotInfo
&SlotInfo
,
607 WholeProgramDevirtResolution
*Res
,
608 std::set
<ValueInfo
> &DevirtTargets
);
613 struct WholeProgramDevirt
: public ModulePass
{
616 bool UseCommandLine
= false;
618 ModuleSummaryIndex
*ExportSummary
;
619 const ModuleSummaryIndex
*ImportSummary
;
621 WholeProgramDevirt() : ModulePass(ID
), UseCommandLine(true) {
622 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
625 WholeProgramDevirt(ModuleSummaryIndex
*ExportSummary
,
626 const ModuleSummaryIndex
*ImportSummary
)
627 : ModulePass(ID
), ExportSummary(ExportSummary
),
628 ImportSummary(ImportSummary
) {
629 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
632 bool runOnModule(Module
&M
) override
{
636 // In the new pass manager, we can request the optimization
637 // remark emitter pass on a per-function-basis, which the
638 // OREGetter will do for us.
639 // In the old pass manager, this is harder, so we just build
640 // an optimization remark emitter on the fly, when we need it.
641 std::unique_ptr
<OptimizationRemarkEmitter
> ORE
;
642 auto OREGetter
= [&](Function
*F
) -> OptimizationRemarkEmitter
& {
643 ORE
= std::make_unique
<OptimizationRemarkEmitter
>(F
);
647 auto LookupDomTree
= [this](Function
&F
) -> DominatorTree
& {
648 return this->getAnalysis
<DominatorTreeWrapperPass
>(F
).getDomTree();
652 return DevirtModule::runForTesting(M
, LegacyAARGetter(*this), OREGetter
,
655 return DevirtModule(M
, LegacyAARGetter(*this), OREGetter
, LookupDomTree
,
656 ExportSummary
, ImportSummary
)
660 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
661 AU
.addRequired
<AssumptionCacheTracker
>();
662 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
663 AU
.addRequired
<DominatorTreeWrapperPass
>();
667 } // end anonymous namespace
669 INITIALIZE_PASS_BEGIN(WholeProgramDevirt
, "wholeprogramdevirt",
670 "Whole program devirtualization", false, false)
671 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
672 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
673 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
674 INITIALIZE_PASS_END(WholeProgramDevirt
, "wholeprogramdevirt",
675 "Whole program devirtualization", false, false)
676 char WholeProgramDevirt::ID
= 0;
679 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex
*ExportSummary
,
680 const ModuleSummaryIndex
*ImportSummary
) {
681 return new WholeProgramDevirt(ExportSummary
, ImportSummary
);
684 PreservedAnalyses
WholeProgramDevirtPass::run(Module
&M
,
685 ModuleAnalysisManager
&AM
) {
686 auto &FAM
= AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
687 auto AARGetter
= [&](Function
&F
) -> AAResults
& {
688 return FAM
.getResult
<AAManager
>(F
);
690 auto OREGetter
= [&](Function
*F
) -> OptimizationRemarkEmitter
& {
691 return FAM
.getResult
<OptimizationRemarkEmitterAnalysis
>(*F
);
693 auto LookupDomTree
= [&FAM
](Function
&F
) -> DominatorTree
& {
694 return FAM
.getResult
<DominatorTreeAnalysis
>(F
);
696 if (!DevirtModule(M
, AARGetter
, OREGetter
, LookupDomTree
, ExportSummary
,
699 return PreservedAnalyses::all();
700 return PreservedAnalyses::none();
704 void runWholeProgramDevirtOnIndex(
705 ModuleSummaryIndex
&Summary
, std::set
<GlobalValue::GUID
> &ExportedGUIDs
,
706 std::map
<ValueInfo
, std::vector
<VTableSlotSummary
>> &LocalWPDTargetsMap
) {
707 DevirtIndex(Summary
, ExportedGUIDs
, LocalWPDTargetsMap
).run();
710 void updateIndexWPDForExports(
711 ModuleSummaryIndex
&Summary
,
712 function_ref
<bool(StringRef
, GlobalValue::GUID
)> isExported
,
713 std::map
<ValueInfo
, std::vector
<VTableSlotSummary
>> &LocalWPDTargetsMap
) {
714 for (auto &T
: LocalWPDTargetsMap
) {
716 // This was enforced earlier during trySingleImplDevirt.
717 assert(VI
.getSummaryList().size() == 1 &&
718 "Devirt of local target has more than one copy");
719 auto &S
= VI
.getSummaryList()[0];
720 if (!isExported(S
->modulePath(), VI
.getGUID()))
723 // It's been exported by a cross module import.
724 for (auto &SlotSummary
: T
.second
) {
725 auto *TIdSum
= Summary
.getTypeIdSummary(SlotSummary
.TypeID
);
727 auto WPDRes
= TIdSum
->WPDRes
.find(SlotSummary
.ByteOffset
);
728 assert(WPDRes
!= TIdSum
->WPDRes
.end());
729 WPDRes
->second
.SingleImplName
= ModuleSummaryIndex::getGlobalNameForLocal(
730 WPDRes
->second
.SingleImplName
,
731 Summary
.getModuleHash(S
->modulePath()));
736 } // end namespace llvm
738 bool DevirtModule::runForTesting(
739 Module
&M
, function_ref
<AAResults
&(Function
&)> AARGetter
,
740 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
,
741 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
) {
742 ModuleSummaryIndex
Summary(/*HaveGVs=*/false);
744 // Handle the command-line summary arguments. This code is for testing
745 // purposes only, so we handle errors directly.
746 if (!ClReadSummary
.empty()) {
747 ExitOnError
ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary
+
749 auto ReadSummaryFile
=
750 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary
)));
752 yaml::Input
In(ReadSummaryFile
->getBuffer());
754 ExitOnErr(errorCodeToError(In
.error()));
759 M
, AARGetter
, OREGetter
, LookupDomTree
,
760 ClSummaryAction
== PassSummaryAction::Export
? &Summary
: nullptr,
761 ClSummaryAction
== PassSummaryAction::Import
? &Summary
: nullptr)
764 if (!ClWriteSummary
.empty()) {
765 ExitOnError
ExitOnErr(
766 "-wholeprogramdevirt-write-summary: " + ClWriteSummary
+ ": ");
768 raw_fd_ostream
OS(ClWriteSummary
, EC
, sys::fs::OF_Text
);
769 ExitOnErr(errorCodeToError(EC
));
771 yaml::Output
Out(OS
);
778 void DevirtModule::buildTypeIdentifierMap(
779 std::vector
<VTableBits
> &Bits
,
780 DenseMap
<Metadata
*, std::set
<TypeMemberInfo
>> &TypeIdMap
) {
781 DenseMap
<GlobalVariable
*, VTableBits
*> GVToBits
;
782 Bits
.reserve(M
.getGlobalList().size());
783 SmallVector
<MDNode
*, 2> Types
;
784 for (GlobalVariable
&GV
: M
.globals()) {
786 GV
.getMetadata(LLVMContext::MD_type
, Types
);
787 if (GV
.isDeclaration() || Types
.empty())
790 VTableBits
*&BitsPtr
= GVToBits
[&GV
];
793 Bits
.back().GV
= &GV
;
794 Bits
.back().ObjectSize
=
795 M
.getDataLayout().getTypeAllocSize(GV
.getInitializer()->getType());
796 BitsPtr
= &Bits
.back();
799 for (MDNode
*Type
: Types
) {
800 auto TypeID
= Type
->getOperand(1).get();
804 cast
<ConstantAsMetadata
>(Type
->getOperand(0))->getValue())
807 TypeIdMap
[TypeID
].insert({BitsPtr
, Offset
});
812 bool DevirtModule::tryFindVirtualCallTargets(
813 std::vector
<VirtualCallTarget
> &TargetsForSlot
,
814 const std::set
<TypeMemberInfo
> &TypeMemberInfos
, uint64_t ByteOffset
) {
815 for (const TypeMemberInfo
&TM
: TypeMemberInfos
) {
816 if (!TM
.Bits
->GV
->isConstant())
819 Constant
*Ptr
= getPointerAtOffset(TM
.Bits
->GV
->getInitializer(),
820 TM
.Offset
+ ByteOffset
, M
);
824 auto Fn
= dyn_cast
<Function
>(Ptr
->stripPointerCasts());
828 // We can disregard __cxa_pure_virtual as a possible call target, as
829 // calls to pure virtuals are UB.
830 if (Fn
->getName() == "__cxa_pure_virtual")
833 TargetsForSlot
.push_back({Fn
, &TM
});
836 // Give up if we couldn't find any targets.
837 return !TargetsForSlot
.empty();
840 bool DevirtIndex::tryFindVirtualCallTargets(
841 std::vector
<ValueInfo
> &TargetsForSlot
, const TypeIdCompatibleVtableInfo TIdInfo
,
842 uint64_t ByteOffset
) {
843 for (const TypeIdOffsetVtableInfo P
: TIdInfo
) {
844 // VTable initializer should have only one summary, or all copies must be
845 // linkonce/weak ODR.
846 assert(P
.VTableVI
.getSummaryList().size() == 1 ||
848 P
.VTableVI
.getSummaryList(),
849 [&](const std::unique_ptr
<GlobalValueSummary
> &Summary
) {
850 return GlobalValue::isLinkOnceODRLinkage(Summary
->linkage()) ||
851 GlobalValue::isWeakODRLinkage(Summary
->linkage());
853 const auto *VS
= cast
<GlobalVarSummary
>(P
.VTableVI
.getSummaryList()[0].get());
854 if (!P
.VTableVI
.getSummaryList()[0]->isLive())
856 for (auto VTP
: VS
->vTableFuncs()) {
857 if (VTP
.VTableOffset
!= P
.AddressPointOffset
+ ByteOffset
)
860 TargetsForSlot
.push_back(VTP
.FuncVI
);
864 // Give up if we couldn't find any targets.
865 return !TargetsForSlot
.empty();
868 void DevirtModule::applySingleImplDevirt(VTableSlotInfo
&SlotInfo
,
869 Constant
*TheFn
, bool &IsExported
) {
870 auto Apply
= [&](CallSiteInfo
&CSInfo
) {
871 for (auto &&VCallSite
: CSInfo
.CallSites
) {
873 VCallSite
.emitRemark("single-impl",
874 TheFn
->stripPointerCasts()->getName(), OREGetter
);
875 VCallSite
.CS
.setCalledFunction(ConstantExpr::getBitCast(
876 TheFn
, VCallSite
.CS
.getCalledValue()->getType()));
877 // This use is no longer unsafe.
878 if (VCallSite
.NumUnsafeUses
)
879 --*VCallSite
.NumUnsafeUses
;
881 if (CSInfo
.isExported())
885 Apply(SlotInfo
.CSInfo
);
886 for (auto &P
: SlotInfo
.ConstCSInfo
)
890 static bool AddCalls(VTableSlotInfo
&SlotInfo
, const ValueInfo
&Callee
) {
891 // We can't add calls if we haven't seen a definition
892 if (Callee
.getSummaryList().empty())
895 // Insert calls into the summary index so that the devirtualized targets
896 // are eligible for import.
897 // FIXME: Annotate type tests with hotness. For now, mark these as hot
898 // to better ensure we have the opportunity to inline them.
899 bool IsExported
= false;
900 auto &S
= Callee
.getSummaryList()[0];
901 CalleeInfo
CI(CalleeInfo::HotnessType::Hot
, /* RelBF = */ 0);
902 auto AddCalls
= [&](CallSiteInfo
&CSInfo
) {
903 for (auto *FS
: CSInfo
.SummaryTypeCheckedLoadUsers
) {
904 FS
->addCall({Callee
, CI
});
905 IsExported
|= S
->modulePath() != FS
->modulePath();
907 for (auto *FS
: CSInfo
.SummaryTypeTestAssumeUsers
) {
908 FS
->addCall({Callee
, CI
});
909 IsExported
|= S
->modulePath() != FS
->modulePath();
912 AddCalls(SlotInfo
.CSInfo
);
913 for (auto &P
: SlotInfo
.ConstCSInfo
)
918 bool DevirtModule::trySingleImplDevirt(
919 ModuleSummaryIndex
*ExportSummary
,
920 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
, VTableSlotInfo
&SlotInfo
,
921 WholeProgramDevirtResolution
*Res
) {
922 // See if the program contains a single implementation of this virtual
924 Function
*TheFn
= TargetsForSlot
[0].Fn
;
925 for (auto &&Target
: TargetsForSlot
)
926 if (TheFn
!= Target
.Fn
)
929 // If so, update each call site to call that implementation directly.
931 TargetsForSlot
[0].WasDevirt
= true;
933 bool IsExported
= false;
934 applySingleImplDevirt(SlotInfo
, TheFn
, IsExported
);
938 // If the only implementation has local linkage, we must promote to external
939 // to make it visible to thin LTO objects. We can only get here during the
940 // ThinLTO export phase.
941 if (TheFn
->hasLocalLinkage()) {
942 std::string NewName
= (TheFn
->getName() + "$merged").str();
944 // Since we are renaming the function, any comdats with the same name must
945 // also be renamed. This is required when targeting COFF, as the comdat name
946 // must match one of the names of the symbols in the comdat.
947 if (Comdat
*C
= TheFn
->getComdat()) {
948 if (C
->getName() == TheFn
->getName()) {
949 Comdat
*NewC
= M
.getOrInsertComdat(NewName
);
950 NewC
->setSelectionKind(C
->getSelectionKind());
951 for (GlobalObject
&GO
: M
.global_objects())
952 if (GO
.getComdat() == C
)
957 TheFn
->setLinkage(GlobalValue::ExternalLinkage
);
958 TheFn
->setVisibility(GlobalValue::HiddenVisibility
);
959 TheFn
->setName(NewName
);
961 if (ValueInfo TheFnVI
= ExportSummary
->getValueInfo(TheFn
->getGUID()))
962 // Any needed promotion of 'TheFn' has already been done during
963 // LTO unit split, so we can ignore return value of AddCalls.
964 AddCalls(SlotInfo
, TheFnVI
);
966 Res
->TheKind
= WholeProgramDevirtResolution::SingleImpl
;
967 Res
->SingleImplName
= TheFn
->getName();
972 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef
<ValueInfo
> TargetsForSlot
,
973 VTableSlotSummary
&SlotSummary
,
974 VTableSlotInfo
&SlotInfo
,
975 WholeProgramDevirtResolution
*Res
,
976 std::set
<ValueInfo
> &DevirtTargets
) {
977 // See if the program contains a single implementation of this virtual
979 auto TheFn
= TargetsForSlot
[0];
980 for (auto &&Target
: TargetsForSlot
)
984 // Don't devirtualize if we don't have target definition.
985 auto Size
= TheFn
.getSummaryList().size();
989 // If the summary list contains multiple summaries where at least one is
990 // a local, give up, as we won't know which (possibly promoted) name to use.
991 for (auto &S
: TheFn
.getSummaryList())
992 if (GlobalValue::isLocalLinkage(S
->linkage()) && Size
> 1)
995 // Collect functions devirtualized at least for one call site for stats.
996 if (PrintSummaryDevirt
)
997 DevirtTargets
.insert(TheFn
);
999 auto &S
= TheFn
.getSummaryList()[0];
1000 bool IsExported
= AddCalls(SlotInfo
, TheFn
);
1002 ExportedGUIDs
.insert(TheFn
.getGUID());
1004 // Record in summary for use in devirtualization during the ThinLTO import
1006 Res
->TheKind
= WholeProgramDevirtResolution::SingleImpl
;
1007 if (GlobalValue::isLocalLinkage(S
->linkage())) {
1009 // If target is a local function and we are exporting it by
1010 // devirtualizing a call in another module, we need to record the
1012 Res
->SingleImplName
= ModuleSummaryIndex::getGlobalNameForLocal(
1013 TheFn
.name(), ExportSummary
.getModuleHash(S
->modulePath()));
1015 LocalWPDTargetsMap
[TheFn
].push_back(SlotSummary
);
1016 Res
->SingleImplName
= TheFn
.name();
1019 Res
->SingleImplName
= TheFn
.name();
1021 // Name will be empty if this thin link driven off of serialized combined
1022 // index (e.g. llvm-lto). However, WPD is not supported/invoked for the
1023 // legacy LTO API anyway.
1024 assert(!Res
->SingleImplName
.empty());
1029 void DevirtModule::tryICallBranchFunnel(
1030 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
, VTableSlotInfo
&SlotInfo
,
1031 WholeProgramDevirtResolution
*Res
, VTableSlot Slot
) {
1032 Triple
T(M
.getTargetTriple());
1033 if (T
.getArch() != Triple::x86_64
)
1036 if (TargetsForSlot
.size() > ClThreshold
)
1039 bool HasNonDevirt
= !SlotInfo
.CSInfo
.AllCallSitesDevirted
;
1041 for (auto &P
: SlotInfo
.ConstCSInfo
)
1042 if (!P
.second
.AllCallSitesDevirted
) {
1043 HasNonDevirt
= true;
1051 FunctionType::get(Type::getVoidTy(M
.getContext()), {Int8PtrTy
}, true);
1053 if (isa
<MDString
>(Slot
.TypeID
)) {
1054 JT
= Function::Create(FT
, Function::ExternalLinkage
,
1055 M
.getDataLayout().getProgramAddressSpace(),
1056 getGlobalName(Slot
, {}, "branch_funnel"), &M
);
1057 JT
->setVisibility(GlobalValue::HiddenVisibility
);
1059 JT
= Function::Create(FT
, Function::InternalLinkage
,
1060 M
.getDataLayout().getProgramAddressSpace(),
1061 "branch_funnel", &M
);
1063 JT
->addAttribute(1, Attribute::Nest
);
1065 std::vector
<Value
*> JTArgs
;
1066 JTArgs
.push_back(JT
->arg_begin());
1067 for (auto &T
: TargetsForSlot
) {
1068 JTArgs
.push_back(getMemberAddr(T
.TM
));
1069 JTArgs
.push_back(T
.Fn
);
1072 BasicBlock
*BB
= BasicBlock::Create(M
.getContext(), "", JT
, nullptr);
1074 Intrinsic::getDeclaration(&M
, llvm::Intrinsic::icall_branch_funnel
, {});
1076 auto *CI
= CallInst::Create(Intr
, JTArgs
, "", BB
);
1077 CI
->setTailCallKind(CallInst::TCK_MustTail
);
1078 ReturnInst::Create(M
.getContext(), nullptr, BB
);
1080 bool IsExported
= false;
1081 applyICallBranchFunnel(SlotInfo
, JT
, IsExported
);
1083 Res
->TheKind
= WholeProgramDevirtResolution::BranchFunnel
;
1086 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo
&SlotInfo
,
1087 Constant
*JT
, bool &IsExported
) {
1088 auto Apply
= [&](CallSiteInfo
&CSInfo
) {
1089 if (CSInfo
.isExported())
1091 if (CSInfo
.AllCallSitesDevirted
)
1093 for (auto &&VCallSite
: CSInfo
.CallSites
) {
1094 CallSite CS
= VCallSite
.CS
;
1096 // Jump tables are only profitable if the retpoline mitigation is enabled.
1097 Attribute FSAttr
= CS
.getCaller()->getFnAttribute("target-features");
1098 if (FSAttr
.hasAttribute(Attribute::None
) ||
1099 !FSAttr
.getValueAsString().contains("+retpoline"))
1103 VCallSite
.emitRemark("branch-funnel",
1104 JT
->stripPointerCasts()->getName(), OREGetter
);
1106 // Pass the address of the vtable in the nest register, which is r10 on
1108 std::vector
<Type
*> NewArgs
;
1109 NewArgs
.push_back(Int8PtrTy
);
1110 for (Type
*T
: CS
.getFunctionType()->params())
1111 NewArgs
.push_back(T
);
1112 FunctionType
*NewFT
=
1113 FunctionType::get(CS
.getFunctionType()->getReturnType(), NewArgs
,
1114 CS
.getFunctionType()->isVarArg());
1115 PointerType
*NewFTPtr
= PointerType::getUnqual(NewFT
);
1117 IRBuilder
<> IRB(CS
.getInstruction());
1118 std::vector
<Value
*> Args
;
1119 Args
.push_back(IRB
.CreateBitCast(VCallSite
.VTable
, Int8PtrTy
));
1120 for (unsigned I
= 0; I
!= CS
.getNumArgOperands(); ++I
)
1121 Args
.push_back(CS
.getArgOperand(I
));
1125 NewCS
= IRB
.CreateCall(NewFT
, IRB
.CreateBitCast(JT
, NewFTPtr
), Args
);
1127 NewCS
= IRB
.CreateInvoke(
1128 NewFT
, IRB
.CreateBitCast(JT
, NewFTPtr
),
1129 cast
<InvokeInst
>(CS
.getInstruction())->getNormalDest(),
1130 cast
<InvokeInst
>(CS
.getInstruction())->getUnwindDest(), Args
);
1131 NewCS
.setCallingConv(CS
.getCallingConv());
1133 AttributeList Attrs
= CS
.getAttributes();
1134 std::vector
<AttributeSet
> NewArgAttrs
;
1135 NewArgAttrs
.push_back(AttributeSet::get(
1136 M
.getContext(), ArrayRef
<Attribute
>{Attribute::get(
1137 M
.getContext(), Attribute::Nest
)}));
1138 for (unsigned I
= 0; I
+ 2 < Attrs
.getNumAttrSets(); ++I
)
1139 NewArgAttrs
.push_back(Attrs
.getParamAttributes(I
));
1140 NewCS
.setAttributes(
1141 AttributeList::get(M
.getContext(), Attrs
.getFnAttributes(),
1142 Attrs
.getRetAttributes(), NewArgAttrs
));
1144 CS
->replaceAllUsesWith(NewCS
.getInstruction());
1145 CS
->eraseFromParent();
1147 // This use is no longer unsafe.
1148 if (VCallSite
.NumUnsafeUses
)
1149 --*VCallSite
.NumUnsafeUses
;
1151 // Don't mark as devirtualized because there may be callers compiled without
1152 // retpoline mitigation, which would mean that they are lowered to
1153 // llvm.type.test and therefore require an llvm.type.test resolution for the
1156 Apply(SlotInfo
.CSInfo
);
1157 for (auto &P
: SlotInfo
.ConstCSInfo
)
1161 bool DevirtModule::tryEvaluateFunctionsWithArgs(
1162 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
1163 ArrayRef
<uint64_t> Args
) {
1164 // Evaluate each function and store the result in each target's RetVal
1166 for (VirtualCallTarget
&Target
: TargetsForSlot
) {
1167 if (Target
.Fn
->arg_size() != Args
.size() + 1)
1170 Evaluator
Eval(M
.getDataLayout(), nullptr);
1171 SmallVector
<Constant
*, 2> EvalArgs
;
1173 Constant::getNullValue(Target
.Fn
->getFunctionType()->getParamType(0)));
1174 for (unsigned I
= 0; I
!= Args
.size(); ++I
) {
1175 auto *ArgTy
= dyn_cast
<IntegerType
>(
1176 Target
.Fn
->getFunctionType()->getParamType(I
+ 1));
1179 EvalArgs
.push_back(ConstantInt::get(ArgTy
, Args
[I
]));
1183 if (!Eval
.EvaluateFunction(Target
.Fn
, RetVal
, EvalArgs
) ||
1184 !isa
<ConstantInt
>(RetVal
))
1186 Target
.RetVal
= cast
<ConstantInt
>(RetVal
)->getZExtValue();
1191 void DevirtModule::applyUniformRetValOpt(CallSiteInfo
&CSInfo
, StringRef FnName
,
1192 uint64_t TheRetVal
) {
1193 for (auto Call
: CSInfo
.CallSites
)
1194 Call
.replaceAndErase(
1195 "uniform-ret-val", FnName
, RemarksEnabled
, OREGetter
,
1196 ConstantInt::get(cast
<IntegerType
>(Call
.CS
.getType()), TheRetVal
));
1197 CSInfo
.markDevirt();
1200 bool DevirtModule::tryUniformRetValOpt(
1201 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
, CallSiteInfo
&CSInfo
,
1202 WholeProgramDevirtResolution::ByArg
*Res
) {
1203 // Uniform return value optimization. If all functions return the same
1204 // constant, replace all calls with that constant.
1205 uint64_t TheRetVal
= TargetsForSlot
[0].RetVal
;
1206 for (const VirtualCallTarget
&Target
: TargetsForSlot
)
1207 if (Target
.RetVal
!= TheRetVal
)
1210 if (CSInfo
.isExported()) {
1211 Res
->TheKind
= WholeProgramDevirtResolution::ByArg::UniformRetVal
;
1212 Res
->Info
= TheRetVal
;
1215 applyUniformRetValOpt(CSInfo
, TargetsForSlot
[0].Fn
->getName(), TheRetVal
);
1217 for (auto &&Target
: TargetsForSlot
)
1218 Target
.WasDevirt
= true;
1222 std::string
DevirtModule::getGlobalName(VTableSlot Slot
,
1223 ArrayRef
<uint64_t> Args
,
1225 std::string FullName
= "__typeid_";
1226 raw_string_ostream
OS(FullName
);
1227 OS
<< cast
<MDString
>(Slot
.TypeID
)->getString() << '_' << Slot
.ByteOffset
;
1228 for (uint64_t Arg
: Args
)
1234 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1235 Triple
T(M
.getTargetTriple());
1236 return (T
.getArch() == Triple::x86
|| T
.getArch() == Triple::x86_64
) &&
1237 T
.getObjectFormat() == Triple::ELF
;
1240 void DevirtModule::exportGlobal(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
1241 StringRef Name
, Constant
*C
) {
1242 GlobalAlias
*GA
= GlobalAlias::create(Int8Ty
, 0, GlobalValue::ExternalLinkage
,
1243 getGlobalName(Slot
, Args
, Name
), C
, &M
);
1244 GA
->setVisibility(GlobalValue::HiddenVisibility
);
1247 void DevirtModule::exportConstant(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
1248 StringRef Name
, uint32_t Const
,
1249 uint32_t &Storage
) {
1250 if (shouldExportConstantsAsAbsoluteSymbols()) {
1253 ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty
, Const
), Int8PtrTy
));
1260 Constant
*DevirtModule::importGlobal(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
1262 Constant
*C
= M
.getOrInsertGlobal(getGlobalName(Slot
, Args
, Name
), Int8Ty
);
1263 auto *GV
= dyn_cast
<GlobalVariable
>(C
);
1265 GV
->setVisibility(GlobalValue::HiddenVisibility
);
1269 Constant
*DevirtModule::importConstant(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
1270 StringRef Name
, IntegerType
*IntTy
,
1272 if (!shouldExportConstantsAsAbsoluteSymbols())
1273 return ConstantInt::get(IntTy
, Storage
);
1275 Constant
*C
= importGlobal(Slot
, Args
, Name
);
1276 auto *GV
= cast
<GlobalVariable
>(C
->stripPointerCasts());
1277 C
= ConstantExpr::getPtrToInt(C
, IntTy
);
1279 // We only need to set metadata if the global is newly created, in which
1280 // case it would not have hidden visibility.
1281 if (GV
->hasMetadata(LLVMContext::MD_absolute_symbol
))
1284 auto SetAbsRange
= [&](uint64_t Min
, uint64_t Max
) {
1285 auto *MinC
= ConstantAsMetadata::get(ConstantInt::get(IntPtrTy
, Min
));
1286 auto *MaxC
= ConstantAsMetadata::get(ConstantInt::get(IntPtrTy
, Max
));
1287 GV
->setMetadata(LLVMContext::MD_absolute_symbol
,
1288 MDNode::get(M
.getContext(), {MinC
, MaxC
}));
1290 unsigned AbsWidth
= IntTy
->getBitWidth();
1291 if (AbsWidth
== IntPtrTy
->getBitWidth())
1292 SetAbsRange(~0ull, ~0ull); // Full set.
1294 SetAbsRange(0, 1ull << AbsWidth
);
1298 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo
&CSInfo
, StringRef FnName
,
1300 Constant
*UniqueMemberAddr
) {
1301 for (auto &&Call
: CSInfo
.CallSites
) {
1302 IRBuilder
<> B(Call
.CS
.getInstruction());
1304 B
.CreateICmp(IsOne
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
,
1305 B
.CreateBitCast(Call
.VTable
, Int8PtrTy
), UniqueMemberAddr
);
1306 Cmp
= B
.CreateZExt(Cmp
, Call
.CS
->getType());
1307 Call
.replaceAndErase("unique-ret-val", FnName
, RemarksEnabled
, OREGetter
,
1310 CSInfo
.markDevirt();
1313 Constant
*DevirtModule::getMemberAddr(const TypeMemberInfo
*M
) {
1314 Constant
*C
= ConstantExpr::getBitCast(M
->Bits
->GV
, Int8PtrTy
);
1315 return ConstantExpr::getGetElementPtr(Int8Ty
, C
,
1316 ConstantInt::get(Int64Ty
, M
->Offset
));
1319 bool DevirtModule::tryUniqueRetValOpt(
1320 unsigned BitWidth
, MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
1321 CallSiteInfo
&CSInfo
, WholeProgramDevirtResolution::ByArg
*Res
,
1322 VTableSlot Slot
, ArrayRef
<uint64_t> Args
) {
1323 // IsOne controls whether we look for a 0 or a 1.
1324 auto tryUniqueRetValOptFor
= [&](bool IsOne
) {
1325 const TypeMemberInfo
*UniqueMember
= nullptr;
1326 for (const VirtualCallTarget
&Target
: TargetsForSlot
) {
1327 if (Target
.RetVal
== (IsOne
? 1 : 0)) {
1330 UniqueMember
= Target
.TM
;
1334 // We should have found a unique member or bailed out by now. We already
1335 // checked for a uniform return value in tryUniformRetValOpt.
1336 assert(UniqueMember
);
1338 Constant
*UniqueMemberAddr
= getMemberAddr(UniqueMember
);
1339 if (CSInfo
.isExported()) {
1340 Res
->TheKind
= WholeProgramDevirtResolution::ByArg::UniqueRetVal
;
1343 exportGlobal(Slot
, Args
, "unique_member", UniqueMemberAddr
);
1346 // Replace each call with the comparison.
1347 applyUniqueRetValOpt(CSInfo
, TargetsForSlot
[0].Fn
->getName(), IsOne
,
1350 // Update devirtualization statistics for targets.
1352 for (auto &&Target
: TargetsForSlot
)
1353 Target
.WasDevirt
= true;
1358 if (BitWidth
== 1) {
1359 if (tryUniqueRetValOptFor(true))
1361 if (tryUniqueRetValOptFor(false))
1367 void DevirtModule::applyVirtualConstProp(CallSiteInfo
&CSInfo
, StringRef FnName
,
1368 Constant
*Byte
, Constant
*Bit
) {
1369 for (auto Call
: CSInfo
.CallSites
) {
1370 auto *RetType
= cast
<IntegerType
>(Call
.CS
.getType());
1371 IRBuilder
<> B(Call
.CS
.getInstruction());
1373 B
.CreateGEP(Int8Ty
, B
.CreateBitCast(Call
.VTable
, Int8PtrTy
), Byte
);
1374 if (RetType
->getBitWidth() == 1) {
1375 Value
*Bits
= B
.CreateLoad(Int8Ty
, Addr
);
1376 Value
*BitsAndBit
= B
.CreateAnd(Bits
, Bit
);
1377 auto IsBitSet
= B
.CreateICmpNE(BitsAndBit
, ConstantInt::get(Int8Ty
, 0));
1378 Call
.replaceAndErase("virtual-const-prop-1-bit", FnName
, RemarksEnabled
,
1379 OREGetter
, IsBitSet
);
1381 Value
*ValAddr
= B
.CreateBitCast(Addr
, RetType
->getPointerTo());
1382 Value
*Val
= B
.CreateLoad(RetType
, ValAddr
);
1383 Call
.replaceAndErase("virtual-const-prop", FnName
, RemarksEnabled
,
1387 CSInfo
.markDevirt();
1390 bool DevirtModule::tryVirtualConstProp(
1391 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
, VTableSlotInfo
&SlotInfo
,
1392 WholeProgramDevirtResolution
*Res
, VTableSlot Slot
) {
1393 // This only works if the function returns an integer.
1394 auto RetType
= dyn_cast
<IntegerType
>(TargetsForSlot
[0].Fn
->getReturnType());
1397 unsigned BitWidth
= RetType
->getBitWidth();
1401 // Make sure that each function is defined, does not access memory, takes at
1402 // least one argument, does not use its first argument (which we assume is
1403 // 'this'), and has the same return type.
1405 // Note that we test whether this copy of the function is readnone, rather
1406 // than testing function attributes, which must hold for any copy of the
1407 // function, even a less optimized version substituted at link time. This is
1408 // sound because the virtual constant propagation optimizations effectively
1409 // inline all implementations of the virtual function into each call site,
1410 // rather than using function attributes to perform local optimization.
1411 for (VirtualCallTarget
&Target
: TargetsForSlot
) {
1412 if (Target
.Fn
->isDeclaration() ||
1413 computeFunctionBodyMemoryAccess(*Target
.Fn
, AARGetter(*Target
.Fn
)) !=
1415 Target
.Fn
->arg_empty() || !Target
.Fn
->arg_begin()->use_empty() ||
1416 Target
.Fn
->getReturnType() != RetType
)
1420 for (auto &&CSByConstantArg
: SlotInfo
.ConstCSInfo
) {
1421 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot
, CSByConstantArg
.first
))
1424 WholeProgramDevirtResolution::ByArg
*ResByArg
= nullptr;
1426 ResByArg
= &Res
->ResByArg
[CSByConstantArg
.first
];
1428 if (tryUniformRetValOpt(TargetsForSlot
, CSByConstantArg
.second
, ResByArg
))
1431 if (tryUniqueRetValOpt(BitWidth
, TargetsForSlot
, CSByConstantArg
.second
,
1432 ResByArg
, Slot
, CSByConstantArg
.first
))
1435 // Find an allocation offset in bits in all vtables associated with the
1437 uint64_t AllocBefore
=
1438 findLowestOffset(TargetsForSlot
, /*IsAfter=*/false, BitWidth
);
1439 uint64_t AllocAfter
=
1440 findLowestOffset(TargetsForSlot
, /*IsAfter=*/true, BitWidth
);
1442 // Calculate the total amount of padding needed to store a value at both
1443 // ends of the object.
1444 uint64_t TotalPaddingBefore
= 0, TotalPaddingAfter
= 0;
1445 for (auto &&Target
: TargetsForSlot
) {
1446 TotalPaddingBefore
+= std::max
<int64_t>(
1447 (AllocBefore
+ 7) / 8 - Target
.allocatedBeforeBytes() - 1, 0);
1448 TotalPaddingAfter
+= std::max
<int64_t>(
1449 (AllocAfter
+ 7) / 8 - Target
.allocatedAfterBytes() - 1, 0);
1452 // If the amount of padding is too large, give up.
1453 // FIXME: do something smarter here.
1454 if (std::min(TotalPaddingBefore
, TotalPaddingAfter
) > 128)
1457 // Calculate the offset to the value as a (possibly negative) byte offset
1458 // and (if applicable) a bit offset, and store the values in the targets.
1461 if (TotalPaddingBefore
<= TotalPaddingAfter
)
1462 setBeforeReturnValues(TargetsForSlot
, AllocBefore
, BitWidth
, OffsetByte
,
1465 setAfterReturnValues(TargetsForSlot
, AllocAfter
, BitWidth
, OffsetByte
,
1469 for (auto &&Target
: TargetsForSlot
)
1470 Target
.WasDevirt
= true;
1473 if (CSByConstantArg
.second
.isExported()) {
1474 ResByArg
->TheKind
= WholeProgramDevirtResolution::ByArg::VirtualConstProp
;
1475 exportConstant(Slot
, CSByConstantArg
.first
, "byte", OffsetByte
,
1477 exportConstant(Slot
, CSByConstantArg
.first
, "bit", 1ULL << OffsetBit
,
1481 // Rewrite each call to a load from OffsetByte/OffsetBit.
1482 Constant
*ByteConst
= ConstantInt::get(Int32Ty
, OffsetByte
);
1483 Constant
*BitConst
= ConstantInt::get(Int8Ty
, 1ULL << OffsetBit
);
1484 applyVirtualConstProp(CSByConstantArg
.second
,
1485 TargetsForSlot
[0].Fn
->getName(), ByteConst
, BitConst
);
1490 void DevirtModule::rebuildGlobal(VTableBits
&B
) {
1491 if (B
.Before
.Bytes
.empty() && B
.After
.Bytes
.empty())
1494 // Align the before byte array to the global's minimum alignment so that we
1495 // don't break any alignment requirements on the global.
1496 MaybeAlign
Alignment(B
.GV
->getAlignment());
1499 Align(M
.getDataLayout().getABITypeAlignment(B
.GV
->getValueType()));
1500 B
.Before
.Bytes
.resize(alignTo(B
.Before
.Bytes
.size(), Alignment
));
1502 // Before was stored in reverse order; flip it now.
1503 for (size_t I
= 0, Size
= B
.Before
.Bytes
.size(); I
!= Size
/ 2; ++I
)
1504 std::swap(B
.Before
.Bytes
[I
], B
.Before
.Bytes
[Size
- 1 - I
]);
1506 // Build an anonymous global containing the before bytes, followed by the
1507 // original initializer, followed by the after bytes.
1508 auto NewInit
= ConstantStruct::getAnon(
1509 {ConstantDataArray::get(M
.getContext(), B
.Before
.Bytes
),
1510 B
.GV
->getInitializer(),
1511 ConstantDataArray::get(M
.getContext(), B
.After
.Bytes
)});
1513 new GlobalVariable(M
, NewInit
->getType(), B
.GV
->isConstant(),
1514 GlobalVariable::PrivateLinkage
, NewInit
, "", B
.GV
);
1515 NewGV
->setSection(B
.GV
->getSection());
1516 NewGV
->setComdat(B
.GV
->getComdat());
1517 NewGV
->setAlignment(MaybeAlign(B
.GV
->getAlignment()));
1519 // Copy the original vtable's metadata to the anonymous global, adjusting
1520 // offsets as required.
1521 NewGV
->copyMetadata(B
.GV
, B
.Before
.Bytes
.size());
1523 // Build an alias named after the original global, pointing at the second
1524 // element (the original initializer).
1525 auto Alias
= GlobalAlias::create(
1526 B
.GV
->getInitializer()->getType(), 0, B
.GV
->getLinkage(), "",
1527 ConstantExpr::getGetElementPtr(
1528 NewInit
->getType(), NewGV
,
1529 ArrayRef
<Constant
*>{ConstantInt::get(Int32Ty
, 0),
1530 ConstantInt::get(Int32Ty
, 1)}),
1532 Alias
->setVisibility(B
.GV
->getVisibility());
1533 Alias
->takeName(B
.GV
);
1535 B
.GV
->replaceAllUsesWith(Alias
);
1536 B
.GV
->eraseFromParent();
1539 bool DevirtModule::areRemarksEnabled() {
1540 const auto &FL
= M
.getFunctionList();
1541 for (const Function
&Fn
: FL
) {
1542 const auto &BBL
= Fn
.getBasicBlockList();
1545 auto DI
= OptimizationRemark(DEBUG_TYPE
, "", DebugLoc(), &BBL
.front());
1546 return DI
.isEnabled();
1551 void DevirtModule::scanTypeTestUsers(Function
*TypeTestFunc
,
1552 Function
*AssumeFunc
) {
1553 // Find all virtual calls via a virtual table pointer %p under an assumption
1554 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1555 // points to a member of the type identifier %md. Group calls by (type ID,
1556 // offset) pair (effectively the identity of the virtual function) and store
1558 DenseSet
<CallSite
> SeenCallSites
;
1559 for (auto I
= TypeTestFunc
->use_begin(), E
= TypeTestFunc
->use_end();
1561 auto CI
= dyn_cast
<CallInst
>(I
->getUser());
1566 // Search for virtual calls based on %p and add them to DevirtCalls.
1567 SmallVector
<DevirtCallSite
, 1> DevirtCalls
;
1568 SmallVector
<CallInst
*, 1> Assumes
;
1569 auto &DT
= LookupDomTree(*CI
->getFunction());
1570 findDevirtualizableCallsForTypeTest(DevirtCalls
, Assumes
, CI
, DT
);
1572 // If we found any, add them to CallSlots.
1573 if (!Assumes
.empty()) {
1575 cast
<MetadataAsValue
>(CI
->getArgOperand(1))->getMetadata();
1576 Value
*Ptr
= CI
->getArgOperand(0)->stripPointerCasts();
1577 for (DevirtCallSite Call
: DevirtCalls
) {
1578 // Only add this CallSite if we haven't seen it before. The vtable
1579 // pointer may have been CSE'd with pointers from other call sites,
1580 // and we don't want to process call sites multiple times. We can't
1581 // just skip the vtable Ptr if it has been seen before, however, since
1582 // it may be shared by type tests that dominate different calls.
1583 if (SeenCallSites
.insert(Call
.CS
).second
)
1584 CallSlots
[{TypeId
, Call
.Offset
}].addCallSite(Ptr
, Call
.CS
, nullptr);
1588 // We no longer need the assumes or the type test.
1589 for (auto Assume
: Assumes
)
1590 Assume
->eraseFromParent();
1591 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1592 // may use the vtable argument later.
1593 if (CI
->use_empty())
1594 CI
->eraseFromParent();
1598 void DevirtModule::scanTypeCheckedLoadUsers(Function
*TypeCheckedLoadFunc
) {
1599 Function
*TypeTestFunc
= Intrinsic::getDeclaration(&M
, Intrinsic::type_test
);
1601 for (auto I
= TypeCheckedLoadFunc
->use_begin(),
1602 E
= TypeCheckedLoadFunc
->use_end();
1604 auto CI
= dyn_cast
<CallInst
>(I
->getUser());
1609 Value
*Ptr
= CI
->getArgOperand(0);
1610 Value
*Offset
= CI
->getArgOperand(1);
1611 Value
*TypeIdValue
= CI
->getArgOperand(2);
1612 Metadata
*TypeId
= cast
<MetadataAsValue
>(TypeIdValue
)->getMetadata();
1614 SmallVector
<DevirtCallSite
, 1> DevirtCalls
;
1615 SmallVector
<Instruction
*, 1> LoadedPtrs
;
1616 SmallVector
<Instruction
*, 1> Preds
;
1617 bool HasNonCallUses
= false;
1618 auto &DT
= LookupDomTree(*CI
->getFunction());
1619 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls
, LoadedPtrs
, Preds
,
1620 HasNonCallUses
, CI
, DT
);
1622 // Start by generating "pessimistic" code that explicitly loads the function
1623 // pointer from the vtable and performs the type check. If possible, we will
1624 // eliminate the load and the type check later.
1626 // If possible, only generate the load at the point where it is used.
1627 // This helps avoid unnecessary spills.
1629 (LoadedPtrs
.size() == 1 && !HasNonCallUses
) ? LoadedPtrs
[0] : CI
);
1630 Value
*GEP
= LoadB
.CreateGEP(Int8Ty
, Ptr
, Offset
);
1631 Value
*GEPPtr
= LoadB
.CreateBitCast(GEP
, PointerType::getUnqual(Int8PtrTy
));
1632 Value
*LoadedValue
= LoadB
.CreateLoad(Int8PtrTy
, GEPPtr
);
1634 for (Instruction
*LoadedPtr
: LoadedPtrs
) {
1635 LoadedPtr
->replaceAllUsesWith(LoadedValue
);
1636 LoadedPtr
->eraseFromParent();
1639 // Likewise for the type test.
1640 IRBuilder
<> CallB((Preds
.size() == 1 && !HasNonCallUses
) ? Preds
[0] : CI
);
1641 CallInst
*TypeTestCall
= CallB
.CreateCall(TypeTestFunc
, {Ptr
, TypeIdValue
});
1643 for (Instruction
*Pred
: Preds
) {
1644 Pred
->replaceAllUsesWith(TypeTestCall
);
1645 Pred
->eraseFromParent();
1648 // We have already erased any extractvalue instructions that refer to the
1649 // intrinsic call, but the intrinsic may have other non-extractvalue uses
1650 // (although this is unlikely). In that case, explicitly build a pair and
1652 if (!CI
->use_empty()) {
1653 Value
*Pair
= UndefValue::get(CI
->getType());
1655 Pair
= B
.CreateInsertValue(Pair
, LoadedValue
, {0});
1656 Pair
= B
.CreateInsertValue(Pair
, TypeTestCall
, {1});
1657 CI
->replaceAllUsesWith(Pair
);
1660 // The number of unsafe uses is initially the number of uses.
1661 auto &NumUnsafeUses
= NumUnsafeUsesForTypeTest
[TypeTestCall
];
1662 NumUnsafeUses
= DevirtCalls
.size();
1664 // If the function pointer has a non-call user, we cannot eliminate the type
1665 // check, as one of those users may eventually call the pointer. Increment
1666 // the unsafe use count to make sure it cannot reach zero.
1669 for (DevirtCallSite Call
: DevirtCalls
) {
1670 CallSlots
[{TypeId
, Call
.Offset
}].addCallSite(Ptr
, Call
.CS
,
1674 CI
->eraseFromParent();
1678 void DevirtModule::importResolution(VTableSlot Slot
, VTableSlotInfo
&SlotInfo
) {
1679 auto *TypeId
= dyn_cast
<MDString
>(Slot
.TypeID
);
1682 const TypeIdSummary
*TidSummary
=
1683 ImportSummary
->getTypeIdSummary(TypeId
->getString());
1686 auto ResI
= TidSummary
->WPDRes
.find(Slot
.ByteOffset
);
1687 if (ResI
== TidSummary
->WPDRes
.end())
1689 const WholeProgramDevirtResolution
&Res
= ResI
->second
;
1691 if (Res
.TheKind
== WholeProgramDevirtResolution::SingleImpl
) {
1692 assert(!Res
.SingleImplName
.empty());
1693 // The type of the function in the declaration is irrelevant because every
1694 // call site will cast it to the correct type.
1695 Constant
*SingleImpl
=
1696 cast
<Constant
>(M
.getOrInsertFunction(Res
.SingleImplName
,
1697 Type::getVoidTy(M
.getContext()))
1700 // This is the import phase so we should not be exporting anything.
1701 bool IsExported
= false;
1702 applySingleImplDevirt(SlotInfo
, SingleImpl
, IsExported
);
1703 assert(!IsExported
);
1706 for (auto &CSByConstantArg
: SlotInfo
.ConstCSInfo
) {
1707 auto I
= Res
.ResByArg
.find(CSByConstantArg
.first
);
1708 if (I
== Res
.ResByArg
.end())
1710 auto &ResByArg
= I
->second
;
1711 // FIXME: We should figure out what to do about the "function name" argument
1712 // to the apply* functions, as the function names are unavailable during the
1713 // importing phase. For now we just pass the empty string. This does not
1714 // impact correctness because the function names are just used for remarks.
1715 switch (ResByArg
.TheKind
) {
1716 case WholeProgramDevirtResolution::ByArg::UniformRetVal
:
1717 applyUniformRetValOpt(CSByConstantArg
.second
, "", ResByArg
.Info
);
1719 case WholeProgramDevirtResolution::ByArg::UniqueRetVal
: {
1720 Constant
*UniqueMemberAddr
=
1721 importGlobal(Slot
, CSByConstantArg
.first
, "unique_member");
1722 applyUniqueRetValOpt(CSByConstantArg
.second
, "", ResByArg
.Info
,
1726 case WholeProgramDevirtResolution::ByArg::VirtualConstProp
: {
1727 Constant
*Byte
= importConstant(Slot
, CSByConstantArg
.first
, "byte",
1728 Int32Ty
, ResByArg
.Byte
);
1729 Constant
*Bit
= importConstant(Slot
, CSByConstantArg
.first
, "bit", Int8Ty
,
1731 applyVirtualConstProp(CSByConstantArg
.second
, "", Byte
, Bit
);
1739 if (Res
.TheKind
== WholeProgramDevirtResolution::BranchFunnel
) {
1740 // The type of the function is irrelevant, because it's bitcast at calls
1742 Constant
*JT
= cast
<Constant
>(
1743 M
.getOrInsertFunction(getGlobalName(Slot
, {}, "branch_funnel"),
1744 Type::getVoidTy(M
.getContext()))
1746 bool IsExported
= false;
1747 applyICallBranchFunnel(SlotInfo
, JT
, IsExported
);
1748 assert(!IsExported
);
1752 void DevirtModule::removeRedundantTypeTests() {
1753 auto True
= ConstantInt::getTrue(M
.getContext());
1754 for (auto &&U
: NumUnsafeUsesForTypeTest
) {
1755 if (U
.second
== 0) {
1756 U
.first
->replaceAllUsesWith(True
);
1757 U
.first
->eraseFromParent();
1762 bool DevirtModule::run() {
1763 // If only some of the modules were split, we cannot correctly perform
1764 // this transformation. We already checked for the presense of type tests
1765 // with partially split modules during the thin link, and would have emitted
1766 // an error if any were found, so here we can simply return.
1767 if ((ExportSummary
&& ExportSummary
->partiallySplitLTOUnits()) ||
1768 (ImportSummary
&& ImportSummary
->partiallySplitLTOUnits()))
1771 Function
*TypeTestFunc
=
1772 M
.getFunction(Intrinsic::getName(Intrinsic::type_test
));
1773 Function
*TypeCheckedLoadFunc
=
1774 M
.getFunction(Intrinsic::getName(Intrinsic::type_checked_load
));
1775 Function
*AssumeFunc
= M
.getFunction(Intrinsic::getName(Intrinsic::assume
));
1777 // Normally if there are no users of the devirtualization intrinsics in the
1778 // module, this pass has nothing to do. But if we are exporting, we also need
1779 // to handle any users that appear only in the function summaries.
1780 if (!ExportSummary
&&
1781 (!TypeTestFunc
|| TypeTestFunc
->use_empty() || !AssumeFunc
||
1782 AssumeFunc
->use_empty()) &&
1783 (!TypeCheckedLoadFunc
|| TypeCheckedLoadFunc
->use_empty()))
1786 if (TypeTestFunc
&& AssumeFunc
)
1787 scanTypeTestUsers(TypeTestFunc
, AssumeFunc
);
1789 if (TypeCheckedLoadFunc
)
1790 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc
);
1792 if (ImportSummary
) {
1793 for (auto &S
: CallSlots
)
1794 importResolution(S
.first
, S
.second
);
1796 removeRedundantTypeTests();
1798 // The rest of the code is only necessary when exporting or during regular
1799 // LTO, so we are done.
1803 // Rebuild type metadata into a map for easy lookup.
1804 std::vector
<VTableBits
> Bits
;
1805 DenseMap
<Metadata
*, std::set
<TypeMemberInfo
>> TypeIdMap
;
1806 buildTypeIdentifierMap(Bits
, TypeIdMap
);
1807 if (TypeIdMap
.empty())
1810 // Collect information from summary about which calls to try to devirtualize.
1811 if (ExportSummary
) {
1812 DenseMap
<GlobalValue::GUID
, TinyPtrVector
<Metadata
*>> MetadataByGUID
;
1813 for (auto &P
: TypeIdMap
) {
1814 if (auto *TypeId
= dyn_cast
<MDString
>(P
.first
))
1815 MetadataByGUID
[GlobalValue::getGUID(TypeId
->getString())].push_back(
1819 for (auto &P
: *ExportSummary
) {
1820 for (auto &S
: P
.second
.SummaryList
) {
1821 auto *FS
= dyn_cast
<FunctionSummary
>(S
.get());
1824 // FIXME: Only add live functions.
1825 for (FunctionSummary::VFuncId VF
: FS
->type_test_assume_vcalls()) {
1826 for (Metadata
*MD
: MetadataByGUID
[VF
.GUID
]) {
1827 CallSlots
[{MD
, VF
.Offset
}].CSInfo
.addSummaryTypeTestAssumeUser(FS
);
1830 for (FunctionSummary::VFuncId VF
: FS
->type_checked_load_vcalls()) {
1831 for (Metadata
*MD
: MetadataByGUID
[VF
.GUID
]) {
1832 CallSlots
[{MD
, VF
.Offset
}].CSInfo
.addSummaryTypeCheckedLoadUser(FS
);
1835 for (const FunctionSummary::ConstVCall
&VC
:
1836 FS
->type_test_assume_const_vcalls()) {
1837 for (Metadata
*MD
: MetadataByGUID
[VC
.VFunc
.GUID
]) {
1838 CallSlots
[{MD
, VC
.VFunc
.Offset
}]
1839 .ConstCSInfo
[VC
.Args
]
1840 .addSummaryTypeTestAssumeUser(FS
);
1843 for (const FunctionSummary::ConstVCall
&VC
:
1844 FS
->type_checked_load_const_vcalls()) {
1845 for (Metadata
*MD
: MetadataByGUID
[VC
.VFunc
.GUID
]) {
1846 CallSlots
[{MD
, VC
.VFunc
.Offset
}]
1847 .ConstCSInfo
[VC
.Args
]
1848 .addSummaryTypeCheckedLoadUser(FS
);
1855 // For each (type, offset) pair:
1856 bool DidVirtualConstProp
= false;
1857 std::map
<std::string
, Function
*> DevirtTargets
;
1858 for (auto &S
: CallSlots
) {
1859 // Search each of the members of the type identifier for the virtual
1860 // function implementation at offset S.first.ByteOffset, and add to
1862 std::vector
<VirtualCallTarget
> TargetsForSlot
;
1863 if (tryFindVirtualCallTargets(TargetsForSlot
, TypeIdMap
[S
.first
.TypeID
],
1864 S
.first
.ByteOffset
)) {
1865 WholeProgramDevirtResolution
*Res
= nullptr;
1866 if (ExportSummary
&& isa
<MDString
>(S
.first
.TypeID
))
1867 Res
= &ExportSummary
1868 ->getOrInsertTypeIdSummary(
1869 cast
<MDString
>(S
.first
.TypeID
)->getString())
1870 .WPDRes
[S
.first
.ByteOffset
];
1872 if (!trySingleImplDevirt(ExportSummary
, TargetsForSlot
, S
.second
, Res
)) {
1873 DidVirtualConstProp
|=
1874 tryVirtualConstProp(TargetsForSlot
, S
.second
, Res
, S
.first
);
1876 tryICallBranchFunnel(TargetsForSlot
, S
.second
, Res
, S
.first
);
1879 // Collect functions devirtualized at least for one call site for stats.
1881 for (const auto &T
: TargetsForSlot
)
1883 DevirtTargets
[T
.Fn
->getName()] = T
.Fn
;
1886 // CFI-specific: if we are exporting and any llvm.type.checked.load
1887 // intrinsics were *not* devirtualized, we need to add the resulting
1888 // llvm.type.test intrinsics to the function summaries so that the
1889 // LowerTypeTests pass will export them.
1890 if (ExportSummary
&& isa
<MDString
>(S
.first
.TypeID
)) {
1892 GlobalValue::getGUID(cast
<MDString
>(S
.first
.TypeID
)->getString());
1893 for (auto FS
: S
.second
.CSInfo
.SummaryTypeCheckedLoadUsers
)
1894 FS
->addTypeTest(GUID
);
1895 for (auto &CCS
: S
.second
.ConstCSInfo
)
1896 for (auto FS
: CCS
.second
.SummaryTypeCheckedLoadUsers
)
1897 FS
->addTypeTest(GUID
);
1901 if (RemarksEnabled
) {
1902 // Generate remarks for each devirtualized function.
1903 for (const auto &DT
: DevirtTargets
) {
1904 Function
*F
= DT
.second
;
1906 using namespace ore
;
1907 OREGetter(F
).emit(OptimizationRemark(DEBUG_TYPE
, "Devirtualized", F
)
1909 << NV("FunctionName", DT
.first
));
1913 removeRedundantTypeTests();
1915 // Rebuild each global we touched as part of virtual constant propagation to
1916 // include the before and after bytes.
1917 if (DidVirtualConstProp
)
1918 for (VTableBits
&B
: Bits
)
1921 // We have lowered or deleted the type checked load intrinsics, so we no
1922 // longer have enough information to reason about the liveness of virtual
1923 // function pointers in GlobalDCE.
1924 for (GlobalVariable
&GV
: M
.globals())
1925 GV
.eraseMetadata(LLVMContext::MD_vcall_visibility
);
1930 void DevirtIndex::run() {
1931 if (ExportSummary
.typeIdCompatibleVtableMap().empty())
1934 DenseMap
<GlobalValue::GUID
, std::vector
<StringRef
>> NameByGUID
;
1935 for (auto &P
: ExportSummary
.typeIdCompatibleVtableMap()) {
1936 NameByGUID
[GlobalValue::getGUID(P
.first
)].push_back(P
.first
);
1939 // Collect information from summary about which calls to try to devirtualize.
1940 for (auto &P
: ExportSummary
) {
1941 for (auto &S
: P
.second
.SummaryList
) {
1942 auto *FS
= dyn_cast
<FunctionSummary
>(S
.get());
1945 // FIXME: Only add live functions.
1946 for (FunctionSummary::VFuncId VF
: FS
->type_test_assume_vcalls()) {
1947 for (StringRef Name
: NameByGUID
[VF
.GUID
]) {
1948 CallSlots
[{Name
, VF
.Offset
}].CSInfo
.addSummaryTypeTestAssumeUser(FS
);
1951 for (FunctionSummary::VFuncId VF
: FS
->type_checked_load_vcalls()) {
1952 for (StringRef Name
: NameByGUID
[VF
.GUID
]) {
1953 CallSlots
[{Name
, VF
.Offset
}].CSInfo
.addSummaryTypeCheckedLoadUser(FS
);
1956 for (const FunctionSummary::ConstVCall
&VC
:
1957 FS
->type_test_assume_const_vcalls()) {
1958 for (StringRef Name
: NameByGUID
[VC
.VFunc
.GUID
]) {
1959 CallSlots
[{Name
, VC
.VFunc
.Offset
}]
1960 .ConstCSInfo
[VC
.Args
]
1961 .addSummaryTypeTestAssumeUser(FS
);
1964 for (const FunctionSummary::ConstVCall
&VC
:
1965 FS
->type_checked_load_const_vcalls()) {
1966 for (StringRef Name
: NameByGUID
[VC
.VFunc
.GUID
]) {
1967 CallSlots
[{Name
, VC
.VFunc
.Offset
}]
1968 .ConstCSInfo
[VC
.Args
]
1969 .addSummaryTypeCheckedLoadUser(FS
);
1975 std::set
<ValueInfo
> DevirtTargets
;
1976 // For each (type, offset) pair:
1977 for (auto &S
: CallSlots
) {
1978 // Search each of the members of the type identifier for the virtual
1979 // function implementation at offset S.first.ByteOffset, and add to
1981 std::vector
<ValueInfo
> TargetsForSlot
;
1982 auto TidSummary
= ExportSummary
.getTypeIdCompatibleVtableSummary(S
.first
.TypeID
);
1984 if (tryFindVirtualCallTargets(TargetsForSlot
, *TidSummary
,
1985 S
.first
.ByteOffset
)) {
1986 WholeProgramDevirtResolution
*Res
=
1987 &ExportSummary
.getOrInsertTypeIdSummary(S
.first
.TypeID
)
1988 .WPDRes
[S
.first
.ByteOffset
];
1990 if (!trySingleImplDevirt(TargetsForSlot
, S
.first
, S
.second
, Res
,
1996 // Optionally have the thin link print message for each devirtualized
1998 if (PrintSummaryDevirt
)
1999 for (const auto &DT
: DevirtTargets
)
2000 errs() << "Devirtualized call to " << DT
<< "\n";