1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements instcombine for ExtractElement, InsertElement and
12 //===----------------------------------------------------------------------===//
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/VectorUtils.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/User.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
43 using namespace PatternMatch
;
45 #define DEBUG_TYPE "instcombine"
47 /// Return true if the value is cheaper to scalarize than it is to leave as a
48 /// vector operation. IsConstantExtractIndex indicates whether we are extracting
49 /// one known element from a vector constant.
51 /// FIXME: It's possible to create more instructions than previously existed.
52 static bool cheapToScalarize(Value
*V
, bool IsConstantExtractIndex
) {
53 // If we can pick a scalar constant value out of a vector, that is free.
54 if (auto *C
= dyn_cast
<Constant
>(V
))
55 return IsConstantExtractIndex
|| C
->getSplatValue();
57 // An insertelement to the same constant index as our extract will simplify
58 // to the scalar inserted element. An insertelement to a different constant
59 // index is irrelevant to our extract.
60 if (match(V
, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())))
61 return IsConstantExtractIndex
;
63 if (match(V
, m_OneUse(m_Load(m_Value()))))
67 if (match(V
, m_OneUse(m_BinOp(m_Value(V0
), m_Value(V1
)))))
68 if (cheapToScalarize(V0
, IsConstantExtractIndex
) ||
69 cheapToScalarize(V1
, IsConstantExtractIndex
))
72 CmpInst::Predicate UnusedPred
;
73 if (match(V
, m_OneUse(m_Cmp(UnusedPred
, m_Value(V0
), m_Value(V1
)))))
74 if (cheapToScalarize(V0
, IsConstantExtractIndex
) ||
75 cheapToScalarize(V1
, IsConstantExtractIndex
))
81 // If we have a PHI node with a vector type that is only used to feed
82 // itself and be an operand of extractelement at a constant location,
83 // try to replace the PHI of the vector type with a PHI of a scalar type.
84 Instruction
*InstCombiner::scalarizePHI(ExtractElementInst
&EI
, PHINode
*PN
) {
85 SmallVector
<Instruction
*, 2> Extracts
;
86 // The users we want the PHI to have are:
87 // 1) The EI ExtractElement (we already know this)
88 // 2) Possibly more ExtractElements with the same index.
89 // 3) Another operand, which will feed back into the PHI.
90 Instruction
*PHIUser
= nullptr;
91 for (auto U
: PN
->users()) {
92 if (ExtractElementInst
*EU
= dyn_cast
<ExtractElementInst
>(U
)) {
93 if (EI
.getIndexOperand() == EU
->getIndexOperand())
94 Extracts
.push_back(EU
);
97 } else if (!PHIUser
) {
98 PHIUser
= cast
<Instruction
>(U
);
107 // Verify that this PHI user has one use, which is the PHI itself,
108 // and that it is a binary operation which is cheap to scalarize.
109 // otherwise return nullptr.
110 if (!PHIUser
->hasOneUse() || !(PHIUser
->user_back() == PN
) ||
111 !(isa
<BinaryOperator
>(PHIUser
)) || !cheapToScalarize(PHIUser
, true))
114 // Create a scalar PHI node that will replace the vector PHI node
115 // just before the current PHI node.
116 PHINode
*scalarPHI
= cast
<PHINode
>(InsertNewInstWith(
117 PHINode::Create(EI
.getType(), PN
->getNumIncomingValues(), ""), *PN
));
118 // Scalarize each PHI operand.
119 for (unsigned i
= 0; i
< PN
->getNumIncomingValues(); i
++) {
120 Value
*PHIInVal
= PN
->getIncomingValue(i
);
121 BasicBlock
*inBB
= PN
->getIncomingBlock(i
);
122 Value
*Elt
= EI
.getIndexOperand();
123 // If the operand is the PHI induction variable:
124 if (PHIInVal
== PHIUser
) {
125 // Scalarize the binary operation. Its first operand is the
126 // scalar PHI, and the second operand is extracted from the other
128 BinaryOperator
*B0
= cast
<BinaryOperator
>(PHIUser
);
129 unsigned opId
= (B0
->getOperand(0) == PN
) ? 1 : 0;
130 Value
*Op
= InsertNewInstWith(
131 ExtractElementInst::Create(B0
->getOperand(opId
), Elt
,
132 B0
->getOperand(opId
)->getName() + ".Elt"),
134 Value
*newPHIUser
= InsertNewInstWith(
135 BinaryOperator::CreateWithCopiedFlags(B0
->getOpcode(),
136 scalarPHI
, Op
, B0
), *B0
);
137 scalarPHI
->addIncoming(newPHIUser
, inBB
);
139 // Scalarize PHI input:
140 Instruction
*newEI
= ExtractElementInst::Create(PHIInVal
, Elt
, "");
141 // Insert the new instruction into the predecessor basic block.
142 Instruction
*pos
= dyn_cast
<Instruction
>(PHIInVal
);
143 BasicBlock::iterator InsertPos
;
144 if (pos
&& !isa
<PHINode
>(pos
)) {
145 InsertPos
= ++pos
->getIterator();
147 InsertPos
= inBB
->getFirstInsertionPt();
150 InsertNewInstWith(newEI
, *InsertPos
);
152 scalarPHI
->addIncoming(newEI
, inBB
);
156 for (auto E
: Extracts
)
157 replaceInstUsesWith(*E
, scalarPHI
);
162 static Instruction
*foldBitcastExtElt(ExtractElementInst
&Ext
,
163 InstCombiner::BuilderTy
&Builder
,
167 if (!match(Ext
.getVectorOperand(), m_BitCast(m_Value(X
))) ||
168 !X
->getType()->isVectorTy() ||
169 !match(Ext
.getIndexOperand(), m_ConstantInt(ExtIndexC
)))
172 // If this extractelement is using a bitcast from a vector of the same number
173 // of elements, see if we can find the source element from the source vector:
174 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
175 Type
*SrcTy
= X
->getType();
176 Type
*DestTy
= Ext
.getType();
177 unsigned NumSrcElts
= SrcTy
->getVectorNumElements();
178 unsigned NumElts
= Ext
.getVectorOperandType()->getNumElements();
179 if (NumSrcElts
== NumElts
)
180 if (Value
*Elt
= findScalarElement(X
, ExtIndexC
))
181 return new BitCastInst(Elt
, DestTy
);
183 // If the source elements are wider than the destination, try to shift and
184 // truncate a subset of scalar bits of an insert op.
185 if (NumSrcElts
< NumElts
) {
188 if (!match(X
, m_InsertElement(m_Value(), m_Value(Scalar
),
189 m_ConstantInt(InsIndexC
))))
192 // The extract must be from the subset of vector elements that we inserted
193 // into. Example: if we inserted element 1 of a <2 x i64> and we are
194 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
195 // of elements 4-7 of the bitcasted vector.
196 unsigned NarrowingRatio
= NumElts
/ NumSrcElts
;
197 if (ExtIndexC
/ NarrowingRatio
!= InsIndexC
)
200 // We are extracting part of the original scalar. How that scalar is
201 // inserted into the vector depends on the endian-ness. Example:
202 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7
203 // +--+--+--+--+--+--+--+--+
204 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3|
205 // extelt <4 x i16> V', 3: | |S2|S3|
206 // +--+--+--+--+--+--+--+--+
207 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
208 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
209 // In this example, we must right-shift little-endian. Big-endian is just a
211 unsigned Chunk
= ExtIndexC
% NarrowingRatio
;
213 Chunk
= NarrowingRatio
- 1 - Chunk
;
215 // Bail out if this is an FP vector to FP vector sequence. That would take
216 // more instructions than we started with unless there is no shift, and it
217 // may not be handled as well in the backend.
218 bool NeedSrcBitcast
= SrcTy
->getScalarType()->isFloatingPointTy();
219 bool NeedDestBitcast
= DestTy
->isFloatingPointTy();
220 if (NeedSrcBitcast
&& NeedDestBitcast
)
223 unsigned SrcWidth
= SrcTy
->getScalarSizeInBits();
224 unsigned DestWidth
= DestTy
->getPrimitiveSizeInBits();
225 unsigned ShAmt
= Chunk
* DestWidth
;
227 // TODO: This limitation is more strict than necessary. We could sum the
228 // number of new instructions and subtract the number eliminated to know if
230 if (!X
->hasOneUse() || !Ext
.getVectorOperand()->hasOneUse())
231 if (NeedSrcBitcast
|| NeedDestBitcast
)
234 if (NeedSrcBitcast
) {
235 Type
*SrcIntTy
= IntegerType::getIntNTy(Scalar
->getContext(), SrcWidth
);
236 Scalar
= Builder
.CreateBitCast(Scalar
, SrcIntTy
);
240 // Bail out if we could end with more instructions than we started with.
241 if (!Ext
.getVectorOperand()->hasOneUse())
243 Scalar
= Builder
.CreateLShr(Scalar
, ShAmt
);
246 if (NeedDestBitcast
) {
247 Type
*DestIntTy
= IntegerType::getIntNTy(Scalar
->getContext(), DestWidth
);
248 return new BitCastInst(Builder
.CreateTrunc(Scalar
, DestIntTy
), DestTy
);
250 return new TruncInst(Scalar
, DestTy
);
256 /// Find elements of V demanded by UserInstr.
257 static APInt
findDemandedEltsBySingleUser(Value
*V
, Instruction
*UserInstr
) {
258 unsigned VWidth
= V
->getType()->getVectorNumElements();
260 // Conservatively assume that all elements are needed.
261 APInt
UsedElts(APInt::getAllOnesValue(VWidth
));
263 switch (UserInstr
->getOpcode()) {
264 case Instruction::ExtractElement
: {
265 ExtractElementInst
*EEI
= cast
<ExtractElementInst
>(UserInstr
);
266 assert(EEI
->getVectorOperand() == V
);
267 ConstantInt
*EEIIndexC
= dyn_cast
<ConstantInt
>(EEI
->getIndexOperand());
268 if (EEIIndexC
&& EEIIndexC
->getValue().ult(VWidth
)) {
269 UsedElts
= APInt::getOneBitSet(VWidth
, EEIIndexC
->getZExtValue());
273 case Instruction::ShuffleVector
: {
274 ShuffleVectorInst
*Shuffle
= cast
<ShuffleVectorInst
>(UserInstr
);
275 unsigned MaskNumElts
= UserInstr
->getType()->getVectorNumElements();
277 UsedElts
= APInt(VWidth
, 0);
278 for (unsigned i
= 0; i
< MaskNumElts
; i
++) {
279 unsigned MaskVal
= Shuffle
->getMaskValue(i
);
280 if (MaskVal
== -1u || MaskVal
>= 2 * VWidth
)
282 if (Shuffle
->getOperand(0) == V
&& (MaskVal
< VWidth
))
283 UsedElts
.setBit(MaskVal
);
284 if (Shuffle
->getOperand(1) == V
&&
285 ((MaskVal
>= VWidth
) && (MaskVal
< 2 * VWidth
)))
286 UsedElts
.setBit(MaskVal
- VWidth
);
296 /// Find union of elements of V demanded by all its users.
297 /// If it is known by querying findDemandedEltsBySingleUser that
298 /// no user demands an element of V, then the corresponding bit
299 /// remains unset in the returned value.
300 static APInt
findDemandedEltsByAllUsers(Value
*V
) {
301 unsigned VWidth
= V
->getType()->getVectorNumElements();
303 APInt
UnionUsedElts(VWidth
, 0);
304 for (const Use
&U
: V
->uses()) {
305 if (Instruction
*I
= dyn_cast
<Instruction
>(U
.getUser())) {
306 UnionUsedElts
|= findDemandedEltsBySingleUser(V
, I
);
308 UnionUsedElts
= APInt::getAllOnesValue(VWidth
);
312 if (UnionUsedElts
.isAllOnesValue())
316 return UnionUsedElts
;
319 Instruction
*InstCombiner::visitExtractElementInst(ExtractElementInst
&EI
) {
320 Value
*SrcVec
= EI
.getVectorOperand();
321 Value
*Index
= EI
.getIndexOperand();
322 if (Value
*V
= SimplifyExtractElementInst(SrcVec
, Index
,
323 SQ
.getWithInstruction(&EI
)))
324 return replaceInstUsesWith(EI
, V
);
326 // If extracting a specified index from the vector, see if we can recursively
327 // find a previously computed scalar that was inserted into the vector.
328 auto *IndexC
= dyn_cast
<ConstantInt
>(Index
);
330 unsigned NumElts
= EI
.getVectorOperandType()->getNumElements();
332 // InstSimplify should handle cases where the index is invalid.
333 if (!IndexC
->getValue().ule(NumElts
))
336 // This instruction only demands the single element from the input vector.
338 // If the input vector has a single use, simplify it based on this use
340 if (SrcVec
->hasOneUse()) {
341 APInt
UndefElts(NumElts
, 0);
342 APInt
DemandedElts(NumElts
, 0);
343 DemandedElts
.setBit(IndexC
->getZExtValue());
345 SimplifyDemandedVectorElts(SrcVec
, DemandedElts
, UndefElts
)) {
350 // If the input vector has multiple uses, simplify it based on a union
351 // of all elements used.
352 APInt DemandedElts
= findDemandedEltsByAllUsers(SrcVec
);
353 if (!DemandedElts
.isAllOnesValue()) {
354 APInt
UndefElts(NumElts
, 0);
355 if (Value
*V
= SimplifyDemandedVectorElts(
356 SrcVec
, DemandedElts
, UndefElts
, 0 /* Depth */,
357 true /* AllowMultipleUsers */)) {
359 SrcVec
->replaceAllUsesWith(V
);
366 if (Instruction
*I
= foldBitcastExtElt(EI
, Builder
, DL
.isBigEndian()))
369 // If there's a vector PHI feeding a scalar use through this extractelement
370 // instruction, try to scalarize the PHI.
371 if (auto *Phi
= dyn_cast
<PHINode
>(SrcVec
))
372 if (Instruction
*ScalarPHI
= scalarizePHI(EI
, Phi
))
377 if (match(SrcVec
, m_BinOp(BO
)) && cheapToScalarize(SrcVec
, IndexC
)) {
378 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
379 Value
*X
= BO
->getOperand(0), *Y
= BO
->getOperand(1);
380 Value
*E0
= Builder
.CreateExtractElement(X
, Index
);
381 Value
*E1
= Builder
.CreateExtractElement(Y
, Index
);
382 return BinaryOperator::CreateWithCopiedFlags(BO
->getOpcode(), E0
, E1
, BO
);
386 CmpInst::Predicate Pred
;
387 if (match(SrcVec
, m_Cmp(Pred
, m_Value(X
), m_Value(Y
))) &&
388 cheapToScalarize(SrcVec
, IndexC
)) {
389 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
390 Value
*E0
= Builder
.CreateExtractElement(X
, Index
);
391 Value
*E1
= Builder
.CreateExtractElement(Y
, Index
);
392 return CmpInst::Create(cast
<CmpInst
>(SrcVec
)->getOpcode(), Pred
, E0
, E1
);
395 if (auto *I
= dyn_cast
<Instruction
>(SrcVec
)) {
396 if (auto *IE
= dyn_cast
<InsertElementInst
>(I
)) {
397 // Extracting the inserted element?
398 if (IE
->getOperand(2) == Index
)
399 return replaceInstUsesWith(EI
, IE
->getOperand(1));
400 // If the inserted and extracted elements are constants, they must not
401 // be the same value, extract from the pre-inserted value instead.
402 if (isa
<Constant
>(IE
->getOperand(2)) && IndexC
) {
403 Worklist
.AddValue(SrcVec
);
404 EI
.setOperand(0, IE
->getOperand(0));
407 } else if (auto *SVI
= dyn_cast
<ShuffleVectorInst
>(I
)) {
408 // If this is extracting an element from a shufflevector, figure out where
409 // it came from and extract from the appropriate input element instead.
410 if (auto *Elt
= dyn_cast
<ConstantInt
>(Index
)) {
411 int SrcIdx
= SVI
->getMaskValue(Elt
->getZExtValue());
414 SVI
->getOperand(0)->getType()->getVectorNumElements();
417 return replaceInstUsesWith(EI
, UndefValue::get(EI
.getType()));
418 if (SrcIdx
< (int)LHSWidth
)
419 Src
= SVI
->getOperand(0);
422 Src
= SVI
->getOperand(1);
424 Type
*Int32Ty
= Type::getInt32Ty(EI
.getContext());
425 return ExtractElementInst::Create(Src
,
426 ConstantInt::get(Int32Ty
,
429 } else if (auto *CI
= dyn_cast
<CastInst
>(I
)) {
430 // Canonicalize extractelement(cast) -> cast(extractelement).
431 // Bitcasts can change the number of vector elements, and they cost
433 if (CI
->hasOneUse() && (CI
->getOpcode() != Instruction::BitCast
)) {
434 Value
*EE
= Builder
.CreateExtractElement(CI
->getOperand(0), Index
);
435 Worklist
.AddValue(EE
);
436 return CastInst::Create(CI
->getOpcode(), EE
, EI
.getType());
443 /// If V is a shuffle of values that ONLY returns elements from either LHS or
444 /// RHS, return the shuffle mask and true. Otherwise, return false.
445 static bool collectSingleShuffleElements(Value
*V
, Value
*LHS
, Value
*RHS
,
446 SmallVectorImpl
<Constant
*> &Mask
) {
447 assert(LHS
->getType() == RHS
->getType() &&
448 "Invalid CollectSingleShuffleElements");
449 unsigned NumElts
= V
->getType()->getVectorNumElements();
451 if (isa
<UndefValue
>(V
)) {
452 Mask
.assign(NumElts
, UndefValue::get(Type::getInt32Ty(V
->getContext())));
457 for (unsigned i
= 0; i
!= NumElts
; ++i
)
458 Mask
.push_back(ConstantInt::get(Type::getInt32Ty(V
->getContext()), i
));
463 for (unsigned i
= 0; i
!= NumElts
; ++i
)
464 Mask
.push_back(ConstantInt::get(Type::getInt32Ty(V
->getContext()),
469 if (InsertElementInst
*IEI
= dyn_cast
<InsertElementInst
>(V
)) {
470 // If this is an insert of an extract from some other vector, include it.
471 Value
*VecOp
= IEI
->getOperand(0);
472 Value
*ScalarOp
= IEI
->getOperand(1);
473 Value
*IdxOp
= IEI
->getOperand(2);
475 if (!isa
<ConstantInt
>(IdxOp
))
477 unsigned InsertedIdx
= cast
<ConstantInt
>(IdxOp
)->getZExtValue();
479 if (isa
<UndefValue
>(ScalarOp
)) { // inserting undef into vector.
480 // We can handle this if the vector we are inserting into is
482 if (collectSingleShuffleElements(VecOp
, LHS
, RHS
, Mask
)) {
483 // If so, update the mask to reflect the inserted undef.
484 Mask
[InsertedIdx
] = UndefValue::get(Type::getInt32Ty(V
->getContext()));
487 } else if (ExtractElementInst
*EI
= dyn_cast
<ExtractElementInst
>(ScalarOp
)){
488 if (isa
<ConstantInt
>(EI
->getOperand(1))) {
489 unsigned ExtractedIdx
=
490 cast
<ConstantInt
>(EI
->getOperand(1))->getZExtValue();
491 unsigned NumLHSElts
= LHS
->getType()->getVectorNumElements();
493 // This must be extracting from either LHS or RHS.
494 if (EI
->getOperand(0) == LHS
|| EI
->getOperand(0) == RHS
) {
495 // We can handle this if the vector we are inserting into is
497 if (collectSingleShuffleElements(VecOp
, LHS
, RHS
, Mask
)) {
498 // If so, update the mask to reflect the inserted value.
499 if (EI
->getOperand(0) == LHS
) {
500 Mask
[InsertedIdx
% NumElts
] =
501 ConstantInt::get(Type::getInt32Ty(V
->getContext()),
504 assert(EI
->getOperand(0) == RHS
);
505 Mask
[InsertedIdx
% NumElts
] =
506 ConstantInt::get(Type::getInt32Ty(V
->getContext()),
507 ExtractedIdx
+ NumLHSElts
);
519 /// If we have insertion into a vector that is wider than the vector that we
520 /// are extracting from, try to widen the source vector to allow a single
521 /// shufflevector to replace one or more insert/extract pairs.
522 static void replaceExtractElements(InsertElementInst
*InsElt
,
523 ExtractElementInst
*ExtElt
,
525 VectorType
*InsVecType
= InsElt
->getType();
526 VectorType
*ExtVecType
= ExtElt
->getVectorOperandType();
527 unsigned NumInsElts
= InsVecType
->getVectorNumElements();
528 unsigned NumExtElts
= ExtVecType
->getVectorNumElements();
530 // The inserted-to vector must be wider than the extracted-from vector.
531 if (InsVecType
->getElementType() != ExtVecType
->getElementType() ||
532 NumExtElts
>= NumInsElts
)
535 // Create a shuffle mask to widen the extended-from vector using undefined
536 // values. The mask selects all of the values of the original vector followed
537 // by as many undefined values as needed to create a vector of the same length
538 // as the inserted-to vector.
539 SmallVector
<Constant
*, 16> ExtendMask
;
540 IntegerType
*IntType
= Type::getInt32Ty(InsElt
->getContext());
541 for (unsigned i
= 0; i
< NumExtElts
; ++i
)
542 ExtendMask
.push_back(ConstantInt::get(IntType
, i
));
543 for (unsigned i
= NumExtElts
; i
< NumInsElts
; ++i
)
544 ExtendMask
.push_back(UndefValue::get(IntType
));
546 Value
*ExtVecOp
= ExtElt
->getVectorOperand();
547 auto *ExtVecOpInst
= dyn_cast
<Instruction
>(ExtVecOp
);
548 BasicBlock
*InsertionBlock
= (ExtVecOpInst
&& !isa
<PHINode
>(ExtVecOpInst
))
549 ? ExtVecOpInst
->getParent()
550 : ExtElt
->getParent();
552 // TODO: This restriction matches the basic block check below when creating
553 // new extractelement instructions. If that limitation is removed, this one
554 // could also be removed. But for now, we just bail out to ensure that we
555 // will replace the extractelement instruction that is feeding our
556 // insertelement instruction. This allows the insertelement to then be
557 // replaced by a shufflevector. If the insertelement is not replaced, we can
558 // induce infinite looping because there's an optimization for extractelement
559 // that will delete our widening shuffle. This would trigger another attempt
560 // here to create that shuffle, and we spin forever.
561 if (InsertionBlock
!= InsElt
->getParent())
564 // TODO: This restriction matches the check in visitInsertElementInst() and
565 // prevents an infinite loop caused by not turning the extract/insert pair
566 // into a shuffle. We really should not need either check, but we're lacking
567 // folds for shufflevectors because we're afraid to generate shuffle masks
568 // that the backend can't handle.
569 if (InsElt
->hasOneUse() && isa
<InsertElementInst
>(InsElt
->user_back()))
572 auto *WideVec
= new ShuffleVectorInst(ExtVecOp
, UndefValue::get(ExtVecType
),
573 ConstantVector::get(ExtendMask
));
575 // Insert the new shuffle after the vector operand of the extract is defined
576 // (as long as it's not a PHI) or at the start of the basic block of the
577 // extract, so any subsequent extracts in the same basic block can use it.
578 // TODO: Insert before the earliest ExtractElementInst that is replaced.
579 if (ExtVecOpInst
&& !isa
<PHINode
>(ExtVecOpInst
))
580 WideVec
->insertAfter(ExtVecOpInst
);
582 IC
.InsertNewInstWith(WideVec
, *ExtElt
->getParent()->getFirstInsertionPt());
584 // Replace extracts from the original narrow vector with extracts from the new
586 for (User
*U
: ExtVecOp
->users()) {
587 ExtractElementInst
*OldExt
= dyn_cast
<ExtractElementInst
>(U
);
588 if (!OldExt
|| OldExt
->getParent() != WideVec
->getParent())
590 auto *NewExt
= ExtractElementInst::Create(WideVec
, OldExt
->getOperand(1));
591 NewExt
->insertAfter(OldExt
);
592 IC
.replaceInstUsesWith(*OldExt
, NewExt
);
596 /// We are building a shuffle to create V, which is a sequence of insertelement,
597 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
598 /// not rely on the second vector source. Return a std::pair containing the
599 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
600 /// parameter as required.
602 /// Note: we intentionally don't try to fold earlier shuffles since they have
603 /// often been chosen carefully to be efficiently implementable on the target.
604 using ShuffleOps
= std::pair
<Value
*, Value
*>;
606 static ShuffleOps
collectShuffleElements(Value
*V
,
607 SmallVectorImpl
<Constant
*> &Mask
,
610 assert(V
->getType()->isVectorTy() && "Invalid shuffle!");
611 unsigned NumElts
= V
->getType()->getVectorNumElements();
613 if (isa
<UndefValue
>(V
)) {
614 Mask
.assign(NumElts
, UndefValue::get(Type::getInt32Ty(V
->getContext())));
615 return std::make_pair(
616 PermittedRHS
? UndefValue::get(PermittedRHS
->getType()) : V
, nullptr);
619 if (isa
<ConstantAggregateZero
>(V
)) {
620 Mask
.assign(NumElts
, ConstantInt::get(Type::getInt32Ty(V
->getContext()),0));
621 return std::make_pair(V
, nullptr);
624 if (InsertElementInst
*IEI
= dyn_cast
<InsertElementInst
>(V
)) {
625 // If this is an insert of an extract from some other vector, include it.
626 Value
*VecOp
= IEI
->getOperand(0);
627 Value
*ScalarOp
= IEI
->getOperand(1);
628 Value
*IdxOp
= IEI
->getOperand(2);
630 if (ExtractElementInst
*EI
= dyn_cast
<ExtractElementInst
>(ScalarOp
)) {
631 if (isa
<ConstantInt
>(EI
->getOperand(1)) && isa
<ConstantInt
>(IdxOp
)) {
632 unsigned ExtractedIdx
=
633 cast
<ConstantInt
>(EI
->getOperand(1))->getZExtValue();
634 unsigned InsertedIdx
= cast
<ConstantInt
>(IdxOp
)->getZExtValue();
636 // Either the extracted from or inserted into vector must be RHSVec,
637 // otherwise we'd end up with a shuffle of three inputs.
638 if (EI
->getOperand(0) == PermittedRHS
|| PermittedRHS
== nullptr) {
639 Value
*RHS
= EI
->getOperand(0);
640 ShuffleOps LR
= collectShuffleElements(VecOp
, Mask
, RHS
, IC
);
641 assert(LR
.second
== nullptr || LR
.second
== RHS
);
643 if (LR
.first
->getType() != RHS
->getType()) {
644 // Although we are giving up for now, see if we can create extracts
645 // that match the inserts for another round of combining.
646 replaceExtractElements(IEI
, EI
, IC
);
648 // We tried our best, but we can't find anything compatible with RHS
649 // further up the chain. Return a trivial shuffle.
650 for (unsigned i
= 0; i
< NumElts
; ++i
)
651 Mask
[i
] = ConstantInt::get(Type::getInt32Ty(V
->getContext()), i
);
652 return std::make_pair(V
, nullptr);
655 unsigned NumLHSElts
= RHS
->getType()->getVectorNumElements();
656 Mask
[InsertedIdx
% NumElts
] =
657 ConstantInt::get(Type::getInt32Ty(V
->getContext()),
658 NumLHSElts
+ExtractedIdx
);
659 return std::make_pair(LR
.first
, RHS
);
662 if (VecOp
== PermittedRHS
) {
663 // We've gone as far as we can: anything on the other side of the
664 // extractelement will already have been converted into a shuffle.
665 unsigned NumLHSElts
=
666 EI
->getOperand(0)->getType()->getVectorNumElements();
667 for (unsigned i
= 0; i
!= NumElts
; ++i
)
668 Mask
.push_back(ConstantInt::get(
669 Type::getInt32Ty(V
->getContext()),
670 i
== InsertedIdx
? ExtractedIdx
: NumLHSElts
+ i
));
671 return std::make_pair(EI
->getOperand(0), PermittedRHS
);
674 // If this insertelement is a chain that comes from exactly these two
675 // vectors, return the vector and the effective shuffle.
676 if (EI
->getOperand(0)->getType() == PermittedRHS
->getType() &&
677 collectSingleShuffleElements(IEI
, EI
->getOperand(0), PermittedRHS
,
679 return std::make_pair(EI
->getOperand(0), PermittedRHS
);
684 // Otherwise, we can't do anything fancy. Return an identity vector.
685 for (unsigned i
= 0; i
!= NumElts
; ++i
)
686 Mask
.push_back(ConstantInt::get(Type::getInt32Ty(V
->getContext()), i
));
687 return std::make_pair(V
, nullptr);
690 /// Try to find redundant insertvalue instructions, like the following ones:
691 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0
692 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0
693 /// Here the second instruction inserts values at the same indices, as the
694 /// first one, making the first one redundant.
695 /// It should be transformed to:
696 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0
697 Instruction
*InstCombiner::visitInsertValueInst(InsertValueInst
&I
) {
698 bool IsRedundant
= false;
699 ArrayRef
<unsigned int> FirstIndices
= I
.getIndices();
701 // If there is a chain of insertvalue instructions (each of them except the
702 // last one has only one use and it's another insertvalue insn from this
703 // chain), check if any of the 'children' uses the same indices as the first
704 // instruction. In this case, the first one is redundant.
707 while (V
->hasOneUse() && Depth
< 10) {
708 User
*U
= V
->user_back();
709 auto UserInsInst
= dyn_cast
<InsertValueInst
>(U
);
710 if (!UserInsInst
|| U
->getOperand(0) != V
)
712 if (UserInsInst
->getIndices() == FirstIndices
) {
721 return replaceInstUsesWith(I
, I
.getOperand(0));
725 static bool isShuffleEquivalentToSelect(ShuffleVectorInst
&Shuf
) {
726 int MaskSize
= Shuf
.getMask()->getType()->getVectorNumElements();
727 int VecSize
= Shuf
.getOperand(0)->getType()->getVectorNumElements();
729 // A vector select does not change the size of the operands.
730 if (MaskSize
!= VecSize
)
733 // Each mask element must be undefined or choose a vector element from one of
734 // the source operands without crossing vector lanes.
735 for (int i
= 0; i
!= MaskSize
; ++i
) {
736 int Elt
= Shuf
.getMaskValue(i
);
737 if (Elt
!= -1 && Elt
!= i
&& Elt
!= i
+ VecSize
)
744 /// Turn a chain of inserts that splats a value into an insert + shuffle:
745 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
746 /// shufflevector(insertelt(X, %k, 0), undef, zero)
747 static Instruction
*foldInsSequenceIntoSplat(InsertElementInst
&InsElt
) {
748 // We are interested in the last insert in a chain. So if this insert has a
749 // single user and that user is an insert, bail.
750 if (InsElt
.hasOneUse() && isa
<InsertElementInst
>(InsElt
.user_back()))
753 auto *VecTy
= cast
<VectorType
>(InsElt
.getType());
754 unsigned NumElements
= VecTy
->getNumElements();
756 // Do not try to do this for a one-element vector, since that's a nop,
757 // and will cause an inf-loop.
758 if (NumElements
== 1)
761 Value
*SplatVal
= InsElt
.getOperand(1);
762 InsertElementInst
*CurrIE
= &InsElt
;
763 SmallVector
<bool, 16> ElementPresent(NumElements
, false);
764 InsertElementInst
*FirstIE
= nullptr;
766 // Walk the chain backwards, keeping track of which indices we inserted into,
767 // until we hit something that isn't an insert of the splatted value.
769 auto *Idx
= dyn_cast
<ConstantInt
>(CurrIE
->getOperand(2));
770 if (!Idx
|| CurrIE
->getOperand(1) != SplatVal
)
773 auto *NextIE
= dyn_cast
<InsertElementInst
>(CurrIE
->getOperand(0));
774 // Check none of the intermediate steps have any additional uses, except
775 // for the root insertelement instruction, which can be re-used, if it
776 // inserts at position 0.
777 if (CurrIE
!= &InsElt
&&
778 (!CurrIE
->hasOneUse() && (NextIE
!= nullptr || !Idx
->isZero())))
781 ElementPresent
[Idx
->getZExtValue()] = true;
786 // If this is just a single insertelement (not a sequence), we are done.
787 if (FirstIE
== &InsElt
)
790 // If we are not inserting into an undef vector, make sure we've seen an
791 // insert into every element.
792 // TODO: If the base vector is not undef, it might be better to create a splat
793 // and then a select-shuffle (blend) with the base vector.
794 if (!isa
<UndefValue
>(FirstIE
->getOperand(0)))
795 if (any_of(ElementPresent
, [](bool Present
) { return !Present
; }))
798 // Create the insert + shuffle.
799 Type
*Int32Ty
= Type::getInt32Ty(InsElt
.getContext());
800 UndefValue
*UndefVec
= UndefValue::get(VecTy
);
801 Constant
*Zero
= ConstantInt::get(Int32Ty
, 0);
802 if (!cast
<ConstantInt
>(FirstIE
->getOperand(2))->isZero())
803 FirstIE
= InsertElementInst::Create(UndefVec
, SplatVal
, Zero
, "", &InsElt
);
805 // Splat from element 0, but replace absent elements with undef in the mask.
806 SmallVector
<Constant
*, 16> Mask(NumElements
, Zero
);
807 for (unsigned i
= 0; i
!= NumElements
; ++i
)
808 if (!ElementPresent
[i
])
809 Mask
[i
] = UndefValue::get(Int32Ty
);
811 return new ShuffleVectorInst(FirstIE
, UndefVec
, ConstantVector::get(Mask
));
814 /// Try to fold an insert element into an existing splat shuffle by changing
815 /// the shuffle's mask to include the index of this insert element.
816 static Instruction
*foldInsEltIntoSplat(InsertElementInst
&InsElt
) {
817 // Check if the vector operand of this insert is a canonical splat shuffle.
818 auto *Shuf
= dyn_cast
<ShuffleVectorInst
>(InsElt
.getOperand(0));
819 if (!Shuf
|| !Shuf
->isZeroEltSplat())
822 // Check for a constant insertion index.
824 if (!match(InsElt
.getOperand(2), m_ConstantInt(IdxC
)))
827 // Check if the splat shuffle's input is the same as this insert's scalar op.
828 Value
*X
= InsElt
.getOperand(1);
829 Value
*Op0
= Shuf
->getOperand(0);
830 if (!match(Op0
, m_InsertElement(m_Undef(), m_Specific(X
), m_ZeroInt())))
833 // Replace the shuffle mask element at the index of this insert with a zero.
835 // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
836 // --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
837 unsigned NumMaskElts
= Shuf
->getType()->getVectorNumElements();
838 SmallVector
<Constant
*, 16> NewMaskVec(NumMaskElts
);
839 Type
*I32Ty
= IntegerType::getInt32Ty(Shuf
->getContext());
840 Constant
*Zero
= ConstantInt::getNullValue(I32Ty
);
841 for (unsigned i
= 0; i
!= NumMaskElts
; ++i
)
842 NewMaskVec
[i
] = i
== IdxC
? Zero
: Shuf
->getMask()->getAggregateElement(i
);
844 Constant
*NewMask
= ConstantVector::get(NewMaskVec
);
845 return new ShuffleVectorInst(Op0
, UndefValue::get(Op0
->getType()), NewMask
);
848 /// Try to fold an extract+insert element into an existing identity shuffle by
849 /// changing the shuffle's mask to include the index of this insert element.
850 static Instruction
*foldInsEltIntoIdentityShuffle(InsertElementInst
&InsElt
) {
851 // Check if the vector operand of this insert is an identity shuffle.
852 auto *Shuf
= dyn_cast
<ShuffleVectorInst
>(InsElt
.getOperand(0));
853 if (!Shuf
|| !isa
<UndefValue
>(Shuf
->getOperand(1)) ||
854 !(Shuf
->isIdentityWithExtract() || Shuf
->isIdentityWithPadding()))
857 // Check for a constant insertion index.
859 if (!match(InsElt
.getOperand(2), m_ConstantInt(IdxC
)))
862 // Check if this insert's scalar op is extracted from the identity shuffle's
864 Value
*Scalar
= InsElt
.getOperand(1);
865 Value
*X
= Shuf
->getOperand(0);
866 if (!match(Scalar
, m_ExtractElement(m_Specific(X
), m_SpecificInt(IdxC
))))
869 // Replace the shuffle mask element at the index of this extract+insert with
870 // that same index value.
872 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
873 unsigned NumMaskElts
= Shuf
->getType()->getVectorNumElements();
874 SmallVector
<Constant
*, 16> NewMaskVec(NumMaskElts
);
875 Type
*I32Ty
= IntegerType::getInt32Ty(Shuf
->getContext());
876 Constant
*NewMaskEltC
= ConstantInt::get(I32Ty
, IdxC
);
877 Constant
*OldMask
= Shuf
->getMask();
878 for (unsigned i
= 0; i
!= NumMaskElts
; ++i
) {
880 // All mask elements besides the inserted element remain the same.
881 NewMaskVec
[i
] = OldMask
->getAggregateElement(i
);
882 } else if (OldMask
->getAggregateElement(i
) == NewMaskEltC
) {
883 // If the mask element was already set, there's nothing to do
884 // (demanded elements analysis may unset it later).
887 assert(isa
<UndefValue
>(OldMask
->getAggregateElement(i
)) &&
888 "Unexpected shuffle mask element for identity shuffle");
889 NewMaskVec
[i
] = NewMaskEltC
;
893 Constant
*NewMask
= ConstantVector::get(NewMaskVec
);
894 return new ShuffleVectorInst(X
, Shuf
->getOperand(1), NewMask
);
897 /// If we have an insertelement instruction feeding into another insertelement
898 /// and the 2nd is inserting a constant into the vector, canonicalize that
899 /// constant insertion before the insertion of a variable:
901 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
902 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
904 /// This has the potential of eliminating the 2nd insertelement instruction
905 /// via constant folding of the scalar constant into a vector constant.
906 static Instruction
*hoistInsEltConst(InsertElementInst
&InsElt2
,
907 InstCombiner::BuilderTy
&Builder
) {
908 auto *InsElt1
= dyn_cast
<InsertElementInst
>(InsElt2
.getOperand(0));
909 if (!InsElt1
|| !InsElt1
->hasOneUse())
914 ConstantInt
*IdxC1
, *IdxC2
;
915 if (match(InsElt1
->getOperand(0), m_Value(X
)) &&
916 match(InsElt1
->getOperand(1), m_Value(Y
)) && !isa
<Constant
>(Y
) &&
917 match(InsElt1
->getOperand(2), m_ConstantInt(IdxC1
)) &&
918 match(InsElt2
.getOperand(1), m_Constant(ScalarC
)) &&
919 match(InsElt2
.getOperand(2), m_ConstantInt(IdxC2
)) && IdxC1
!= IdxC2
) {
920 Value
*NewInsElt1
= Builder
.CreateInsertElement(X
, ScalarC
, IdxC2
);
921 return InsertElementInst::Create(NewInsElt1
, Y
, IdxC1
);
927 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
928 /// --> shufflevector X, CVec', Mask'
929 static Instruction
*foldConstantInsEltIntoShuffle(InsertElementInst
&InsElt
) {
930 auto *Inst
= dyn_cast
<Instruction
>(InsElt
.getOperand(0));
931 // Bail out if the parent has more than one use. In that case, we'd be
932 // replacing the insertelt with a shuffle, and that's not a clear win.
933 if (!Inst
|| !Inst
->hasOneUse())
935 if (auto *Shuf
= dyn_cast
<ShuffleVectorInst
>(InsElt
.getOperand(0))) {
936 // The shuffle must have a constant vector operand. The insertelt must have
937 // a constant scalar being inserted at a constant position in the vector.
938 Constant
*ShufConstVec
, *InsEltScalar
;
939 uint64_t InsEltIndex
;
940 if (!match(Shuf
->getOperand(1), m_Constant(ShufConstVec
)) ||
941 !match(InsElt
.getOperand(1), m_Constant(InsEltScalar
)) ||
942 !match(InsElt
.getOperand(2), m_ConstantInt(InsEltIndex
)))
945 // Adding an element to an arbitrary shuffle could be expensive, but a
946 // shuffle that selects elements from vectors without crossing lanes is
948 // If we're just adding a constant into that shuffle, it will still be
950 if (!isShuffleEquivalentToSelect(*Shuf
))
953 // From the above 'select' check, we know that the mask has the same number
954 // of elements as the vector input operands. We also know that each constant
955 // input element is used in its lane and can not be used more than once by
956 // the shuffle. Therefore, replace the constant in the shuffle's constant
957 // vector with the insertelt constant. Replace the constant in the shuffle's
958 // mask vector with the insertelt index plus the length of the vector
959 // (because the constant vector operand of a shuffle is always the 2nd
961 Constant
*Mask
= Shuf
->getMask();
962 unsigned NumElts
= Mask
->getType()->getVectorNumElements();
963 SmallVector
<Constant
*, 16> NewShufElts(NumElts
);
964 SmallVector
<Constant
*, 16> NewMaskElts(NumElts
);
965 for (unsigned I
= 0; I
!= NumElts
; ++I
) {
966 if (I
== InsEltIndex
) {
967 NewShufElts
[I
] = InsEltScalar
;
968 Type
*Int32Ty
= Type::getInt32Ty(Shuf
->getContext());
969 NewMaskElts
[I
] = ConstantInt::get(Int32Ty
, InsEltIndex
+ NumElts
);
971 // Copy over the existing values.
972 NewShufElts
[I
] = ShufConstVec
->getAggregateElement(I
);
973 NewMaskElts
[I
] = Mask
->getAggregateElement(I
);
977 // Create new operands for a shuffle that includes the constant of the
978 // original insertelt. The old shuffle will be dead now.
979 return new ShuffleVectorInst(Shuf
->getOperand(0),
980 ConstantVector::get(NewShufElts
),
981 ConstantVector::get(NewMaskElts
));
982 } else if (auto *IEI
= dyn_cast
<InsertElementInst
>(Inst
)) {
983 // Transform sequences of insertelements ops with constant data/indexes into
984 // a single shuffle op.
985 unsigned NumElts
= InsElt
.getType()->getNumElements();
987 uint64_t InsertIdx
[2];
989 if (!match(InsElt
.getOperand(2), m_ConstantInt(InsertIdx
[0])) ||
990 !match(InsElt
.getOperand(1), m_Constant(Val
[0])) ||
991 !match(IEI
->getOperand(2), m_ConstantInt(InsertIdx
[1])) ||
992 !match(IEI
->getOperand(1), m_Constant(Val
[1])))
994 SmallVector
<Constant
*, 16> Values(NumElts
);
995 SmallVector
<Constant
*, 16> Mask(NumElts
);
996 auto ValI
= std::begin(Val
);
997 // Generate new constant vector and mask.
998 // We have 2 values/masks from the insertelements instructions. Insert them
999 // into new value/mask vectors.
1000 for (uint64_t I
: InsertIdx
) {
1004 Mask
[I
] = ConstantInt::get(Type::getInt32Ty(InsElt
.getContext()),
1009 // Remaining values are filled with 'undef' values.
1010 for (unsigned I
= 0; I
< NumElts
; ++I
) {
1013 Values
[I
] = UndefValue::get(InsElt
.getType()->getElementType());
1014 Mask
[I
] = ConstantInt::get(Type::getInt32Ty(InsElt
.getContext()), I
);
1017 // Create new operands for a shuffle that includes the constant of the
1018 // original insertelt.
1019 return new ShuffleVectorInst(IEI
->getOperand(0),
1020 ConstantVector::get(Values
),
1021 ConstantVector::get(Mask
));
1026 Instruction
*InstCombiner::visitInsertElementInst(InsertElementInst
&IE
) {
1027 Value
*VecOp
= IE
.getOperand(0);
1028 Value
*ScalarOp
= IE
.getOperand(1);
1029 Value
*IdxOp
= IE
.getOperand(2);
1031 if (auto *V
= SimplifyInsertElementInst(
1032 VecOp
, ScalarOp
, IdxOp
, SQ
.getWithInstruction(&IE
)))
1033 return replaceInstUsesWith(IE
, V
);
1035 // If the vector and scalar are both bitcast from the same element type, do
1036 // the insert in that source type followed by bitcast.
1037 Value
*VecSrc
, *ScalarSrc
;
1038 if (match(VecOp
, m_BitCast(m_Value(VecSrc
))) &&
1039 match(ScalarOp
, m_BitCast(m_Value(ScalarSrc
))) &&
1040 (VecOp
->hasOneUse() || ScalarOp
->hasOneUse()) &&
1041 VecSrc
->getType()->isVectorTy() && !ScalarSrc
->getType()->isVectorTy() &&
1042 VecSrc
->getType()->getVectorElementType() == ScalarSrc
->getType()) {
1043 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
1044 // bitcast (inselt VecSrc, ScalarSrc, IdxOp)
1045 Value
*NewInsElt
= Builder
.CreateInsertElement(VecSrc
, ScalarSrc
, IdxOp
);
1046 return new BitCastInst(NewInsElt
, IE
.getType());
1049 // If the inserted element was extracted from some other vector and both
1050 // indexes are valid constants, try to turn this into a shuffle.
1051 uint64_t InsertedIdx
, ExtractedIdx
;
1053 if (match(IdxOp
, m_ConstantInt(InsertedIdx
)) &&
1054 match(ScalarOp
, m_ExtractElement(m_Value(ExtVecOp
),
1055 m_ConstantInt(ExtractedIdx
))) &&
1056 ExtractedIdx
< ExtVecOp
->getType()->getVectorNumElements()) {
1057 // TODO: Looking at the user(s) to determine if this insert is a
1058 // fold-to-shuffle opportunity does not match the usual instcombine
1059 // constraints. We should decide if the transform is worthy based only
1060 // on this instruction and its operands, but that may not work currently.
1062 // Here, we are trying to avoid creating shuffles before reaching
1063 // the end of a chain of extract-insert pairs. This is complicated because
1064 // we do not generally form arbitrary shuffle masks in instcombine
1065 // (because those may codegen poorly), but collectShuffleElements() does
1068 // The rules for determining what is an acceptable target-independent
1069 // shuffle mask are fuzzy because they evolve based on the backend's
1070 // capabilities and real-world impact.
1071 auto isShuffleRootCandidate
= [](InsertElementInst
&Insert
) {
1072 if (!Insert
.hasOneUse())
1074 auto *InsertUser
= dyn_cast
<InsertElementInst
>(Insert
.user_back());
1080 // Try to form a shuffle from a chain of extract-insert ops.
1081 if (isShuffleRootCandidate(IE
)) {
1082 SmallVector
<Constant
*, 16> Mask
;
1083 ShuffleOps LR
= collectShuffleElements(&IE
, Mask
, nullptr, *this);
1085 // The proposed shuffle may be trivial, in which case we shouldn't
1086 // perform the combine.
1087 if (LR
.first
!= &IE
&& LR
.second
!= &IE
) {
1088 // We now have a shuffle of LHS, RHS, Mask.
1089 if (LR
.second
== nullptr)
1090 LR
.second
= UndefValue::get(LR
.first
->getType());
1091 return new ShuffleVectorInst(LR
.first
, LR
.second
,
1092 ConstantVector::get(Mask
));
1097 unsigned VWidth
= VecOp
->getType()->getVectorNumElements();
1098 APInt
UndefElts(VWidth
, 0);
1099 APInt
AllOnesEltMask(APInt::getAllOnesValue(VWidth
));
1100 if (Value
*V
= SimplifyDemandedVectorElts(&IE
, AllOnesEltMask
, UndefElts
)) {
1102 return replaceInstUsesWith(IE
, V
);
1106 if (Instruction
*Shuf
= foldConstantInsEltIntoShuffle(IE
))
1109 if (Instruction
*NewInsElt
= hoistInsEltConst(IE
, Builder
))
1112 if (Instruction
*Broadcast
= foldInsSequenceIntoSplat(IE
))
1115 if (Instruction
*Splat
= foldInsEltIntoSplat(IE
))
1118 if (Instruction
*IdentityShuf
= foldInsEltIntoIdentityShuffle(IE
))
1119 return IdentityShuf
;
1124 /// Return true if we can evaluate the specified expression tree if the vector
1125 /// elements were shuffled in a different order.
1126 static bool canEvaluateShuffled(Value
*V
, ArrayRef
<int> Mask
,
1127 unsigned Depth
= 5) {
1128 // We can always reorder the elements of a constant.
1129 if (isa
<Constant
>(V
))
1132 // We won't reorder vector arguments. No IPO here.
1133 Instruction
*I
= dyn_cast
<Instruction
>(V
);
1134 if (!I
) return false;
1136 // Two users may expect different orders of the elements. Don't try it.
1137 if (!I
->hasOneUse())
1140 if (Depth
== 0) return false;
1142 switch (I
->getOpcode()) {
1143 case Instruction::UDiv
:
1144 case Instruction::SDiv
:
1145 case Instruction::URem
:
1146 case Instruction::SRem
:
1147 // Propagating an undefined shuffle mask element to integer div/rem is not
1148 // allowed because those opcodes can create immediate undefined behavior
1149 // from an undefined element in an operand.
1150 if (llvm::any_of(Mask
, [](int M
){ return M
== -1; }))
1153 case Instruction::Add
:
1154 case Instruction::FAdd
:
1155 case Instruction::Sub
:
1156 case Instruction::FSub
:
1157 case Instruction::Mul
:
1158 case Instruction::FMul
:
1159 case Instruction::FDiv
:
1160 case Instruction::FRem
:
1161 case Instruction::Shl
:
1162 case Instruction::LShr
:
1163 case Instruction::AShr
:
1164 case Instruction::And
:
1165 case Instruction::Or
:
1166 case Instruction::Xor
:
1167 case Instruction::ICmp
:
1168 case Instruction::FCmp
:
1169 case Instruction::Trunc
:
1170 case Instruction::ZExt
:
1171 case Instruction::SExt
:
1172 case Instruction::FPToUI
:
1173 case Instruction::FPToSI
:
1174 case Instruction::UIToFP
:
1175 case Instruction::SIToFP
:
1176 case Instruction::FPTrunc
:
1177 case Instruction::FPExt
:
1178 case Instruction::GetElementPtr
: {
1179 // Bail out if we would create longer vector ops. We could allow creating
1180 // longer vector ops, but that may result in more expensive codegen.
1181 Type
*ITy
= I
->getType();
1182 if (ITy
->isVectorTy() && Mask
.size() > ITy
->getVectorNumElements())
1184 for (Value
*Operand
: I
->operands()) {
1185 if (!canEvaluateShuffled(Operand
, Mask
, Depth
- 1))
1190 case Instruction::InsertElement
: {
1191 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
->getOperand(2));
1192 if (!CI
) return false;
1193 int ElementNumber
= CI
->getLimitedValue();
1195 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1196 // can't put an element into multiple indices.
1197 bool SeenOnce
= false;
1198 for (int i
= 0, e
= Mask
.size(); i
!= e
; ++i
) {
1199 if (Mask
[i
] == ElementNumber
) {
1205 return canEvaluateShuffled(I
->getOperand(0), Mask
, Depth
- 1);
1211 /// Rebuild a new instruction just like 'I' but with the new operands given.
1212 /// In the event of type mismatch, the type of the operands is correct.
1213 static Value
*buildNew(Instruction
*I
, ArrayRef
<Value
*> NewOps
) {
1214 // We don't want to use the IRBuilder here because we want the replacement
1215 // instructions to appear next to 'I', not the builder's insertion point.
1216 switch (I
->getOpcode()) {
1217 case Instruction::Add
:
1218 case Instruction::FAdd
:
1219 case Instruction::Sub
:
1220 case Instruction::FSub
:
1221 case Instruction::Mul
:
1222 case Instruction::FMul
:
1223 case Instruction::UDiv
:
1224 case Instruction::SDiv
:
1225 case Instruction::FDiv
:
1226 case Instruction::URem
:
1227 case Instruction::SRem
:
1228 case Instruction::FRem
:
1229 case Instruction::Shl
:
1230 case Instruction::LShr
:
1231 case Instruction::AShr
:
1232 case Instruction::And
:
1233 case Instruction::Or
:
1234 case Instruction::Xor
: {
1235 BinaryOperator
*BO
= cast
<BinaryOperator
>(I
);
1236 assert(NewOps
.size() == 2 && "binary operator with #ops != 2");
1237 BinaryOperator
*New
=
1238 BinaryOperator::Create(cast
<BinaryOperator
>(I
)->getOpcode(),
1239 NewOps
[0], NewOps
[1], "", BO
);
1240 if (isa
<OverflowingBinaryOperator
>(BO
)) {
1241 New
->setHasNoUnsignedWrap(BO
->hasNoUnsignedWrap());
1242 New
->setHasNoSignedWrap(BO
->hasNoSignedWrap());
1244 if (isa
<PossiblyExactOperator
>(BO
)) {
1245 New
->setIsExact(BO
->isExact());
1247 if (isa
<FPMathOperator
>(BO
))
1248 New
->copyFastMathFlags(I
);
1251 case Instruction::ICmp
:
1252 assert(NewOps
.size() == 2 && "icmp with #ops != 2");
1253 return new ICmpInst(I
, cast
<ICmpInst
>(I
)->getPredicate(),
1254 NewOps
[0], NewOps
[1]);
1255 case Instruction::FCmp
:
1256 assert(NewOps
.size() == 2 && "fcmp with #ops != 2");
1257 return new FCmpInst(I
, cast
<FCmpInst
>(I
)->getPredicate(),
1258 NewOps
[0], NewOps
[1]);
1259 case Instruction::Trunc
:
1260 case Instruction::ZExt
:
1261 case Instruction::SExt
:
1262 case Instruction::FPToUI
:
1263 case Instruction::FPToSI
:
1264 case Instruction::UIToFP
:
1265 case Instruction::SIToFP
:
1266 case Instruction::FPTrunc
:
1267 case Instruction::FPExt
: {
1268 // It's possible that the mask has a different number of elements from
1269 // the original cast. We recompute the destination type to match the mask.
1271 VectorType::get(I
->getType()->getScalarType(),
1272 NewOps
[0]->getType()->getVectorNumElements());
1273 assert(NewOps
.size() == 1 && "cast with #ops != 1");
1274 return CastInst::Create(cast
<CastInst
>(I
)->getOpcode(), NewOps
[0], DestTy
,
1277 case Instruction::GetElementPtr
: {
1278 Value
*Ptr
= NewOps
[0];
1279 ArrayRef
<Value
*> Idx
= NewOps
.slice(1);
1280 GetElementPtrInst
*GEP
= GetElementPtrInst::Create(
1281 cast
<GetElementPtrInst
>(I
)->getSourceElementType(), Ptr
, Idx
, "", I
);
1282 GEP
->setIsInBounds(cast
<GetElementPtrInst
>(I
)->isInBounds());
1286 llvm_unreachable("failed to rebuild vector instructions");
1289 static Value
*evaluateInDifferentElementOrder(Value
*V
, ArrayRef
<int> Mask
) {
1290 // Mask.size() does not need to be equal to the number of vector elements.
1292 assert(V
->getType()->isVectorTy() && "can't reorder non-vector elements");
1293 Type
*EltTy
= V
->getType()->getScalarType();
1294 Type
*I32Ty
= IntegerType::getInt32Ty(V
->getContext());
1295 if (isa
<UndefValue
>(V
))
1296 return UndefValue::get(VectorType::get(EltTy
, Mask
.size()));
1298 if (isa
<ConstantAggregateZero
>(V
))
1299 return ConstantAggregateZero::get(VectorType::get(EltTy
, Mask
.size()));
1301 if (Constant
*C
= dyn_cast
<Constant
>(V
)) {
1302 SmallVector
<Constant
*, 16> MaskValues
;
1303 for (int i
= 0, e
= Mask
.size(); i
!= e
; ++i
) {
1305 MaskValues
.push_back(UndefValue::get(I32Ty
));
1307 MaskValues
.push_back(ConstantInt::get(I32Ty
, Mask
[i
]));
1309 return ConstantExpr::getShuffleVector(C
, UndefValue::get(C
->getType()),
1310 ConstantVector::get(MaskValues
));
1313 Instruction
*I
= cast
<Instruction
>(V
);
1314 switch (I
->getOpcode()) {
1315 case Instruction::Add
:
1316 case Instruction::FAdd
:
1317 case Instruction::Sub
:
1318 case Instruction::FSub
:
1319 case Instruction::Mul
:
1320 case Instruction::FMul
:
1321 case Instruction::UDiv
:
1322 case Instruction::SDiv
:
1323 case Instruction::FDiv
:
1324 case Instruction::URem
:
1325 case Instruction::SRem
:
1326 case Instruction::FRem
:
1327 case Instruction::Shl
:
1328 case Instruction::LShr
:
1329 case Instruction::AShr
:
1330 case Instruction::And
:
1331 case Instruction::Or
:
1332 case Instruction::Xor
:
1333 case Instruction::ICmp
:
1334 case Instruction::FCmp
:
1335 case Instruction::Trunc
:
1336 case Instruction::ZExt
:
1337 case Instruction::SExt
:
1338 case Instruction::FPToUI
:
1339 case Instruction::FPToSI
:
1340 case Instruction::UIToFP
:
1341 case Instruction::SIToFP
:
1342 case Instruction::FPTrunc
:
1343 case Instruction::FPExt
:
1344 case Instruction::Select
:
1345 case Instruction::GetElementPtr
: {
1346 SmallVector
<Value
*, 8> NewOps
;
1347 bool NeedsRebuild
= (Mask
.size() != I
->getType()->getVectorNumElements());
1348 for (int i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
1350 // Recursively call evaluateInDifferentElementOrder on vector arguments
1351 // as well. E.g. GetElementPtr may have scalar operands even if the
1352 // return value is a vector, so we need to examine the operand type.
1353 if (I
->getOperand(i
)->getType()->isVectorTy())
1354 V
= evaluateInDifferentElementOrder(I
->getOperand(i
), Mask
);
1356 V
= I
->getOperand(i
);
1357 NewOps
.push_back(V
);
1358 NeedsRebuild
|= (V
!= I
->getOperand(i
));
1361 return buildNew(I
, NewOps
);
1365 case Instruction::InsertElement
: {
1366 int Element
= cast
<ConstantInt
>(I
->getOperand(2))->getLimitedValue();
1368 // The insertelement was inserting at Element. Figure out which element
1369 // that becomes after shuffling. The answer is guaranteed to be unique
1370 // by CanEvaluateShuffled.
1373 for (int e
= Mask
.size(); Index
!= e
; ++Index
) {
1374 if (Mask
[Index
] == Element
) {
1380 // If element is not in Mask, no need to handle the operand 1 (element to
1381 // be inserted). Just evaluate values in operand 0 according to Mask.
1383 return evaluateInDifferentElementOrder(I
->getOperand(0), Mask
);
1385 Value
*V
= evaluateInDifferentElementOrder(I
->getOperand(0), Mask
);
1386 return InsertElementInst::Create(V
, I
->getOperand(1),
1387 ConstantInt::get(I32Ty
, Index
), "", I
);
1390 llvm_unreachable("failed to reorder elements of vector instruction!");
1393 static void recognizeIdentityMask(const SmallVectorImpl
<int> &Mask
,
1394 bool &isLHSID
, bool &isRHSID
) {
1395 isLHSID
= isRHSID
= true;
1397 for (unsigned i
= 0, e
= Mask
.size(); i
!= e
; ++i
) {
1398 if (Mask
[i
] < 0) continue; // Ignore undef values.
1399 // Is this an identity shuffle of the LHS value?
1400 isLHSID
&= (Mask
[i
] == (int)i
);
1402 // Is this an identity shuffle of the RHS value?
1403 isRHSID
&= (Mask
[i
]-e
== i
);
1407 // Returns true if the shuffle is extracting a contiguous range of values from
1408 // LHS, for example:
1409 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1410 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1411 // Shuffles to: |EE|FF|GG|HH|
1413 static bool isShuffleExtractingFromLHS(ShuffleVectorInst
&SVI
,
1414 SmallVector
<int, 16> &Mask
) {
1415 unsigned LHSElems
= SVI
.getOperand(0)->getType()->getVectorNumElements();
1416 unsigned MaskElems
= Mask
.size();
1417 unsigned BegIdx
= Mask
.front();
1418 unsigned EndIdx
= Mask
.back();
1419 if (BegIdx
> EndIdx
|| EndIdx
>= LHSElems
|| EndIdx
- BegIdx
!= MaskElems
- 1)
1421 for (unsigned I
= 0; I
!= MaskElems
; ++I
)
1422 if (static_cast<unsigned>(Mask
[I
]) != BegIdx
+ I
)
1427 /// These are the ingredients in an alternate form binary operator as described
1430 BinaryOperator::BinaryOps Opcode
;
1433 BinopElts(BinaryOperator::BinaryOps Opc
= (BinaryOperator::BinaryOps
)0,
1434 Value
*V0
= nullptr, Value
*V1
= nullptr) :
1435 Opcode(Opc
), Op0(V0
), Op1(V1
) {}
1436 operator bool() const { return Opcode
!= 0; }
1439 /// Binops may be transformed into binops with different opcodes and operands.
1440 /// Reverse the usual canonicalization to enable folds with the non-canonical
1441 /// form of the binop. If a transform is possible, return the elements of the
1442 /// new binop. If not, return invalid elements.
1443 static BinopElts
getAlternateBinop(BinaryOperator
*BO
, const DataLayout
&DL
) {
1444 Value
*BO0
= BO
->getOperand(0), *BO1
= BO
->getOperand(1);
1445 Type
*Ty
= BO
->getType();
1446 switch (BO
->getOpcode()) {
1447 case Instruction::Shl
: {
1448 // shl X, C --> mul X, (1 << C)
1450 if (match(BO1
, m_Constant(C
))) {
1451 Constant
*ShlOne
= ConstantExpr::getShl(ConstantInt::get(Ty
, 1), C
);
1452 return { Instruction::Mul
, BO0
, ShlOne
};
1456 case Instruction::Or
: {
1457 // or X, C --> add X, C (when X and C have no common bits set)
1459 if (match(BO1
, m_APInt(C
)) && MaskedValueIsZero(BO0
, *C
, DL
))
1460 return { Instruction::Add
, BO0
, BO1
};
1469 static Instruction
*foldSelectShuffleWith1Binop(ShuffleVectorInst
&Shuf
) {
1470 assert(Shuf
.isSelect() && "Must have select-equivalent shuffle");
1472 // Are we shuffling together some value and that same value after it has been
1473 // modified by a binop with a constant?
1474 Value
*Op0
= Shuf
.getOperand(0), *Op1
= Shuf
.getOperand(1);
1477 if (match(Op0
, m_BinOp(m_Specific(Op1
), m_Constant(C
))))
1479 else if (match(Op1
, m_BinOp(m_Specific(Op0
), m_Constant(C
))))
1484 // The identity constant for a binop leaves a variable operand unchanged. For
1485 // a vector, this is a splat of something like 0, -1, or 1.
1486 // If there's no identity constant for this binop, we're done.
1487 auto *BO
= cast
<BinaryOperator
>(Op0IsBinop
? Op0
: Op1
);
1488 BinaryOperator::BinaryOps BOpcode
= BO
->getOpcode();
1489 Constant
*IdC
= ConstantExpr::getBinOpIdentity(BOpcode
, Shuf
.getType(), true);
1493 // Shuffle identity constants into the lanes that return the original value.
1494 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1495 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1496 // The existing binop constant vector remains in the same operand position.
1497 Constant
*Mask
= Shuf
.getMask();
1498 Constant
*NewC
= Op0IsBinop
? ConstantExpr::getShuffleVector(C
, IdC
, Mask
) :
1499 ConstantExpr::getShuffleVector(IdC
, C
, Mask
);
1501 bool MightCreatePoisonOrUB
=
1502 Mask
->containsUndefElement() &&
1503 (Instruction::isIntDivRem(BOpcode
) || Instruction::isShift(BOpcode
));
1504 if (MightCreatePoisonOrUB
)
1505 NewC
= getSafeVectorConstantForBinop(BOpcode
, NewC
, true);
1507 // shuf (bop X, C), X, M --> bop X, C'
1508 // shuf X, (bop X, C), M --> bop X, C'
1509 Value
*X
= Op0IsBinop
? Op1
: Op0
;
1510 Instruction
*NewBO
= BinaryOperator::Create(BOpcode
, X
, NewC
);
1511 NewBO
->copyIRFlags(BO
);
1513 // An undef shuffle mask element may propagate as an undef constant element in
1514 // the new binop. That would produce poison where the original code might not.
1515 // If we already made a safe constant, then there's no danger.
1516 if (Mask
->containsUndefElement() && !MightCreatePoisonOrUB
)
1517 NewBO
->dropPoisonGeneratingFlags();
1521 /// If we have an insert of a scalar to a non-zero element of an undefined
1522 /// vector and then shuffle that value, that's the same as inserting to the zero
1523 /// element and shuffling. Splatting from the zero element is recognized as the
1524 /// canonical form of splat.
1525 static Instruction
*canonicalizeInsertSplat(ShuffleVectorInst
&Shuf
,
1526 InstCombiner::BuilderTy
&Builder
) {
1527 Value
*Op0
= Shuf
.getOperand(0), *Op1
= Shuf
.getOperand(1);
1528 Constant
*Mask
= Shuf
.getMask();
1532 // Match a shuffle that is a splat to a non-zero element.
1533 if (!match(Op0
, m_OneUse(m_InsertElement(m_Undef(), m_Value(X
),
1534 m_ConstantInt(IndexC
)))) ||
1535 !match(Op1
, m_Undef()) || match(Mask
, m_ZeroInt()) || IndexC
== 0)
1538 // Insert into element 0 of an undef vector.
1539 UndefValue
*UndefVec
= UndefValue::get(Shuf
.getType());
1540 Constant
*Zero
= Builder
.getInt32(0);
1541 Value
*NewIns
= Builder
.CreateInsertElement(UndefVec
, X
, Zero
);
1543 // Splat from element 0. Any mask element that is undefined remains undefined.
1545 // shuf (inselt undef, X, 2), undef, <2,2,undef>
1546 // --> shuf (inselt undef, X, 0), undef, <0,0,undef>
1547 unsigned NumMaskElts
= Shuf
.getType()->getVectorNumElements();
1548 SmallVector
<Constant
*, 16> NewMask(NumMaskElts
, Zero
);
1549 for (unsigned i
= 0; i
!= NumMaskElts
; ++i
)
1550 if (isa
<UndefValue
>(Mask
->getAggregateElement(i
)))
1551 NewMask
[i
] = Mask
->getAggregateElement(i
);
1553 return new ShuffleVectorInst(NewIns
, UndefVec
, ConstantVector::get(NewMask
));
1556 /// Try to fold shuffles that are the equivalent of a vector select.
1557 static Instruction
*foldSelectShuffle(ShuffleVectorInst
&Shuf
,
1558 InstCombiner::BuilderTy
&Builder
,
1559 const DataLayout
&DL
) {
1560 if (!Shuf
.isSelect())
1563 // Canonicalize to choose from operand 0 first.
1564 unsigned NumElts
= Shuf
.getType()->getVectorNumElements();
1565 if (Shuf
.getMaskValue(0) >= (int)NumElts
) {
1566 // TODO: Can we assert that both operands of a shuffle-select are not undef
1567 // (otherwise, it would have been folded by instsimplify?
1572 if (Instruction
*I
= foldSelectShuffleWith1Binop(Shuf
))
1575 BinaryOperator
*B0
, *B1
;
1576 if (!match(Shuf
.getOperand(0), m_BinOp(B0
)) ||
1577 !match(Shuf
.getOperand(1), m_BinOp(B1
)))
1582 bool ConstantsAreOp1
;
1583 if (match(B0
, m_BinOp(m_Value(X
), m_Constant(C0
))) &&
1584 match(B1
, m_BinOp(m_Value(Y
), m_Constant(C1
))))
1585 ConstantsAreOp1
= true;
1586 else if (match(B0
, m_BinOp(m_Constant(C0
), m_Value(X
))) &&
1587 match(B1
, m_BinOp(m_Constant(C1
), m_Value(Y
))))
1588 ConstantsAreOp1
= false;
1592 // We need matching binops to fold the lanes together.
1593 BinaryOperator::BinaryOps Opc0
= B0
->getOpcode();
1594 BinaryOperator::BinaryOps Opc1
= B1
->getOpcode();
1595 bool DropNSW
= false;
1596 if (ConstantsAreOp1
&& Opc0
!= Opc1
) {
1597 // TODO: We drop "nsw" if shift is converted into multiply because it may
1598 // not be correct when the shift amount is BitWidth - 1. We could examine
1599 // each vector element to determine if it is safe to keep that flag.
1600 if (Opc0
== Instruction::Shl
|| Opc1
== Instruction::Shl
)
1602 if (BinopElts AltB0
= getAlternateBinop(B0
, DL
)) {
1603 assert(isa
<Constant
>(AltB0
.Op1
) && "Expecting constant with alt binop");
1604 Opc0
= AltB0
.Opcode
;
1605 C0
= cast
<Constant
>(AltB0
.Op1
);
1606 } else if (BinopElts AltB1
= getAlternateBinop(B1
, DL
)) {
1607 assert(isa
<Constant
>(AltB1
.Op1
) && "Expecting constant with alt binop");
1608 Opc1
= AltB1
.Opcode
;
1609 C1
= cast
<Constant
>(AltB1
.Op1
);
1616 // The opcodes must be the same. Use a new name to make that clear.
1617 BinaryOperator::BinaryOps BOpc
= Opc0
;
1619 // Select the constant elements needed for the single binop.
1620 Constant
*Mask
= Shuf
.getMask();
1621 Constant
*NewC
= ConstantExpr::getShuffleVector(C0
, C1
, Mask
);
1623 // We are moving a binop after a shuffle. When a shuffle has an undefined
1624 // mask element, the result is undefined, but it is not poison or undefined
1625 // behavior. That is not necessarily true for div/rem/shift.
1626 bool MightCreatePoisonOrUB
=
1627 Mask
->containsUndefElement() &&
1628 (Instruction::isIntDivRem(BOpc
) || Instruction::isShift(BOpc
));
1629 if (MightCreatePoisonOrUB
)
1630 NewC
= getSafeVectorConstantForBinop(BOpc
, NewC
, ConstantsAreOp1
);
1634 // Remove a binop and the shuffle by rearranging the constant:
1635 // shuffle (op V, C0), (op V, C1), M --> op V, C'
1636 // shuffle (op C0, V), (op C1, V), M --> op C', V
1639 // If there are 2 different variable operands, we must create a new shuffle
1640 // (select) first, so check uses to ensure that we don't end up with more
1641 // instructions than we started with.
1642 if (!B0
->hasOneUse() && !B1
->hasOneUse())
1645 // If we use the original shuffle mask and op1 is *variable*, we would be
1646 // putting an undef into operand 1 of div/rem/shift. This is either UB or
1647 // poison. We do not have to guard against UB when *constants* are op1
1648 // because safe constants guarantee that we do not overflow sdiv/srem (and
1649 // there's no danger for other opcodes).
1650 // TODO: To allow this case, create a new shuffle mask with no undefs.
1651 if (MightCreatePoisonOrUB
&& !ConstantsAreOp1
)
1654 // Note: In general, we do not create new shuffles in InstCombine because we
1655 // do not know if a target can lower an arbitrary shuffle optimally. In this
1656 // case, the shuffle uses the existing mask, so there is no additional risk.
1658 // Select the variable vectors first, then perform the binop:
1659 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
1660 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
1661 V
= Builder
.CreateShuffleVector(X
, Y
, Mask
);
1664 Instruction
*NewBO
= ConstantsAreOp1
? BinaryOperator::Create(BOpc
, V
, NewC
) :
1665 BinaryOperator::Create(BOpc
, NewC
, V
);
1667 // Flags are intersected from the 2 source binops. But there are 2 exceptions:
1668 // 1. If we changed an opcode, poison conditions might have changed.
1669 // 2. If the shuffle had undef mask elements, the new binop might have undefs
1670 // where the original code did not. But if we already made a safe constant,
1671 // then there's no danger.
1672 NewBO
->copyIRFlags(B0
);
1673 NewBO
->andIRFlags(B1
);
1675 NewBO
->setHasNoSignedWrap(false);
1676 if (Mask
->containsUndefElement() && !MightCreatePoisonOrUB
)
1677 NewBO
->dropPoisonGeneratingFlags();
1681 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
1682 /// narrowing (concatenating with undef and extracting back to the original
1683 /// length). This allows replacing the wide select with a narrow select.
1684 static Instruction
*narrowVectorSelect(ShuffleVectorInst
&Shuf
,
1685 InstCombiner::BuilderTy
&Builder
) {
1686 // This must be a narrowing identity shuffle. It extracts the 1st N elements
1687 // of the 1st vector operand of a shuffle.
1688 if (!match(Shuf
.getOperand(1), m_Undef()) || !Shuf
.isIdentityWithExtract())
1691 // The vector being shuffled must be a vector select that we can eliminate.
1692 // TODO: The one-use requirement could be eased if X and/or Y are constants.
1693 Value
*Cond
, *X
, *Y
;
1694 if (!match(Shuf
.getOperand(0),
1695 m_OneUse(m_Select(m_Value(Cond
), m_Value(X
), m_Value(Y
)))))
1698 // We need a narrow condition value. It must be extended with undef elements
1699 // and have the same number of elements as this shuffle.
1700 unsigned NarrowNumElts
= Shuf
.getType()->getVectorNumElements();
1702 if (!match(Cond
, m_OneUse(m_ShuffleVector(m_Value(NarrowCond
), m_Undef(),
1704 NarrowCond
->getType()->getVectorNumElements() != NarrowNumElts
||
1705 !cast
<ShuffleVectorInst
>(Cond
)->isIdentityWithPadding())
1708 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
1709 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
1710 Value
*Undef
= UndefValue::get(X
->getType());
1711 Value
*NarrowX
= Builder
.CreateShuffleVector(X
, Undef
, Shuf
.getMask());
1712 Value
*NarrowY
= Builder
.CreateShuffleVector(Y
, Undef
, Shuf
.getMask());
1713 return SelectInst::Create(NarrowCond
, NarrowX
, NarrowY
);
1716 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
1717 static Instruction
*foldIdentityExtractShuffle(ShuffleVectorInst
&Shuf
) {
1718 Value
*Op0
= Shuf
.getOperand(0), *Op1
= Shuf
.getOperand(1);
1719 if (!Shuf
.isIdentityWithExtract() || !isa
<UndefValue
>(Op1
))
1724 if (!match(Op0
, m_ShuffleVector(m_Value(X
), m_Value(Y
), m_Constant(Mask
))))
1727 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
1728 // then combining may result in worse codegen.
1729 if (!Op0
->hasOneUse())
1732 // We are extracting a subvector from a shuffle. Remove excess elements from
1733 // the 1st shuffle mask to eliminate the extract.
1735 // This transform is conservatively limited to identity extracts because we do
1736 // not allow arbitrary shuffle mask creation as a target-independent transform
1737 // (because we can't guarantee that will lower efficiently).
1739 // If the extracting shuffle has an undef mask element, it transfers to the
1740 // new shuffle mask. Otherwise, copy the original mask element. Example:
1741 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
1742 // shuf X, Y, <C0, undef, C2, undef>
1743 unsigned NumElts
= Shuf
.getType()->getVectorNumElements();
1744 SmallVector
<Constant
*, 16> NewMask(NumElts
);
1745 assert(NumElts
< Mask
->getType()->getVectorNumElements() &&
1746 "Identity with extract must have less elements than its inputs");
1748 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
1749 Constant
*ExtractMaskElt
= Shuf
.getMask()->getAggregateElement(i
);
1750 Constant
*MaskElt
= Mask
->getAggregateElement(i
);
1751 NewMask
[i
] = isa
<UndefValue
>(ExtractMaskElt
) ? ExtractMaskElt
: MaskElt
;
1753 return new ShuffleVectorInst(X
, Y
, ConstantVector::get(NewMask
));
1756 /// Try to replace a shuffle with an insertelement.
1757 static Instruction
*foldShuffleWithInsert(ShuffleVectorInst
&Shuf
) {
1758 Value
*V0
= Shuf
.getOperand(0), *V1
= Shuf
.getOperand(1);
1759 SmallVector
<int, 16> Mask
= Shuf
.getShuffleMask();
1761 // The shuffle must not change vector sizes.
1762 // TODO: This restriction could be removed if the insert has only one use
1763 // (because the transform would require a new length-changing shuffle).
1764 int NumElts
= Mask
.size();
1765 if (NumElts
!= (int)(V0
->getType()->getVectorNumElements()))
1768 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
1769 auto isShufflingScalarIntoOp1
= [&](Value
*&Scalar
, ConstantInt
*&IndexC
) {
1770 // We need an insertelement with a constant index.
1771 if (!match(V0
, m_InsertElement(m_Value(), m_Value(Scalar
),
1772 m_ConstantInt(IndexC
))))
1775 // Test the shuffle mask to see if it splices the inserted scalar into the
1776 // operand 1 vector of the shuffle.
1777 int NewInsIndex
= -1;
1778 for (int i
= 0; i
!= NumElts
; ++i
) {
1779 // Ignore undef mask elements.
1783 // The shuffle takes elements of operand 1 without lane changes.
1784 if (Mask
[i
] == NumElts
+ i
)
1787 // The shuffle must choose the inserted scalar exactly once.
1788 if (NewInsIndex
!= -1 || Mask
[i
] != IndexC
->getSExtValue())
1791 // The shuffle is placing the inserted scalar into element i.
1795 assert(NewInsIndex
!= -1 && "Did not fold shuffle with unused operand?");
1797 // Index is updated to the potentially translated insertion lane.
1798 IndexC
= ConstantInt::get(IndexC
->getType(), NewInsIndex
);
1802 // If the shuffle is unnecessary, insert the scalar operand directly into
1803 // operand 1 of the shuffle. Example:
1804 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
1806 ConstantInt
*IndexC
;
1807 if (isShufflingScalarIntoOp1(Scalar
, IndexC
))
1808 return InsertElementInst::Create(V1
, Scalar
, IndexC
);
1810 // Try again after commuting shuffle. Example:
1811 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
1812 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
1814 ShuffleVectorInst::commuteShuffleMask(Mask
, NumElts
);
1815 if (isShufflingScalarIntoOp1(Scalar
, IndexC
))
1816 return InsertElementInst::Create(V1
, Scalar
, IndexC
);
1821 static Instruction
*foldIdentityPaddedShuffles(ShuffleVectorInst
&Shuf
) {
1822 // Match the operands as identity with padding (also known as concatenation
1823 // with undef) shuffles of the same source type. The backend is expected to
1824 // recreate these concatenations from a shuffle of narrow operands.
1825 auto *Shuffle0
= dyn_cast
<ShuffleVectorInst
>(Shuf
.getOperand(0));
1826 auto *Shuffle1
= dyn_cast
<ShuffleVectorInst
>(Shuf
.getOperand(1));
1827 if (!Shuffle0
|| !Shuffle0
->isIdentityWithPadding() ||
1828 !Shuffle1
|| !Shuffle1
->isIdentityWithPadding())
1831 // We limit this transform to power-of-2 types because we expect that the
1832 // backend can convert the simplified IR patterns to identical nodes as the
1834 // TODO: If we can verify the same behavior for arbitrary types, the
1835 // power-of-2 checks can be removed.
1836 Value
*X
= Shuffle0
->getOperand(0);
1837 Value
*Y
= Shuffle1
->getOperand(0);
1838 if (X
->getType() != Y
->getType() ||
1839 !isPowerOf2_32(Shuf
.getType()->getVectorNumElements()) ||
1840 !isPowerOf2_32(Shuffle0
->getType()->getVectorNumElements()) ||
1841 !isPowerOf2_32(X
->getType()->getVectorNumElements()) ||
1842 isa
<UndefValue
>(X
) || isa
<UndefValue
>(Y
))
1844 assert(isa
<UndefValue
>(Shuffle0
->getOperand(1)) &&
1845 isa
<UndefValue
>(Shuffle1
->getOperand(1)) &&
1846 "Unexpected operand for identity shuffle");
1848 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
1849 // operands directly by adjusting the shuffle mask to account for the narrower
1851 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
1852 int NarrowElts
= X
->getType()->getVectorNumElements();
1853 int WideElts
= Shuffle0
->getType()->getVectorNumElements();
1854 assert(WideElts
> NarrowElts
&& "Unexpected types for identity with padding");
1856 Type
*I32Ty
= IntegerType::getInt32Ty(Shuf
.getContext());
1857 SmallVector
<int, 16> Mask
= Shuf
.getShuffleMask();
1858 SmallVector
<Constant
*, 16> NewMask(Mask
.size(), UndefValue::get(I32Ty
));
1859 for (int i
= 0, e
= Mask
.size(); i
!= e
; ++i
) {
1863 // If this shuffle is choosing an undef element from 1 of the sources, that
1864 // element is undef.
1865 if (Mask
[i
] < WideElts
) {
1866 if (Shuffle0
->getMaskValue(Mask
[i
]) == -1)
1869 if (Shuffle1
->getMaskValue(Mask
[i
] - WideElts
) == -1)
1873 // If this shuffle is choosing from the 1st narrow op, the mask element is
1874 // the same. If this shuffle is choosing from the 2nd narrow op, the mask
1875 // element is offset down to adjust for the narrow vector widths.
1876 if (Mask
[i
] < WideElts
) {
1877 assert(Mask
[i
] < NarrowElts
&& "Unexpected shuffle mask");
1878 NewMask
[i
] = ConstantInt::get(I32Ty
, Mask
[i
]);
1880 assert(Mask
[i
] < (WideElts
+ NarrowElts
) && "Unexpected shuffle mask");
1881 NewMask
[i
] = ConstantInt::get(I32Ty
, Mask
[i
] - (WideElts
- NarrowElts
));
1884 return new ShuffleVectorInst(X
, Y
, ConstantVector::get(NewMask
));
1887 Instruction
*InstCombiner::visitShuffleVectorInst(ShuffleVectorInst
&SVI
) {
1888 Value
*LHS
= SVI
.getOperand(0);
1889 Value
*RHS
= SVI
.getOperand(1);
1890 if (auto *V
= SimplifyShuffleVectorInst(
1891 LHS
, RHS
, SVI
.getMask(), SVI
.getType(), SQ
.getWithInstruction(&SVI
)))
1892 return replaceInstUsesWith(SVI
, V
);
1894 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
1895 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
1896 unsigned VWidth
= SVI
.getType()->getVectorNumElements();
1897 unsigned LHSWidth
= LHS
->getType()->getVectorNumElements();
1898 SmallVector
<int, 16> Mask
= SVI
.getShuffleMask();
1899 Type
*Int32Ty
= Type::getInt32Ty(SVI
.getContext());
1900 if (LHS
== RHS
|| isa
<UndefValue
>(LHS
)) {
1901 // Remap any references to RHS to use LHS.
1902 SmallVector
<Constant
*, 16> Elts
;
1903 for (unsigned i
= 0, e
= LHSWidth
; i
!= VWidth
; ++i
) {
1905 Elts
.push_back(UndefValue::get(Int32Ty
));
1909 if ((Mask
[i
] >= (int)e
&& isa
<UndefValue
>(RHS
)) ||
1910 (Mask
[i
] < (int)e
&& isa
<UndefValue
>(LHS
))) {
1911 Mask
[i
] = -1; // Turn into undef.
1912 Elts
.push_back(UndefValue::get(Int32Ty
));
1914 Mask
[i
] = Mask
[i
] % e
; // Force to LHS.
1915 Elts
.push_back(ConstantInt::get(Int32Ty
, Mask
[i
]));
1918 SVI
.setOperand(0, SVI
.getOperand(1));
1919 SVI
.setOperand(1, UndefValue::get(RHS
->getType()));
1920 SVI
.setOperand(2, ConstantVector::get(Elts
));
1924 if (Instruction
*I
= canonicalizeInsertSplat(SVI
, Builder
))
1927 if (Instruction
*I
= foldSelectShuffle(SVI
, Builder
, DL
))
1930 if (Instruction
*I
= narrowVectorSelect(SVI
, Builder
))
1933 APInt
UndefElts(VWidth
, 0);
1934 APInt
AllOnesEltMask(APInt::getAllOnesValue(VWidth
));
1935 if (Value
*V
= SimplifyDemandedVectorElts(&SVI
, AllOnesEltMask
, UndefElts
)) {
1937 return replaceInstUsesWith(SVI
, V
);
1941 if (Instruction
*I
= foldIdentityExtractShuffle(SVI
))
1944 // These transforms have the potential to lose undef knowledge, so they are
1945 // intentionally placed after SimplifyDemandedVectorElts().
1946 if (Instruction
*I
= foldShuffleWithInsert(SVI
))
1948 if (Instruction
*I
= foldIdentityPaddedShuffles(SVI
))
1951 if (VWidth
== LHSWidth
) {
1952 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
1953 bool isLHSID
, isRHSID
;
1954 recognizeIdentityMask(Mask
, isLHSID
, isRHSID
);
1956 // Eliminate identity shuffles.
1957 if (isLHSID
) return replaceInstUsesWith(SVI
, LHS
);
1958 if (isRHSID
) return replaceInstUsesWith(SVI
, RHS
);
1961 if (isa
<UndefValue
>(RHS
) && canEvaluateShuffled(LHS
, Mask
)) {
1962 Value
*V
= evaluateInDifferentElementOrder(LHS
, Mask
);
1963 return replaceInstUsesWith(SVI
, V
);
1966 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
1967 // a non-vector type. We can instead bitcast the original vector followed by
1968 // an extract of the desired element:
1970 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
1971 // <4 x i32> <i32 0, i32 1, i32 2, i32 3>
1972 // %1 = bitcast <4 x i8> %sroa to i32
1974 // %bc = bitcast <16 x i8> %in to <4 x i32>
1975 // %ext = extractelement <4 x i32> %bc, i32 0
1977 // If the shuffle is extracting a contiguous range of values from the input
1978 // vector then each use which is a bitcast of the extracted size can be
1979 // replaced. This will work if the vector types are compatible, and the begin
1980 // index is aligned to a value in the casted vector type. If the begin index
1981 // isn't aligned then we can shuffle the original vector (keeping the same
1982 // vector type) before extracting.
1984 // This code will bail out if the target type is fundamentally incompatible
1985 // with vectors of the source type.
1987 // Example of <16 x i8>, target type i32:
1988 // Index range [4,8): v-----------v Will work.
1989 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1990 // <16 x i8>: | | | | | | | | | | | | | | | | |
1991 // <4 x i32>: | | | | |
1992 // +-----------+-----------+-----------+-----------+
1993 // Index range [6,10): ^-----------^ Needs an extra shuffle.
1994 // Target type i40: ^--------------^ Won't work, bail.
1995 bool MadeChange
= false;
1996 if (isShuffleExtractingFromLHS(SVI
, Mask
)) {
1998 unsigned MaskElems
= Mask
.size();
1999 VectorType
*SrcTy
= cast
<VectorType
>(V
->getType());
2000 unsigned VecBitWidth
= SrcTy
->getBitWidth();
2001 unsigned SrcElemBitWidth
= DL
.getTypeSizeInBits(SrcTy
->getElementType());
2002 assert(SrcElemBitWidth
&& "vector elements must have a bitwidth");
2003 unsigned SrcNumElems
= SrcTy
->getNumElements();
2004 SmallVector
<BitCastInst
*, 8> BCs
;
2005 DenseMap
<Type
*, Value
*> NewBCs
;
2006 for (User
*U
: SVI
.users())
2007 if (BitCastInst
*BC
= dyn_cast
<BitCastInst
>(U
))
2008 if (!BC
->use_empty())
2009 // Only visit bitcasts that weren't previously handled.
2011 for (BitCastInst
*BC
: BCs
) {
2012 unsigned BegIdx
= Mask
.front();
2013 Type
*TgtTy
= BC
->getDestTy();
2014 unsigned TgtElemBitWidth
= DL
.getTypeSizeInBits(TgtTy
);
2015 if (!TgtElemBitWidth
)
2017 unsigned TgtNumElems
= VecBitWidth
/ TgtElemBitWidth
;
2018 bool VecBitWidthsEqual
= VecBitWidth
== TgtNumElems
* TgtElemBitWidth
;
2019 bool BegIsAligned
= 0 == ((SrcElemBitWidth
* BegIdx
) % TgtElemBitWidth
);
2020 if (!VecBitWidthsEqual
)
2022 if (!VectorType::isValidElementType(TgtTy
))
2024 VectorType
*CastSrcTy
= VectorType::get(TgtTy
, TgtNumElems
);
2025 if (!BegIsAligned
) {
2026 // Shuffle the input so [0,NumElements) contains the output, and
2027 // [NumElems,SrcNumElems) is undef.
2028 SmallVector
<Constant
*, 16> ShuffleMask(SrcNumElems
,
2029 UndefValue::get(Int32Ty
));
2030 for (unsigned I
= 0, E
= MaskElems
, Idx
= BegIdx
; I
!= E
; ++Idx
, ++I
)
2031 ShuffleMask
[I
] = ConstantInt::get(Int32Ty
, Idx
);
2032 V
= Builder
.CreateShuffleVector(V
, UndefValue::get(V
->getType()),
2033 ConstantVector::get(ShuffleMask
),
2034 SVI
.getName() + ".extract");
2037 unsigned SrcElemsPerTgtElem
= TgtElemBitWidth
/ SrcElemBitWidth
;
2038 assert(SrcElemsPerTgtElem
);
2039 BegIdx
/= SrcElemsPerTgtElem
;
2040 bool BCAlreadyExists
= NewBCs
.find(CastSrcTy
) != NewBCs
.end();
2044 : Builder
.CreateBitCast(V
, CastSrcTy
, SVI
.getName() + ".bc");
2045 if (!BCAlreadyExists
)
2046 NewBCs
[CastSrcTy
] = NewBC
;
2047 auto *Ext
= Builder
.CreateExtractElement(
2048 NewBC
, ConstantInt::get(Int32Ty
, BegIdx
), SVI
.getName() + ".extract");
2049 // The shufflevector isn't being replaced: the bitcast that used it
2050 // is. InstCombine will visit the newly-created instructions.
2051 replaceInstUsesWith(*BC
, Ext
);
2056 // If the LHS is a shufflevector itself, see if we can combine it with this
2057 // one without producing an unusual shuffle.
2058 // Cases that might be simplified:
2060 // x1=shuffle(v1,v2,mask1)
2061 // x=shuffle(x1,undef,mask)
2063 // x=shuffle(v1,undef,newMask)
2064 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
2066 // x1=shuffle(v1,undef,mask1)
2067 // x=shuffle(x1,x2,mask)
2068 // where v1.size() == mask1.size()
2070 // x=shuffle(v1,x2,newMask)
2071 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
2073 // x2=shuffle(v2,undef,mask2)
2074 // x=shuffle(x1,x2,mask)
2075 // where v2.size() == mask2.size()
2077 // x=shuffle(x1,v2,newMask)
2078 // newMask[i] = (mask[i] < x1.size())
2079 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
2081 // x1=shuffle(v1,undef,mask1)
2082 // x2=shuffle(v2,undef,mask2)
2083 // x=shuffle(x1,x2,mask)
2084 // where v1.size() == v2.size()
2086 // x=shuffle(v1,v2,newMask)
2087 // newMask[i] = (mask[i] < x1.size())
2088 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
2090 // Here we are really conservative:
2091 // we are absolutely afraid of producing a shuffle mask not in the input
2092 // program, because the code gen may not be smart enough to turn a merged
2093 // shuffle into two specific shuffles: it may produce worse code. As such,
2094 // we only merge two shuffles if the result is either a splat or one of the
2095 // input shuffle masks. In this case, merging the shuffles just removes
2096 // one instruction, which we know is safe. This is good for things like
2097 // turning: (splat(splat)) -> splat, or
2098 // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
2099 ShuffleVectorInst
* LHSShuffle
= dyn_cast
<ShuffleVectorInst
>(LHS
);
2100 ShuffleVectorInst
* RHSShuffle
= dyn_cast
<ShuffleVectorInst
>(RHS
);
2102 if (!isa
<UndefValue
>(LHSShuffle
->getOperand(1)) && !isa
<UndefValue
>(RHS
))
2103 LHSShuffle
= nullptr;
2105 if (!isa
<UndefValue
>(RHSShuffle
->getOperand(1)))
2106 RHSShuffle
= nullptr;
2107 if (!LHSShuffle
&& !RHSShuffle
)
2108 return MadeChange
? &SVI
: nullptr;
2110 Value
* LHSOp0
= nullptr;
2111 Value
* LHSOp1
= nullptr;
2112 Value
* RHSOp0
= nullptr;
2113 unsigned LHSOp0Width
= 0;
2114 unsigned RHSOp0Width
= 0;
2116 LHSOp0
= LHSShuffle
->getOperand(0);
2117 LHSOp1
= LHSShuffle
->getOperand(1);
2118 LHSOp0Width
= LHSOp0
->getType()->getVectorNumElements();
2121 RHSOp0
= RHSShuffle
->getOperand(0);
2122 RHSOp0Width
= RHSOp0
->getType()->getVectorNumElements();
2124 Value
* newLHS
= LHS
;
2125 Value
* newRHS
= RHS
;
2128 if (isa
<UndefValue
>(RHS
)) {
2133 else if (LHSOp0Width
== LHSWidth
) {
2138 if (RHSShuffle
&& RHSOp0Width
== LHSWidth
) {
2142 if (LHSOp0
== RHSOp0
) {
2147 if (newLHS
== LHS
&& newRHS
== RHS
)
2148 return MadeChange
? &SVI
: nullptr;
2150 SmallVector
<int, 16> LHSMask
;
2151 SmallVector
<int, 16> RHSMask
;
2153 LHSMask
= LHSShuffle
->getShuffleMask();
2154 if (RHSShuffle
&& newRHS
!= RHS
)
2155 RHSMask
= RHSShuffle
->getShuffleMask();
2157 unsigned newLHSWidth
= (newLHS
!= LHS
) ? LHSOp0Width
: LHSWidth
;
2158 SmallVector
<int, 16> newMask
;
2159 bool isSplat
= true;
2161 // Create a new mask for the new ShuffleVectorInst so that the new
2162 // ShuffleVectorInst is equivalent to the original one.
2163 for (unsigned i
= 0; i
< VWidth
; ++i
) {
2166 // This element is an undef value.
2168 } else if (Mask
[i
] < (int)LHSWidth
) {
2169 // This element is from left hand side vector operand.
2171 // If LHS is going to be replaced (case 1, 2, or 4), calculate the
2172 // new mask value for the element.
2173 if (newLHS
!= LHS
) {
2174 eltMask
= LHSMask
[Mask
[i
]];
2175 // If the value selected is an undef value, explicitly specify it
2176 // with a -1 mask value.
2177 if (eltMask
>= (int)LHSOp0Width
&& isa
<UndefValue
>(LHSOp1
))
2182 // This element is from right hand side vector operand
2184 // If the value selected is an undef value, explicitly specify it
2185 // with a -1 mask value. (case 1)
2186 if (isa
<UndefValue
>(RHS
))
2188 // If RHS is going to be replaced (case 3 or 4), calculate the
2189 // new mask value for the element.
2190 else if (newRHS
!= RHS
) {
2191 eltMask
= RHSMask
[Mask
[i
]-LHSWidth
];
2192 // If the value selected is an undef value, explicitly specify it
2193 // with a -1 mask value.
2194 if (eltMask
>= (int)RHSOp0Width
) {
2195 assert(isa
<UndefValue
>(RHSShuffle
->getOperand(1))
2196 && "should have been check above");
2200 eltMask
= Mask
[i
]-LHSWidth
;
2202 // If LHS's width is changed, shift the mask value accordingly.
2203 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
2204 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
2205 // If newRHS == newLHS, we want to remap any references from newRHS to
2206 // newLHS so that we can properly identify splats that may occur due to
2207 // obfuscation across the two vectors.
2208 if (eltMask
>= 0 && newRHS
!= nullptr && newLHS
!= newRHS
)
2209 eltMask
+= newLHSWidth
;
2212 // Check if this could still be a splat.
2214 if (SplatElt
>= 0 && SplatElt
!= eltMask
)
2219 newMask
.push_back(eltMask
);
2222 // If the result mask is equal to one of the original shuffle masks,
2223 // or is a splat, do the replacement.
2224 if (isSplat
|| newMask
== LHSMask
|| newMask
== RHSMask
|| newMask
== Mask
) {
2225 SmallVector
<Constant
*, 16> Elts
;
2226 for (unsigned i
= 0, e
= newMask
.size(); i
!= e
; ++i
) {
2227 if (newMask
[i
] < 0) {
2228 Elts
.push_back(UndefValue::get(Int32Ty
));
2230 Elts
.push_back(ConstantInt::get(Int32Ty
, newMask
[i
]));
2234 newRHS
= UndefValue::get(newLHS
->getType());
2235 return new ShuffleVectorInst(newLHS
, newRHS
, ConstantVector::get(Elts
));
2238 // If the result mask is an identity, replace uses of this instruction with
2239 // corresponding argument.
2240 bool isLHSID
, isRHSID
;
2241 recognizeIdentityMask(newMask
, isLHSID
, isRHSID
);
2242 if (isLHSID
&& VWidth
== LHSOp0Width
) return replaceInstUsesWith(SVI
, newLHS
);
2243 if (isRHSID
&& VWidth
== RHSOp0Width
) return replaceInstUsesWith(SVI
, newRHS
);
2245 return MadeChange
? &SVI
: nullptr;