[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Transforms / InstCombine / InstCombineVectorOps.cpp
blob9c890748e5ab8a449de126c976c2aabca8e9171d
1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements instcombine for ExtractElement, InsertElement and
10 // ShuffleVector.
12 //===----------------------------------------------------------------------===//
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/VectorUtils.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/User.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
37 #include <cassert>
38 #include <cstdint>
39 #include <iterator>
40 #include <utility>
42 using namespace llvm;
43 using namespace PatternMatch;
45 #define DEBUG_TYPE "instcombine"
47 /// Return true if the value is cheaper to scalarize than it is to leave as a
48 /// vector operation. IsConstantExtractIndex indicates whether we are extracting
49 /// one known element from a vector constant.
50 ///
51 /// FIXME: It's possible to create more instructions than previously existed.
52 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
53 // If we can pick a scalar constant value out of a vector, that is free.
54 if (auto *C = dyn_cast<Constant>(V))
55 return IsConstantExtractIndex || C->getSplatValue();
57 // An insertelement to the same constant index as our extract will simplify
58 // to the scalar inserted element. An insertelement to a different constant
59 // index is irrelevant to our extract.
60 if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())))
61 return IsConstantExtractIndex;
63 if (match(V, m_OneUse(m_Load(m_Value()))))
64 return true;
66 Value *V0, *V1;
67 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
68 if (cheapToScalarize(V0, IsConstantExtractIndex) ||
69 cheapToScalarize(V1, IsConstantExtractIndex))
70 return true;
72 CmpInst::Predicate UnusedPred;
73 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
74 if (cheapToScalarize(V0, IsConstantExtractIndex) ||
75 cheapToScalarize(V1, IsConstantExtractIndex))
76 return true;
78 return false;
81 // If we have a PHI node with a vector type that is only used to feed
82 // itself and be an operand of extractelement at a constant location,
83 // try to replace the PHI of the vector type with a PHI of a scalar type.
84 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
85 SmallVector<Instruction *, 2> Extracts;
86 // The users we want the PHI to have are:
87 // 1) The EI ExtractElement (we already know this)
88 // 2) Possibly more ExtractElements with the same index.
89 // 3) Another operand, which will feed back into the PHI.
90 Instruction *PHIUser = nullptr;
91 for (auto U : PN->users()) {
92 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
93 if (EI.getIndexOperand() == EU->getIndexOperand())
94 Extracts.push_back(EU);
95 else
96 return nullptr;
97 } else if (!PHIUser) {
98 PHIUser = cast<Instruction>(U);
99 } else {
100 return nullptr;
104 if (!PHIUser)
105 return nullptr;
107 // Verify that this PHI user has one use, which is the PHI itself,
108 // and that it is a binary operation which is cheap to scalarize.
109 // otherwise return nullptr.
110 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
111 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
112 return nullptr;
114 // Create a scalar PHI node that will replace the vector PHI node
115 // just before the current PHI node.
116 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
117 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
118 // Scalarize each PHI operand.
119 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
120 Value *PHIInVal = PN->getIncomingValue(i);
121 BasicBlock *inBB = PN->getIncomingBlock(i);
122 Value *Elt = EI.getIndexOperand();
123 // If the operand is the PHI induction variable:
124 if (PHIInVal == PHIUser) {
125 // Scalarize the binary operation. Its first operand is the
126 // scalar PHI, and the second operand is extracted from the other
127 // vector operand.
128 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
129 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
130 Value *Op = InsertNewInstWith(
131 ExtractElementInst::Create(B0->getOperand(opId), Elt,
132 B0->getOperand(opId)->getName() + ".Elt"),
133 *B0);
134 Value *newPHIUser = InsertNewInstWith(
135 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
136 scalarPHI, Op, B0), *B0);
137 scalarPHI->addIncoming(newPHIUser, inBB);
138 } else {
139 // Scalarize PHI input:
140 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
141 // Insert the new instruction into the predecessor basic block.
142 Instruction *pos = dyn_cast<Instruction>(PHIInVal);
143 BasicBlock::iterator InsertPos;
144 if (pos && !isa<PHINode>(pos)) {
145 InsertPos = ++pos->getIterator();
146 } else {
147 InsertPos = inBB->getFirstInsertionPt();
150 InsertNewInstWith(newEI, *InsertPos);
152 scalarPHI->addIncoming(newEI, inBB);
156 for (auto E : Extracts)
157 replaceInstUsesWith(*E, scalarPHI);
159 return &EI;
162 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
163 InstCombiner::BuilderTy &Builder,
164 bool IsBigEndian) {
165 Value *X;
166 uint64_t ExtIndexC;
167 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
168 !X->getType()->isVectorTy() ||
169 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
170 return nullptr;
172 // If this extractelement is using a bitcast from a vector of the same number
173 // of elements, see if we can find the source element from the source vector:
174 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
175 Type *SrcTy = X->getType();
176 Type *DestTy = Ext.getType();
177 unsigned NumSrcElts = SrcTy->getVectorNumElements();
178 unsigned NumElts = Ext.getVectorOperandType()->getNumElements();
179 if (NumSrcElts == NumElts)
180 if (Value *Elt = findScalarElement(X, ExtIndexC))
181 return new BitCastInst(Elt, DestTy);
183 // If the source elements are wider than the destination, try to shift and
184 // truncate a subset of scalar bits of an insert op.
185 if (NumSrcElts < NumElts) {
186 Value *Scalar;
187 uint64_t InsIndexC;
188 if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar),
189 m_ConstantInt(InsIndexC))))
190 return nullptr;
192 // The extract must be from the subset of vector elements that we inserted
193 // into. Example: if we inserted element 1 of a <2 x i64> and we are
194 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
195 // of elements 4-7 of the bitcasted vector.
196 unsigned NarrowingRatio = NumElts / NumSrcElts;
197 if (ExtIndexC / NarrowingRatio != InsIndexC)
198 return nullptr;
200 // We are extracting part of the original scalar. How that scalar is
201 // inserted into the vector depends on the endian-ness. Example:
202 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7
203 // +--+--+--+--+--+--+--+--+
204 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3|
205 // extelt <4 x i16> V', 3: | |S2|S3|
206 // +--+--+--+--+--+--+--+--+
207 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
208 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
209 // In this example, we must right-shift little-endian. Big-endian is just a
210 // truncate.
211 unsigned Chunk = ExtIndexC % NarrowingRatio;
212 if (IsBigEndian)
213 Chunk = NarrowingRatio - 1 - Chunk;
215 // Bail out if this is an FP vector to FP vector sequence. That would take
216 // more instructions than we started with unless there is no shift, and it
217 // may not be handled as well in the backend.
218 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
219 bool NeedDestBitcast = DestTy->isFloatingPointTy();
220 if (NeedSrcBitcast && NeedDestBitcast)
221 return nullptr;
223 unsigned SrcWidth = SrcTy->getScalarSizeInBits();
224 unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
225 unsigned ShAmt = Chunk * DestWidth;
227 // TODO: This limitation is more strict than necessary. We could sum the
228 // number of new instructions and subtract the number eliminated to know if
229 // we can proceed.
230 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
231 if (NeedSrcBitcast || NeedDestBitcast)
232 return nullptr;
234 if (NeedSrcBitcast) {
235 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
236 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
239 if (ShAmt) {
240 // Bail out if we could end with more instructions than we started with.
241 if (!Ext.getVectorOperand()->hasOneUse())
242 return nullptr;
243 Scalar = Builder.CreateLShr(Scalar, ShAmt);
246 if (NeedDestBitcast) {
247 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
248 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
250 return new TruncInst(Scalar, DestTy);
253 return nullptr;
256 /// Find elements of V demanded by UserInstr.
257 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
258 unsigned VWidth = V->getType()->getVectorNumElements();
260 // Conservatively assume that all elements are needed.
261 APInt UsedElts(APInt::getAllOnesValue(VWidth));
263 switch (UserInstr->getOpcode()) {
264 case Instruction::ExtractElement: {
265 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
266 assert(EEI->getVectorOperand() == V);
267 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
268 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
269 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
271 break;
273 case Instruction::ShuffleVector: {
274 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
275 unsigned MaskNumElts = UserInstr->getType()->getVectorNumElements();
277 UsedElts = APInt(VWidth, 0);
278 for (unsigned i = 0; i < MaskNumElts; i++) {
279 unsigned MaskVal = Shuffle->getMaskValue(i);
280 if (MaskVal == -1u || MaskVal >= 2 * VWidth)
281 continue;
282 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
283 UsedElts.setBit(MaskVal);
284 if (Shuffle->getOperand(1) == V &&
285 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
286 UsedElts.setBit(MaskVal - VWidth);
288 break;
290 default:
291 break;
293 return UsedElts;
296 /// Find union of elements of V demanded by all its users.
297 /// If it is known by querying findDemandedEltsBySingleUser that
298 /// no user demands an element of V, then the corresponding bit
299 /// remains unset in the returned value.
300 static APInt findDemandedEltsByAllUsers(Value *V) {
301 unsigned VWidth = V->getType()->getVectorNumElements();
303 APInt UnionUsedElts(VWidth, 0);
304 for (const Use &U : V->uses()) {
305 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
306 UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
307 } else {
308 UnionUsedElts = APInt::getAllOnesValue(VWidth);
309 break;
312 if (UnionUsedElts.isAllOnesValue())
313 break;
316 return UnionUsedElts;
319 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
320 Value *SrcVec = EI.getVectorOperand();
321 Value *Index = EI.getIndexOperand();
322 if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
323 SQ.getWithInstruction(&EI)))
324 return replaceInstUsesWith(EI, V);
326 // If extracting a specified index from the vector, see if we can recursively
327 // find a previously computed scalar that was inserted into the vector.
328 auto *IndexC = dyn_cast<ConstantInt>(Index);
329 if (IndexC) {
330 unsigned NumElts = EI.getVectorOperandType()->getNumElements();
332 // InstSimplify should handle cases where the index is invalid.
333 if (!IndexC->getValue().ule(NumElts))
334 return nullptr;
336 // This instruction only demands the single element from the input vector.
337 if (NumElts != 1) {
338 // If the input vector has a single use, simplify it based on this use
339 // property.
340 if (SrcVec->hasOneUse()) {
341 APInt UndefElts(NumElts, 0);
342 APInt DemandedElts(NumElts, 0);
343 DemandedElts.setBit(IndexC->getZExtValue());
344 if (Value *V =
345 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) {
346 EI.setOperand(0, V);
347 return &EI;
349 } else {
350 // If the input vector has multiple uses, simplify it based on a union
351 // of all elements used.
352 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
353 if (!DemandedElts.isAllOnesValue()) {
354 APInt UndefElts(NumElts, 0);
355 if (Value *V = SimplifyDemandedVectorElts(
356 SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
357 true /* AllowMultipleUsers */)) {
358 if (V != SrcVec) {
359 SrcVec->replaceAllUsesWith(V);
360 return &EI;
366 if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
367 return I;
369 // If there's a vector PHI feeding a scalar use through this extractelement
370 // instruction, try to scalarize the PHI.
371 if (auto *Phi = dyn_cast<PHINode>(SrcVec))
372 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
373 return ScalarPHI;
376 BinaryOperator *BO;
377 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
378 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
379 Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
380 Value *E0 = Builder.CreateExtractElement(X, Index);
381 Value *E1 = Builder.CreateExtractElement(Y, Index);
382 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
385 Value *X, *Y;
386 CmpInst::Predicate Pred;
387 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
388 cheapToScalarize(SrcVec, IndexC)) {
389 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
390 Value *E0 = Builder.CreateExtractElement(X, Index);
391 Value *E1 = Builder.CreateExtractElement(Y, Index);
392 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
395 if (auto *I = dyn_cast<Instruction>(SrcVec)) {
396 if (auto *IE = dyn_cast<InsertElementInst>(I)) {
397 // Extracting the inserted element?
398 if (IE->getOperand(2) == Index)
399 return replaceInstUsesWith(EI, IE->getOperand(1));
400 // If the inserted and extracted elements are constants, they must not
401 // be the same value, extract from the pre-inserted value instead.
402 if (isa<Constant>(IE->getOperand(2)) && IndexC) {
403 Worklist.AddValue(SrcVec);
404 EI.setOperand(0, IE->getOperand(0));
405 return &EI;
407 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
408 // If this is extracting an element from a shufflevector, figure out where
409 // it came from and extract from the appropriate input element instead.
410 if (auto *Elt = dyn_cast<ConstantInt>(Index)) {
411 int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
412 Value *Src;
413 unsigned LHSWidth =
414 SVI->getOperand(0)->getType()->getVectorNumElements();
416 if (SrcIdx < 0)
417 return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
418 if (SrcIdx < (int)LHSWidth)
419 Src = SVI->getOperand(0);
420 else {
421 SrcIdx -= LHSWidth;
422 Src = SVI->getOperand(1);
424 Type *Int32Ty = Type::getInt32Ty(EI.getContext());
425 return ExtractElementInst::Create(Src,
426 ConstantInt::get(Int32Ty,
427 SrcIdx, false));
429 } else if (auto *CI = dyn_cast<CastInst>(I)) {
430 // Canonicalize extractelement(cast) -> cast(extractelement).
431 // Bitcasts can change the number of vector elements, and they cost
432 // nothing.
433 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
434 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
435 Worklist.AddValue(EE);
436 return CastInst::Create(CI->getOpcode(), EE, EI.getType());
440 return nullptr;
443 /// If V is a shuffle of values that ONLY returns elements from either LHS or
444 /// RHS, return the shuffle mask and true. Otherwise, return false.
445 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
446 SmallVectorImpl<Constant*> &Mask) {
447 assert(LHS->getType() == RHS->getType() &&
448 "Invalid CollectSingleShuffleElements");
449 unsigned NumElts = V->getType()->getVectorNumElements();
451 if (isa<UndefValue>(V)) {
452 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
453 return true;
456 if (V == LHS) {
457 for (unsigned i = 0; i != NumElts; ++i)
458 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
459 return true;
462 if (V == RHS) {
463 for (unsigned i = 0; i != NumElts; ++i)
464 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
465 i+NumElts));
466 return true;
469 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
470 // If this is an insert of an extract from some other vector, include it.
471 Value *VecOp = IEI->getOperand(0);
472 Value *ScalarOp = IEI->getOperand(1);
473 Value *IdxOp = IEI->getOperand(2);
475 if (!isa<ConstantInt>(IdxOp))
476 return false;
477 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
479 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
480 // We can handle this if the vector we are inserting into is
481 // transitively ok.
482 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
483 // If so, update the mask to reflect the inserted undef.
484 Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
485 return true;
487 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
488 if (isa<ConstantInt>(EI->getOperand(1))) {
489 unsigned ExtractedIdx =
490 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
491 unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
493 // This must be extracting from either LHS or RHS.
494 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
495 // We can handle this if the vector we are inserting into is
496 // transitively ok.
497 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
498 // If so, update the mask to reflect the inserted value.
499 if (EI->getOperand(0) == LHS) {
500 Mask[InsertedIdx % NumElts] =
501 ConstantInt::get(Type::getInt32Ty(V->getContext()),
502 ExtractedIdx);
503 } else {
504 assert(EI->getOperand(0) == RHS);
505 Mask[InsertedIdx % NumElts] =
506 ConstantInt::get(Type::getInt32Ty(V->getContext()),
507 ExtractedIdx + NumLHSElts);
509 return true;
516 return false;
519 /// If we have insertion into a vector that is wider than the vector that we
520 /// are extracting from, try to widen the source vector to allow a single
521 /// shufflevector to replace one or more insert/extract pairs.
522 static void replaceExtractElements(InsertElementInst *InsElt,
523 ExtractElementInst *ExtElt,
524 InstCombiner &IC) {
525 VectorType *InsVecType = InsElt->getType();
526 VectorType *ExtVecType = ExtElt->getVectorOperandType();
527 unsigned NumInsElts = InsVecType->getVectorNumElements();
528 unsigned NumExtElts = ExtVecType->getVectorNumElements();
530 // The inserted-to vector must be wider than the extracted-from vector.
531 if (InsVecType->getElementType() != ExtVecType->getElementType() ||
532 NumExtElts >= NumInsElts)
533 return;
535 // Create a shuffle mask to widen the extended-from vector using undefined
536 // values. The mask selects all of the values of the original vector followed
537 // by as many undefined values as needed to create a vector of the same length
538 // as the inserted-to vector.
539 SmallVector<Constant *, 16> ExtendMask;
540 IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
541 for (unsigned i = 0; i < NumExtElts; ++i)
542 ExtendMask.push_back(ConstantInt::get(IntType, i));
543 for (unsigned i = NumExtElts; i < NumInsElts; ++i)
544 ExtendMask.push_back(UndefValue::get(IntType));
546 Value *ExtVecOp = ExtElt->getVectorOperand();
547 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
548 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
549 ? ExtVecOpInst->getParent()
550 : ExtElt->getParent();
552 // TODO: This restriction matches the basic block check below when creating
553 // new extractelement instructions. If that limitation is removed, this one
554 // could also be removed. But for now, we just bail out to ensure that we
555 // will replace the extractelement instruction that is feeding our
556 // insertelement instruction. This allows the insertelement to then be
557 // replaced by a shufflevector. If the insertelement is not replaced, we can
558 // induce infinite looping because there's an optimization for extractelement
559 // that will delete our widening shuffle. This would trigger another attempt
560 // here to create that shuffle, and we spin forever.
561 if (InsertionBlock != InsElt->getParent())
562 return;
564 // TODO: This restriction matches the check in visitInsertElementInst() and
565 // prevents an infinite loop caused by not turning the extract/insert pair
566 // into a shuffle. We really should not need either check, but we're lacking
567 // folds for shufflevectors because we're afraid to generate shuffle masks
568 // that the backend can't handle.
569 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
570 return;
572 auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
573 ConstantVector::get(ExtendMask));
575 // Insert the new shuffle after the vector operand of the extract is defined
576 // (as long as it's not a PHI) or at the start of the basic block of the
577 // extract, so any subsequent extracts in the same basic block can use it.
578 // TODO: Insert before the earliest ExtractElementInst that is replaced.
579 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
580 WideVec->insertAfter(ExtVecOpInst);
581 else
582 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
584 // Replace extracts from the original narrow vector with extracts from the new
585 // wide vector.
586 for (User *U : ExtVecOp->users()) {
587 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
588 if (!OldExt || OldExt->getParent() != WideVec->getParent())
589 continue;
590 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
591 NewExt->insertAfter(OldExt);
592 IC.replaceInstUsesWith(*OldExt, NewExt);
596 /// We are building a shuffle to create V, which is a sequence of insertelement,
597 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
598 /// not rely on the second vector source. Return a std::pair containing the
599 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
600 /// parameter as required.
602 /// Note: we intentionally don't try to fold earlier shuffles since they have
603 /// often been chosen carefully to be efficiently implementable on the target.
604 using ShuffleOps = std::pair<Value *, Value *>;
606 static ShuffleOps collectShuffleElements(Value *V,
607 SmallVectorImpl<Constant *> &Mask,
608 Value *PermittedRHS,
609 InstCombiner &IC) {
610 assert(V->getType()->isVectorTy() && "Invalid shuffle!");
611 unsigned NumElts = V->getType()->getVectorNumElements();
613 if (isa<UndefValue>(V)) {
614 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
615 return std::make_pair(
616 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
619 if (isa<ConstantAggregateZero>(V)) {
620 Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
621 return std::make_pair(V, nullptr);
624 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
625 // If this is an insert of an extract from some other vector, include it.
626 Value *VecOp = IEI->getOperand(0);
627 Value *ScalarOp = IEI->getOperand(1);
628 Value *IdxOp = IEI->getOperand(2);
630 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
631 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
632 unsigned ExtractedIdx =
633 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
634 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
636 // Either the extracted from or inserted into vector must be RHSVec,
637 // otherwise we'd end up with a shuffle of three inputs.
638 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
639 Value *RHS = EI->getOperand(0);
640 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
641 assert(LR.second == nullptr || LR.second == RHS);
643 if (LR.first->getType() != RHS->getType()) {
644 // Although we are giving up for now, see if we can create extracts
645 // that match the inserts for another round of combining.
646 replaceExtractElements(IEI, EI, IC);
648 // We tried our best, but we can't find anything compatible with RHS
649 // further up the chain. Return a trivial shuffle.
650 for (unsigned i = 0; i < NumElts; ++i)
651 Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
652 return std::make_pair(V, nullptr);
655 unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
656 Mask[InsertedIdx % NumElts] =
657 ConstantInt::get(Type::getInt32Ty(V->getContext()),
658 NumLHSElts+ExtractedIdx);
659 return std::make_pair(LR.first, RHS);
662 if (VecOp == PermittedRHS) {
663 // We've gone as far as we can: anything on the other side of the
664 // extractelement will already have been converted into a shuffle.
665 unsigned NumLHSElts =
666 EI->getOperand(0)->getType()->getVectorNumElements();
667 for (unsigned i = 0; i != NumElts; ++i)
668 Mask.push_back(ConstantInt::get(
669 Type::getInt32Ty(V->getContext()),
670 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
671 return std::make_pair(EI->getOperand(0), PermittedRHS);
674 // If this insertelement is a chain that comes from exactly these two
675 // vectors, return the vector and the effective shuffle.
676 if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
677 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
678 Mask))
679 return std::make_pair(EI->getOperand(0), PermittedRHS);
684 // Otherwise, we can't do anything fancy. Return an identity vector.
685 for (unsigned i = 0; i != NumElts; ++i)
686 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
687 return std::make_pair(V, nullptr);
690 /// Try to find redundant insertvalue instructions, like the following ones:
691 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0
692 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0
693 /// Here the second instruction inserts values at the same indices, as the
694 /// first one, making the first one redundant.
695 /// It should be transformed to:
696 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0
697 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
698 bool IsRedundant = false;
699 ArrayRef<unsigned int> FirstIndices = I.getIndices();
701 // If there is a chain of insertvalue instructions (each of them except the
702 // last one has only one use and it's another insertvalue insn from this
703 // chain), check if any of the 'children' uses the same indices as the first
704 // instruction. In this case, the first one is redundant.
705 Value *V = &I;
706 unsigned Depth = 0;
707 while (V->hasOneUse() && Depth < 10) {
708 User *U = V->user_back();
709 auto UserInsInst = dyn_cast<InsertValueInst>(U);
710 if (!UserInsInst || U->getOperand(0) != V)
711 break;
712 if (UserInsInst->getIndices() == FirstIndices) {
713 IsRedundant = true;
714 break;
716 V = UserInsInst;
717 Depth++;
720 if (IsRedundant)
721 return replaceInstUsesWith(I, I.getOperand(0));
722 return nullptr;
725 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
726 int MaskSize = Shuf.getMask()->getType()->getVectorNumElements();
727 int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements();
729 // A vector select does not change the size of the operands.
730 if (MaskSize != VecSize)
731 return false;
733 // Each mask element must be undefined or choose a vector element from one of
734 // the source operands without crossing vector lanes.
735 for (int i = 0; i != MaskSize; ++i) {
736 int Elt = Shuf.getMaskValue(i);
737 if (Elt != -1 && Elt != i && Elt != i + VecSize)
738 return false;
741 return true;
744 /// Turn a chain of inserts that splats a value into an insert + shuffle:
745 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
746 /// shufflevector(insertelt(X, %k, 0), undef, zero)
747 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
748 // We are interested in the last insert in a chain. So if this insert has a
749 // single user and that user is an insert, bail.
750 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
751 return nullptr;
753 auto *VecTy = cast<VectorType>(InsElt.getType());
754 unsigned NumElements = VecTy->getNumElements();
756 // Do not try to do this for a one-element vector, since that's a nop,
757 // and will cause an inf-loop.
758 if (NumElements == 1)
759 return nullptr;
761 Value *SplatVal = InsElt.getOperand(1);
762 InsertElementInst *CurrIE = &InsElt;
763 SmallVector<bool, 16> ElementPresent(NumElements, false);
764 InsertElementInst *FirstIE = nullptr;
766 // Walk the chain backwards, keeping track of which indices we inserted into,
767 // until we hit something that isn't an insert of the splatted value.
768 while (CurrIE) {
769 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
770 if (!Idx || CurrIE->getOperand(1) != SplatVal)
771 return nullptr;
773 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
774 // Check none of the intermediate steps have any additional uses, except
775 // for the root insertelement instruction, which can be re-used, if it
776 // inserts at position 0.
777 if (CurrIE != &InsElt &&
778 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
779 return nullptr;
781 ElementPresent[Idx->getZExtValue()] = true;
782 FirstIE = CurrIE;
783 CurrIE = NextIE;
786 // If this is just a single insertelement (not a sequence), we are done.
787 if (FirstIE == &InsElt)
788 return nullptr;
790 // If we are not inserting into an undef vector, make sure we've seen an
791 // insert into every element.
792 // TODO: If the base vector is not undef, it might be better to create a splat
793 // and then a select-shuffle (blend) with the base vector.
794 if (!isa<UndefValue>(FirstIE->getOperand(0)))
795 if (any_of(ElementPresent, [](bool Present) { return !Present; }))
796 return nullptr;
798 // Create the insert + shuffle.
799 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
800 UndefValue *UndefVec = UndefValue::get(VecTy);
801 Constant *Zero = ConstantInt::get(Int32Ty, 0);
802 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
803 FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt);
805 // Splat from element 0, but replace absent elements with undef in the mask.
806 SmallVector<Constant *, 16> Mask(NumElements, Zero);
807 for (unsigned i = 0; i != NumElements; ++i)
808 if (!ElementPresent[i])
809 Mask[i] = UndefValue::get(Int32Ty);
811 return new ShuffleVectorInst(FirstIE, UndefVec, ConstantVector::get(Mask));
814 /// Try to fold an insert element into an existing splat shuffle by changing
815 /// the shuffle's mask to include the index of this insert element.
816 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
817 // Check if the vector operand of this insert is a canonical splat shuffle.
818 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
819 if (!Shuf || !Shuf->isZeroEltSplat())
820 return nullptr;
822 // Check for a constant insertion index.
823 uint64_t IdxC;
824 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
825 return nullptr;
827 // Check if the splat shuffle's input is the same as this insert's scalar op.
828 Value *X = InsElt.getOperand(1);
829 Value *Op0 = Shuf->getOperand(0);
830 if (!match(Op0, m_InsertElement(m_Undef(), m_Specific(X), m_ZeroInt())))
831 return nullptr;
833 // Replace the shuffle mask element at the index of this insert with a zero.
834 // For example:
835 // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
836 // --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
837 unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
838 SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
839 Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
840 Constant *Zero = ConstantInt::getNullValue(I32Ty);
841 for (unsigned i = 0; i != NumMaskElts; ++i)
842 NewMaskVec[i] = i == IdxC ? Zero : Shuf->getMask()->getAggregateElement(i);
844 Constant *NewMask = ConstantVector::get(NewMaskVec);
845 return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask);
848 /// Try to fold an extract+insert element into an existing identity shuffle by
849 /// changing the shuffle's mask to include the index of this insert element.
850 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
851 // Check if the vector operand of this insert is an identity shuffle.
852 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
853 if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) ||
854 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
855 return nullptr;
857 // Check for a constant insertion index.
858 uint64_t IdxC;
859 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
860 return nullptr;
862 // Check if this insert's scalar op is extracted from the identity shuffle's
863 // input vector.
864 Value *Scalar = InsElt.getOperand(1);
865 Value *X = Shuf->getOperand(0);
866 if (!match(Scalar, m_ExtractElement(m_Specific(X), m_SpecificInt(IdxC))))
867 return nullptr;
869 // Replace the shuffle mask element at the index of this extract+insert with
870 // that same index value.
871 // For example:
872 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
873 unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
874 SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
875 Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
876 Constant *NewMaskEltC = ConstantInt::get(I32Ty, IdxC);
877 Constant *OldMask = Shuf->getMask();
878 for (unsigned i = 0; i != NumMaskElts; ++i) {
879 if (i != IdxC) {
880 // All mask elements besides the inserted element remain the same.
881 NewMaskVec[i] = OldMask->getAggregateElement(i);
882 } else if (OldMask->getAggregateElement(i) == NewMaskEltC) {
883 // If the mask element was already set, there's nothing to do
884 // (demanded elements analysis may unset it later).
885 return nullptr;
886 } else {
887 assert(isa<UndefValue>(OldMask->getAggregateElement(i)) &&
888 "Unexpected shuffle mask element for identity shuffle");
889 NewMaskVec[i] = NewMaskEltC;
893 Constant *NewMask = ConstantVector::get(NewMaskVec);
894 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
897 /// If we have an insertelement instruction feeding into another insertelement
898 /// and the 2nd is inserting a constant into the vector, canonicalize that
899 /// constant insertion before the insertion of a variable:
901 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
902 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
904 /// This has the potential of eliminating the 2nd insertelement instruction
905 /// via constant folding of the scalar constant into a vector constant.
906 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
907 InstCombiner::BuilderTy &Builder) {
908 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
909 if (!InsElt1 || !InsElt1->hasOneUse())
910 return nullptr;
912 Value *X, *Y;
913 Constant *ScalarC;
914 ConstantInt *IdxC1, *IdxC2;
915 if (match(InsElt1->getOperand(0), m_Value(X)) &&
916 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
917 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
918 match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
919 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
920 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
921 return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
924 return nullptr;
927 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
928 /// --> shufflevector X, CVec', Mask'
929 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
930 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
931 // Bail out if the parent has more than one use. In that case, we'd be
932 // replacing the insertelt with a shuffle, and that's not a clear win.
933 if (!Inst || !Inst->hasOneUse())
934 return nullptr;
935 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
936 // The shuffle must have a constant vector operand. The insertelt must have
937 // a constant scalar being inserted at a constant position in the vector.
938 Constant *ShufConstVec, *InsEltScalar;
939 uint64_t InsEltIndex;
940 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
941 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
942 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
943 return nullptr;
945 // Adding an element to an arbitrary shuffle could be expensive, but a
946 // shuffle that selects elements from vectors without crossing lanes is
947 // assumed cheap.
948 // If we're just adding a constant into that shuffle, it will still be
949 // cheap.
950 if (!isShuffleEquivalentToSelect(*Shuf))
951 return nullptr;
953 // From the above 'select' check, we know that the mask has the same number
954 // of elements as the vector input operands. We also know that each constant
955 // input element is used in its lane and can not be used more than once by
956 // the shuffle. Therefore, replace the constant in the shuffle's constant
957 // vector with the insertelt constant. Replace the constant in the shuffle's
958 // mask vector with the insertelt index plus the length of the vector
959 // (because the constant vector operand of a shuffle is always the 2nd
960 // operand).
961 Constant *Mask = Shuf->getMask();
962 unsigned NumElts = Mask->getType()->getVectorNumElements();
963 SmallVector<Constant *, 16> NewShufElts(NumElts);
964 SmallVector<Constant *, 16> NewMaskElts(NumElts);
965 for (unsigned I = 0; I != NumElts; ++I) {
966 if (I == InsEltIndex) {
967 NewShufElts[I] = InsEltScalar;
968 Type *Int32Ty = Type::getInt32Ty(Shuf->getContext());
969 NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts);
970 } else {
971 // Copy over the existing values.
972 NewShufElts[I] = ShufConstVec->getAggregateElement(I);
973 NewMaskElts[I] = Mask->getAggregateElement(I);
977 // Create new operands for a shuffle that includes the constant of the
978 // original insertelt. The old shuffle will be dead now.
979 return new ShuffleVectorInst(Shuf->getOperand(0),
980 ConstantVector::get(NewShufElts),
981 ConstantVector::get(NewMaskElts));
982 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
983 // Transform sequences of insertelements ops with constant data/indexes into
984 // a single shuffle op.
985 unsigned NumElts = InsElt.getType()->getNumElements();
987 uint64_t InsertIdx[2];
988 Constant *Val[2];
989 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
990 !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
991 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
992 !match(IEI->getOperand(1), m_Constant(Val[1])))
993 return nullptr;
994 SmallVector<Constant *, 16> Values(NumElts);
995 SmallVector<Constant *, 16> Mask(NumElts);
996 auto ValI = std::begin(Val);
997 // Generate new constant vector and mask.
998 // We have 2 values/masks from the insertelements instructions. Insert them
999 // into new value/mask vectors.
1000 for (uint64_t I : InsertIdx) {
1001 if (!Values[I]) {
1002 assert(!Mask[I]);
1003 Values[I] = *ValI;
1004 Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()),
1005 NumElts + I);
1007 ++ValI;
1009 // Remaining values are filled with 'undef' values.
1010 for (unsigned I = 0; I < NumElts; ++I) {
1011 if (!Values[I]) {
1012 assert(!Mask[I]);
1013 Values[I] = UndefValue::get(InsElt.getType()->getElementType());
1014 Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I);
1017 // Create new operands for a shuffle that includes the constant of the
1018 // original insertelt.
1019 return new ShuffleVectorInst(IEI->getOperand(0),
1020 ConstantVector::get(Values),
1021 ConstantVector::get(Mask));
1023 return nullptr;
1026 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
1027 Value *VecOp = IE.getOperand(0);
1028 Value *ScalarOp = IE.getOperand(1);
1029 Value *IdxOp = IE.getOperand(2);
1031 if (auto *V = SimplifyInsertElementInst(
1032 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
1033 return replaceInstUsesWith(IE, V);
1035 // If the vector and scalar are both bitcast from the same element type, do
1036 // the insert in that source type followed by bitcast.
1037 Value *VecSrc, *ScalarSrc;
1038 if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
1039 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
1040 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
1041 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
1042 VecSrc->getType()->getVectorElementType() == ScalarSrc->getType()) {
1043 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
1044 // bitcast (inselt VecSrc, ScalarSrc, IdxOp)
1045 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
1046 return new BitCastInst(NewInsElt, IE.getType());
1049 // If the inserted element was extracted from some other vector and both
1050 // indexes are valid constants, try to turn this into a shuffle.
1051 uint64_t InsertedIdx, ExtractedIdx;
1052 Value *ExtVecOp;
1053 if (match(IdxOp, m_ConstantInt(InsertedIdx)) &&
1054 match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp),
1055 m_ConstantInt(ExtractedIdx))) &&
1056 ExtractedIdx < ExtVecOp->getType()->getVectorNumElements()) {
1057 // TODO: Looking at the user(s) to determine if this insert is a
1058 // fold-to-shuffle opportunity does not match the usual instcombine
1059 // constraints. We should decide if the transform is worthy based only
1060 // on this instruction and its operands, but that may not work currently.
1062 // Here, we are trying to avoid creating shuffles before reaching
1063 // the end of a chain of extract-insert pairs. This is complicated because
1064 // we do not generally form arbitrary shuffle masks in instcombine
1065 // (because those may codegen poorly), but collectShuffleElements() does
1066 // exactly that.
1068 // The rules for determining what is an acceptable target-independent
1069 // shuffle mask are fuzzy because they evolve based on the backend's
1070 // capabilities and real-world impact.
1071 auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
1072 if (!Insert.hasOneUse())
1073 return true;
1074 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
1075 if (!InsertUser)
1076 return true;
1077 return false;
1080 // Try to form a shuffle from a chain of extract-insert ops.
1081 if (isShuffleRootCandidate(IE)) {
1082 SmallVector<Constant*, 16> Mask;
1083 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
1085 // The proposed shuffle may be trivial, in which case we shouldn't
1086 // perform the combine.
1087 if (LR.first != &IE && LR.second != &IE) {
1088 // We now have a shuffle of LHS, RHS, Mask.
1089 if (LR.second == nullptr)
1090 LR.second = UndefValue::get(LR.first->getType());
1091 return new ShuffleVectorInst(LR.first, LR.second,
1092 ConstantVector::get(Mask));
1097 unsigned VWidth = VecOp->getType()->getVectorNumElements();
1098 APInt UndefElts(VWidth, 0);
1099 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1100 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
1101 if (V != &IE)
1102 return replaceInstUsesWith(IE, V);
1103 return &IE;
1106 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
1107 return Shuf;
1109 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
1110 return NewInsElt;
1112 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
1113 return Broadcast;
1115 if (Instruction *Splat = foldInsEltIntoSplat(IE))
1116 return Splat;
1118 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
1119 return IdentityShuf;
1121 return nullptr;
1124 /// Return true if we can evaluate the specified expression tree if the vector
1125 /// elements were shuffled in a different order.
1126 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
1127 unsigned Depth = 5) {
1128 // We can always reorder the elements of a constant.
1129 if (isa<Constant>(V))
1130 return true;
1132 // We won't reorder vector arguments. No IPO here.
1133 Instruction *I = dyn_cast<Instruction>(V);
1134 if (!I) return false;
1136 // Two users may expect different orders of the elements. Don't try it.
1137 if (!I->hasOneUse())
1138 return false;
1140 if (Depth == 0) return false;
1142 switch (I->getOpcode()) {
1143 case Instruction::UDiv:
1144 case Instruction::SDiv:
1145 case Instruction::URem:
1146 case Instruction::SRem:
1147 // Propagating an undefined shuffle mask element to integer div/rem is not
1148 // allowed because those opcodes can create immediate undefined behavior
1149 // from an undefined element in an operand.
1150 if (llvm::any_of(Mask, [](int M){ return M == -1; }))
1151 return false;
1152 LLVM_FALLTHROUGH;
1153 case Instruction::Add:
1154 case Instruction::FAdd:
1155 case Instruction::Sub:
1156 case Instruction::FSub:
1157 case Instruction::Mul:
1158 case Instruction::FMul:
1159 case Instruction::FDiv:
1160 case Instruction::FRem:
1161 case Instruction::Shl:
1162 case Instruction::LShr:
1163 case Instruction::AShr:
1164 case Instruction::And:
1165 case Instruction::Or:
1166 case Instruction::Xor:
1167 case Instruction::ICmp:
1168 case Instruction::FCmp:
1169 case Instruction::Trunc:
1170 case Instruction::ZExt:
1171 case Instruction::SExt:
1172 case Instruction::FPToUI:
1173 case Instruction::FPToSI:
1174 case Instruction::UIToFP:
1175 case Instruction::SIToFP:
1176 case Instruction::FPTrunc:
1177 case Instruction::FPExt:
1178 case Instruction::GetElementPtr: {
1179 // Bail out if we would create longer vector ops. We could allow creating
1180 // longer vector ops, but that may result in more expensive codegen.
1181 Type *ITy = I->getType();
1182 if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements())
1183 return false;
1184 for (Value *Operand : I->operands()) {
1185 if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1186 return false;
1188 return true;
1190 case Instruction::InsertElement: {
1191 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1192 if (!CI) return false;
1193 int ElementNumber = CI->getLimitedValue();
1195 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1196 // can't put an element into multiple indices.
1197 bool SeenOnce = false;
1198 for (int i = 0, e = Mask.size(); i != e; ++i) {
1199 if (Mask[i] == ElementNumber) {
1200 if (SeenOnce)
1201 return false;
1202 SeenOnce = true;
1205 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1208 return false;
1211 /// Rebuild a new instruction just like 'I' but with the new operands given.
1212 /// In the event of type mismatch, the type of the operands is correct.
1213 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
1214 // We don't want to use the IRBuilder here because we want the replacement
1215 // instructions to appear next to 'I', not the builder's insertion point.
1216 switch (I->getOpcode()) {
1217 case Instruction::Add:
1218 case Instruction::FAdd:
1219 case Instruction::Sub:
1220 case Instruction::FSub:
1221 case Instruction::Mul:
1222 case Instruction::FMul:
1223 case Instruction::UDiv:
1224 case Instruction::SDiv:
1225 case Instruction::FDiv:
1226 case Instruction::URem:
1227 case Instruction::SRem:
1228 case Instruction::FRem:
1229 case Instruction::Shl:
1230 case Instruction::LShr:
1231 case Instruction::AShr:
1232 case Instruction::And:
1233 case Instruction::Or:
1234 case Instruction::Xor: {
1235 BinaryOperator *BO = cast<BinaryOperator>(I);
1236 assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1237 BinaryOperator *New =
1238 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
1239 NewOps[0], NewOps[1], "", BO);
1240 if (isa<OverflowingBinaryOperator>(BO)) {
1241 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1242 New->setHasNoSignedWrap(BO->hasNoSignedWrap());
1244 if (isa<PossiblyExactOperator>(BO)) {
1245 New->setIsExact(BO->isExact());
1247 if (isa<FPMathOperator>(BO))
1248 New->copyFastMathFlags(I);
1249 return New;
1251 case Instruction::ICmp:
1252 assert(NewOps.size() == 2 && "icmp with #ops != 2");
1253 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
1254 NewOps[0], NewOps[1]);
1255 case Instruction::FCmp:
1256 assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1257 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
1258 NewOps[0], NewOps[1]);
1259 case Instruction::Trunc:
1260 case Instruction::ZExt:
1261 case Instruction::SExt:
1262 case Instruction::FPToUI:
1263 case Instruction::FPToSI:
1264 case Instruction::UIToFP:
1265 case Instruction::SIToFP:
1266 case Instruction::FPTrunc:
1267 case Instruction::FPExt: {
1268 // It's possible that the mask has a different number of elements from
1269 // the original cast. We recompute the destination type to match the mask.
1270 Type *DestTy =
1271 VectorType::get(I->getType()->getScalarType(),
1272 NewOps[0]->getType()->getVectorNumElements());
1273 assert(NewOps.size() == 1 && "cast with #ops != 1");
1274 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
1275 "", I);
1277 case Instruction::GetElementPtr: {
1278 Value *Ptr = NewOps[0];
1279 ArrayRef<Value*> Idx = NewOps.slice(1);
1280 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1281 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
1282 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
1283 return GEP;
1286 llvm_unreachable("failed to rebuild vector instructions");
1289 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1290 // Mask.size() does not need to be equal to the number of vector elements.
1292 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1293 Type *EltTy = V->getType()->getScalarType();
1294 Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
1295 if (isa<UndefValue>(V))
1296 return UndefValue::get(VectorType::get(EltTy, Mask.size()));
1298 if (isa<ConstantAggregateZero>(V))
1299 return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size()));
1301 if (Constant *C = dyn_cast<Constant>(V)) {
1302 SmallVector<Constant *, 16> MaskValues;
1303 for (int i = 0, e = Mask.size(); i != e; ++i) {
1304 if (Mask[i] == -1)
1305 MaskValues.push_back(UndefValue::get(I32Ty));
1306 else
1307 MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i]));
1309 return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
1310 ConstantVector::get(MaskValues));
1313 Instruction *I = cast<Instruction>(V);
1314 switch (I->getOpcode()) {
1315 case Instruction::Add:
1316 case Instruction::FAdd:
1317 case Instruction::Sub:
1318 case Instruction::FSub:
1319 case Instruction::Mul:
1320 case Instruction::FMul:
1321 case Instruction::UDiv:
1322 case Instruction::SDiv:
1323 case Instruction::FDiv:
1324 case Instruction::URem:
1325 case Instruction::SRem:
1326 case Instruction::FRem:
1327 case Instruction::Shl:
1328 case Instruction::LShr:
1329 case Instruction::AShr:
1330 case Instruction::And:
1331 case Instruction::Or:
1332 case Instruction::Xor:
1333 case Instruction::ICmp:
1334 case Instruction::FCmp:
1335 case Instruction::Trunc:
1336 case Instruction::ZExt:
1337 case Instruction::SExt:
1338 case Instruction::FPToUI:
1339 case Instruction::FPToSI:
1340 case Instruction::UIToFP:
1341 case Instruction::SIToFP:
1342 case Instruction::FPTrunc:
1343 case Instruction::FPExt:
1344 case Instruction::Select:
1345 case Instruction::GetElementPtr: {
1346 SmallVector<Value*, 8> NewOps;
1347 bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
1348 for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1349 Value *V;
1350 // Recursively call evaluateInDifferentElementOrder on vector arguments
1351 // as well. E.g. GetElementPtr may have scalar operands even if the
1352 // return value is a vector, so we need to examine the operand type.
1353 if (I->getOperand(i)->getType()->isVectorTy())
1354 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
1355 else
1356 V = I->getOperand(i);
1357 NewOps.push_back(V);
1358 NeedsRebuild |= (V != I->getOperand(i));
1360 if (NeedsRebuild) {
1361 return buildNew(I, NewOps);
1363 return I;
1365 case Instruction::InsertElement: {
1366 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1368 // The insertelement was inserting at Element. Figure out which element
1369 // that becomes after shuffling. The answer is guaranteed to be unique
1370 // by CanEvaluateShuffled.
1371 bool Found = false;
1372 int Index = 0;
1373 for (int e = Mask.size(); Index != e; ++Index) {
1374 if (Mask[Index] == Element) {
1375 Found = true;
1376 break;
1380 // If element is not in Mask, no need to handle the operand 1 (element to
1381 // be inserted). Just evaluate values in operand 0 according to Mask.
1382 if (!Found)
1383 return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1385 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1386 return InsertElementInst::Create(V, I->getOperand(1),
1387 ConstantInt::get(I32Ty, Index), "", I);
1390 llvm_unreachable("failed to reorder elements of vector instruction!");
1393 static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask,
1394 bool &isLHSID, bool &isRHSID) {
1395 isLHSID = isRHSID = true;
1397 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
1398 if (Mask[i] < 0) continue; // Ignore undef values.
1399 // Is this an identity shuffle of the LHS value?
1400 isLHSID &= (Mask[i] == (int)i);
1402 // Is this an identity shuffle of the RHS value?
1403 isRHSID &= (Mask[i]-e == i);
1407 // Returns true if the shuffle is extracting a contiguous range of values from
1408 // LHS, for example:
1409 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1410 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1411 // Shuffles to: |EE|FF|GG|HH|
1412 // +--+--+--+--+
1413 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1414 SmallVector<int, 16> &Mask) {
1415 unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements();
1416 unsigned MaskElems = Mask.size();
1417 unsigned BegIdx = Mask.front();
1418 unsigned EndIdx = Mask.back();
1419 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1420 return false;
1421 for (unsigned I = 0; I != MaskElems; ++I)
1422 if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1423 return false;
1424 return true;
1427 /// These are the ingredients in an alternate form binary operator as described
1428 /// below.
1429 struct BinopElts {
1430 BinaryOperator::BinaryOps Opcode;
1431 Value *Op0;
1432 Value *Op1;
1433 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
1434 Value *V0 = nullptr, Value *V1 = nullptr) :
1435 Opcode(Opc), Op0(V0), Op1(V1) {}
1436 operator bool() const { return Opcode != 0; }
1439 /// Binops may be transformed into binops with different opcodes and operands.
1440 /// Reverse the usual canonicalization to enable folds with the non-canonical
1441 /// form of the binop. If a transform is possible, return the elements of the
1442 /// new binop. If not, return invalid elements.
1443 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
1444 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
1445 Type *Ty = BO->getType();
1446 switch (BO->getOpcode()) {
1447 case Instruction::Shl: {
1448 // shl X, C --> mul X, (1 << C)
1449 Constant *C;
1450 if (match(BO1, m_Constant(C))) {
1451 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
1452 return { Instruction::Mul, BO0, ShlOne };
1454 break;
1456 case Instruction::Or: {
1457 // or X, C --> add X, C (when X and C have no common bits set)
1458 const APInt *C;
1459 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
1460 return { Instruction::Add, BO0, BO1 };
1461 break;
1463 default:
1464 break;
1466 return {};
1469 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
1470 assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
1472 // Are we shuffling together some value and that same value after it has been
1473 // modified by a binop with a constant?
1474 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1475 Constant *C;
1476 bool Op0IsBinop;
1477 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
1478 Op0IsBinop = true;
1479 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
1480 Op0IsBinop = false;
1481 else
1482 return nullptr;
1484 // The identity constant for a binop leaves a variable operand unchanged. For
1485 // a vector, this is a splat of something like 0, -1, or 1.
1486 // If there's no identity constant for this binop, we're done.
1487 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
1488 BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
1489 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
1490 if (!IdC)
1491 return nullptr;
1493 // Shuffle identity constants into the lanes that return the original value.
1494 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1495 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1496 // The existing binop constant vector remains in the same operand position.
1497 Constant *Mask = Shuf.getMask();
1498 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
1499 ConstantExpr::getShuffleVector(IdC, C, Mask);
1501 bool MightCreatePoisonOrUB =
1502 Mask->containsUndefElement() &&
1503 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
1504 if (MightCreatePoisonOrUB)
1505 NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true);
1507 // shuf (bop X, C), X, M --> bop X, C'
1508 // shuf X, (bop X, C), M --> bop X, C'
1509 Value *X = Op0IsBinop ? Op1 : Op0;
1510 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
1511 NewBO->copyIRFlags(BO);
1513 // An undef shuffle mask element may propagate as an undef constant element in
1514 // the new binop. That would produce poison where the original code might not.
1515 // If we already made a safe constant, then there's no danger.
1516 if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1517 NewBO->dropPoisonGeneratingFlags();
1518 return NewBO;
1521 /// If we have an insert of a scalar to a non-zero element of an undefined
1522 /// vector and then shuffle that value, that's the same as inserting to the zero
1523 /// element and shuffling. Splatting from the zero element is recognized as the
1524 /// canonical form of splat.
1525 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
1526 InstCombiner::BuilderTy &Builder) {
1527 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1528 Constant *Mask = Shuf.getMask();
1529 Value *X;
1530 uint64_t IndexC;
1532 // Match a shuffle that is a splat to a non-zero element.
1533 if (!match(Op0, m_OneUse(m_InsertElement(m_Undef(), m_Value(X),
1534 m_ConstantInt(IndexC)))) ||
1535 !match(Op1, m_Undef()) || match(Mask, m_ZeroInt()) || IndexC == 0)
1536 return nullptr;
1538 // Insert into element 0 of an undef vector.
1539 UndefValue *UndefVec = UndefValue::get(Shuf.getType());
1540 Constant *Zero = Builder.getInt32(0);
1541 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);
1543 // Splat from element 0. Any mask element that is undefined remains undefined.
1544 // For example:
1545 // shuf (inselt undef, X, 2), undef, <2,2,undef>
1546 // --> shuf (inselt undef, X, 0), undef, <0,0,undef>
1547 unsigned NumMaskElts = Shuf.getType()->getVectorNumElements();
1548 SmallVector<Constant *, 16> NewMask(NumMaskElts, Zero);
1549 for (unsigned i = 0; i != NumMaskElts; ++i)
1550 if (isa<UndefValue>(Mask->getAggregateElement(i)))
1551 NewMask[i] = Mask->getAggregateElement(i);
1553 return new ShuffleVectorInst(NewIns, UndefVec, ConstantVector::get(NewMask));
1556 /// Try to fold shuffles that are the equivalent of a vector select.
1557 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
1558 InstCombiner::BuilderTy &Builder,
1559 const DataLayout &DL) {
1560 if (!Shuf.isSelect())
1561 return nullptr;
1563 // Canonicalize to choose from operand 0 first.
1564 unsigned NumElts = Shuf.getType()->getVectorNumElements();
1565 if (Shuf.getMaskValue(0) >= (int)NumElts) {
1566 // TODO: Can we assert that both operands of a shuffle-select are not undef
1567 // (otherwise, it would have been folded by instsimplify?
1568 Shuf.commute();
1569 return &Shuf;
1572 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
1573 return I;
1575 BinaryOperator *B0, *B1;
1576 if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
1577 !match(Shuf.getOperand(1), m_BinOp(B1)))
1578 return nullptr;
1580 Value *X, *Y;
1581 Constant *C0, *C1;
1582 bool ConstantsAreOp1;
1583 if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
1584 match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
1585 ConstantsAreOp1 = true;
1586 else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
1587 match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
1588 ConstantsAreOp1 = false;
1589 else
1590 return nullptr;
1592 // We need matching binops to fold the lanes together.
1593 BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
1594 BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
1595 bool DropNSW = false;
1596 if (ConstantsAreOp1 && Opc0 != Opc1) {
1597 // TODO: We drop "nsw" if shift is converted into multiply because it may
1598 // not be correct when the shift amount is BitWidth - 1. We could examine
1599 // each vector element to determine if it is safe to keep that flag.
1600 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
1601 DropNSW = true;
1602 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
1603 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
1604 Opc0 = AltB0.Opcode;
1605 C0 = cast<Constant>(AltB0.Op1);
1606 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
1607 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
1608 Opc1 = AltB1.Opcode;
1609 C1 = cast<Constant>(AltB1.Op1);
1613 if (Opc0 != Opc1)
1614 return nullptr;
1616 // The opcodes must be the same. Use a new name to make that clear.
1617 BinaryOperator::BinaryOps BOpc = Opc0;
1619 // Select the constant elements needed for the single binop.
1620 Constant *Mask = Shuf.getMask();
1621 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
1623 // We are moving a binop after a shuffle. When a shuffle has an undefined
1624 // mask element, the result is undefined, but it is not poison or undefined
1625 // behavior. That is not necessarily true for div/rem/shift.
1626 bool MightCreatePoisonOrUB =
1627 Mask->containsUndefElement() &&
1628 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
1629 if (MightCreatePoisonOrUB)
1630 NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1);
1632 Value *V;
1633 if (X == Y) {
1634 // Remove a binop and the shuffle by rearranging the constant:
1635 // shuffle (op V, C0), (op V, C1), M --> op V, C'
1636 // shuffle (op C0, V), (op C1, V), M --> op C', V
1637 V = X;
1638 } else {
1639 // If there are 2 different variable operands, we must create a new shuffle
1640 // (select) first, so check uses to ensure that we don't end up with more
1641 // instructions than we started with.
1642 if (!B0->hasOneUse() && !B1->hasOneUse())
1643 return nullptr;
1645 // If we use the original shuffle mask and op1 is *variable*, we would be
1646 // putting an undef into operand 1 of div/rem/shift. This is either UB or
1647 // poison. We do not have to guard against UB when *constants* are op1
1648 // because safe constants guarantee that we do not overflow sdiv/srem (and
1649 // there's no danger for other opcodes).
1650 // TODO: To allow this case, create a new shuffle mask with no undefs.
1651 if (MightCreatePoisonOrUB && !ConstantsAreOp1)
1652 return nullptr;
1654 // Note: In general, we do not create new shuffles in InstCombine because we
1655 // do not know if a target can lower an arbitrary shuffle optimally. In this
1656 // case, the shuffle uses the existing mask, so there is no additional risk.
1658 // Select the variable vectors first, then perform the binop:
1659 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
1660 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
1661 V = Builder.CreateShuffleVector(X, Y, Mask);
1664 Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
1665 BinaryOperator::Create(BOpc, NewC, V);
1667 // Flags are intersected from the 2 source binops. But there are 2 exceptions:
1668 // 1. If we changed an opcode, poison conditions might have changed.
1669 // 2. If the shuffle had undef mask elements, the new binop might have undefs
1670 // where the original code did not. But if we already made a safe constant,
1671 // then there's no danger.
1672 NewBO->copyIRFlags(B0);
1673 NewBO->andIRFlags(B1);
1674 if (DropNSW)
1675 NewBO->setHasNoSignedWrap(false);
1676 if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1677 NewBO->dropPoisonGeneratingFlags();
1678 return NewBO;
1681 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
1682 /// narrowing (concatenating with undef and extracting back to the original
1683 /// length). This allows replacing the wide select with a narrow select.
1684 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
1685 InstCombiner::BuilderTy &Builder) {
1686 // This must be a narrowing identity shuffle. It extracts the 1st N elements
1687 // of the 1st vector operand of a shuffle.
1688 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
1689 return nullptr;
1691 // The vector being shuffled must be a vector select that we can eliminate.
1692 // TODO: The one-use requirement could be eased if X and/or Y are constants.
1693 Value *Cond, *X, *Y;
1694 if (!match(Shuf.getOperand(0),
1695 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
1696 return nullptr;
1698 // We need a narrow condition value. It must be extended with undef elements
1699 // and have the same number of elements as this shuffle.
1700 unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements();
1701 Value *NarrowCond;
1702 if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(),
1703 m_Constant()))) ||
1704 NarrowCond->getType()->getVectorNumElements() != NarrowNumElts ||
1705 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
1706 return nullptr;
1708 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
1709 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
1710 Value *Undef = UndefValue::get(X->getType());
1711 Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask());
1712 Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask());
1713 return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
1716 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
1717 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
1718 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1719 if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1))
1720 return nullptr;
1722 Value *X, *Y;
1723 Constant *Mask;
1724 if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask))))
1725 return nullptr;
1727 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
1728 // then combining may result in worse codegen.
1729 if (!Op0->hasOneUse())
1730 return nullptr;
1732 // We are extracting a subvector from a shuffle. Remove excess elements from
1733 // the 1st shuffle mask to eliminate the extract.
1735 // This transform is conservatively limited to identity extracts because we do
1736 // not allow arbitrary shuffle mask creation as a target-independent transform
1737 // (because we can't guarantee that will lower efficiently).
1739 // If the extracting shuffle has an undef mask element, it transfers to the
1740 // new shuffle mask. Otherwise, copy the original mask element. Example:
1741 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
1742 // shuf X, Y, <C0, undef, C2, undef>
1743 unsigned NumElts = Shuf.getType()->getVectorNumElements();
1744 SmallVector<Constant *, 16> NewMask(NumElts);
1745 assert(NumElts < Mask->getType()->getVectorNumElements() &&
1746 "Identity with extract must have less elements than its inputs");
1748 for (unsigned i = 0; i != NumElts; ++i) {
1749 Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i);
1750 Constant *MaskElt = Mask->getAggregateElement(i);
1751 NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt;
1753 return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
1756 /// Try to replace a shuffle with an insertelement.
1757 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf) {
1758 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
1759 SmallVector<int, 16> Mask = Shuf.getShuffleMask();
1761 // The shuffle must not change vector sizes.
1762 // TODO: This restriction could be removed if the insert has only one use
1763 // (because the transform would require a new length-changing shuffle).
1764 int NumElts = Mask.size();
1765 if (NumElts != (int)(V0->getType()->getVectorNumElements()))
1766 return nullptr;
1768 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
1769 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
1770 // We need an insertelement with a constant index.
1771 if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar),
1772 m_ConstantInt(IndexC))))
1773 return false;
1775 // Test the shuffle mask to see if it splices the inserted scalar into the
1776 // operand 1 vector of the shuffle.
1777 int NewInsIndex = -1;
1778 for (int i = 0; i != NumElts; ++i) {
1779 // Ignore undef mask elements.
1780 if (Mask[i] == -1)
1781 continue;
1783 // The shuffle takes elements of operand 1 without lane changes.
1784 if (Mask[i] == NumElts + i)
1785 continue;
1787 // The shuffle must choose the inserted scalar exactly once.
1788 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
1789 return false;
1791 // The shuffle is placing the inserted scalar into element i.
1792 NewInsIndex = i;
1795 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
1797 // Index is updated to the potentially translated insertion lane.
1798 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
1799 return true;
1802 // If the shuffle is unnecessary, insert the scalar operand directly into
1803 // operand 1 of the shuffle. Example:
1804 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
1805 Value *Scalar;
1806 ConstantInt *IndexC;
1807 if (isShufflingScalarIntoOp1(Scalar, IndexC))
1808 return InsertElementInst::Create(V1, Scalar, IndexC);
1810 // Try again after commuting shuffle. Example:
1811 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
1812 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
1813 std::swap(V0, V1);
1814 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
1815 if (isShufflingScalarIntoOp1(Scalar, IndexC))
1816 return InsertElementInst::Create(V1, Scalar, IndexC);
1818 return nullptr;
1821 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
1822 // Match the operands as identity with padding (also known as concatenation
1823 // with undef) shuffles of the same source type. The backend is expected to
1824 // recreate these concatenations from a shuffle of narrow operands.
1825 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
1826 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
1827 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
1828 !Shuffle1 || !Shuffle1->isIdentityWithPadding())
1829 return nullptr;
1831 // We limit this transform to power-of-2 types because we expect that the
1832 // backend can convert the simplified IR patterns to identical nodes as the
1833 // original IR.
1834 // TODO: If we can verify the same behavior for arbitrary types, the
1835 // power-of-2 checks can be removed.
1836 Value *X = Shuffle0->getOperand(0);
1837 Value *Y = Shuffle1->getOperand(0);
1838 if (X->getType() != Y->getType() ||
1839 !isPowerOf2_32(Shuf.getType()->getVectorNumElements()) ||
1840 !isPowerOf2_32(Shuffle0->getType()->getVectorNumElements()) ||
1841 !isPowerOf2_32(X->getType()->getVectorNumElements()) ||
1842 isa<UndefValue>(X) || isa<UndefValue>(Y))
1843 return nullptr;
1844 assert(isa<UndefValue>(Shuffle0->getOperand(1)) &&
1845 isa<UndefValue>(Shuffle1->getOperand(1)) &&
1846 "Unexpected operand for identity shuffle");
1848 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
1849 // operands directly by adjusting the shuffle mask to account for the narrower
1850 // types:
1851 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
1852 int NarrowElts = X->getType()->getVectorNumElements();
1853 int WideElts = Shuffle0->getType()->getVectorNumElements();
1854 assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
1856 Type *I32Ty = IntegerType::getInt32Ty(Shuf.getContext());
1857 SmallVector<int, 16> Mask = Shuf.getShuffleMask();
1858 SmallVector<Constant *, 16> NewMask(Mask.size(), UndefValue::get(I32Ty));
1859 for (int i = 0, e = Mask.size(); i != e; ++i) {
1860 if (Mask[i] == -1)
1861 continue;
1863 // If this shuffle is choosing an undef element from 1 of the sources, that
1864 // element is undef.
1865 if (Mask[i] < WideElts) {
1866 if (Shuffle0->getMaskValue(Mask[i]) == -1)
1867 continue;
1868 } else {
1869 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
1870 continue;
1873 // If this shuffle is choosing from the 1st narrow op, the mask element is
1874 // the same. If this shuffle is choosing from the 2nd narrow op, the mask
1875 // element is offset down to adjust for the narrow vector widths.
1876 if (Mask[i] < WideElts) {
1877 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
1878 NewMask[i] = ConstantInt::get(I32Ty, Mask[i]);
1879 } else {
1880 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
1881 NewMask[i] = ConstantInt::get(I32Ty, Mask[i] - (WideElts - NarrowElts));
1884 return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
1887 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
1888 Value *LHS = SVI.getOperand(0);
1889 Value *RHS = SVI.getOperand(1);
1890 if (auto *V = SimplifyShuffleVectorInst(
1891 LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI)))
1892 return replaceInstUsesWith(SVI, V);
1894 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
1895 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
1896 unsigned VWidth = SVI.getType()->getVectorNumElements();
1897 unsigned LHSWidth = LHS->getType()->getVectorNumElements();
1898 SmallVector<int, 16> Mask = SVI.getShuffleMask();
1899 Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
1900 if (LHS == RHS || isa<UndefValue>(LHS)) {
1901 // Remap any references to RHS to use LHS.
1902 SmallVector<Constant*, 16> Elts;
1903 for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
1904 if (Mask[i] < 0) {
1905 Elts.push_back(UndefValue::get(Int32Ty));
1906 continue;
1909 if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
1910 (Mask[i] < (int)e && isa<UndefValue>(LHS))) {
1911 Mask[i] = -1; // Turn into undef.
1912 Elts.push_back(UndefValue::get(Int32Ty));
1913 } else {
1914 Mask[i] = Mask[i] % e; // Force to LHS.
1915 Elts.push_back(ConstantInt::get(Int32Ty, Mask[i]));
1918 SVI.setOperand(0, SVI.getOperand(1));
1919 SVI.setOperand(1, UndefValue::get(RHS->getType()));
1920 SVI.setOperand(2, ConstantVector::get(Elts));
1921 return &SVI;
1924 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
1925 return I;
1927 if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
1928 return I;
1930 if (Instruction *I = narrowVectorSelect(SVI, Builder))
1931 return I;
1933 APInt UndefElts(VWidth, 0);
1934 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1935 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
1936 if (V != &SVI)
1937 return replaceInstUsesWith(SVI, V);
1938 return &SVI;
1941 if (Instruction *I = foldIdentityExtractShuffle(SVI))
1942 return I;
1944 // These transforms have the potential to lose undef knowledge, so they are
1945 // intentionally placed after SimplifyDemandedVectorElts().
1946 if (Instruction *I = foldShuffleWithInsert(SVI))
1947 return I;
1948 if (Instruction *I = foldIdentityPaddedShuffles(SVI))
1949 return I;
1951 if (VWidth == LHSWidth) {
1952 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
1953 bool isLHSID, isRHSID;
1954 recognizeIdentityMask(Mask, isLHSID, isRHSID);
1956 // Eliminate identity shuffles.
1957 if (isLHSID) return replaceInstUsesWith(SVI, LHS);
1958 if (isRHSID) return replaceInstUsesWith(SVI, RHS);
1961 if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) {
1962 Value *V = evaluateInDifferentElementOrder(LHS, Mask);
1963 return replaceInstUsesWith(SVI, V);
1966 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
1967 // a non-vector type. We can instead bitcast the original vector followed by
1968 // an extract of the desired element:
1970 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
1971 // <4 x i32> <i32 0, i32 1, i32 2, i32 3>
1972 // %1 = bitcast <4 x i8> %sroa to i32
1973 // Becomes:
1974 // %bc = bitcast <16 x i8> %in to <4 x i32>
1975 // %ext = extractelement <4 x i32> %bc, i32 0
1977 // If the shuffle is extracting a contiguous range of values from the input
1978 // vector then each use which is a bitcast of the extracted size can be
1979 // replaced. This will work if the vector types are compatible, and the begin
1980 // index is aligned to a value in the casted vector type. If the begin index
1981 // isn't aligned then we can shuffle the original vector (keeping the same
1982 // vector type) before extracting.
1984 // This code will bail out if the target type is fundamentally incompatible
1985 // with vectors of the source type.
1987 // Example of <16 x i8>, target type i32:
1988 // Index range [4,8): v-----------v Will work.
1989 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1990 // <16 x i8>: | | | | | | | | | | | | | | | | |
1991 // <4 x i32>: | | | | |
1992 // +-----------+-----------+-----------+-----------+
1993 // Index range [6,10): ^-----------^ Needs an extra shuffle.
1994 // Target type i40: ^--------------^ Won't work, bail.
1995 bool MadeChange = false;
1996 if (isShuffleExtractingFromLHS(SVI, Mask)) {
1997 Value *V = LHS;
1998 unsigned MaskElems = Mask.size();
1999 VectorType *SrcTy = cast<VectorType>(V->getType());
2000 unsigned VecBitWidth = SrcTy->getBitWidth();
2001 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
2002 assert(SrcElemBitWidth && "vector elements must have a bitwidth");
2003 unsigned SrcNumElems = SrcTy->getNumElements();
2004 SmallVector<BitCastInst *, 8> BCs;
2005 DenseMap<Type *, Value *> NewBCs;
2006 for (User *U : SVI.users())
2007 if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
2008 if (!BC->use_empty())
2009 // Only visit bitcasts that weren't previously handled.
2010 BCs.push_back(BC);
2011 for (BitCastInst *BC : BCs) {
2012 unsigned BegIdx = Mask.front();
2013 Type *TgtTy = BC->getDestTy();
2014 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
2015 if (!TgtElemBitWidth)
2016 continue;
2017 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
2018 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
2019 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
2020 if (!VecBitWidthsEqual)
2021 continue;
2022 if (!VectorType::isValidElementType(TgtTy))
2023 continue;
2024 VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
2025 if (!BegIsAligned) {
2026 // Shuffle the input so [0,NumElements) contains the output, and
2027 // [NumElems,SrcNumElems) is undef.
2028 SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
2029 UndefValue::get(Int32Ty));
2030 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
2031 ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
2032 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
2033 ConstantVector::get(ShuffleMask),
2034 SVI.getName() + ".extract");
2035 BegIdx = 0;
2037 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
2038 assert(SrcElemsPerTgtElem);
2039 BegIdx /= SrcElemsPerTgtElem;
2040 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
2041 auto *NewBC =
2042 BCAlreadyExists
2043 ? NewBCs[CastSrcTy]
2044 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
2045 if (!BCAlreadyExists)
2046 NewBCs[CastSrcTy] = NewBC;
2047 auto *Ext = Builder.CreateExtractElement(
2048 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
2049 // The shufflevector isn't being replaced: the bitcast that used it
2050 // is. InstCombine will visit the newly-created instructions.
2051 replaceInstUsesWith(*BC, Ext);
2052 MadeChange = true;
2056 // If the LHS is a shufflevector itself, see if we can combine it with this
2057 // one without producing an unusual shuffle.
2058 // Cases that might be simplified:
2059 // 1.
2060 // x1=shuffle(v1,v2,mask1)
2061 // x=shuffle(x1,undef,mask)
2062 // ==>
2063 // x=shuffle(v1,undef,newMask)
2064 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
2065 // 2.
2066 // x1=shuffle(v1,undef,mask1)
2067 // x=shuffle(x1,x2,mask)
2068 // where v1.size() == mask1.size()
2069 // ==>
2070 // x=shuffle(v1,x2,newMask)
2071 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
2072 // 3.
2073 // x2=shuffle(v2,undef,mask2)
2074 // x=shuffle(x1,x2,mask)
2075 // where v2.size() == mask2.size()
2076 // ==>
2077 // x=shuffle(x1,v2,newMask)
2078 // newMask[i] = (mask[i] < x1.size())
2079 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
2080 // 4.
2081 // x1=shuffle(v1,undef,mask1)
2082 // x2=shuffle(v2,undef,mask2)
2083 // x=shuffle(x1,x2,mask)
2084 // where v1.size() == v2.size()
2085 // ==>
2086 // x=shuffle(v1,v2,newMask)
2087 // newMask[i] = (mask[i] < x1.size())
2088 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
2090 // Here we are really conservative:
2091 // we are absolutely afraid of producing a shuffle mask not in the input
2092 // program, because the code gen may not be smart enough to turn a merged
2093 // shuffle into two specific shuffles: it may produce worse code. As such,
2094 // we only merge two shuffles if the result is either a splat or one of the
2095 // input shuffle masks. In this case, merging the shuffles just removes
2096 // one instruction, which we know is safe. This is good for things like
2097 // turning: (splat(splat)) -> splat, or
2098 // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
2099 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
2100 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
2101 if (LHSShuffle)
2102 if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
2103 LHSShuffle = nullptr;
2104 if (RHSShuffle)
2105 if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
2106 RHSShuffle = nullptr;
2107 if (!LHSShuffle && !RHSShuffle)
2108 return MadeChange ? &SVI : nullptr;
2110 Value* LHSOp0 = nullptr;
2111 Value* LHSOp1 = nullptr;
2112 Value* RHSOp0 = nullptr;
2113 unsigned LHSOp0Width = 0;
2114 unsigned RHSOp0Width = 0;
2115 if (LHSShuffle) {
2116 LHSOp0 = LHSShuffle->getOperand(0);
2117 LHSOp1 = LHSShuffle->getOperand(1);
2118 LHSOp0Width = LHSOp0->getType()->getVectorNumElements();
2120 if (RHSShuffle) {
2121 RHSOp0 = RHSShuffle->getOperand(0);
2122 RHSOp0Width = RHSOp0->getType()->getVectorNumElements();
2124 Value* newLHS = LHS;
2125 Value* newRHS = RHS;
2126 if (LHSShuffle) {
2127 // case 1
2128 if (isa<UndefValue>(RHS)) {
2129 newLHS = LHSOp0;
2130 newRHS = LHSOp1;
2132 // case 2 or 4
2133 else if (LHSOp0Width == LHSWidth) {
2134 newLHS = LHSOp0;
2137 // case 3 or 4
2138 if (RHSShuffle && RHSOp0Width == LHSWidth) {
2139 newRHS = RHSOp0;
2141 // case 4
2142 if (LHSOp0 == RHSOp0) {
2143 newLHS = LHSOp0;
2144 newRHS = nullptr;
2147 if (newLHS == LHS && newRHS == RHS)
2148 return MadeChange ? &SVI : nullptr;
2150 SmallVector<int, 16> LHSMask;
2151 SmallVector<int, 16> RHSMask;
2152 if (newLHS != LHS)
2153 LHSMask = LHSShuffle->getShuffleMask();
2154 if (RHSShuffle && newRHS != RHS)
2155 RHSMask = RHSShuffle->getShuffleMask();
2157 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
2158 SmallVector<int, 16> newMask;
2159 bool isSplat = true;
2160 int SplatElt = -1;
2161 // Create a new mask for the new ShuffleVectorInst so that the new
2162 // ShuffleVectorInst is equivalent to the original one.
2163 for (unsigned i = 0; i < VWidth; ++i) {
2164 int eltMask;
2165 if (Mask[i] < 0) {
2166 // This element is an undef value.
2167 eltMask = -1;
2168 } else if (Mask[i] < (int)LHSWidth) {
2169 // This element is from left hand side vector operand.
2171 // If LHS is going to be replaced (case 1, 2, or 4), calculate the
2172 // new mask value for the element.
2173 if (newLHS != LHS) {
2174 eltMask = LHSMask[Mask[i]];
2175 // If the value selected is an undef value, explicitly specify it
2176 // with a -1 mask value.
2177 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
2178 eltMask = -1;
2179 } else
2180 eltMask = Mask[i];
2181 } else {
2182 // This element is from right hand side vector operand
2184 // If the value selected is an undef value, explicitly specify it
2185 // with a -1 mask value. (case 1)
2186 if (isa<UndefValue>(RHS))
2187 eltMask = -1;
2188 // If RHS is going to be replaced (case 3 or 4), calculate the
2189 // new mask value for the element.
2190 else if (newRHS != RHS) {
2191 eltMask = RHSMask[Mask[i]-LHSWidth];
2192 // If the value selected is an undef value, explicitly specify it
2193 // with a -1 mask value.
2194 if (eltMask >= (int)RHSOp0Width) {
2195 assert(isa<UndefValue>(RHSShuffle->getOperand(1))
2196 && "should have been check above");
2197 eltMask = -1;
2199 } else
2200 eltMask = Mask[i]-LHSWidth;
2202 // If LHS's width is changed, shift the mask value accordingly.
2203 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
2204 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
2205 // If newRHS == newLHS, we want to remap any references from newRHS to
2206 // newLHS so that we can properly identify splats that may occur due to
2207 // obfuscation across the two vectors.
2208 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
2209 eltMask += newLHSWidth;
2212 // Check if this could still be a splat.
2213 if (eltMask >= 0) {
2214 if (SplatElt >= 0 && SplatElt != eltMask)
2215 isSplat = false;
2216 SplatElt = eltMask;
2219 newMask.push_back(eltMask);
2222 // If the result mask is equal to one of the original shuffle masks,
2223 // or is a splat, do the replacement.
2224 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
2225 SmallVector<Constant*, 16> Elts;
2226 for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
2227 if (newMask[i] < 0) {
2228 Elts.push_back(UndefValue::get(Int32Ty));
2229 } else {
2230 Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
2233 if (!newRHS)
2234 newRHS = UndefValue::get(newLHS->getType());
2235 return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
2238 // If the result mask is an identity, replace uses of this instruction with
2239 // corresponding argument.
2240 bool isLHSID, isRHSID;
2241 recognizeIdentityMask(newMask, isLHSID, isRHSID);
2242 if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS);
2243 if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS);
2245 return MadeChange ? &SVI : nullptr;