1 //===- InstCombineShifts.cpp ----------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the visitShl, visitLShr, and visitAShr functions.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/ConstantFolding.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/PatternMatch.h"
19 using namespace PatternMatch
;
21 #define DEBUG_TYPE "instcombine"
24 // (x shiftopcode Q) shiftopcode K
25 // we should rewrite it as
26 // x shiftopcode (Q+K) iff (Q+K) u< bitwidth(x)
27 // This is valid for any shift, but they must be identical.
29 // AnalyzeForSignBitExtraction indicates that we will only analyze whether this
30 // pattern has any 2 right-shifts that sum to 1 less than original bit width.
31 Value
*InstCombiner::reassociateShiftAmtsOfTwoSameDirectionShifts(
32 BinaryOperator
*Sh0
, const SimplifyQuery
&SQ
,
33 bool AnalyzeForSignBitExtraction
) {
34 // Look for a shift of some instruction, ignore zext of shift amount if any.
38 m_Shift(m_Instruction(Sh0Op0
), m_ZExtOrSelf(m_Value(ShAmt0
)))))
41 // If there is a truncation between the two shifts, we must make note of it
42 // and look through it. The truncation imposes additional constraints on the
45 Value
*Trunc
= nullptr;
47 m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1
)), m_Value(Trunc
)),
50 // Inner shift: (x shiftopcode ShAmt1)
51 // Like with other shift, ignore zext of shift amount if any.
53 if (!match(Sh1
, m_Shift(m_Value(X
), m_ZExtOrSelf(m_Value(ShAmt1
)))))
56 // We have two shift amounts from two different shifts. The types of those
57 // shift amounts may not match. If that's the case let's bailout now..
58 if (ShAmt0
->getType() != ShAmt1
->getType())
61 // We are only looking for signbit extraction if we have two right shifts.
62 bool HadTwoRightShifts
= match(Sh0
, m_Shr(m_Value(), m_Value())) &&
63 match(Sh1
, m_Shr(m_Value(), m_Value()));
64 // ... and if it's not two right-shifts, we know the answer already.
65 if (AnalyzeForSignBitExtraction
&& !HadTwoRightShifts
)
68 // The shift opcodes must be identical, unless we are just checking whether
69 // this pattern can be interpreted as a sign-bit-extraction.
70 Instruction::BinaryOps ShiftOpcode
= Sh0
->getOpcode();
71 bool IdenticalShOpcodes
= Sh0
->getOpcode() == Sh1
->getOpcode();
72 if (!IdenticalShOpcodes
&& !AnalyzeForSignBitExtraction
)
75 // If we saw truncation, we'll need to produce extra instruction,
76 // and for that one of the operands of the shift must be one-use,
77 // unless of course we don't actually plan to produce any instructions here.
78 if (Trunc
&& !AnalyzeForSignBitExtraction
&&
79 !match(Sh0
, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
82 // Can we fold (ShAmt0+ShAmt1) ?
83 auto *NewShAmt
= dyn_cast_or_null
<Constant
>(
84 SimplifyAddInst(ShAmt0
, ShAmt1
, /*isNSW=*/false, /*isNUW=*/false,
85 SQ
.getWithInstruction(Sh0
)));
87 return nullptr; // Did not simplify.
88 unsigned NewShAmtBitWidth
= NewShAmt
->getType()->getScalarSizeInBits();
89 unsigned XBitWidth
= X
->getType()->getScalarSizeInBits();
90 // Is the new shift amount smaller than the bit width of inner/new shift?
91 if (!match(NewShAmt
, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT
,
92 APInt(NewShAmtBitWidth
, XBitWidth
))))
93 return nullptr; // FIXME: could perform constant-folding.
95 // If there was a truncation, and we have a right-shift, we can only fold if
96 // we are left with the original sign bit. Likewise, if we were just checking
97 // that this is a sighbit extraction, this is the place to check it.
98 // FIXME: zero shift amount is also legal here, but we can't *easily* check
99 // more than one predicate so it's not really worth it.
100 if (HadTwoRightShifts
&& (Trunc
|| AnalyzeForSignBitExtraction
)) {
101 // If it's not a sign bit extraction, then we're done.
103 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ
,
104 APInt(NewShAmtBitWidth
, XBitWidth
- 1))))
106 // If it is, and that was the question, return the base value.
107 if (AnalyzeForSignBitExtraction
)
111 assert(IdenticalShOpcodes
&& "Should not get here with different shifts.");
113 // All good, we can do this fold.
114 NewShAmt
= ConstantExpr::getZExtOrBitCast(NewShAmt
, X
->getType());
116 BinaryOperator
*NewShift
= BinaryOperator::Create(ShiftOpcode
, X
, NewShAmt
);
118 // The flags can only be propagated if there wasn't a trunc.
120 // If the pattern did not involve trunc, and both of the original shifts
121 // had the same flag set, preserve the flag.
122 if (ShiftOpcode
== Instruction::BinaryOps::Shl
) {
123 NewShift
->setHasNoUnsignedWrap(Sh0
->hasNoUnsignedWrap() &&
124 Sh1
->hasNoUnsignedWrap());
125 NewShift
->setHasNoSignedWrap(Sh0
->hasNoSignedWrap() &&
126 Sh1
->hasNoSignedWrap());
128 NewShift
->setIsExact(Sh0
->isExact() && Sh1
->isExact());
132 Instruction
*Ret
= NewShift
;
134 Builder
.Insert(NewShift
);
135 Ret
= CastInst::Create(Instruction::Trunc
, NewShift
, Sh0
->getType());
141 // Try to replace `undef` constants in C with Replacement.
142 static Constant
*replaceUndefsWith(Constant
*C
, Constant
*Replacement
) {
143 if (C
&& match(C
, m_Undef()))
146 if (auto *CV
= dyn_cast
<ConstantVector
>(C
)) {
147 llvm::SmallVector
<Constant
*, 32> NewOps(CV
->getNumOperands());
148 for (unsigned i
= 0, NumElts
= NewOps
.size(); i
!= NumElts
; ++i
) {
149 Constant
*EltC
= CV
->getOperand(i
);
150 NewOps
[i
] = EltC
&& match(EltC
, m_Undef()) ? Replacement
: EltC
;
152 return ConstantVector::get(NewOps
);
155 // Don't know how to deal with this constant.
159 // If we have some pattern that leaves only some low bits set, and then performs
160 // left-shift of those bits, if none of the bits that are left after the final
161 // shift are modified by the mask, we can omit the mask.
163 // There are many variants to this pattern:
164 // a) (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt
165 // b) (x & (~(-1 << MaskShAmt))) << ShiftShAmt
166 // c) (x & (-1 >> MaskShAmt)) << ShiftShAmt
167 // d) (x & ((-1 << MaskShAmt) >> MaskShAmt)) << ShiftShAmt
168 // e) ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt
169 // f) ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt
170 // All these patterns can be simplified to just:
173 // a,b) (MaskShAmt+ShiftShAmt) u>= bitwidth(x)
174 // c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt)
176 dropRedundantMaskingOfLeftShiftInput(BinaryOperator
*OuterShift
,
177 const SimplifyQuery
&Q
,
178 InstCombiner::BuilderTy
&Builder
) {
179 assert(OuterShift
->getOpcode() == Instruction::BinaryOps::Shl
&&
180 "The input must be 'shl'!");
182 Value
*Masked
, *ShiftShAmt
;
183 match(OuterShift
, m_Shift(m_Value(Masked
), m_Value(ShiftShAmt
)));
185 Type
*NarrowestTy
= OuterShift
->getType();
186 Type
*WidestTy
= Masked
->getType();
187 // The mask must be computed in a type twice as wide to ensure
188 // that no bits are lost if the sum-of-shifts is wider than the base type.
189 Type
*ExtendedTy
= WidestTy
->getExtendedType();
193 // ((1 << MaskShAmt) - 1)
194 auto MaskA
= m_Add(m_Shl(m_One(), m_Value(MaskShAmt
)), m_AllOnes());
195 // (~(-1 << maskNbits))
196 auto MaskB
= m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt
)), m_AllOnes());
198 auto MaskC
= m_Shr(m_AllOnes(), m_Value(MaskShAmt
));
199 // ((-1 << MaskShAmt) >> MaskShAmt)
201 m_Shr(m_Shl(m_AllOnes(), m_Value(MaskShAmt
)), m_Deferred(MaskShAmt
));
206 if (match(Masked
, m_c_And(m_CombineOr(MaskA
, MaskB
), m_Value(X
)))) {
207 // Can we simplify (MaskShAmt+ShiftShAmt) ?
208 auto *SumOfShAmts
= dyn_cast_or_null
<Constant
>(SimplifyAddInst(
209 MaskShAmt
, ShiftShAmt
, /*IsNSW=*/false, /*IsNUW=*/false, Q
));
211 return nullptr; // Did not simplify.
212 // In this pattern SumOfShAmts correlates with the number of low bits
213 // that shall remain in the root value (OuterShift).
215 // An extend of an undef value becomes zero because the high bits are never
216 // completely unknown. Replace the the `undef` shift amounts with final
217 // shift bitwidth to ensure that the value remains undef when creating the
218 // subsequent shift op.
219 SumOfShAmts
= replaceUndefsWith(
220 SumOfShAmts
, ConstantInt::get(SumOfShAmts
->getType()->getScalarType(),
221 ExtendedTy
->getScalarSizeInBits()));
222 auto *ExtendedSumOfShAmts
= ConstantExpr::getZExt(SumOfShAmts
, ExtendedTy
);
223 // And compute the mask as usual: ~(-1 << (SumOfShAmts))
224 auto *ExtendedAllOnes
= ConstantExpr::getAllOnesValue(ExtendedTy
);
225 auto *ExtendedInvertedMask
=
226 ConstantExpr::getShl(ExtendedAllOnes
, ExtendedSumOfShAmts
);
227 NewMask
= ConstantExpr::getNot(ExtendedInvertedMask
);
228 } else if (match(Masked
, m_c_And(m_CombineOr(MaskC
, MaskD
), m_Value(X
))) ||
229 match(Masked
, m_Shr(m_Shl(m_Value(X
), m_Value(MaskShAmt
)),
230 m_Deferred(MaskShAmt
)))) {
231 // Can we simplify (ShiftShAmt-MaskShAmt) ?
232 auto *ShAmtsDiff
= dyn_cast_or_null
<Constant
>(SimplifySubInst(
233 ShiftShAmt
, MaskShAmt
, /*IsNSW=*/false, /*IsNUW=*/false, Q
));
235 return nullptr; // Did not simplify.
236 // In this pattern ShAmtsDiff correlates with the number of high bits that
237 // shall be unset in the root value (OuterShift).
239 // An extend of an undef value becomes zero because the high bits are never
240 // completely unknown. Replace the the `undef` shift amounts with negated
241 // bitwidth of innermost shift to ensure that the value remains undef when
242 // creating the subsequent shift op.
243 unsigned WidestTyBitWidth
= WidestTy
->getScalarSizeInBits();
244 ShAmtsDiff
= replaceUndefsWith(
245 ShAmtsDiff
, ConstantInt::get(ShAmtsDiff
->getType()->getScalarType(),
247 auto *ExtendedNumHighBitsToClear
= ConstantExpr::getZExt(
248 ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff
->getType(),
253 // And compute the mask as usual: (-1 l>> (NumHighBitsToClear))
254 auto *ExtendedAllOnes
= ConstantExpr::getAllOnesValue(ExtendedTy
);
256 ConstantExpr::getLShr(ExtendedAllOnes
, ExtendedNumHighBitsToClear
);
258 return nullptr; // Don't know anything about this pattern.
260 NewMask
= ConstantExpr::getTrunc(NewMask
, NarrowestTy
);
262 // Does this mask has any unset bits? If not then we can just not apply it.
263 bool NeedMask
= !match(NewMask
, m_AllOnes());
265 // If we need to apply a mask, there are several more restrictions we have.
267 // The old masking instruction must go away.
268 if (!Masked
->hasOneUse())
270 // The original "masking" instruction must not have been`ashr`.
271 if (match(Masked
, m_AShr(m_Value(), m_Value())))
275 // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits.
276 auto *NewShift
= BinaryOperator::Create(OuterShift
->getOpcode(), X
,
277 OuterShift
->getOperand(1));
282 Builder
.Insert(NewShift
);
283 return BinaryOperator::Create(Instruction::And
, NewShift
, NewMask
);
286 Instruction
*InstCombiner::commonShiftTransforms(BinaryOperator
&I
) {
287 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
288 assert(Op0
->getType() == Op1
->getType());
290 // If the shift amount is a one-use `sext`, we can demote it to `zext`.
292 if (match(Op1
, m_OneUse(m_SExt(m_Value(Y
))))) {
293 Value
*NewExt
= Builder
.CreateZExt(Y
, I
.getType(), Op1
->getName());
294 return BinaryOperator::Create(I
.getOpcode(), Op0
, NewExt
);
297 // See if we can fold away this shift.
298 if (SimplifyDemandedInstructionBits(I
))
301 // Try to fold constant and into select arguments.
302 if (isa
<Constant
>(Op0
))
303 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op1
))
304 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
))
307 if (Constant
*CUI
= dyn_cast
<Constant
>(Op1
))
308 if (Instruction
*Res
= FoldShiftByConstant(Op0
, CUI
, I
))
311 if (auto *NewShift
= cast_or_null
<Instruction
>(
312 reassociateShiftAmtsOfTwoSameDirectionShifts(&I
, SQ
)))
315 // (C1 shift (A add C2)) -> (C1 shift C2) shift A)
316 // iff A and C2 are both positive.
319 if (match(Op0
, m_Constant()) && match(Op1
, m_Add(m_Value(A
), m_Constant(C
))))
320 if (isKnownNonNegative(A
, DL
, 0, &AC
, &I
, &DT
) &&
321 isKnownNonNegative(C
, DL
, 0, &AC
, &I
, &DT
))
322 return BinaryOperator::Create(
323 I
.getOpcode(), Builder
.CreateBinOp(I
.getOpcode(), Op0
, C
), A
);
325 // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
326 // Because shifts by negative values (which could occur if A were negative)
329 if (Op1
->hasOneUse() && match(Op1
, m_SRem(m_Value(A
), m_Power2(B
)))) {
330 // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
331 // demand the sign bit (and many others) here??
332 Value
*Rem
= Builder
.CreateAnd(A
, ConstantInt::get(I
.getType(), *B
- 1),
334 I
.setOperand(1, Rem
);
341 /// Return true if we can simplify two logical (either left or right) shifts
342 /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
343 static bool canEvaluateShiftedShift(unsigned OuterShAmt
, bool IsOuterShl
,
344 Instruction
*InnerShift
, InstCombiner
&IC
,
346 assert(InnerShift
->isLogicalShift() && "Unexpected instruction type");
348 // We need constant scalar or constant splat shifts.
349 const APInt
*InnerShiftConst
;
350 if (!match(InnerShift
->getOperand(1), m_APInt(InnerShiftConst
)))
353 // Two logical shifts in the same direction:
354 // shl (shl X, C1), C2 --> shl X, C1 + C2
355 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
356 bool IsInnerShl
= InnerShift
->getOpcode() == Instruction::Shl
;
357 if (IsInnerShl
== IsOuterShl
)
360 // Equal shift amounts in opposite directions become bitwise 'and':
361 // lshr (shl X, C), C --> and X, C'
362 // shl (lshr X, C), C --> and X, C'
363 if (*InnerShiftConst
== OuterShAmt
)
366 // If the 2nd shift is bigger than the 1st, we can fold:
367 // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3
368 // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
369 // but it isn't profitable unless we know the and'd out bits are already zero.
370 // Also, check that the inner shift is valid (less than the type width) or
371 // we'll crash trying to produce the bit mask for the 'and'.
372 unsigned TypeWidth
= InnerShift
->getType()->getScalarSizeInBits();
373 if (InnerShiftConst
->ugt(OuterShAmt
) && InnerShiftConst
->ult(TypeWidth
)) {
374 unsigned InnerShAmt
= InnerShiftConst
->getZExtValue();
376 IsInnerShl
? TypeWidth
- InnerShAmt
: InnerShAmt
- OuterShAmt
;
377 APInt Mask
= APInt::getLowBitsSet(TypeWidth
, OuterShAmt
) << MaskShift
;
378 if (IC
.MaskedValueIsZero(InnerShift
->getOperand(0), Mask
, 0, CxtI
))
385 /// See if we can compute the specified value, but shifted logically to the left
386 /// or right by some number of bits. This should return true if the expression
387 /// can be computed for the same cost as the current expression tree. This is
388 /// used to eliminate extraneous shifting from things like:
389 /// %C = shl i128 %A, 64
390 /// %D = shl i128 %B, 96
391 /// %E = or i128 %C, %D
392 /// %F = lshr i128 %E, 64
393 /// where the client will ask if E can be computed shifted right by 64-bits. If
394 /// this succeeds, getShiftedValue() will be called to produce the value.
395 static bool canEvaluateShifted(Value
*V
, unsigned NumBits
, bool IsLeftShift
,
396 InstCombiner
&IC
, Instruction
*CxtI
) {
397 // We can always evaluate constants shifted.
398 if (isa
<Constant
>(V
))
401 Instruction
*I
= dyn_cast
<Instruction
>(V
);
402 if (!I
) return false;
404 // If this is the opposite shift, we can directly reuse the input of the shift
405 // if the needed bits are already zero in the input. This allows us to reuse
406 // the value which means that we don't care if the shift has multiple uses.
407 // TODO: Handle opposite shift by exact value.
408 ConstantInt
*CI
= nullptr;
409 if ((IsLeftShift
&& match(I
, m_LShr(m_Value(), m_ConstantInt(CI
)))) ||
410 (!IsLeftShift
&& match(I
, m_Shl(m_Value(), m_ConstantInt(CI
))))) {
411 if (CI
->getValue() == NumBits
) {
412 // TODO: Check that the input bits are already zero with MaskedValueIsZero
414 // If this is a truncate of a logical shr, we can truncate it to a smaller
415 // lshr iff we know that the bits we would otherwise be shifting in are
417 uint32_t OrigBitWidth
= OrigTy
->getScalarSizeInBits();
418 uint32_t BitWidth
= Ty
->getScalarSizeInBits();
419 if (MaskedValueIsZero(I
->getOperand(0),
420 APInt::getHighBitsSet(OrigBitWidth
, OrigBitWidth
-BitWidth
)) &&
421 CI
->getLimitedValue(BitWidth
) < BitWidth
) {
422 return CanEvaluateTruncated(I
->getOperand(0), Ty
);
429 // We can't mutate something that has multiple uses: doing so would
430 // require duplicating the instruction in general, which isn't profitable.
431 if (!I
->hasOneUse()) return false;
433 switch (I
->getOpcode()) {
434 default: return false;
435 case Instruction::And
:
436 case Instruction::Or
:
437 case Instruction::Xor
:
438 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
439 return canEvaluateShifted(I
->getOperand(0), NumBits
, IsLeftShift
, IC
, I
) &&
440 canEvaluateShifted(I
->getOperand(1), NumBits
, IsLeftShift
, IC
, I
);
442 case Instruction::Shl
:
443 case Instruction::LShr
:
444 return canEvaluateShiftedShift(NumBits
, IsLeftShift
, I
, IC
, CxtI
);
446 case Instruction::Select
: {
447 SelectInst
*SI
= cast
<SelectInst
>(I
);
448 Value
*TrueVal
= SI
->getTrueValue();
449 Value
*FalseVal
= SI
->getFalseValue();
450 return canEvaluateShifted(TrueVal
, NumBits
, IsLeftShift
, IC
, SI
) &&
451 canEvaluateShifted(FalseVal
, NumBits
, IsLeftShift
, IC
, SI
);
453 case Instruction::PHI
: {
454 // We can change a phi if we can change all operands. Note that we never
455 // get into trouble with cyclic PHIs here because we only consider
456 // instructions with a single use.
457 PHINode
*PN
= cast
<PHINode
>(I
);
458 for (Value
*IncValue
: PN
->incoming_values())
459 if (!canEvaluateShifted(IncValue
, NumBits
, IsLeftShift
, IC
, PN
))
466 /// Fold OuterShift (InnerShift X, C1), C2.
467 /// See canEvaluateShiftedShift() for the constraints on these instructions.
468 static Value
*foldShiftedShift(BinaryOperator
*InnerShift
, unsigned OuterShAmt
,
470 InstCombiner::BuilderTy
&Builder
) {
471 bool IsInnerShl
= InnerShift
->getOpcode() == Instruction::Shl
;
472 Type
*ShType
= InnerShift
->getType();
473 unsigned TypeWidth
= ShType
->getScalarSizeInBits();
475 // We only accept shifts-by-a-constant in canEvaluateShifted().
477 match(InnerShift
->getOperand(1), m_APInt(C1
));
478 unsigned InnerShAmt
= C1
->getZExtValue();
480 // Change the shift amount and clear the appropriate IR flags.
481 auto NewInnerShift
= [&](unsigned ShAmt
) {
482 InnerShift
->setOperand(1, ConstantInt::get(ShType
, ShAmt
));
484 InnerShift
->setHasNoUnsignedWrap(false);
485 InnerShift
->setHasNoSignedWrap(false);
487 InnerShift
->setIsExact(false);
492 // Two logical shifts in the same direction:
493 // shl (shl X, C1), C2 --> shl X, C1 + C2
494 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
495 if (IsInnerShl
== IsOuterShl
) {
496 // If this is an oversized composite shift, then unsigned shifts get 0.
497 if (InnerShAmt
+ OuterShAmt
>= TypeWidth
)
498 return Constant::getNullValue(ShType
);
500 return NewInnerShift(InnerShAmt
+ OuterShAmt
);
503 // Equal shift amounts in opposite directions become bitwise 'and':
504 // lshr (shl X, C), C --> and X, C'
505 // shl (lshr X, C), C --> and X, C'
506 if (InnerShAmt
== OuterShAmt
) {
507 APInt Mask
= IsInnerShl
508 ? APInt::getLowBitsSet(TypeWidth
, TypeWidth
- OuterShAmt
)
509 : APInt::getHighBitsSet(TypeWidth
, TypeWidth
- OuterShAmt
);
510 Value
*And
= Builder
.CreateAnd(InnerShift
->getOperand(0),
511 ConstantInt::get(ShType
, Mask
));
512 if (auto *AndI
= dyn_cast
<Instruction
>(And
)) {
513 AndI
->moveBefore(InnerShift
);
514 AndI
->takeName(InnerShift
);
519 assert(InnerShAmt
> OuterShAmt
&&
520 "Unexpected opposite direction logical shift pair");
522 // In general, we would need an 'and' for this transform, but
523 // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
524 // lshr (shl X, C1), C2 --> shl X, C1 - C2
525 // shl (lshr X, C1), C2 --> lshr X, C1 - C2
526 return NewInnerShift(InnerShAmt
- OuterShAmt
);
529 /// When canEvaluateShifted() returns true for an expression, this function
530 /// inserts the new computation that produces the shifted value.
531 static Value
*getShiftedValue(Value
*V
, unsigned NumBits
, bool isLeftShift
,
532 InstCombiner
&IC
, const DataLayout
&DL
) {
533 // We can always evaluate constants shifted.
534 if (Constant
*C
= dyn_cast
<Constant
>(V
)) {
536 V
= IC
.Builder
.CreateShl(C
, NumBits
);
538 V
= IC
.Builder
.CreateLShr(C
, NumBits
);
539 // If we got a constantexpr back, try to simplify it with TD info.
540 if (auto *C
= dyn_cast
<Constant
>(V
))
542 ConstantFoldConstant(C
, DL
, &IC
.getTargetLibraryInfo()))
547 Instruction
*I
= cast
<Instruction
>(V
);
550 switch (I
->getOpcode()) {
551 default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
552 case Instruction::And
:
553 case Instruction::Or
:
554 case Instruction::Xor
:
555 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
557 0, getShiftedValue(I
->getOperand(0), NumBits
, isLeftShift
, IC
, DL
));
559 1, getShiftedValue(I
->getOperand(1), NumBits
, isLeftShift
, IC
, DL
));
562 case Instruction::Shl
:
563 case Instruction::LShr
:
564 return foldShiftedShift(cast
<BinaryOperator
>(I
), NumBits
, isLeftShift
,
567 case Instruction::Select
:
569 1, getShiftedValue(I
->getOperand(1), NumBits
, isLeftShift
, IC
, DL
));
571 2, getShiftedValue(I
->getOperand(2), NumBits
, isLeftShift
, IC
, DL
));
573 case Instruction::PHI
: {
574 // We can change a phi if we can change all operands. Note that we never
575 // get into trouble with cyclic PHIs here because we only consider
576 // instructions with a single use.
577 PHINode
*PN
= cast
<PHINode
>(I
);
578 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
579 PN
->setIncomingValue(i
, getShiftedValue(PN
->getIncomingValue(i
), NumBits
,
580 isLeftShift
, IC
, DL
));
586 // If this is a bitwise operator or add with a constant RHS we might be able
587 // to pull it through a shift.
588 static bool canShiftBinOpWithConstantRHS(BinaryOperator
&Shift
,
589 BinaryOperator
*BO
) {
590 switch (BO
->getOpcode()) {
592 return false; // Do not perform transform!
593 case Instruction::Add
:
594 return Shift
.getOpcode() == Instruction::Shl
;
595 case Instruction::Or
:
596 case Instruction::Xor
:
597 case Instruction::And
:
602 Instruction
*InstCombiner::FoldShiftByConstant(Value
*Op0
, Constant
*Op1
,
604 bool isLeftShift
= I
.getOpcode() == Instruction::Shl
;
607 if (!match(Op1
, m_APInt(Op1C
)))
610 // See if we can propagate this shift into the input, this covers the trivial
611 // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
612 if (I
.getOpcode() != Instruction::AShr
&&
613 canEvaluateShifted(Op0
, Op1C
->getZExtValue(), isLeftShift
, *this, &I
)) {
615 dbgs() << "ICE: GetShiftedValue propagating shift through expression"
616 " to eliminate shift:\n IN: "
617 << *Op0
<< "\n SH: " << I
<< "\n");
619 return replaceInstUsesWith(
620 I
, getShiftedValue(Op0
, Op1C
->getZExtValue(), isLeftShift
, *this, DL
));
623 // See if we can simplify any instructions used by the instruction whose sole
624 // purpose is to compute bits we don't care about.
625 unsigned TypeBits
= Op0
->getType()->getScalarSizeInBits();
627 assert(!Op1C
->uge(TypeBits
) &&
628 "Shift over the type width should have been removed already");
630 if (Instruction
*FoldedShift
= foldBinOpIntoSelectOrPhi(I
))
633 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
634 if (TruncInst
*TI
= dyn_cast
<TruncInst
>(Op0
)) {
635 Instruction
*TrOp
= dyn_cast
<Instruction
>(TI
->getOperand(0));
636 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
637 // place. Don't try to do this transformation in this case. Also, we
638 // require that the input operand is a shift-by-constant so that we have
639 // confidence that the shifts will get folded together. We could do this
640 // xform in more cases, but it is unlikely to be profitable.
641 if (TrOp
&& I
.isLogicalShift() && TrOp
->isShift() &&
642 isa
<ConstantInt
>(TrOp
->getOperand(1))) {
643 // Okay, we'll do this xform. Make the shift of shift.
645 ConstantExpr::getZExt(cast
<Constant
>(Op1
), TrOp
->getType());
646 // (shift2 (shift1 & 0x00FF), c2)
647 Value
*NSh
= Builder
.CreateBinOp(I
.getOpcode(), TrOp
, ShAmt
, I
.getName());
649 // For logical shifts, the truncation has the effect of making the high
650 // part of the register be zeros. Emulate this by inserting an AND to
651 // clear the top bits as needed. This 'and' will usually be zapped by
652 // other xforms later if dead.
653 unsigned SrcSize
= TrOp
->getType()->getScalarSizeInBits();
654 unsigned DstSize
= TI
->getType()->getScalarSizeInBits();
655 APInt
MaskV(APInt::getLowBitsSet(SrcSize
, DstSize
));
657 // The mask we constructed says what the trunc would do if occurring
658 // between the shifts. We want to know the effect *after* the second
659 // shift. We know that it is a logical shift by a constant, so adjust the
660 // mask as appropriate.
661 if (I
.getOpcode() == Instruction::Shl
)
662 MaskV
<<= Op1C
->getZExtValue();
664 assert(I
.getOpcode() == Instruction::LShr
&& "Unknown logical shift");
665 MaskV
.lshrInPlace(Op1C
->getZExtValue());
669 Value
*And
= Builder
.CreateAnd(NSh
,
670 ConstantInt::get(I
.getContext(), MaskV
),
673 // Return the value truncated to the interesting size.
674 return new TruncInst(And
, I
.getType());
678 if (Op0
->hasOneUse()) {
679 if (BinaryOperator
*Op0BO
= dyn_cast
<BinaryOperator
>(Op0
)) {
680 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
683 switch (Op0BO
->getOpcode()) {
685 case Instruction::Add
:
686 case Instruction::And
:
687 case Instruction::Or
:
688 case Instruction::Xor
: {
689 // These operators commute.
690 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
691 if (isLeftShift
&& Op0BO
->getOperand(1)->hasOneUse() &&
692 match(Op0BO
->getOperand(1), m_Shr(m_Value(V1
),
694 Value
*YS
= // (Y << C)
695 Builder
.CreateShl(Op0BO
->getOperand(0), Op1
, Op0BO
->getName());
697 Value
*X
= Builder
.CreateBinOp(Op0BO
->getOpcode(), YS
, V1
,
698 Op0BO
->getOperand(1)->getName());
699 unsigned Op1Val
= Op1C
->getLimitedValue(TypeBits
);
701 APInt Bits
= APInt::getHighBitsSet(TypeBits
, TypeBits
- Op1Val
);
702 Constant
*Mask
= ConstantInt::get(I
.getContext(), Bits
);
703 if (VectorType
*VT
= dyn_cast
<VectorType
>(X
->getType()))
704 Mask
= ConstantVector::getSplat(VT
->getNumElements(), Mask
);
705 return BinaryOperator::CreateAnd(X
, Mask
);
708 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
709 Value
*Op0BOOp1
= Op0BO
->getOperand(1);
710 if (isLeftShift
&& Op0BOOp1
->hasOneUse() &&
712 m_And(m_OneUse(m_Shr(m_Value(V1
), m_Specific(Op1
))),
713 m_ConstantInt(CC
)))) {
714 Value
*YS
= // (Y << C)
715 Builder
.CreateShl(Op0BO
->getOperand(0), Op1
, Op0BO
->getName());
717 Value
*XM
= Builder
.CreateAnd(V1
, ConstantExpr::getShl(CC
, Op1
),
718 V1
->getName()+".mask");
719 return BinaryOperator::Create(Op0BO
->getOpcode(), YS
, XM
);
724 case Instruction::Sub
: {
725 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
726 if (isLeftShift
&& Op0BO
->getOperand(0)->hasOneUse() &&
727 match(Op0BO
->getOperand(0), m_Shr(m_Value(V1
),
729 Value
*YS
= // (Y << C)
730 Builder
.CreateShl(Op0BO
->getOperand(1), Op1
, Op0BO
->getName());
732 Value
*X
= Builder
.CreateBinOp(Op0BO
->getOpcode(), V1
, YS
,
733 Op0BO
->getOperand(0)->getName());
734 unsigned Op1Val
= Op1C
->getLimitedValue(TypeBits
);
736 APInt Bits
= APInt::getHighBitsSet(TypeBits
, TypeBits
- Op1Val
);
737 Constant
*Mask
= ConstantInt::get(I
.getContext(), Bits
);
738 if (VectorType
*VT
= dyn_cast
<VectorType
>(X
->getType()))
739 Mask
= ConstantVector::getSplat(VT
->getNumElements(), Mask
);
740 return BinaryOperator::CreateAnd(X
, Mask
);
743 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
744 if (isLeftShift
&& Op0BO
->getOperand(0)->hasOneUse() &&
745 match(Op0BO
->getOperand(0),
746 m_And(m_OneUse(m_Shr(m_Value(V1
), m_Value(V2
))),
747 m_ConstantInt(CC
))) && V2
== Op1
) {
748 Value
*YS
= // (Y << C)
749 Builder
.CreateShl(Op0BO
->getOperand(1), Op1
, Op0BO
->getName());
751 Value
*XM
= Builder
.CreateAnd(V1
, ConstantExpr::getShl(CC
, Op1
),
752 V1
->getName()+".mask");
754 return BinaryOperator::Create(Op0BO
->getOpcode(), XM
, YS
);
762 // If the operand is a bitwise operator with a constant RHS, and the
763 // shift is the only use, we can pull it out of the shift.
765 if (match(Op0BO
->getOperand(1), m_APInt(Op0C
))) {
766 if (canShiftBinOpWithConstantRHS(I
, Op0BO
)) {
767 Constant
*NewRHS
= ConstantExpr::get(I
.getOpcode(),
768 cast
<Constant
>(Op0BO
->getOperand(1)), Op1
);
771 Builder
.CreateBinOp(I
.getOpcode(), Op0BO
->getOperand(0), Op1
);
772 NewShift
->takeName(Op0BO
);
774 return BinaryOperator::Create(Op0BO
->getOpcode(), NewShift
,
779 // If the operand is a subtract with a constant LHS, and the shift
780 // is the only use, we can pull it out of the shift.
781 // This folds (shl (sub C1, X), C2) -> (sub (C1 << C2), (shl X, C2))
782 if (isLeftShift
&& Op0BO
->getOpcode() == Instruction::Sub
&&
783 match(Op0BO
->getOperand(0), m_APInt(Op0C
))) {
784 Constant
*NewRHS
= ConstantExpr::get(I
.getOpcode(),
785 cast
<Constant
>(Op0BO
->getOperand(0)), Op1
);
787 Value
*NewShift
= Builder
.CreateShl(Op0BO
->getOperand(1), Op1
);
788 NewShift
->takeName(Op0BO
);
790 return BinaryOperator::CreateSub(NewRHS
, NewShift
);
794 // If we have a select that conditionally executes some binary operator,
795 // see if we can pull it the select and operator through the shift.
797 // For example, turning:
798 // shl (select C, (add X, C1), X), C2
801 // select C, (add Y, C1 << C2), Y
805 if (match(Op0
, m_Select(m_Value(Cond
), m_OneUse(m_BinOp(TBO
)),
806 m_Value(FalseVal
)))) {
808 if (!isa
<Constant
>(FalseVal
) && TBO
->getOperand(0) == FalseVal
&&
809 match(TBO
->getOperand(1), m_APInt(C
)) &&
810 canShiftBinOpWithConstantRHS(I
, TBO
)) {
811 Constant
*NewRHS
= ConstantExpr::get(I
.getOpcode(),
812 cast
<Constant
>(TBO
->getOperand(1)), Op1
);
815 Builder
.CreateBinOp(I
.getOpcode(), FalseVal
, Op1
);
816 Value
*NewOp
= Builder
.CreateBinOp(TBO
->getOpcode(), NewShift
,
818 return SelectInst::Create(Cond
, NewOp
, NewShift
);
824 if (match(Op0
, m_Select(m_Value(Cond
), m_Value(TrueVal
),
825 m_OneUse(m_BinOp(FBO
))))) {
827 if (!isa
<Constant
>(TrueVal
) && FBO
->getOperand(0) == TrueVal
&&
828 match(FBO
->getOperand(1), m_APInt(C
)) &&
829 canShiftBinOpWithConstantRHS(I
, FBO
)) {
830 Constant
*NewRHS
= ConstantExpr::get(I
.getOpcode(),
831 cast
<Constant
>(FBO
->getOperand(1)), Op1
);
834 Builder
.CreateBinOp(I
.getOpcode(), TrueVal
, Op1
);
835 Value
*NewOp
= Builder
.CreateBinOp(FBO
->getOpcode(), NewShift
,
837 return SelectInst::Create(Cond
, NewShift
, NewOp
);
845 Instruction
*InstCombiner::visitShl(BinaryOperator
&I
) {
846 const SimplifyQuery Q
= SQ
.getWithInstruction(&I
);
848 if (Value
*V
= SimplifyShlInst(I
.getOperand(0), I
.getOperand(1),
849 I
.hasNoSignedWrap(), I
.hasNoUnsignedWrap(), Q
))
850 return replaceInstUsesWith(I
, V
);
852 if (Instruction
*X
= foldVectorBinop(I
))
855 if (Instruction
*V
= commonShiftTransforms(I
))
858 if (Instruction
*V
= dropRedundantMaskingOfLeftShiftInput(&I
, Q
, Builder
))
861 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
862 Type
*Ty
= I
.getType();
863 unsigned BitWidth
= Ty
->getScalarSizeInBits();
865 const APInt
*ShAmtAPInt
;
866 if (match(Op1
, m_APInt(ShAmtAPInt
))) {
867 unsigned ShAmt
= ShAmtAPInt
->getZExtValue();
869 // shl (zext X), ShAmt --> zext (shl X, ShAmt)
870 // This is only valid if X would have zeros shifted out.
872 if (match(Op0
, m_OneUse(m_ZExt(m_Value(X
))))) {
873 unsigned SrcWidth
= X
->getType()->getScalarSizeInBits();
874 if (ShAmt
< SrcWidth
&&
875 MaskedValueIsZero(X
, APInt::getHighBitsSet(SrcWidth
, ShAmt
), 0, &I
))
876 return new ZExtInst(Builder
.CreateShl(X
, ShAmt
), Ty
);
879 // (X >> C) << C --> X & (-1 << C)
880 if (match(Op0
, m_Shr(m_Value(X
), m_Specific(Op1
)))) {
881 APInt
Mask(APInt::getHighBitsSet(BitWidth
, BitWidth
- ShAmt
));
882 return BinaryOperator::CreateAnd(X
, ConstantInt::get(Ty
, Mask
));
885 // FIXME: we do not yet transform non-exact shr's. The backend (DAGCombine)
886 // needs a few fixes for the rotate pattern recognition first.
888 if (match(Op0
, m_Exact(m_Shr(m_Value(X
), m_APInt(ShOp1
))))) {
889 unsigned ShrAmt
= ShOp1
->getZExtValue();
890 if (ShrAmt
< ShAmt
) {
891 // If C1 < C2: (X >>?,exact C1) << C2 --> X << (C2 - C1)
892 Constant
*ShiftDiff
= ConstantInt::get(Ty
, ShAmt
- ShrAmt
);
893 auto *NewShl
= BinaryOperator::CreateShl(X
, ShiftDiff
);
894 NewShl
->setHasNoUnsignedWrap(I
.hasNoUnsignedWrap());
895 NewShl
->setHasNoSignedWrap(I
.hasNoSignedWrap());
898 if (ShrAmt
> ShAmt
) {
899 // If C1 > C2: (X >>?exact C1) << C2 --> X >>?exact (C1 - C2)
900 Constant
*ShiftDiff
= ConstantInt::get(Ty
, ShrAmt
- ShAmt
);
901 auto *NewShr
= BinaryOperator::Create(
902 cast
<BinaryOperator
>(Op0
)->getOpcode(), X
, ShiftDiff
);
903 NewShr
->setIsExact(true);
908 if (match(Op0
, m_Shl(m_Value(X
), m_APInt(ShOp1
)))) {
909 unsigned AmtSum
= ShAmt
+ ShOp1
->getZExtValue();
910 // Oversized shifts are simplified to zero in InstSimplify.
911 if (AmtSum
< BitWidth
)
912 // (X << C1) << C2 --> X << (C1 + C2)
913 return BinaryOperator::CreateShl(X
, ConstantInt::get(Ty
, AmtSum
));
916 // If the shifted-out value is known-zero, then this is a NUW shift.
917 if (!I
.hasNoUnsignedWrap() &&
918 MaskedValueIsZero(Op0
, APInt::getHighBitsSet(BitWidth
, ShAmt
), 0, &I
)) {
919 I
.setHasNoUnsignedWrap();
923 // If the shifted-out value is all signbits, then this is a NSW shift.
924 if (!I
.hasNoSignedWrap() && ComputeNumSignBits(Op0
, 0, &I
) > ShAmt
) {
925 I
.setHasNoSignedWrap();
930 // Transform (x >> y) << y to x & (-1 << y)
931 // Valid for any type of right-shift.
933 if (match(Op0
, m_OneUse(m_Shr(m_Value(X
), m_Specific(Op1
))))) {
934 Constant
*AllOnes
= ConstantInt::getAllOnesValue(Ty
);
935 Value
*Mask
= Builder
.CreateShl(AllOnes
, Op1
);
936 return BinaryOperator::CreateAnd(Mask
, X
);
940 if (match(Op1
, m_Constant(C1
))) {
943 // (C2 << X) << C1 --> (C2 << C1) << X
944 if (match(Op0
, m_OneUse(m_Shl(m_Constant(C2
), m_Value(X
)))))
945 return BinaryOperator::CreateShl(ConstantExpr::getShl(C2
, C1
), X
);
947 // (X * C2) << C1 --> X * (C2 << C1)
948 if (match(Op0
, m_Mul(m_Value(X
), m_Constant(C2
))))
949 return BinaryOperator::CreateMul(X
, ConstantExpr::getShl(C2
, C1
));
951 // shl (zext i1 X), C1 --> select (X, 1 << C1, 0)
952 if (match(Op0
, m_ZExt(m_Value(X
))) && X
->getType()->isIntOrIntVectorTy(1)) {
953 auto *NewC
= ConstantExpr::getShl(ConstantInt::get(Ty
, 1), C1
);
954 return SelectInst::Create(X
, NewC
, ConstantInt::getNullValue(Ty
));
958 // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1
959 if (match(Op0
, m_One()) &&
960 match(Op1
, m_Sub(m_SpecificInt(BitWidth
- 1), m_Value(X
))))
961 return BinaryOperator::CreateLShr(
962 ConstantInt::get(Ty
, APInt::getSignMask(BitWidth
)), X
);
967 Instruction
*InstCombiner::visitLShr(BinaryOperator
&I
) {
968 if (Value
*V
= SimplifyLShrInst(I
.getOperand(0), I
.getOperand(1), I
.isExact(),
969 SQ
.getWithInstruction(&I
)))
970 return replaceInstUsesWith(I
, V
);
972 if (Instruction
*X
= foldVectorBinop(I
))
975 if (Instruction
*R
= commonShiftTransforms(I
))
978 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
979 Type
*Ty
= I
.getType();
980 const APInt
*ShAmtAPInt
;
981 if (match(Op1
, m_APInt(ShAmtAPInt
))) {
982 unsigned ShAmt
= ShAmtAPInt
->getZExtValue();
983 unsigned BitWidth
= Ty
->getScalarSizeInBits();
984 auto *II
= dyn_cast
<IntrinsicInst
>(Op0
);
985 if (II
&& isPowerOf2_32(BitWidth
) && Log2_32(BitWidth
) == ShAmt
&&
986 (II
->getIntrinsicID() == Intrinsic::ctlz
||
987 II
->getIntrinsicID() == Intrinsic::cttz
||
988 II
->getIntrinsicID() == Intrinsic::ctpop
)) {
989 // ctlz.i32(x)>>5 --> zext(x == 0)
990 // cttz.i32(x)>>5 --> zext(x == 0)
991 // ctpop.i32(x)>>5 --> zext(x == -1)
992 bool IsPop
= II
->getIntrinsicID() == Intrinsic::ctpop
;
993 Constant
*RHS
= ConstantInt::getSigned(Ty
, IsPop
? -1 : 0);
994 Value
*Cmp
= Builder
.CreateICmpEQ(II
->getArgOperand(0), RHS
);
995 return new ZExtInst(Cmp
, Ty
);
1000 if (match(Op0
, m_Shl(m_Value(X
), m_APInt(ShOp1
))) && ShOp1
->ult(BitWidth
)) {
1001 if (ShOp1
->ult(ShAmt
)) {
1002 unsigned ShlAmt
= ShOp1
->getZExtValue();
1003 Constant
*ShiftDiff
= ConstantInt::get(Ty
, ShAmt
- ShlAmt
);
1004 if (cast
<BinaryOperator
>(Op0
)->hasNoUnsignedWrap()) {
1005 // (X <<nuw C1) >>u C2 --> X >>u (C2 - C1)
1006 auto *NewLShr
= BinaryOperator::CreateLShr(X
, ShiftDiff
);
1007 NewLShr
->setIsExact(I
.isExact());
1010 // (X << C1) >>u C2 --> (X >>u (C2 - C1)) & (-1 >> C2)
1011 Value
*NewLShr
= Builder
.CreateLShr(X
, ShiftDiff
, "", I
.isExact());
1012 APInt
Mask(APInt::getLowBitsSet(BitWidth
, BitWidth
- ShAmt
));
1013 return BinaryOperator::CreateAnd(NewLShr
, ConstantInt::get(Ty
, Mask
));
1015 if (ShOp1
->ugt(ShAmt
)) {
1016 unsigned ShlAmt
= ShOp1
->getZExtValue();
1017 Constant
*ShiftDiff
= ConstantInt::get(Ty
, ShlAmt
- ShAmt
);
1018 if (cast
<BinaryOperator
>(Op0
)->hasNoUnsignedWrap()) {
1019 // (X <<nuw C1) >>u C2 --> X <<nuw (C1 - C2)
1020 auto *NewShl
= BinaryOperator::CreateShl(X
, ShiftDiff
);
1021 NewShl
->setHasNoUnsignedWrap(true);
1024 // (X << C1) >>u C2 --> X << (C1 - C2) & (-1 >> C2)
1025 Value
*NewShl
= Builder
.CreateShl(X
, ShiftDiff
);
1026 APInt
Mask(APInt::getLowBitsSet(BitWidth
, BitWidth
- ShAmt
));
1027 return BinaryOperator::CreateAnd(NewShl
, ConstantInt::get(Ty
, Mask
));
1029 assert(*ShOp1
== ShAmt
);
1030 // (X << C) >>u C --> X & (-1 >>u C)
1031 APInt
Mask(APInt::getLowBitsSet(BitWidth
, BitWidth
- ShAmt
));
1032 return BinaryOperator::CreateAnd(X
, ConstantInt::get(Ty
, Mask
));
1035 if (match(Op0
, m_OneUse(m_ZExt(m_Value(X
)))) &&
1036 (!Ty
->isIntegerTy() || shouldChangeType(Ty
, X
->getType()))) {
1037 assert(ShAmt
< X
->getType()->getScalarSizeInBits() &&
1038 "Big shift not simplified to zero?");
1039 // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
1040 Value
*NewLShr
= Builder
.CreateLShr(X
, ShAmt
);
1041 return new ZExtInst(NewLShr
, Ty
);
1044 if (match(Op0
, m_SExt(m_Value(X
))) &&
1045 (!Ty
->isIntegerTy() || shouldChangeType(Ty
, X
->getType()))) {
1046 // Are we moving the sign bit to the low bit and widening with high zeros?
1047 unsigned SrcTyBitWidth
= X
->getType()->getScalarSizeInBits();
1048 if (ShAmt
== BitWidth
- 1) {
1049 // lshr (sext i1 X to iN), N-1 --> zext X to iN
1050 if (SrcTyBitWidth
== 1)
1051 return new ZExtInst(X
, Ty
);
1053 // lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
1054 if (Op0
->hasOneUse()) {
1055 Value
*NewLShr
= Builder
.CreateLShr(X
, SrcTyBitWidth
- 1);
1056 return new ZExtInst(NewLShr
, Ty
);
1060 // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
1061 if (ShAmt
== BitWidth
- SrcTyBitWidth
&& Op0
->hasOneUse()) {
1062 // The new shift amount can't be more than the narrow source type.
1063 unsigned NewShAmt
= std::min(ShAmt
, SrcTyBitWidth
- 1);
1064 Value
*AShr
= Builder
.CreateAShr(X
, NewShAmt
);
1065 return new ZExtInst(AShr
, Ty
);
1069 if (match(Op0
, m_LShr(m_Value(X
), m_APInt(ShOp1
)))) {
1070 unsigned AmtSum
= ShAmt
+ ShOp1
->getZExtValue();
1071 // Oversized shifts are simplified to zero in InstSimplify.
1072 if (AmtSum
< BitWidth
)
1073 // (X >>u C1) >>u C2 --> X >>u (C1 + C2)
1074 return BinaryOperator::CreateLShr(X
, ConstantInt::get(Ty
, AmtSum
));
1077 // If the shifted-out value is known-zero, then this is an exact shift.
1079 MaskedValueIsZero(Op0
, APInt::getLowBitsSet(BitWidth
, ShAmt
), 0, &I
)) {
1085 // Transform (x << y) >> y to x & (-1 >> y)
1087 if (match(Op0
, m_OneUse(m_Shl(m_Value(X
), m_Specific(Op1
))))) {
1088 Constant
*AllOnes
= ConstantInt::getAllOnesValue(Ty
);
1089 Value
*Mask
= Builder
.CreateLShr(AllOnes
, Op1
);
1090 return BinaryOperator::CreateAnd(Mask
, X
);
1097 InstCombiner::foldVariableSignZeroExtensionOfVariableHighBitExtract(
1098 BinaryOperator
&OldAShr
) {
1099 assert(OldAShr
.getOpcode() == Instruction::AShr
&&
1100 "Must be called with arithmetic right-shift instruction only.");
1102 // Check that constant C is a splat of the element-wise bitwidth of V.
1103 auto BitWidthSplat
= [](Constant
*C
, Value
*V
) {
1105 C
, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ
,
1106 APInt(C
->getType()->getScalarSizeInBits(),
1107 V
->getType()->getScalarSizeInBits())));
1110 // It should look like variable-length sign-extension on the outside:
1111 // (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits)
1113 Instruction
*MaybeTrunc
;
1115 if (!match(&OldAShr
,
1116 m_AShr(m_Shl(m_Instruction(MaybeTrunc
),
1117 m_ZExtOrSelf(m_Sub(m_Constant(C1
),
1118 m_ZExtOrSelf(m_Value(NBits
))))),
1119 m_ZExtOrSelf(m_Sub(m_Constant(C2
),
1120 m_ZExtOrSelf(m_Deferred(NBits
)))))) ||
1121 !BitWidthSplat(C1
, &OldAShr
) || !BitWidthSplat(C2
, &OldAShr
))
1124 // There may or may not be a truncation after outer two shifts.
1125 Instruction
*HighBitExtract
;
1126 match(MaybeTrunc
, m_TruncOrSelf(m_Instruction(HighBitExtract
)));
1127 bool HadTrunc
= MaybeTrunc
!= HighBitExtract
;
1129 // And finally, the innermost part of the pattern must be a right-shift.
1130 Value
*X
, *NumLowBitsToSkip
;
1131 if (!match(HighBitExtract
, m_Shr(m_Value(X
), m_Value(NumLowBitsToSkip
))))
1134 // Said right-shift must extract high NBits bits - C0 must be it's bitwidth.
1136 if (!match(NumLowBitsToSkip
,
1138 m_Sub(m_Constant(C0
), m_ZExtOrSelf(m_Specific(NBits
))))) ||
1139 !BitWidthSplat(C0
, HighBitExtract
))
1142 // Since the NBits is identical for all shifts, if the outermost and
1143 // innermost shifts are identical, then outermost shifts are redundant.
1144 // If we had truncation, do keep it though.
1145 if (HighBitExtract
->getOpcode() == OldAShr
.getOpcode())
1146 return replaceInstUsesWith(OldAShr
, MaybeTrunc
);
1148 // Else, if there was a truncation, then we need to ensure that one
1149 // instruction will go away.
1150 if (HadTrunc
&& !match(&OldAShr
, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1153 // Finally, bypass two innermost shifts, and perform the outermost shift on
1154 // the operands of the innermost shift.
1155 Instruction
*NewAShr
=
1156 BinaryOperator::Create(OldAShr
.getOpcode(), X
, NumLowBitsToSkip
);
1157 NewAShr
->copyIRFlags(HighBitExtract
); // We can preserve 'exact'-ness.
1161 Builder
.Insert(NewAShr
);
1162 return TruncInst::CreateTruncOrBitCast(NewAShr
, OldAShr
.getType());
1165 Instruction
*InstCombiner::visitAShr(BinaryOperator
&I
) {
1166 if (Value
*V
= SimplifyAShrInst(I
.getOperand(0), I
.getOperand(1), I
.isExact(),
1167 SQ
.getWithInstruction(&I
)))
1168 return replaceInstUsesWith(I
, V
);
1170 if (Instruction
*X
= foldVectorBinop(I
))
1173 if (Instruction
*R
= commonShiftTransforms(I
))
1176 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
1177 Type
*Ty
= I
.getType();
1178 unsigned BitWidth
= Ty
->getScalarSizeInBits();
1179 const APInt
*ShAmtAPInt
;
1180 if (match(Op1
, m_APInt(ShAmtAPInt
)) && ShAmtAPInt
->ult(BitWidth
)) {
1181 unsigned ShAmt
= ShAmtAPInt
->getZExtValue();
1183 // If the shift amount equals the difference in width of the destination
1184 // and source scalar types:
1185 // ashr (shl (zext X), C), C --> sext X
1187 if (match(Op0
, m_Shl(m_ZExt(m_Value(X
)), m_Specific(Op1
))) &&
1188 ShAmt
== BitWidth
- X
->getType()->getScalarSizeInBits())
1189 return new SExtInst(X
, Ty
);
1191 // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
1192 // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
1194 if (match(Op0
, m_NSWShl(m_Value(X
), m_APInt(ShOp1
))) &&
1195 ShOp1
->ult(BitWidth
)) {
1196 unsigned ShlAmt
= ShOp1
->getZExtValue();
1197 if (ShlAmt
< ShAmt
) {
1198 // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
1199 Constant
*ShiftDiff
= ConstantInt::get(Ty
, ShAmt
- ShlAmt
);
1200 auto *NewAShr
= BinaryOperator::CreateAShr(X
, ShiftDiff
);
1201 NewAShr
->setIsExact(I
.isExact());
1204 if (ShlAmt
> ShAmt
) {
1205 // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
1206 Constant
*ShiftDiff
= ConstantInt::get(Ty
, ShlAmt
- ShAmt
);
1207 auto *NewShl
= BinaryOperator::Create(Instruction::Shl
, X
, ShiftDiff
);
1208 NewShl
->setHasNoSignedWrap(true);
1213 if (match(Op0
, m_AShr(m_Value(X
), m_APInt(ShOp1
))) &&
1214 ShOp1
->ult(BitWidth
)) {
1215 unsigned AmtSum
= ShAmt
+ ShOp1
->getZExtValue();
1216 // Oversized arithmetic shifts replicate the sign bit.
1217 AmtSum
= std::min(AmtSum
, BitWidth
- 1);
1218 // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
1219 return BinaryOperator::CreateAShr(X
, ConstantInt::get(Ty
, AmtSum
));
1222 if (match(Op0
, m_OneUse(m_SExt(m_Value(X
)))) &&
1223 (Ty
->isVectorTy() || shouldChangeType(Ty
, X
->getType()))) {
1224 // ashr (sext X), C --> sext (ashr X, C')
1225 Type
*SrcTy
= X
->getType();
1226 ShAmt
= std::min(ShAmt
, SrcTy
->getScalarSizeInBits() - 1);
1227 Value
*NewSh
= Builder
.CreateAShr(X
, ConstantInt::get(SrcTy
, ShAmt
));
1228 return new SExtInst(NewSh
, Ty
);
1231 // If the shifted-out value is known-zero, then this is an exact shift.
1233 MaskedValueIsZero(Op0
, APInt::getLowBitsSet(BitWidth
, ShAmt
), 0, &I
)) {
1239 if (Instruction
*R
= foldVariableSignZeroExtensionOfVariableHighBitExtract(I
))
1242 // See if we can turn a signed shr into an unsigned shr.
1243 if (MaskedValueIsZero(Op0
, APInt::getSignMask(BitWidth
), 0, &I
))
1244 return BinaryOperator::CreateLShr(Op0
, Op1
);