1 //===- InstCombineCompares.cpp --------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the visitICmp and visitFCmp functions.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
29 using namespace PatternMatch
;
31 #define DEBUG_TYPE "instcombine"
33 // How many times is a select replaced by one of its operands?
34 STATISTIC(NumSel
, "Number of select opts");
37 /// Compute Result = In1+In2, returning true if the result overflowed for this
39 static bool addWithOverflow(APInt
&Result
, const APInt
&In1
,
40 const APInt
&In2
, bool IsSigned
= false) {
43 Result
= In1
.sadd_ov(In2
, Overflow
);
45 Result
= In1
.uadd_ov(In2
, Overflow
);
50 /// Compute Result = In1-In2, returning true if the result overflowed for this
52 static bool subWithOverflow(APInt
&Result
, const APInt
&In1
,
53 const APInt
&In2
, bool IsSigned
= false) {
56 Result
= In1
.ssub_ov(In2
, Overflow
);
58 Result
= In1
.usub_ov(In2
, Overflow
);
63 /// Given an icmp instruction, return true if any use of this comparison is a
64 /// branch on sign bit comparison.
65 static bool hasBranchUse(ICmpInst
&I
) {
66 for (auto *U
: I
.users())
67 if (isa
<BranchInst
>(U
))
72 /// Returns true if the exploded icmp can be expressed as a signed comparison
73 /// to zero and updates the predicate accordingly.
74 /// The signedness of the comparison is preserved.
75 /// TODO: Refactor with decomposeBitTestICmp()?
76 static bool isSignTest(ICmpInst::Predicate
&Pred
, const APInt
&C
) {
77 if (!ICmpInst::isSigned(Pred
))
81 return ICmpInst::isRelational(Pred
);
84 if (Pred
== ICmpInst::ICMP_SLT
) {
85 Pred
= ICmpInst::ICMP_SLE
;
88 } else if (C
.isAllOnesValue()) {
89 if (Pred
== ICmpInst::ICMP_SGT
) {
90 Pred
= ICmpInst::ICMP_SGE
;
98 /// Given a signed integer type and a set of known zero and one bits, compute
99 /// the maximum and minimum values that could have the specified known zero and
100 /// known one bits, returning them in Min/Max.
101 /// TODO: Move to method on KnownBits struct?
102 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits
&Known
,
103 APInt
&Min
, APInt
&Max
) {
104 assert(Known
.getBitWidth() == Min
.getBitWidth() &&
105 Known
.getBitWidth() == Max
.getBitWidth() &&
106 "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
107 APInt UnknownBits
= ~(Known
.Zero
|Known
.One
);
109 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
110 // bit if it is unknown.
112 Max
= Known
.One
|UnknownBits
;
114 if (UnknownBits
.isNegative()) { // Sign bit is unknown
120 /// Given an unsigned integer type and a set of known zero and one bits, compute
121 /// the maximum and minimum values that could have the specified known zero and
122 /// known one bits, returning them in Min/Max.
123 /// TODO: Move to method on KnownBits struct?
124 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits
&Known
,
125 APInt
&Min
, APInt
&Max
) {
126 assert(Known
.getBitWidth() == Min
.getBitWidth() &&
127 Known
.getBitWidth() == Max
.getBitWidth() &&
128 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
129 APInt UnknownBits
= ~(Known
.Zero
|Known
.One
);
131 // The minimum value is when the unknown bits are all zeros.
133 // The maximum value is when the unknown bits are all ones.
134 Max
= Known
.One
|UnknownBits
;
137 /// This is called when we see this pattern:
138 /// cmp pred (load (gep GV, ...)), cmpcst
139 /// where GV is a global variable with a constant initializer. Try to simplify
140 /// this into some simple computation that does not need the load. For example
141 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
143 /// If AndCst is non-null, then the loaded value is masked with that constant
144 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
145 Instruction
*InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst
*GEP
,
148 ConstantInt
*AndCst
) {
149 Constant
*Init
= GV
->getInitializer();
150 if (!isa
<ConstantArray
>(Init
) && !isa
<ConstantDataArray
>(Init
))
153 uint64_t ArrayElementCount
= Init
->getType()->getArrayNumElements();
154 // Don't blow up on huge arrays.
155 if (ArrayElementCount
> MaxArraySizeForCombine
)
158 // There are many forms of this optimization we can handle, for now, just do
159 // the simple index into a single-dimensional array.
161 // Require: GEP GV, 0, i {{, constant indices}}
162 if (GEP
->getNumOperands() < 3 ||
163 !isa
<ConstantInt
>(GEP
->getOperand(1)) ||
164 !cast
<ConstantInt
>(GEP
->getOperand(1))->isZero() ||
165 isa
<Constant
>(GEP
->getOperand(2)))
168 // Check that indices after the variable are constants and in-range for the
169 // type they index. Collect the indices. This is typically for arrays of
171 SmallVector
<unsigned, 4> LaterIndices
;
173 Type
*EltTy
= Init
->getType()->getArrayElementType();
174 for (unsigned i
= 3, e
= GEP
->getNumOperands(); i
!= e
; ++i
) {
175 ConstantInt
*Idx
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
176 if (!Idx
) return nullptr; // Variable index.
178 uint64_t IdxVal
= Idx
->getZExtValue();
179 if ((unsigned)IdxVal
!= IdxVal
) return nullptr; // Too large array index.
181 if (StructType
*STy
= dyn_cast
<StructType
>(EltTy
))
182 EltTy
= STy
->getElementType(IdxVal
);
183 else if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(EltTy
)) {
184 if (IdxVal
>= ATy
->getNumElements()) return nullptr;
185 EltTy
= ATy
->getElementType();
187 return nullptr; // Unknown type.
190 LaterIndices
.push_back(IdxVal
);
193 enum { Overdefined
= -3, Undefined
= -2 };
195 // Variables for our state machines.
197 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
198 // "i == 47 | i == 87", where 47 is the first index the condition is true for,
199 // and 87 is the second (and last) index. FirstTrueElement is -2 when
200 // undefined, otherwise set to the first true element. SecondTrueElement is
201 // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
202 int FirstTrueElement
= Undefined
, SecondTrueElement
= Undefined
;
204 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
205 // form "i != 47 & i != 87". Same state transitions as for true elements.
206 int FirstFalseElement
= Undefined
, SecondFalseElement
= Undefined
;
208 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
209 /// define a state machine that triggers for ranges of values that the index
210 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
211 /// This is -2 when undefined, -3 when overdefined, and otherwise the last
212 /// index in the range (inclusive). We use -2 for undefined here because we
213 /// use relative comparisons and don't want 0-1 to match -1.
214 int TrueRangeEnd
= Undefined
, FalseRangeEnd
= Undefined
;
216 // MagicBitvector - This is a magic bitvector where we set a bit if the
217 // comparison is true for element 'i'. If there are 64 elements or less in
218 // the array, this will fully represent all the comparison results.
219 uint64_t MagicBitvector
= 0;
221 // Scan the array and see if one of our patterns matches.
222 Constant
*CompareRHS
= cast
<Constant
>(ICI
.getOperand(1));
223 for (unsigned i
= 0, e
= ArrayElementCount
; i
!= e
; ++i
) {
224 Constant
*Elt
= Init
->getAggregateElement(i
);
225 if (!Elt
) return nullptr;
227 // If this is indexing an array of structures, get the structure element.
228 if (!LaterIndices
.empty())
229 Elt
= ConstantExpr::getExtractValue(Elt
, LaterIndices
);
231 // If the element is masked, handle it.
232 if (AndCst
) Elt
= ConstantExpr::getAnd(Elt
, AndCst
);
234 // Find out if the comparison would be true or false for the i'th element.
235 Constant
*C
= ConstantFoldCompareInstOperands(ICI
.getPredicate(), Elt
,
236 CompareRHS
, DL
, &TLI
);
237 // If the result is undef for this element, ignore it.
238 if (isa
<UndefValue
>(C
)) {
239 // Extend range state machines to cover this element in case there is an
240 // undef in the middle of the range.
241 if (TrueRangeEnd
== (int)i
-1)
243 if (FalseRangeEnd
== (int)i
-1)
248 // If we can't compute the result for any of the elements, we have to give
249 // up evaluating the entire conditional.
250 if (!isa
<ConstantInt
>(C
)) return nullptr;
252 // Otherwise, we know if the comparison is true or false for this element,
253 // update our state machines.
254 bool IsTrueForElt
= !cast
<ConstantInt
>(C
)->isZero();
256 // State machine for single/double/range index comparison.
258 // Update the TrueElement state machine.
259 if (FirstTrueElement
== Undefined
)
260 FirstTrueElement
= TrueRangeEnd
= i
; // First true element.
262 // Update double-compare state machine.
263 if (SecondTrueElement
== Undefined
)
264 SecondTrueElement
= i
;
266 SecondTrueElement
= Overdefined
;
268 // Update range state machine.
269 if (TrueRangeEnd
== (int)i
-1)
272 TrueRangeEnd
= Overdefined
;
275 // Update the FalseElement state machine.
276 if (FirstFalseElement
== Undefined
)
277 FirstFalseElement
= FalseRangeEnd
= i
; // First false element.
279 // Update double-compare state machine.
280 if (SecondFalseElement
== Undefined
)
281 SecondFalseElement
= i
;
283 SecondFalseElement
= Overdefined
;
285 // Update range state machine.
286 if (FalseRangeEnd
== (int)i
-1)
289 FalseRangeEnd
= Overdefined
;
293 // If this element is in range, update our magic bitvector.
294 if (i
< 64 && IsTrueForElt
)
295 MagicBitvector
|= 1ULL << i
;
297 // If all of our states become overdefined, bail out early. Since the
298 // predicate is expensive, only check it every 8 elements. This is only
299 // really useful for really huge arrays.
300 if ((i
& 8) == 0 && i
>= 64 && SecondTrueElement
== Overdefined
&&
301 SecondFalseElement
== Overdefined
&& TrueRangeEnd
== Overdefined
&&
302 FalseRangeEnd
== Overdefined
)
306 // Now that we've scanned the entire array, emit our new comparison(s). We
307 // order the state machines in complexity of the generated code.
308 Value
*Idx
= GEP
->getOperand(2);
310 // If the index is larger than the pointer size of the target, truncate the
311 // index down like the GEP would do implicitly. We don't have to do this for
312 // an inbounds GEP because the index can't be out of range.
313 if (!GEP
->isInBounds()) {
314 Type
*IntPtrTy
= DL
.getIntPtrType(GEP
->getType());
315 unsigned PtrSize
= IntPtrTy
->getIntegerBitWidth();
316 if (Idx
->getType()->getPrimitiveSizeInBits() > PtrSize
)
317 Idx
= Builder
.CreateTrunc(Idx
, IntPtrTy
);
320 // If the comparison is only true for one or two elements, emit direct
322 if (SecondTrueElement
!= Overdefined
) {
323 // None true -> false.
324 if (FirstTrueElement
== Undefined
)
325 return replaceInstUsesWith(ICI
, Builder
.getFalse());
327 Value
*FirstTrueIdx
= ConstantInt::get(Idx
->getType(), FirstTrueElement
);
329 // True for one element -> 'i == 47'.
330 if (SecondTrueElement
== Undefined
)
331 return new ICmpInst(ICmpInst::ICMP_EQ
, Idx
, FirstTrueIdx
);
333 // True for two elements -> 'i == 47 | i == 72'.
334 Value
*C1
= Builder
.CreateICmpEQ(Idx
, FirstTrueIdx
);
335 Value
*SecondTrueIdx
= ConstantInt::get(Idx
->getType(), SecondTrueElement
);
336 Value
*C2
= Builder
.CreateICmpEQ(Idx
, SecondTrueIdx
);
337 return BinaryOperator::CreateOr(C1
, C2
);
340 // If the comparison is only false for one or two elements, emit direct
342 if (SecondFalseElement
!= Overdefined
) {
343 // None false -> true.
344 if (FirstFalseElement
== Undefined
)
345 return replaceInstUsesWith(ICI
, Builder
.getTrue());
347 Value
*FirstFalseIdx
= ConstantInt::get(Idx
->getType(), FirstFalseElement
);
349 // False for one element -> 'i != 47'.
350 if (SecondFalseElement
== Undefined
)
351 return new ICmpInst(ICmpInst::ICMP_NE
, Idx
, FirstFalseIdx
);
353 // False for two elements -> 'i != 47 & i != 72'.
354 Value
*C1
= Builder
.CreateICmpNE(Idx
, FirstFalseIdx
);
355 Value
*SecondFalseIdx
= ConstantInt::get(Idx
->getType(),SecondFalseElement
);
356 Value
*C2
= Builder
.CreateICmpNE(Idx
, SecondFalseIdx
);
357 return BinaryOperator::CreateAnd(C1
, C2
);
360 // If the comparison can be replaced with a range comparison for the elements
361 // where it is true, emit the range check.
362 if (TrueRangeEnd
!= Overdefined
) {
363 assert(TrueRangeEnd
!= FirstTrueElement
&& "Should emit single compare");
365 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
366 if (FirstTrueElement
) {
367 Value
*Offs
= ConstantInt::get(Idx
->getType(), -FirstTrueElement
);
368 Idx
= Builder
.CreateAdd(Idx
, Offs
);
371 Value
*End
= ConstantInt::get(Idx
->getType(),
372 TrueRangeEnd
-FirstTrueElement
+1);
373 return new ICmpInst(ICmpInst::ICMP_ULT
, Idx
, End
);
376 // False range check.
377 if (FalseRangeEnd
!= Overdefined
) {
378 assert(FalseRangeEnd
!= FirstFalseElement
&& "Should emit single compare");
379 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
380 if (FirstFalseElement
) {
381 Value
*Offs
= ConstantInt::get(Idx
->getType(), -FirstFalseElement
);
382 Idx
= Builder
.CreateAdd(Idx
, Offs
);
385 Value
*End
= ConstantInt::get(Idx
->getType(),
386 FalseRangeEnd
-FirstFalseElement
);
387 return new ICmpInst(ICmpInst::ICMP_UGT
, Idx
, End
);
390 // If a magic bitvector captures the entire comparison state
391 // of this load, replace it with computation that does:
392 // ((magic_cst >> i) & 1) != 0
396 // Look for an appropriate type:
397 // - The type of Idx if the magic fits
398 // - The smallest fitting legal type
399 if (ArrayElementCount
<= Idx
->getType()->getIntegerBitWidth())
402 Ty
= DL
.getSmallestLegalIntType(Init
->getContext(), ArrayElementCount
);
405 Value
*V
= Builder
.CreateIntCast(Idx
, Ty
, false);
406 V
= Builder
.CreateLShr(ConstantInt::get(Ty
, MagicBitvector
), V
);
407 V
= Builder
.CreateAnd(ConstantInt::get(Ty
, 1), V
);
408 return new ICmpInst(ICmpInst::ICMP_NE
, V
, ConstantInt::get(Ty
, 0));
415 /// Return a value that can be used to compare the *offset* implied by a GEP to
416 /// zero. For example, if we have &A[i], we want to return 'i' for
417 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
418 /// are involved. The above expression would also be legal to codegen as
419 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
420 /// This latter form is less amenable to optimization though, and we are allowed
421 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
423 /// If we can't emit an optimized form for this expression, this returns null.
425 static Value
*evaluateGEPOffsetExpression(User
*GEP
, InstCombiner
&IC
,
426 const DataLayout
&DL
) {
427 gep_type_iterator GTI
= gep_type_begin(GEP
);
429 // Check to see if this gep only has a single variable index. If so, and if
430 // any constant indices are a multiple of its scale, then we can compute this
431 // in terms of the scale of the variable index. For example, if the GEP
432 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
433 // because the expression will cross zero at the same point.
434 unsigned i
, e
= GEP
->getNumOperands();
436 for (i
= 1; i
!= e
; ++i
, ++GTI
) {
437 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
))) {
438 // Compute the aggregate offset of constant indices.
439 if (CI
->isZero()) continue;
441 // Handle a struct index, which adds its field offset to the pointer.
442 if (StructType
*STy
= GTI
.getStructTypeOrNull()) {
443 Offset
+= DL
.getStructLayout(STy
)->getElementOffset(CI
->getZExtValue());
445 uint64_t Size
= DL
.getTypeAllocSize(GTI
.getIndexedType());
446 Offset
+= Size
*CI
->getSExtValue();
449 // Found our variable index.
454 // If there are no variable indices, we must have a constant offset, just
455 // evaluate it the general way.
456 if (i
== e
) return nullptr;
458 Value
*VariableIdx
= GEP
->getOperand(i
);
459 // Determine the scale factor of the variable element. For example, this is
460 // 4 if the variable index is into an array of i32.
461 uint64_t VariableScale
= DL
.getTypeAllocSize(GTI
.getIndexedType());
463 // Verify that there are no other variable indices. If so, emit the hard way.
464 for (++i
, ++GTI
; i
!= e
; ++i
, ++GTI
) {
465 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
466 if (!CI
) return nullptr;
468 // Compute the aggregate offset of constant indices.
469 if (CI
->isZero()) continue;
471 // Handle a struct index, which adds its field offset to the pointer.
472 if (StructType
*STy
= GTI
.getStructTypeOrNull()) {
473 Offset
+= DL
.getStructLayout(STy
)->getElementOffset(CI
->getZExtValue());
475 uint64_t Size
= DL
.getTypeAllocSize(GTI
.getIndexedType());
476 Offset
+= Size
*CI
->getSExtValue();
480 // Okay, we know we have a single variable index, which must be a
481 // pointer/array/vector index. If there is no offset, life is simple, return
483 Type
*IntPtrTy
= DL
.getIntPtrType(GEP
->getOperand(0)->getType());
484 unsigned IntPtrWidth
= IntPtrTy
->getIntegerBitWidth();
486 // Cast to intptrty in case a truncation occurs. If an extension is needed,
487 // we don't need to bother extending: the extension won't affect where the
488 // computation crosses zero.
489 if (VariableIdx
->getType()->getPrimitiveSizeInBits() > IntPtrWidth
) {
490 VariableIdx
= IC
.Builder
.CreateTrunc(VariableIdx
, IntPtrTy
);
495 // Otherwise, there is an index. The computation we will do will be modulo
497 Offset
= SignExtend64(Offset
, IntPtrWidth
);
498 VariableScale
= SignExtend64(VariableScale
, IntPtrWidth
);
500 // To do this transformation, any constant index must be a multiple of the
501 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
502 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
503 // multiple of the variable scale.
504 int64_t NewOffs
= Offset
/ (int64_t)VariableScale
;
505 if (Offset
!= NewOffs
*(int64_t)VariableScale
)
508 // Okay, we can do this evaluation. Start by converting the index to intptr.
509 if (VariableIdx
->getType() != IntPtrTy
)
510 VariableIdx
= IC
.Builder
.CreateIntCast(VariableIdx
, IntPtrTy
,
512 Constant
*OffsetVal
= ConstantInt::get(IntPtrTy
, NewOffs
);
513 return IC
.Builder
.CreateAdd(VariableIdx
, OffsetVal
, "offset");
516 /// Returns true if we can rewrite Start as a GEP with pointer Base
517 /// and some integer offset. The nodes that need to be re-written
518 /// for this transformation will be added to Explored.
519 static bool canRewriteGEPAsOffset(Value
*Start
, Value
*Base
,
520 const DataLayout
&DL
,
521 SetVector
<Value
*> &Explored
) {
522 SmallVector
<Value
*, 16> WorkList(1, Start
);
523 Explored
.insert(Base
);
525 // The following traversal gives us an order which can be used
526 // when doing the final transformation. Since in the final
527 // transformation we create the PHI replacement instructions first,
528 // we don't have to get them in any particular order.
530 // However, for other instructions we will have to traverse the
531 // operands of an instruction first, which means that we have to
532 // do a post-order traversal.
533 while (!WorkList
.empty()) {
534 SetVector
<PHINode
*> PHIs
;
536 while (!WorkList
.empty()) {
537 if (Explored
.size() >= 100)
540 Value
*V
= WorkList
.back();
542 if (Explored
.count(V
) != 0) {
547 if (!isa
<IntToPtrInst
>(V
) && !isa
<PtrToIntInst
>(V
) &&
548 !isa
<GetElementPtrInst
>(V
) && !isa
<PHINode
>(V
))
549 // We've found some value that we can't explore which is different from
550 // the base. Therefore we can't do this transformation.
553 if (isa
<IntToPtrInst
>(V
) || isa
<PtrToIntInst
>(V
)) {
554 auto *CI
= dyn_cast
<CastInst
>(V
);
555 if (!CI
->isNoopCast(DL
))
558 if (Explored
.count(CI
->getOperand(0)) == 0)
559 WorkList
.push_back(CI
->getOperand(0));
562 if (auto *GEP
= dyn_cast
<GEPOperator
>(V
)) {
563 // We're limiting the GEP to having one index. This will preserve
564 // the original pointer type. We could handle more cases in the
566 if (GEP
->getNumIndices() != 1 || !GEP
->isInBounds() ||
567 GEP
->getType() != Start
->getType())
570 if (Explored
.count(GEP
->getOperand(0)) == 0)
571 WorkList
.push_back(GEP
->getOperand(0));
574 if (WorkList
.back() == V
) {
576 // We've finished visiting this node, mark it as such.
580 if (auto *PN
= dyn_cast
<PHINode
>(V
)) {
581 // We cannot transform PHIs on unsplittable basic blocks.
582 if (isa
<CatchSwitchInst
>(PN
->getParent()->getTerminator()))
589 // Explore the PHI nodes further.
590 for (auto *PN
: PHIs
)
591 for (Value
*Op
: PN
->incoming_values())
592 if (Explored
.count(Op
) == 0)
593 WorkList
.push_back(Op
);
596 // Make sure that we can do this. Since we can't insert GEPs in a basic
597 // block before a PHI node, we can't easily do this transformation if
598 // we have PHI node users of transformed instructions.
599 for (Value
*Val
: Explored
) {
600 for (Value
*Use
: Val
->uses()) {
602 auto *PHI
= dyn_cast
<PHINode
>(Use
);
603 auto *Inst
= dyn_cast
<Instruction
>(Val
);
605 if (Inst
== Base
|| Inst
== PHI
|| !Inst
|| !PHI
||
606 Explored
.count(PHI
) == 0)
609 if (PHI
->getParent() == Inst
->getParent())
616 // Sets the appropriate insert point on Builder where we can add
617 // a replacement Instruction for V (if that is possible).
618 static void setInsertionPoint(IRBuilder
<> &Builder
, Value
*V
,
619 bool Before
= true) {
620 if (auto *PHI
= dyn_cast
<PHINode
>(V
)) {
621 Builder
.SetInsertPoint(&*PHI
->getParent()->getFirstInsertionPt());
624 if (auto *I
= dyn_cast
<Instruction
>(V
)) {
626 I
= &*std::next(I
->getIterator());
627 Builder
.SetInsertPoint(I
);
630 if (auto *A
= dyn_cast
<Argument
>(V
)) {
631 // Set the insertion point in the entry block.
632 BasicBlock
&Entry
= A
->getParent()->getEntryBlock();
633 Builder
.SetInsertPoint(&*Entry
.getFirstInsertionPt());
636 // Otherwise, this is a constant and we don't need to set a new
638 assert(isa
<Constant
>(V
) && "Setting insertion point for unknown value!");
641 /// Returns a re-written value of Start as an indexed GEP using Base as a
643 static Value
*rewriteGEPAsOffset(Value
*Start
, Value
*Base
,
644 const DataLayout
&DL
,
645 SetVector
<Value
*> &Explored
) {
646 // Perform all the substitutions. This is a bit tricky because we can
647 // have cycles in our use-def chains.
648 // 1. Create the PHI nodes without any incoming values.
649 // 2. Create all the other values.
650 // 3. Add the edges for the PHI nodes.
651 // 4. Emit GEPs to get the original pointers.
652 // 5. Remove the original instructions.
653 Type
*IndexType
= IntegerType::get(
654 Base
->getContext(), DL
.getIndexTypeSizeInBits(Start
->getType()));
656 DenseMap
<Value
*, Value
*> NewInsts
;
657 NewInsts
[Base
] = ConstantInt::getNullValue(IndexType
);
659 // Create the new PHI nodes, without adding any incoming values.
660 for (Value
*Val
: Explored
) {
663 // Create empty phi nodes. This avoids cyclic dependencies when creating
664 // the remaining instructions.
665 if (auto *PHI
= dyn_cast
<PHINode
>(Val
))
666 NewInsts
[PHI
] = PHINode::Create(IndexType
, PHI
->getNumIncomingValues(),
667 PHI
->getName() + ".idx", PHI
);
669 IRBuilder
<> Builder(Base
->getContext());
671 // Create all the other instructions.
672 for (Value
*Val
: Explored
) {
674 if (NewInsts
.find(Val
) != NewInsts
.end())
677 if (auto *CI
= dyn_cast
<CastInst
>(Val
)) {
678 // Don't get rid of the intermediate variable here; the store can grow
679 // the map which will invalidate the reference to the input value.
680 Value
*V
= NewInsts
[CI
->getOperand(0)];
684 if (auto *GEP
= dyn_cast
<GEPOperator
>(Val
)) {
685 Value
*Index
= NewInsts
[GEP
->getOperand(1)] ? NewInsts
[GEP
->getOperand(1)]
686 : GEP
->getOperand(1);
687 setInsertionPoint(Builder
, GEP
);
688 // Indices might need to be sign extended. GEPs will magically do
689 // this, but we need to do it ourselves here.
690 if (Index
->getType()->getScalarSizeInBits() !=
691 NewInsts
[GEP
->getOperand(0)]->getType()->getScalarSizeInBits()) {
692 Index
= Builder
.CreateSExtOrTrunc(
693 Index
, NewInsts
[GEP
->getOperand(0)]->getType(),
694 GEP
->getOperand(0)->getName() + ".sext");
697 auto *Op
= NewInsts
[GEP
->getOperand(0)];
698 if (isa
<ConstantInt
>(Op
) && cast
<ConstantInt
>(Op
)->isZero())
699 NewInsts
[GEP
] = Index
;
701 NewInsts
[GEP
] = Builder
.CreateNSWAdd(
702 Op
, Index
, GEP
->getOperand(0)->getName() + ".add");
705 if (isa
<PHINode
>(Val
))
708 llvm_unreachable("Unexpected instruction type");
711 // Add the incoming values to the PHI nodes.
712 for (Value
*Val
: Explored
) {
715 // All the instructions have been created, we can now add edges to the
717 if (auto *PHI
= dyn_cast
<PHINode
>(Val
)) {
718 PHINode
*NewPhi
= static_cast<PHINode
*>(NewInsts
[PHI
]);
719 for (unsigned I
= 0, E
= PHI
->getNumIncomingValues(); I
< E
; ++I
) {
720 Value
*NewIncoming
= PHI
->getIncomingValue(I
);
722 if (NewInsts
.find(NewIncoming
) != NewInsts
.end())
723 NewIncoming
= NewInsts
[NewIncoming
];
725 NewPhi
->addIncoming(NewIncoming
, PHI
->getIncomingBlock(I
));
730 for (Value
*Val
: Explored
) {
734 // Depending on the type, for external users we have to emit
735 // a GEP or a GEP + ptrtoint.
736 setInsertionPoint(Builder
, Val
, false);
738 // If required, create an inttoptr instruction for Base.
739 Value
*NewBase
= Base
;
740 if (!Base
->getType()->isPointerTy())
741 NewBase
= Builder
.CreateBitOrPointerCast(Base
, Start
->getType(),
742 Start
->getName() + "to.ptr");
744 Value
*GEP
= Builder
.CreateInBoundsGEP(
745 Start
->getType()->getPointerElementType(), NewBase
,
746 makeArrayRef(NewInsts
[Val
]), Val
->getName() + ".ptr");
748 if (!Val
->getType()->isPointerTy()) {
749 Value
*Cast
= Builder
.CreatePointerCast(GEP
, Val
->getType(),
750 Val
->getName() + ".conv");
753 Val
->replaceAllUsesWith(GEP
);
756 return NewInsts
[Start
];
759 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
760 /// the input Value as a constant indexed GEP. Returns a pair containing
761 /// the GEPs Pointer and Index.
762 static std::pair
<Value
*, Value
*>
763 getAsConstantIndexedAddress(Value
*V
, const DataLayout
&DL
) {
764 Type
*IndexType
= IntegerType::get(V
->getContext(),
765 DL
.getIndexTypeSizeInBits(V
->getType()));
767 Constant
*Index
= ConstantInt::getNullValue(IndexType
);
769 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(V
)) {
770 // We accept only inbouds GEPs here to exclude the possibility of
772 if (!GEP
->isInBounds())
774 if (GEP
->hasAllConstantIndices() && GEP
->getNumIndices() == 1 &&
775 GEP
->getType() == V
->getType()) {
776 V
= GEP
->getOperand(0);
777 Constant
*GEPIndex
= static_cast<Constant
*>(GEP
->getOperand(1));
778 Index
= ConstantExpr::getAdd(
779 Index
, ConstantExpr::getSExtOrBitCast(GEPIndex
, IndexType
));
784 if (auto *CI
= dyn_cast
<IntToPtrInst
>(V
)) {
785 if (!CI
->isNoopCast(DL
))
787 V
= CI
->getOperand(0);
790 if (auto *CI
= dyn_cast
<PtrToIntInst
>(V
)) {
791 if (!CI
->isNoopCast(DL
))
793 V
= CI
->getOperand(0);
801 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
802 /// We can look through PHIs, GEPs and casts in order to determine a common base
803 /// between GEPLHS and RHS.
804 static Instruction
*transformToIndexedCompare(GEPOperator
*GEPLHS
, Value
*RHS
,
805 ICmpInst::Predicate Cond
,
806 const DataLayout
&DL
) {
807 // FIXME: Support vector of pointers.
808 if (GEPLHS
->getType()->isVectorTy())
811 if (!GEPLHS
->hasAllConstantIndices())
814 // Make sure the pointers have the same type.
815 if (GEPLHS
->getType() != RHS
->getType())
818 Value
*PtrBase
, *Index
;
819 std::tie(PtrBase
, Index
) = getAsConstantIndexedAddress(GEPLHS
, DL
);
821 // The set of nodes that will take part in this transformation.
822 SetVector
<Value
*> Nodes
;
824 if (!canRewriteGEPAsOffset(RHS
, PtrBase
, DL
, Nodes
))
827 // We know we can re-write this as
828 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
829 // Since we've only looked through inbouds GEPs we know that we
830 // can't have overflow on either side. We can therefore re-write
832 // OFFSET1 cmp OFFSET2
833 Value
*NewRHS
= rewriteGEPAsOffset(RHS
, PtrBase
, DL
, Nodes
);
835 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
836 // GEP having PtrBase as the pointer base, and has returned in NewRHS the
837 // offset. Since Index is the offset of LHS to the base pointer, we will now
838 // compare the offsets instead of comparing the pointers.
839 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), Index
, NewRHS
);
842 /// Fold comparisons between a GEP instruction and something else. At this point
843 /// we know that the GEP is on the LHS of the comparison.
844 Instruction
*InstCombiner::foldGEPICmp(GEPOperator
*GEPLHS
, Value
*RHS
,
845 ICmpInst::Predicate Cond
,
847 // Don't transform signed compares of GEPs into index compares. Even if the
848 // GEP is inbounds, the final add of the base pointer can have signed overflow
849 // and would change the result of the icmp.
850 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
851 // the maximum signed value for the pointer type.
852 if (ICmpInst::isSigned(Cond
))
855 // Look through bitcasts and addrspacecasts. We do not however want to remove
857 if (!isa
<GetElementPtrInst
>(RHS
))
858 RHS
= RHS
->stripPointerCasts();
860 Value
*PtrBase
= GEPLHS
->getOperand(0);
861 // FIXME: Support vector pointer GEPs.
862 if (PtrBase
== RHS
&& GEPLHS
->isInBounds() &&
863 !GEPLHS
->getType()->isVectorTy()) {
864 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
865 // This transformation (ignoring the base and scales) is valid because we
866 // know pointers can't overflow since the gep is inbounds. See if we can
867 // output an optimized form.
868 Value
*Offset
= evaluateGEPOffsetExpression(GEPLHS
, *this, DL
);
870 // If not, synthesize the offset the hard way.
872 Offset
= EmitGEPOffset(GEPLHS
);
873 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), Offset
,
874 Constant::getNullValue(Offset
->getType()));
877 if (GEPLHS
->isInBounds() && ICmpInst::isEquality(Cond
) &&
878 isa
<Constant
>(RHS
) && cast
<Constant
>(RHS
)->isNullValue() &&
879 !NullPointerIsDefined(I
.getFunction(),
880 RHS
->getType()->getPointerAddressSpace())) {
881 // For most address spaces, an allocation can't be placed at null, but null
882 // itself is treated as a 0 size allocation in the in bounds rules. Thus,
883 // the only valid inbounds address derived from null, is null itself.
884 // Thus, we have four cases to consider:
885 // 1) Base == nullptr, Offset == 0 -> inbounds, null
886 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
887 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
888 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
890 // (Note if we're indexing a type of size 0, that simply collapses into one
891 // of the buckets above.)
893 // In general, we're allowed to make values less poison (i.e. remove
894 // sources of full UB), so in this case, we just select between the two
895 // non-poison cases (1 and 4 above).
897 // For vectors, we apply the same reasoning on a per-lane basis.
898 auto *Base
= GEPLHS
->getPointerOperand();
899 if (GEPLHS
->getType()->isVectorTy() && Base
->getType()->isPointerTy()) {
900 int NumElts
= GEPLHS
->getType()->getVectorNumElements();
901 Base
= Builder
.CreateVectorSplat(NumElts
, Base
);
903 return new ICmpInst(Cond
, Base
,
904 ConstantExpr::getPointerBitCastOrAddrSpaceCast(
905 cast
<Constant
>(RHS
), Base
->getType()));
906 } else if (GEPOperator
*GEPRHS
= dyn_cast
<GEPOperator
>(RHS
)) {
907 // If the base pointers are different, but the indices are the same, just
908 // compare the base pointer.
909 if (PtrBase
!= GEPRHS
->getOperand(0)) {
910 bool IndicesTheSame
= GEPLHS
->getNumOperands()==GEPRHS
->getNumOperands();
911 IndicesTheSame
&= GEPLHS
->getOperand(0)->getType() ==
912 GEPRHS
->getOperand(0)->getType();
914 for (unsigned i
= 1, e
= GEPLHS
->getNumOperands(); i
!= e
; ++i
)
915 if (GEPLHS
->getOperand(i
) != GEPRHS
->getOperand(i
)) {
916 IndicesTheSame
= false;
920 // If all indices are the same, just compare the base pointers.
921 Type
*BaseType
= GEPLHS
->getOperand(0)->getType();
922 if (IndicesTheSame
&& CmpInst::makeCmpResultType(BaseType
) == I
.getType())
923 return new ICmpInst(Cond
, GEPLHS
->getOperand(0), GEPRHS
->getOperand(0));
925 // If we're comparing GEPs with two base pointers that only differ in type
926 // and both GEPs have only constant indices or just one use, then fold
927 // the compare with the adjusted indices.
928 // FIXME: Support vector of pointers.
929 if (GEPLHS
->isInBounds() && GEPRHS
->isInBounds() &&
930 (GEPLHS
->hasAllConstantIndices() || GEPLHS
->hasOneUse()) &&
931 (GEPRHS
->hasAllConstantIndices() || GEPRHS
->hasOneUse()) &&
932 PtrBase
->stripPointerCasts() ==
933 GEPRHS
->getOperand(0)->stripPointerCasts() &&
934 !GEPLHS
->getType()->isVectorTy()) {
935 Value
*LOffset
= EmitGEPOffset(GEPLHS
);
936 Value
*ROffset
= EmitGEPOffset(GEPRHS
);
938 // If we looked through an addrspacecast between different sized address
939 // spaces, the LHS and RHS pointers are different sized
940 // integers. Truncate to the smaller one.
941 Type
*LHSIndexTy
= LOffset
->getType();
942 Type
*RHSIndexTy
= ROffset
->getType();
943 if (LHSIndexTy
!= RHSIndexTy
) {
944 if (LHSIndexTy
->getPrimitiveSizeInBits() <
945 RHSIndexTy
->getPrimitiveSizeInBits()) {
946 ROffset
= Builder
.CreateTrunc(ROffset
, LHSIndexTy
);
948 LOffset
= Builder
.CreateTrunc(LOffset
, RHSIndexTy
);
951 Value
*Cmp
= Builder
.CreateICmp(ICmpInst::getSignedPredicate(Cond
),
953 return replaceInstUsesWith(I
, Cmp
);
956 // Otherwise, the base pointers are different and the indices are
957 // different. Try convert this to an indexed compare by looking through
959 return transformToIndexedCompare(GEPLHS
, RHS
, Cond
, DL
);
962 // If one of the GEPs has all zero indices, recurse.
963 // FIXME: Handle vector of pointers.
964 if (!GEPLHS
->getType()->isVectorTy() && GEPLHS
->hasAllZeroIndices())
965 return foldGEPICmp(GEPRHS
, GEPLHS
->getOperand(0),
966 ICmpInst::getSwappedPredicate(Cond
), I
);
968 // If the other GEP has all zero indices, recurse.
969 // FIXME: Handle vector of pointers.
970 if (!GEPRHS
->getType()->isVectorTy() && GEPRHS
->hasAllZeroIndices())
971 return foldGEPICmp(GEPLHS
, GEPRHS
->getOperand(0), Cond
, I
);
973 bool GEPsInBounds
= GEPLHS
->isInBounds() && GEPRHS
->isInBounds();
974 if (GEPLHS
->getNumOperands() == GEPRHS
->getNumOperands()) {
975 // If the GEPs only differ by one index, compare it.
976 unsigned NumDifferences
= 0; // Keep track of # differences.
977 unsigned DiffOperand
= 0; // The operand that differs.
978 for (unsigned i
= 1, e
= GEPRHS
->getNumOperands(); i
!= e
; ++i
)
979 if (GEPLHS
->getOperand(i
) != GEPRHS
->getOperand(i
)) {
980 Type
*LHSType
= GEPLHS
->getOperand(i
)->getType();
981 Type
*RHSType
= GEPRHS
->getOperand(i
)->getType();
982 // FIXME: Better support for vector of pointers.
983 if (LHSType
->getPrimitiveSizeInBits() !=
984 RHSType
->getPrimitiveSizeInBits() ||
985 (GEPLHS
->getType()->isVectorTy() &&
986 (!LHSType
->isVectorTy() || !RHSType
->isVectorTy()))) {
987 // Irreconcilable differences.
992 if (NumDifferences
++) break;
996 if (NumDifferences
== 0) // SAME GEP?
997 return replaceInstUsesWith(I
, // No comparison is needed here.
998 ConstantInt::get(I
.getType(), ICmpInst::isTrueWhenEqual(Cond
)));
1000 else if (NumDifferences
== 1 && GEPsInBounds
) {
1001 Value
*LHSV
= GEPLHS
->getOperand(DiffOperand
);
1002 Value
*RHSV
= GEPRHS
->getOperand(DiffOperand
);
1003 // Make sure we do a signed comparison here.
1004 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), LHSV
, RHSV
);
1008 // Only lower this if the icmp is the only user of the GEP or if we expect
1009 // the result to fold to a constant!
1010 if (GEPsInBounds
&& (isa
<ConstantExpr
>(GEPLHS
) || GEPLHS
->hasOneUse()) &&
1011 (isa
<ConstantExpr
>(GEPRHS
) || GEPRHS
->hasOneUse())) {
1012 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
1013 Value
*L
= EmitGEPOffset(GEPLHS
);
1014 Value
*R
= EmitGEPOffset(GEPRHS
);
1015 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), L
, R
);
1019 // Try convert this to an indexed compare by looking through PHIs/casts as a
1021 return transformToIndexedCompare(GEPLHS
, RHS
, Cond
, DL
);
1024 Instruction
*InstCombiner::foldAllocaCmp(ICmpInst
&ICI
,
1025 const AllocaInst
*Alloca
,
1026 const Value
*Other
) {
1027 assert(ICI
.isEquality() && "Cannot fold non-equality comparison.");
1029 // It would be tempting to fold away comparisons between allocas and any
1030 // pointer not based on that alloca (e.g. an argument). However, even
1031 // though such pointers cannot alias, they can still compare equal.
1033 // But LLVM doesn't specify where allocas get their memory, so if the alloca
1034 // doesn't escape we can argue that it's impossible to guess its value, and we
1035 // can therefore act as if any such guesses are wrong.
1037 // The code below checks that the alloca doesn't escape, and that it's only
1038 // used in a comparison once (the current instruction). The
1039 // single-comparison-use condition ensures that we're trivially folding all
1040 // comparisons against the alloca consistently, and avoids the risk of
1041 // erroneously folding a comparison of the pointer with itself.
1043 unsigned MaxIter
= 32; // Break cycles and bound to constant-time.
1045 SmallVector
<const Use
*, 32> Worklist
;
1046 for (const Use
&U
: Alloca
->uses()) {
1047 if (Worklist
.size() >= MaxIter
)
1049 Worklist
.push_back(&U
);
1052 unsigned NumCmps
= 0;
1053 while (!Worklist
.empty()) {
1054 assert(Worklist
.size() <= MaxIter
);
1055 const Use
*U
= Worklist
.pop_back_val();
1056 const Value
*V
= U
->getUser();
1059 if (isa
<BitCastInst
>(V
) || isa
<GetElementPtrInst
>(V
) || isa
<PHINode
>(V
) ||
1060 isa
<SelectInst
>(V
)) {
1062 } else if (isa
<LoadInst
>(V
)) {
1063 // Loading from the pointer doesn't escape it.
1065 } else if (const auto *SI
= dyn_cast
<StoreInst
>(V
)) {
1066 // Storing *to* the pointer is fine, but storing the pointer escapes it.
1067 if (SI
->getValueOperand() == U
->get())
1070 } else if (isa
<ICmpInst
>(V
)) {
1072 return nullptr; // Found more than one cmp.
1074 } else if (const auto *Intrin
= dyn_cast
<IntrinsicInst
>(V
)) {
1075 switch (Intrin
->getIntrinsicID()) {
1076 // These intrinsics don't escape or compare the pointer. Memset is safe
1077 // because we don't allow ptrtoint. Memcpy and memmove are safe because
1078 // we don't allow stores, so src cannot point to V.
1079 case Intrinsic::lifetime_start
: case Intrinsic::lifetime_end
:
1080 case Intrinsic::memcpy
: case Intrinsic::memmove
: case Intrinsic::memset
:
1088 for (const Use
&U
: V
->uses()) {
1089 if (Worklist
.size() >= MaxIter
)
1091 Worklist
.push_back(&U
);
1095 Type
*CmpTy
= CmpInst::makeCmpResultType(Other
->getType());
1096 return replaceInstUsesWith(
1098 ConstantInt::get(CmpTy
, !CmpInst::isTrueWhenEqual(ICI
.getPredicate())));
1101 /// Fold "icmp pred (X+C), X".
1102 Instruction
*InstCombiner::foldICmpAddOpConst(Value
*X
, const APInt
&C
,
1103 ICmpInst::Predicate Pred
) {
1104 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1105 // so the values can never be equal. Similarly for all other "or equals"
1107 assert(!!C
&& "C should not be zero!");
1109 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
1110 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
1111 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
1112 if (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_ULE
) {
1113 Constant
*R
= ConstantInt::get(X
->getType(),
1114 APInt::getMaxValue(C
.getBitWidth()) - C
);
1115 return new ICmpInst(ICmpInst::ICMP_UGT
, X
, R
);
1118 // (X+1) >u X --> X <u (0-1) --> X != 255
1119 // (X+2) >u X --> X <u (0-2) --> X <u 254
1120 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
1121 if (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_UGE
)
1122 return new ICmpInst(ICmpInst::ICMP_ULT
, X
,
1123 ConstantInt::get(X
->getType(), -C
));
1125 APInt SMax
= APInt::getSignedMaxValue(C
.getBitWidth());
1127 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
1128 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
1129 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
1130 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
1131 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
1132 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
1133 if (Pred
== ICmpInst::ICMP_SLT
|| Pred
== ICmpInst::ICMP_SLE
)
1134 return new ICmpInst(ICmpInst::ICMP_SGT
, X
,
1135 ConstantInt::get(X
->getType(), SMax
- C
));
1137 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
1138 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
1139 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1140 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1141 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
1142 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
1144 assert(Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_SGE
);
1145 return new ICmpInst(ICmpInst::ICMP_SLT
, X
,
1146 ConstantInt::get(X
->getType(), SMax
- (C
- 1)));
1149 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1150 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1151 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1152 Instruction
*InstCombiner::foldICmpShrConstConst(ICmpInst
&I
, Value
*A
,
1155 assert(I
.isEquality() && "Cannot fold icmp gt/lt");
1157 auto getICmp
= [&I
](CmpInst::Predicate Pred
, Value
*LHS
, Value
*RHS
) {
1158 if (I
.getPredicate() == I
.ICMP_NE
)
1159 Pred
= CmpInst::getInversePredicate(Pred
);
1160 return new ICmpInst(Pred
, LHS
, RHS
);
1163 // Don't bother doing any work for cases which InstSimplify handles.
1164 if (AP2
.isNullValue())
1167 bool IsAShr
= isa
<AShrOperator
>(I
.getOperand(0));
1169 if (AP2
.isAllOnesValue())
1171 if (AP2
.isNegative() != AP1
.isNegative())
1178 // 'A' must be large enough to shift out the highest set bit.
1179 return getICmp(I
.ICMP_UGT
, A
,
1180 ConstantInt::get(A
->getType(), AP2
.logBase2()));
1183 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::getNullValue(A
->getType()));
1186 if (IsAShr
&& AP1
.isNegative())
1187 Shift
= AP1
.countLeadingOnes() - AP2
.countLeadingOnes();
1189 Shift
= AP1
.countLeadingZeros() - AP2
.countLeadingZeros();
1192 if (IsAShr
&& AP1
== AP2
.ashr(Shift
)) {
1193 // There are multiple solutions if we are comparing against -1 and the LHS
1194 // of the ashr is not a power of two.
1195 if (AP1
.isAllOnesValue() && !AP2
.isPowerOf2())
1196 return getICmp(I
.ICMP_UGE
, A
, ConstantInt::get(A
->getType(), Shift
));
1197 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::get(A
->getType(), Shift
));
1198 } else if (AP1
== AP2
.lshr(Shift
)) {
1199 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::get(A
->getType(), Shift
));
1203 // Shifting const2 will never be equal to const1.
1204 // FIXME: This should always be handled by InstSimplify?
1205 auto *TorF
= ConstantInt::get(I
.getType(), I
.getPredicate() == I
.ICMP_NE
);
1206 return replaceInstUsesWith(I
, TorF
);
1209 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1210 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1211 Instruction
*InstCombiner::foldICmpShlConstConst(ICmpInst
&I
, Value
*A
,
1214 assert(I
.isEquality() && "Cannot fold icmp gt/lt");
1216 auto getICmp
= [&I
](CmpInst::Predicate Pred
, Value
*LHS
, Value
*RHS
) {
1217 if (I
.getPredicate() == I
.ICMP_NE
)
1218 Pred
= CmpInst::getInversePredicate(Pred
);
1219 return new ICmpInst(Pred
, LHS
, RHS
);
1222 // Don't bother doing any work for cases which InstSimplify handles.
1223 if (AP2
.isNullValue())
1226 unsigned AP2TrailingZeros
= AP2
.countTrailingZeros();
1228 if (!AP1
&& AP2TrailingZeros
!= 0)
1231 ConstantInt::get(A
->getType(), AP2
.getBitWidth() - AP2TrailingZeros
));
1234 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::getNullValue(A
->getType()));
1236 // Get the distance between the lowest bits that are set.
1237 int Shift
= AP1
.countTrailingZeros() - AP2TrailingZeros
;
1239 if (Shift
> 0 && AP2
.shl(Shift
) == AP1
)
1240 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::get(A
->getType(), Shift
));
1242 // Shifting const2 will never be equal to const1.
1243 // FIXME: This should always be handled by InstSimplify?
1244 auto *TorF
= ConstantInt::get(I
.getType(), I
.getPredicate() == I
.ICMP_NE
);
1245 return replaceInstUsesWith(I
, TorF
);
1248 /// The caller has matched a pattern of the form:
1249 /// I = icmp ugt (add (add A, B), CI2), CI1
1250 /// If this is of the form:
1252 /// if (sum+128 >u 255)
1253 /// Then replace it with llvm.sadd.with.overflow.i8.
1255 static Instruction
*processUGT_ADDCST_ADD(ICmpInst
&I
, Value
*A
, Value
*B
,
1256 ConstantInt
*CI2
, ConstantInt
*CI1
,
1258 // The transformation we're trying to do here is to transform this into an
1259 // llvm.sadd.with.overflow. To do this, we have to replace the original add
1260 // with a narrower add, and discard the add-with-constant that is part of the
1261 // range check (if we can't eliminate it, this isn't profitable).
1263 // In order to eliminate the add-with-constant, the compare can be its only
1265 Instruction
*AddWithCst
= cast
<Instruction
>(I
.getOperand(0));
1266 if (!AddWithCst
->hasOneUse())
1269 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1270 if (!CI2
->getValue().isPowerOf2())
1272 unsigned NewWidth
= CI2
->getValue().countTrailingZeros();
1273 if (NewWidth
!= 7 && NewWidth
!= 15 && NewWidth
!= 31)
1276 // The width of the new add formed is 1 more than the bias.
1279 // Check to see that CI1 is an all-ones value with NewWidth bits.
1280 if (CI1
->getBitWidth() == NewWidth
||
1281 CI1
->getValue() != APInt::getLowBitsSet(CI1
->getBitWidth(), NewWidth
))
1284 // This is only really a signed overflow check if the inputs have been
1285 // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1286 // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1287 unsigned NeededSignBits
= CI1
->getBitWidth() - NewWidth
+ 1;
1288 if (IC
.ComputeNumSignBits(A
, 0, &I
) < NeededSignBits
||
1289 IC
.ComputeNumSignBits(B
, 0, &I
) < NeededSignBits
)
1292 // In order to replace the original add with a narrower
1293 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1294 // and truncates that discard the high bits of the add. Verify that this is
1296 Instruction
*OrigAdd
= cast
<Instruction
>(AddWithCst
->getOperand(0));
1297 for (User
*U
: OrigAdd
->users()) {
1298 if (U
== AddWithCst
)
1301 // Only accept truncates for now. We would really like a nice recursive
1302 // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1303 // chain to see which bits of a value are actually demanded. If the
1304 // original add had another add which was then immediately truncated, we
1305 // could still do the transformation.
1306 TruncInst
*TI
= dyn_cast
<TruncInst
>(U
);
1307 if (!TI
|| TI
->getType()->getPrimitiveSizeInBits() > NewWidth
)
1311 // If the pattern matches, truncate the inputs to the narrower type and
1312 // use the sadd_with_overflow intrinsic to efficiently compute both the
1313 // result and the overflow bit.
1314 Type
*NewType
= IntegerType::get(OrigAdd
->getContext(), NewWidth
);
1315 Function
*F
= Intrinsic::getDeclaration(
1316 I
.getModule(), Intrinsic::sadd_with_overflow
, NewType
);
1318 InstCombiner::BuilderTy
&Builder
= IC
.Builder
;
1320 // Put the new code above the original add, in case there are any uses of the
1321 // add between the add and the compare.
1322 Builder
.SetInsertPoint(OrigAdd
);
1324 Value
*TruncA
= Builder
.CreateTrunc(A
, NewType
, A
->getName() + ".trunc");
1325 Value
*TruncB
= Builder
.CreateTrunc(B
, NewType
, B
->getName() + ".trunc");
1326 CallInst
*Call
= Builder
.CreateCall(F
, {TruncA
, TruncB
}, "sadd");
1327 Value
*Add
= Builder
.CreateExtractValue(Call
, 0, "sadd.result");
1328 Value
*ZExt
= Builder
.CreateZExt(Add
, OrigAdd
->getType());
1330 // The inner add was the result of the narrow add, zero extended to the
1331 // wider type. Replace it with the result computed by the intrinsic.
1332 IC
.replaceInstUsesWith(*OrigAdd
, ZExt
);
1334 // The original icmp gets replaced with the overflow value.
1335 return ExtractValueInst::Create(Call
, 1, "sadd.overflow");
1339 /// icmp eq/ne (urem/srem %x, %y), 0
1340 /// iff %y is a power-of-two, we can replace this with a bit test:
1341 /// icmp eq/ne (and %x, (add %y, -1)), 0
1342 Instruction
*InstCombiner::foldIRemByPowerOfTwoToBitTest(ICmpInst
&I
) {
1343 // This fold is only valid for equality predicates.
1344 if (!I
.isEquality())
1346 ICmpInst::Predicate Pred
;
1347 Value
*X
, *Y
, *Zero
;
1348 if (!match(&I
, m_ICmp(Pred
, m_OneUse(m_IRem(m_Value(X
), m_Value(Y
))),
1349 m_CombineAnd(m_Zero(), m_Value(Zero
)))))
1351 if (!isKnownToBeAPowerOfTwo(Y
, /*OrZero*/ true, 0, &I
))
1353 // This may increase instruction count, we don't enforce that Y is a constant.
1354 Value
*Mask
= Builder
.CreateAdd(Y
, Constant::getAllOnesValue(Y
->getType()));
1355 Value
*Masked
= Builder
.CreateAnd(X
, Mask
);
1356 return ICmpInst::Create(Instruction::ICmp
, Pred
, Masked
, Zero
);
1359 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1360 /// by one-less-than-bitwidth into a sign test on the original value.
1361 Instruction
*InstCombiner::foldSignBitTest(ICmpInst
&I
) {
1363 ICmpInst::Predicate Pred
;
1364 if (!I
.isEquality() || !match(&I
, m_ICmp(Pred
, m_Instruction(Val
), m_Zero())))
1371 if (match(Val
, m_TruncOrSelf(m_Shr(m_Value(X
), m_Constant(C
))))) {
1373 unsigned XBitWidth
= XTy
->getScalarSizeInBits();
1374 if (!match(C
, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ
,
1375 APInt(XBitWidth
, XBitWidth
- 1))))
1377 } else if (isa
<BinaryOperator
>(Val
) &&
1378 (X
= reassociateShiftAmtsOfTwoSameDirectionShifts(
1379 cast
<BinaryOperator
>(Val
), SQ
.getWithInstruction(Val
),
1380 /*AnalyzeForSignBitExtraction=*/true))) {
1385 return ICmpInst::Create(Instruction::ICmp
,
1386 Pred
== ICmpInst::ICMP_EQ
? ICmpInst::ICMP_SGE
1387 : ICmpInst::ICMP_SLT
,
1388 X
, ConstantInt::getNullValue(XTy
));
1391 // Handle icmp pred X, 0
1392 Instruction
*InstCombiner::foldICmpWithZero(ICmpInst
&Cmp
) {
1393 CmpInst::Predicate Pred
= Cmp
.getPredicate();
1394 if (!match(Cmp
.getOperand(1), m_Zero()))
1397 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1398 if (Pred
== ICmpInst::ICMP_SGT
) {
1400 SelectPatternResult SPR
= matchSelectPattern(Cmp
.getOperand(0), A
, B
);
1401 if (SPR
.Flavor
== SPF_SMIN
) {
1402 if (isKnownPositive(A
, DL
, 0, &AC
, &Cmp
, &DT
))
1403 return new ICmpInst(Pred
, B
, Cmp
.getOperand(1));
1404 if (isKnownPositive(B
, DL
, 0, &AC
, &Cmp
, &DT
))
1405 return new ICmpInst(Pred
, A
, Cmp
.getOperand(1));
1409 if (Instruction
*New
= foldIRemByPowerOfTwoToBitTest(Cmp
))
1413 // icmp eq/ne (urem %x, %y), 0
1414 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1417 if (match(Cmp
.getOperand(0), m_URem(m_Value(X
), m_Value(Y
))) &&
1418 ICmpInst::isEquality(Pred
)) {
1419 KnownBits XKnown
= computeKnownBits(X
, 0, &Cmp
);
1420 KnownBits YKnown
= computeKnownBits(Y
, 0, &Cmp
);
1421 if (XKnown
.countMaxPopulation() == 1 && YKnown
.countMinPopulation() >= 2)
1422 return new ICmpInst(Pred
, X
, Cmp
.getOperand(1));
1428 /// Fold icmp Pred X, C.
1429 /// TODO: This code structure does not make sense. The saturating add fold
1430 /// should be moved to some other helper and extended as noted below (it is also
1431 /// possible that code has been made unnecessary - do we canonicalize IR to
1432 /// overflow/saturating intrinsics or not?).
1433 Instruction
*InstCombiner::foldICmpWithConstant(ICmpInst
&Cmp
) {
1434 // Match the following pattern, which is a common idiom when writing
1435 // overflow-safe integer arithmetic functions. The source performs an addition
1436 // in wider type and explicitly checks for overflow using comparisons against
1437 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1439 // TODO: This could probably be generalized to handle other overflow-safe
1440 // operations if we worked out the formulas to compute the appropriate magic
1444 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
1445 CmpInst::Predicate Pred
= Cmp
.getPredicate();
1446 Value
*Op0
= Cmp
.getOperand(0), *Op1
= Cmp
.getOperand(1);
1448 ConstantInt
*CI
, *CI2
; // I = icmp ugt (add (add A, B), CI2), CI
1449 if (Pred
== ICmpInst::ICMP_UGT
&& match(Op1
, m_ConstantInt(CI
)) &&
1450 match(Op0
, m_Add(m_Add(m_Value(A
), m_Value(B
)), m_ConstantInt(CI2
))))
1451 if (Instruction
*Res
= processUGT_ADDCST_ADD(Cmp
, A
, B
, CI2
, CI
, *this))
1457 /// Canonicalize icmp instructions based on dominating conditions.
1458 Instruction
*InstCombiner::foldICmpWithDominatingICmp(ICmpInst
&Cmp
) {
1459 // This is a cheap/incomplete check for dominance - just match a single
1460 // predecessor with a conditional branch.
1461 BasicBlock
*CmpBB
= Cmp
.getParent();
1462 BasicBlock
*DomBB
= CmpBB
->getSinglePredecessor();
1467 BasicBlock
*TrueBB
, *FalseBB
;
1468 if (!match(DomBB
->getTerminator(), m_Br(m_Value(DomCond
), TrueBB
, FalseBB
)))
1471 assert((TrueBB
== CmpBB
|| FalseBB
== CmpBB
) &&
1472 "Predecessor block does not point to successor?");
1474 // The branch should get simplified. Don't bother simplifying this condition.
1475 if (TrueBB
== FalseBB
)
1478 // Try to simplify this compare to T/F based on the dominating condition.
1479 Optional
<bool> Imp
= isImpliedCondition(DomCond
, &Cmp
, DL
, TrueBB
== CmpBB
);
1481 return replaceInstUsesWith(Cmp
, ConstantInt::get(Cmp
.getType(), *Imp
));
1483 CmpInst::Predicate Pred
= Cmp
.getPredicate();
1484 Value
*X
= Cmp
.getOperand(0), *Y
= Cmp
.getOperand(1);
1485 ICmpInst::Predicate DomPred
;
1486 const APInt
*C
, *DomC
;
1487 if (match(DomCond
, m_ICmp(DomPred
, m_Specific(X
), m_APInt(DomC
))) &&
1488 match(Y
, m_APInt(C
))) {
1489 // We have 2 compares of a variable with constants. Calculate the constant
1490 // ranges of those compares to see if we can transform the 2nd compare:
1492 // DomCond = icmp DomPred X, DomC
1493 // br DomCond, CmpBB, FalseBB
1495 // Cmp = icmp Pred X, C
1496 ConstantRange CR
= ConstantRange::makeAllowedICmpRegion(Pred
, *C
);
1497 ConstantRange DominatingCR
=
1498 (CmpBB
== TrueBB
) ? ConstantRange::makeExactICmpRegion(DomPred
, *DomC
)
1499 : ConstantRange::makeExactICmpRegion(
1500 CmpInst::getInversePredicate(DomPred
), *DomC
);
1501 ConstantRange Intersection
= DominatingCR
.intersectWith(CR
);
1502 ConstantRange Difference
= DominatingCR
.difference(CR
);
1503 if (Intersection
.isEmptySet())
1504 return replaceInstUsesWith(Cmp
, Builder
.getFalse());
1505 if (Difference
.isEmptySet())
1506 return replaceInstUsesWith(Cmp
, Builder
.getTrue());
1508 // Canonicalizing a sign bit comparison that gets used in a branch,
1509 // pessimizes codegen by generating branch on zero instruction instead
1510 // of a test and branch. So we avoid canonicalizing in such situations
1511 // because test and branch instruction has better branch displacement
1512 // than compare and branch instruction.
1514 bool IsSignBit
= isSignBitCheck(Pred
, *C
, UnusedBit
);
1515 if (Cmp
.isEquality() || (IsSignBit
&& hasBranchUse(Cmp
)))
1518 if (const APInt
*EqC
= Intersection
.getSingleElement())
1519 return new ICmpInst(ICmpInst::ICMP_EQ
, X
, Builder
.getInt(*EqC
));
1520 if (const APInt
*NeC
= Difference
.getSingleElement())
1521 return new ICmpInst(ICmpInst::ICMP_NE
, X
, Builder
.getInt(*NeC
));
1527 /// Fold icmp (trunc X, Y), C.
1528 Instruction
*InstCombiner::foldICmpTruncConstant(ICmpInst
&Cmp
,
1531 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1532 Value
*X
= Trunc
->getOperand(0);
1533 if (C
.isOneValue() && C
.getBitWidth() > 1) {
1534 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1536 if (Pred
== ICmpInst::ICMP_SLT
&& match(X
, m_Signum(m_Value(V
))))
1537 return new ICmpInst(ICmpInst::ICMP_SLT
, V
,
1538 ConstantInt::get(V
->getType(), 1));
1541 if (Cmp
.isEquality() && Trunc
->hasOneUse()) {
1542 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1543 // of the high bits truncated out of x are known.
1544 unsigned DstBits
= Trunc
->getType()->getScalarSizeInBits(),
1545 SrcBits
= X
->getType()->getScalarSizeInBits();
1546 KnownBits Known
= computeKnownBits(X
, 0, &Cmp
);
1548 // If all the high bits are known, we can do this xform.
1549 if ((Known
.Zero
| Known
.One
).countLeadingOnes() >= SrcBits
- DstBits
) {
1550 // Pull in the high bits from known-ones set.
1551 APInt NewRHS
= C
.zext(SrcBits
);
1552 NewRHS
|= Known
.One
& APInt::getHighBitsSet(SrcBits
, SrcBits
- DstBits
);
1553 return new ICmpInst(Pred
, X
, ConstantInt::get(X
->getType(), NewRHS
));
1560 /// Fold icmp (xor X, Y), C.
1561 Instruction
*InstCombiner::foldICmpXorConstant(ICmpInst
&Cmp
,
1562 BinaryOperator
*Xor
,
1564 Value
*X
= Xor
->getOperand(0);
1565 Value
*Y
= Xor
->getOperand(1);
1567 if (!match(Y
, m_APInt(XorC
)))
1570 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1572 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1573 bool TrueIfSigned
= false;
1574 if (isSignBitCheck(Cmp
.getPredicate(), C
, TrueIfSigned
)) {
1576 // If the sign bit of the XorCst is not set, there is no change to
1577 // the operation, just stop using the Xor.
1578 if (!XorC
->isNegative()) {
1579 Cmp
.setOperand(0, X
);
1584 // Emit the opposite comparison.
1586 return new ICmpInst(ICmpInst::ICMP_SGT
, X
,
1587 ConstantInt::getAllOnesValue(X
->getType()));
1589 return new ICmpInst(ICmpInst::ICMP_SLT
, X
,
1590 ConstantInt::getNullValue(X
->getType()));
1593 if (Xor
->hasOneUse()) {
1594 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1595 if (!Cmp
.isEquality() && XorC
->isSignMask()) {
1596 Pred
= Cmp
.isSigned() ? Cmp
.getUnsignedPredicate()
1597 : Cmp
.getSignedPredicate();
1598 return new ICmpInst(Pred
, X
, ConstantInt::get(X
->getType(), C
^ *XorC
));
1601 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1602 if (!Cmp
.isEquality() && XorC
->isMaxSignedValue()) {
1603 Pred
= Cmp
.isSigned() ? Cmp
.getUnsignedPredicate()
1604 : Cmp
.getSignedPredicate();
1605 Pred
= Cmp
.getSwappedPredicate(Pred
);
1606 return new ICmpInst(Pred
, X
, ConstantInt::get(X
->getType(), C
^ *XorC
));
1610 // Mask constant magic can eliminate an 'xor' with unsigned compares.
1611 if (Pred
== ICmpInst::ICMP_UGT
) {
1612 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1613 if (*XorC
== ~C
&& (C
+ 1).isPowerOf2())
1614 return new ICmpInst(ICmpInst::ICMP_ULT
, X
, Y
);
1615 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1616 if (*XorC
== C
&& (C
+ 1).isPowerOf2())
1617 return new ICmpInst(ICmpInst::ICMP_UGT
, X
, Y
);
1619 if (Pred
== ICmpInst::ICMP_ULT
) {
1620 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1621 if (*XorC
== -C
&& C
.isPowerOf2())
1622 return new ICmpInst(ICmpInst::ICMP_UGT
, X
,
1623 ConstantInt::get(X
->getType(), ~C
));
1624 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1625 if (*XorC
== C
&& (-C
).isPowerOf2())
1626 return new ICmpInst(ICmpInst::ICMP_UGT
, X
,
1627 ConstantInt::get(X
->getType(), ~C
));
1632 /// Fold icmp (and (sh X, Y), C2), C1.
1633 Instruction
*InstCombiner::foldICmpAndShift(ICmpInst
&Cmp
, BinaryOperator
*And
,
1634 const APInt
&C1
, const APInt
&C2
) {
1635 BinaryOperator
*Shift
= dyn_cast
<BinaryOperator
>(And
->getOperand(0));
1636 if (!Shift
|| !Shift
->isShift())
1639 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1640 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1641 // code produced by the clang front-end, for bitfield access.
1642 // This seemingly simple opportunity to fold away a shift turns out to be
1643 // rather complicated. See PR17827 for details.
1644 unsigned ShiftOpcode
= Shift
->getOpcode();
1645 bool IsShl
= ShiftOpcode
== Instruction::Shl
;
1647 if (match(Shift
->getOperand(1), m_APInt(C3
))) {
1648 bool CanFold
= false;
1649 if (ShiftOpcode
== Instruction::Shl
) {
1650 // For a left shift, we can fold if the comparison is not signed. We can
1651 // also fold a signed comparison if the mask value and comparison value
1652 // are not negative. These constraints may not be obvious, but we can
1653 // prove that they are correct using an SMT solver.
1654 if (!Cmp
.isSigned() || (!C2
.isNegative() && !C1
.isNegative()))
1657 bool IsAshr
= ShiftOpcode
== Instruction::AShr
;
1658 // For a logical right shift, we can fold if the comparison is not signed.
1659 // We can also fold a signed comparison if the shifted mask value and the
1660 // shifted comparison value are not negative. These constraints may not be
1661 // obvious, but we can prove that they are correct using an SMT solver.
1662 // For an arithmetic shift right we can do the same, if we ensure
1663 // the And doesn't use any bits being shifted in. Normally these would
1664 // be turned into lshr by SimplifyDemandedBits, but not if there is an
1666 if (!IsAshr
|| (C2
.shl(*C3
).lshr(*C3
) == C2
)) {
1667 if (!Cmp
.isSigned() ||
1668 (!C2
.shl(*C3
).isNegative() && !C1
.shl(*C3
).isNegative()))
1674 APInt NewCst
= IsShl
? C1
.lshr(*C3
) : C1
.shl(*C3
);
1675 APInt SameAsC1
= IsShl
? NewCst
.shl(*C3
) : NewCst
.lshr(*C3
);
1676 // Check to see if we are shifting out any of the bits being compared.
1677 if (SameAsC1
!= C1
) {
1678 // If we shifted bits out, the fold is not going to work out. As a
1679 // special case, check to see if this means that the result is always
1680 // true or false now.
1681 if (Cmp
.getPredicate() == ICmpInst::ICMP_EQ
)
1682 return replaceInstUsesWith(Cmp
, ConstantInt::getFalse(Cmp
.getType()));
1683 if (Cmp
.getPredicate() == ICmpInst::ICMP_NE
)
1684 return replaceInstUsesWith(Cmp
, ConstantInt::getTrue(Cmp
.getType()));
1686 Cmp
.setOperand(1, ConstantInt::get(And
->getType(), NewCst
));
1687 APInt NewAndCst
= IsShl
? C2
.lshr(*C3
) : C2
.shl(*C3
);
1688 And
->setOperand(1, ConstantInt::get(And
->getType(), NewAndCst
));
1689 And
->setOperand(0, Shift
->getOperand(0));
1690 Worklist
.Add(Shift
); // Shift is dead.
1696 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is
1697 // preferable because it allows the C2 << Y expression to be hoisted out of a
1698 // loop if Y is invariant and X is not.
1699 if (Shift
->hasOneUse() && C1
.isNullValue() && Cmp
.isEquality() &&
1700 !Shift
->isArithmeticShift() && !isa
<Constant
>(Shift
->getOperand(0))) {
1703 IsShl
? Builder
.CreateLShr(And
->getOperand(1), Shift
->getOperand(1))
1704 : Builder
.CreateShl(And
->getOperand(1), Shift
->getOperand(1));
1706 // Compute X & (C2 << Y).
1707 Value
*NewAnd
= Builder
.CreateAnd(Shift
->getOperand(0), NewShift
);
1708 Cmp
.setOperand(0, NewAnd
);
1715 /// Fold icmp (and X, C2), C1.
1716 Instruction
*InstCombiner::foldICmpAndConstConst(ICmpInst
&Cmp
,
1717 BinaryOperator
*And
,
1719 bool isICMP_NE
= Cmp
.getPredicate() == ICmpInst::ICMP_NE
;
1721 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1722 // TODO: We canonicalize to the longer form for scalars because we have
1723 // better analysis/folds for icmp, and codegen may be better with icmp.
1724 if (isICMP_NE
&& Cmp
.getType()->isVectorTy() && C1
.isNullValue() &&
1725 match(And
->getOperand(1), m_One()))
1726 return new TruncInst(And
->getOperand(0), Cmp
.getType());
1730 if (!match(And
, m_And(m_Value(X
), m_APInt(C2
))))
1733 // Don't perform the following transforms if the AND has multiple uses
1734 if (!And
->hasOneUse())
1737 if (Cmp
.isEquality() && C1
.isNullValue()) {
1738 // Restrict this fold to single-use 'and' (PR10267).
1739 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1740 if (C2
->isSignMask()) {
1741 Constant
*Zero
= Constant::getNullValue(X
->getType());
1742 auto NewPred
= isICMP_NE
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_SGE
;
1743 return new ICmpInst(NewPred
, X
, Zero
);
1746 // Restrict this fold only for single-use 'and' (PR10267).
1747 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two.
1748 if ((~(*C2
) + 1).isPowerOf2()) {
1750 ConstantExpr::getNeg(cast
<Constant
>(And
->getOperand(1)));
1751 auto NewPred
= isICMP_NE
? ICmpInst::ICMP_UGE
: ICmpInst::ICMP_ULT
;
1752 return new ICmpInst(NewPred
, X
, NegBOC
);
1756 // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1757 // the input width without changing the value produced, eliminate the cast:
1759 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1761 // We can do this transformation if the constants do not have their sign bits
1762 // set or if it is an equality comparison. Extending a relational comparison
1763 // when we're checking the sign bit would not work.
1765 if (match(And
->getOperand(0), m_OneUse(m_Trunc(m_Value(W
)))) &&
1766 (Cmp
.isEquality() || (!C1
.isNegative() && !C2
->isNegative()))) {
1767 // TODO: Is this a good transform for vectors? Wider types may reduce
1768 // throughput. Should this transform be limited (even for scalars) by using
1769 // shouldChangeType()?
1770 if (!Cmp
.getType()->isVectorTy()) {
1771 Type
*WideType
= W
->getType();
1772 unsigned WideScalarBits
= WideType
->getScalarSizeInBits();
1773 Constant
*ZextC1
= ConstantInt::get(WideType
, C1
.zext(WideScalarBits
));
1774 Constant
*ZextC2
= ConstantInt::get(WideType
, C2
->zext(WideScalarBits
));
1775 Value
*NewAnd
= Builder
.CreateAnd(W
, ZextC2
, And
->getName());
1776 return new ICmpInst(Cmp
.getPredicate(), NewAnd
, ZextC1
);
1780 if (Instruction
*I
= foldICmpAndShift(Cmp
, And
, C1
, *C2
))
1783 // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1784 // (icmp pred (and A, (or (shl 1, B), 1), 0))
1786 // iff pred isn't signed
1787 if (!Cmp
.isSigned() && C1
.isNullValue() && And
->getOperand(0)->hasOneUse() &&
1788 match(And
->getOperand(1), m_One())) {
1789 Constant
*One
= cast
<Constant
>(And
->getOperand(1));
1790 Value
*Or
= And
->getOperand(0);
1791 Value
*A
, *B
, *LShr
;
1792 if (match(Or
, m_Or(m_Value(LShr
), m_Value(A
))) &&
1793 match(LShr
, m_LShr(m_Specific(A
), m_Value(B
)))) {
1794 unsigned UsesRemoved
= 0;
1795 if (And
->hasOneUse())
1797 if (Or
->hasOneUse())
1799 if (LShr
->hasOneUse())
1802 // Compute A & ((1 << B) | 1)
1803 Value
*NewOr
= nullptr;
1804 if (auto *C
= dyn_cast
<Constant
>(B
)) {
1805 if (UsesRemoved
>= 1)
1806 NewOr
= ConstantExpr::getOr(ConstantExpr::getNUWShl(One
, C
), One
);
1808 if (UsesRemoved
>= 3)
1809 NewOr
= Builder
.CreateOr(Builder
.CreateShl(One
, B
, LShr
->getName(),
1811 One
, Or
->getName());
1814 Value
*NewAnd
= Builder
.CreateAnd(A
, NewOr
, And
->getName());
1815 Cmp
.setOperand(0, NewAnd
);
1824 /// Fold icmp (and X, Y), C.
1825 Instruction
*InstCombiner::foldICmpAndConstant(ICmpInst
&Cmp
,
1826 BinaryOperator
*And
,
1828 if (Instruction
*I
= foldICmpAndConstConst(Cmp
, And
, C
))
1831 // TODO: These all require that Y is constant too, so refactor with the above.
1833 // Try to optimize things like "A[i] & 42 == 0" to index computations.
1834 Value
*X
= And
->getOperand(0);
1835 Value
*Y
= And
->getOperand(1);
1836 if (auto *LI
= dyn_cast
<LoadInst
>(X
))
1837 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(LI
->getOperand(0)))
1838 if (auto *GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0)))
1839 if (GV
->isConstant() && GV
->hasDefinitiveInitializer() &&
1840 !LI
->isVolatile() && isa
<ConstantInt
>(Y
)) {
1841 ConstantInt
*C2
= cast
<ConstantInt
>(Y
);
1842 if (Instruction
*Res
= foldCmpLoadFromIndexedGlobal(GEP
, GV
, Cmp
, C2
))
1846 if (!Cmp
.isEquality())
1849 // X & -C == -C -> X > u ~C
1850 // X & -C != -C -> X <= u ~C
1851 // iff C is a power of 2
1852 if (Cmp
.getOperand(1) == Y
&& (-C
).isPowerOf2()) {
1853 auto NewPred
= Cmp
.getPredicate() == CmpInst::ICMP_EQ
? CmpInst::ICMP_UGT
1854 : CmpInst::ICMP_ULE
;
1855 return new ICmpInst(NewPred
, X
, SubOne(cast
<Constant
>(Cmp
.getOperand(1))));
1858 // (X & C2) == 0 -> (trunc X) >= 0
1859 // (X & C2) != 0 -> (trunc X) < 0
1860 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1862 if (And
->hasOneUse() && C
.isNullValue() && match(Y
, m_APInt(C2
))) {
1863 int32_t ExactLogBase2
= C2
->exactLogBase2();
1864 if (ExactLogBase2
!= -1 && DL
.isLegalInteger(ExactLogBase2
+ 1)) {
1865 Type
*NTy
= IntegerType::get(Cmp
.getContext(), ExactLogBase2
+ 1);
1866 if (And
->getType()->isVectorTy())
1867 NTy
= VectorType::get(NTy
, And
->getType()->getVectorNumElements());
1868 Value
*Trunc
= Builder
.CreateTrunc(X
, NTy
);
1869 auto NewPred
= Cmp
.getPredicate() == CmpInst::ICMP_EQ
? CmpInst::ICMP_SGE
1870 : CmpInst::ICMP_SLT
;
1871 return new ICmpInst(NewPred
, Trunc
, Constant::getNullValue(NTy
));
1878 /// Fold icmp (or X, Y), C.
1879 Instruction
*InstCombiner::foldICmpOrConstant(ICmpInst
&Cmp
, BinaryOperator
*Or
,
1881 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1882 if (C
.isOneValue()) {
1883 // icmp slt signum(V) 1 --> icmp slt V, 1
1885 if (Pred
== ICmpInst::ICMP_SLT
&& match(Or
, m_Signum(m_Value(V
))))
1886 return new ICmpInst(ICmpInst::ICMP_SLT
, V
,
1887 ConstantInt::get(V
->getType(), 1));
1890 Value
*OrOp0
= Or
->getOperand(0), *OrOp1
= Or
->getOperand(1);
1891 if (Cmp
.isEquality() && Cmp
.getOperand(1) == OrOp1
) {
1892 // X | C == C --> X <=u C
1893 // X | C != C --> X >u C
1894 // iff C+1 is a power of 2 (C is a bitmask of the low bits)
1895 if ((C
+ 1).isPowerOf2()) {
1896 Pred
= (Pred
== CmpInst::ICMP_EQ
) ? CmpInst::ICMP_ULE
: CmpInst::ICMP_UGT
;
1897 return new ICmpInst(Pred
, OrOp0
, OrOp1
);
1899 // More general: are all bits outside of a mask constant set or not set?
1900 // X | C == C --> (X & ~C) == 0
1901 // X | C != C --> (X & ~C) != 0
1902 if (Or
->hasOneUse()) {
1903 Value
*A
= Builder
.CreateAnd(OrOp0
, ~C
);
1904 return new ICmpInst(Pred
, A
, ConstantInt::getNullValue(OrOp0
->getType()));
1908 if (!Cmp
.isEquality() || !C
.isNullValue() || !Or
->hasOneUse())
1912 if (match(Or
, m_Or(m_PtrToInt(m_Value(P
)), m_PtrToInt(m_Value(Q
))))) {
1913 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1914 // -> and (icmp eq P, null), (icmp eq Q, null).
1916 Builder
.CreateICmp(Pred
, P
, ConstantInt::getNullValue(P
->getType()));
1918 Builder
.CreateICmp(Pred
, Q
, ConstantInt::getNullValue(Q
->getType()));
1919 auto BOpc
= Pred
== CmpInst::ICMP_EQ
? Instruction::And
: Instruction::Or
;
1920 return BinaryOperator::Create(BOpc
, CmpP
, CmpQ
);
1923 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1924 // a shorter form that has more potential to be folded even further.
1925 Value
*X1
, *X2
, *X3
, *X4
;
1926 if (match(OrOp0
, m_OneUse(m_Xor(m_Value(X1
), m_Value(X2
)))) &&
1927 match(OrOp1
, m_OneUse(m_Xor(m_Value(X3
), m_Value(X4
))))) {
1928 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1929 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1930 Value
*Cmp12
= Builder
.CreateICmp(Pred
, X1
, X2
);
1931 Value
*Cmp34
= Builder
.CreateICmp(Pred
, X3
, X4
);
1932 auto BOpc
= Pred
== CmpInst::ICMP_EQ
? Instruction::And
: Instruction::Or
;
1933 return BinaryOperator::Create(BOpc
, Cmp12
, Cmp34
);
1939 /// Fold icmp (mul X, Y), C.
1940 Instruction
*InstCombiner::foldICmpMulConstant(ICmpInst
&Cmp
,
1941 BinaryOperator
*Mul
,
1944 if (!match(Mul
->getOperand(1), m_APInt(MulC
)))
1947 // If this is a test of the sign bit and the multiply is sign-preserving with
1948 // a constant operand, use the multiply LHS operand instead.
1949 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1950 if (isSignTest(Pred
, C
) && Mul
->hasNoSignedWrap()) {
1951 if (MulC
->isNegative())
1952 Pred
= ICmpInst::getSwappedPredicate(Pred
);
1953 return new ICmpInst(Pred
, Mul
->getOperand(0),
1954 Constant::getNullValue(Mul
->getType()));
1960 /// Fold icmp (shl 1, Y), C.
1961 static Instruction
*foldICmpShlOne(ICmpInst
&Cmp
, Instruction
*Shl
,
1964 if (!match(Shl
, m_Shl(m_One(), m_Value(Y
))))
1967 Type
*ShiftType
= Shl
->getType();
1968 unsigned TypeBits
= C
.getBitWidth();
1969 bool CIsPowerOf2
= C
.isPowerOf2();
1970 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1971 if (Cmp
.isUnsigned()) {
1972 // (1 << Y) pred C -> Y pred Log2(C)
1974 // (1 << Y) < 30 -> Y <= 4
1975 // (1 << Y) <= 30 -> Y <= 4
1976 // (1 << Y) >= 30 -> Y > 4
1977 // (1 << Y) > 30 -> Y > 4
1978 if (Pred
== ICmpInst::ICMP_ULT
)
1979 Pred
= ICmpInst::ICMP_ULE
;
1980 else if (Pred
== ICmpInst::ICMP_UGE
)
1981 Pred
= ICmpInst::ICMP_UGT
;
1984 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
1985 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31
1986 unsigned CLog2
= C
.logBase2();
1987 if (CLog2
== TypeBits
- 1) {
1988 if (Pred
== ICmpInst::ICMP_UGE
)
1989 Pred
= ICmpInst::ICMP_EQ
;
1990 else if (Pred
== ICmpInst::ICMP_ULT
)
1991 Pred
= ICmpInst::ICMP_NE
;
1993 return new ICmpInst(Pred
, Y
, ConstantInt::get(ShiftType
, CLog2
));
1994 } else if (Cmp
.isSigned()) {
1995 Constant
*BitWidthMinusOne
= ConstantInt::get(ShiftType
, TypeBits
- 1);
1996 if (C
.isAllOnesValue()) {
1997 // (1 << Y) <= -1 -> Y == 31
1998 if (Pred
== ICmpInst::ICMP_SLE
)
1999 return new ICmpInst(ICmpInst::ICMP_EQ
, Y
, BitWidthMinusOne
);
2001 // (1 << Y) > -1 -> Y != 31
2002 if (Pred
== ICmpInst::ICMP_SGT
)
2003 return new ICmpInst(ICmpInst::ICMP_NE
, Y
, BitWidthMinusOne
);
2005 // (1 << Y) < 0 -> Y == 31
2006 // (1 << Y) <= 0 -> Y == 31
2007 if (Pred
== ICmpInst::ICMP_SLT
|| Pred
== ICmpInst::ICMP_SLE
)
2008 return new ICmpInst(ICmpInst::ICMP_EQ
, Y
, BitWidthMinusOne
);
2010 // (1 << Y) >= 0 -> Y != 31
2011 // (1 << Y) > 0 -> Y != 31
2012 if (Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_SGE
)
2013 return new ICmpInst(ICmpInst::ICMP_NE
, Y
, BitWidthMinusOne
);
2015 } else if (Cmp
.isEquality() && CIsPowerOf2
) {
2016 return new ICmpInst(Pred
, Y
, ConstantInt::get(ShiftType
, C
.logBase2()));
2022 /// Fold icmp (shl X, Y), C.
2023 Instruction
*InstCombiner::foldICmpShlConstant(ICmpInst
&Cmp
,
2024 BinaryOperator
*Shl
,
2026 const APInt
*ShiftVal
;
2027 if (Cmp
.isEquality() && match(Shl
->getOperand(0), m_APInt(ShiftVal
)))
2028 return foldICmpShlConstConst(Cmp
, Shl
->getOperand(1), C
, *ShiftVal
);
2030 const APInt
*ShiftAmt
;
2031 if (!match(Shl
->getOperand(1), m_APInt(ShiftAmt
)))
2032 return foldICmpShlOne(Cmp
, Shl
, C
);
2034 // Check that the shift amount is in range. If not, don't perform undefined
2035 // shifts. When the shift is visited, it will be simplified.
2036 unsigned TypeBits
= C
.getBitWidth();
2037 if (ShiftAmt
->uge(TypeBits
))
2040 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2041 Value
*X
= Shl
->getOperand(0);
2042 Type
*ShType
= Shl
->getType();
2044 // NSW guarantees that we are only shifting out sign bits from the high bits,
2045 // so we can ASHR the compare constant without needing a mask and eliminate
2047 if (Shl
->hasNoSignedWrap()) {
2048 if (Pred
== ICmpInst::ICMP_SGT
) {
2049 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2050 APInt ShiftedC
= C
.ashr(*ShiftAmt
);
2051 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2053 if ((Pred
== ICmpInst::ICMP_EQ
|| Pred
== ICmpInst::ICMP_NE
) &&
2054 C
.ashr(*ShiftAmt
).shl(*ShiftAmt
) == C
) {
2055 APInt ShiftedC
= C
.ashr(*ShiftAmt
);
2056 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2058 if (Pred
== ICmpInst::ICMP_SLT
) {
2059 // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2060 // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2061 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2062 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2063 assert(!C
.isMinSignedValue() && "Unexpected icmp slt");
2064 APInt ShiftedC
= (C
- 1).ashr(*ShiftAmt
) + 1;
2065 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2067 // If this is a signed comparison to 0 and the shift is sign preserving,
2068 // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2069 // do that if we're sure to not continue on in this function.
2070 if (isSignTest(Pred
, C
))
2071 return new ICmpInst(Pred
, X
, Constant::getNullValue(ShType
));
2074 // NUW guarantees that we are only shifting out zero bits from the high bits,
2075 // so we can LSHR the compare constant without needing a mask and eliminate
2077 if (Shl
->hasNoUnsignedWrap()) {
2078 if (Pred
== ICmpInst::ICMP_UGT
) {
2079 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2080 APInt ShiftedC
= C
.lshr(*ShiftAmt
);
2081 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2083 if ((Pred
== ICmpInst::ICMP_EQ
|| Pred
== ICmpInst::ICMP_NE
) &&
2084 C
.lshr(*ShiftAmt
).shl(*ShiftAmt
) == C
) {
2085 APInt ShiftedC
= C
.lshr(*ShiftAmt
);
2086 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2088 if (Pred
== ICmpInst::ICMP_ULT
) {
2089 // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2090 // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2091 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2092 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2093 assert(C
.ugt(0) && "ult 0 should have been eliminated");
2094 APInt ShiftedC
= (C
- 1).lshr(*ShiftAmt
) + 1;
2095 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2099 if (Cmp
.isEquality() && Shl
->hasOneUse()) {
2100 // Strength-reduce the shift into an 'and'.
2101 Constant
*Mask
= ConstantInt::get(
2103 APInt::getLowBitsSet(TypeBits
, TypeBits
- ShiftAmt
->getZExtValue()));
2104 Value
*And
= Builder
.CreateAnd(X
, Mask
, Shl
->getName() + ".mask");
2105 Constant
*LShrC
= ConstantInt::get(ShType
, C
.lshr(*ShiftAmt
));
2106 return new ICmpInst(Pred
, And
, LShrC
);
2109 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2110 bool TrueIfSigned
= false;
2111 if (Shl
->hasOneUse() && isSignBitCheck(Pred
, C
, TrueIfSigned
)) {
2112 // (X << 31) <s 0 --> (X & 1) != 0
2113 Constant
*Mask
= ConstantInt::get(
2115 APInt::getOneBitSet(TypeBits
, TypeBits
- ShiftAmt
->getZExtValue() - 1));
2116 Value
*And
= Builder
.CreateAnd(X
, Mask
, Shl
->getName() + ".mask");
2117 return new ICmpInst(TrueIfSigned
? ICmpInst::ICMP_NE
: ICmpInst::ICMP_EQ
,
2118 And
, Constant::getNullValue(ShType
));
2121 // Simplify 'shl' inequality test into 'and' equality test.
2122 if (Cmp
.isUnsigned() && Shl
->hasOneUse()) {
2123 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2124 if ((C
+ 1).isPowerOf2() &&
2125 (Pred
== ICmpInst::ICMP_ULE
|| Pred
== ICmpInst::ICMP_UGT
)) {
2126 Value
*And
= Builder
.CreateAnd(X
, (~C
).lshr(ShiftAmt
->getZExtValue()));
2127 return new ICmpInst(Pred
== ICmpInst::ICMP_ULE
? ICmpInst::ICMP_EQ
2128 : ICmpInst::ICMP_NE
,
2129 And
, Constant::getNullValue(ShType
));
2131 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2132 if (C
.isPowerOf2() &&
2133 (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_UGE
)) {
2135 Builder
.CreateAnd(X
, (~(C
- 1)).lshr(ShiftAmt
->getZExtValue()));
2136 return new ICmpInst(Pred
== ICmpInst::ICMP_ULT
? ICmpInst::ICMP_EQ
2137 : ICmpInst::ICMP_NE
,
2138 And
, Constant::getNullValue(ShType
));
2142 // Transform (icmp pred iM (shl iM %v, N), C)
2143 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2144 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2145 // This enables us to get rid of the shift in favor of a trunc that may be
2146 // free on the target. It has the additional benefit of comparing to a
2147 // smaller constant that may be more target-friendly.
2148 unsigned Amt
= ShiftAmt
->getLimitedValue(TypeBits
- 1);
2149 if (Shl
->hasOneUse() && Amt
!= 0 && C
.countTrailingZeros() >= Amt
&&
2150 DL
.isLegalInteger(TypeBits
- Amt
)) {
2151 Type
*TruncTy
= IntegerType::get(Cmp
.getContext(), TypeBits
- Amt
);
2152 if (ShType
->isVectorTy())
2153 TruncTy
= VectorType::get(TruncTy
, ShType
->getVectorNumElements());
2155 ConstantInt::get(TruncTy
, C
.ashr(*ShiftAmt
).trunc(TypeBits
- Amt
));
2156 return new ICmpInst(Pred
, Builder
.CreateTrunc(X
, TruncTy
), NewC
);
2162 /// Fold icmp ({al}shr X, Y), C.
2163 Instruction
*InstCombiner::foldICmpShrConstant(ICmpInst
&Cmp
,
2164 BinaryOperator
*Shr
,
2166 // An exact shr only shifts out zero bits, so:
2167 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2168 Value
*X
= Shr
->getOperand(0);
2169 CmpInst::Predicate Pred
= Cmp
.getPredicate();
2170 if (Cmp
.isEquality() && Shr
->isExact() && Shr
->hasOneUse() &&
2172 return new ICmpInst(Pred
, X
, Cmp
.getOperand(1));
2174 const APInt
*ShiftVal
;
2175 if (Cmp
.isEquality() && match(Shr
->getOperand(0), m_APInt(ShiftVal
)))
2176 return foldICmpShrConstConst(Cmp
, Shr
->getOperand(1), C
, *ShiftVal
);
2178 const APInt
*ShiftAmt
;
2179 if (!match(Shr
->getOperand(1), m_APInt(ShiftAmt
)))
2182 // Check that the shift amount is in range. If not, don't perform undefined
2183 // shifts. When the shift is visited it will be simplified.
2184 unsigned TypeBits
= C
.getBitWidth();
2185 unsigned ShAmtVal
= ShiftAmt
->getLimitedValue(TypeBits
);
2186 if (ShAmtVal
>= TypeBits
|| ShAmtVal
== 0)
2189 bool IsAShr
= Shr
->getOpcode() == Instruction::AShr
;
2190 bool IsExact
= Shr
->isExact();
2191 Type
*ShrTy
= Shr
->getType();
2192 // TODO: If we could guarantee that InstSimplify would handle all of the
2193 // constant-value-based preconditions in the folds below, then we could assert
2194 // those conditions rather than checking them. This is difficult because of
2195 // undef/poison (PR34838).
2197 if (Pred
== CmpInst::ICMP_SLT
|| (Pred
== CmpInst::ICMP_SGT
&& IsExact
)) {
2198 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2199 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2200 APInt ShiftedC
= C
.shl(ShAmtVal
);
2201 if (ShiftedC
.ashr(ShAmtVal
) == C
)
2202 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, ShiftedC
));
2204 if (Pred
== CmpInst::ICMP_SGT
) {
2205 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2206 APInt ShiftedC
= (C
+ 1).shl(ShAmtVal
) - 1;
2207 if (!C
.isMaxSignedValue() && !(C
+ 1).shl(ShAmtVal
).isMinSignedValue() &&
2208 (ShiftedC
+ 1).ashr(ShAmtVal
) == (C
+ 1))
2209 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, ShiftedC
));
2212 if (Pred
== CmpInst::ICMP_ULT
|| (Pred
== CmpInst::ICMP_UGT
&& IsExact
)) {
2213 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2214 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2215 APInt ShiftedC
= C
.shl(ShAmtVal
);
2216 if (ShiftedC
.lshr(ShAmtVal
) == C
)
2217 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, ShiftedC
));
2219 if (Pred
== CmpInst::ICMP_UGT
) {
2220 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2221 APInt ShiftedC
= (C
+ 1).shl(ShAmtVal
) - 1;
2222 if ((ShiftedC
+ 1).lshr(ShAmtVal
) == (C
+ 1))
2223 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, ShiftedC
));
2227 if (!Cmp
.isEquality())
2230 // Handle equality comparisons of shift-by-constant.
2232 // If the comparison constant changes with the shift, the comparison cannot
2233 // succeed (bits of the comparison constant cannot match the shifted value).
2234 // This should be known by InstSimplify and already be folded to true/false.
2235 assert(((IsAShr
&& C
.shl(ShAmtVal
).ashr(ShAmtVal
) == C
) ||
2236 (!IsAShr
&& C
.shl(ShAmtVal
).lshr(ShAmtVal
) == C
)) &&
2237 "Expected icmp+shr simplify did not occur.");
2239 // If the bits shifted out are known zero, compare the unshifted value:
2240 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
2242 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, C
<< ShAmtVal
));
2244 if (Shr
->hasOneUse()) {
2245 // Canonicalize the shift into an 'and':
2246 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2247 APInt
Val(APInt::getHighBitsSet(TypeBits
, TypeBits
- ShAmtVal
));
2248 Constant
*Mask
= ConstantInt::get(ShrTy
, Val
);
2249 Value
*And
= Builder
.CreateAnd(X
, Mask
, Shr
->getName() + ".mask");
2250 return new ICmpInst(Pred
, And
, ConstantInt::get(ShrTy
, C
<< ShAmtVal
));
2256 Instruction
*InstCombiner::foldICmpSRemConstant(ICmpInst
&Cmp
,
2257 BinaryOperator
*SRem
,
2259 // Match an 'is positive' or 'is negative' comparison of remainder by a
2260 // constant power-of-2 value:
2261 // (X % pow2C) sgt/slt 0
2262 const ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2263 if (Pred
!= ICmpInst::ICMP_SGT
&& Pred
!= ICmpInst::ICMP_SLT
)
2266 // TODO: The one-use check is standard because we do not typically want to
2267 // create longer instruction sequences, but this might be a special-case
2268 // because srem is not good for analysis or codegen.
2269 if (!SRem
->hasOneUse())
2272 const APInt
*DivisorC
;
2273 if (!C
.isNullValue() || !match(SRem
->getOperand(1), m_Power2(DivisorC
)))
2276 // Mask off the sign bit and the modulo bits (low-bits).
2277 Type
*Ty
= SRem
->getType();
2278 APInt SignMask
= APInt::getSignMask(Ty
->getScalarSizeInBits());
2279 Constant
*MaskC
= ConstantInt::get(Ty
, SignMask
| (*DivisorC
- 1));
2280 Value
*And
= Builder
.CreateAnd(SRem
->getOperand(0), MaskC
);
2282 // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2283 // bit is set. Example:
2284 // (i8 X % 32) s> 0 --> (X & 159) s> 0
2285 if (Pred
== ICmpInst::ICMP_SGT
)
2286 return new ICmpInst(ICmpInst::ICMP_SGT
, And
, ConstantInt::getNullValue(Ty
));
2288 // For 'is negative?' check that the sign-bit is set and at least 1 masked
2289 // bit is set. Example:
2290 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2291 return new ICmpInst(ICmpInst::ICMP_UGT
, And
, ConstantInt::get(Ty
, SignMask
));
2294 /// Fold icmp (udiv X, Y), C.
2295 Instruction
*InstCombiner::foldICmpUDivConstant(ICmpInst
&Cmp
,
2296 BinaryOperator
*UDiv
,
2299 if (!match(UDiv
->getOperand(0), m_APInt(C2
)))
2302 assert(*C2
!= 0 && "udiv 0, X should have been simplified already.");
2304 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2305 Value
*Y
= UDiv
->getOperand(1);
2306 if (Cmp
.getPredicate() == ICmpInst::ICMP_UGT
) {
2307 assert(!C
.isMaxValue() &&
2308 "icmp ugt X, UINT_MAX should have been simplified already.");
2309 return new ICmpInst(ICmpInst::ICMP_ULE
, Y
,
2310 ConstantInt::get(Y
->getType(), C2
->udiv(C
+ 1)));
2313 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2314 if (Cmp
.getPredicate() == ICmpInst::ICMP_ULT
) {
2315 assert(C
!= 0 && "icmp ult X, 0 should have been simplified already.");
2316 return new ICmpInst(ICmpInst::ICMP_UGT
, Y
,
2317 ConstantInt::get(Y
->getType(), C2
->udiv(C
)));
2323 /// Fold icmp ({su}div X, Y), C.
2324 Instruction
*InstCombiner::foldICmpDivConstant(ICmpInst
&Cmp
,
2325 BinaryOperator
*Div
,
2327 // Fold: icmp pred ([us]div X, C2), C -> range test
2328 // Fold this div into the comparison, producing a range check.
2329 // Determine, based on the divide type, what the range is being
2330 // checked. If there is an overflow on the low or high side, remember
2331 // it, otherwise compute the range [low, hi) bounding the new value.
2332 // See: InsertRangeTest above for the kinds of replacements possible.
2334 if (!match(Div
->getOperand(1), m_APInt(C2
)))
2337 // FIXME: If the operand types don't match the type of the divide
2338 // then don't attempt this transform. The code below doesn't have the
2339 // logic to deal with a signed divide and an unsigned compare (and
2340 // vice versa). This is because (x /s C2) <s C produces different
2341 // results than (x /s C2) <u C or (x /u C2) <s C or even
2342 // (x /u C2) <u C. Simply casting the operands and result won't
2343 // work. :( The if statement below tests that condition and bails
2345 bool DivIsSigned
= Div
->getOpcode() == Instruction::SDiv
;
2346 if (!Cmp
.isEquality() && DivIsSigned
!= Cmp
.isSigned())
2349 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2350 // INT_MIN will also fail if the divisor is 1. Although folds of all these
2351 // division-by-constant cases should be present, we can not assert that they
2352 // have happened before we reach this icmp instruction.
2353 if (C2
->isNullValue() || C2
->isOneValue() ||
2354 (DivIsSigned
&& C2
->isAllOnesValue()))
2357 // Compute Prod = C * C2. We are essentially solving an equation of
2358 // form X / C2 = C. We solve for X by multiplying C2 and C.
2359 // By solving for X, we can turn this into a range check instead of computing
2361 APInt Prod
= C
* *C2
;
2363 // Determine if the product overflows by seeing if the product is not equal to
2364 // the divide. Make sure we do the same kind of divide as in the LHS
2365 // instruction that we're folding.
2366 bool ProdOV
= (DivIsSigned
? Prod
.sdiv(*C2
) : Prod
.udiv(*C2
)) != C
;
2368 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2370 // If the division is known to be exact, then there is no remainder from the
2371 // divide, so the covered range size is unit, otherwise it is the divisor.
2372 APInt RangeSize
= Div
->isExact() ? APInt(C2
->getBitWidth(), 1) : *C2
;
2374 // Figure out the interval that is being checked. For example, a comparison
2375 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2376 // Compute this interval based on the constants involved and the signedness of
2377 // the compare/divide. This computes a half-open interval, keeping track of
2378 // whether either value in the interval overflows. After analysis each
2379 // overflow variable is set to 0 if it's corresponding bound variable is valid
2380 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2381 int LoOverflow
= 0, HiOverflow
= 0;
2382 APInt LoBound
, HiBound
;
2384 if (!DivIsSigned
) { // udiv
2385 // e.g. X/5 op 3 --> [15, 20)
2387 HiOverflow
= LoOverflow
= ProdOV
;
2389 // If this is not an exact divide, then many values in the range collapse
2390 // to the same result value.
2391 HiOverflow
= addWithOverflow(HiBound
, LoBound
, RangeSize
, false);
2393 } else if (C2
->isStrictlyPositive()) { // Divisor is > 0.
2394 if (C
.isNullValue()) { // (X / pos) op 0
2395 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
2396 LoBound
= -(RangeSize
- 1);
2397 HiBound
= RangeSize
;
2398 } else if (C
.isStrictlyPositive()) { // (X / pos) op pos
2399 LoBound
= Prod
; // e.g. X/5 op 3 --> [15, 20)
2400 HiOverflow
= LoOverflow
= ProdOV
;
2402 HiOverflow
= addWithOverflow(HiBound
, Prod
, RangeSize
, true);
2403 } else { // (X / pos) op neg
2404 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
2406 LoOverflow
= HiOverflow
= ProdOV
? -1 : 0;
2408 APInt DivNeg
= -RangeSize
;
2409 LoOverflow
= addWithOverflow(LoBound
, HiBound
, DivNeg
, true) ? -1 : 0;
2412 } else if (C2
->isNegative()) { // Divisor is < 0.
2415 if (C
.isNullValue()) { // (X / neg) op 0
2416 // e.g. X/-5 op 0 --> [-4, 5)
2417 LoBound
= RangeSize
+ 1;
2418 HiBound
= -RangeSize
;
2419 if (HiBound
== *C2
) { // -INTMIN = INTMIN
2420 HiOverflow
= 1; // [INTMIN+1, overflow)
2421 HiBound
= APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN
2423 } else if (C
.isStrictlyPositive()) { // (X / neg) op pos
2424 // e.g. X/-5 op 3 --> [-19, -14)
2426 HiOverflow
= LoOverflow
= ProdOV
? -1 : 0;
2428 LoOverflow
= addWithOverflow(LoBound
, HiBound
, RangeSize
, true) ? -1:0;
2429 } else { // (X / neg) op neg
2430 LoBound
= Prod
; // e.g. X/-5 op -3 --> [15, 20)
2431 LoOverflow
= HiOverflow
= ProdOV
;
2433 HiOverflow
= subWithOverflow(HiBound
, Prod
, RangeSize
, true);
2436 // Dividing by a negative swaps the condition. LT <-> GT
2437 Pred
= ICmpInst::getSwappedPredicate(Pred
);
2440 Value
*X
= Div
->getOperand(0);
2442 default: llvm_unreachable("Unhandled icmp opcode!");
2443 case ICmpInst::ICMP_EQ
:
2444 if (LoOverflow
&& HiOverflow
)
2445 return replaceInstUsesWith(Cmp
, Builder
.getFalse());
2447 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SGE
:
2448 ICmpInst::ICMP_UGE
, X
,
2449 ConstantInt::get(Div
->getType(), LoBound
));
2451 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SLT
:
2452 ICmpInst::ICMP_ULT
, X
,
2453 ConstantInt::get(Div
->getType(), HiBound
));
2454 return replaceInstUsesWith(
2455 Cmp
, insertRangeTest(X
, LoBound
, HiBound
, DivIsSigned
, true));
2456 case ICmpInst::ICMP_NE
:
2457 if (LoOverflow
&& HiOverflow
)
2458 return replaceInstUsesWith(Cmp
, Builder
.getTrue());
2460 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SLT
:
2461 ICmpInst::ICMP_ULT
, X
,
2462 ConstantInt::get(Div
->getType(), LoBound
));
2464 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SGE
:
2465 ICmpInst::ICMP_UGE
, X
,
2466 ConstantInt::get(Div
->getType(), HiBound
));
2467 return replaceInstUsesWith(Cmp
,
2468 insertRangeTest(X
, LoBound
, HiBound
,
2469 DivIsSigned
, false));
2470 case ICmpInst::ICMP_ULT
:
2471 case ICmpInst::ICMP_SLT
:
2472 if (LoOverflow
== +1) // Low bound is greater than input range.
2473 return replaceInstUsesWith(Cmp
, Builder
.getTrue());
2474 if (LoOverflow
== -1) // Low bound is less than input range.
2475 return replaceInstUsesWith(Cmp
, Builder
.getFalse());
2476 return new ICmpInst(Pred
, X
, ConstantInt::get(Div
->getType(), LoBound
));
2477 case ICmpInst::ICMP_UGT
:
2478 case ICmpInst::ICMP_SGT
:
2479 if (HiOverflow
== +1) // High bound greater than input range.
2480 return replaceInstUsesWith(Cmp
, Builder
.getFalse());
2481 if (HiOverflow
== -1) // High bound less than input range.
2482 return replaceInstUsesWith(Cmp
, Builder
.getTrue());
2483 if (Pred
== ICmpInst::ICMP_UGT
)
2484 return new ICmpInst(ICmpInst::ICMP_UGE
, X
,
2485 ConstantInt::get(Div
->getType(), HiBound
));
2486 return new ICmpInst(ICmpInst::ICMP_SGE
, X
,
2487 ConstantInt::get(Div
->getType(), HiBound
));
2493 /// Fold icmp (sub X, Y), C.
2494 Instruction
*InstCombiner::foldICmpSubConstant(ICmpInst
&Cmp
,
2495 BinaryOperator
*Sub
,
2497 Value
*X
= Sub
->getOperand(0), *Y
= Sub
->getOperand(1);
2498 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2502 // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0
2503 if (match(X
, m_APInt(C2
)) && *C2
== C
&& Cmp
.isEquality())
2504 return new ICmpInst(Cmp
.getPredicate(), Y
,
2505 ConstantInt::get(Y
->getType(), 0));
2507 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2508 if (match(X
, m_APInt(C2
)) &&
2509 ((Cmp
.isUnsigned() && Sub
->hasNoUnsignedWrap()) ||
2510 (Cmp
.isSigned() && Sub
->hasNoSignedWrap())) &&
2511 !subWithOverflow(SubResult
, *C2
, C
, Cmp
.isSigned()))
2512 return new ICmpInst(Cmp
.getSwappedPredicate(), Y
,
2513 ConstantInt::get(Y
->getType(), SubResult
));
2515 // The following transforms are only worth it if the only user of the subtract
2517 if (!Sub
->hasOneUse())
2520 if (Sub
->hasNoSignedWrap()) {
2521 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2522 if (Pred
== ICmpInst::ICMP_SGT
&& C
.isAllOnesValue())
2523 return new ICmpInst(ICmpInst::ICMP_SGE
, X
, Y
);
2525 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2526 if (Pred
== ICmpInst::ICMP_SGT
&& C
.isNullValue())
2527 return new ICmpInst(ICmpInst::ICMP_SGT
, X
, Y
);
2529 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2530 if (Pred
== ICmpInst::ICMP_SLT
&& C
.isNullValue())
2531 return new ICmpInst(ICmpInst::ICMP_SLT
, X
, Y
);
2533 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2534 if (Pred
== ICmpInst::ICMP_SLT
&& C
.isOneValue())
2535 return new ICmpInst(ICmpInst::ICMP_SLE
, X
, Y
);
2538 if (!match(X
, m_APInt(C2
)))
2541 // C2 - Y <u C -> (Y | (C - 1)) == C2
2542 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2543 if (Pred
== ICmpInst::ICMP_ULT
&& C
.isPowerOf2() &&
2544 (*C2
& (C
- 1)) == (C
- 1))
2545 return new ICmpInst(ICmpInst::ICMP_EQ
, Builder
.CreateOr(Y
, C
- 1), X
);
2547 // C2 - Y >u C -> (Y | C) != C2
2548 // iff C2 & C == C and C + 1 is a power of 2
2549 if (Pred
== ICmpInst::ICMP_UGT
&& (C
+ 1).isPowerOf2() && (*C2
& C
) == C
)
2550 return new ICmpInst(ICmpInst::ICMP_NE
, Builder
.CreateOr(Y
, C
), X
);
2555 /// Fold icmp (add X, Y), C.
2556 Instruction
*InstCombiner::foldICmpAddConstant(ICmpInst
&Cmp
,
2557 BinaryOperator
*Add
,
2559 Value
*Y
= Add
->getOperand(1);
2561 if (Cmp
.isEquality() || !match(Y
, m_APInt(C2
)))
2564 // Fold icmp pred (add X, C2), C.
2565 Value
*X
= Add
->getOperand(0);
2566 Type
*Ty
= Add
->getType();
2567 CmpInst::Predicate Pred
= Cmp
.getPredicate();
2569 if (!Add
->hasOneUse())
2572 // If the add does not wrap, we can always adjust the compare by subtracting
2573 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2574 // are canonicalized to SGT/SLT/UGT/ULT.
2575 if ((Add
->hasNoSignedWrap() &&
2576 (Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_SLT
)) ||
2577 (Add
->hasNoUnsignedWrap() &&
2578 (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_ULT
))) {
2581 Cmp
.isSigned() ? C
.ssub_ov(*C2
, Overflow
) : C
.usub_ov(*C2
, Overflow
);
2582 // If there is overflow, the result must be true or false.
2583 // TODO: Can we assert there is no overflow because InstSimplify always
2584 // handles those cases?
2586 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2587 return new ICmpInst(Pred
, X
, ConstantInt::get(Ty
, NewC
));
2590 auto CR
= ConstantRange::makeExactICmpRegion(Pred
, C
).subtract(*C2
);
2591 const APInt
&Upper
= CR
.getUpper();
2592 const APInt
&Lower
= CR
.getLower();
2593 if (Cmp
.isSigned()) {
2594 if (Lower
.isSignMask())
2595 return new ICmpInst(ICmpInst::ICMP_SLT
, X
, ConstantInt::get(Ty
, Upper
));
2596 if (Upper
.isSignMask())
2597 return new ICmpInst(ICmpInst::ICMP_SGE
, X
, ConstantInt::get(Ty
, Lower
));
2599 if (Lower
.isMinValue())
2600 return new ICmpInst(ICmpInst::ICMP_ULT
, X
, ConstantInt::get(Ty
, Upper
));
2601 if (Upper
.isMinValue())
2602 return new ICmpInst(ICmpInst::ICMP_UGE
, X
, ConstantInt::get(Ty
, Lower
));
2605 // X+C <u C2 -> (X & -C2) == C
2606 // iff C & (C2-1) == 0
2607 // C2 is a power of 2
2608 if (Pred
== ICmpInst::ICMP_ULT
&& C
.isPowerOf2() && (*C2
& (C
- 1)) == 0)
2609 return new ICmpInst(ICmpInst::ICMP_EQ
, Builder
.CreateAnd(X
, -C
),
2610 ConstantExpr::getNeg(cast
<Constant
>(Y
)));
2612 // X+C >u C2 -> (X & ~C2) != C
2614 // C2+1 is a power of 2
2615 if (Pred
== ICmpInst::ICMP_UGT
&& (C
+ 1).isPowerOf2() && (*C2
& C
) == 0)
2616 return new ICmpInst(ICmpInst::ICMP_NE
, Builder
.CreateAnd(X
, ~C
),
2617 ConstantExpr::getNeg(cast
<Constant
>(Y
)));
2622 bool InstCombiner::matchThreeWayIntCompare(SelectInst
*SI
, Value
*&LHS
,
2623 Value
*&RHS
, ConstantInt
*&Less
,
2624 ConstantInt
*&Equal
,
2625 ConstantInt
*&Greater
) {
2626 // TODO: Generalize this to work with other comparison idioms or ensure
2627 // they get canonicalized into this form.
2629 // select i1 (a == b),
2631 // i32 (select i1 (a < b), i32 Less, i32 Greater)
2632 // where Equal, Less and Greater are placeholders for any three constants.
2633 ICmpInst::Predicate PredA
;
2634 if (!match(SI
->getCondition(), m_ICmp(PredA
, m_Value(LHS
), m_Value(RHS
))) ||
2635 !ICmpInst::isEquality(PredA
))
2637 Value
*EqualVal
= SI
->getTrueValue();
2638 Value
*UnequalVal
= SI
->getFalseValue();
2639 // We still can get non-canonical predicate here, so canonicalize.
2640 if (PredA
== ICmpInst::ICMP_NE
)
2641 std::swap(EqualVal
, UnequalVal
);
2642 if (!match(EqualVal
, m_ConstantInt(Equal
)))
2644 ICmpInst::Predicate PredB
;
2646 if (!match(UnequalVal
, m_Select(m_ICmp(PredB
, m_Value(LHS2
), m_Value(RHS2
)),
2647 m_ConstantInt(Less
), m_ConstantInt(Greater
))))
2649 // We can get predicate mismatch here, so canonicalize if possible:
2650 // First, ensure that 'LHS' match.
2652 // x sgt y <--> y slt x
2653 std::swap(LHS2
, RHS2
);
2654 PredB
= ICmpInst::getSwappedPredicate(PredB
);
2658 // We also need to canonicalize 'RHS'.
2659 if (PredB
== ICmpInst::ICMP_SGT
&& isa
<Constant
>(RHS2
)) {
2660 // x sgt C-1 <--> x sge C <--> not(x slt C)
2661 auto FlippedStrictness
=
2662 getFlippedStrictnessPredicateAndConstant(PredB
, cast
<Constant
>(RHS2
));
2663 if (!FlippedStrictness
)
2665 assert(FlippedStrictness
->first
== ICmpInst::ICMP_SGE
&& "Sanity check");
2666 RHS2
= FlippedStrictness
->second
;
2667 // And kind-of perform the result swap.
2668 std::swap(Less
, Greater
);
2669 PredB
= ICmpInst::ICMP_SLT
;
2671 return PredB
== ICmpInst::ICMP_SLT
&& RHS
== RHS2
;
2674 Instruction
*InstCombiner::foldICmpSelectConstant(ICmpInst
&Cmp
,
2678 assert(C
&& "Cmp RHS should be a constant int!");
2679 // If we're testing a constant value against the result of a three way
2680 // comparison, the result can be expressed directly in terms of the
2681 // original values being compared. Note: We could possibly be more
2682 // aggressive here and remove the hasOneUse test. The original select is
2683 // really likely to simplify or sink when we remove a test of the result.
2684 Value
*OrigLHS
, *OrigRHS
;
2685 ConstantInt
*C1LessThan
, *C2Equal
, *C3GreaterThan
;
2686 if (Cmp
.hasOneUse() &&
2687 matchThreeWayIntCompare(Select
, OrigLHS
, OrigRHS
, C1LessThan
, C2Equal
,
2689 assert(C1LessThan
&& C2Equal
&& C3GreaterThan
);
2691 bool TrueWhenLessThan
=
2692 ConstantExpr::getCompare(Cmp
.getPredicate(), C1LessThan
, C
)
2694 bool TrueWhenEqual
=
2695 ConstantExpr::getCompare(Cmp
.getPredicate(), C2Equal
, C
)
2697 bool TrueWhenGreaterThan
=
2698 ConstantExpr::getCompare(Cmp
.getPredicate(), C3GreaterThan
, C
)
2701 // This generates the new instruction that will replace the original Cmp
2702 // Instruction. Instead of enumerating the various combinations when
2703 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2704 // false, we rely on chaining of ORs and future passes of InstCombine to
2705 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2707 // When none of the three constants satisfy the predicate for the RHS (C),
2708 // the entire original Cmp can be simplified to a false.
2709 Value
*Cond
= Builder
.getFalse();
2710 if (TrueWhenLessThan
)
2711 Cond
= Builder
.CreateOr(Cond
, Builder
.CreateICmp(ICmpInst::ICMP_SLT
,
2714 Cond
= Builder
.CreateOr(Cond
, Builder
.CreateICmp(ICmpInst::ICMP_EQ
,
2716 if (TrueWhenGreaterThan
)
2717 Cond
= Builder
.CreateOr(Cond
, Builder
.CreateICmp(ICmpInst::ICMP_SGT
,
2720 return replaceInstUsesWith(Cmp
, Cond
);
2725 static Instruction
*foldICmpBitCast(ICmpInst
&Cmp
,
2726 InstCombiner::BuilderTy
&Builder
) {
2727 auto *Bitcast
= dyn_cast
<BitCastInst
>(Cmp
.getOperand(0));
2731 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2732 Value
*Op1
= Cmp
.getOperand(1);
2733 Value
*BCSrcOp
= Bitcast
->getOperand(0);
2735 // Make sure the bitcast doesn't change the number of vector elements.
2736 if (Bitcast
->getSrcTy()->getScalarSizeInBits() ==
2737 Bitcast
->getDestTy()->getScalarSizeInBits()) {
2738 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2740 if (match(BCSrcOp
, m_SIToFP(m_Value(X
)))) {
2741 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0
2742 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0
2743 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2744 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2745 if ((Pred
== ICmpInst::ICMP_EQ
|| Pred
== ICmpInst::ICMP_SLT
||
2746 Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_SGT
) &&
2747 match(Op1
, m_Zero()))
2748 return new ICmpInst(Pred
, X
, ConstantInt::getNullValue(X
->getType()));
2750 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2751 if (Pred
== ICmpInst::ICMP_SLT
&& match(Op1
, m_One()))
2752 return new ICmpInst(Pred
, X
, ConstantInt::get(X
->getType(), 1));
2754 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2755 if (Pred
== ICmpInst::ICMP_SGT
&& match(Op1
, m_AllOnes()))
2756 return new ICmpInst(Pred
, X
,
2757 ConstantInt::getAllOnesValue(X
->getType()));
2760 // Zero-equality checks are preserved through unsigned floating-point casts:
2761 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2762 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2763 if (match(BCSrcOp
, m_UIToFP(m_Value(X
))))
2764 if (Cmp
.isEquality() && match(Op1
, m_Zero()))
2765 return new ICmpInst(Pred
, X
, ConstantInt::getNullValue(X
->getType()));
2768 // Test to see if the operands of the icmp are casted versions of other
2769 // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2770 if (Bitcast
->getType()->isPointerTy() &&
2771 (isa
<Constant
>(Op1
) || isa
<BitCastInst
>(Op1
))) {
2772 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2773 // so eliminate it as well.
2774 if (auto *BC2
= dyn_cast
<BitCastInst
>(Op1
))
2775 Op1
= BC2
->getOperand(0);
2777 Op1
= Builder
.CreateBitCast(Op1
, BCSrcOp
->getType());
2778 return new ICmpInst(Pred
, BCSrcOp
, Op1
);
2781 // Folding: icmp <pred> iN X, C
2782 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2783 // and C is a splat of a K-bit pattern
2784 // and SC is a constant vector = <C', C', C', ..., C'>
2786 // %E = extractelement <M x iK> %vec, i32 C'
2787 // icmp <pred> iK %E, trunc(C)
2789 if (!match(Cmp
.getOperand(1), m_APInt(C
)) ||
2790 !Bitcast
->getType()->isIntegerTy() ||
2791 !Bitcast
->getSrcTy()->isIntOrIntVectorTy())
2797 m_ShuffleVector(m_Value(Vec
), m_Undef(), m_Constant(Mask
)))) {
2798 // Check whether every element of Mask is the same constant
2799 if (auto *Elem
= dyn_cast_or_null
<ConstantInt
>(Mask
->getSplatValue())) {
2800 auto *VecTy
= cast
<VectorType
>(BCSrcOp
->getType());
2801 auto *EltTy
= cast
<IntegerType
>(VecTy
->getElementType());
2802 if (C
->isSplat(EltTy
->getBitWidth())) {
2803 // Fold the icmp based on the value of C
2804 // If C is M copies of an iK sized bit pattern,
2806 // => %E = extractelement <N x iK> %vec, i32 Elem
2807 // icmp <pred> iK %SplatVal, <pattern>
2808 Value
*Extract
= Builder
.CreateExtractElement(Vec
, Elem
);
2809 Value
*NewC
= ConstantInt::get(EltTy
, C
->trunc(EltTy
->getBitWidth()));
2810 return new ICmpInst(Pred
, Extract
, NewC
);
2817 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2818 /// where X is some kind of instruction.
2819 Instruction
*InstCombiner::foldICmpInstWithConstant(ICmpInst
&Cmp
) {
2821 if (!match(Cmp
.getOperand(1), m_APInt(C
)))
2824 if (auto *BO
= dyn_cast
<BinaryOperator
>(Cmp
.getOperand(0))) {
2825 switch (BO
->getOpcode()) {
2826 case Instruction::Xor
:
2827 if (Instruction
*I
= foldICmpXorConstant(Cmp
, BO
, *C
))
2830 case Instruction::And
:
2831 if (Instruction
*I
= foldICmpAndConstant(Cmp
, BO
, *C
))
2834 case Instruction::Or
:
2835 if (Instruction
*I
= foldICmpOrConstant(Cmp
, BO
, *C
))
2838 case Instruction::Mul
:
2839 if (Instruction
*I
= foldICmpMulConstant(Cmp
, BO
, *C
))
2842 case Instruction::Shl
:
2843 if (Instruction
*I
= foldICmpShlConstant(Cmp
, BO
, *C
))
2846 case Instruction::LShr
:
2847 case Instruction::AShr
:
2848 if (Instruction
*I
= foldICmpShrConstant(Cmp
, BO
, *C
))
2851 case Instruction::SRem
:
2852 if (Instruction
*I
= foldICmpSRemConstant(Cmp
, BO
, *C
))
2855 case Instruction::UDiv
:
2856 if (Instruction
*I
= foldICmpUDivConstant(Cmp
, BO
, *C
))
2859 case Instruction::SDiv
:
2860 if (Instruction
*I
= foldICmpDivConstant(Cmp
, BO
, *C
))
2863 case Instruction::Sub
:
2864 if (Instruction
*I
= foldICmpSubConstant(Cmp
, BO
, *C
))
2867 case Instruction::Add
:
2868 if (Instruction
*I
= foldICmpAddConstant(Cmp
, BO
, *C
))
2874 // TODO: These folds could be refactored to be part of the above calls.
2875 if (Instruction
*I
= foldICmpBinOpEqualityWithConstant(Cmp
, BO
, *C
))
2879 // Match against CmpInst LHS being instructions other than binary operators.
2881 if (auto *SI
= dyn_cast
<SelectInst
>(Cmp
.getOperand(0))) {
2882 // For now, we only support constant integers while folding the
2883 // ICMP(SELECT)) pattern. We can extend this to support vector of integers
2884 // similar to the cases handled by binary ops above.
2885 if (ConstantInt
*ConstRHS
= dyn_cast
<ConstantInt
>(Cmp
.getOperand(1)))
2886 if (Instruction
*I
= foldICmpSelectConstant(Cmp
, SI
, ConstRHS
))
2890 if (auto *TI
= dyn_cast
<TruncInst
>(Cmp
.getOperand(0))) {
2891 if (Instruction
*I
= foldICmpTruncConstant(Cmp
, TI
, *C
))
2895 if (auto *II
= dyn_cast
<IntrinsicInst
>(Cmp
.getOperand(0)))
2896 if (Instruction
*I
= foldICmpIntrinsicWithConstant(Cmp
, II
, *C
))
2902 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2903 /// icmp eq/ne BO, C.
2904 Instruction
*InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst
&Cmp
,
2907 // TODO: Some of these folds could work with arbitrary constants, but this
2908 // function is limited to scalar and vector splat constants.
2909 if (!Cmp
.isEquality())
2912 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2913 bool isICMP_NE
= Pred
== ICmpInst::ICMP_NE
;
2914 Constant
*RHS
= cast
<Constant
>(Cmp
.getOperand(1));
2915 Value
*BOp0
= BO
->getOperand(0), *BOp1
= BO
->getOperand(1);
2917 switch (BO
->getOpcode()) {
2918 case Instruction::SRem
:
2919 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2920 if (C
.isNullValue() && BO
->hasOneUse()) {
2922 if (match(BOp1
, m_APInt(BOC
)) && BOC
->sgt(1) && BOC
->isPowerOf2()) {
2923 Value
*NewRem
= Builder
.CreateURem(BOp0
, BOp1
, BO
->getName());
2924 return new ICmpInst(Pred
, NewRem
,
2925 Constant::getNullValue(BO
->getType()));
2929 case Instruction::Add
: {
2930 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
2932 if (match(BOp1
, m_APInt(BOC
))) {
2933 if (BO
->hasOneUse()) {
2934 Constant
*SubC
= ConstantExpr::getSub(RHS
, cast
<Constant
>(BOp1
));
2935 return new ICmpInst(Pred
, BOp0
, SubC
);
2937 } else if (C
.isNullValue()) {
2938 // Replace ((add A, B) != 0) with (A != -B) if A or B is
2939 // efficiently invertible, or if the add has just this one use.
2940 if (Value
*NegVal
= dyn_castNegVal(BOp1
))
2941 return new ICmpInst(Pred
, BOp0
, NegVal
);
2942 if (Value
*NegVal
= dyn_castNegVal(BOp0
))
2943 return new ICmpInst(Pred
, NegVal
, BOp1
);
2944 if (BO
->hasOneUse()) {
2945 Value
*Neg
= Builder
.CreateNeg(BOp1
);
2947 return new ICmpInst(Pred
, BOp0
, Neg
);
2952 case Instruction::Xor
:
2953 if (BO
->hasOneUse()) {
2954 if (Constant
*BOC
= dyn_cast
<Constant
>(BOp1
)) {
2955 // For the xor case, we can xor two constants together, eliminating
2956 // the explicit xor.
2957 return new ICmpInst(Pred
, BOp0
, ConstantExpr::getXor(RHS
, BOC
));
2958 } else if (C
.isNullValue()) {
2959 // Replace ((xor A, B) != 0) with (A != B)
2960 return new ICmpInst(Pred
, BOp0
, BOp1
);
2964 case Instruction::Sub
:
2965 if (BO
->hasOneUse()) {
2967 if (match(BOp0
, m_APInt(BOC
))) {
2968 // Replace ((sub BOC, B) != C) with (B != BOC-C).
2969 Constant
*SubC
= ConstantExpr::getSub(cast
<Constant
>(BOp0
), RHS
);
2970 return new ICmpInst(Pred
, BOp1
, SubC
);
2971 } else if (C
.isNullValue()) {
2972 // Replace ((sub A, B) != 0) with (A != B).
2973 return new ICmpInst(Pred
, BOp0
, BOp1
);
2977 case Instruction::Or
: {
2979 if (match(BOp1
, m_APInt(BOC
)) && BO
->hasOneUse() && RHS
->isAllOnesValue()) {
2980 // Comparing if all bits outside of a constant mask are set?
2981 // Replace (X | C) == -1 with (X & ~C) == ~C.
2982 // This removes the -1 constant.
2983 Constant
*NotBOC
= ConstantExpr::getNot(cast
<Constant
>(BOp1
));
2984 Value
*And
= Builder
.CreateAnd(BOp0
, NotBOC
);
2985 return new ICmpInst(Pred
, And
, NotBOC
);
2989 case Instruction::And
: {
2991 if (match(BOp1
, m_APInt(BOC
))) {
2992 // If we have ((X & C) == C), turn it into ((X & C) != 0).
2993 if (C
== *BOC
&& C
.isPowerOf2())
2994 return new ICmpInst(isICMP_NE
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
,
2995 BO
, Constant::getNullValue(RHS
->getType()));
2999 case Instruction::Mul
:
3000 if (C
.isNullValue() && BO
->hasNoSignedWrap()) {
3002 if (match(BOp1
, m_APInt(BOC
)) && !BOC
->isNullValue()) {
3003 // The trivial case (mul X, 0) is handled by InstSimplify.
3004 // General case : (mul X, C) != 0 iff X != 0
3005 // (mul X, C) == 0 iff X == 0
3006 return new ICmpInst(Pred
, BOp0
, Constant::getNullValue(RHS
->getType()));
3010 case Instruction::UDiv
:
3011 if (C
.isNullValue()) {
3012 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3013 auto NewPred
= isICMP_NE
? ICmpInst::ICMP_ULE
: ICmpInst::ICMP_UGT
;
3014 return new ICmpInst(NewPred
, BOp1
, BOp0
);
3023 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3024 Instruction
*InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst
&Cmp
,
3027 Type
*Ty
= II
->getType();
3028 unsigned BitWidth
= C
.getBitWidth();
3029 switch (II
->getIntrinsicID()) {
3030 case Intrinsic::bswap
:
3032 Cmp
.setOperand(0, II
->getArgOperand(0));
3033 Cmp
.setOperand(1, ConstantInt::get(Ty
, C
.byteSwap()));
3036 case Intrinsic::ctlz
:
3037 case Intrinsic::cttz
: {
3038 // ctz(A) == bitwidth(A) -> A == 0 and likewise for !=
3039 if (C
== BitWidth
) {
3041 Cmp
.setOperand(0, II
->getArgOperand(0));
3042 Cmp
.setOperand(1, ConstantInt::getNullValue(Ty
));
3046 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3047 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3048 // Limit to one use to ensure we don't increase instruction count.
3049 unsigned Num
= C
.getLimitedValue(BitWidth
);
3050 if (Num
!= BitWidth
&& II
->hasOneUse()) {
3051 bool IsTrailing
= II
->getIntrinsicID() == Intrinsic::cttz
;
3052 APInt Mask1
= IsTrailing
? APInt::getLowBitsSet(BitWidth
, Num
+ 1)
3053 : APInt::getHighBitsSet(BitWidth
, Num
+ 1);
3054 APInt Mask2
= IsTrailing
3055 ? APInt::getOneBitSet(BitWidth
, Num
)
3056 : APInt::getOneBitSet(BitWidth
, BitWidth
- Num
- 1);
3057 Cmp
.setOperand(0, Builder
.CreateAnd(II
->getArgOperand(0), Mask1
));
3058 Cmp
.setOperand(1, ConstantInt::get(Ty
, Mask2
));
3065 case Intrinsic::ctpop
: {
3066 // popcount(A) == 0 -> A == 0 and likewise for !=
3067 // popcount(A) == bitwidth(A) -> A == -1 and likewise for !=
3068 bool IsZero
= C
.isNullValue();
3069 if (IsZero
|| C
== BitWidth
) {
3071 Cmp
.setOperand(0, II
->getArgOperand(0));
3073 IsZero
? Constant::getNullValue(Ty
) : Constant::getAllOnesValue(Ty
);
3074 Cmp
.setOperand(1, NewOp
);
3080 case Intrinsic::uadd_sat
: {
3081 // uadd.sat(a, b) == 0 -> (a | b) == 0
3082 if (C
.isNullValue()) {
3083 Value
*Or
= Builder
.CreateOr(II
->getArgOperand(0), II
->getArgOperand(1));
3084 return replaceInstUsesWith(Cmp
, Builder
.CreateICmp(
3085 Cmp
.getPredicate(), Or
, Constant::getNullValue(Ty
)));
3091 case Intrinsic::usub_sat
: {
3092 // usub.sat(a, b) == 0 -> a <= b
3093 if (C
.isNullValue()) {
3094 ICmpInst::Predicate NewPred
= Cmp
.getPredicate() == ICmpInst::ICMP_EQ
3095 ? ICmpInst::ICMP_ULE
: ICmpInst::ICMP_UGT
;
3096 return ICmpInst::Create(Instruction::ICmp
, NewPred
,
3097 II
->getArgOperand(0), II
->getArgOperand(1));
3108 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3109 Instruction
*InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst
&Cmp
,
3112 if (Cmp
.isEquality())
3113 return foldICmpEqIntrinsicWithConstant(Cmp
, II
, C
);
3115 Type
*Ty
= II
->getType();
3116 unsigned BitWidth
= C
.getBitWidth();
3117 switch (II
->getIntrinsicID()) {
3118 case Intrinsic::ctlz
: {
3119 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3120 if (Cmp
.getPredicate() == ICmpInst::ICMP_UGT
&& C
.ult(BitWidth
)) {
3121 unsigned Num
= C
.getLimitedValue();
3122 APInt Limit
= APInt::getOneBitSet(BitWidth
, BitWidth
- Num
- 1);
3123 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_ULT
,
3124 II
->getArgOperand(0), ConstantInt::get(Ty
, Limit
));
3127 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3128 if (Cmp
.getPredicate() == ICmpInst::ICMP_ULT
&&
3129 C
.uge(1) && C
.ule(BitWidth
)) {
3130 unsigned Num
= C
.getLimitedValue();
3131 APInt Limit
= APInt::getLowBitsSet(BitWidth
, BitWidth
- Num
);
3132 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_UGT
,
3133 II
->getArgOperand(0), ConstantInt::get(Ty
, Limit
));
3137 case Intrinsic::cttz
: {
3138 // Limit to one use to ensure we don't increase instruction count.
3139 if (!II
->hasOneUse())
3142 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3143 if (Cmp
.getPredicate() == ICmpInst::ICMP_UGT
&& C
.ult(BitWidth
)) {
3144 APInt Mask
= APInt::getLowBitsSet(BitWidth
, C
.getLimitedValue() + 1);
3145 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_EQ
,
3146 Builder
.CreateAnd(II
->getArgOperand(0), Mask
),
3147 ConstantInt::getNullValue(Ty
));
3150 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3151 if (Cmp
.getPredicate() == ICmpInst::ICMP_ULT
&&
3152 C
.uge(1) && C
.ule(BitWidth
)) {
3153 APInt Mask
= APInt::getLowBitsSet(BitWidth
, C
.getLimitedValue());
3154 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_NE
,
3155 Builder
.CreateAnd(II
->getArgOperand(0), Mask
),
3156 ConstantInt::getNullValue(Ty
));
3167 /// Handle icmp with constant (but not simple integer constant) RHS.
3168 Instruction
*InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst
&I
) {
3169 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
3170 Constant
*RHSC
= dyn_cast
<Constant
>(Op1
);
3171 Instruction
*LHSI
= dyn_cast
<Instruction
>(Op0
);
3175 switch (LHSI
->getOpcode()) {
3176 case Instruction::GetElementPtr
:
3177 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3178 if (RHSC
->isNullValue() &&
3179 cast
<GetElementPtrInst
>(LHSI
)->hasAllZeroIndices())
3180 return new ICmpInst(
3181 I
.getPredicate(), LHSI
->getOperand(0),
3182 Constant::getNullValue(LHSI
->getOperand(0)->getType()));
3184 case Instruction::PHI
:
3185 // Only fold icmp into the PHI if the phi and icmp are in the same
3186 // block. If in the same block, we're encouraging jump threading. If
3187 // not, we are just pessimizing the code by making an i1 phi.
3188 if (LHSI
->getParent() == I
.getParent())
3189 if (Instruction
*NV
= foldOpIntoPhi(I
, cast
<PHINode
>(LHSI
)))
3192 case Instruction::Select
: {
3193 // If either operand of the select is a constant, we can fold the
3194 // comparison into the select arms, which will cause one to be
3195 // constant folded and the select turned into a bitwise or.
3196 Value
*Op1
= nullptr, *Op2
= nullptr;
3197 ConstantInt
*CI
= nullptr;
3198 if (Constant
*C
= dyn_cast
<Constant
>(LHSI
->getOperand(1))) {
3199 Op1
= ConstantExpr::getICmp(I
.getPredicate(), C
, RHSC
);
3200 CI
= dyn_cast
<ConstantInt
>(Op1
);
3202 if (Constant
*C
= dyn_cast
<Constant
>(LHSI
->getOperand(2))) {
3203 Op2
= ConstantExpr::getICmp(I
.getPredicate(), C
, RHSC
);
3204 CI
= dyn_cast
<ConstantInt
>(Op2
);
3207 // We only want to perform this transformation if it will not lead to
3208 // additional code. This is true if either both sides of the select
3209 // fold to a constant (in which case the icmp is replaced with a select
3210 // which will usually simplify) or this is the only user of the
3211 // select (in which case we are trading a select+icmp for a simpler
3212 // select+icmp) or all uses of the select can be replaced based on
3213 // dominance information ("Global cases").
3214 bool Transform
= false;
3217 else if (Op1
|| Op2
) {
3219 if (LHSI
->hasOneUse())
3222 else if (CI
&& !CI
->isZero())
3223 // When Op1 is constant try replacing select with second operand.
3224 // Otherwise Op2 is constant and try replacing select with first
3227 replacedSelectWithOperand(cast
<SelectInst
>(LHSI
), &I
, Op1
? 2 : 1);
3231 Op1
= Builder
.CreateICmp(I
.getPredicate(), LHSI
->getOperand(1), RHSC
,
3234 Op2
= Builder
.CreateICmp(I
.getPredicate(), LHSI
->getOperand(2), RHSC
,
3236 return SelectInst::Create(LHSI
->getOperand(0), Op1
, Op2
);
3240 case Instruction::IntToPtr
:
3241 // icmp pred inttoptr(X), null -> icmp pred X, 0
3242 if (RHSC
->isNullValue() &&
3243 DL
.getIntPtrType(RHSC
->getType()) == LHSI
->getOperand(0)->getType())
3244 return new ICmpInst(
3245 I
.getPredicate(), LHSI
->getOperand(0),
3246 Constant::getNullValue(LHSI
->getOperand(0)->getType()));
3249 case Instruction::Load
:
3250 // Try to optimize things like "A[i] > 4" to index computations.
3251 if (GetElementPtrInst
*GEP
=
3252 dyn_cast
<GetElementPtrInst
>(LHSI
->getOperand(0))) {
3253 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0)))
3254 if (GV
->isConstant() && GV
->hasDefinitiveInitializer() &&
3255 !cast
<LoadInst
>(LHSI
)->isVolatile())
3256 if (Instruction
*Res
= foldCmpLoadFromIndexedGlobal(GEP
, GV
, I
))
3265 /// Some comparisons can be simplified.
3266 /// In this case, we are looking for comparisons that look like
3267 /// a check for a lossy truncation.
3269 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask
3270 /// Where Mask is some pattern that produces all-ones in low bits:
3272 /// ((-1 << y) >> y) <- non-canonical, has extra uses
3274 /// ((1 << y) + (-1)) <- non-canonical, has extra uses
3275 /// The Mask can be a constant, too.
3276 /// For some predicates, the operands are commutative.
3277 /// For others, x can only be on a specific side.
3278 static Value
*foldICmpWithLowBitMaskedVal(ICmpInst
&I
,
3279 InstCombiner::BuilderTy
&Builder
) {
3280 ICmpInst::Predicate SrcPred
;
3282 auto m_VariableMask
= m_CombineOr(
3283 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3284 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3285 m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3286 m_LShr(m_Shl(m_AllOnes(), m_Value(Y
)), m_Deferred(Y
))));
3287 auto m_Mask
= m_CombineOr(m_VariableMask
, m_LowBitMask());
3288 if (!match(&I
, m_c_ICmp(SrcPred
,
3289 m_c_And(m_CombineAnd(m_Mask
, m_Value(M
)), m_Value(X
)),
3293 ICmpInst::Predicate DstPred
;
3295 case ICmpInst::Predicate::ICMP_EQ
:
3296 // x & (-1 >> y) == x -> x u<= (-1 >> y)
3297 DstPred
= ICmpInst::Predicate::ICMP_ULE
;
3299 case ICmpInst::Predicate::ICMP_NE
:
3300 // x & (-1 >> y) != x -> x u> (-1 >> y)
3301 DstPred
= ICmpInst::Predicate::ICMP_UGT
;
3303 case ICmpInst::Predicate::ICMP_UGT
:
3304 // x u> x & (-1 >> y) -> x u> (-1 >> y)
3305 assert(X
== I
.getOperand(0) && "instsimplify took care of commut. variant");
3306 DstPred
= ICmpInst::Predicate::ICMP_UGT
;
3308 case ICmpInst::Predicate::ICMP_UGE
:
3309 // x & (-1 >> y) u>= x -> x u<= (-1 >> y)
3310 assert(X
== I
.getOperand(1) && "instsimplify took care of commut. variant");
3311 DstPred
= ICmpInst::Predicate::ICMP_ULE
;
3313 case ICmpInst::Predicate::ICMP_ULT
:
3314 // x & (-1 >> y) u< x -> x u> (-1 >> y)
3315 assert(X
== I
.getOperand(1) && "instsimplify took care of commut. variant");
3316 DstPred
= ICmpInst::Predicate::ICMP_UGT
;
3318 case ICmpInst::Predicate::ICMP_ULE
:
3319 // x u<= x & (-1 >> y) -> x u<= (-1 >> y)
3320 assert(X
== I
.getOperand(0) && "instsimplify took care of commut. variant");
3321 DstPred
= ICmpInst::Predicate::ICMP_ULE
;
3323 case ICmpInst::Predicate::ICMP_SGT
:
3324 // x s> x & (-1 >> y) -> x s> (-1 >> y)
3325 if (X
!= I
.getOperand(0)) // X must be on LHS of comparison!
3326 return nullptr; // Ignore the other case.
3327 if (!match(M
, m_Constant())) // Can not do this fold with non-constant.
3329 if (!match(M
, m_NonNegative())) // Must not have any -1 vector elements.
3331 DstPred
= ICmpInst::Predicate::ICMP_SGT
;
3333 case ICmpInst::Predicate::ICMP_SGE
:
3334 // x & (-1 >> y) s>= x -> x s<= (-1 >> y)
3335 if (X
!= I
.getOperand(1)) // X must be on RHS of comparison!
3336 return nullptr; // Ignore the other case.
3337 if (!match(M
, m_Constant())) // Can not do this fold with non-constant.
3339 if (!match(M
, m_NonNegative())) // Must not have any -1 vector elements.
3341 DstPred
= ICmpInst::Predicate::ICMP_SLE
;
3343 case ICmpInst::Predicate::ICMP_SLT
:
3344 // x & (-1 >> y) s< x -> x s> (-1 >> y)
3345 if (X
!= I
.getOperand(1)) // X must be on RHS of comparison!
3346 return nullptr; // Ignore the other case.
3347 if (!match(M
, m_Constant())) // Can not do this fold with non-constant.
3349 if (!match(M
, m_NonNegative())) // Must not have any -1 vector elements.
3351 DstPred
= ICmpInst::Predicate::ICMP_SGT
;
3353 case ICmpInst::Predicate::ICMP_SLE
:
3354 // x s<= x & (-1 >> y) -> x s<= (-1 >> y)
3355 if (X
!= I
.getOperand(0)) // X must be on LHS of comparison!
3356 return nullptr; // Ignore the other case.
3357 if (!match(M
, m_Constant())) // Can not do this fold with non-constant.
3359 if (!match(M
, m_NonNegative())) // Must not have any -1 vector elements.
3361 DstPred
= ICmpInst::Predicate::ICMP_SLE
;
3364 llvm_unreachable("All possible folds are handled.");
3367 return Builder
.CreateICmp(DstPred
, X
, M
);
3370 /// Some comparisons can be simplified.
3371 /// In this case, we are looking for comparisons that look like
3372 /// a check for a lossy signed truncation.
3373 /// Folds: (MaskedBits is a constant.)
3374 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3376 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3377 /// Where KeptBits = bitwidth(%x) - MaskedBits
3379 foldICmpWithTruncSignExtendedVal(ICmpInst
&I
,
3380 InstCombiner::BuilderTy
&Builder
) {
3381 ICmpInst::Predicate SrcPred
;
3383 const APInt
*C0
, *C1
; // FIXME: non-splats, potentially with undef.
3384 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3385 if (!match(&I
, m_c_ICmp(SrcPred
,
3386 m_OneUse(m_AShr(m_Shl(m_Value(X
), m_APInt(C0
)),
3391 // Potential handling of non-splats: for each element:
3392 // * if both are undef, replace with constant 0.
3393 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3394 // * if both are not undef, and are different, bailout.
3395 // * else, only one is undef, then pick the non-undef one.
3397 // The shift amount must be equal.
3400 const APInt
&MaskedBits
= *C0
;
3401 assert(MaskedBits
!= 0 && "shift by zero should be folded away already.");
3403 ICmpInst::Predicate DstPred
;
3405 case ICmpInst::Predicate::ICMP_EQ
:
3406 // ((%x << MaskedBits) a>> MaskedBits) == %x
3408 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3409 DstPred
= ICmpInst::Predicate::ICMP_ULT
;
3411 case ICmpInst::Predicate::ICMP_NE
:
3412 // ((%x << MaskedBits) a>> MaskedBits) != %x
3414 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3415 DstPred
= ICmpInst::Predicate::ICMP_UGE
;
3417 // FIXME: are more folds possible?
3422 auto *XType
= X
->getType();
3423 const unsigned XBitWidth
= XType
->getScalarSizeInBits();
3424 const APInt BitWidth
= APInt(XBitWidth
, XBitWidth
);
3425 assert(BitWidth
.ugt(MaskedBits
) && "shifts should leave some bits untouched");
3427 // KeptBits = bitwidth(%x) - MaskedBits
3428 const APInt KeptBits
= BitWidth
- MaskedBits
;
3429 assert(KeptBits
.ugt(0) && KeptBits
.ult(BitWidth
) && "unreachable");
3430 // ICmpCst = (1 << KeptBits)
3431 const APInt ICmpCst
= APInt(XBitWidth
, 1).shl(KeptBits
);
3432 assert(ICmpCst
.isPowerOf2());
3433 // AddCst = (1 << (KeptBits-1))
3434 const APInt AddCst
= ICmpCst
.lshr(1);
3435 assert(AddCst
.ult(ICmpCst
) && AddCst
.isPowerOf2());
3437 // T0 = add %x, AddCst
3438 Value
*T0
= Builder
.CreateAdd(X
, ConstantInt::get(XType
, AddCst
));
3439 // T1 = T0 DstPred ICmpCst
3440 Value
*T1
= Builder
.CreateICmp(DstPred
, T0
, ConstantInt::get(XType
, ICmpCst
));
3446 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3447 // we should move shifts to the same hand of 'and', i.e. rewrite as
3448 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x)
3449 // We are only interested in opposite logical shifts here.
3450 // One of the shifts can be truncated.
3451 // If we can, we want to end up creating 'lshr' shift.
3453 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst
&I
, const SimplifyQuery SQ
,
3454 InstCombiner::BuilderTy
&Builder
) {
3455 if (!I
.isEquality() || !match(I
.getOperand(1), m_Zero()) ||
3456 !I
.getOperand(0)->hasOneUse())
3459 auto m_AnyLogicalShift
= m_LogicalShift(m_Value(), m_Value());
3461 // Look for an 'and' of two logical shifts, one of which may be truncated.
3462 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3463 Instruction
*XShift
, *MaybeTruncation
, *YShift
;
3466 m_c_And(m_CombineAnd(m_AnyLogicalShift
, m_Instruction(XShift
)),
3467 m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3468 m_AnyLogicalShift
, m_Instruction(YShift
))),
3469 m_Instruction(MaybeTruncation
)))))
3472 // We potentially looked past 'trunc', but only when matching YShift,
3473 // therefore YShift must have the widest type.
3474 Instruction
*WidestShift
= YShift
;
3475 // Therefore XShift must have the shallowest type.
3476 // Or they both have identical types if there was no truncation.
3477 Instruction
*NarrowestShift
= XShift
;
3479 Type
*WidestTy
= WidestShift
->getType();
3480 assert(NarrowestShift
->getType() == I
.getOperand(0)->getType() &&
3481 "We did not look past any shifts while matching XShift though.");
3482 bool HadTrunc
= WidestTy
!= I
.getOperand(0)->getType();
3484 // If YShift is a 'lshr', swap the shifts around.
3485 if (match(YShift
, m_LShr(m_Value(), m_Value())))
3486 std::swap(XShift
, YShift
);
3488 // The shifts must be in opposite directions.
3489 auto XShiftOpcode
= XShift
->getOpcode();
3490 if (XShiftOpcode
== YShift
->getOpcode())
3491 return nullptr; // Do not care about same-direction shifts here.
3493 Value
*X
, *XShAmt
, *Y
, *YShAmt
;
3494 match(XShift
, m_BinOp(m_Value(X
), m_ZExtOrSelf(m_Value(XShAmt
))));
3495 match(YShift
, m_BinOp(m_Value(Y
), m_ZExtOrSelf(m_Value(YShAmt
))));
3497 // If one of the values being shifted is a constant, then we will end with
3498 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3499 // however, we will need to ensure that we won't increase instruction count.
3500 if (!isa
<Constant
>(X
) && !isa
<Constant
>(Y
)) {
3501 // At least one of the hands of the 'and' should be one-use shift.
3502 if (!match(I
.getOperand(0),
3503 m_c_And(m_OneUse(m_AnyLogicalShift
), m_Value())))
3506 // Due to the 'trunc', we will need to widen X. For that either the old
3507 // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3508 if (!MaybeTruncation
->hasOneUse() &&
3509 !NarrowestShift
->getOperand(1)->hasOneUse())
3514 // We have two shift amounts from two different shifts. The types of those
3515 // shift amounts may not match. If that's the case let's bailout now.
3516 if (XShAmt
->getType() != YShAmt
->getType())
3519 // Can we fold (XShAmt+YShAmt) ?
3520 auto *NewShAmt
= dyn_cast_or_null
<Constant
>(
3521 SimplifyAddInst(XShAmt
, YShAmt
, /*isNSW=*/false,
3522 /*isNUW=*/false, SQ
.getWithInstruction(&I
)));
3525 NewShAmt
= ConstantExpr::getZExtOrBitCast(NewShAmt
, WidestTy
);
3526 unsigned WidestBitWidth
= WidestTy
->getScalarSizeInBits();
3528 // Is the new shift amount smaller than the bit width?
3529 // FIXME: could also rely on ConstantRange.
3530 if (!match(NewShAmt
,
3531 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT
,
3532 APInt(WidestBitWidth
, WidestBitWidth
))))
3535 // An extra legality check is needed if we had trunc-of-lshr.
3536 if (HadTrunc
&& match(WidestShift
, m_LShr(m_Value(), m_Value()))) {
3537 auto CanFold
= [NewShAmt
, WidestBitWidth
, NarrowestShift
, SQ
,
3539 // It isn't obvious whether it's worth it to analyze non-constants here.
3540 // Also, let's basically give up on non-splat cases, pessimizing vectors.
3541 // If *any* of these preconditions matches we can perform the fold.
3542 Constant
*NewShAmtSplat
= NewShAmt
->getType()->isVectorTy()
3543 ? NewShAmt
->getSplatValue()
3545 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3546 if (NewShAmtSplat
&&
3547 (NewShAmtSplat
->isNullValue() ||
3548 NewShAmtSplat
->getUniqueInteger() == WidestBitWidth
- 1))
3550 // We consider *min* leading zeros so a single outlier
3551 // blocks the transform as opposed to allowing it.
3552 if (auto *C
= dyn_cast
<Constant
>(NarrowestShift
->getOperand(0))) {
3553 KnownBits Known
= computeKnownBits(C
, SQ
.DL
);
3554 unsigned MinLeadZero
= Known
.countMinLeadingZeros();
3555 // If the value being shifted has at most lowest bit set we can fold.
3556 unsigned MaxActiveBits
= Known
.getBitWidth() - MinLeadZero
;
3557 if (MaxActiveBits
<= 1)
3559 // Precondition: NewShAmt u<= countLeadingZeros(C)
3560 if (NewShAmtSplat
&& NewShAmtSplat
->getUniqueInteger().ule(MinLeadZero
))
3563 if (auto *C
= dyn_cast
<Constant
>(WidestShift
->getOperand(0))) {
3564 KnownBits Known
= computeKnownBits(C
, SQ
.DL
);
3565 unsigned MinLeadZero
= Known
.countMinLeadingZeros();
3566 // If the value being shifted has at most lowest bit set we can fold.
3567 unsigned MaxActiveBits
= Known
.getBitWidth() - MinLeadZero
;
3568 if (MaxActiveBits
<= 1)
3570 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3571 if (NewShAmtSplat
) {
3573 (WidestBitWidth
- 1) - NewShAmtSplat
->getUniqueInteger();
3574 if (AdjNewShAmt
.ule(MinLeadZero
))
3578 return false; // Can't tell if it's ok.
3584 // All good, we can do this fold.
3585 X
= Builder
.CreateZExt(X
, WidestTy
);
3586 Y
= Builder
.CreateZExt(Y
, WidestTy
);
3587 // The shift is the same that was for X.
3588 Value
*T0
= XShiftOpcode
== Instruction::BinaryOps::LShr
3589 ? Builder
.CreateLShr(X
, NewShAmt
)
3590 : Builder
.CreateShl(X
, NewShAmt
);
3591 Value
*T1
= Builder
.CreateAnd(T0
, Y
);
3592 return Builder
.CreateICmp(I
.getPredicate(), T1
,
3593 Constant::getNullValue(WidestTy
));
3598 /// ((x * y) u/ x) != y
3600 /// @llvm.umul.with.overflow(x, y) plus extraction of overflow bit
3601 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3602 /// will mean that we are looking for the opposite answer.
3603 Value
*InstCombiner::foldUnsignedMultiplicationOverflowCheck(ICmpInst
&I
) {
3604 ICmpInst::Predicate Pred
;
3608 // Look for: (-1 u/ x) u</u>= y
3609 if (!I
.isEquality() &&
3610 match(&I
, m_c_ICmp(Pred
, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X
))),
3613 // Canonicalize as-if y was on RHS.
3614 if (I
.getOperand(1) != Y
)
3615 Pred
= I
.getSwappedPredicate();
3617 // Are we checking that overflow does not happen, or does happen?
3619 case ICmpInst::Predicate::ICMP_ULT
:
3620 NeedNegation
= false;
3622 case ICmpInst::Predicate::ICMP_UGE
:
3623 NeedNegation
= true;
3626 return nullptr; // Wrong predicate.
3628 } else // Look for: ((x * y) u/ x) !=/== y
3629 if (I
.isEquality() &&
3630 match(&I
, m_c_ICmp(Pred
, m_Value(Y
),
3631 m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y
),
3633 m_Instruction(Mul
)),
3634 m_Deferred(X
)))))) {
3635 NeedNegation
= Pred
== ICmpInst::Predicate::ICMP_EQ
;
3639 BuilderTy::InsertPointGuard
Guard(Builder
);
3640 // If the pattern included (x * y), we'll want to insert new instructions
3641 // right before that original multiplication so that we can replace it.
3642 bool MulHadOtherUses
= Mul
&& !Mul
->hasOneUse();
3643 if (MulHadOtherUses
)
3644 Builder
.SetInsertPoint(Mul
);
3646 Function
*F
= Intrinsic::getDeclaration(
3647 I
.getModule(), Intrinsic::umul_with_overflow
, X
->getType());
3648 CallInst
*Call
= Builder
.CreateCall(F
, {X
, Y
}, "umul");
3650 // If the multiplication was used elsewhere, to ensure that we don't leave
3651 // "duplicate" instructions, replace uses of that original multiplication
3652 // with the multiplication result from the with.overflow intrinsic.
3653 if (MulHadOtherUses
)
3654 replaceInstUsesWith(*Mul
, Builder
.CreateExtractValue(Call
, 0, "umul.val"));
3656 Value
*Res
= Builder
.CreateExtractValue(Call
, 1, "umul.ov");
3657 if (NeedNegation
) // This technically increases instruction count.
3658 Res
= Builder
.CreateNot(Res
, "umul.not.ov");
3663 /// Try to fold icmp (binop), X or icmp X, (binop).
3664 /// TODO: A large part of this logic is duplicated in InstSimplify's
3665 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3667 Instruction
*InstCombiner::foldICmpBinOp(ICmpInst
&I
, const SimplifyQuery
&SQ
) {
3668 const SimplifyQuery Q
= SQ
.getWithInstruction(&I
);
3669 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
3671 // Special logic for binary operators.
3672 BinaryOperator
*BO0
= dyn_cast
<BinaryOperator
>(Op0
);
3673 BinaryOperator
*BO1
= dyn_cast
<BinaryOperator
>(Op1
);
3677 const CmpInst::Predicate Pred
= I
.getPredicate();
3680 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3681 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3682 if (match(Op0
, m_OneUse(m_c_Add(m_Specific(Op1
), m_Value(X
)))) &&
3683 (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_UGE
))
3684 return new ICmpInst(Pred
, Builder
.CreateNot(Op1
), X
);
3685 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3686 if (match(Op1
, m_OneUse(m_c_Add(m_Specific(Op0
), m_Value(X
)))) &&
3687 (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_ULE
))
3688 return new ICmpInst(Pred
, X
, Builder
.CreateNot(Op0
));
3690 bool NoOp0WrapProblem
= false, NoOp1WrapProblem
= false;
3691 if (BO0
&& isa
<OverflowingBinaryOperator
>(BO0
))
3693 ICmpInst::isEquality(Pred
) ||
3694 (CmpInst::isUnsigned(Pred
) && BO0
->hasNoUnsignedWrap()) ||
3695 (CmpInst::isSigned(Pred
) && BO0
->hasNoSignedWrap());
3696 if (BO1
&& isa
<OverflowingBinaryOperator
>(BO1
))
3698 ICmpInst::isEquality(Pred
) ||
3699 (CmpInst::isUnsigned(Pred
) && BO1
->hasNoUnsignedWrap()) ||
3700 (CmpInst::isSigned(Pred
) && BO1
->hasNoSignedWrap());
3702 // Analyze the case when either Op0 or Op1 is an add instruction.
3703 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3704 Value
*A
= nullptr, *B
= nullptr, *C
= nullptr, *D
= nullptr;
3705 if (BO0
&& BO0
->getOpcode() == Instruction::Add
) {
3706 A
= BO0
->getOperand(0);
3707 B
= BO0
->getOperand(1);
3709 if (BO1
&& BO1
->getOpcode() == Instruction::Add
) {
3710 C
= BO1
->getOperand(0);
3711 D
= BO1
->getOperand(1);
3714 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
3715 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
3716 if ((A
== Op1
|| B
== Op1
) && NoOp0WrapProblem
)
3717 return new ICmpInst(Pred
, A
== Op1
? B
: A
,
3718 Constant::getNullValue(Op1
->getType()));
3720 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
3721 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
3722 if ((C
== Op0
|| D
== Op0
) && NoOp1WrapProblem
)
3723 return new ICmpInst(Pred
, Constant::getNullValue(Op0
->getType()),
3726 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
3727 if (A
&& C
&& (A
== C
|| A
== D
|| B
== C
|| B
== D
) && NoOp0WrapProblem
&&
3729 // Determine Y and Z in the form icmp (X+Y), (X+Z).
3732 // C + B == C + D -> B == D
3735 } else if (A
== D
) {
3736 // D + B == C + D -> B == C
3739 } else if (B
== C
) {
3740 // A + C == C + D -> A == D
3745 // A + D == C + D -> A == C
3749 return new ICmpInst(Pred
, Y
, Z
);
3752 // icmp slt (A + -1), Op1 -> icmp sle A, Op1
3753 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_SLT
&&
3754 match(B
, m_AllOnes()))
3755 return new ICmpInst(CmpInst::ICMP_SLE
, A
, Op1
);
3757 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
3758 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_SGE
&&
3759 match(B
, m_AllOnes()))
3760 return new ICmpInst(CmpInst::ICMP_SGT
, A
, Op1
);
3762 // icmp sle (A + 1), Op1 -> icmp slt A, Op1
3763 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_SLE
&& match(B
, m_One()))
3764 return new ICmpInst(CmpInst::ICMP_SLT
, A
, Op1
);
3766 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
3767 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_SGT
&& match(B
, m_One()))
3768 return new ICmpInst(CmpInst::ICMP_SGE
, A
, Op1
);
3770 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
3771 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_SGT
&&
3772 match(D
, m_AllOnes()))
3773 return new ICmpInst(CmpInst::ICMP_SGE
, Op0
, C
);
3775 // icmp sle Op0, (C + -1) -> icmp slt Op0, C
3776 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_SLE
&&
3777 match(D
, m_AllOnes()))
3778 return new ICmpInst(CmpInst::ICMP_SLT
, Op0
, C
);
3780 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
3781 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_SGE
&& match(D
, m_One()))
3782 return new ICmpInst(CmpInst::ICMP_SGT
, Op0
, C
);
3784 // icmp slt Op0, (C + 1) -> icmp sle Op0, C
3785 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_SLT
&& match(D
, m_One()))
3786 return new ICmpInst(CmpInst::ICMP_SLE
, Op0
, C
);
3788 // TODO: The subtraction-related identities shown below also hold, but
3789 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3790 // wouldn't happen even if they were implemented.
3792 // icmp ult (A - 1), Op1 -> icmp ule A, Op1
3793 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
3794 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
3795 // icmp ule Op0, (C - 1) -> icmp ult Op0, C
3797 // icmp ule (A + 1), Op0 -> icmp ult A, Op1
3798 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_ULE
&& match(B
, m_One()))
3799 return new ICmpInst(CmpInst::ICMP_ULT
, A
, Op1
);
3801 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
3802 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_UGT
&& match(B
, m_One()))
3803 return new ICmpInst(CmpInst::ICMP_UGE
, A
, Op1
);
3805 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
3806 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_UGE
&& match(D
, m_One()))
3807 return new ICmpInst(CmpInst::ICMP_UGT
, Op0
, C
);
3809 // icmp ult Op0, (C + 1) -> icmp ule Op0, C
3810 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_ULT
&& match(D
, m_One()))
3811 return new ICmpInst(CmpInst::ICMP_ULE
, Op0
, C
);
3813 // if C1 has greater magnitude than C2:
3814 // icmp (A + C1), (C + C2) -> icmp (A + C3), C
3815 // s.t. C3 = C1 - C2
3817 // if C2 has greater magnitude than C1:
3818 // icmp (A + C1), (C + C2) -> icmp A, (C + C3)
3819 // s.t. C3 = C2 - C1
3820 if (A
&& C
&& NoOp0WrapProblem
&& NoOp1WrapProblem
&&
3821 (BO0
->hasOneUse() || BO1
->hasOneUse()) && !I
.isUnsigned())
3822 if (ConstantInt
*C1
= dyn_cast
<ConstantInt
>(B
))
3823 if (ConstantInt
*C2
= dyn_cast
<ConstantInt
>(D
)) {
3824 const APInt
&AP1
= C1
->getValue();
3825 const APInt
&AP2
= C2
->getValue();
3826 if (AP1
.isNegative() == AP2
.isNegative()) {
3827 APInt AP1Abs
= C1
->getValue().abs();
3828 APInt AP2Abs
= C2
->getValue().abs();
3829 if (AP1Abs
.uge(AP2Abs
)) {
3830 ConstantInt
*C3
= Builder
.getInt(AP1
- AP2
);
3831 Value
*NewAdd
= Builder
.CreateNSWAdd(A
, C3
);
3832 return new ICmpInst(Pred
, NewAdd
, C
);
3834 ConstantInt
*C3
= Builder
.getInt(AP2
- AP1
);
3835 Value
*NewAdd
= Builder
.CreateNSWAdd(C
, C3
);
3836 return new ICmpInst(Pred
, A
, NewAdd
);
3841 // Analyze the case when either Op0 or Op1 is a sub instruction.
3842 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3847 if (BO0
&& BO0
->getOpcode() == Instruction::Sub
) {
3848 A
= BO0
->getOperand(0);
3849 B
= BO0
->getOperand(1);
3851 if (BO1
&& BO1
->getOpcode() == Instruction::Sub
) {
3852 C
= BO1
->getOperand(0);
3853 D
= BO1
->getOperand(1);
3856 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
3857 if (A
== Op1
&& NoOp0WrapProblem
)
3858 return new ICmpInst(Pred
, Constant::getNullValue(Op1
->getType()), B
);
3859 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
3860 if (C
== Op0
&& NoOp1WrapProblem
)
3861 return new ICmpInst(Pred
, D
, Constant::getNullValue(Op0
->getType()));
3863 // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
3864 // (A - B) u>/u<= A --> B u>/u<= A
3865 if (A
== Op1
&& (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_ULE
))
3866 return new ICmpInst(Pred
, B
, A
);
3867 // C u</u>= (C - D) --> C u</u>= D
3868 if (C
== Op0
&& (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_UGE
))
3869 return new ICmpInst(Pred
, C
, D
);
3870 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0
3871 if (A
== Op1
&& (Pred
== ICmpInst::ICMP_UGE
|| Pred
== ICmpInst::ICMP_ULT
) &&
3872 isKnownNonZero(B
, Q
.DL
, /*Depth=*/0, Q
.AC
, Q
.CxtI
, Q
.DT
))
3873 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred
), B
, A
);
3874 // C u<=/u> (C - D) --> C u</u>= D iff B != 0
3875 if (C
== Op0
&& (Pred
== ICmpInst::ICMP_ULE
|| Pred
== ICmpInst::ICMP_UGT
) &&
3876 isKnownNonZero(D
, Q
.DL
, /*Depth=*/0, Q
.AC
, Q
.CxtI
, Q
.DT
))
3877 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred
), C
, D
);
3879 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
3880 if (B
&& D
&& B
== D
&& NoOp0WrapProblem
&& NoOp1WrapProblem
)
3881 return new ICmpInst(Pred
, A
, C
);
3883 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
3884 if (A
&& C
&& A
== C
&& NoOp0WrapProblem
&& NoOp1WrapProblem
)
3885 return new ICmpInst(Pred
, D
, B
);
3887 // icmp (0-X) < cst --> x > -cst
3888 if (NoOp0WrapProblem
&& ICmpInst::isSigned(Pred
)) {
3890 if (match(BO0
, m_Neg(m_Value(X
))))
3891 if (Constant
*RHSC
= dyn_cast
<Constant
>(Op1
))
3892 if (RHSC
->isNotMinSignedValue())
3893 return new ICmpInst(I
.getSwappedPredicate(), X
,
3894 ConstantExpr::getNeg(RHSC
));
3897 BinaryOperator
*SRem
= nullptr;
3898 // icmp (srem X, Y), Y
3899 if (BO0
&& BO0
->getOpcode() == Instruction::SRem
&& Op1
== BO0
->getOperand(1))
3901 // icmp Y, (srem X, Y)
3902 else if (BO1
&& BO1
->getOpcode() == Instruction::SRem
&&
3903 Op0
== BO1
->getOperand(1))
3906 // We don't check hasOneUse to avoid increasing register pressure because
3907 // the value we use is the same value this instruction was already using.
3908 switch (SRem
== BO0
? ICmpInst::getSwappedPredicate(Pred
) : Pred
) {
3911 case ICmpInst::ICMP_EQ
:
3912 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
3913 case ICmpInst::ICMP_NE
:
3914 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
3915 case ICmpInst::ICMP_SGT
:
3916 case ICmpInst::ICMP_SGE
:
3917 return new ICmpInst(ICmpInst::ICMP_SGT
, SRem
->getOperand(1),
3918 Constant::getAllOnesValue(SRem
->getType()));
3919 case ICmpInst::ICMP_SLT
:
3920 case ICmpInst::ICMP_SLE
:
3921 return new ICmpInst(ICmpInst::ICMP_SLT
, SRem
->getOperand(1),
3922 Constant::getNullValue(SRem
->getType()));
3926 if (BO0
&& BO1
&& BO0
->getOpcode() == BO1
->getOpcode() && BO0
->hasOneUse() &&
3927 BO1
->hasOneUse() && BO0
->getOperand(1) == BO1
->getOperand(1)) {
3928 switch (BO0
->getOpcode()) {
3931 case Instruction::Add
:
3932 case Instruction::Sub
:
3933 case Instruction::Xor
: {
3934 if (I
.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
3935 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
3938 if (match(BO0
->getOperand(1), m_APInt(C
))) {
3939 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
3940 if (C
->isSignMask()) {
3941 ICmpInst::Predicate NewPred
=
3942 I
.isSigned() ? I
.getUnsignedPredicate() : I
.getSignedPredicate();
3943 return new ICmpInst(NewPred
, BO0
->getOperand(0), BO1
->getOperand(0));
3946 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
3947 if (BO0
->getOpcode() == Instruction::Xor
&& C
->isMaxSignedValue()) {
3948 ICmpInst::Predicate NewPred
=
3949 I
.isSigned() ? I
.getUnsignedPredicate() : I
.getSignedPredicate();
3950 NewPred
= I
.getSwappedPredicate(NewPred
);
3951 return new ICmpInst(NewPred
, BO0
->getOperand(0), BO1
->getOperand(0));
3956 case Instruction::Mul
: {
3957 if (!I
.isEquality())
3961 if (match(BO0
->getOperand(1), m_APInt(C
)) && !C
->isNullValue() &&
3963 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
3964 // Mask = -1 >> count-trailing-zeros(C).
3965 if (unsigned TZs
= C
->countTrailingZeros()) {
3966 Constant
*Mask
= ConstantInt::get(
3968 APInt::getLowBitsSet(C
->getBitWidth(), C
->getBitWidth() - TZs
));
3969 Value
*And1
= Builder
.CreateAnd(BO0
->getOperand(0), Mask
);
3970 Value
*And2
= Builder
.CreateAnd(BO1
->getOperand(0), Mask
);
3971 return new ICmpInst(Pred
, And1
, And2
);
3973 // If there are no trailing zeros in the multiplier, just eliminate
3974 // the multiplies (no masking is needed):
3975 // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y
3976 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
3980 case Instruction::UDiv
:
3981 case Instruction::LShr
:
3982 if (I
.isSigned() || !BO0
->isExact() || !BO1
->isExact())
3984 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
3986 case Instruction::SDiv
:
3987 if (!I
.isEquality() || !BO0
->isExact() || !BO1
->isExact())
3989 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
3991 case Instruction::AShr
:
3992 if (!BO0
->isExact() || !BO1
->isExact())
3994 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
3996 case Instruction::Shl
: {
3997 bool NUW
= BO0
->hasNoUnsignedWrap() && BO1
->hasNoUnsignedWrap();
3998 bool NSW
= BO0
->hasNoSignedWrap() && BO1
->hasNoSignedWrap();
4001 if (!NSW
&& I
.isSigned())
4003 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
4009 // Transform A & (L - 1) `ult` L --> L != 0
4010 auto LSubOne
= m_Add(m_Specific(Op1
), m_AllOnes());
4011 auto BitwiseAnd
= m_c_And(m_Value(), LSubOne
);
4013 if (match(BO0
, BitwiseAnd
) && Pred
== ICmpInst::ICMP_ULT
) {
4014 auto *Zero
= Constant::getNullValue(BO0
->getType());
4015 return new ICmpInst(ICmpInst::ICMP_NE
, Op1
, Zero
);
4019 if (Value
*V
= foldUnsignedMultiplicationOverflowCheck(I
))
4020 return replaceInstUsesWith(I
, V
);
4022 if (Value
*V
= foldICmpWithLowBitMaskedVal(I
, Builder
))
4023 return replaceInstUsesWith(I
, V
);
4025 if (Value
*V
= foldICmpWithTruncSignExtendedVal(I
, Builder
))
4026 return replaceInstUsesWith(I
, V
);
4028 if (Value
*V
= foldShiftIntoShiftInAnotherHandOfAndInICmp(I
, SQ
, Builder
))
4029 return replaceInstUsesWith(I
, V
);
4034 /// Fold icmp Pred min|max(X, Y), X.
4035 static Instruction
*foldICmpWithMinMax(ICmpInst
&Cmp
) {
4036 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
4037 Value
*Op0
= Cmp
.getOperand(0);
4038 Value
*X
= Cmp
.getOperand(1);
4040 // Canonicalize minimum or maximum operand to LHS of the icmp.
4041 if (match(X
, m_c_SMin(m_Specific(Op0
), m_Value())) ||
4042 match(X
, m_c_SMax(m_Specific(Op0
), m_Value())) ||
4043 match(X
, m_c_UMin(m_Specific(Op0
), m_Value())) ||
4044 match(X
, m_c_UMax(m_Specific(Op0
), m_Value()))) {
4046 Pred
= Cmp
.getSwappedPredicate();
4050 if (match(Op0
, m_c_SMin(m_Specific(X
), m_Value(Y
)))) {
4051 // smin(X, Y) == X --> X s<= Y
4052 // smin(X, Y) s>= X --> X s<= Y
4053 if (Pred
== CmpInst::ICMP_EQ
|| Pred
== CmpInst::ICMP_SGE
)
4054 return new ICmpInst(ICmpInst::ICMP_SLE
, X
, Y
);
4056 // smin(X, Y) != X --> X s> Y
4057 // smin(X, Y) s< X --> X s> Y
4058 if (Pred
== CmpInst::ICMP_NE
|| Pred
== CmpInst::ICMP_SLT
)
4059 return new ICmpInst(ICmpInst::ICMP_SGT
, X
, Y
);
4061 // These cases should be handled in InstSimplify:
4062 // smin(X, Y) s<= X --> true
4063 // smin(X, Y) s> X --> false
4067 if (match(Op0
, m_c_SMax(m_Specific(X
), m_Value(Y
)))) {
4068 // smax(X, Y) == X --> X s>= Y
4069 // smax(X, Y) s<= X --> X s>= Y
4070 if (Pred
== CmpInst::ICMP_EQ
|| Pred
== CmpInst::ICMP_SLE
)
4071 return new ICmpInst(ICmpInst::ICMP_SGE
, X
, Y
);
4073 // smax(X, Y) != X --> X s< Y
4074 // smax(X, Y) s> X --> X s< Y
4075 if (Pred
== CmpInst::ICMP_NE
|| Pred
== CmpInst::ICMP_SGT
)
4076 return new ICmpInst(ICmpInst::ICMP_SLT
, X
, Y
);
4078 // These cases should be handled in InstSimplify:
4079 // smax(X, Y) s>= X --> true
4080 // smax(X, Y) s< X --> false
4084 if (match(Op0
, m_c_UMin(m_Specific(X
), m_Value(Y
)))) {
4085 // umin(X, Y) == X --> X u<= Y
4086 // umin(X, Y) u>= X --> X u<= Y
4087 if (Pred
== CmpInst::ICMP_EQ
|| Pred
== CmpInst::ICMP_UGE
)
4088 return new ICmpInst(ICmpInst::ICMP_ULE
, X
, Y
);
4090 // umin(X, Y) != X --> X u> Y
4091 // umin(X, Y) u< X --> X u> Y
4092 if (Pred
== CmpInst::ICMP_NE
|| Pred
== CmpInst::ICMP_ULT
)
4093 return new ICmpInst(ICmpInst::ICMP_UGT
, X
, Y
);
4095 // These cases should be handled in InstSimplify:
4096 // umin(X, Y) u<= X --> true
4097 // umin(X, Y) u> X --> false
4101 if (match(Op0
, m_c_UMax(m_Specific(X
), m_Value(Y
)))) {
4102 // umax(X, Y) == X --> X u>= Y
4103 // umax(X, Y) u<= X --> X u>= Y
4104 if (Pred
== CmpInst::ICMP_EQ
|| Pred
== CmpInst::ICMP_ULE
)
4105 return new ICmpInst(ICmpInst::ICMP_UGE
, X
, Y
);
4107 // umax(X, Y) != X --> X u< Y
4108 // umax(X, Y) u> X --> X u< Y
4109 if (Pred
== CmpInst::ICMP_NE
|| Pred
== CmpInst::ICMP_UGT
)
4110 return new ICmpInst(ICmpInst::ICMP_ULT
, X
, Y
);
4112 // These cases should be handled in InstSimplify:
4113 // umax(X, Y) u>= X --> true
4114 // umax(X, Y) u< X --> false
4121 Instruction
*InstCombiner::foldICmpEquality(ICmpInst
&I
) {
4122 if (!I
.isEquality())
4125 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
4126 const CmpInst::Predicate Pred
= I
.getPredicate();
4127 Value
*A
, *B
, *C
, *D
;
4128 if (match(Op0
, m_Xor(m_Value(A
), m_Value(B
)))) {
4129 if (A
== Op1
|| B
== Op1
) { // (A^B) == A -> B == 0
4130 Value
*OtherVal
= A
== Op1
? B
: A
;
4131 return new ICmpInst(Pred
, OtherVal
, Constant::getNullValue(A
->getType()));
4134 if (match(Op1
, m_Xor(m_Value(C
), m_Value(D
)))) {
4135 // A^c1 == C^c2 --> A == C^(c1^c2)
4136 ConstantInt
*C1
, *C2
;
4137 if (match(B
, m_ConstantInt(C1
)) && match(D
, m_ConstantInt(C2
)) &&
4139 Constant
*NC
= Builder
.getInt(C1
->getValue() ^ C2
->getValue());
4140 Value
*Xor
= Builder
.CreateXor(C
, NC
);
4141 return new ICmpInst(Pred
, A
, Xor
);
4144 // A^B == A^D -> B == D
4146 return new ICmpInst(Pred
, B
, D
);
4148 return new ICmpInst(Pred
, B
, C
);
4150 return new ICmpInst(Pred
, A
, D
);
4152 return new ICmpInst(Pred
, A
, C
);
4156 if (match(Op1
, m_Xor(m_Value(A
), m_Value(B
))) && (A
== Op0
|| B
== Op0
)) {
4157 // A == (A^B) -> B == 0
4158 Value
*OtherVal
= A
== Op0
? B
: A
;
4159 return new ICmpInst(Pred
, OtherVal
, Constant::getNullValue(A
->getType()));
4162 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4163 if (match(Op0
, m_OneUse(m_And(m_Value(A
), m_Value(B
)))) &&
4164 match(Op1
, m_OneUse(m_And(m_Value(C
), m_Value(D
))))) {
4165 Value
*X
= nullptr, *Y
= nullptr, *Z
= nullptr;
4171 } else if (A
== D
) {
4175 } else if (B
== C
) {
4179 } else if (B
== D
) {
4185 if (X
) { // Build (X^Y) & Z
4186 Op1
= Builder
.CreateXor(X
, Y
);
4187 Op1
= Builder
.CreateAnd(Op1
, Z
);
4188 I
.setOperand(0, Op1
);
4189 I
.setOperand(1, Constant::getNullValue(Op1
->getType()));
4194 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4195 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4197 if ((Op0
->hasOneUse() && match(Op0
, m_ZExt(m_Value(A
))) &&
4198 match(Op1
, m_And(m_Value(B
), m_ConstantInt(Cst1
)))) ||
4199 (Op1
->hasOneUse() && match(Op0
, m_And(m_Value(B
), m_ConstantInt(Cst1
))) &&
4200 match(Op1
, m_ZExt(m_Value(A
))))) {
4201 APInt Pow2
= Cst1
->getValue() + 1;
4202 if (Pow2
.isPowerOf2() && isa
<IntegerType
>(A
->getType()) &&
4203 Pow2
.logBase2() == cast
<IntegerType
>(A
->getType())->getBitWidth())
4204 return new ICmpInst(Pred
, A
, Builder
.CreateTrunc(B
, A
->getType()));
4207 // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4208 // For lshr and ashr pairs.
4209 if ((match(Op0
, m_OneUse(m_LShr(m_Value(A
), m_ConstantInt(Cst1
)))) &&
4210 match(Op1
, m_OneUse(m_LShr(m_Value(B
), m_Specific(Cst1
))))) ||
4211 (match(Op0
, m_OneUse(m_AShr(m_Value(A
), m_ConstantInt(Cst1
)))) &&
4212 match(Op1
, m_OneUse(m_AShr(m_Value(B
), m_Specific(Cst1
)))))) {
4213 unsigned TypeBits
= Cst1
->getBitWidth();
4214 unsigned ShAmt
= (unsigned)Cst1
->getLimitedValue(TypeBits
);
4215 if (ShAmt
< TypeBits
&& ShAmt
!= 0) {
4216 ICmpInst::Predicate NewPred
=
4217 Pred
== ICmpInst::ICMP_NE
? ICmpInst::ICMP_UGE
: ICmpInst::ICMP_ULT
;
4218 Value
*Xor
= Builder
.CreateXor(A
, B
, I
.getName() + ".unshifted");
4219 APInt CmpVal
= APInt::getOneBitSet(TypeBits
, ShAmt
);
4220 return new ICmpInst(NewPred
, Xor
, Builder
.getInt(CmpVal
));
4224 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4225 if (match(Op0
, m_OneUse(m_Shl(m_Value(A
), m_ConstantInt(Cst1
)))) &&
4226 match(Op1
, m_OneUse(m_Shl(m_Value(B
), m_Specific(Cst1
))))) {
4227 unsigned TypeBits
= Cst1
->getBitWidth();
4228 unsigned ShAmt
= (unsigned)Cst1
->getLimitedValue(TypeBits
);
4229 if (ShAmt
< TypeBits
&& ShAmt
!= 0) {
4230 Value
*Xor
= Builder
.CreateXor(A
, B
, I
.getName() + ".unshifted");
4231 APInt AndVal
= APInt::getLowBitsSet(TypeBits
, TypeBits
- ShAmt
);
4232 Value
*And
= Builder
.CreateAnd(Xor
, Builder
.getInt(AndVal
),
4233 I
.getName() + ".mask");
4234 return new ICmpInst(Pred
, And
, Constant::getNullValue(Cst1
->getType()));
4238 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4239 // "icmp (and X, mask), cst"
4241 if (Op0
->hasOneUse() &&
4242 match(Op0
, m_Trunc(m_OneUse(m_LShr(m_Value(A
), m_ConstantInt(ShAmt
))))) &&
4243 match(Op1
, m_ConstantInt(Cst1
)) &&
4244 // Only do this when A has multiple uses. This is most important to do
4245 // when it exposes other optimizations.
4247 unsigned ASize
= cast
<IntegerType
>(A
->getType())->getPrimitiveSizeInBits();
4249 if (ShAmt
< ASize
) {
4251 APInt::getLowBitsSet(ASize
, Op0
->getType()->getPrimitiveSizeInBits());
4254 APInt CmpV
= Cst1
->getValue().zext(ASize
);
4257 Value
*Mask
= Builder
.CreateAnd(A
, Builder
.getInt(MaskV
));
4258 return new ICmpInst(Pred
, Mask
, Builder
.getInt(CmpV
));
4262 // If both operands are byte-swapped or bit-reversed, just compare the
4264 // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
4265 // and handle more intrinsics.
4266 if ((match(Op0
, m_BSwap(m_Value(A
))) && match(Op1
, m_BSwap(m_Value(B
)))) ||
4267 (match(Op0
, m_BitReverse(m_Value(A
))) &&
4268 match(Op1
, m_BitReverse(m_Value(B
)))))
4269 return new ICmpInst(Pred
, A
, B
);
4271 // Canonicalize checking for a power-of-2-or-zero value:
4272 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4273 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4274 if (!match(Op0
, m_OneUse(m_c_And(m_Add(m_Value(A
), m_AllOnes()),
4276 !match(Op1
, m_ZeroInt()))
4279 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4280 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4281 if (match(Op0
, m_OneUse(m_c_And(m_Neg(m_Specific(Op1
)), m_Specific(Op1
)))))
4284 m_OneUse(m_c_And(m_Neg(m_Specific(Op0
)), m_Specific(Op0
)))))
4288 Type
*Ty
= A
->getType();
4289 CallInst
*CtPop
= Builder
.CreateUnaryIntrinsic(Intrinsic::ctpop
, A
);
4290 return Pred
== ICmpInst::ICMP_EQ
4291 ? new ICmpInst(ICmpInst::ICMP_ULT
, CtPop
, ConstantInt::get(Ty
, 2))
4292 : new ICmpInst(ICmpInst::ICMP_UGT
, CtPop
, ConstantInt::get(Ty
, 1));
4298 static Instruction
*foldICmpWithZextOrSext(ICmpInst
&ICmp
,
4299 InstCombiner::BuilderTy
&Builder
) {
4300 assert(isa
<CastInst
>(ICmp
.getOperand(0)) && "Expected cast for operand 0");
4301 auto *CastOp0
= cast
<CastInst
>(ICmp
.getOperand(0));
4303 if (!match(CastOp0
, m_ZExtOrSExt(m_Value(X
))))
4306 bool IsSignedExt
= CastOp0
->getOpcode() == Instruction::SExt
;
4307 bool IsSignedCmp
= ICmp
.isSigned();
4308 if (auto *CastOp1
= dyn_cast
<CastInst
>(ICmp
.getOperand(1))) {
4309 // If the signedness of the two casts doesn't agree (i.e. one is a sext
4310 // and the other is a zext), then we can't handle this.
4311 // TODO: This is too strict. We can handle some predicates (equality?).
4312 if (CastOp0
->getOpcode() != CastOp1
->getOpcode())
4315 // Not an extension from the same type?
4316 Value
*Y
= CastOp1
->getOperand(0);
4317 Type
*XTy
= X
->getType(), *YTy
= Y
->getType();
4319 // One of the casts must have one use because we are creating a new cast.
4320 if (!CastOp0
->hasOneUse() && !CastOp1
->hasOneUse())
4322 // Extend the narrower operand to the type of the wider operand.
4323 if (XTy
->getScalarSizeInBits() < YTy
->getScalarSizeInBits())
4324 X
= Builder
.CreateCast(CastOp0
->getOpcode(), X
, YTy
);
4325 else if (YTy
->getScalarSizeInBits() < XTy
->getScalarSizeInBits())
4326 Y
= Builder
.CreateCast(CastOp0
->getOpcode(), Y
, XTy
);
4331 // (zext X) == (zext Y) --> X == Y
4332 // (sext X) == (sext Y) --> X == Y
4333 if (ICmp
.isEquality())
4334 return new ICmpInst(ICmp
.getPredicate(), X
, Y
);
4336 // A signed comparison of sign extended values simplifies into a
4337 // signed comparison.
4338 if (IsSignedCmp
&& IsSignedExt
)
4339 return new ICmpInst(ICmp
.getPredicate(), X
, Y
);
4341 // The other three cases all fold into an unsigned comparison.
4342 return new ICmpInst(ICmp
.getUnsignedPredicate(), X
, Y
);
4345 // Below here, we are only folding a compare with constant.
4346 auto *C
= dyn_cast
<Constant
>(ICmp
.getOperand(1));
4350 // Compute the constant that would happen if we truncated to SrcTy then
4351 // re-extended to DestTy.
4352 Type
*SrcTy
= CastOp0
->getSrcTy();
4353 Type
*DestTy
= CastOp0
->getDestTy();
4354 Constant
*Res1
= ConstantExpr::getTrunc(C
, SrcTy
);
4355 Constant
*Res2
= ConstantExpr::getCast(CastOp0
->getOpcode(), Res1
, DestTy
);
4357 // If the re-extended constant didn't change...
4359 if (ICmp
.isEquality())
4360 return new ICmpInst(ICmp
.getPredicate(), X
, Res1
);
4362 // A signed comparison of sign extended values simplifies into a
4363 // signed comparison.
4364 if (IsSignedExt
&& IsSignedCmp
)
4365 return new ICmpInst(ICmp
.getPredicate(), X
, Res1
);
4367 // The other three cases all fold into an unsigned comparison.
4368 return new ICmpInst(ICmp
.getUnsignedPredicate(), X
, Res1
);
4371 // The re-extended constant changed, partly changed (in the case of a vector),
4372 // or could not be determined to be equal (in the case of a constant
4373 // expression), so the constant cannot be represented in the shorter type.
4374 // All the cases that fold to true or false will have already been handled
4375 // by SimplifyICmpInst, so only deal with the tricky case.
4376 if (IsSignedCmp
|| !IsSignedExt
|| !isa
<ConstantInt
>(C
))
4379 // Is source op positive?
4380 // icmp ult (sext X), C --> icmp sgt X, -1
4381 if (ICmp
.getPredicate() == ICmpInst::ICMP_ULT
)
4382 return new ICmpInst(CmpInst::ICMP_SGT
, X
, Constant::getAllOnesValue(SrcTy
));
4384 // Is source op negative?
4385 // icmp ugt (sext X), C --> icmp slt X, 0
4386 assert(ICmp
.getPredicate() == ICmpInst::ICMP_UGT
&& "ICmp should be folded!");
4387 return new ICmpInst(CmpInst::ICMP_SLT
, X
, Constant::getNullValue(SrcTy
));
4390 /// Handle icmp (cast x), (cast or constant).
4391 Instruction
*InstCombiner::foldICmpWithCastOp(ICmpInst
&ICmp
) {
4392 auto *CastOp0
= dyn_cast
<CastInst
>(ICmp
.getOperand(0));
4395 if (!isa
<Constant
>(ICmp
.getOperand(1)) && !isa
<CastInst
>(ICmp
.getOperand(1)))
4398 Value
*Op0Src
= CastOp0
->getOperand(0);
4399 Type
*SrcTy
= CastOp0
->getSrcTy();
4400 Type
*DestTy
= CastOp0
->getDestTy();
4402 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4403 // integer type is the same size as the pointer type.
4404 auto CompatibleSizes
= [&](Type
*SrcTy
, Type
*DestTy
) {
4405 if (isa
<VectorType
>(SrcTy
)) {
4406 SrcTy
= cast
<VectorType
>(SrcTy
)->getElementType();
4407 DestTy
= cast
<VectorType
>(DestTy
)->getElementType();
4409 return DL
.getPointerTypeSizeInBits(SrcTy
) == DestTy
->getIntegerBitWidth();
4411 if (CastOp0
->getOpcode() == Instruction::PtrToInt
&&
4412 CompatibleSizes(SrcTy
, DestTy
)) {
4413 Value
*NewOp1
= nullptr;
4414 if (auto *PtrToIntOp1
= dyn_cast
<PtrToIntOperator
>(ICmp
.getOperand(1))) {
4415 Value
*PtrSrc
= PtrToIntOp1
->getOperand(0);
4416 if (PtrSrc
->getType()->getPointerAddressSpace() ==
4417 Op0Src
->getType()->getPointerAddressSpace()) {
4418 NewOp1
= PtrToIntOp1
->getOperand(0);
4419 // If the pointer types don't match, insert a bitcast.
4420 if (Op0Src
->getType() != NewOp1
->getType())
4421 NewOp1
= Builder
.CreateBitCast(NewOp1
, Op0Src
->getType());
4423 } else if (auto *RHSC
= dyn_cast
<Constant
>(ICmp
.getOperand(1))) {
4424 NewOp1
= ConstantExpr::getIntToPtr(RHSC
, SrcTy
);
4428 return new ICmpInst(ICmp
.getPredicate(), Op0Src
, NewOp1
);
4431 return foldICmpWithZextOrSext(ICmp
, Builder
);
4434 static bool isNeutralValue(Instruction::BinaryOps BinaryOp
, Value
*RHS
) {
4437 llvm_unreachable("Unsupported binary op");
4438 case Instruction::Add
:
4439 case Instruction::Sub
:
4440 return match(RHS
, m_Zero());
4441 case Instruction::Mul
:
4442 return match(RHS
, m_One());
4446 OverflowResult
InstCombiner::computeOverflow(
4447 Instruction::BinaryOps BinaryOp
, bool IsSigned
,
4448 Value
*LHS
, Value
*RHS
, Instruction
*CxtI
) const {
4451 llvm_unreachable("Unsupported binary op");
4452 case Instruction::Add
:
4454 return computeOverflowForSignedAdd(LHS
, RHS
, CxtI
);
4456 return computeOverflowForUnsignedAdd(LHS
, RHS
, CxtI
);
4457 case Instruction::Sub
:
4459 return computeOverflowForSignedSub(LHS
, RHS
, CxtI
);
4461 return computeOverflowForUnsignedSub(LHS
, RHS
, CxtI
);
4462 case Instruction::Mul
:
4464 return computeOverflowForSignedMul(LHS
, RHS
, CxtI
);
4466 return computeOverflowForUnsignedMul(LHS
, RHS
, CxtI
);
4470 bool InstCombiner::OptimizeOverflowCheck(
4471 Instruction::BinaryOps BinaryOp
, bool IsSigned
, Value
*LHS
, Value
*RHS
,
4472 Instruction
&OrigI
, Value
*&Result
, Constant
*&Overflow
) {
4473 if (OrigI
.isCommutative() && isa
<Constant
>(LHS
) && !isa
<Constant
>(RHS
))
4474 std::swap(LHS
, RHS
);
4476 // If the overflow check was an add followed by a compare, the insertion point
4477 // may be pointing to the compare. We want to insert the new instructions
4478 // before the add in case there are uses of the add between the add and the
4480 Builder
.SetInsertPoint(&OrigI
);
4482 if (isNeutralValue(BinaryOp
, RHS
)) {
4484 Overflow
= Builder
.getFalse();
4488 switch (computeOverflow(BinaryOp
, IsSigned
, LHS
, RHS
, &OrigI
)) {
4489 case OverflowResult::MayOverflow
:
4491 case OverflowResult::AlwaysOverflowsLow
:
4492 case OverflowResult::AlwaysOverflowsHigh
:
4493 Result
= Builder
.CreateBinOp(BinaryOp
, LHS
, RHS
);
4494 Result
->takeName(&OrigI
);
4495 Overflow
= Builder
.getTrue();
4497 case OverflowResult::NeverOverflows
:
4498 Result
= Builder
.CreateBinOp(BinaryOp
, LHS
, RHS
);
4499 Result
->takeName(&OrigI
);
4500 Overflow
= Builder
.getFalse();
4501 if (auto *Inst
= dyn_cast
<Instruction
>(Result
)) {
4503 Inst
->setHasNoSignedWrap();
4505 Inst
->setHasNoUnsignedWrap();
4510 llvm_unreachable("Unexpected overflow result");
4513 /// Recognize and process idiom involving test for multiplication
4516 /// The caller has matched a pattern of the form:
4517 /// I = cmp u (mul(zext A, zext B), V
4518 /// The function checks if this is a test for overflow and if so replaces
4519 /// multiplication with call to 'mul.with.overflow' intrinsic.
4521 /// \param I Compare instruction.
4522 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of
4523 /// the compare instruction. Must be of integer type.
4524 /// \param OtherVal The other argument of compare instruction.
4525 /// \returns Instruction which must replace the compare instruction, NULL if no
4526 /// replacement required.
4527 static Instruction
*processUMulZExtIdiom(ICmpInst
&I
, Value
*MulVal
,
4528 Value
*OtherVal
, InstCombiner
&IC
) {
4529 // Don't bother doing this transformation for pointers, don't do it for
4531 if (!isa
<IntegerType
>(MulVal
->getType()))
4534 assert(I
.getOperand(0) == MulVal
|| I
.getOperand(1) == MulVal
);
4535 assert(I
.getOperand(0) == OtherVal
|| I
.getOperand(1) == OtherVal
);
4536 auto *MulInstr
= dyn_cast
<Instruction
>(MulVal
);
4539 assert(MulInstr
->getOpcode() == Instruction::Mul
);
4541 auto *LHS
= cast
<ZExtOperator
>(MulInstr
->getOperand(0)),
4542 *RHS
= cast
<ZExtOperator
>(MulInstr
->getOperand(1));
4543 assert(LHS
->getOpcode() == Instruction::ZExt
);
4544 assert(RHS
->getOpcode() == Instruction::ZExt
);
4545 Value
*A
= LHS
->getOperand(0), *B
= RHS
->getOperand(0);
4547 // Calculate type and width of the result produced by mul.with.overflow.
4548 Type
*TyA
= A
->getType(), *TyB
= B
->getType();
4549 unsigned WidthA
= TyA
->getPrimitiveSizeInBits(),
4550 WidthB
= TyB
->getPrimitiveSizeInBits();
4553 if (WidthB
> WidthA
) {
4561 // In order to replace the original mul with a narrower mul.with.overflow,
4562 // all uses must ignore upper bits of the product. The number of used low
4563 // bits must be not greater than the width of mul.with.overflow.
4564 if (MulVal
->hasNUsesOrMore(2))
4565 for (User
*U
: MulVal
->users()) {
4568 if (TruncInst
*TI
= dyn_cast
<TruncInst
>(U
)) {
4569 // Check if truncation ignores bits above MulWidth.
4570 unsigned TruncWidth
= TI
->getType()->getPrimitiveSizeInBits();
4571 if (TruncWidth
> MulWidth
)
4573 } else if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(U
)) {
4574 // Check if AND ignores bits above MulWidth.
4575 if (BO
->getOpcode() != Instruction::And
)
4577 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->getOperand(1))) {
4578 const APInt
&CVal
= CI
->getValue();
4579 if (CVal
.getBitWidth() - CVal
.countLeadingZeros() > MulWidth
)
4582 // In this case we could have the operand of the binary operation
4583 // being defined in another block, and performing the replacement
4584 // could break the dominance relation.
4588 // Other uses prohibit this transformation.
4593 // Recognize patterns
4594 switch (I
.getPredicate()) {
4595 case ICmpInst::ICMP_EQ
:
4596 case ICmpInst::ICMP_NE
:
4597 // Recognize pattern:
4598 // mulval = mul(zext A, zext B)
4599 // cmp eq/neq mulval, zext trunc mulval
4600 if (ZExtInst
*Zext
= dyn_cast
<ZExtInst
>(OtherVal
))
4601 if (Zext
->hasOneUse()) {
4602 Value
*ZextArg
= Zext
->getOperand(0);
4603 if (TruncInst
*Trunc
= dyn_cast
<TruncInst
>(ZextArg
))
4604 if (Trunc
->getType()->getPrimitiveSizeInBits() == MulWidth
)
4608 // Recognize pattern:
4609 // mulval = mul(zext A, zext B)
4610 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4613 if (match(OtherVal
, m_And(m_Value(ValToMask
), m_ConstantInt(CI
)))) {
4614 if (ValToMask
!= MulVal
)
4616 const APInt
&CVal
= CI
->getValue() + 1;
4617 if (CVal
.isPowerOf2()) {
4618 unsigned MaskWidth
= CVal
.logBase2();
4619 if (MaskWidth
== MulWidth
)
4620 break; // Recognized
4625 case ICmpInst::ICMP_UGT
:
4626 // Recognize pattern:
4627 // mulval = mul(zext A, zext B)
4628 // cmp ugt mulval, max
4629 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(OtherVal
)) {
4630 APInt MaxVal
= APInt::getMaxValue(MulWidth
);
4631 MaxVal
= MaxVal
.zext(CI
->getBitWidth());
4632 if (MaxVal
.eq(CI
->getValue()))
4633 break; // Recognized
4637 case ICmpInst::ICMP_UGE
:
4638 // Recognize pattern:
4639 // mulval = mul(zext A, zext B)
4640 // cmp uge mulval, max+1
4641 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(OtherVal
)) {
4642 APInt MaxVal
= APInt::getOneBitSet(CI
->getBitWidth(), MulWidth
);
4643 if (MaxVal
.eq(CI
->getValue()))
4644 break; // Recognized
4648 case ICmpInst::ICMP_ULE
:
4649 // Recognize pattern:
4650 // mulval = mul(zext A, zext B)
4651 // cmp ule mulval, max
4652 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(OtherVal
)) {
4653 APInt MaxVal
= APInt::getMaxValue(MulWidth
);
4654 MaxVal
= MaxVal
.zext(CI
->getBitWidth());
4655 if (MaxVal
.eq(CI
->getValue()))
4656 break; // Recognized
4660 case ICmpInst::ICMP_ULT
:
4661 // Recognize pattern:
4662 // mulval = mul(zext A, zext B)
4663 // cmp ule mulval, max + 1
4664 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(OtherVal
)) {
4665 APInt MaxVal
= APInt::getOneBitSet(CI
->getBitWidth(), MulWidth
);
4666 if (MaxVal
.eq(CI
->getValue()))
4667 break; // Recognized
4675 InstCombiner::BuilderTy
&Builder
= IC
.Builder
;
4676 Builder
.SetInsertPoint(MulInstr
);
4678 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4679 Value
*MulA
= A
, *MulB
= B
;
4680 if (WidthA
< MulWidth
)
4681 MulA
= Builder
.CreateZExt(A
, MulType
);
4682 if (WidthB
< MulWidth
)
4683 MulB
= Builder
.CreateZExt(B
, MulType
);
4684 Function
*F
= Intrinsic::getDeclaration(
4685 I
.getModule(), Intrinsic::umul_with_overflow
, MulType
);
4686 CallInst
*Call
= Builder
.CreateCall(F
, {MulA
, MulB
}, "umul");
4687 IC
.Worklist
.Add(MulInstr
);
4689 // If there are uses of mul result other than the comparison, we know that
4690 // they are truncation or binary AND. Change them to use result of
4691 // mul.with.overflow and adjust properly mask/size.
4692 if (MulVal
->hasNUsesOrMore(2)) {
4693 Value
*Mul
= Builder
.CreateExtractValue(Call
, 0, "umul.value");
4694 for (auto UI
= MulVal
->user_begin(), UE
= MulVal
->user_end(); UI
!= UE
;) {
4696 if (U
== &I
|| U
== OtherVal
)
4698 if (TruncInst
*TI
= dyn_cast
<TruncInst
>(U
)) {
4699 if (TI
->getType()->getPrimitiveSizeInBits() == MulWidth
)
4700 IC
.replaceInstUsesWith(*TI
, Mul
);
4702 TI
->setOperand(0, Mul
);
4703 } else if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(U
)) {
4704 assert(BO
->getOpcode() == Instruction::And
);
4705 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4706 ConstantInt
*CI
= cast
<ConstantInt
>(BO
->getOperand(1));
4707 APInt ShortMask
= CI
->getValue().trunc(MulWidth
);
4708 Value
*ShortAnd
= Builder
.CreateAnd(Mul
, ShortMask
);
4710 cast
<Instruction
>(Builder
.CreateZExt(ShortAnd
, BO
->getType()));
4711 IC
.Worklist
.Add(Zext
);
4712 IC
.replaceInstUsesWith(*BO
, Zext
);
4714 llvm_unreachable("Unexpected Binary operation");
4716 IC
.Worklist
.Add(cast
<Instruction
>(U
));
4719 if (isa
<Instruction
>(OtherVal
))
4720 IC
.Worklist
.Add(cast
<Instruction
>(OtherVal
));
4722 // The original icmp gets replaced with the overflow value, maybe inverted
4723 // depending on predicate.
4724 bool Inverse
= false;
4725 switch (I
.getPredicate()) {
4726 case ICmpInst::ICMP_NE
:
4728 case ICmpInst::ICMP_EQ
:
4731 case ICmpInst::ICMP_UGT
:
4732 case ICmpInst::ICMP_UGE
:
4733 if (I
.getOperand(0) == MulVal
)
4737 case ICmpInst::ICMP_ULT
:
4738 case ICmpInst::ICMP_ULE
:
4739 if (I
.getOperand(1) == MulVal
)
4744 llvm_unreachable("Unexpected predicate");
4747 Value
*Res
= Builder
.CreateExtractValue(Call
, 1);
4748 return BinaryOperator::CreateNot(Res
);
4751 return ExtractValueInst::Create(Call
, 1);
4754 /// When performing a comparison against a constant, it is possible that not all
4755 /// the bits in the LHS are demanded. This helper method computes the mask that
4757 static APInt
getDemandedBitsLHSMask(ICmpInst
&I
, unsigned BitWidth
) {
4759 if (!match(I
.getOperand(1), m_APInt(RHS
)))
4760 return APInt::getAllOnesValue(BitWidth
);
4762 // If this is a normal comparison, it demands all bits. If it is a sign bit
4763 // comparison, it only demands the sign bit.
4765 if (isSignBitCheck(I
.getPredicate(), *RHS
, UnusedBit
))
4766 return APInt::getSignMask(BitWidth
);
4768 switch (I
.getPredicate()) {
4769 // For a UGT comparison, we don't care about any bits that
4770 // correspond to the trailing ones of the comparand. The value of these
4771 // bits doesn't impact the outcome of the comparison, because any value
4772 // greater than the RHS must differ in a bit higher than these due to carry.
4773 case ICmpInst::ICMP_UGT
:
4774 return APInt::getBitsSetFrom(BitWidth
, RHS
->countTrailingOnes());
4776 // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4777 // Any value less than the RHS must differ in a higher bit because of carries.
4778 case ICmpInst::ICMP_ULT
:
4779 return APInt::getBitsSetFrom(BitWidth
, RHS
->countTrailingZeros());
4782 return APInt::getAllOnesValue(BitWidth
);
4786 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4787 /// should be swapped.
4788 /// The decision is based on how many times these two operands are reused
4789 /// as subtract operands and their positions in those instructions.
4790 /// The rationale is that several architectures use the same instruction for
4791 /// both subtract and cmp. Thus, it is better if the order of those operands
4793 /// \return true if Op0 and Op1 should be swapped.
4794 static bool swapMayExposeCSEOpportunities(const Value
*Op0
, const Value
*Op1
) {
4795 // Filter out pointer values as those cannot appear directly in subtract.
4796 // FIXME: we may want to go through inttoptrs or bitcasts.
4797 if (Op0
->getType()->isPointerTy())
4799 // If a subtract already has the same operands as a compare, swapping would be
4800 // bad. If a subtract has the same operands as a compare but in reverse order,
4801 // then swapping is good.
4803 for (const User
*U
: Op0
->users()) {
4804 if (match(U
, m_Sub(m_Specific(Op1
), m_Specific(Op0
))))
4806 else if (match(U
, m_Sub(m_Specific(Op0
), m_Specific(Op1
))))
4809 return GoodToSwap
> 0;
4812 /// Check that one use is in the same block as the definition and all
4813 /// other uses are in blocks dominated by a given block.
4815 /// \param DI Definition
4817 /// \param DB Block that must dominate all uses of \p DI outside
4818 /// the parent block
4819 /// \return true when \p UI is the only use of \p DI in the parent block
4820 /// and all other uses of \p DI are in blocks dominated by \p DB.
4822 bool InstCombiner::dominatesAllUses(const Instruction
*DI
,
4823 const Instruction
*UI
,
4824 const BasicBlock
*DB
) const {
4825 assert(DI
&& UI
&& "Instruction not defined\n");
4826 // Ignore incomplete definitions.
4827 if (!DI
->getParent())
4829 // DI and UI must be in the same block.
4830 if (DI
->getParent() != UI
->getParent())
4832 // Protect from self-referencing blocks.
4833 if (DI
->getParent() == DB
)
4835 for (const User
*U
: DI
->users()) {
4836 auto *Usr
= cast
<Instruction
>(U
);
4837 if (Usr
!= UI
&& !DT
.dominates(DB
, Usr
->getParent()))
4843 /// Return true when the instruction sequence within a block is select-cmp-br.
4844 static bool isChainSelectCmpBranch(const SelectInst
*SI
) {
4845 const BasicBlock
*BB
= SI
->getParent();
4848 auto *BI
= dyn_cast_or_null
<BranchInst
>(BB
->getTerminator());
4849 if (!BI
|| BI
->getNumSuccessors() != 2)
4851 auto *IC
= dyn_cast
<ICmpInst
>(BI
->getCondition());
4852 if (!IC
|| (IC
->getOperand(0) != SI
&& IC
->getOperand(1) != SI
))
4857 /// True when a select result is replaced by one of its operands
4858 /// in select-icmp sequence. This will eventually result in the elimination
4861 /// \param SI Select instruction
4862 /// \param Icmp Compare instruction
4863 /// \param SIOpd Operand that replaces the select
4866 /// - The replacement is global and requires dominator information
4867 /// - The caller is responsible for the actual replacement
4872 /// %4 = select i1 %3, %C* %0, %C* null
4873 /// %5 = icmp eq %C* %4, null
4874 /// br i1 %5, label %9, label %7
4876 /// ; <label>:7 ; preds = %entry
4877 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0
4880 /// can be transformed to
4882 /// %5 = icmp eq %C* %0, null
4883 /// %6 = select i1 %3, i1 %5, i1 true
4884 /// br i1 %6, label %9, label %7
4886 /// ; <label>:7 ; preds = %entry
4887 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0!
4889 /// Similar when the first operand of the select is a constant or/and
4890 /// the compare is for not equal rather than equal.
4892 /// NOTE: The function is only called when the select and compare constants
4893 /// are equal, the optimization can work only for EQ predicates. This is not a
4894 /// major restriction since a NE compare should be 'normalized' to an equal
4895 /// compare, which usually happens in the combiner and test case
4896 /// select-cmp-br.ll checks for it.
4897 bool InstCombiner::replacedSelectWithOperand(SelectInst
*SI
,
4898 const ICmpInst
*Icmp
,
4899 const unsigned SIOpd
) {
4900 assert((SIOpd
== 1 || SIOpd
== 2) && "Invalid select operand!");
4901 if (isChainSelectCmpBranch(SI
) && Icmp
->getPredicate() == ICmpInst::ICMP_EQ
) {
4902 BasicBlock
*Succ
= SI
->getParent()->getTerminator()->getSuccessor(1);
4903 // The check for the single predecessor is not the best that can be
4904 // done. But it protects efficiently against cases like when SI's
4905 // home block has two successors, Succ and Succ1, and Succ1 predecessor
4906 // of Succ. Then SI can't be replaced by SIOpd because the use that gets
4907 // replaced can be reached on either path. So the uniqueness check
4908 // guarantees that the path all uses of SI (outside SI's parent) are on
4909 // is disjoint from all other paths out of SI. But that information
4910 // is more expensive to compute, and the trade-off here is in favor
4911 // of compile-time. It should also be noticed that we check for a single
4912 // predecessor and not only uniqueness. This to handle the situation when
4913 // Succ and Succ1 points to the same basic block.
4914 if (Succ
->getSinglePredecessor() && dominatesAllUses(SI
, Icmp
, Succ
)) {
4916 SI
->replaceUsesOutsideBlock(SI
->getOperand(SIOpd
), SI
->getParent());
4923 /// Try to fold the comparison based on range information we can get by checking
4924 /// whether bits are known to be zero or one in the inputs.
4925 Instruction
*InstCombiner::foldICmpUsingKnownBits(ICmpInst
&I
) {
4926 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
4927 Type
*Ty
= Op0
->getType();
4928 ICmpInst::Predicate Pred
= I
.getPredicate();
4930 // Get scalar or pointer size.
4931 unsigned BitWidth
= Ty
->isIntOrIntVectorTy()
4932 ? Ty
->getScalarSizeInBits()
4933 : DL
.getIndexTypeSizeInBits(Ty
->getScalarType());
4938 KnownBits
Op0Known(BitWidth
);
4939 KnownBits
Op1Known(BitWidth
);
4941 if (SimplifyDemandedBits(&I
, 0,
4942 getDemandedBitsLHSMask(I
, BitWidth
),
4946 if (SimplifyDemandedBits(&I
, 1, APInt::getAllOnesValue(BitWidth
),
4950 // Given the known and unknown bits, compute a range that the LHS could be
4951 // in. Compute the Min, Max and RHS values based on the known bits. For the
4952 // EQ and NE we use unsigned values.
4953 APInt
Op0Min(BitWidth
, 0), Op0Max(BitWidth
, 0);
4954 APInt
Op1Min(BitWidth
, 0), Op1Max(BitWidth
, 0);
4956 computeSignedMinMaxValuesFromKnownBits(Op0Known
, Op0Min
, Op0Max
);
4957 computeSignedMinMaxValuesFromKnownBits(Op1Known
, Op1Min
, Op1Max
);
4959 computeUnsignedMinMaxValuesFromKnownBits(Op0Known
, Op0Min
, Op0Max
);
4960 computeUnsignedMinMaxValuesFromKnownBits(Op1Known
, Op1Min
, Op1Max
);
4963 // If Min and Max are known to be the same, then SimplifyDemandedBits figured
4964 // out that the LHS or RHS is a constant. Constant fold this now, so that
4965 // code below can assume that Min != Max.
4966 if (!isa
<Constant
>(Op0
) && Op0Min
== Op0Max
)
4967 return new ICmpInst(Pred
, ConstantExpr::getIntegerValue(Ty
, Op0Min
), Op1
);
4968 if (!isa
<Constant
>(Op1
) && Op1Min
== Op1Max
)
4969 return new ICmpInst(Pred
, Op0
, ConstantExpr::getIntegerValue(Ty
, Op1Min
));
4971 // Based on the range information we know about the LHS, see if we can
4972 // simplify this comparison. For example, (x&4) < 8 is always true.
4975 llvm_unreachable("Unknown icmp opcode!");
4976 case ICmpInst::ICMP_EQ
:
4977 case ICmpInst::ICMP_NE
: {
4978 if (Op0Max
.ult(Op1Min
) || Op0Min
.ugt(Op1Max
)) {
4979 return Pred
== CmpInst::ICMP_EQ
4980 ? replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()))
4981 : replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
4984 // If all bits are known zero except for one, then we know at most one bit
4985 // is set. If the comparison is against zero, then this is a check to see if
4986 // *that* bit is set.
4987 APInt Op0KnownZeroInverted
= ~Op0Known
.Zero
;
4988 if (Op1Known
.isZero()) {
4989 // If the LHS is an AND with the same constant, look through it.
4990 Value
*LHS
= nullptr;
4992 if (!match(Op0
, m_And(m_Value(LHS
), m_APInt(LHSC
))) ||
4993 *LHSC
!= Op0KnownZeroInverted
)
4997 if (match(LHS
, m_Shl(m_One(), m_Value(X
)))) {
4998 APInt ValToCheck
= Op0KnownZeroInverted
;
4999 Type
*XTy
= X
->getType();
5000 if (ValToCheck
.isPowerOf2()) {
5001 // ((1 << X) & 8) == 0 -> X != 3
5002 // ((1 << X) & 8) != 0 -> X == 3
5003 auto *CmpC
= ConstantInt::get(XTy
, ValToCheck
.countTrailingZeros());
5004 auto NewPred
= ICmpInst::getInversePredicate(Pred
);
5005 return new ICmpInst(NewPred
, X
, CmpC
);
5006 } else if ((++ValToCheck
).isPowerOf2()) {
5007 // ((1 << X) & 7) == 0 -> X >= 3
5008 // ((1 << X) & 7) != 0 -> X < 3
5009 auto *CmpC
= ConstantInt::get(XTy
, ValToCheck
.countTrailingZeros());
5011 Pred
== CmpInst::ICMP_EQ
? CmpInst::ICMP_UGE
: CmpInst::ICMP_ULT
;
5012 return new ICmpInst(NewPred
, X
, CmpC
);
5016 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
5018 if (Op0KnownZeroInverted
.isOneValue() &&
5019 match(LHS
, m_LShr(m_Power2(CI
), m_Value(X
)))) {
5020 // ((8 >>u X) & 1) == 0 -> X != 3
5021 // ((8 >>u X) & 1) != 0 -> X == 3
5022 unsigned CmpVal
= CI
->countTrailingZeros();
5023 auto NewPred
= ICmpInst::getInversePredicate(Pred
);
5024 return new ICmpInst(NewPred
, X
, ConstantInt::get(X
->getType(), CmpVal
));
5029 case ICmpInst::ICMP_ULT
: {
5030 if (Op0Max
.ult(Op1Min
)) // A <u B -> true if max(A) < min(B)
5031 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
5032 if (Op0Min
.uge(Op1Max
)) // A <u B -> false if min(A) >= max(B)
5033 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
5034 if (Op1Min
== Op0Max
) // A <u B -> A != B if max(A) == min(B)
5035 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
5038 if (match(Op1
, m_APInt(CmpC
))) {
5039 // A <u C -> A == C-1 if min(A)+1 == C
5040 if (*CmpC
== Op0Min
+ 1)
5041 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
5042 ConstantInt::get(Op1
->getType(), *CmpC
- 1));
5043 // X <u C --> X == 0, if the number of zero bits in the bottom of X
5044 // exceeds the log2 of C.
5045 if (Op0Known
.countMinTrailingZeros() >= CmpC
->ceilLogBase2())
5046 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
5047 Constant::getNullValue(Op1
->getType()));
5051 case ICmpInst::ICMP_UGT
: {
5052 if (Op0Min
.ugt(Op1Max
)) // A >u B -> true if min(A) > max(B)
5053 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
5054 if (Op0Max
.ule(Op1Min
)) // A >u B -> false if max(A) <= max(B)
5055 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
5056 if (Op1Max
== Op0Min
) // A >u B -> A != B if min(A) == max(B)
5057 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
5060 if (match(Op1
, m_APInt(CmpC
))) {
5061 // A >u C -> A == C+1 if max(a)-1 == C
5062 if (*CmpC
== Op0Max
- 1)
5063 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
5064 ConstantInt::get(Op1
->getType(), *CmpC
+ 1));
5065 // X >u C --> X != 0, if the number of zero bits in the bottom of X
5066 // exceeds the log2 of C.
5067 if (Op0Known
.countMinTrailingZeros() >= CmpC
->getActiveBits())
5068 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
,
5069 Constant::getNullValue(Op1
->getType()));
5073 case ICmpInst::ICMP_SLT
: {
5074 if (Op0Max
.slt(Op1Min
)) // A <s B -> true if max(A) < min(C)
5075 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
5076 if (Op0Min
.sge(Op1Max
)) // A <s B -> false if min(A) >= max(C)
5077 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
5078 if (Op1Min
== Op0Max
) // A <s B -> A != B if max(A) == min(B)
5079 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
5081 if (match(Op1
, m_APInt(CmpC
))) {
5082 if (*CmpC
== Op0Min
+ 1) // A <s C -> A == C-1 if min(A)+1 == C
5083 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
5084 ConstantInt::get(Op1
->getType(), *CmpC
- 1));
5088 case ICmpInst::ICMP_SGT
: {
5089 if (Op0Min
.sgt(Op1Max
)) // A >s B -> true if min(A) > max(B)
5090 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
5091 if (Op0Max
.sle(Op1Min
)) // A >s B -> false if max(A) <= min(B)
5092 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
5093 if (Op1Max
== Op0Min
) // A >s B -> A != B if min(A) == max(B)
5094 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
5096 if (match(Op1
, m_APInt(CmpC
))) {
5097 if (*CmpC
== Op0Max
- 1) // A >s C -> A == C+1 if max(A)-1 == C
5098 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
5099 ConstantInt::get(Op1
->getType(), *CmpC
+ 1));
5103 case ICmpInst::ICMP_SGE
:
5104 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_SGE with ConstantInt not folded!");
5105 if (Op0Min
.sge(Op1Max
)) // A >=s B -> true if min(A) >= max(B)
5106 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
5107 if (Op0Max
.slt(Op1Min
)) // A >=s B -> false if max(A) < min(B)
5108 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
5109 if (Op1Min
== Op0Max
) // A >=s B -> A == B if max(A) == min(B)
5110 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
5112 case ICmpInst::ICMP_SLE
:
5113 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_SLE with ConstantInt not folded!");
5114 if (Op0Max
.sle(Op1Min
)) // A <=s B -> true if max(A) <= min(B)
5115 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
5116 if (Op0Min
.sgt(Op1Max
)) // A <=s B -> false if min(A) > max(B)
5117 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
5118 if (Op1Max
== Op0Min
) // A <=s B -> A == B if min(A) == max(B)
5119 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
5121 case ICmpInst::ICMP_UGE
:
5122 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_UGE with ConstantInt not folded!");
5123 if (Op0Min
.uge(Op1Max
)) // A >=u B -> true if min(A) >= max(B)
5124 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
5125 if (Op0Max
.ult(Op1Min
)) // A >=u B -> false if max(A) < min(B)
5126 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
5127 if (Op1Min
== Op0Max
) // A >=u B -> A == B if max(A) == min(B)
5128 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
5130 case ICmpInst::ICMP_ULE
:
5131 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_ULE with ConstantInt not folded!");
5132 if (Op0Max
.ule(Op1Min
)) // A <=u B -> true if max(A) <= min(B)
5133 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
5134 if (Op0Min
.ugt(Op1Max
)) // A <=u B -> false if min(A) > max(B)
5135 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
5136 if (Op1Max
== Op0Min
) // A <=u B -> A == B if min(A) == max(B)
5137 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
5141 // Turn a signed comparison into an unsigned one if both operands are known to
5142 // have the same sign.
5144 ((Op0Known
.Zero
.isNegative() && Op1Known
.Zero
.isNegative()) ||
5145 (Op0Known
.One
.isNegative() && Op1Known
.One
.isNegative())))
5146 return new ICmpInst(I
.getUnsignedPredicate(), Op0
, Op1
);
5151 llvm::Optional
<std::pair
<CmpInst::Predicate
, Constant
*>>
5152 llvm::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred
,
5154 assert(ICmpInst::isRelational(Pred
) && ICmpInst::isIntPredicate(Pred
) &&
5155 "Only for relational integer predicates.");
5157 Type
*Type
= C
->getType();
5158 bool IsSigned
= ICmpInst::isSigned(Pred
);
5160 CmpInst::Predicate UnsignedPred
= ICmpInst::getUnsignedPredicate(Pred
);
5161 bool WillIncrement
=
5162 UnsignedPred
== ICmpInst::ICMP_ULE
|| UnsignedPred
== ICmpInst::ICMP_UGT
;
5164 // Check if the constant operand can be safely incremented/decremented
5165 // without overflowing/underflowing.
5166 auto ConstantIsOk
= [WillIncrement
, IsSigned
](ConstantInt
*C
) {
5167 return WillIncrement
? !C
->isMaxValue(IsSigned
) : !C
->isMinValue(IsSigned
);
5170 if (auto *CI
= dyn_cast
<ConstantInt
>(C
)) {
5171 // Bail out if the constant can't be safely incremented/decremented.
5172 if (!ConstantIsOk(CI
))
5174 } else if (Type
->isVectorTy()) {
5175 unsigned NumElts
= Type
->getVectorNumElements();
5176 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
5177 Constant
*Elt
= C
->getAggregateElement(i
);
5181 if (isa
<UndefValue
>(Elt
))
5184 // Bail out if we can't determine if this constant is min/max or if we
5185 // know that this constant is min/max.
5186 auto *CI
= dyn_cast
<ConstantInt
>(Elt
);
5187 if (!CI
|| !ConstantIsOk(CI
))
5195 CmpInst::Predicate NewPred
= CmpInst::getFlippedStrictnessPredicate(Pred
);
5197 // Increment or decrement the constant.
5198 Constant
*OneOrNegOne
= ConstantInt::get(Type
, WillIncrement
? 1 : -1, true);
5199 Constant
*NewC
= ConstantExpr::getAdd(C
, OneOrNegOne
);
5201 return std::make_pair(NewPred
, NewC
);
5204 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5205 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5206 /// allows them to be folded in visitICmpInst.
5207 static ICmpInst
*canonicalizeCmpWithConstant(ICmpInst
&I
) {
5208 ICmpInst::Predicate Pred
= I
.getPredicate();
5209 if (ICmpInst::isEquality(Pred
) || !ICmpInst::isIntPredicate(Pred
) ||
5210 isCanonicalPredicate(Pred
))
5213 Value
*Op0
= I
.getOperand(0);
5214 Value
*Op1
= I
.getOperand(1);
5215 auto *Op1C
= dyn_cast
<Constant
>(Op1
);
5219 auto FlippedStrictness
= getFlippedStrictnessPredicateAndConstant(Pred
, Op1C
);
5220 if (!FlippedStrictness
)
5223 return new ICmpInst(FlippedStrictness
->first
, Op0
, FlippedStrictness
->second
);
5226 /// Integer compare with boolean values can always be turned into bitwise ops.
5227 static Instruction
*canonicalizeICmpBool(ICmpInst
&I
,
5228 InstCombiner::BuilderTy
&Builder
) {
5229 Value
*A
= I
.getOperand(0), *B
= I
.getOperand(1);
5230 assert(A
->getType()->isIntOrIntVectorTy(1) && "Bools only");
5232 // A boolean compared to true/false can be simplified to Op0/true/false in
5233 // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5234 // Cases not handled by InstSimplify are always 'not' of Op0.
5235 if (match(B
, m_Zero())) {
5236 switch (I
.getPredicate()) {
5237 case CmpInst::ICMP_EQ
: // A == 0 -> !A
5238 case CmpInst::ICMP_ULE
: // A <=u 0 -> !A
5239 case CmpInst::ICMP_SGE
: // A >=s 0 -> !A
5240 return BinaryOperator::CreateNot(A
);
5242 llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5244 } else if (match(B
, m_One())) {
5245 switch (I
.getPredicate()) {
5246 case CmpInst::ICMP_NE
: // A != 1 -> !A
5247 case CmpInst::ICMP_ULT
: // A <u 1 -> !A
5248 case CmpInst::ICMP_SGT
: // A >s -1 -> !A
5249 return BinaryOperator::CreateNot(A
);
5251 llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5255 switch (I
.getPredicate()) {
5257 llvm_unreachable("Invalid icmp instruction!");
5258 case ICmpInst::ICMP_EQ
:
5259 // icmp eq i1 A, B -> ~(A ^ B)
5260 return BinaryOperator::CreateNot(Builder
.CreateXor(A
, B
));
5262 case ICmpInst::ICMP_NE
:
5263 // icmp ne i1 A, B -> A ^ B
5264 return BinaryOperator::CreateXor(A
, B
);
5266 case ICmpInst::ICMP_UGT
:
5267 // icmp ugt -> icmp ult
5270 case ICmpInst::ICMP_ULT
:
5271 // icmp ult i1 A, B -> ~A & B
5272 return BinaryOperator::CreateAnd(Builder
.CreateNot(A
), B
);
5274 case ICmpInst::ICMP_SGT
:
5275 // icmp sgt -> icmp slt
5278 case ICmpInst::ICMP_SLT
:
5279 // icmp slt i1 A, B -> A & ~B
5280 return BinaryOperator::CreateAnd(Builder
.CreateNot(B
), A
);
5282 case ICmpInst::ICMP_UGE
:
5283 // icmp uge -> icmp ule
5286 case ICmpInst::ICMP_ULE
:
5287 // icmp ule i1 A, B -> ~A | B
5288 return BinaryOperator::CreateOr(Builder
.CreateNot(A
), B
);
5290 case ICmpInst::ICMP_SGE
:
5291 // icmp sge -> icmp sle
5294 case ICmpInst::ICMP_SLE
:
5295 // icmp sle i1 A, B -> A | ~B
5296 return BinaryOperator::CreateOr(Builder
.CreateNot(B
), A
);
5300 // Transform pattern like:
5301 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X
5302 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X
5306 static Instruction
*foldICmpWithHighBitMask(ICmpInst
&Cmp
,
5307 InstCombiner::BuilderTy
&Builder
) {
5308 ICmpInst::Predicate Pred
, NewPred
;
5311 m_c_ICmp(Pred
, m_OneUse(m_Shl(m_One(), m_Value(Y
))), m_Value(X
)))) {
5312 // We want X to be the icmp's second operand, so swap predicate if it isn't.
5313 if (Cmp
.getOperand(0) == X
)
5314 Pred
= Cmp
.getSwappedPredicate();
5317 case ICmpInst::ICMP_ULE
:
5318 NewPred
= ICmpInst::ICMP_NE
;
5320 case ICmpInst::ICMP_UGT
:
5321 NewPred
= ICmpInst::ICMP_EQ
;
5326 } else if (match(&Cmp
, m_c_ICmp(Pred
,
5327 m_OneUse(m_CombineOr(
5328 m_Not(m_Shl(m_AllOnes(), m_Value(Y
))),
5329 m_Add(m_Shl(m_One(), m_Value(Y
)),
5332 // The variant with 'add' is not canonical, (the variant with 'not' is)
5333 // we only get it because it has extra uses, and can't be canonicalized,
5335 // We want X to be the icmp's second operand, so swap predicate if it isn't.
5336 if (Cmp
.getOperand(0) == X
)
5337 Pred
= Cmp
.getSwappedPredicate();
5340 case ICmpInst::ICMP_ULT
:
5341 NewPred
= ICmpInst::ICMP_NE
;
5343 case ICmpInst::ICMP_UGE
:
5344 NewPred
= ICmpInst::ICMP_EQ
;
5352 Value
*NewX
= Builder
.CreateLShr(X
, Y
, X
->getName() + ".highbits");
5353 Constant
*Zero
= Constant::getNullValue(NewX
->getType());
5354 return CmpInst::Create(Instruction::ICmp
, NewPred
, NewX
, Zero
);
5357 static Instruction
*foldVectorCmp(CmpInst
&Cmp
,
5358 InstCombiner::BuilderTy
&Builder
) {
5359 // If both arguments of the cmp are shuffles that use the same mask and
5360 // shuffle within a single vector, move the shuffle after the cmp.
5361 Value
*LHS
= Cmp
.getOperand(0), *RHS
= Cmp
.getOperand(1);
5364 if (match(LHS
, m_ShuffleVector(m_Value(V1
), m_Undef(), m_Constant(M
))) &&
5365 match(RHS
, m_ShuffleVector(m_Value(V2
), m_Undef(), m_Specific(M
))) &&
5366 V1
->getType() == V2
->getType() &&
5367 (LHS
->hasOneUse() || RHS
->hasOneUse())) {
5368 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5369 CmpInst::Predicate P
= Cmp
.getPredicate();
5370 Value
*NewCmp
= isa
<ICmpInst
>(Cmp
) ? Builder
.CreateICmp(P
, V1
, V2
)
5371 : Builder
.CreateFCmp(P
, V1
, V2
);
5372 return new ShuffleVectorInst(NewCmp
, UndefValue::get(NewCmp
->getType()), M
);
5377 Instruction
*InstCombiner::visitICmpInst(ICmpInst
&I
) {
5378 bool Changed
= false;
5379 const SimplifyQuery Q
= SQ
.getWithInstruction(&I
);
5380 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
5381 unsigned Op0Cplxity
= getComplexity(Op0
);
5382 unsigned Op1Cplxity
= getComplexity(Op1
);
5384 /// Orders the operands of the compare so that they are listed from most
5385 /// complex to least complex. This puts constants before unary operators,
5386 /// before binary operators.
5387 if (Op0Cplxity
< Op1Cplxity
||
5388 (Op0Cplxity
== Op1Cplxity
&& swapMayExposeCSEOpportunities(Op0
, Op1
))) {
5390 std::swap(Op0
, Op1
);
5394 if (Value
*V
= SimplifyICmpInst(I
.getPredicate(), Op0
, Op1
, Q
))
5395 return replaceInstUsesWith(I
, V
);
5397 // Comparing -val or val with non-zero is the same as just comparing val
5398 // ie, abs(val) != 0 -> val != 0
5399 if (I
.getPredicate() == ICmpInst::ICMP_NE
&& match(Op1
, m_Zero())) {
5400 Value
*Cond
, *SelectTrue
, *SelectFalse
;
5401 if (match(Op0
, m_Select(m_Value(Cond
), m_Value(SelectTrue
),
5402 m_Value(SelectFalse
)))) {
5403 if (Value
*V
= dyn_castNegVal(SelectTrue
)) {
5404 if (V
== SelectFalse
)
5405 return CmpInst::Create(Instruction::ICmp
, I
.getPredicate(), V
, Op1
);
5407 else if (Value
*V
= dyn_castNegVal(SelectFalse
)) {
5408 if (V
== SelectTrue
)
5409 return CmpInst::Create(Instruction::ICmp
, I
.getPredicate(), V
, Op1
);
5414 if (Op0
->getType()->isIntOrIntVectorTy(1))
5415 if (Instruction
*Res
= canonicalizeICmpBool(I
, Builder
))
5418 if (ICmpInst
*NewICmp
= canonicalizeCmpWithConstant(I
))
5421 if (Instruction
*Res
= foldICmpWithConstant(I
))
5424 if (Instruction
*Res
= foldICmpWithDominatingICmp(I
))
5427 if (Instruction
*Res
= foldICmpBinOp(I
, Q
))
5430 if (Instruction
*Res
= foldICmpUsingKnownBits(I
))
5433 // Test if the ICmpInst instruction is used exclusively by a select as
5434 // part of a minimum or maximum operation. If so, refrain from doing
5435 // any other folding. This helps out other analyses which understand
5436 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5437 // and CodeGen. And in this case, at least one of the comparison
5438 // operands has at least one user besides the compare (the select),
5439 // which would often largely negate the benefit of folding anyway.
5441 // Do the same for the other patterns recognized by matchSelectPattern.
5443 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(I
.user_back())) {
5445 SelectPatternResult SPR
= matchSelectPattern(SI
, A
, B
);
5446 if (SPR
.Flavor
!= SPF_UNKNOWN
)
5450 // Do this after checking for min/max to prevent infinite looping.
5451 if (Instruction
*Res
= foldICmpWithZero(I
))
5454 // FIXME: We only do this after checking for min/max to prevent infinite
5455 // looping caused by a reverse canonicalization of these patterns for min/max.
5456 // FIXME: The organization of folds is a mess. These would naturally go into
5457 // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5458 // down here after the min/max restriction.
5459 ICmpInst::Predicate Pred
= I
.getPredicate();
5461 if (match(Op1
, m_APInt(C
))) {
5462 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set
5463 if (Pred
== ICmpInst::ICMP_UGT
&& C
->isMaxSignedValue()) {
5464 Constant
*Zero
= Constant::getNullValue(Op0
->getType());
5465 return new ICmpInst(ICmpInst::ICMP_SLT
, Op0
, Zero
);
5468 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear
5469 if (Pred
== ICmpInst::ICMP_ULT
&& C
->isMinSignedValue()) {
5470 Constant
*AllOnes
= Constant::getAllOnesValue(Op0
->getType());
5471 return new ICmpInst(ICmpInst::ICMP_SGT
, Op0
, AllOnes
);
5475 if (Instruction
*Res
= foldICmpInstWithConstant(I
))
5478 // Try to match comparison as a sign bit test. Intentionally do this after
5479 // foldICmpInstWithConstant() to potentially let other folds to happen first.
5480 if (Instruction
*New
= foldSignBitTest(I
))
5483 if (Instruction
*Res
= foldICmpInstWithConstantNotInt(I
))
5486 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5487 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(Op0
))
5488 if (Instruction
*NI
= foldGEPICmp(GEP
, Op1
, I
.getPredicate(), I
))
5490 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(Op1
))
5491 if (Instruction
*NI
= foldGEPICmp(GEP
, Op0
,
5492 ICmpInst::getSwappedPredicate(I
.getPredicate()), I
))
5495 // Try to optimize equality comparisons against alloca-based pointers.
5496 if (Op0
->getType()->isPointerTy() && I
.isEquality()) {
5497 assert(Op1
->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
5498 if (auto *Alloca
= dyn_cast
<AllocaInst
>(GetUnderlyingObject(Op0
, DL
)))
5499 if (Instruction
*New
= foldAllocaCmp(I
, Alloca
, Op1
))
5501 if (auto *Alloca
= dyn_cast
<AllocaInst
>(GetUnderlyingObject(Op1
, DL
)))
5502 if (Instruction
*New
= foldAllocaCmp(I
, Alloca
, Op0
))
5506 if (Instruction
*Res
= foldICmpBitCast(I
, Builder
))
5509 if (Instruction
*R
= foldICmpWithCastOp(I
))
5512 if (Instruction
*Res
= foldICmpWithMinMax(I
))
5517 // Transform (A & ~B) == 0 --> (A & B) != 0
5518 // and (A & ~B) != 0 --> (A & B) == 0
5519 // if A is a power of 2.
5520 if (match(Op0
, m_And(m_Value(A
), m_Not(m_Value(B
)))) &&
5521 match(Op1
, m_Zero()) &&
5522 isKnownToBeAPowerOfTwo(A
, false, 0, &I
) && I
.isEquality())
5523 return new ICmpInst(I
.getInversePredicate(), Builder
.CreateAnd(A
, B
),
5526 // ~X < ~Y --> Y < X
5527 // ~X < C --> X > ~C
5528 if (match(Op0
, m_Not(m_Value(A
)))) {
5529 if (match(Op1
, m_Not(m_Value(B
))))
5530 return new ICmpInst(I
.getPredicate(), B
, A
);
5533 if (match(Op1
, m_APInt(C
)))
5534 return new ICmpInst(I
.getSwappedPredicate(), A
,
5535 ConstantInt::get(Op1
->getType(), ~(*C
)));
5538 Instruction
*AddI
= nullptr;
5539 if (match(&I
, m_UAddWithOverflow(m_Value(A
), m_Value(B
),
5540 m_Instruction(AddI
))) &&
5541 isa
<IntegerType
>(A
->getType())) {
5544 if (OptimizeOverflowCheck(Instruction::Add
, /*Signed*/false, A
, B
,
5545 *AddI
, Result
, Overflow
)) {
5546 replaceInstUsesWith(*AddI
, Result
);
5547 return replaceInstUsesWith(I
, Overflow
);
5551 // (zext a) * (zext b) --> llvm.umul.with.overflow.
5552 if (match(Op0
, m_Mul(m_ZExt(m_Value(A
)), m_ZExt(m_Value(B
))))) {
5553 if (Instruction
*R
= processUMulZExtIdiom(I
, Op0
, Op1
, *this))
5556 if (match(Op1
, m_Mul(m_ZExt(m_Value(A
)), m_ZExt(m_Value(B
))))) {
5557 if (Instruction
*R
= processUMulZExtIdiom(I
, Op1
, Op0
, *this))
5562 if (Instruction
*Res
= foldICmpEquality(I
))
5565 // The 'cmpxchg' instruction returns an aggregate containing the old value and
5566 // an i1 which indicates whether or not we successfully did the swap.
5568 // Replace comparisons between the old value and the expected value with the
5569 // indicator that 'cmpxchg' returns.
5571 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to
5572 // spuriously fail. In those cases, the old value may equal the expected
5573 // value but it is possible for the swap to not occur.
5574 if (I
.getPredicate() == ICmpInst::ICMP_EQ
)
5575 if (auto *EVI
= dyn_cast
<ExtractValueInst
>(Op0
))
5576 if (auto *ACXI
= dyn_cast
<AtomicCmpXchgInst
>(EVI
->getAggregateOperand()))
5577 if (EVI
->getIndices()[0] == 0 && ACXI
->getCompareOperand() == Op1
&&
5579 return ExtractValueInst::Create(ACXI
, 1);
5585 if (match(Op0
, m_Add(m_Value(X
), m_APInt(C
))) && Op1
== X
)
5586 return foldICmpAddOpConst(X
, *C
, I
.getPredicate());
5589 if (match(Op1
, m_Add(m_Value(X
), m_APInt(C
))) && Op0
== X
)
5590 return foldICmpAddOpConst(X
, *C
, I
.getSwappedPredicate());
5593 if (Instruction
*Res
= foldICmpWithHighBitMask(I
, Builder
))
5596 if (I
.getType()->isVectorTy())
5597 if (Instruction
*Res
= foldVectorCmp(I
, Builder
))
5600 return Changed
? &I
: nullptr;
5603 /// Fold fcmp ([us]itofp x, cst) if possible.
5604 Instruction
*InstCombiner::foldFCmpIntToFPConst(FCmpInst
&I
, Instruction
*LHSI
,
5606 if (!isa
<ConstantFP
>(RHSC
)) return nullptr;
5607 const APFloat
&RHS
= cast
<ConstantFP
>(RHSC
)->getValueAPF();
5609 // Get the width of the mantissa. We don't want to hack on conversions that
5610 // might lose information from the integer, e.g. "i64 -> float"
5611 int MantissaWidth
= LHSI
->getType()->getFPMantissaWidth();
5612 if (MantissaWidth
== -1) return nullptr; // Unknown.
5614 IntegerType
*IntTy
= cast
<IntegerType
>(LHSI
->getOperand(0)->getType());
5616 bool LHSUnsigned
= isa
<UIToFPInst
>(LHSI
);
5618 if (I
.isEquality()) {
5619 FCmpInst::Predicate P
= I
.getPredicate();
5620 bool IsExact
= false;
5621 APSInt
RHSCvt(IntTy
->getBitWidth(), LHSUnsigned
);
5622 RHS
.convertToInteger(RHSCvt
, APFloat::rmNearestTiesToEven
, &IsExact
);
5624 // If the floating point constant isn't an integer value, we know if we will
5625 // ever compare equal / not equal to it.
5627 // TODO: Can never be -0.0 and other non-representable values
5628 APFloat
RHSRoundInt(RHS
);
5629 RHSRoundInt
.roundToIntegral(APFloat::rmNearestTiesToEven
);
5630 if (RHS
.compare(RHSRoundInt
) != APFloat::cmpEqual
) {
5631 if (P
== FCmpInst::FCMP_OEQ
|| P
== FCmpInst::FCMP_UEQ
)
5632 return replaceInstUsesWith(I
, Builder
.getFalse());
5634 assert(P
== FCmpInst::FCMP_ONE
|| P
== FCmpInst::FCMP_UNE
);
5635 return replaceInstUsesWith(I
, Builder
.getTrue());
5639 // TODO: If the constant is exactly representable, is it always OK to do
5640 // equality compares as integer?
5643 // Check to see that the input is converted from an integer type that is small
5644 // enough that preserves all bits. TODO: check here for "known" sign bits.
5645 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5646 unsigned InputSize
= IntTy
->getScalarSizeInBits();
5648 // Following test does NOT adjust InputSize downwards for signed inputs,
5649 // because the most negative value still requires all the mantissa bits
5650 // to distinguish it from one less than that value.
5651 if ((int)InputSize
> MantissaWidth
) {
5652 // Conversion would lose accuracy. Check if loss can impact comparison.
5653 int Exp
= ilogb(RHS
);
5654 if (Exp
== APFloat::IEK_Inf
) {
5655 int MaxExponent
= ilogb(APFloat::getLargest(RHS
.getSemantics()));
5656 if (MaxExponent
< (int)InputSize
- !LHSUnsigned
)
5657 // Conversion could create infinity.
5660 // Note that if RHS is zero or NaN, then Exp is negative
5661 // and first condition is trivially false.
5662 if (MantissaWidth
<= Exp
&& Exp
<= (int)InputSize
- !LHSUnsigned
)
5663 // Conversion could affect comparison.
5668 // Otherwise, we can potentially simplify the comparison. We know that it
5669 // will always come through as an integer value and we know the constant is
5670 // not a NAN (it would have been previously simplified).
5671 assert(!RHS
.isNaN() && "NaN comparison not already folded!");
5673 ICmpInst::Predicate Pred
;
5674 switch (I
.getPredicate()) {
5675 default: llvm_unreachable("Unexpected predicate!");
5676 case FCmpInst::FCMP_UEQ
:
5677 case FCmpInst::FCMP_OEQ
:
5678 Pred
= ICmpInst::ICMP_EQ
;
5680 case FCmpInst::FCMP_UGT
:
5681 case FCmpInst::FCMP_OGT
:
5682 Pred
= LHSUnsigned
? ICmpInst::ICMP_UGT
: ICmpInst::ICMP_SGT
;
5684 case FCmpInst::FCMP_UGE
:
5685 case FCmpInst::FCMP_OGE
:
5686 Pred
= LHSUnsigned
? ICmpInst::ICMP_UGE
: ICmpInst::ICMP_SGE
;
5688 case FCmpInst::FCMP_ULT
:
5689 case FCmpInst::FCMP_OLT
:
5690 Pred
= LHSUnsigned
? ICmpInst::ICMP_ULT
: ICmpInst::ICMP_SLT
;
5692 case FCmpInst::FCMP_ULE
:
5693 case FCmpInst::FCMP_OLE
:
5694 Pred
= LHSUnsigned
? ICmpInst::ICMP_ULE
: ICmpInst::ICMP_SLE
;
5696 case FCmpInst::FCMP_UNE
:
5697 case FCmpInst::FCMP_ONE
:
5698 Pred
= ICmpInst::ICMP_NE
;
5700 case FCmpInst::FCMP_ORD
:
5701 return replaceInstUsesWith(I
, Builder
.getTrue());
5702 case FCmpInst::FCMP_UNO
:
5703 return replaceInstUsesWith(I
, Builder
.getFalse());
5706 // Now we know that the APFloat is a normal number, zero or inf.
5708 // See if the FP constant is too large for the integer. For example,
5709 // comparing an i8 to 300.0.
5710 unsigned IntWidth
= IntTy
->getScalarSizeInBits();
5713 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
5714 // and large values.
5715 APFloat
SMax(RHS
.getSemantics());
5716 SMax
.convertFromAPInt(APInt::getSignedMaxValue(IntWidth
), true,
5717 APFloat::rmNearestTiesToEven
);
5718 if (SMax
.compare(RHS
) == APFloat::cmpLessThan
) { // smax < 13123.0
5719 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_SLT
||
5720 Pred
== ICmpInst::ICMP_SLE
)
5721 return replaceInstUsesWith(I
, Builder
.getTrue());
5722 return replaceInstUsesWith(I
, Builder
.getFalse());
5725 // If the RHS value is > UnsignedMax, fold the comparison. This handles
5726 // +INF and large values.
5727 APFloat
UMax(RHS
.getSemantics());
5728 UMax
.convertFromAPInt(APInt::getMaxValue(IntWidth
), false,
5729 APFloat::rmNearestTiesToEven
);
5730 if (UMax
.compare(RHS
) == APFloat::cmpLessThan
) { // umax < 13123.0
5731 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_ULT
||
5732 Pred
== ICmpInst::ICMP_ULE
)
5733 return replaceInstUsesWith(I
, Builder
.getTrue());
5734 return replaceInstUsesWith(I
, Builder
.getFalse());
5739 // See if the RHS value is < SignedMin.
5740 APFloat
SMin(RHS
.getSemantics());
5741 SMin
.convertFromAPInt(APInt::getSignedMinValue(IntWidth
), true,
5742 APFloat::rmNearestTiesToEven
);
5743 if (SMin
.compare(RHS
) == APFloat::cmpGreaterThan
) { // smin > 12312.0
5744 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_SGT
||
5745 Pred
== ICmpInst::ICMP_SGE
)
5746 return replaceInstUsesWith(I
, Builder
.getTrue());
5747 return replaceInstUsesWith(I
, Builder
.getFalse());
5750 // See if the RHS value is < UnsignedMin.
5751 APFloat
SMin(RHS
.getSemantics());
5752 SMin
.convertFromAPInt(APInt::getMinValue(IntWidth
), true,
5753 APFloat::rmNearestTiesToEven
);
5754 if (SMin
.compare(RHS
) == APFloat::cmpGreaterThan
) { // umin > 12312.0
5755 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_UGT
||
5756 Pred
== ICmpInst::ICMP_UGE
)
5757 return replaceInstUsesWith(I
, Builder
.getTrue());
5758 return replaceInstUsesWith(I
, Builder
.getFalse());
5762 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5763 // [0, UMAX], but it may still be fractional. See if it is fractional by
5764 // casting the FP value to the integer value and back, checking for equality.
5765 // Don't do this for zero, because -0.0 is not fractional.
5766 Constant
*RHSInt
= LHSUnsigned
5767 ? ConstantExpr::getFPToUI(RHSC
, IntTy
)
5768 : ConstantExpr::getFPToSI(RHSC
, IntTy
);
5769 if (!RHS
.isZero()) {
5770 bool Equal
= LHSUnsigned
5771 ? ConstantExpr::getUIToFP(RHSInt
, RHSC
->getType()) == RHSC
5772 : ConstantExpr::getSIToFP(RHSInt
, RHSC
->getType()) == RHSC
;
5774 // If we had a comparison against a fractional value, we have to adjust
5775 // the compare predicate and sometimes the value. RHSC is rounded towards
5776 // zero at this point.
5778 default: llvm_unreachable("Unexpected integer comparison!");
5779 case ICmpInst::ICMP_NE
: // (float)int != 4.4 --> true
5780 return replaceInstUsesWith(I
, Builder
.getTrue());
5781 case ICmpInst::ICMP_EQ
: // (float)int == 4.4 --> false
5782 return replaceInstUsesWith(I
, Builder
.getFalse());
5783 case ICmpInst::ICMP_ULE
:
5784 // (float)int <= 4.4 --> int <= 4
5785 // (float)int <= -4.4 --> false
5786 if (RHS
.isNegative())
5787 return replaceInstUsesWith(I
, Builder
.getFalse());
5789 case ICmpInst::ICMP_SLE
:
5790 // (float)int <= 4.4 --> int <= 4
5791 // (float)int <= -4.4 --> int < -4
5792 if (RHS
.isNegative())
5793 Pred
= ICmpInst::ICMP_SLT
;
5795 case ICmpInst::ICMP_ULT
:
5796 // (float)int < -4.4 --> false
5797 // (float)int < 4.4 --> int <= 4
5798 if (RHS
.isNegative())
5799 return replaceInstUsesWith(I
, Builder
.getFalse());
5800 Pred
= ICmpInst::ICMP_ULE
;
5802 case ICmpInst::ICMP_SLT
:
5803 // (float)int < -4.4 --> int < -4
5804 // (float)int < 4.4 --> int <= 4
5805 if (!RHS
.isNegative())
5806 Pred
= ICmpInst::ICMP_SLE
;
5808 case ICmpInst::ICMP_UGT
:
5809 // (float)int > 4.4 --> int > 4
5810 // (float)int > -4.4 --> true
5811 if (RHS
.isNegative())
5812 return replaceInstUsesWith(I
, Builder
.getTrue());
5814 case ICmpInst::ICMP_SGT
:
5815 // (float)int > 4.4 --> int > 4
5816 // (float)int > -4.4 --> int >= -4
5817 if (RHS
.isNegative())
5818 Pred
= ICmpInst::ICMP_SGE
;
5820 case ICmpInst::ICMP_UGE
:
5821 // (float)int >= -4.4 --> true
5822 // (float)int >= 4.4 --> int > 4
5823 if (RHS
.isNegative())
5824 return replaceInstUsesWith(I
, Builder
.getTrue());
5825 Pred
= ICmpInst::ICMP_UGT
;
5827 case ICmpInst::ICMP_SGE
:
5828 // (float)int >= -4.4 --> int >= -4
5829 // (float)int >= 4.4 --> int > 4
5830 if (!RHS
.isNegative())
5831 Pred
= ICmpInst::ICMP_SGT
;
5837 // Lower this FP comparison into an appropriate integer version of the
5839 return new ICmpInst(Pred
, LHSI
->getOperand(0), RHSInt
);
5842 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
5843 static Instruction
*foldFCmpReciprocalAndZero(FCmpInst
&I
, Instruction
*LHSI
,
5845 // When C is not 0.0 and infinities are not allowed:
5846 // (C / X) < 0.0 is a sign-bit test of X
5847 // (C / X) < 0.0 --> X < 0.0 (if C is positive)
5848 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
5851 // Multiply (C / X) < 0.0 by X * X / C.
5852 // - X is non zero, if it is the flag 'ninf' is violated.
5853 // - C defines the sign of X * X * C. Thus it also defines whether to swap
5854 // the predicate. C is also non zero by definition.
5856 // Thus X * X / C is non zero and the transformation is valid. [qed]
5858 FCmpInst::Predicate Pred
= I
.getPredicate();
5860 // Check that predicates are valid.
5861 if ((Pred
!= FCmpInst::FCMP_OGT
) && (Pred
!= FCmpInst::FCMP_OLT
) &&
5862 (Pred
!= FCmpInst::FCMP_OGE
) && (Pred
!= FCmpInst::FCMP_OLE
))
5865 // Check that RHS operand is zero.
5866 if (!match(RHSC
, m_AnyZeroFP()))
5869 // Check fastmath flags ('ninf').
5870 if (!LHSI
->hasNoInfs() || !I
.hasNoInfs())
5873 // Check the properties of the dividend. It must not be zero to avoid a
5874 // division by zero (see Proof).
5876 if (!match(LHSI
->getOperand(0), m_APFloat(C
)))
5882 // Get swapped predicate if necessary.
5883 if (C
->isNegative())
5884 Pred
= I
.getSwappedPredicate();
5886 return new FCmpInst(Pred
, LHSI
->getOperand(1), RHSC
, "", &I
);
5889 /// Optimize fabs(X) compared with zero.
5890 static Instruction
*foldFabsWithFcmpZero(FCmpInst
&I
) {
5892 if (!match(I
.getOperand(0), m_Intrinsic
<Intrinsic::fabs
>(m_Value(X
))) ||
5893 !match(I
.getOperand(1), m_PosZeroFP()))
5896 auto replacePredAndOp0
= [](FCmpInst
*I
, FCmpInst::Predicate P
, Value
*X
) {
5898 I
->setOperand(0, X
);
5902 switch (I
.getPredicate()) {
5903 case FCmpInst::FCMP_UGE
:
5904 case FCmpInst::FCMP_OLT
:
5905 // fabs(X) >= 0.0 --> true
5906 // fabs(X) < 0.0 --> false
5907 llvm_unreachable("fcmp should have simplified");
5909 case FCmpInst::FCMP_OGT
:
5910 // fabs(X) > 0.0 --> X != 0.0
5911 return replacePredAndOp0(&I
, FCmpInst::FCMP_ONE
, X
);
5913 case FCmpInst::FCMP_UGT
:
5914 // fabs(X) u> 0.0 --> X u!= 0.0
5915 return replacePredAndOp0(&I
, FCmpInst::FCMP_UNE
, X
);
5917 case FCmpInst::FCMP_OLE
:
5918 // fabs(X) <= 0.0 --> X == 0.0
5919 return replacePredAndOp0(&I
, FCmpInst::FCMP_OEQ
, X
);
5921 case FCmpInst::FCMP_ULE
:
5922 // fabs(X) u<= 0.0 --> X u== 0.0
5923 return replacePredAndOp0(&I
, FCmpInst::FCMP_UEQ
, X
);
5925 case FCmpInst::FCMP_OGE
:
5926 // fabs(X) >= 0.0 --> !isnan(X)
5927 assert(!I
.hasNoNaNs() && "fcmp should have simplified");
5928 return replacePredAndOp0(&I
, FCmpInst::FCMP_ORD
, X
);
5930 case FCmpInst::FCMP_ULT
:
5931 // fabs(X) u< 0.0 --> isnan(X)
5932 assert(!I
.hasNoNaNs() && "fcmp should have simplified");
5933 return replacePredAndOp0(&I
, FCmpInst::FCMP_UNO
, X
);
5935 case FCmpInst::FCMP_OEQ
:
5936 case FCmpInst::FCMP_UEQ
:
5937 case FCmpInst::FCMP_ONE
:
5938 case FCmpInst::FCMP_UNE
:
5939 case FCmpInst::FCMP_ORD
:
5940 case FCmpInst::FCMP_UNO
:
5941 // Look through the fabs() because it doesn't change anything but the sign.
5942 // fabs(X) == 0.0 --> X == 0.0,
5943 // fabs(X) != 0.0 --> X != 0.0
5944 // isnan(fabs(X)) --> isnan(X)
5945 // !isnan(fabs(X) --> !isnan(X)
5946 return replacePredAndOp0(&I
, I
.getPredicate(), X
);
5953 Instruction
*InstCombiner::visitFCmpInst(FCmpInst
&I
) {
5954 bool Changed
= false;
5956 /// Orders the operands of the compare so that they are listed from most
5957 /// complex to least complex. This puts constants before unary operators,
5958 /// before binary operators.
5959 if (getComplexity(I
.getOperand(0)) < getComplexity(I
.getOperand(1))) {
5964 const CmpInst::Predicate Pred
= I
.getPredicate();
5965 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
5966 if (Value
*V
= SimplifyFCmpInst(Pred
, Op0
, Op1
, I
.getFastMathFlags(),
5967 SQ
.getWithInstruction(&I
)))
5968 return replaceInstUsesWith(I
, V
);
5970 // Simplify 'fcmp pred X, X'
5971 Type
*OpType
= Op0
->getType();
5972 assert(OpType
== Op1
->getType() && "fcmp with different-typed operands?");
5976 case FCmpInst::FCMP_UNO
: // True if unordered: isnan(X) | isnan(Y)
5977 case FCmpInst::FCMP_ULT
: // True if unordered or less than
5978 case FCmpInst::FCMP_UGT
: // True if unordered or greater than
5979 case FCmpInst::FCMP_UNE
: // True if unordered or not equal
5980 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5981 I
.setPredicate(FCmpInst::FCMP_UNO
);
5982 I
.setOperand(1, Constant::getNullValue(OpType
));
5985 case FCmpInst::FCMP_ORD
: // True if ordered (no nans)
5986 case FCmpInst::FCMP_OEQ
: // True if ordered and equal
5987 case FCmpInst::FCMP_OGE
: // True if ordered and greater than or equal
5988 case FCmpInst::FCMP_OLE
: // True if ordered and less than or equal
5989 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5990 I
.setPredicate(FCmpInst::FCMP_ORD
);
5991 I
.setOperand(1, Constant::getNullValue(OpType
));
5996 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
5997 // then canonicalize the operand to 0.0.
5998 if (Pred
== CmpInst::FCMP_ORD
|| Pred
== CmpInst::FCMP_UNO
) {
5999 if (!match(Op0
, m_PosZeroFP()) && isKnownNeverNaN(Op0
, &TLI
)) {
6000 I
.setOperand(0, ConstantFP::getNullValue(OpType
));
6003 if (!match(Op1
, m_PosZeroFP()) && isKnownNeverNaN(Op1
, &TLI
)) {
6004 I
.setOperand(1, ConstantFP::getNullValue(OpType
));
6009 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6011 if (match(Op0
, m_FNeg(m_Value(X
))) && match(Op1
, m_FNeg(m_Value(Y
))))
6012 return new FCmpInst(I
.getSwappedPredicate(), X
, Y
, "", &I
);
6014 // Test if the FCmpInst instruction is used exclusively by a select as
6015 // part of a minimum or maximum operation. If so, refrain from doing
6016 // any other folding. This helps out other analyses which understand
6017 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6018 // and CodeGen. And in this case, at least one of the comparison
6019 // operands has at least one user besides the compare (the select),
6020 // which would often largely negate the benefit of folding anyway.
6022 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(I
.user_back())) {
6024 SelectPatternResult SPR
= matchSelectPattern(SI
, A
, B
);
6025 if (SPR
.Flavor
!= SPF_UNKNOWN
)
6029 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6030 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6031 if (match(Op1
, m_AnyZeroFP()) && !match(Op1
, m_PosZeroFP())) {
6032 I
.setOperand(1, ConstantFP::getNullValue(OpType
));
6036 // Handle fcmp with instruction LHS and constant RHS.
6039 if (match(Op0
, m_Instruction(LHSI
)) && match(Op1
, m_Constant(RHSC
))) {
6040 switch (LHSI
->getOpcode()) {
6041 case Instruction::PHI
:
6042 // Only fold fcmp into the PHI if the phi and fcmp are in the same
6043 // block. If in the same block, we're encouraging jump threading. If
6044 // not, we are just pessimizing the code by making an i1 phi.
6045 if (LHSI
->getParent() == I
.getParent())
6046 if (Instruction
*NV
= foldOpIntoPhi(I
, cast
<PHINode
>(LHSI
)))
6049 case Instruction::SIToFP
:
6050 case Instruction::UIToFP
:
6051 if (Instruction
*NV
= foldFCmpIntToFPConst(I
, LHSI
, RHSC
))
6054 case Instruction::FDiv
:
6055 if (Instruction
*NV
= foldFCmpReciprocalAndZero(I
, LHSI
, RHSC
))
6058 case Instruction::Load
:
6059 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(LHSI
->getOperand(0)))
6060 if (auto *GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0)))
6061 if (GV
->isConstant() && GV
->hasDefinitiveInitializer() &&
6062 !cast
<LoadInst
>(LHSI
)->isVolatile())
6063 if (Instruction
*Res
= foldCmpLoadFromIndexedGlobal(GEP
, GV
, I
))
6069 if (Instruction
*R
= foldFabsWithFcmpZero(I
))
6072 if (match(Op0
, m_FNeg(m_Value(X
)))) {
6073 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6075 if (match(Op1
, m_Constant(C
))) {
6076 Constant
*NegC
= ConstantExpr::getFNeg(C
);
6077 return new FCmpInst(I
.getSwappedPredicate(), X
, NegC
, "", &I
);
6081 if (match(Op0
, m_FPExt(m_Value(X
)))) {
6082 // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6083 if (match(Op1
, m_FPExt(m_Value(Y
))) && X
->getType() == Y
->getType())
6084 return new FCmpInst(Pred
, X
, Y
, "", &I
);
6086 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6088 if (match(Op1
, m_APFloat(C
))) {
6089 const fltSemantics
&FPSem
=
6090 X
->getType()->getScalarType()->getFltSemantics();
6092 APFloat TruncC
= *C
;
6093 TruncC
.convert(FPSem
, APFloat::rmNearestTiesToEven
, &Lossy
);
6095 // Avoid lossy conversions and denormals.
6096 // Zero is a special case that's OK to convert.
6097 APFloat Fabs
= TruncC
;
6100 ((Fabs
.compare(APFloat::getSmallestNormalized(FPSem
)) !=
6101 APFloat::cmpLessThan
) || Fabs
.isZero())) {
6102 Constant
*NewC
= ConstantFP::get(X
->getType(), TruncC
);
6103 return new FCmpInst(Pred
, X
, NewC
, "", &I
);
6108 if (I
.getType()->isVectorTy())
6109 if (Instruction
*Res
= foldVectorCmp(I
, Builder
))
6112 return Changed
? &I
: nullptr;